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Abstract

Frustrated magnetic systems demonstrate a large range of different behaviors. This in-
cludes breaking of lattice symmetries, and phases characterized by strong short-range
correlations without long-range symmetry breaking. The Nematic Bond Theory is a tool
for studying classical frustrated magnets described by the Heisenberg model. We demon-
strate a derivation of Nematic Bond Theory in the case of non-Bravais lattices, and we
extend the theory to be able to compute the specific heat of the magnetic system. We
then use this theory to explore a number of different systems. We explore the honeycomb
lattice with up to third-nearest neighbor couplings, and show that the the nematic order
manifests in qualitatively different ways at different phase boundaries. We then turn to
the triangular lattice with a long-range RKKY interaction. We show that this system
demonstrates spin-liquid behavior near the ferromagnetic-nematic phase boundary, and
that it demonstrates an unusually high critical temperature near the nematic-120◦ phase
boundary. We link this unusually high critical temperature to features in the specific
heat of the system, and find a similar phenomenon in the triangular lattice with up to
third-nearest neighbor couplings.
When deriving the Nematic Bond Theory, we neglect the vertex correction. We demon-
strate that for Bravais lattices with short-range couplings, neglecting the vertex correc-
tion is a good approximation. For non-Bravais lattices, we demonstrate that the vertex
correction cannot in general be neglected.
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Chapter 1

Introduction

In magnetic materials, order comes about due to the interaction between magnetic mo-
ments. In frustrated magnets, these interactions compete in such a way that their ener-
gies cannot all be minimized simultaneously. Thus, the system seeks out a ”compromise”
state. This in turn leads to a number of interesting phenomena, including complex mag-
netic order and the presence of spin-liquid phases described by emergent theories [1]. Both
classical and quantum magnetic materials host a wide variety of phases. In quantum mag-
nets, entanglement between the spins leads to a wide range of possible states, including
states with interesting topological properties. The classical models also demonstrate a
wide variety of states, including non-trivial ordered states and classical spin liquids with
large short-range correlations. In addition, the classical spin models are important pre-
cursors to understanding the quantum models.
To understand classical spin models, a number of methods are used, including Monte
Carlo. Many of these methods suffer from being computationally expensive as the size
of the system is increased, and as such they are ill-suited to treat large systems. This
makes the treatment of long-range order particularly difficult.
Another approach to understanding classical spin models is the Nematic Bond Theory
(NBT) [2]. This theory converts the problem of finding the state of the system into a
field-theoretical problem, which is in turn solvable by using diagrammatic methods as we
know them from quantum field theory. This allows us to efficiently find the approximate
state of the system by performing certain approximations in the diagrammatic language
of the theory.
In this thesis, we will extend the Nematic Bond Theory allow it to compute the heat
capacity, thus giving us a new measurable property that we can compute. We will then
apply Nematic Bond Theory to two systems where it has not been applied before. In
particular, for the honeycomb lattice we will extend it to up to third-nearest neighbor
couplings, which opens up a rich phase diagram with several complex phases and phase
transitions. For the triangular lattice, we will introduce long-range interactions. We will
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observe a number of unexpected phenomena, which demonstrate the complexity of these
frustrated systems and the need for further computational methods.
We will also discuss whether Nematic Bond Theory is on solid theoretical footing. In
particular, we will analyze whether the approximations made when deriving it are valid,
and see that the approximations are valid in some regimes.
The thesis is structured as follows:

• In chapter 2, we will go through some of the background of frustrated magnets.
We will discuss the definition of frustration in magnetic systems, and the nature of
magnetic phase transitions in general with a focus on the nematic phase.

• In chapter 3, we will derive Nematic Bond Theory for an arbitrary inversion-
symmetric lattice. This derivation is then followed by a description of how NBT is
implemented numerically. We also describe how this implementation can be used
to compute the specific heat of a spin model.

• In chapter 4, the honeycomb lattice with up to third-nearest neighbor couplings
and the triangular lattice with long-range coupling are described. NBT is ap-
plied to compute the states of both lattices for various temperatures and coupling
strengths. For the honeycomb lattice, we look at the different phase boundaries
between nematic and non-nematic phases. We show that the critical temperature
as a function of the interaction strengths behaves quantitatively differently at dif-
ferent phase boundaries. For the triangular lattice, we show that long-range order
induces a number of unexpected behaviors. To understand whether this is physical,
we compare these behaviors with similar behaviors found on the triangular lattice
with up to third-nearest neighbor couplings. We see that the behavior is indeed
physical.

• In chapter 5, we discuss to what extent our results are valid, taking into account the
approximations required to derive NBT, as well as the difference between our model
and real magnetic materials. We also discuss some of the results from chapter 4, as
well as why NBT fails in certain situations.

• In chapter 6, we summarize the findings of the thesis. We then describe the various
directions that further research could take.
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Chapter 2

Interactions and structures

In this chapter, I will introduce a number of background concepts for the understanding
of magnetic materials generally and frustrated magnets in particular.

2.1 Magnetic moments

In this thesis, we will study materials whose magnetic properties come from localized
magnetic moments. These localized moments are caused by the electron structure of
atoms within the material. The electrons generate a magnetic moment in two ways:
Through their own intrinsic magnetic moment, and through their orbital motion, which
provides a magnetic moment if the electron has a non-zero angular momentum. These
two moments then add up to cause the overall magnetic moment of the ion. Depending
on the number of electrons, the different contributions from each electron might cancel
out, or they might add up. The rules for determining to what extent they cancel out or
add up are called Hund’s rules [3].
As a very general rule of thumb, a magnetic moment is most likely present in metallic
ions. Most magnetic material gain their magnetic moment from transition metals like
iron, nickel, cobalt and chromium.
A magnetic material is also likely to contain non-magnetic ions, like oxygen. While
these non-magnetic ions can have a large effect on the structure of the material and the
interaction between magnetic ions, all of these effects can be abstracted into parameters
of our model like the coupling strengths Ji and the lattice constants ai. As such, we can
ignore the presence of these non-magnetic ions when developing our theory.
Not all magnetism is caused by localized magnetic moments. In some materials, the
magnetism is instead caused by the conductance electrons. These so-called itinerant
magnets are fascinating in their own right, but their description is made significantly
more complex by the interplay of magnetic and electronic factors.
Spin is a quantum mechanical property, and is characterized by spin operators ~S and
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spin quantum numbers s and m. Doing computations with these quantum operators is
difficult, however, as the spin operators do not obey nice (anti)commutator relations like
bosons and fermions. As such, they require special care. A variety of techniques exist
to work with them. In this thesis, however, we will simply treat the spins as classical
dipoles, i.e classical vectors. This is approximately true for large s in many cases. Due
to this connection with the quantum mechanical spins, we will describe the magnetic
moments of our ions as ”spins”.

2.2 Magnetic interactions

The theory we will be working with, Nematic Bond Theory, is a theory for analyzing
Hamiltonians of the form

H =
1

2

∑
i,j

Jij ~Si · ~Sj (2.1)

with no other interactions present. The name of this Hamiltonian depends on how many
dimensions the spin has: The 1d case is called the Ising model, the 2d case is called the
XY model, and the 3d case is called the Heisenberg model, which is the main model that
we will study. While the form of the Hamiltonian excludes certain interactions, there are
at least two prominent physical interactions with this form: The exchange interaction
and the RKKY interaction.
The exchange interaction is one of the primary mechanism by which materials develop
magnetic order. It comes about due to the combination of two factors: The Pauli ex-
clusion principle and the Coulomb repulsion. Specifically, the Pauli exclusion principle
demands that the wavefunction of any pair of electrons changes sign when the electrons
are exchanged. As the wavefunction has both a location component and a spin compo-
nent, the sign change can happen in either, and as such this principle couples the spin
of the electron to its wavefunction. The Coulomb repulsion between electrons then cause
the electrons to choose the wavefunction where they stay as far away from each other as
possible. If this wavefunction is even, the spin state must be odd and the electrons must
form a singlet, while if the location wavefunction is odd, the spins must be even and in
a triplet. Thus, we get an interaction between the spins [4].
This interaction is relevant in two cases. In the case of direct exchange, the electron
orbitals of two atoms with non-zero magnetic moment overlap, and as such the electrons
have a significant interaction. This, however, is somewhat rare. A more common situ-
ation is where the exchange interaction between two magnetic atoms is mediated by a
third, non-magnetic atom, often oxygen. This is called superexchange [4].
The exchange interaction depends on the orbitals of the interacting atoms to overlap, or
at least for there to be a mediating atom in between. As such, it is a relatively short-
ranged interaction. A much longer-ranged interaction which also has the correct form is
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the RKKY interaction. This interaction depends on the presence of delocalized electrons.
These electrons can be polarized by a magnetic moment, and then interact with other
magnetic moments in the material, which leads to an effective spin-spin interaction which
depends on the distance between the atoms. This interaction is oscillatory, and can either
cause the magnetic moments to align or to anti-align depending on the distance. The
RKKY interaction is most common in cases of diluted magnetic ions in a conductor, or
magnetic ions deposited on the surface of a conductor. However, there are also materials
where the RKKY interaction is believed to be the primary interaction between the mag-
netic ions in the crystal lattice [5].
The form of the RKKY interaction depends on the geometry of the Fermi surface of the
material. For a spherical Fermi surface in 3d, the RKKY interaction has the form [4]

J(r) = J

(
cos(2kF r)

(2kF r)3
− sin(2kF r)

(2kF r)4

)
(2.2)

where kF is the Fermi momentum of the polarized electrons and J is a coupling constant
which depends on the details of the system. The RKKY interaction is interesting because
the interaction strength goes as 1

r3
for large r. This means that the interaction is in prin-

ciple infinitely-ranged, and is very different from the short-ranged exchange interaction.
This longer range also makes this interaction more difficult to understand with Monte
Carlo methods, making it a prime candidate for a different numerical approach.

2.3 Frustration

We describe a magnetic material as being frustrated when competing interactions cannot
simultaneously be satisfied. The canonical example of this is three spins on the corners
of a triangle, with a coupling that minimizes the energy when the spins anti-align. Of
course, three spins cannot simultaneously be anti-aligned, and as such the ”optimal”
ground state does not exist. For the system of three spins, the ground state is one where
they are 120◦ rotated from each other.
Many different lattices contain clusters of three nearest-neighbor spins which are all cou-

pled, and these can display frustration. Since the frustration is caused by the geometry
of the lattice, it is referred to as geometric frustration. This occurs whenever there is a
odd cycle in the lattice with anti-aligning coupling all along the cycle. The most common
case is a lattice which contains triangles, but some lattices can also contain pentagons [6].
Frustration can also be caused by different types of interaction. If a lattice both have
nearest-neighbor and next-nearest-neighbor couplings, for example, these two different
couplings can compete and lead to frustration. In general, frustration can be caused by
longer range coupling since these potentially cause the spins to want to be anti-aligned
with many other spins.
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Figure 2.1: A triangle with antiferromagnetic coupling between the spins on each corner.
All three spins cannot simultaneously be anti-aligned.

This kind of frustration requires the presence of significant long-range interaction. As
most interactions are exchange interactions mediated by atomic orbitals, it is relevant to
ask whether any real-life materials display strong long-range interactions. Fortunately,
there are several examples of materials with long-range interactions which are as strong
or even stronger than the nearest-neighbor interaction. One such example is NiS2 [7], a
material in which the magnetic Ni ions form a hexagonal lattice. In this material, the
third-neighbor interaction between the nickel atoms, mediated by superexchange through
a sulfur atom, is significantly stronger than the nearest and next-nearest interactions.
This shows that long-range coupling is possible even using the normally short-ranged
exchange coupling. In addition, couplings like the RKKY coupling also yield long-range
interactions. In frustrated compounds, the interplay of various interactions often leads
to very complex behavior. Even in the relatively simple case of classical magnets with no
external magnetic field, which is what we are studying, several exotic phases of matter
occur. To understand these, we need to understand how magnetic materials work in more
general terms.

2.4 Magnetic order

When the spins in a material interact, they can develop magnetic order. Simply put,
magnetic order means that the direction of the spins is aligned in some pattern, such
that by knowing the direction of one spin you can predict the direction of other spins.
The most well known case is ferromagnetism, where the spins in a lattice are all aligned
the same way. In a ferromagnet, the magnetic fields all add up, and thus the material
has a macroscopic magnetic field.
A slightly more complex case is the antferromagnet. In an antiferromagnet, each spin
points opposite of its neighbors. As such, there is no net magnetic field. There is still a
large degree of ordering, however, and as such this phase can be readily seen by neutron
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scattering. We also use the terms ferromagnetic and antiferromagnetic to describe the
interaction between two spins, depending on whether the interaction causes the two spins
to align or to antialign.
When ferromagnetic or antiferromagnetic order develops, there is spontaneous breaking
of the symmetry of the spins. Indeed, the ferromagnetic transition is the quintessential
example of spontaneous symmetry breaking; the system chooses a direction to point all
of the spins, and thus breaks the symmetry of the spins. The symmetry which is broken
here is a continuous symmetry, it is O(3) symmetry for the Heisenberg model and O(2)

for the XY model. Thus, these symmetry breakings are governed by the Mermin-Wagner
theorem.
The Mermin-Wagner theorem states that continuous symmetries cannot be spontaneously
broken in less than 3 dimension [8]. As we primarily look at 2d systems in this thesis,
that precludes the breaking of spin symmetry. Thus, if we have phase transitions the
broken symmetries cannot be continuous, and must be discrete. Frustrated magnets
can have these discrete symmetries. To see this, it is instructive to look at a particular
generalization of the ferromagnetic and antiferromagnetic states that we have considered.
We can consider the so-called spiral states. These states are given as

~S(~r) = ~u cos
(
~r · ~Q

)
+ ~v sin

(
~r · ~Q

)
(2.3)

where ~u and ~v are two arbitrary unit vectors and ~Q is the so-called ordering vector of
the system. The ordering vector is found by finding the minima of J~q, which is the
spin coupling in reciprocal space. It is possible to prove that at least one of the ground
states of the Heisenberg model for any periodic Jij is a spiral state [9]. For example, the
ferromagnetic state is a spiral state with ~Q = (0, 0), while the antiferromagnetic state in
a square lattice is given by ~Q = (π, π).
There can be several minima of J~q. We define the star of ~Q as the set of minima which
are not connected to each other by a reciprocal lattice vector [9]. Those minima which
are connected by a reciprocal lattice vector lead to the same physical spin configuration,
and are thus said to be equivalent. In addition, the states given by ~Q and − ~Q are related
by a global spin rotation, and thus are not distinct states either. For the ferromagnet and
antiferromagnet, the star of ~Q only contains one element. For more complicated order,
the star of ~Q might contain several elements. For example, it could contain the elements
~Q = (0, π) and ~Q = (π, 0). These elements are usually related by a lattice symmetry,
but as they are not connected by a reciprocal lattice vector they describe distinct state.
Thus, the system has multiple spiral ground states. Since the symmetry between these
ground states is discrete, the Mermin-Wagner theorem does not apply, and as such the
symmetry can be spontaneously broken above T = 0.
While the star of ~Q can be composed of high-symmetry points in the Brillouin zone, it can
also be composed of any arbitrary points within the Brillouin zone. The states associated
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with these non-symmetry points of the Brillouin zone are called incommensurate spiral
states. In an incommensurate state, the rotation angle between neighboring spins is not
π or 0.
One final possibility is when the star of ~Q is a continuous set. For example, the star of ~Q

can form a closed curve around a high-symmetry point. These cases are somewhat more
complicated, and can lead to a variety of different states depending on the details of the
system. We will not be encountering many situations where this is the case.

2.5 Phase transition

A phase transition is linked to the breaking of a discrete or continuous symmetry1. Since
such a symmetry is either broken or not, there must be some kind of discontinuity at the
transition point. The nature of this discontinuity depends on the phase transition.
The free energy is always continuous, but at the phase transition it is not necessarily
smooth. Thus, the type of phase transition can be determined by the differentiability
of the derivative of the free energy. A first-order phase transition is one where the first
derivative of the free energy is discontinuous. In these phase transitions, there is a non-
zero energy barrier going between the symmetric and non-symmetric state, and thus there
are metastable states where the symmetric state can be maintained below the transition
temperature. An example of such a phase transition is the freezing of water. A phase
transition can also be second-order, meaning that the second derivative of the free energy
is discontinuous, but the first derivative is continuous. Such a phase transition does not
have metastable states.
To quantify these phase transitions, we can introduce so-called order parameters. An
order parameter is some quantity which is zero above the transition temperature and
non-zero below the transition temperature. An example is the net magnetization, which
is zero for a paramagnet but non-zero for a ferromagnet. The order parameter is usually
a first derivative of the free energy, and thus its continuity depends on the nature of the
phase transition.
In this thesis, we will be studying the breaking of the symmetry between discrete ground
states described above. This phase transition is called a lattice-nematic phase transition,
or simply a nematic phase transition. We can define a nematic order parameter, which
will quantify to what degree the correlations in one direction are larger than those in
another direction. The exact definition of the nematic order parameter depends on the
lattice and nematic symmetry in question, but it is generally defined by assigning each ~Q

a complex root of unity, which ensures that if the correlation in each ~Q-direction is equal,
1This does not apply to topological phase transitions, like the BKT transition. We will not be looking

at any topological phase transition, in part because the method we will develop does not capture these
transitions well.
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the roots of unity will cancel out, while if the correlation varies the order parameter will
be finite.
In general, one would expect that the transition temperature of this nematic phase is
on the order of the energy barrier between the elements of the star of ~Q. If we think of
thermal fluctuations perturbing the system around a spiral ground state, we expect the
transition when there is enough energy in the fluctuations to push the system above the
energy barrier. There are cases where this is not the whole story, however. One example
is when the star of ~Q is a continuous set. In this case, the continuous degeneracy can
be lifted by thermal fluctuations. In other words, while there are a continuous set of ~Q

which minimize the energy E, not all of them minimize the free energy F = E − TS.
This phenomenon is called order by disorder [10].

2.6 Spin Liquid

Not all magnetic behavior is explained by ordering or symmetry breaking. Instead, the
magnetic phase known as a spin liquid is a significantly more diffuse topic. A spin liquid
is generally defined as a state where the spins are strongly correlated but do not break any
lattice symmetries [1]. The physics of these spin liquids is governed by various emergent
theories which take into account the strong correlations between the spins and describe
the effective degrees of freedom of the model. The canonical example is spin ice, which
is described by a gauge theory similar to electromagnetism [11]. In many of the systems
which have been analyzed before, the spin liquid behavior is related to a macroscopically
degenerate ground state, which can for example be seen in the honeycomb lattice with
nearest-neighbor and next-nearest neighbor couplings [12]. In terms of ~Q, this is the
situation where the star of ~Q formed a closed curve around a high-symmetry point.
Even in the classical case, spin liquids are complex, with some being well-described by
gauge theories or other emergent theories. For quantum spins, the situation becomes
much more complicated, with many types of spin-liquids emerging around critically frus-
trated points. Here, the behavior is much less well-understood than for classical spins. In
the case of the square lattice with J2 ≈ J1

2
, usually considered one of the simplest cases

of frustration, there is still debate around the exact nature of the spin liquid [13].
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Chapter 3

Nematic bond theory

Nematic Bond Theory (NBT) is an approach to treat classical frustrated magnets. This
method is similar to the Self-Consistent Gaussian Approximation (SCGA) [14], but un-
like SCGA, Nematic Bond Theory does not require the found state to obey any of the
symmetries of the point group of the lattice. The only requirement of the lattice is that
it obeys inversion symmetry. The theoretical framework of Nematic Bond Theory uses
the tools of statistical field theory, which allows us to use the full machinery of quantum
field theory to treat problems in statistical physics. However, it is important to keep in
mind that the system that we are working with is still classical.
The major advantage of Nematic Bond Theory over Monte Carlo methods is that it is
much faster for large systems. Being able to do computations on larger systems allows us
to analyze long-range interactions without worrying about boundary effects. In addition,
this allows us to search through a large parameter space without requiring huge amounts
of computational resources.
Here, we will derive Nematic Bond Theory for an arbitrary inversion-symmetric lattice,
following [15]. We will also discuss some of the approximations made in the theory, and
to what extend they are valid.
Several times during this derivation, constant factors will be absorbed into the integration
measure. These constant factors do end up being relevant, and are thus restored at the
end of the derivation.

3.1 Field theory of the Heisenberg model

Our derivation starts with the Hamiltonian of the Heisenberg model:

H =
1

2

∑
~r~r′

∑
ij

J~r~r′ij ~S~r,i · ~S~r′,j (3.1)

Where ~r and ~r′ denote the unit cells and i and j are sublattice indices within the unit
cell. J~r~r′ij is the interaction between the spins ~S~r,i and ~S~r′,j, which depends on the exact
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details of the underlying physics. The sublattices notation is a way to describe a non-
Bravais lattice as a combination of a basis and an underlying Bravais lattice [16], which
simplifies calculations.
The partition function can be written as

Z =

∫
D~Se−βH (3.2)

Here, it is worth being explicit about the integration measure. Since the size of the spins
is determined by electronic effects that are not changed by our magnetic interactions,
the length of the spins is constant, and can be set to 1 for convenience. This means
that the integral is only over configurations where the length of the spin is constant. As
such, even though the Hamiltonian is quadratic in spins, this is not a Gaussian integral,
and it cannot be solved easily. We can change the integration measure to include spin
configurations with varying-length spins, if we simultaneously multiply our integrand by
delta functions to ensure that we still only count contributions from configurations with
unit-length spins:

Z =

∫
D~Se−βHδ(~S2

~r,i − 1). (3.3)

We can then use the identity

δ(~S2
~r,i − 1) =

∫
βdλ~r,i

2π
e−iβλ~r,i(~S

2
~r,i−1)

to write the partition function. Transforming everything to reciprocal space, we get

Z =

∫
D~SDλe

−β
(
J~q,ijδ~q~q′+i 1√

V
λ~q−~q′δij

)
~S~q,i·~S~q′,je−iβ

√
V λ~q=0,i (3.4)

where V is the number of unit cells, which we think of as the volume, and all constant
factors have been absorbed into the integration measures. Without any loss of generality,
we can define J~q,ij such that its minimal eigenvalue is zero. We now see that we have the
desired quadratic action in ~S, and so we can perform that integral. If we scale the spins
by 1√

β
and perform the integral, we get:

Z =

∫
Dλe−

N
2
Tr ln(J+Λ)−iβ

√
V

∑
i λ~q=0,i (3.5)

where we have defined tensors J~q~q′,ij = J~q,ijδ~q~q′ and Λ~q~q′,ij = i 1√
V
λq−q′,iδij, and we have

absorbed all constant factors into the integration measures. In general, we let bold
symbols refer to objects with four total indices: two momentum indices and two sublattice
indices.
We now want to consider how to perform the integral over λ. To perform this integral,
we will make a saddle point approximation of a spatially homogenous λ, and then expand
around this saddle point. It is worth thinking about what this means physically. The λ

15



field carries information about the constraint on the spins, so we can label it a constraint
field. Thus, we are approximating the constraint as being homogenous, which is equivalent
to the softer constraint

1

V

∑
~q

〈~S~q,i · ~S−~q,i〉 = 1. (3.6)

This is where the similarity to the Self-Consistent Gaussian Approximation comes in,
as it also uses a homogenous saddle point. The difference between our method and the
SCGA is that while the SCGA neglects the non-homogeneous part of the constraint, we
will include them, as these non-homogeneous fluctuations around the saddle point are
then what leads to the symmetry-breaking in the nematic phase.
We introduce the saddle point by defining

∆i = i
1√
V
λ~q=0,i. (3.7)

We can thus write λ~q,i = −i
√
V∆iδ~q +

√
V λ̃~q,i where we have separated the constraint

field into a homogeneous part and a non-homogeneous part λ̃~q, which we can define such
that λ̃~q=0 = 0. We can then write the effective action we have as

S[λ̃,∆] =
N

2
Tr ln

(
J− Λ̃+∆

)
− βV

∑
i

∆i (3.8)

where ∆~q~q′,ij = ∆iδijδ~q~q′ and Λ̃~q~q′,ij = −iλ̃q−q′,iδij.
We will refer to Λ̃ as the constraint field from now on, as it still carries a significant part
of the constraint. We can now expand the action in powers of Λ̃. To do this, we define
K = J+∆. The action can then be Taylor expanded as

S[λ̃,∆] =
N

2
Tr lnK− N

2

∑
j≥2

1

j
Tr
(
Λ̃K−1

)j
− βV

∑
i

∆i. (3.9)

3.1.1 Diagrams

The most important property that we want to be able to compute is the spin correlation
function 〈~S~q,i · ~S−~q,j〉. This is equal to the susceptibility, and contains much of the infor-
mation about the spin configuration, including symmetry properties. From (3.8), we see
that the spin correlation can be written as

〈~S~q,i · ~S−~q,j〉 =
NT

2

〈(
K− Λ̃

)−1

~q~q,ij

〉
=

NT

2
Keff

−1
~q,ij (3.10)

where we have defined the effective spin propagator Keff~q,ij, and the T comes from our
rescaling of the spins to perform the integral leading to (3.8). We can now Taylor expand
this effective propagator in terms of λ̃:

Keff
−1
~q,ij =

〈[(
1− Λ̃K−1

)−1

K−1

]
~q~q,ij

〉
= K−1

~q,ij +

〈
∞∑
n=1

[(
K−1Λ̃

)n
K−1

]
~q~q,ij

〉
(3.11)

16



where K~q,ij = J~q,ij +∆iδij is the zero-order term in λ̃ and the other term is the correction
from λ̃. We can now define

K−1
~q,ij = i j

q
(3.12)

Building this diagrammatic language, we can write the terms in the sum in this form:

[K−1Λ̃K−1Λ̃K−1]~q~q,ij = i j

q q
(3.13)

where the wiggly lines represent the Λ̃ terms. We note that each Λ̃ contains a factor of
−i, and as thus each vertex carries a −i.
We now need to take the expectation value of these terms. The expectation value of an
operator is defined as

〈. . . 〉 =
∫
Dλ̃ . . . e−S[λ̃,∆]∫
Dλ̃e−S[λ̃,∆]

. (3.14)

Since K does not depend on λ̃, the challenging part is to find the expectation value of
products of λ̃. This expectation value depends on the λ̃-dependent part of the action,
which is composed of the series

Sλ = −N

2

∑
j≥2

1

j
Tr
(
Λ̃K−1

)j
.

We note that the first term in this series leads to a Gaussian term in the partition function:

S2 =
1

2

∑
~q

∑
ij

λ̃−~q,i

N
2

∑
~p

K−1
~q+~p,ijK

−1
~p,ji

 λ̃~q,j. (3.15)

We can thus define

D0~q,ij =

N
2

∑
~p

K−1
~q+~p,ijK

−1
~p,ji

−1

= i j

q
. (3.16)

As this term comes from the Gaussian part of the λ̃ terms, it is in a sense the ”bare”
propagator for the constraint field. In other words, we can write the full propagator for
the constraint field as

D~q,ij = 〈λ̃~q,iλ̃−~q,j〉 = D0~q,ij +
1

Z

∫
Dλ̃O(λ̃3) = i j

q
(3.17)

Of course, the natural question is what the higher order contributions are. To understand
this, we need to look at the remaining part of the action. These remaining terms have
the form

Sj = −N

2

1

j
Tr
(
Λ̃K−1

)j
17



If we consider the j = 3 term, we can write it as:

S3 = −N

2

1

3
Tr
(
Λ̃K−1Λ̃K−1Λ̃K−1

)
= −(−i)3

N

2

1

3

∑
~q1,~q2,~q3

∑
ijk

K−1
~q1,ki

λ̃~q2−~q1,iK
−1
~q2,ij

λ̃~q3−~q2,jK
−1
~q3,jk

λ̃~q1−~q3,k

(3.18)

which can be written diagramatically as

i

jk

q2 − q1

q3 − q2

q1 − q3

(3.19)

where we have omitted writing the internal momenta. For the purposes of simplifying the
diagrammatic notation, we will omit writing the momenta and sublattice indices unless
required.
What we see here is that the higher-order terms in λ̃ are loops with j ”hooks”. Thus,
these loops become an essential part of our theory, obeying the rules that

1. Only loops with at least three λ̃ exist, the two-λ̃ loop has been absorbed into the
bare constraint propagator.

2. Each loop contributes a factor of N
2

1
j

where j is the number of λ̃ terms.

Taking the expectation value of a term like [K−1Λ̃K−1Λ̃K−1]~q~q,ij, the term in eq.
(3.13), is then equivalent to connecting all λ̃ in the expression with propagators D~q,ij,
which are in turn composed of combinations of the ”bare” propagators D0~q,ij and loops
with at least three hooks, which obey the rules given above. As a very simple example,
we can look at D~q,ij itself, which is the expectation value 〈λ̃~q,iλ̃−~q,j〉:

D~q,ij = 〈λ̃~q,iλ̃−~q,j〉 = = + + + + . . . .

While each loop contributes a factor of N , the bare constraint field propagator contributes
a factor of 1/N . We see that the first diagram in the sum above has a factor of 1/N

associated with it, while the others have a factor of 1/N2. We can consider the pertur-
bative expansions in terms of 1/N instead of in terms of λ̃. This treatment, where we
perturb in powers of 1/N , is called a large-N expansion. This large-N expansion places
our perturbation theory on much more solid footing, as we can now actually see whether
the parameter we’re perturbing in is large or small. For the Heisenberg model, N = 3 and
so our perturbation parameter is 1

3
, which is not tiny but still relatively small. For the

XY model 1/N = 1
2
, and for the Ising model 1/N = 1. We thus see that our perturbative
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approach is not useful for the Ising model, and is better suited for the Heisenberg model
than for the XY model.
Considering the spin propagator, we get a number of diagrams:

Keff~q,ij = = + + + +

+ + + + + . . .

(3.20)

Here we have all of the diagrams up to and including O(1/N2). We note that the
final diagram here is really just the second diagram twice. We can thus define the self-
energy Σ~q,ij as all of the diagrams of Keff~q,ij with no external legs which are one-particle
irreducible, meaning that they cannot be split into two diagrams by cutting a single
line. We can equivalently define the polarization Π~q,ij as the diagrams in the constraint
propagator without external legs which are 1PI. We can thus also define the self-energy
and polarization matrices

Σ~q~q′,ij = Σ~q,ijδ~q~q′

Π~q~q′,ij = Π~q,ijδ~q~q′

This allows us to write the Dyson equations for the propagators:

= + Σ

= + Π
(3.21)

These equations can be written symbolically as

Keff
−1 =K−1 +K−1ΣKeff

−1 (3.22)

D =D0 +D0ΠD (3.23)

Where Keff~q~q′,ij = Keff~q,ijδ~q~q′ , D0~q~q′,ij = D0~q,ijδ~q~q′ and the products are matrix prod-
ucts in sublattice space. Solving these equations and going back to the (~q, ij) represen-
tation, we get

Keff~q,ij = K~q,ij − Σ~q,ij

D−1
~q,ij = D−1

0~q,ij − Π~q,ij.
(3.24)

So far, these computations have been exact. To go further, we need to compute Σ and Π

in some way. We will do this through the following approximations:

Σ~q,ij = = (−i)2
∑
~p

D~p,ijKeff~q−~p,ij

Π~q,ij = − = (−i)2
2N

4

[
Keff

−1
~q+~p,ijKeff

−1
~p,ji

]
− (−i)2

2N

4

[
K−1

~q+~p,ijK
−1
~p,ji

]
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Here, we have introduced the two-hook undressed loop. This loop does not actually exist,
and we simply use it to cancel out the unphysical part of the two-hook dressed loop. It
functions the same way as other loops with j hooks, and carries a factor of N

2
1
2
. The

extra factor of 2 is a combinatorial factor.
This self-energy and polarization is only an approximation, as they neglect the vertex
correction. We will return to the vertex correction in chapter 5, but first we will show
why these expressions for the free energy and polarization are useful. We can now write
the Dyson equation for the constraint propagator as

D−1
~q,ij =D−1

0~q,ij − Π~q,ij =
N

2

[
K−1

~q+~p,ijK
−1
~p,ji

]
− (−i)2

N

2

[
Keff

−1
~q+~p,ijKeff

−1
~p,ji

]
+ (−i)2

N

2

[
K−1

~q+~p,ijK
−1
~p,ji

]
D−1

~q,ij =
N

2

[
Keff

−1
~q+~p,ijKeff

−1
~p,ji

]
We thus have three relatively simple equations relating the dressed spin propagator, the
dressed constraint field propagator, and the self-energy:

Keff~q,ij = J~q,ij +∆iδij − Σ~q,ij

D−1
~q,ij =

N

2

∑
~p

Keff
−1
~p,ijKeff

−1
~q−~p,ij

Σ~q,ij = −
∑
~p

D~p,ijKeff
−1
~q−~p,ij

(3.25)

3.2 Free energy and saddle point

We have now found a method for expressing the spin propagator diagrammatically. Next,
we want to compute the partition function of our model. We have

Z =

∫
D∆Dλ̃e−S[λ̃,∆] (3.26)

with S[λ̃,∆] as given in (3.9). If we carry out the Gaussian part of the integral over λ̃,
we get

Z =

∫
D∆e−

N
2
Tr lnK− 1

2
Tr lnD0

−1+βV
∑

i ∆i

∫
Dλ̃e

N
2

∑
j≥3

1
j
Tr

(
Λ̃K−1

)j

. (3.27)

The second integral contains all of the bubble diagrams contributing to the free energy.
We want to capture at least some of these diagrams. We do this by rewriting the action

S[∆] =
N

2
Tr lnK+

1

2
Tr lnD0

−1 − βV
∑
i

∆i − ln

(∫
Dλ̃e

∑
j≥3 Sj

)
(3.28)

in terms of the dressed propagators K and D. We can write

Tr lnKeff = Tr ln(K−Σ) = Tr ln
(
K(1−K−1Σ)

)
= Tr lnK− Tr

∑
n

1

n
(K−1Σ)n
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and equivalently for D:

Tr lnD−1 = Tr lnD0
−1 − Tr

∑
n

1

n
(D0Π)n

The action can thus be written as

S[∆] =
N

2
Tr lnKeff +

1

2
Tr lnD−1 − βV

∑
i

∆i

+
N

2
Tr
∑
n

1

n
(K−1Σ)n +

1

2
Tr
∑
n

1

n
(D0

−1Π)n − ln

(∫
Dλ̃e

∑
j≥3 Sj

)
.

(3.29)

By using the fact that
Tr(KeffΣ) =

∑
n

Tr(KΣ)n

We can rewrite this as

S[∆] =
N

2
Tr lnKeff +

1

2
Tr lnD−1 − βV

∑
i

∆i +
N

2
Tr(KeffΣ) + Sr (3.30)

with a remainder term

Sr = −N

2
Tr
∑
n

n− 1

n
(K−1Σ)n +

1

2
Tr
∑
n

1

n
(D0Π)n − ln

(∫
Dλ̃e

∑
j≥3 Sj

)
. (3.31)

It is now worth looking at which terms are included in Sr, since all terms not in the
remainder must be in the rest of the action. Looking at Sr, we see that the final term,
ln
(∫

Dλ̃e
∑

j≥3 Sj

)
, contains all closed diagrams. As such, Sr contains all closed diagrams,

minus the ones removed by the two first terms of Sr. Looking at the these two terms, we
see that they each correspond to a different class of diagrams. The first terms corresponds
to spin propagator loops with n self-energy terms on it, while the second corresponds to
constraint propagator loops with n polarization terms. In [15], it is shown that these two
terms cancel out the corresponding terms in ln

(∫
Dλ̃e

∑
j≥3 Sj

)
. Thus, the corresponding

diagrams are not in Sr, but rather in the rest of the action.
We approximate the self-energy by excluding Sr from the action. While this removes a
lot of diagrams, we hope that the important physics are contained in the loop diagrams
which are not in the remainder. We can write this simplified action as

S[∆] =
N

2
Tr lnKeff +

1

2
Tr lnD−1 − βV

∑
i

∆i +
N

2
Tr(KeffΣ). (3.32)

3.2.1 Saddle point approximation

We now want to carry out the integral with regards to ∆. We do this through the saddle
point approximation. In a saddle point approximation, we find the values of ∆ which
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Figure 3.1: Examples of the diagrams which are included in the free energy computation.

extremize the action, which we call ∆0. We then do a second-order Taylor expansion
around this value to capture the most important deviations from the saddle point. This
can be written as

S[∆] ≈ S[∆0] +
∑
ij

1

2

∂2S[∆]

∂∆i∂∆j

∣∣∣
∆=∆0

(∆i −∆i0)(∆j −∆j0). (3.33)

Here, ∆ is the vector in sublattice space of all the different ∆ values on the different
sublattices, while ∆i and ∆j are the values for specific sublattices. The same applies
for ∆0 and ∆i0 & ∆j0, respectively. The saddle point is defined as the point where the
derivative of the action is zero:

∂S[∆]

∂∆i

∣∣∣
∆=∆0

= 0 (3.34)

We thus calculate the first derivative of the action:

∂S[∆]

∂∆i

=
N

2
Tr

(
Keff

−1∂Keff

∂∆i

)
+

1

2
Tr

(
D
∂D−1

∂∆i

)
− βV +

N

2
Tr

(
Keff

∂Σ

∂∆i

+
∂Keff

∂∆i

Σ

)
(3.35)

We can rewrite this by using the fact that all of these matrices are diagonal in reciprocal
space, so we get

∂S[∆]

∂∆i

=
N

2

∑
~q

∑
kl

Keff
−1
~q,kl

∂Keff~q,lk

∂∆i

+
1

2

∑
~q

∑
kl

D~q,kl

∂D−1
~q,kl

∂∆i

− βV

+
N

2

∑
~q

∑
kl

(
Keff~q,kl

∂Σ~q,lk

∂∆i

+
∂Keff~q,kl

∂∆i

Σ~q,lk

)
.

(3.36)

We now consider what some of these derivatives are:

∂Keff~q,kl

∂∆i

= δikδkl −
∂Σ~q,kl

∂∆i

(3.37)

∂D~q,kl

∂∆i

= N
∑
~p

Keff~q+~p,kl

∂Keff~p,lk

∂∆i

(3.38)
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Thus, we can rewrite the action as

∂S[∆]

∂∆i

=
N

2

∑
~q

Keff
−1
~q,ii +

N

2

∑
~q

∑
kl

D~q,kl

∑
~p

Keff~q+~p,lk

∂Keff~p,kl

∂∆i

− βV

+
N

2

∑
~q

∑
kl

∂Keff~q,kl

∂∆i

Σ~q,lk

(3.39)

We can now use eq. (3.25) for Σ~q,ij to further simplify this to

∂S[∆]

∂∆i

= −βV +
N

2

∑
~q

Keff~q,ii. (3.40)

We thus see that the saddle point requirement is

−βV +
N

2

∑
~q

Keff~q,ii = 0. (3.41)

We note that this is equivalent to the constraint∑
~q

〈~S~q,i · ~S−~q,i〉 =
∑
~q

NT

2
Keff~q,ii = V (3.42)

which is the constraint imposed by the 0-momentum λ. This is the homogeneous con-
straint which we related to ∆, so it is natural that this constraint appears here. Indeed,
the fact that this constraint appears here shows that our model still maintains this con-
straint even when considering the approximations that we have made, which in turn
suggests that our approximations are good. This also allows us to write the temperature
as

Ti =

∑
~q

NT

2V
Keff~q,ii

−1

(3.43)

which will become relevant when doing numerical computations.
We can also compute the second derivative of the action:

∂2S[∆]

∂∆i∂∆j

=
∂

∆j

−βV +
N

2

∑
~q

Keff~q,ii

 = −N

2

∑
~q

∑
kl

Keff
−1
~q,ik

∂Keff~q,kl

∂∆j

Keff
−1
~q,li (3.44)

which is easily rewritten to

∂2S[∆]

∂∆i∂∆j

= −N

2

∑
~q

∑
kl

Keff
−1
~q,ik

(
δjkδkl −

∂Σ~q,kl

∂∆j

)
Keff

−1
~q,li (3.45)

As the diagrams in Σ~q,ij are of order O(1/N) or higher, the second derivative to order
O(N) is

∂2S[∆]

∂∆i∂∆j

≈
∑
~q

Keff
−1
~q,ijKeff

−1
~q,ji = −D−1

~q=0,ij (3.46)
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Since the action is now quadratic in ∆, we can perform the integral over ∆ in the partition
function as a Gaussian integral. Performing this integral gives:

S =

(
N

2
Tr lnKeff +

1

2
Tr~q 6=0 lnD

−1 − βV
∑
i

∆i +
N

2
Tr(KeffΣ)

)∣∣∣
∆=∆0

+
1

2
lnD−1

~q=0

(3.47)

3.2.2 Free energy

Once we have Z, we can compute the free energy density(which we will just refer to as
the free energy from now)

f = − 1

βV
ln(Z) (3.48)

While we have computed the integral of e−S[∆,λ̃], we also need to take into account the
several numerical factors that we got during that calculation. We take those factors into
account as follows:
Each δ-function which ensured the unit length constraint provides a factor of β

π
. The

change of variables from λ to ∆ and λ̃ provides a factor of V V m/2 where m is the number
of sublattices. We rescaled each spin by 1√

β
and then performed a Gaussian integral, so

each spin component contributes a factor of
(

π
β

)1/2
. Finally, we get a factor of (2π)1/2

for each Gaussian integral over λ̃. Thus, the total constant prefactor is(
β

π

)V m

V V m/2

(
π

β

)V Nm/2

(2π)V m/2.

We can now actually compute the free energy. The constant factors can largely be
redistributed into the other terms, so we end up getting

f = −
∑
i

∆i−
NT

2V

∑
~q

Tr ln
(
TKeff

−1
)
+
NT

2V

∑
~q

Tr
(
Keff

−1Σ
)
+

T

2V
Tr ln

(
T 2D−1

2V

)
−N − 1

2
ln(π)

(3.49)
Since all of the matrices are diagonal in ~q, we can rewrite this as

f = −
∑
i

∆i−
NT

2V

∑
~q

Tr ln
(
TKeff

−1
~q,ij

)
+
NT

2V

∑
~q

Tr
(
Keff

−1
~q,ijΣ~q,ij

)
+

T

2V
Tr ln

(
T 2D−1

~q,ij

2V

)
−N − 1

2
ln(π)

(3.50)

24



3.3 Computation

We end up with a set of three self-consistent equations, and a method for computing the
temperature:

Keff~q,ij = J~q,ij +∆iδij + Σ~q,ij

D−1
~q,ij =

N

2

∑
~p

Keff
−1
~p,ijKeff

−1
~q−~p,ij

Σ~q,ij =
∑
~p

D~p,ijKeff
−1
~q−~p,ij

Ti =

 N

2V

∑
~q

Keff
−1
~q,ii

−1

(3.51)

In these equations, we have flipped the sign of Σ compared to the last sections, as this
simplifies some computations. We will keep using this sign-flipped self-energy throughout
the rest of this thesis.
Our goal is to solve these equations. To do that, we use an iterative process, where we
find Keff~q,ij, use that to find D−1

~q,ij, use that to find Σ~q,ij and then use that to find Keff~q,ij

again, while checking to see whether the temperature converges as we repeat this process.
We will now describe this process in more detail. In addition, an example of a program
which performs these calculations is attached as appendix C.

3.3.1 Initializing the process

To start the process, we need some initial guess for ∆i such that the final temperatures
will be the same on all sublattices. We will assume that the temperatures will be the
same when all of the ∆’s are the same. This usually works for the honeycomb lattice as
long as the inter-sublattice coupling is not too small, but it does not work for the kagome
lattice. This will be discussed further in chapter 5.
We also need some initial guess for one of the three unknown matrices. We choose to
start with a guess for Σ~q,ij. We will be using random noise to initialize Σ~q,ij. This random
noise needs to be hermitian. To ensure this, we generate some noise σ~q,ij with low ampli-
tude and then let Σ~q,ij = F(Re(F−1(σ~q,ij)))+h.c, where F is the Fourier transformation.
When running the code for a range of ∆ but the same J~q,ij, it can be advantageous to
use the Σ~q,ij found in one run as the initial guess for the next run. When doing this, it
is important to include some symmetry-breaking noise when initializing the next run.
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3.3.2 Iterative calculation

Now that the process has been initialized, we can perform the iterations. We iteratre
using the following procedure:

1. Subtract the minimum eigenvalue of J~q,ij + Σ~q,ij from Σ~q,ij

2. Calculate Keff~q,ij and invert it

3. Calculate Ti. If Ti is close to Ti,old, stop the loop

4. Calculate D−1
~q,ij and invert. Set D~q=0 = 0

5. Calculate Σ~q,ij

6. Go to step 1

Once the loop has stopped, we check whether all of the Ti are equal. If they are, we
can proceed to compute various observable quantities from Keff

−1
~q,ij, Σ~q,ij and D~q,ij. The

results from our self-consistent equations are only valid if all Ti are equal.
One problem with NBT in 2d is that it will sometimes converge on states which break
inversion symmetry, which is not allowed by the Mermin-Wagner theorem, as broken
inversion symmetry is equal to a broken spin-rotation symmetry. This seems to be either
a finite-size effect or a numerical artifact. To avoid this, we manually set Σ~q,ij to be
inversion symmetric.

3.3.3 Subtracting eigenvalues

As the first step in the convergence loop, we subtract the minimal eigenvalue of J~q,ij+Σ~q,ij

from the diagonal of Σ~q,ij. Labeling this minimal value as Σmin, we can see that this is
permitted by rewriting what we are doing as

Keff~q,ij = J~q,ij +∆iδij + (Σ~q,ij − Σminδij) = J~q,ij + (∆i − Σmin)δij + Σ~q,ij.

We see what we are doing is actually just redefining ∆i → ∆i −Σmin, and since ∆i is an
arbitrary real parameter, this is allowed. It is however important to keep this in mind
when computing the free energy, as that requires that we use this ”renormalized” ∆i.
This step ensures that the minimal eigenvalue of Keff~q,ij is ∆. This seems to be the reason
why this step is important, as the solutions to the self-consistent equations are dependent
on this minimum eigenvalue of Keff~q,ij. If this step is performed incorrectly, the equations
will converge to a temperature determined by the smallest eigenvalue of Keff~q,ij. As this
is almost always at least as large as ∆, this means that the equations will converge to a
higher-temperature state, and low-temperature states may not be reachable.
It is worth noting that the renormalization described here is different than that described
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in [2,15]. In these works, they normalize J~q,ij such that its minimal eigenvalue is zero, and
then let Σmin be the minimal eigenvalue of Σ~q,ij. This approach also works most of the
time, but can lead to problems when analyzing spiral states, especially for non-Bravais
lattices. In these cases, the minimal value of J~q,ij and Σ~q,ij does not necessarily happen
at the same ~q, and as such minimizing both independently does not necessarily minimize
their sum. Defining Σmin as the minimal eigenvalue of Σ~q,ij + J~q,ij is more consistent
in these cases. This also means that it is not necessary to normalize J~q,ij such that its
minimal eigenvalue is zero, but we still choose to do so as it is still the most natural
choice of normalization.

3.3.4 Convolution

The key reason why Nematic Bond Theory is a worthwhile approach to analyzing mag-
netic systems is that it is much faster than other computational methods like Monte
Carlo. The reason for this increased speed lies in the computation of the sums in (3.51).
Here, we can use the convolution theorem.
The convolution theorem states that

F(f ∗ g) = F(f) · F(g) (3.52)

where ∗ denotes the convolution of two functions. The convolution can be written as:

(f ∗ g)(t) =
∫

dτf(τ)g(t− τ)

Noting that the sums in (3.51) are the discrete version of this convolution, we thus see
that we can write them as Fourier transforms:

D−1
~q,ij = F(F−1(Keff~q,ij) · F−1(Keff~q,ij)) (3.53)

Where we use the fact that the Fourier transform and its inverse have similar forms.
Physically, this means that we compute these sums in reciprocal space by going to real
space, where they are simply products. Using the fast Fourier transform algorithm, we
can do this in O(N logN) time, where N is the number of lattice sites. Meanwhile, if
we were to simply perform the sums, that would take O(N2). In addition, Monte Carlo
is also O(N2), and as such Nematic Bond Theory scales significantly more efficiently for
large inputs. This alone does not guarantee that the model is computationally viable,
but it is reasonably easy to implement the model in a way that is significantly faster than
Monte Carlo, even for relatively small systems.

3.3.5 Convergence

Each time we iterate eqs. (3.51), we need to check whether they have converged on a
solution. To do this, we compare the temperature T to the temperature found in the
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previous iteration Told. Specifically, we say that the equations have converged if

|T − Told|
Told

< 10−8.

The exact value of the right-hand side is not important to the computation, as long as it
is small.
To ensure that the program actually halts at some point, we only allow it to run for
200 iterations. Usually, this is more than enough to ensure convergence, but around the
critical point the system may converge very slowly or not at all. The non-converging
states are often metastable states, and as such are not particularly important for the
computation of observable properties of the model.

3.3.6 Free energy and heat capacity

We found that the free energy is given by (3.50). However, this expression does not
include the renormalization of ∆ or the sign change of Σ. When we include this, we get

f = −(∆−Σmin)−
NT

2V

∑
~q

lnTK−1
eff~q−

NT

2V

∑
~q

Σ~qK
−1
eff~q+

T

2V

∑
~q

ln

(
T 2D−1

~q

2V

)
−N − 1

2
T ln(π)

(3.54)
Here, it is important to remember that the sum in the fourth term also includes ~q = 0.
While including this term does not have a large effect in practice, it is still important to
ensure the correctness of the implementation of NBT.
When doing NBT calculations, it is possible that different ∆ will lead to the same T . In
this case, the different ∆ lead to different phases at the same temperature. This means
that the two different ∆ which lead to the same T lead to different free energies, and as
such we can distinguish between the thermal state, which is the state with the lowest free
energy, and the metastable state(s) which have a higher energy. Usually, the metastable
states and the thermal state have different symmetry properties, with one state being the
high-symmetry state and another being the low symmetry. In theory, we could compute
the free energy for the high-symmetry state and low-symmetry state for all T , and we can
recognize the place where these free energies cross as the phase transition. In practice,
Nematic Bond Theory only gives multiple states for the same T in regions where the
energy difference between the thermal state and the metastable state is small. In other
words, this primarily happens near a phase transition. The presence of metastable states
hints that we are working with a first-order phase transition. This is not guaranteed,
however. The presence of metastable states can be due to finite-size effects. In that case,
we would expect the metastable states to disappear as we increase the system size, and
thus it is possible to distinguish between first-order and second-order transitions. This
has been done with NBT a number of times [2, 17], but we will not be considering it in
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this thesis.
In practice, we only compute f for a discrete number of ∆, and the crossing might very
well lie for ∆’s in between. We thus find the critical temperature by linearly interpolating
between the computed values of f and finding the place where the two branches of f cross.
Another key use of the free energy is computing the specific heat of the system, which
can be written as

cv = −T
∂2f

∂T 2

Here, however, we run into a few complications. The first complication is the fact that we
only know the free energy at a discrete number of points. As these points are not evenly
spaced, we need to be careful when taking the second derivative. When computing the
specific heat at a temperature Ti with associated free energy fi, we do this by computing
the quadratic that goes through (Ti−1, fi−1), (Ti, fi) and (Ti+1, fi+1), and then multiplying
the second derivative of this quadratic by −Ti.
This approach works as long as there are no phase transitions. When we have phase
transitions and thus a multivalued free energy, we also get a multivalued specific heat.
To avoid this, we only consider the lowest branch of the free energy. This leads to a
spike in the free energy at the phase transition. The height of this spike depends on the
exact points where the temperature and free energy are computed, and the theoretically
”correct” height of the spike is infinite.

3.3.7 Structure factor

An important observable is the structure factor. The structure factor is what is observed
by a neutron scattering experiment, and as such it is a primary way to measure magnetic
order.
The structure factor is simply proportional to the susceptibility. To compute it, we need
to take into account the different positions of the sublattices, as the neutron scattering
cannot tell the difference between magnetic moments on different sublattices. We can
write the structure factor as

S(~q) = NT

2

∑
ij

Keff~q,ije
−i~q·~αij (3.55)

where αij is the displacement vector between sublattices i and j.
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Chapter 4

Results

4.1 The honeycomb lattice

The honeycomb lattice is the lattice formed by tiling the plane with regular hexagons.
In this way, it is similar to the square and triangular lattices. Unlike these, however, it is
not a Bravais lattice. As such, the honeycomb lattice is a natural stepping stone between
the relatively simple square and triangular lattices and complex lattices like the kagome
lattice, which shows large degrees of geometric frustration.
The honeycomb lattice can be defined as two triangular lattices, each with lattice vectors

~a1 =

(
1

0

)
,~a2 =

(
1
2√
3
2

)
. (4.1)

These two triangular lattices are related by the vector

~α =

(
0
√
3
3

)
. (4.2)

From the definition of the honeycomb lattice, we can fairly easily see that it is bipartite,
meaning that it can be divided into two sections such that for each atom in one section,
all of its nearest neighbors are in another section. For the honeycomb lattice, these two
sections are simply the two sublattices. The honeycomb lattice shares this feature with
the square lattice, but not with the triangular lattice.
The fact that the lattice is bipartite means that the frustration of the lattice cannot
come from geometry alone, but must come from longer-range couplings. Specifically, we
are going to analyze first, second and third-nearest neighbor couplings with the coupling
strengths J1, J2 and J3 respectively. In the language of NBT, these interactions are
represented by a 2× 2 matrix J~q,ij. Introducing ~a3 = ~a2 − ~a1, we can write

J~q =

(
J~q,11 J~q,12

J~q,21 J~q,22

)
(4.3)
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where
J~q,11 = J2 · (cos(~a1 · ~q) + cos(~a2 · ~q) + cos(~a3 · ~q)) ,

J~q,12 =
1

2

(
J1
(
1 + e−i~q·~a2 + e−i~q·~a3

)
+ J3

(
ei~q·~a1 + e−i~q·~a1 + e−i~q·(~a2+~a3)

))
,

J~q,21 = J∗
~q,12,

J~q,22 = J~q,11

(4.4)

J3

J2

J1

Figure 4.1: Honeycomb lattice with J1-J2-J3. The two sublattices have two different
colors.

We note that the first- and third-nearest neighbor couplings are between different
sublattices, while second-nearest neighbor couplings is within the same sublattice. This
means that the hamiltonian is invariant under the action of mapping all the spins of
one sublattice from ~S to −~S and mapping J1 → −J1, J2 → J2, J3 → −J3. From the
standpoint of thermodynamics, this sign flip doesn’t matter, and as such we can choose
to let J1 = 1 for all of our computations, and thus measure the strength of the other
couplings in units of J1.
Honeycomb lattices with third-nearest neighbor couplings are found in a number of ma-
terials, including NiS2 [7] and the family of materials XPS3 with X = Ni,Co,Fe [18–20].
In all of these materials, the third-nearest neighbor coupling is the dominant one. The
nickel compound is particularly interesting for our purposes as the anisotropy is relatively
small, and as such it is well-described by the Heisenberg hamiltonian.

4.1.1 Zero-temperature phase diagram

The zero-temperature phase diagram of the hexagonal lattice with J1, J2 and J3 coupling
was reported in [21]. Here, two different phase diagrams are reported, for both ferro-
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magnetic and antiferromagnetic J1. Each of these phase diagrams contain six different
phases:

• A ferromagnetic phase, where all of the spins are pointed the same way.

• An antiferromagnetic phase, where the spins on the two different sublattices are
pointed different ways.

• A stripe phase, where the spins are aligned in one direction and antialigned in
another direction.

• A dimer phase, where two nearest-neighbor spins form a pair which is aligned, and
is then antialigned with neighboring pairs.

• Two different incommensurate spiral phases, which we label III and V in accordance
with [21].

1

-1

-2

-1 1

FM

AFM

Stripe

Dimer

V

III
J2

J3

Figure 4.2: Zero-temperature phase diagram for the J1-J2-J3 honeycomb lattice, as de-
scribed in [21]. The blue and green lines are the lines where we will compute the critical
temperature.
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(b) Dimer phase

Figure 4.3: Examples of the stripe phase and dimer phase of the honeycomb lattice.

The mapping described in section 4.1 maps between the ferromagnetic and antiferromag-
netic phases, and between stripe and dimer phases. It maps each of the incommensurate
spiral phases to themselves.
Each of these phases have different structure factors, as described in [22]. The ferromag-
netic phase has a maximal structure factor at the Γ point, the antiferromagnetic at the
K point, the dimer phase at the M point of the reduced Brillouin zone, and the stripe
phase at the M point of the extended Brillouin zone. The incommensurate phases can
also be distinguished by their structure factors. For the phase V in [21], the maximum
of the structure factor lies on the Brillouin zone boundary, whereas for phase III it lies
inside the Brillouin zone. Thus, we can characterize what phase we’re in by looking at
the structure factor.
A large section of the J1 − J2 − J3 phase diagram can host nematic transition. We can
analyze these phase transition by defining an order parameter [23]

O12 =
1

2V
〈~S~q,1 · ~S~q,2〉

(
1 + e2πi/3ei~q·~a1 + e4πi/3ei~q·~a2

)
(4.5)

which shows whether the correlations between sublattices are stronger in one direction
than in other.
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Γ K
M

K
M V

III

FM

AFM
Dimer

Stripe

Figure 4.4: On the left, the Brillouin zone for the honeycomb lattice with various sym-
metry points labelled. Note that the labels M and K can both refer to points on the
inner and outer hexagon, referred to as the reduced and extended Brillouin zones respec-
tively [22]. On the right, the maximum of the structure factor for the various phases of
the honeycomb model. For phases III and V, the maximum lies on the respective colored
lines.

We can use Nematic Bond Theory to compute the transition temperature and struc-
ture factor for various values of J1-J2-J3. We do the computation on a 200× 200 grid,
which means a total of 80000 lattice points. We choose to use J1 as our unit of energy
and temperature, and the distance between unit cells a as our unit of length. When
computing the free energy, order parameter and Tc, we do the NBT calculations for 50
∆’s chosen on a logarithmic scale between 1 and 10−8.

4.1.2 Nematic transition on the honeycomb lattice

We can start by considering a single point in parameter space: J3 = −0.5, with J2 = 0.
This point lies in the dimer phase, meaning that there are three distinct ordering vector:
One for each M point in the extended Brillouin zone which is unique under inversion
symmetry. Looking at the free energy, we see that it is multivalued around T = 0.29.
This multivaluedness is a sign of the presense of metastable states, which in turn is a sign
of a first-order phase transition. We can thus see that there is a phase transition, with
Tc ≈ 0.29.
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Figure 4.5: The free energy and order parameter for the J3 = −0.5 honeycomb lattice
at the phase transition. The free energy is scaled to make the discontinuity more clear.
In both cases, the lines connecting the points is cut in two, representing the fact that
between these two states there are one or more non-converging states.
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Specific heat as a function of temperature for J3=-0.5

Figure 4.6: Heat capacity for the J3 = −0.5 honeycomb lattice. The heat capacity
diverges at Tc, so the height of the peak is not a useful measure.

We can also compute the order parameter at various temperatures. Doing this, we
note that the order parameter is multivalued in the region where the free energy is mul-
tivalued. We also note that for high temperatures, the order parameter is zero, while for
low temperatures it is non-zero. This confirms that a phase transition does take place,
and that this phase transition is related to the breaking of the Z3 symmetry of the lattice.
From the free energy, we can compute the specific heat. Doing this, we see that it di-
verges at Tc, exactly as we would expect from a first-order phase transition. We note that
for T → 0, the specific heat goes to 2. This might seem surprising, as both experiment
and spin wave theory suggest that in magnetic materials, the specific heat should go to
zero for low temperatures. In addition, this is also a requirement of the third law of
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thermodynamics. The fact that it goes to 2 is a property of the classical O(N) model
which will be explored further in chapter 5.
Looking at the structure factor above and below Tc, the phase transition is easily identi-
fiable. Above Tc, we see that the structure factor has a maxima at each of the ordering
vectors,and thus has sixfold symmetry, while below Tc it only has maxima at one of the
ordering vectors and thus only maintains inversion symmetry. We also observe that above
the critical temperature, the peaks in the structure factor are much broader. This indi-
cates that the fluctuations around the ordering vectors are larger. At these temperatures,
there is also a significant structure factor away from the ~Q-vectors.

Figure 4.7: The structure factor at T = 0.38 and T = 0.29 for the J3 = −0.5 honeycomb
lattice. The high-T phase has sixfold symmetry, while the low-T phase only has twofold
symmetry.

J1-J3 phase diagram

Now that we know what a phase transition looks like, we can consider the transition tem-
perature along the line J2 = 0 with J3 < 0. We see that a phase transition begins around
J3 = −0.25. Here, we go from an antiferromagnetic ground state to an incommensurate
spiral, and then to a dimer ground state as J3 is decreased further. The phase transition
temperature increases continuously as |J3| increases. We see that for large |J3|, the tran-
sition temperature is proportional to J3, but for smaller |J3| the transition temperature is
smaller than this proportionality would predict. This is seen in other frustrated systems
like the square-lattice J1 − J2 model [24]. The proportionality at large |J3| is explained
by the fact that for a magnetic system with one dominant interaction, we have Tc ∝ J .
For smaller |J3|, the competing interactions mean that this no longer holds.
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Figure 4.8: Nematic transition temperature as a function of J3.

The behavior around the phase transition is different from that found in Weber et
al. [24] for the J1 − J2 square lattice. They find that at the parameters where the phase
transition sets in, the critical temperature is not smooth, but is continuous. Meanwhile,
we find that the critical temperature smoothly goes from zero to a finite temperature as
we vary the relevant parameter. It is unclear whether this is due to the fact that the
phase transition initially happens in a spiral regime in the honeycomb model, while for
the square model it happens in a collinear regime. However, the results from [12] suggest
that the critical temperature is also non-smooth for transitions to a spiral state in the
honeycomb model with J3 = 0. What our results suggest is that the non-smooth change
in transition temperature is not a universal feature of frustrated magnets.
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Figure 4.9: Nematic transition temperature as a function of J3, with a linear relationship
fitted to the range J3 > −0.7.

J1-J2-J3 model

We now consider adding in a non-zero intra-sublattice coupling J2. As the case where
J3 = 0 has been thoroughly studied by NBT [15], we will not focus on that. Instead,
we will consider the case where J3 = −0.5. Here, we already have a nematic transition
when J2 = 0. We see that for positive J2, the transition temperature is increased, while
for negative J2 it is decreased. When J2 is negative enough, it pushes the system into
an antiferromagnetic region where there is no nematic transition. Here, we also observe
that the critical temperature changes smoothly from zero as we enter the region that can
host a nematic transition. As the J2 = 0 case already has a nematic transition, we do
not expect to see Tc ∝ J2 behavior.
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Figure 4.10: Nematic transition temperature as a function of J2 for J3 = −0.5

Maximally frustrated point

We consider the maximally frustrated point as considered in [25], where J2 = J3 = J1
2

.
At this point, the ground state manifold consists of all states where the sum of spins on
each hexagon ~S7 = 0. This phase, known as the Coulomb phase, shows macroscopic
ground state degeneracy, and the structure factor is characterized by pinch points, as
described in [11]. This is also what [25] observed with Monte Carlo simulation of a 1800-
spin system. When we compute the structure factor using NBT, we observe the pinch
points as well. In addition, we can check that these pinch points are there at a large
range of temperatures, and that there is no phase transition. All of this is consistent
with the description of a Coulomb phase. Thus, this indicates that NBT does work on
the honeycomb lattice with J1 − J2 − J3, even in the highly frustrated regimes. This
indicates that NBT captures the physics of highly frustrated non-Bravais lattices.
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Figure 4.11: NBT computation of the structure factor at the maximally frustrated point,
compared with Monte Carlo calculations, both at T ≈ 0.01. Monte Carlo calculations
from [25]. The different scales are due to different normalizations of the spins.

4.2 RKKY crystal

The RKKY interaction is an interaction between two localized spins mediated by a sea
of conduction electrons. Specifically, the interaction is caused by one spin polarizing the
conduction electrons, and the other spin then interacting with the now polarized electrons,
leading to an effective spin-spin interaction. The details of the interaction depends on
the Fermi surface of the material, but in the simplest case of a spherical Fermi surface in
a 3d material, the interaction has the form

J(rij) = J

(
cos(2kF rij)

(2kF rij)3
− sin(2kF rij)

(2kF rij)4

)
. (4.6)

This model has two parameters: J and kF . J is the coupling strength of the RKKY
coupling, and can be factored out by measuring all energies and temperatures in units of
J , similarly to what we do for the exchange coupling. Thus, the only parameter that can
actually affect the behavior of this model is kF , the length of the Fermi vector for the
electrons. For our purposes, kF is simply a parameter of the model which we can vary
freely.
We consider an RKKY crystal: A lattice of spins interacting through the RKKY interac-
tion. In particular, we consider a triangular lattice. This lattice can be described by the
lattice vectors given in (4.1). Physically, this model can be realized in several different
ways. One realization is through the deposition of magnetic adatoms on a conductive
surface. In this realization kF , when measured in units of the reciprocal lattice constant
of the adatoms, depends on the spacing of the adatoms. In addition, there are materi-
als where the RKKY interaction is the dominant interaction between spins, for example
Gd2PdSi3 [5, 26–28].
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The 1/rn decay of this interaction makes it interesting in that it is very different from the
exchange interaction, but it also poses some challenges. In particular, when considering a
system with periodic boundary conditions, the interaction happens not just between spins
within one period of the lattice, but also between spins in different periods. Computing
the full potential then involves the infinite sum [29]

Jij = J
∑
~λ

cos
(
2kF (rij + ~λ)

)
(2kF (rij + ~λ))3

−
sin
(
2kF (rij + ~λ)

)
(2kF (rij + ~λ))4


where ~λ are the vectors connecting the different periods of the system. They can be
written as

~λ = m~a1L+ n~a2L, m, n ∈ Z (4.7)

where L is the length of the system. Evaluating this sum is difficult due to the fact that it
converges fairly slowly. In [29], the Ewald sum method is used to evaluate the sum. This
method works by dividing the sum into a short-range and a long-range part, and then
computing the long-range part in reciprocal space. For the RKKY interaction in 2d, this
leads to an integral for each lattice site. These integrals must be computed numerically,
which is computationally expensive, and as such this method is not feasible for large
lattices. Instead, we simply perform the sum in real space, relying on the fact that on
a large lattice the non-leading terms of the sum should be tiny. To check our method,
we can compare the zero-temperature phase diagram that we find with the diagram
found by [29] using the Ewald method on a significantly smaller lattice. We see that the
zero-temperature phase diagrams are the same. We also see that including ~λ beyond the
leading-order terms of (0, 0), (0, 1), (1, 0) and (1, 1) has a negligible effect on the potential.
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Figure 4.12: J(~q) for kF = 2π
2.71

. The black hexagon marks the first Brillouin zone.

To analyze nematic transitions on the triangular lattice, we can define an order pa-
rameter

I =
1

2V

∑
~q

〈~S~q · ~S−~q〉(ei~q·~a1 + ωei~q·~a2 + ω2ei~q·(~a2−~a1)) (4.8)

where ω = e2πi/3 is a third root of unity. This order parameter is zero when the Z3

symmetry of the lattice is present, and is non-zero when that symmetry is broken. We
will be considering the absolute value of this order parameter.

4.2.1 Zero-temperature phase diagram

From the point of view of NBT, the most interesting region of parameter space is
2.11 < kF < 2.44, as this is region has an incommensurate spiral ground state which
can show nematic order. Above kF = 2.44, the system has a ferromagnetic ground state,
while below kF = 2.11 it is in the 120◦ state, with the ~Q-vector lying on the K point of
the Brillouin zone. In the region in between, the ~Q-vector lies on the line connecting the
Γ point to the K point. By computing

∣∣∣ ~Q∣∣∣ at various kF , we see that the ordering vector
changes continuously as we move in parameter space.
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Figure 4.13:
∣∣∣ ~Q∣∣∣ as a function of kF for kF between 2 and 2.5. For 4π

3
>
∣∣∣ ~Q∣∣∣ > 0, we are

in a nematic phase.

The fact that ~Q changes continuously makes this region different from another region
of parameter space: between kF = 3.67 and kF = 2.85, we also observe a spiral ground
state. In this region, the ordering vector changes discontinuously at kF = 3.85 from
somewhere inside the Brillouin zone to the K point, which corresponds to 120◦ ordering.
We will primarily look at the region 2.11 < kF < 2.44, as it is the one where [29] has
performed their studies of the presence of skyrmions when an external magnetic field is
applied.
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Figure 4.14:
∣∣∣ ~Q∣∣∣ as a function of kF for kF between 3.5 and 4. We see that the ordering

vector changes discontinuously in this range.
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Looking at J~q for a number of different kF , we see that near the 120◦-nematic transition
point, J~q is relatively large on the Brillouin zone boundary, as well as at the Γ point.
As we move into the nematic region, the large value at the Brillouin zone boundary is
maintained, but the value at the Γ point lowers considerable, and near the nematic-
ferromagnetic boundary there is a large region of reciprocal space around the Γ where J~q

is very small.

Figure 4.15: J~q for kF equal to a) 2π
3.2

b) 2π
2.9

and c) 2π
2.6

, showing how J~q evolves from having
minima at the K points, through having minima near the K points, and then to a very
broad low-J~q region for larger kF .

4.2.2 Results

We do the calculations for the RKKY crystal on a 300×300 system. We use J as our unit
of energy, and the distance between lattice points a as our unit of length, meaning that
we measure kF in units of a−1. When computing the free energy, the order parameter
and Tc, we do the NBT calculations for 80 ∆’s chosen on a logarithmic scale between 1

and 10−8.
We start by considering a single value of kF = 2.32. At this value, we are in the spiral
phase, with the ordering vector being somewhere between the Γ point and the K point.
There is a Z3 nematic symmetry which can be broken.
First, we compute the free energy, which we see is multivalued in the region 0.0405 < T <

0.043. By computing the order parameter, we see that it is zero above the multi-valued
region and non-zero below, indicating that we do have a phase transition, and that this
phase transition is related to the breaking of the Z3 lattice symmetry. We can find the
critical temperature by finding the place where the free energy branch associated with
I = 0 crosses the one associated with I 6= 0. We find that this happens at Tc = 0.042.
Looking at the structure factor above and below the phase transition, we clearly see
that the Z3 symmetry is broken below the critical temperature, where the structure
factor only has inversion symmetry. By contrast, the high-temperature phase has both
inversion symmetry and Z3 symmetry, leading to a total of six peaks in the Brillouin
zone. We also see that the peaks are broader in the high-temperature phase, indicating
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that the thermal fluctuations are larger. From the structure factor, we can also see that
the spiral phase found here is also found in triangular lattices with up to third-nearest
neighbor couplings [12, 15].
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Figure 4.16: The free energy and order parameter for the RKKY crystal with kF = 2.32.
We see that they are both multivalued in the region 0.0405 < T < 0.043. In this region,
we have a phase transition.

Figure 4.17: The structure factor at T = 0.043 and T = 0.042 for the kF = 2.32 RKKY
crystal. The high-T phase has sixfold symmetry, while the low-T phase only has twofold
symmetry.

We see that for the high-temperature structure factor, the peaks are connected by
lines of larger-valued structure factor. If we go near the nematic-ferromagnetic phase
boundary at kF = 2.44, we see that the connection between the peaks is very strong,
and that a continuous ring is formed around the Γ point. We describe such a state as
a modulated ring-liquid state, as the ring has maxima at the lines connecting the K

point to the Γ point. Such a modulated ring liquid is also found in other spiral state
regimes [12,17]. As kF changes, we go smoothly from the spiral paramagnetic state with
fairly well-defined peaks, through a ring-liquid with soft peaks, and to a paramagnetic
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state with a peak at the Γ point.

Figure 4.18: The structure factor for kF = 2π
2.6

, showing the presence of a modulated ring
around the Γ-point.

The structure factor in this ring-liquid region depends on the temperature. At high
temperatures, the structure factor simply has a broad peak at the Γ point for kF = 2.42.
Lowering the temperature, a ring liquid develops before the nematic transition sets in.
This behavior is very similar to what was found in [12] for a ring liquid on a honeycomb
lattice.
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Figure 4.19: A cut through the structure factor at (qx, 0) at various temperature for
kF = 2π

2.6
, showing the development of a spin liquid (characterized by two peaks in this

plot) at lower temperature

4.2.3 Critical temperature

Looking at the transition temperature in the nematic region, we see that just above
kF = 2.11, the transition temperature is fairly high at around 0.37. Increasing kF fur-
ther, the transition temperature decreases, and goes to zero as kF nears 2.44. In the 120◦

region and the ferromagnetic region we do not observe a nematic transition.

47



2.1 2.2 2.3 2.4 2.5
kF

0.0

0.1

0.2

0.3

0.4

T

Tc at various kF

Figure 4.20: Transition temperature for the RKKY crystal as a function of kF . We see
that the critical temperature is discontinuous at kF ≈ 2.1

The large Tc near the 120◦-nematic phase transition is unexpected. In general, we
would expect that the critical temperature is related to the energy barrier between the
minima of Jq, as this determines whether the system can easily move between different
minima. In this case, that doesn’t appear to be the case, and the critical temperature
is large even as the energy barrier between different minima is tiny. While we do not
know why this phenomenon happens, we can conjecture that the effect is similar to that
in order by disorder: While the energy barrier is small, the entropy change is large, and
as such the free energy barrier is large.
As we saw, the heat capacity diverges at a phase transition. In a region with no phase
transition, the heat capacity is smooth everywhere. we can see this by considering the
system for kF = 1.93, where we see a smooth specific heat curve with a broad maximum
around T = 1. As we go to larger kF , like 2.03, we see that this maximum becomes
sharper and moves to a lower temperature of T ≈ 0.8. We observe that as kF nears the
critical value of kF = 2.11, the peak in the heat capacity sharpens and moves towards Tc

at the critical kF . We thus conjecture that this heat capacity peak has some link to the
large critical temperature at low kF .
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Figure 4.21: Heat capacity for a number of kF . As kF becomes larger, the peak in the
heat capacity becomes sharper, and when kF is large enough that a phase transition is
possible, the heat capacity diverges.
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Figure 4.22: The critical temperature and the maximum of the specific heat for various
kF . When a phase transition is present, the maximum of the specific heat is always at
the phase transition.

There has been no previous studies on the transition temperature of this model. As
such, it is very hard to test how well NBT works on this model compared to Monte Carlo
simulations. [29] computes the critical temperature for kF = 2.32 and gets around 0.044,
whereas we get 0.042, or about 5% less. This is unlike the case of exchange coupling,
where NBT consistently gives a higher critical temperature. We attribute this difference
to how we approximate the potential. At any rate, the difference is small enough that we
can see some agreement between NBT and Monte Carlo. This, along with the fact that
the phase transitions happen at the same kF for NBT and for Monte Carlo indicates that
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NBT does capture at least the qualitative behavior of the phase transition.
Looking at the phase diagram of the triangular lattice with up to third-nearest neigbor
couplings, as explored with NBT in [15], we see that it also shows a transition between a
120◦ phase and a nematic phase. As such, we decide to explore this region further

4.2.4 High-temperature phase transition on triangular lattices

. The triangular J1 − J2 − J3 model has a rich phase diagram. For J1 = −1, one of the
phase boundaries is between a nematic phase and a 120◦ phase. This happens somewhere
in the region J3 > 1, J2 < −1

2
, with the exact location of the phase boundary being some

complex function of J2 and J3. As the nematic phase is also characterized by a ~Q-vector
lying on the line connecting the Γ point to the K point, this phase boundary appears to
be very similar to the RKKY case, and as such exploring it may yield insights into the
nature of the high-temperature phase transition in the RKKY crystal.
The J1-J2-J3 model has the interaction matrix [15]

J~q = 2J3A
2
~q + (J1 − 2J3)A~q + (J2 − 2J3)B~q (4.9)

where

A~q = cos(~q · ~a1) + cos(~q · ~a2) + cos(~q · ~a3)

B~q = cos(~q · (~a1 + ~a2)) + cos(~q · (~a2 + ~a3)) + cos(~q · (~a3 − ~a1))
(4.10)

with ~ai defined as for the honeycomb lattice. With this interaction matrix, one can use
NBT to compute the heat capacity and Tc of the system for various points in J2-J3 space.
Specifically, we consider J2 = 1.5, and look at a range of J2. In this configuration, the
system is 120◦ for large negative values of J2, and in a nematic phase otherwise.
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Figure 4.23: The ordering vector on the triangular lattice with J1 = −1, J3 = 1.5 as a
function of J2. The flat section indicates the 120◦ phase.

While this region contains a nematic-120◦ phase boundary, it is significantly different
from the phase boundary in the RKKY crystal in one important way: The ordering vec-
tor changes discontinuously between a 120◦ ordering and a nematic ordering. This means
that this change cannot be understood as a minimum moving around as we change J2.
Rather, we can understand this system as having a number of local minima, one of which
becomes the global minimum depending on the value of J2. Thus, we do not expect
exactly the same behavior here as we do in the case of the RKKY crystal, but we are
still interested in understanding the nature of the phase transition.
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Figure 4.24: Tc and peak temperature of Cv for a range of J2 for the J1 = −1,J3 = 1.5

triangular lattice.

Looking at the critical temperature and the temperature of the maximum of Cv, we
see that while they do not behave exactly the same as in the case of the RKKY crystal, the
heat capacity peak still moves towards the critical temperature at the phase boundary.
Furthermore, looking at plots of the heat capacity for a number of values of J2, we see the
sharpening of the heat capacity peaks as we move towards the nematic-120◦ transition.
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Figure 4.25: Specific heat plots for J2 = −0.9,−0.8 and−0.6, showing how on the 120◦

side of the transition, the peak in the heat capacity sharpens as we move towards the
phase boundary, and how the heat capacity diverges on the nematic side of the phase
boundary.
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Chapter 5

Discussion

5.1 Vertex correction

When deriving NBT, we made an approximation of the self-energy and polarization,
where we neglected the vertex correction. The vertex correction is the diagrams which
renormalize the vertex the same way that the self-energy and polarization renormalizes
the propagators. To see that the approximation is not exact, we can consider the self-
energy. If we consider the approximation, the self-energy is

= + + +O(1/N3) (5.1)

Meanwhile, the actual self-energy can be written as:

Σ~q,ij = ︸ ︷︷ ︸
O(1/N)

+ +︸ ︷︷ ︸
O(1/N2), no vertex correction

+ + + +︸ ︷︷ ︸
O(1/N2), vertex correction

+O(1/N3)

(5.2)

We see that the majority of diagrams are not included in our approximation, which does
call into question whether the approximation is valid. So far, the approximation has been
used because it gives results which are similar to those found by Monte Carlo. Here, we
are going to analyze the vertex correction in more detail to understand why neglecting
it can be valid. If we start by considering a Bravais lattice, there is only one sublattice
index and thus we can neglect it. We can thus define the dressed vertex as Γq,p where q is
the momentum of the incoming spin propagator and p is the momentum of the outgoing
constraint propagator. We can write this to order O(1/N)

Γq q − p

p

= + + +O(1/N2) (5.3)
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We can then write

Σ~q = (−i)
∑
~p

Γ~q,~pD~pKeff
−1
~q−~p = Γ

(5.4)

and
D−1

~q = i
∑
~p

Γ~p,−~qKeff
−1
~p Keff

−1
~q+~p = Γ (5.5)

which are the exact equations for the self-energy and polarization. These equations are
untenable to actually solve due to the fact that they cannot be solved by a convolution.
As such, the sum needs to be carried out directly, which is very slow for large systems.
Thus, for standard NBT the vertex corrections are neglected. The question is whether
neglecting this correction is a problem. One way to analyze this is to compute the vertex
correction to some order, and then compare it to the non-corrected values.

5.1.1 Computing the corrected self-energy

As we see in eq. (5.2), the majority of the diagrams for the self-energy up to O(1/N2)

are not included in NBT. Thus, we would like to see whether these diagrams are an
important addition to the self-energy. Since these diagrams are relatively simple, it is
computationally viable to simply calculate them and compare them to each other, at
least if we choose a small enough lattice size. Specifically, if we consider a 10×10 lattice,
we can compute these diagrams relatively quickly for both the square lattice and the
triangular lattice. When comparing the NBT self-energy and the full self-energy, it is
important to remember that in actual calculations, the minimal value of the self-energy
is subtracted from the self-energy as one of the steps in the iteration. As such, it makes
sense to define the magnitude of a self-energy as the difference between its maximal and
minimal value, as this is the property which is actually computationally relevant.
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Figure 5.1: The NBT self-energy, the full self-energy and the correction, plotted for next
nearest neighbor couplings of J2 = 0.3, 0.5 and 0.7 respectively on a square lattice with a
nearest neighbor coupling of J1 = −1. J2 = 0.5 is the crossover between a ferromagnetic
ground state and a nematic ground state.

Performing this calculation, we see that the difference in magnitude between the NBT
self-energy and the full self-energy is tiny. In addition, we can see that the magnitude of
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Figure 5.2: The NBT self-energy, the full self-energy and the correction, plotted for a
next-nearest coupling of J3 = 1.5 and nearest neigbor coupling of J1 = −1 on a triangular
lattice. These are the parameters also used to study the J1-J2-J3 triangular lattice in this
thesis.

the correction, which consists of all the diagrams not included in the NBT calculation,
is also tiny. These two observations together show that the correction to the self-energy
is small, at least to O(1/N2), and can thus safely be ignored, at least for square and
triangular lattices with short-range interactions.
We see here that the diagrams up to O(1/N2) do not diverge as ∆ → 0. In appendix B,
we show that this holds for all diagrams.

5.1.2 Infinite-order considerations

When we do NBT we look at all orders, and certain traits like symmetry breaking are
not found when simply looking at low-order diagrams. As such, one might ask whether
the vertex correction matters for our infinite-order calculations. Of course, answering
this would require us to perform NBT calculations with the vertex corrections, which is
not feasible computationally. However, we can consider which approximations one could
make to make this computation more feasible, and the consequences of these approxima-
tions.
One approximation schema which seems natural is to approximate the vertex correction
as only depending on the momentum of the constraint propagator ~p. Thus, the vertex
can be written as Γ~q,~p → Γ~p. This approximation also holds if we can simply approximate
Γ as a constant factor.
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What we see is that, if our approximation of Γ~p,~q is correct, the actual physics of the
system are largely unchanged. To see this, let us compute the corrected constraint prop-
agator and self-energy. The corrected constraint propagator now has the form

D−1
~q = iΓ−~q

∑
~p

Keff
−1
~p Keff

−1
~q+~p (5.6)

which means that the self-energy has the form

Σ~q = −i
∑
~p

Γ~pD~pKeff
−1
~q−~p = −i

∑
~p

Γ~pKeff
−1
~q−~p

iΓ−~p

∑
~p′ Keff

−1
~p′ Keff

−1
~p+~p′

=
∑
~p

Keff
−1
~q−~p∑

~p′ Keff
−1
~p′ Keff

−1
~p+~p′

=
∑
~p

D~pKeff
−1
~q−~p.

(5.7)

We thus see that the vertex correction doesn’t factor into the self-energy, and as thus
doesn’t factor into Keff , the structure factor or the temperature. It might factor into the
free energy, which could matter in terms of the critical temperature. However, it can
only change the critical temperature within the multivalued region, where different ∆’s
lead to the same T . As this region is tiny, the changes to the critical temperature are
correspondingly tiny.
Of course, this argument only holds if the approximation of Γq,p is good. However,
combining it with the calculations of the corrected self-energy to O(1/N2), it further
constrains the effect of the vertex correction.

5.1.3 Non-Bravais lattice

All of the above considerations only applies to Bravais lattices, however. For non-Bravais
lattices, the above argument fails, and indeed there is reason to believe that the vertex
correction might have a greater effect. For a non-Bravais lattice, the vertex correction
doesn’t only change the numerical value of the vertex, it also changes the quantitative
behavior of the vertex. To see this, we consider the dressed vertex

Γijk
~q,~p =

i j

k

Γq q − p

p

. (5.8)

We note that it has three sublattice indices. If we only look at the bare part of the vertex,
there is only one index

Γ
(0),ijk
~q,~p =

i i

i

δijδjk.
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This means that in a sense, the bare interaction doesn’t mix indices. The dressed inter-
action does, however, as we can see by looking at the diagrams to O(1/N)

i j

k

Γ = δijδik

i i

i

+

i j

k

+

i j

k

. (5.9)

Since the propagators each mix sublattice indices, the diagrams which contains propaga-
tors have the opportunity to mix sublattices. This change can have a significant effect on
the interaction. Unfortunately, it is also significantly harder to compute due to the fact
that we now need to take care of many more indices.
The fact that the dressed vertex for non-Bravais lattices is qualitatively different from
the bare vertex might help explaining the fact that the difference between NBT results
and Monte Carlo results is significantly larger for the honeycomb lattice than for the
triangular lattice [15]. In [15], it is proposed that this larger critical temperature is due
to the fact that on J3 = 0 line, the nematic transition happens in a region of continuously
degenerate ground states, where the ordering vector is chosen through order by disorder.
However, we propose that the significantly larger critical temperature is instead caused
by not taking the vertex correction into account, and thus remains even when there is
only a discrete set of ground states.

5.2 Specific heat

As we have seen, the specific heat found by NBT has a number of features that are not as
expected from reading the litterature on magnetism. The first such feature is that cv → m

as T → 0, where m is the number of sublattices. This is counter to the commonly known
fact that in 3d magnetic systems, the specific heat goes as T 3/2 for small T [4]. The
reason for this discrepancy is the various assumptions that go into the two computations:
the T 3/2 law comes from a computation which is semi-classical in the sense that it does
not consider quantum effects, but it does have quantized magnons. In a purely classical
O(n) theory, there is no quantization at all. We can thus compute the heat capacity in
a way similar to how Boltzmann proved the Dulong-Petitt law for the heat capacity of a
”classical” crystal [16].
We start by considering the partition function. At low T , we can assume that each spin
is locally ordered around an axis which we call z for convenience, and that there are two
excitations with quadratic dispersion for each spin. Thus, the partition function becomes:

Z ≈
∏
i

∫
dδSx,idδSy,ie

−βa(δS2
x,i+∆S2

y,i) (5.10)
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where a is some arbitrary constant and the product is over all atoms. These Gaussian
integrals can then be performed to yield

Z =
∏
i

π

βa
=

(
π

βa

)N

=

(
πT

a

)N

(5.11)

where N is the number of sites. This gives a free energy of

F = −T ln(Z) = −NT ln

(
πT

a

)
, (5.12)

and thus a heat capacity of

Cv = −T
∂2F

∂T 2
= N. (5.13)

Thus, we see that the heat capacity at low temperatures is equal to the number of sites
N , and as such the specific heat is equal to the number of sites per unit cell, which is
equal to the number of sublattices. Knowing that the specific heat is equal to the number
of sites doesn’t just provide an explanation for the specific heat plots; it also provides
a check to see whether all of the numerical factors in the solver program are correct.
Specifically it helps ensure that the free energy is implemented properly, since numerical
errors there could very well affect the specific heat.

5.3 Choosing ∆i

To perform NBT calculations, we first have to choose the saddle point values of ∆i.
These values need to be chosen in such a way that the calculated temperature on each
sublattice is the same. While the method for choosing ∆i is not given by the theory, from
a symmetry standpoint, simply choosing all of the ∆i’s to be equal seems like a good
guess. Indeed, this method works well for the honeycomb lattice in most cases.
The method breaks on the honeycomb lattice when the inter-sublattice coupling is too
small. To understand this, we can consider the case where the inter-sublattice coupling
is zero. In that case, the two sublattices have nothing to do with each other, and should
really be treated as two separate triangular lattices. When performing the NBT cal-
culations, however, we subtract the minimal eigenvalue of (Σ~q,ij + J~q,ij). This minimal
eigenvalue is simply the minimum of (Σ~q,11 + J~q,11) or (Σ~q,22 + J~q,22). This means that
for one of the sublattices, we subtract the correct minimal eigenvalue, but for the other
sublattice the wrong value gets subtracted. Thus, the calculations break down, and the
temperatures on the two sublattices differ and do not converge.
Applying the same method to determine the ∆i on a kagome lattice does not work, as the
temperature on the different lattices is not the same no matter the coupling. Here, the
sublattice symmetry seems to be broken by a more fundamental problem. To see this, we
calculated the bare propagator K−1

~q,ij for the kagome lattice with only nearest-neighbor
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coupling, and thus only inter-lattice coupling. Of the nine sublattice elements of K~q,ij,
3 of them are the hermitian conjugate of 3 others due to inversion symmetry, while the
diagonals are all simply ∆−1. The three interesting elements are simply 120◦ rotations of
each other. When K~q,ij is inverted, however, the sublattice symmetry is broken. Looking
at the diagonal K−1

~q,ii, this is identical for two of the sublattices but different for the third.
One possible explanation is that inside each unit cell, two of the sublattices are related
by a vector which is proportional to a lattice vector, while the third lattice is not related
by such a vector. Thus, the numerics end up looking different, and this leads to an
appreciable difference in the calculated results. Introducing an intra-sublattice coupling
does not remedy the situation.
Considering this, it seems to suggest that NBT works well as long as the number of atoms
in each unit cell is at most equal to the dimension of the lattice. While this describes
many different crystals, it is a significant limit, especially because it does not include
important frustrated lattices like the kagome (3 atoms in 2d) and pyrochlore (4 atoms in
3d).

5.4 RKKY crystal phase transition

The critical temperature for the RKKY crystal has a discontinuity at kF = 2.11, where
it goes from T = 0 to T ≈ 0.37. At this kF , the ordering vector goes from being at
the K point to being at a non-symmetry point in the Brillouin zone. As such, it is not
surprising that a phase transition does not happen for kF < 2.11, but it is surprising that
the critical temperature is so large near the critical kF . Even so, this is also observed
in other systems. As an example, the J1-J2-J3 triangular system also exhibits a large
critical temperature near the nematic-120◦ phase boundary.
What makes the behavior at this phase boundary particularly surprising in the RKKY
crystal is how it runs counter to the explanation of the critical temperature as being the
temperature where the thermal fluctuations are large enough to cross the energy barrier.
Near kF = 2.11, the energy barrier between the ordering vectors is tiny, yet the critical
temperature is relatively high. This is unlike in the case of the J1-J2-J3 model, where
the ordering vector changes discontinuously between a nematic and 120◦ ordering, and
as such there is a relatively large energy barrier between the different nematic ordering
vectors even near the phase boundary.
We observed that this high critical temperature on the nematic side of the critical point
is related to a feature in the heat capacity on the 120◦ side, where the peak of the heat
capacity sharpens as kF nears the critical value. Exactly how this phenomenon is to be
understood is unclear, but it does suggest that the high critical temperature is related to
the overall physics of the system, and is not just an artifact. Again, this phenomenon is
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also observed for the J1-J2-J3 system.
It is natural to ask whether Nematic Bond Theory captures the fundamental features
of systems with long-range interaction. Unfortunately, the very fact that NBT is better
suited to this kind of problem when compared to Monte Carlo methods also mean that
there are relatively few Monte Carlo studies of materials like the RKKY crystal. For
the one kF value where the phase transition has been calculated before, at kF = 2.32,
we get a critical temperature of Tc = 0.042, while [29] finds a critical temperature of
around Tc ≈ 0.048. The fact that NBT does not have exact agreement with Monte Carlo
calculations is not surprising, but usually NBT reports larger critical temperatures than
Monte Carlo. The fairly good agreement between the NBT value of Tc and the Monte
Carlo value indicate that we are at least capturing some of the physics.
Even if we do not perfectly capture all of the physics of the RKKY crystal, we are still
observing a strange phenomenon, where the critical temperature is very large compared
to the energy barrier between ~Q. The fact that such a transition is possible at all sug-
gests that the main mechanism determining the critical temperature is not necessarily
this energy barrier.

5.5 Spin liquid

When studying the RKKY crystal we observed that near the nematic-ferromagnetic phase
boundary, the structure factor goes through three distinct forms. At high temperatures,
there is a broad plateau centered at the Γ point. As the temperature is lowered, this con-
tinuously turns into a ring around Γ, before the nematic phase transition gives a structure
factor with two peaks at low temperatures. This spin liquid behavior is very similar to
what is observed in [12], where they looked at a honeycomb lattice with J2 = 0.183. This
similarity suggests a more general mechanism for understanding these ”pancake liquids”
and ”ring liquids”, as they are described in [12]. In both cases, ~Q is incommensurate
but fairly close to a commensurate ordering vector. For the honeycomb case, there is a
continuously degenerate ring of ~Q-vectors, where the symmetry is broken through order
by disorder. This is in contrast to the RKKY crystal, where there is a discrete set of
~Q-vectors. Here, the ring is instead formed by a continuum of very low energy states.
The pancake and ring liquids have been explored by [30], who described this spin liquid
from the basis of spiral states. In the spin liquid phase, the spins are locally described
by a spiral state with an ordering vector ~Q, but this local ordering vector fluctuates,
and as such long-range order is broken. While their model captures the qualitative fea-
tures of the spin liquid in the RKKY crystal, the RKKY crystal shows ordering at lower
temperatures, and as such is not perfectly explained by their model.
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5.6 Real magnetism

While Nematic Bond Theory is a very powerful theory for understanding the classical
Heisenberg model, it has a number of limitations when applied to actual magnetic ma-
terials. One major limitation is that it only treats classical spins. In reality, all spins
are quantum mechanical. As thus, it is worth considering whether our computations are
actually applicable to real-world systems.
The most-commonly studied types of spins are classical vector spins like we do with NBT,
and spin-1

2
. Comparing the spin-1

2
honeycomb lattice to the classical vector version [31]

shows that these two systems are radically different. When looking at the J1 − J3 hon-
eycomb model, the two systems display completely different phases, with the quantum
version never displaying an incommensurate spiral phase, and instead displaying types of
order which cannot simply be represented with Villain’s spiral ansatz eq.(2.3).
The reason for the large discrepancy between classical vector models and spin-1

2
models

is that in general, the classical model is seen as a large-s model, which is applicable for
large values of the quantum spin number. In this case, the many possible values of Sx,
Sy and Sz approach the continuum limit of simply representing it as a vector in an O(3)

model. This is not entirely true, however. While the dipole moment of a large-s spin does
approximately behave like a classical vector, these spins also have higher-order terms like
the quadropole moment. These are not treated at all by our vector model. Thus, the
O(3) model can be seen as a semi-classical version of the spin-1

2
model, and more complex

models are required for higher spins [32].
While quadropolar terms and above do certainly exist, in practice the main type of in-
teraction between magnetic moments is usually related to their dipoles, even if it is not
a dipole-dipole magnetic interaction. As such, we are not particularly concerned with
the fact that we might miss higher terms, although it is certainly worth keeping in mind
when comparing NBT results to experiments.
Even in the large-s limit, our O(3) model does not capture all of the features of real mag-
nets. For example, the heat capacity of a real magnet goes to zero as T → 0, while for an
O(3) model it goes to 1. Perhaps more important when comparing NBT to experimental
results is the relatively limited form of the Hamiltonian. The Hamiltonian only contains
one type of interaction, which can be written as ~S · ~S. There are a number of important
interactions, like the Dzyaloshinskii-Moriya interaction, which cannot be written in this
form. In addition, NBT treats all spin dimensions as equal, and thus cannot account for
anisotropic couplings. This is probably one of the most severe limitations of NBT, as
anisotropic couplings are found in almost all materials.
We can still expect NBT to give approximate results for a number of materials, as long as
those materials have low anisotropy and their magnetic moments are primarily interact-
ing through the exchange interaction or the RKKY interaction. Although all materials
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do have some anisotropy, in some materials the anisotropy is on a much lower energy
scale than the spin-spin interaction, and as such one might be tempted to ignore it. It is
worth noting that in the case of frustrated systems, while the interaction energy might be
much higher than the anisotropy energy, the critical temperature can be on a comparable
scale to the anisotropy, and as such we cannot simply ignore it. As thus, we need to be
careful when comparing NBT results with real materials.
On the other hand, there is no reason that NBT is not comparable with Monte Carlo
simulations. The major advantage of NBT compared to Monte Carlo is that NBT is
much more efficient, and as such we can look at much larger systems. The ability to
look at larger systems makes it easier to understand materials in which long-range inter-
actions dominate. In addition, the efficiency of NBT means that several different values
of the coupling constants can be analyzed quickly, and thus scanning large parts of the
parameter space for interesting phases can be done with relative ease compared to Monte
Carlo simulations.
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Chapter 6

Conclusion

In this thesis, we have studied Nematic Bond Theory and its applications. In particular,
we have studied the application of Nematic Bond Theory to systems with longer-range
order than has been studied before. For the honeycomb lattice, we have extended NBT to
third-nearest neighbor couplings. Here, we have found that nearest-neighbor and third-
nearest neighbor couplings together lead to a system with varying degrees of frustration,
and with a nematic phase transition whose temperature is proportional to |J3| for large
values of J3. Including second-nearest neighbor couplings opens up a large phase diagram,
with different phase transitions showing different relations between Tc and the interaction
strengths. We can thus see that the details of the nematic-non nematic phase boundary
are not universal.
We have also studied the triangular lattice with an RKKY interaction. Here, we find that
NBT approximately reproduces the results found by Monte Carlo methods inside the
nematic phase. We have found evidence of spin liquid behaviour near the ferromagnetic-
nematic phase boundary, and we have discovered an unusually high Tc at the 120◦-nematic
boundary. To further understand this, we have studied the behavior of a similar phase
boundary in the triangular lattice with up to third-nearest neighbor couplings, and found
a similarly high critical temperature. Although the details of the two systems vary in
important ways, this demonstrates that this unusually high Tc is present in different
systems, including systems which we know to be well-described by NBT. This high Tc,
combined with the spin-liquid behavior, demonstrates the many complex properties of
magnetic systems with long-range order.
We have also considered the theoretical footing of NBT. A key step in the derivation
of NBT is the approximation that the vertex correction is negligible. Through direct
calculation of the vertex correction up to O(1/N2), we have shown that this is true on
small lattices for the square and triangular lattices. We have also shown that this is true
in general for Bravais lattices, assuming that the vertex correction only depends on the
constraint field momentum. For non-Bravais lattices, we have described how the vertex

64



correction qualitatively changes the Feynman rules of the theory, and as such cannot be
discounted as easily.
To further develop NBT as a computational tool, there are a number of hurdles which need
to be overcome. The most severe is that NBT as it is currently formulated breaks down
for complex non-Bravais lattices. While the exact details of this breakdown is unknown,
we suggest that it happens when the number of sublattices is larger than the number of
dimensions. Avoiding this breakdown is essential if NBT is to become a powerful tool for
analyzing important frustrated systems like the kagome and pyrochlore lattices.
An additional key extension of NBT is the inclusion of external magnetic fields. Currently,
NBT is defined without any external magnetic fields. Extending NBT to include external
magnetic fields would necessitate a re-derivation of the field theory while including a
magnetic term in the Hamiltonian. The nature of how such a magnetic field would
change the theoretical aspects of NBT are unclear, but it would most likely require
separate treatment of the different spin components, which in turn changes the 1/N

expansion.
Considering the results acquired in this thesis, it is clear that the RKKY crystal hosts
interesting physical phenomena. Further studies of that system, either with NBT, Monte
Carlo methods or other methods could potentially yield insights into the behavior of
frustrated magnetic systems in general. In particular, the nature of the high Tc near the
phase boundary is not well-understood. Although similar behavior has been found in
systems with shorter-range couplings, the details of the RKKY crystal means that the
high Tc is particularly strange, and as such understanding it would greatly expand on our
understanding of the nematic transition in frustrated magnets.
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Appendix A

Fourier conventions

We use a number of different Fourier conventions in this thesis to maximally simplify our
equations. As the thesis is largely numerical in nature, all of our Fourier transforms are
discrete. For the spins, we use the convention

~S~r,i =
1√
V

∑
~q

~S~q,ie
i~q·~r ~S~q,i =

1√
V

∑
~r

~S~r,ie
−i~q·~r (A.1)

and similarly for the constraint field

λ~r,i =
1√
V

∑
~q

λ~q,ie
i~q·~r λ~q,i =

1√
V

∑
~r

λ~r,ie
−i~q·~r. (A.2)

For the spin-spin coupling, we use a different convention to ensure the simplicity of the
equations:

J~r,i =
2

V

∑
~q

J~q,ie
i~q·~r J~q,i =

1

2

∑
~r

J~r,ie
−i~q·~r (A.3)

These conventions are the ones that lead to the fewest extra factors when moving between
reciprocal space and real space.
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Appendix B

Self-energy divergence in ∆

We want to show that none of the self-energy diagrams diverge as ∆ → 0. We can
start by seeing why this is a potential problem: The bare spin propagator is given by
K−1

~q = (J~q+∆)−1, and for the ordering vector ~Q, J ~Q = 0 and thus K−1
~Q

= ∆−1. Thus, we
might worry that diagrams grow larger and larger for smaller ∆. To see why this is not
a problem, we consider the small ∆ limit, and count powers of ∆. Let us define ~q 6= ~Q as
a non-ordering vector. We then get K−1

~q ∝ 1 and K−1
~Q

∝ ∆−1. We can now look at the
constraint propagator:

D0,~q =
2

N

∑
~p

K−1
~p K−1

~q−~p

−1

(B.1)

We see that for small ∆, the dominant terms of
∑

~pK
−1
~p K−1

~q−~p are K−1
~Q
K−1

~q− ~Q
and K−1

~Q−~q
K−1

~Q
.

Each of these terms carry a factor of ∆−1, so we usually get D0,~q ∝ ∆. However, if ~q− ~Q

or ~Q − ~q are also ordering vectors, then these terms carry a factor ∆2. We define ~k as
a momentum such that ~k − ~Q or ~Q − ~k are ordering vectors(Since we assume inversion
symmetry, ~k − ~Q being an ordering vector implies that ~Q− ~k is an ordering vector.)
We thus have four types of objects in our diagrams:

• x = K−1
~q , which carry no ∆-dependence

• X = K−1
~Q

, which are proportional to ∆−1

• y = D~q, which are proportional to ∆

• Y = D~k, which are proportional to ∆2

Our diagrams consist of a spin propagator which is not closed, a number of closed spin
loops, and constraint propagators connecting them. As each constraint propagator con-
nects two objects, it makes sense to define the ends of the constraint propagators as l for
the y-propagator and L for the Y -propagator. We see that l ∝ ∆1/2 and L ∝ ∆.
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B.1 Cases

To actually show that these diagrams do not diverge with ∆, we will analyze a number
of cases. In each case, we will construct the diagram with the lowest power of ∆, and
show that it does not diverge as ∆ → 0. We will index our cases by the number of l and
L they contain.
Starting with the single open propagator, we define a (m,n) propagator as one containing
m l-terms and n L-terms. We now want to construct the lowest-order (m,n) propagators,
which means the ones with the most X terms. We note that the possible connections are
xlx, Xlx, xlX, XLX and xLx. If we start with n = 0, the lowest order diagrams are:

(x)LxLxLx...L︸ ︷︷ ︸
m

(x) ∝ ∆m

(X)LXLXLX...L︸ ︷︷ ︸
m

(X) ∝ ∆1
(B.2)

Where the terms in parentheses are the external momenta, which are fixed and do not
contribute powers. For n even, the optimal constructions are:

(x)lX LXLX...LX︸ ︷︷ ︸
m

lxlXlxlXl︸ ︷︷ ︸
n−1

(x) ∝ ∆0

(X)LXLX...LX︸ ︷︷ ︸
m

lxlXlxl︸ ︷︷ ︸
n

(X) ∝ ∆1
(B.3)

Whereas for n odd, the optimal constructions are

(x)lX LXLXLX︸ ︷︷ ︸
m

lxlXlxl︸ ︷︷ ︸
n−1

(x) ∝ ∆1/2

(X)LXLXLX︸ ︷︷ ︸
m

lxlXlxlxl︸ ︷︷ ︸
n−1

(X) ∝ ∆3/2
(B.4)

We thus see that all of the open propagators are well-controlled.
For the loops, a very similar logic goes. We can construct the loops by closing these open
propagators. For the porpagators with (x) at the end, closing them does not alter their
divergene properties. Closing the propagators with a (X) at the ends adds a factor of
∆, but in none of the cases does this bring them above ∆0. Thus, we can see that no
diagram diverges when ∆ → 0.
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Appendix C

Implementation of NBT

The numerical code used to perform NBT computations was written in Python with the
numpy and scipy libraries. The plots were produced with the matplotlib library. As a
concrete example, an example of the code used to create a plot of the structure factor for
a honeycomb lattice is provided. It is important to note that line 24 is split in two due
to its length; when implementing this code it is important to keep it as one line.

1 import numpy as np
2 import matplotlib . pyplot as plt
3 import scipy
4 import matplotlib . patches as patch
5
6 Size=200
7 t_1=np. array([1 ,0])
8 t_2=np. array([1/2 ,np. sqrt(3)/2])
9 t_3=t_2−t_1

10 v_dist=[[[0 ,0] ,[0 ,np. sqrt(3)/3]] ,[[0 ,−np. sqrt(3) /3] , [0 ,0] ] ]
11
12 J_1=1
13 J_2=0
14 J_3=−0.5
15 x=np. linspace(0 ,1 ,Size ,endpoint=False)
16 y=x
17 q1,q2=np.meshgrid(x,y)
18 qx=2∗np. pi∗q1
19 qy=2∗np. pi∗(1/np. sqrt(3)∗q1+2/np. sqrt(3)∗q2)
20 q_vec=np. array ([qx,qy])
21 q_vec=np.moveaxis(q_vec,0 ,2)
22 def J_func(q_vec) :
23 J_aa=J_2∗(np. cos(np.dot(q_vec,t_1))+np. cos(np.dot(q_vec,t_2))+np. cos(np.dot(q_vec,t_3)))
24 J_ab=1/2∗J_1∗(1+np.exp(1 j∗np.dot(q_vec,−t_2))+np.exp(1 j∗np.dot(q_vec,−t_3)))+1/2∗J_3∗(np.exp(1 j∗np.dot(q_vec,t_1))+np.exp

(1 j∗np.dot(q_vec,−t_1))+np.exp(1 j∗np.dot(q_vec,−t_2−t_3)))
25 J_ba=J_ab. conj()
26 J_bb=J_aa
27 return np.moveaxis(np. array ( [ [J_aa,J_ab] , [J_ba,J_bb] ] ) ,[−2,−1],[0,1])
28
29 #Conventions: objects are in reciprocal space unless specified , [0 ,0] marks the center of the f i r s t Brillouin zone.
30 #Indices go [q1 ,q2 , i , j ] for 4d objects
31 #The convention for the sign of Sigma is that used in the computation part of the thesis
32 Delta=1e−1
33 #Init ia l ize the program
34 Volume=Size∗∗2
35 sublatticeI=np. tensordot(np.ones((Size , Size)) ,np. identity(2) ,axes=0)
36 #Define Fourier transformation and matrix operations .
37 def fourier (M) :
38 return scipy . f f t . fftn (M, axes=(0,1))/Volume∗2/np. sqrt(3)
39 def invfourier(M) :
40 return Volume∗scipy . f f t . i f ftn (M, axes=(0,1))∗np. sqrt(3)/2
41 def eigenvalues(M) :
42 return np. linalg . eigvals(M)
43 def hermitian(M) :
44 return np. transpose(M, axes=(0,1,3,2)) . conj()
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45
46 #Helper functions
47 def period_expander(M) :
48 M_c=M
49 return np. concatenate((np. concatenate((M_c,M_c) , axis=0),np. concatenate((M_c,M_c) , axis=0)) , axis=1)
50 #Create array J from J_func reasonably ef f ic ient ly
51 J=J_func(q_vec)
52 J_min=np.amin(eigenvalues(J))
53 J=J−sublatticeI∗J_min
54
55
56 Sigma_init=np.random.rand(Size , Size ,2 ,2)∗0.0001∗Delta
57 Sigma=fourier (Sigma_init)
58 Sigma=(Sigma+hermitian(Sigma))/2
59 #Sigma=np. zeros((Size , Size ,2 ,2))
60 T=np.ones((2))∗float(”nan”)
61
62 #iterations
63 Brokenloop=False
64 iterations=0
65 while Brokenloop==False :
66 #1
67 Sigma_min=np.amin(eigenvalues(Sigma+J))
68 Sigma=Sigma−Sigma_min∗sublatticeI
69 #2
70 K_effinv=np. linalg . inv((J+Delta∗sublatticeI+Sigma))
71 T_old=T
72 T=np. diag(1/(3/(2∗Volume)∗np.sum(K_effinv, axis=(0,1)) . real ))
73 i f np. all (abs((T−T_old)/T_old)<1e−10):
74 print(”Converged”)
75 print( iterations )
76 break
77 elif iterations>200:
78 print(”Too many iterations”)
79 Brokenloop=True
80 #3
81 D_inv=3/2∗fourier ( invfourier(K_effinv)∗∗2)
82 #4
83 D_calc=np. linalg . inv(D_inv)
84 D_calc[0,0]=np. zeros((2 ,2))
85 Sigma=fourier (( invfourier(K_effinv)∗invfourier(D_calc)) . real )
86 iterations+=1
87 print(T)
88 Sigma=(Sigma+hermitian(Sigma))/2
89 #Structure factor calculation
90 def struc(K) :
91 x_large=np. concatenate((x−2,x−1,x,x+1))
92 y_large=x_large
93 q1_large,q2_large=np.meshgrid(x_large ,y_large)
94 qxl=2∗np. pi∗q1_large
95 qyl=2∗np. pi∗(1/np. sqrt(3)∗q1_large+2/np. sqrt(3)∗q2_large)
96 q_vec_large=np. array ([ qxl , qyl ])
97 q_vec_large=np.moveaxis(q_vec_large,0 ,2)
98 expfactor=np.exp(np. tensordot(q_vec_large,v_dist , axes=[[2] , [2]])∗1j )
99 K_expanded=period_expander(period_expander(K))

100 return np.sum(expfactor∗K_expanded, axis=(2,3))∗T[0]∗3/2,qxl , qyl
101 S,Sqx,Sqy=struc(K_effinv)
102 nplot=plt . scatter(Sqx,Sqy, c=(abs(S)) ,marker=”.” ,s=1)
103 plt .gca() . set_aspect( ’equal ’ , adjustable=’box’ )
104 ax=plt .gca()
105 hpatch2=patch.RegularPolygon(q_vec[0 ,0] ,6 ,4∗np. pi/3,orientation=np. pi/6,facecolor=”None” ,edgecolor=”black”)
106 hpatch3=patch.RegularPolygon(q_vec[0 ,0] ,6 ,7∗np. pi/3,facecolor=”None” ,edgecolor=”black”)
107 ax.add_patch(hpatch2)
108 ax.add_patch(hpatch3)
109 plt .xlim(−3∗np. pi ,3∗np. pi)
110 plt .ylim(−3∗np. pi ,3∗np. pi)
111 plt . xlabel(”$q_{x}$”)
112 plt . ylabel(”$q_{y}$”)
113 plt . t it le (”$\mathcal{S}(\mathbf{q})$ for $J_{1}$=”+str(J_1)+” , $J_{3}$=”+str(J_3)+” , T=” + str(round(T[0] ,3) ))
114 plt .show()
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