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Abstract
In this thesis the critical Néel temperature, TN , of the magnetic critical phase
transition and the associated critical exponents of h-YMnO3 have been mea-
sured using elastic and inelastic neutron scattering. The thesis introduces rele-
vant theoretical concepts related to crystal structures, magnetism, critical phase
transitions and their associated critical exponents, as well as the theory of neu-
tron scattering used to carry out the measurements in this work.

The Néel temperature, TN = 71.48 ± 0.04 K, were computed by fitting the
Magnetization vs temperature data from the elastic neutron scattering data
measured at the q = (01̄0) Bragg-peak by fitting the critical range to a power
law relation. The critical range were estimated from plotting the data on double
logarithmic plots, which should make the critical range appear linear. The power
law fits to the magnetization in addition to the intensity and width of the critical
scattering occurring close to TN yielded their corresponding critical exponents.
These are β = 0.179±0.002 associated with the magnetization, γ = 1.063±0.002
and γ = 1.12±0.02 from the intensity of the critical scattering above and below
TN respectively, and ν = 4.1± 1.0 and ν = 6.3± 0.2 associated with the width
of the critical scattering again above and below TN respectively.

The Néel temperature and the values of the critical exponents match those
reported in the literature quite well, except for ν which is much too high. The
critical exponents does not match any known universality class and as such sup-
port the notion that a new universality class of triangular frustrated systems is
needed.

The inelastic neutron scattering data revealed two visually distinct magnon
modes at ~ω = 2.3 meV and ~ω = 5.4 meV respectively at base temperature.
As the temperature increases the excitation gab of the lower magnon mode
decreases until it reaches 0 meV at TN . The temperature dependence of this
excitation gab were fitted to a power law and its critical exponent, suspected of
being similar to β from the elastic measurements, gave a value of β = 0.28±0.08.
These two β’s are within two standard deviations of each other and are assumed
similar given the data.

The inelastic measurements also yielded two novel critical exponents, ζ =
0.72 ± 0.07 and ρ = 0.45 ± 0.02, associated with the temperature dependence
of the intensity and width of the quasi-elastic scattering at ~ = 0 meV. To the
best of the authors knowledge these have not been measured anywhere before.
Their significance, if any, is unknown.

Finally a new method of estimating the critical range of the elastic data
is proposed in this thesis. This method is based on systemically varying the
temperature range of the supposed critical region and then computing the values
of TN and/or β for each range. Based on the analysis in this thesis the values
one obtains becomes constant within the correct critical range and when plotted
as done here seems to reach a plateau, indicating that the true critical range
has been found.
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Resumé
I dette speciale måles den kritiske Néel temperatur, TN , for den magnetiske kri-
tiske faseovergang i h-YMnO3 og de associerede kritiske eksponenter med både
elastisk og inelastisk neutronspredning. Afhandlingen lægger ud med at give en
introduktion til den relevante teori om magnetisme, krystaller, kritiske faseover-
gange og kritiske eksponenter og introducerer også den teoretiske baggrund for
neutronspredning, der er blevet brugt til at udføre målingerne i dette speciale.

Néel temperaturen blev målt til TN = 71.48 ± 0.04 K ud fra den elastiske
neutron spredning ved at lave et potenslovfit af magnetiseringen som funktion
af temperaturen målt ved Bragg-peaket ved q = (01̄0) i det kritiske område.
Det kritiske område blev fundet ved at lave et dobbelt logaritmisk plot af data,
hvori den kritiske region burde ligne en lige linje. Udover at bestemme TN på
denne måde så gav dette fit også den kritiske eksponent β = 0.179 ± 0.002.
Den kritiske eksponent γ, der findes ved at fitte en potenslov til intensiteten af
den kritiske spredning som funktion af temperatur, gav to forskellige værdier på
hver side af TN , nemlig γ = 1.063 ± 0.002 og γ = 1.12 ± 0.02 afhængig af om
det var over eller under TN . På samme måde blev den kritiske eksponent ν, der
er associeret med bredden af den kritiske spredning som funktion af temperatur
bestemt både over ν = 4.1± 1.0 og under ν = 6.3± 0.2 den kritiske temperatur
TN .

Den kritiske temperatur samt eksponenterne β og γ passer alle overens med
resultaterne fra tidligere eksperimentelle studier, mens ν er væsentligt over, hvad
den burde være ifølge alle tidligere studier og teoretiske modeller. Værdierne
for β og γ stemmer dog ikke overens med de forventede værdier i nogen kendte
universalitetsklasser, hvorfor der nok er behov for at lave en ny universalitet-
sklasse specifikt for frustrerede trekantsystemer som dette.

Målingerne udført med uelastisk neutron spredning viser to klart adskilte
magnon excitationer med energier på hhv ~ω = 2.3 meV og ~ω = 5.4 meV ved
den laveste temperatur, der blev taget data ved. Når temperaturen øges, så
reduceres den laveste magnons excitationsenergi, indtil den når ~ω = 0, hvilket
sker, når temperaturen rammer TN . Dette excitationsgab kan også fittes til en
potenslov. Den kritiske eksponent man får ud af det, bør være den samme β
fra de elastiske neutronspredningsmålinger. Denne nye β = 0.28 ± 0.08 passer
inden for to standardafvigelser med β fra de elastiske målinger, og derfor kan
det med god sandsynlighed konkluderes, at de to er ens.

De nye kritiske eksponenter ζ = 0.72±0.07 og ρ = 0.45±0.02 blev også fun-
det ud fra de uelastiske neutronspredningsmålinger. Intensiteten som funktion
af temperatur af det quasielastiske signal omkring ~ω = 0 udviklede sig også
som en potenslov og gav værdien for ζ, mens bredden af den samme spredning
gav ρ. Disse to eksponenter er, så vidt forfatteren er orienteret, ukendte i liter-
aturen, og der er derfor tale om to helt nye kritiske eksponenter.

Afslutningsvist introduceres der i dette speciale en ny og måske bedre metode
til at bestemme den kritiske region. Metoden er baseret på systematisk at variere
den region, der fittes til en potenslov. For en given maksimal fittemperatur
plottes de værdier for TN og/eller β, som opnås, når man varierer den laveste
fittemperatur. Denne procedure gentages herefter for en række nye maksimale
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temperaturer. Med udgangspunkt i dette speciales analyse kan det konkluderes,
at de værdier, der opnås for TN og/eller β, når et konstant niveau, når de plottes
på denne facon og former et plateau. Dette plateau indikerer dermed den sande
kritiske region.
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Chapter 1

Introduction

The study of the properties of materials is one of the most relevant branches
of science to the lives of the general population. The fact that historians have
named many of the early epochs of human history after the new dominant mate-
rial used in them, namely the stone, bronze and iron ages, show the significance
this branch of science can have on the society. More recent inventions such as
computers, jet airplanes, plastics, photo voltaic cells, and many more are tied
to advancements in materials science. The information age we live in today for
an example is to a large degree made possible by the microchip which relies on
the developments of solid state semiconductors in the decades following the 2nd
World War.

Since then many new materials with exotic properties have emerged such as
the superconductors, nano materials, graphene and so on. This thesis will focus
on one material called YMnO3 from a group of materials with exotic properties
called multiferroics. Multiferroics are classified as being materials which have
a coupling between the order parameters of two or all three ferroic properties
namely the ferromagnetism, ferroelectricity and ferroelasticity. This makes it
possible to e.g. induce a magnetization by applying an electric field or squeezing
the material. Multiferroics are a rare occurrence in nature because the various
ferroic properties are mutually exclusive in most materials.

Multiferroics are however of great interest both scientifically as welll as in
the industry, because the coupling of these order parameters can be used in
many applications such as actuators, multi-memory devices, and transducers
[1, 2].

As the temperature of a material changes it can undergo changes from one
distinct phase to another. This is probably best known from water which can
change back and forth from solid ice, to liquid water, and finally to air as steam
by changing the temperature of the material. Phase changes do not however
need to be as visually obvious. If a common refrigerator magnet is heated
above a certain temperature threshold it will suddenly stop being magnetic,
even though it is still a solid both before and after. This is another and much
more subtle form of phase transition, where the change of state happens without
any visual trace.

All magnets undergo phase transition from a magnetically ordered phase to
one of disorder when the temperature increases. This is because macroscopic
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magnetism, as seen in a refrigerator magnet, stems from the ordering of individ-
ual atomic magnets situated on each of the magnetic ions within the material.
Below a certain critical temperature all these atomic magnets align with each
other thus creating a macroscopic magnetic structure. This alignment or order-
ing can be complicated, and does not necessarily mean that a magnetic material
will be macroscopically magnetic, in fact this is rarely the case as one of the
most common ways for magnetic materials to order is to align all the atomic
magnets anti-parallel with one another in pairs. This means that the net mag-
netic moment of each atomic magnet is exactly canceled by the anti-parallel
magnetic moment of its neighbour thereby rendering the macroscopic material
seemingly nonmagnetic. If the temperature is increased enough so that the ther-
mal energy exceeds that of the exchange energy between the atomic magnets,
the magnetic structure is broken and all the tiny magnets within the material
will orient themselves randomly.

When water transitions from one phase to another there is an energy require-
ment, called latent heat, to transition, e.g. you can have ice cubes in a glass of
water on a hot day, and the ice cubes will only slowly melt because of the latent
heat required to melt the ice. For magnets there is no latent heat requirement,
meaning that at the critical temperature the whole material will very rapidly
transition from one phase to the next. The phase transitions of water are called
1st order phase transitions, while that of magnets are called 2nd order phase
transition, continuous phase transition, or critical phase transitions. The critical
magnetic phase transition of YMnO3 will be one of the main topics of this thesis.

The study of magnetism is rich. One of the most efficient techniques for
studying magnetism is neutron scattering. Neutrons are uniquely suited to the
study of magnetism because they are electrically neutral, but carries a magnetic
moment. This means that they can interact with magnetic structures, while not
being influenced by any electric fields in the vicinity. In addition the neutron
interacts fairly weakly with matter, meaning that it can penetrate deep into
materials and thus it is excellent to study the three dimensional physical and
magnetic structure of materials. Further the energy of the neutron can be tuned
by, such that it is of the same order of magnitude as the dynamic excitations
of the material allowing one to study these dynamics in great detail as well. A
significant portion of this thesis will be explaining the art of neutron scattering
and how it can be utilized to study especially magnetism.

It is the goal of this thesis to determine the critical temperature at which the
magnetic phase transition occurs for YMnO3, in addition some of the critical
order parameters associated with the phase transition will also be determined.
The behavior of spin waves as a function of temperature will also be investigated
and their critical parameters compared to that of the phase transition.

This study will reanalyze the same data as were used in a recent article
published in Quantum Beam Science by Holm-Dahlin et al. [3].
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Chapter 2

Theoretical Background

This section introduces crystal structures and magnetism. In addition the theory
of excitations of both physical and magnetic structures are introduced as well
as critical phase transitions and their associated critical exponents.

2.1 Crystals
A crystal is formed when atoms order in repeated patterns. The basic unit which
repeats itself is called the unit cell, and the lattice of the crystal is created by
translating the length of a lattice vector and then placing a new unit cell. In
3 dimensions you can naturally translate along 3 different axes, each axis is
represented by a vector which will be known as a, b, and c and therefore the
volume V of the unit cell is

V = a · b× c (2.1.1)

The crystal will look similar when you translate any integer number of lattice
vectors from your origin r, such that

r′ = r + u1a+ u2b+ u3c (2.1.2)

where r′ is the new site and u1, u2, and u3 are integers [4].
Each unit cell contains a number lattice points where the atoms that make

up the crystal will be situated, such that at each lattice point an atom or a
group of atoms is placed, the atom or group of atoms placed at these points is
known as the basis of the crystal.

The simplest unit cell, that of the simple cubic cell, has a lattice point on each
corner of the unit cell, see figure 2.1 (a). The angles between the lattice vectors
are denoted α, β, and γ. In total 14 lattice types exists in 3 dimensions, there is
1 triclinic, 2 monoclinic, 4 orthorhombic, 2 tetragonal, 3 cubic, 1 trigonal, and 1
hexagonal [6]. The triclinic and hexagonal are shown in figure 2.1 (b) and (c).
A total of 230 space groups exists which describes all possible symmetries within
the crystal. This is of great value, since the symmetries of a crystal determines
which reflections can occur within the crystal.

When conducting a scattering experiment you measure the reciprocal lattice.
like the real lattice, the reciprocal lattice is made up of three vectors a∗, b∗,
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(a) (b) (c)

Figure 2.1: Above is shown 3 examples of simple crystal lattices, black dots
denote lattice points. (a) a simple cubic structure with 1 lattice point at each
corner, for a cubic lattice a = b = c, and α = β = γ = 90◦ . (b) The triclinic
lattice, where a 6= b 6= c and α 6= β 6= γ. (c) The hexagonal where a = b, but c
has a different length and α = β = 90◦ and γ = 120◦. from [5]

.

Figure 2.2: Lattice spacing in a simple cubic crystal structure. d100 is the
distance between the (hkl) = (100) planes in the crystal, which are colored red.
Figure from [7]

.

and c∗. These vectors are related to the real vectors by

a∗ = 2π
b× c
a · b× c

, b∗ = 2π
c× a
a · b× c

, c∗ = 2π
a× b
a · b× c

. (2.1.3)

We define the reciprocal lattice vector τ as

τ = ha∗ + kb∗ + lc∗ (2.1.4)

where the indices hkl, known as the Miller indices, are integers. The distance
dhkl between real space lattice planes and the reciprocal lattice vector is

dhkl =
2π

|τ |
(2.1.5)

as seen in figure 2.2.
The reciprocal unit cell is known as the (first) Brillouin zone [4]. A Brillouin

zone is constructed by bisecting a reciprocal lattice vector and then extending
the line perpendicular to the reciprocal lattice vector from the bisection point. A
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(a) (b)

Figure 2.3: Two examples of the real lattice structure and reciprocal lattice
structures the square 2 dimensional lattice a) and the hexagonal 2D lattice b).
The first Brillouin zones are shown in pink. Any k-vector outside the first
Brillouin zone is equal to one inside. Figure from [8]

.

Brillouin zone is then the space that these lines envelop, see figure 2.3. Brillouin
zones are interesting, because they contain all information about the crystal
dynamics, since any k-vector outside the first Brillouin zone is equal to one
inside the zone. If a crystal contains magnetic ions on some of the lattice sites,
a magnetic structure will be present. This is in many ways analogous to the
physical structure, and a magnetic ordering vector, Q, can be defined, which is
analogous to τ from the physical lattice. The length of the magnetic ordering
vector is given by

|Q| = 2π

L
(2.1.6)

where L is the distance between periodic sites on the lattice. For a ferromagnetic
lattice, where the spin on each site points in the same direction, the distance
L will be between two neighbouring sites and then Q = 0. For the antiferro-
magnetic lattice L will be the distance between two next nearest neighbours,
as the AFM lattice repeats itself on every other lattice point. This puts Q on
the Brillouin zone edge. For more complicated lattices, where nearest neigh-
bour interactions alone cannot account for the structure, then Q will have some
value and not reside on the Brillouin zone edge. e.g. the helicoidal structure
[9]. Examples of these structures are shown in figure 2.4 and their individual
Q’s are shown in figure 2.5.

2.2 Magnetism
In our macroscopic world, only few systems show magnetic properties of which
the most well known today is probably refrigerator magnets. It is easy to observe
the magnetic properties of these materials because it is clearly evident that they
attract or repel other magnetic materials. However the story of magnetism is
much richer and are intrinsic to a multitude of other phenomena whose origin is
more subtly magnetic than the magnetism observed in e.g. refrigerator magnets
or compass needles.

This section introduces magnetism and largely follows Blundell [11].
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Figure 2.4: Examples of various magnetic lattice structures and the distance L
between periods in said structure. In a) we see the ferromagnetic lattice, where
all spins point in the same direction. b) Shows the antiferromagnetic lattice,
where every spin is surrounded by spins pointing in the opposite direction. Fi-
nally in c) the helicoidal magnetic structure is shown, where the spins gradually
are angled compared to its neighbours. Figure from [10]

.

Figure 2.5: The various structures shown in figure 2.4 in reciprocal space and
their associated magnetic ordering vectors Q. Figure from [10]

.
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2.2.1 Magnetic moments
Magnetism in materials is due to magnetic moments already present or gener-
ated within the material. An example of the former could be unpaired electrons.
Electrons are charged particles and when they orbit the nucleus of an atom, they
form a closed loop in which the charge moves around the nucleus. From Maxwell
we know that any current gives rise to a magnetic moment, and as such the rev-
olution of unpaired electrons about the nucleus generate an orbital magnetic
moment

µl = µBl (2.2.1)

where µB is the Bohr magneton and l is the angular momentum of an electron.
In addition to the orbital angular moment of the electrons, they also posses

an intrinsic angular moment called spin, denoted s

µs = gµBs (2.2.2)

here g is the gyromagnetic ratio, which takes the value of 2.0023 [11]. The
spin of a particle is given by its spin quantum number s, which in the case of
electrons are s = 1

2 because they are in the family of half-integer spin particles
called fermions. Hence in any particular direction the angular moment of the
spin of an electron must be ~sz = ± 1

2~ The total orbital L and spin S angular
momentum of an atom is found by summing the individual momentums

L =
∑
i

li S =
∑
i

si. (2.2.3)

The total angular moment of an atom, J , is the sum of the orbital angular
momentum and the spin angular momentum

J = L+ S (2.2.4)

these contribute to the magnetic moment of the atom.
One notices immediately that for filled atomic shells, all possible positive

and negative values of li and si will be present, and that these will cancel one
another, as such there will be no net angular momentum since S = L = J = 0.
So we only see magnetism in atoms with unfilled shells. To determine the ground
state of an atom, one can use Hund’s rules [11]:

1. Hund’s first rule is to maximize S. Because of the Pauli exclusion principle,
which prevents particles from being in the same state, maximizing S, which
is the same as having all spins parallel, the electrons will need to separate
as much as possible. This minimizes the Coulomb repulsion and therefore
the energy.

2. Next you maximize L. L of the same sign orbits in the same direction,
and therefore you again reduce the Coulomb repulsion, by ensuring that
as few as possible electrons need to cross paths.

3. Finally for less than half filled shells you need to minimize J , while for
more than half filled shells J needs to be maximized. This is done in order
to minimize the energy in the spin-orbit coupling.
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These rules however, are not really rules and in certain cases they will not find
the correct ground state. For an example Quenching may occur because the
ions in a material cannot be considered free due to the fact that they interact
with their neighbours through electrostatic forces. Often this will lead to a
breaking of rotational symmetry of the atomic orbitals and so L is no longer a
good quantum number and the average contribution from L will tend to 0. In
this case J = S. This is seen mostly in the 3d-metals, named such because of
their partially filled 3d-shells. This is exactly the case for h-YMnO3, see section
3.7 for a general introduction to the properties of h-YMnO3.

A generic magnetic moment from any source is

µ = µBgJJ (2.2.5)

where µB is called the Bohr magneton and gJ is the Landé g-value, see Blundell
appendix C for an introduction [11]. The magnetization of a material,M is then
defined asM =

∑
i µi. Another relevant property is the magnetic susceptibility

of the material χ. The susceptibility determines how severely the magnetic
moments in the material responds to an applied external magnetic field H. As
such the magnetization can also be defined in relation to the susceptibility and
the strength of the applied field as M = χH for small fields.

A negative susceptibility leads to diamagnetism, the applied field generates
magnetic moments in the material which aligns anti parallel to the applied field
and thus opposing it. Diamagnetism appears in all materials due to the influence
of the magnetic field on the electron orbitals, though the effect is usually fairly
weak. On the other hand a positive susceptibility leads to paramagnetism.
Paramagnetism is dependent on magnetic moments already being present within
the material, e.g. atoms should have unfilled electronic orbitals, which creates a
magnetic moment. Without the application of a magnetic field these moments
will point in random directions, though as you apply a field, these moments will
align along the direction and parallel to the applied field.

2.2.2 The Heisenberg model
When considering magnetism, interactions between the magnetic moments within
the crystal becomes highly relevant, and is the cause of several interesting phe-
nomena and properties of the crystal.

The relevant interaction is the so called exchange interaction, which leads
to the existence of exchange symmetry, so that the system is unchanged if you
exchange two particles. The fact that electrons are fermions requires their wave
function must be antisymmetric overall. If we consider just two electrons in
states ψa(r1) and ψb(rb) at the positions of r1 and r2 respectively, then we
can create an overall antisymmetric singlet state ΨS from a symmetric singlet
spatial state ψspace,s and an antisymmetric Triplet spin state χT , as well as an
overall antisymmetric triplet state ΨT from an antisymmetric spatial singlet
state ψspace,T and a symmetric triplet spin state χS . If ↑ denotes spin-up and ↓
denotes spin down, then the antisymmetric spin state of a 2-electron system is

χS =
|↑↓〉 − |↓↑〉√

2
(2.2.6)
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while the symmetric ones are

χT = |↑↑〉 , or χT =
|↑↓〉+ |↓↑〉√

2
, or χT = |↓↓〉 (2.2.7)

The spatial part of the wave function is then given by

ψspace,S =
ψa(r1)ψb(r2) + ψa(r2)ψb(r1)√

2
(2.2.8)

ψspace,T =
ψa(r1)ψb(r2)− ψa(r2)ψb(r1)√

2
(2.2.9)

The combined spatial and spin wave functions of the singlet and triplet states
are then

ΨS = ψspace,SχT (2.2.10)
ΨT = ψspace,TχS (2.2.11)

with the corresponding energies

ES =

∫
Ψ∗SHΨSdr1dr2 (2.2.12)

ET =

∫
Ψ∗THΨTdr1dr2 (2.2.13)

if the wave functions are normalized then the difference in energy is

ES − ET = 2

∫
ψ∗a(r1)ψ∗b (r2)Hψa(r2)ψb(r1)dr1dr2 = 2J (2.2.14)

where the exchange constant J has been defined as

J =
ES − ET

2
. (2.2.15)

We want an effective Hamiltonian for the system, and in order to get that we
use that the product of two spins S1 and S2 is

S1 · S2 =

{
− 3

4 for singlets
1
4 for triplets

Using this to parametrize the difference between singlet and triplet states we
achieve an effective Hamiltonian given by:

H =
1

4
(ES + 3ET )− (ES − ET )S1 · S2 (2.2.16)

If we only consider the spin part of the Hamiltonian we get

Hspin = −2JS1 · S2 (2.2.17)

If we then assume that similar interactions, as the two-electron interaction de-
rived above, is present between all neighbouring atoms in a lattice, then we
arrive at the Heisenberg Hamiltonian

HHeisenberg = −
∑
ij

JijSi · Sj (2.2.18)
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Where Jij is the exchange constant between the i’th and j’th spin. The factor
of 2 disappears due to the fact that you double count each pair in the double
sum. The method of exchange can vary substantially from system to system.
The most simple is just a direct exchange between two neighbouring sites as
introduced above. Another, more common, is the indirect exchange, where an
intermediate, non-magnetic, site is used in the interaction. Using an interme-
diate non-magnetic site can be a kinetic energy advantage for antiferromagnets
because the electrons can become delocalized over the whole structure and as
such reduce their kinetic energy. Several other methods of exchange interactions
exists, but will not be discussed in this thesis.

2.2.3 Other models
A number of other models exist that describe magnetism. Which model you
need depend on the dimensionality of the system, d, and the symmetry of the
order parameter D. A short review of some of these are given here. The first
model is the Ising model (D = 1) with the Hamiltonian H given by

H = −
∑
n

∑
i

JiS
z
nS

z
n+i (2.2.19)

Where Szn is the z component of the spin on site n, Ji is the exchange interaction
between site n and site i, for nearest neighbour i = 1. The order parameter for
the ferromagnetic case (J > 0) is

∑
n S

z
n is one dimensional.

The X-Y model (D = 2):

H = −
∑
n

∑
i

Ji
(
SxnS

x
n+i + SynS

y
n+i

)
(2.2.20)

The order parameter is the vector sum of the two spin components in the x and
y direction, which is two dimensional.

The Heisenberg model (D = 3):

H = −
∑
ni

Ji
(
SxnS

x
n+i + SynS

y
n+i + SznS

z
n+i

)
(2.2.21)

Where the spin is a three-dimensional vector. Finally there is the spherical
model for D = ∞. Which is solvable, but so far does not correspond to any
actual system.

2.2.4 Magnetic structures
Below a certain critical temperature Tc, the thermal energy of the system be-
comes so low that the dominant energy concern is the alignment of the magnetic
spins within the sample. Above Tc the spins behaves either as diamagnets or
paramagnets, and are oriented randomly throughout the sample. At Tc the rota-
tional symmetry of the system is broken and all the spins orientates themselves
according to their environments. The orientation of the spins within a crystal
creates the magnetic structure. Depending on the sign of the exchange constant
J the spins will prefer to align in the same direction as their neighbours or in
the opposite direction of them. This effect gives rise to the two most simple
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Figure 2.6: Depending on the sign of the exchange constant J then a square
lattice of spins will align either a) parallel og b) antiparallel. The case in a) is
called ferromagnetism while the case in b) is called antiferromagnetism. The
antiferromagnetic lattice can also be seen as a superlattice of two ferromagnetic
sublattices each in opposite direction. From [7]

.

large scale magnetic structures which can be found in crystals, namely ferro-
magnetism and antiferromagnetism. In addition to the breaking of rotational
symmetry, time-reversal symmetry is also broken because if you flip the direc-
tion of time, the orbital angular moment as well as the spin angular moment
will turn in the opposite direction, as such effectively flipping the sign of the
magnetic moment.

In a ferromagnet, J > 0, at the critical temperature, which for ferromagnets
is called the Curie-temperature Tc,the spins all align in the same direction. This
happens because the electrons in the crystals attempts to minimize their energy.
Looking at the Heisenberg Hamiltonian eq. 2.2.18 if J > 0 then the product
of the spins Si · Sj should be positive as well because the minus sign at the
front ensures that the energy is then lowered. The product is positive only if
the spins have the same sign, and as such it is energetically preferable for the
spins to align in the same direction.

In a very similar way antiferromagnetism, J < 0, where all spins prefer to be
aligned anti parallel to their neighbours at the critical temperature now called
the Néel-temperature TN . This is due to a negative exchange constant, if J < 0
then the spin product should be negative in order for energy to be lowered.
These two structures can be seen in figure 2.6.

If we allow for more complex types of lattices beside the square one, the sign
of the coupling constant can lead to some very interesting phenomena. If we
look at a triangular lattice, which arises as part of one of the most commonly
found lattices in nature, namely the hexagonal lattice structure, then if J < 0
such that the spins want to align antiferromagnetically, only two of the spins
can fulfill the requirement of pointing in opposite directions, while this task is
impossible for the last one. The last spin is called frustrated and the structure is
called geometrically frustrated, see figure 2.7, because the system cannot order
into a specific groundstate. Geometrically frustrated systems lead to extremely
degenerate ground states, where large numbers of spins in the lattice cannot
align and so there is a myriad of ways you can arrange the spins which all share
the same lowest possible energy. The material which is the focus of this thesis,
h-YMnO3 is geometrically frustrated, see section 3.7. The frustration index, f ,
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Figure 2.7: When spins align antiferromagnetically, they want to point in oppo-
site directions. On a triangular lattice with a spin at each corner a), this leads to
geometrical frustration where two of the three spins align in opposite directions,
while the 3rd spin cannot align anti parallel to both of them. Therefore the last
spin will be able to fluctuate. From a classical point of view b) the spins would
simply minimize their energy by pointing towards the middle of the triangle,
each with an angle of 120◦ between them. From [7]

.

is defined for an antiferromagnet as

f =
|θCW |
TN

(2.2.22)

where θCW is the Curie-Weiss temperature and TN is the Néel temperature. The
frustration index tells you how frustrated the system is and in general systems
with f > 5−10 indicates a strong suppression of ordering due to frustration [12].

2.3 Excitations in Crystals
According to Goldstones-theorem, excitations can occur in all systems with
a broken continuous symmetry. These excitations are quantized and known
as Goldstone-bosons [13]. The Heisenberg model is one model with such a
continuous symmetry. The ordering of atoms into a crystal lattice breaks the
rotational symmetry, and as such excitations will be possible. The structural
excitation of a crystal lattice is vibrational modes, which are quantized and
known as phonons the energy cost of creating a phonon tends to 0 as q tends
to 0. In a somewhat similar fashion the magnetic structure can be excited, such
that the spins of the magnetic sites precess, this then causes the nearby spins
to precess as well, making a spin wave propagating through the magnetic sites,
this is quantized as magnons.

2.3.1 Phonons
Phonons are elementary excitations of the crystal lattice. The energy of these
excitations are quantized and the associated quasi particle is called a phonon.
In our three dimensional world each atom has three degrees of freedom, one
along each of the euclidean axis (x, y, z). This gives three vibrational modes,
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Figure 2.8: The two types of phonon excitations. In a) the vibration is longitu-
dinal as it is along the direction of q. while in b) the vibration is perpendicular
to q and is therefore a transverse mode. From [7]

.

two of which are transverse - vibrations perpendicular to the direction the wave
is propagating q, See figure 2.8 b), and one which is longitudinal - along the
direction of propagation q, See figure 2.8 a).

In a crystal lattice with N unit cells and p atoms in each unit cell there is a
total of pN atoms in the crystal. Each of these have three degrees of freedom,
so the total number of degrees of freedom for the crystal must be 3pN . Because
you can have N q-values inside a Brillouin zone you get 3N acoustic phonons.
Acoustic phonons correspond to coherent movements of the crystal lattice out of
their equilibrium positions, see figure 2.9 a) bottom. The remaining (3p− 3)N
degrees of freedom become optical phonons. Optical phonons can only occur if
there are two or more atoms in the unit cell, they are out of phase vibrations
where e.g. one type of atom moves to the right while the other type moves to
the left, see figure 2.9 a) top. The energy of the vibrations of a chain of single
atoms or ions can be described by the following Hamiltonian

H =

N∑
i=1

p2i
2m

+
1

2
mω0

∑
i

(xi − xi+1) (2.3.1)

where p and x are the momentum and position operators, m is the mass of the
atom or ion, and ω0 is the characteristic frequency of the oscillation, defined as
ω0 =

√
K/M . The first term is the kinetic energy while the 2nd term is the

potential energy of a harmonic oscillator. This gives the dispersion relation for
the one-dimensional chain of single atoms

ω2(q) = 2ω2
0 (1− cos (qa)) = 4ω2

0 sin2
(qa

2

)
(2.3.2)

where a is the distance between two sites in the lattice [9]. For a diatomic chain
the dispersion relation is given by [4]

ω2
±(q) = K

(
1

m1
+

1

m2

)
±K

√(
1

m1
+

1

m2

)2

−
4ω2

0 sin2
(
qa
2

)
m1m2

. (2.3.3)
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Figure 2.9: a) top: Acoustical phonons where the movement of the atoms are in
phase. a) bottom: Optical phonons characterized by an out of phase movement
of the atoms in the unit cell. b) dispersion relations of the acoustical and optical
phonons branch of a diatomic chain of atoms. Figure from [14]

.

In the long wavelength limit, which is for small qa, the dispersion relation of
the acoustic phonon branch becomes

ω2
− ≈

K

2 (m1 +m2)
q2a2 (2.3.4)

while the dispersion relation of the optical phonon is

ω2
+ ≈ 2K

(
1

m1
+

1

m2

)
. (2.3.5)

As can be seen in figure 2.9 b) the acoustic phonon branch is 0 at the zone
center, for small q it increases linearly. For small q the optical phonon branch is
non-zero at the zone center, and approximately does not depend on q in the long
wavelength limit. One can see that the energy required to create an acoustic
phonon is approaching zero, and therefore acoustic phonons is present even at
extremely low temperatures, while for the optical phonons there is an energy
requirement to create them. Phonons are bosons, and as such the number of
phonons nj with frequency ωj at a given temperature T is given by the Bose
factor [14].

nj(q) =
1

exp (~ωj/kBT )− 1
. (2.3.6)

2.3.2 Magnons
Spin waves are caused by the exchange interaction by spins close to each other.
If one spin begins to precess or flip, this will affect the nearest spins, which will
react accordingly and thus a wave of precession or flips will propagate through
a lattice of magnetic spin sites. Like lattice vibrations, which are quantized as
phonons, the energy of spin waves are also quantized and called magnons. A
ferromagnetic spin-wave of precessing spins are shown in figure 2.10.
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Figure 2.10: A ferromagnetic spin-wave precessin about the z-axis. a) is the
view from the xy-plane, while b) is the view looking down from the z-axis.
Figure from [15]

.

For a linear chain of magnetic sites coupled by a ferromagnetic exchange
coupling J , the dispersion relation is given by

~ω = 4JS (1− cos (qa)) (2.3.7)

where ~ω is the wave energy, S is the magnitude of the spin, a is the distance
between two adjacent atoms and q is the magnitude of the wave-vector [16]. At
small q the dispersion is ~ω ∝ q2. For a chain of antiferromagnetically coupled
sites the dispersion relation is instead

~ω = 4 |JS| sin (qa) (2.3.8)

which for small q becomes ~ω ∝ q. A dispersion relation for a ferromagnetic
chain can be seen in figure 2.11 a) and for an antiferromagnetic chain in b).
Both the ferromagnetic spin chain and the antiferromagnetic chain goes to 0 at
q = 0. In reality this is rarely the case due to next-nearest neighbour interactions
and beyond within the crystal, which introduces an energy gap. The general
approach to determining the dispersion relation for a real system is described
in [16], and is given by

~ω = 2S (J(0)− J(q)) (2.3.9)

where J(q) is the fourier transform of the spin-spin coupling

J(q) =
∑
δ

Jδe
iq·rδ . (2.3.10)

2.4 Multiferroics
Ferroics are materials that, below some critical temperature Tc, exhibit a spon-
taneous breaking of some symmetry and thereby also undergoes a phase tran-
sition. This new phase is one of three possible ferroic states. The first one is
the already covered (anti)ferromagnetic state, where a spontaneous breaking of
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Figure 2.11: Dispersion relations for magnons. (a) a chain of ferromagnetically
coupled spins. (b) a chain of antiferromagnetically coupled spins.
.

time-reversal and rotational symmetry gives rise to a spontaneous magnetization
M with an associated magnetic field H. In addition there is the ferroelectric
state which is a breaking of the spatial symmetry, such that a spontaneous po-
larization P , the polarization will then create an electric field E. Finally there
is the ferroelastic phase, where a phase transition from one point group symme-
try to another spontaneously occurs. This creates strain σ and induces a stress
ε on the crystal. See figure 2.12.

Common to all the types of ferroics is that they make hysteresis loops
in their magnetization, polarization, and strain depending on whether they
are (anti)ferromagnetic, ferroelectric, or ferroelastic. e.g. the first polariza-
ton hysteresis loop measured for a ferroelectric material was for the compound
KNaC4H4O6 ·H2O, also known as Rochelle salt, in 1921 [18].

Multiferroics are materials that exhibit at least two, possibly all three, of the
ferroic properties: (anti)ferromagnetism, ferroelectricity, or ferroelasticity. If the
ordering parameters of the ferroic properties are coupled, it is possible to induce,
for an example, a magnetization using an electric field because the polarization
that is directly created by the electric field, will couple to the magnetization
and thereby create both, see figure 2.13. These couplings have a wide range
of possible uses in science and technology, and is therefore one of the primary
reasons to study multiferroics in depth.

Multiferroics are however rare, because ferroelectricity and (anti)ferromagnetism
are mutually exclusive in most cases [20]. Only a few materials allow the spatial
and time-reversal symmetries to be broken simultaneously. Of the 230 possible
crystallographic space groups, only 13 allow for simultaneous polarization and
magnetization [21]. A further restriction is that many materials that crystallizes
to one of the allowed 13 groups are not multiferroics for other reasons. Most fer-
roelectric systems contain a non-magnetic transition metal ion, therefore lacking
the unpaired spin required for the system to order (anti)ferromagnetically. In
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Figure 2.12: Ferroelastics are space and time invariant. Ferroelectrics break
spatial symmetry, while maintaining its time symmetry. Ferromagnetics break
time-reversal symmetry, but maintains its spatial symmetry. Finally ferro-
toroidics break both spatial and time symmetry. Figure from [17]

Figure 2.13: The possible couplings in multiferroics. A multiferroic is a mate-
rial that exhibits several of the ferroic properties simultaneously. The coupling
between the order parameters of the different ferroic states allows one to in-
duce magnetism with an electric field, if the magnetization and polarization is
coupled. Figure from [19]
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addition most materials that contain magnetic ions are metallic, and therefore
not insulators, which makes ferroelectricity an impossibility [20]. With all these
constraints multiferroic materials are indeed a rare occurrence.

Multiferroics are generally divided into two categories, type-I and type-II. In
type-I multiferroics the ferroelectric transition temperature Tc is higher than the
(anti)ferromagnetic transition temperature TN . While in type-II the transition
temperature is equal or reversed such that Tc ≤ TN [22].

One particular category of materials that are multiferroics are the rare earth
manganites. The rare earth manganites have been the subject of considerable
study in the scientific community. They show phenomena and dynamics that
have great interest from a fundamental physics standpoint, but also has many
properties which is sought after by the industry. The family of rare earth man-
ganites RMnO3, where R simply refers to one of the rare earth metal ions defined
by the IUPAC as the lanthanides (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu) with the addition of the transition metals (Y and Sc) [23].
All of the rare earth manganites are multiferroics, but whether they are type-I
or type-II depends entirely on their structure. All the rare earth manganites
can form stable hexagonal crystal structures, when they do so they are always
type-I multiferroics. The lighter rare earth elements (La-Ho) as well as Y and
SC however, can also be made as an orthorhombic distorted perovskite structure
in which case they will be type-II multiferroics [24].

2.5 Critical Phase Transitions
The entirety of section 2.5 largely follows the book by Collins [13].

As material changes from one phase to another, e.g. liquid to solid, we say
that the material has made a phase transition. Phase transitions come in two
variants. Historically known as 1st order and 2nd order phase transitions due
to the fact that first order phase transitions have a discontinuity in the first
differential of the free energy of the system involved, while similarly 2nd order
phase transitions were expected to have a discontinuity in the 2nd differential
of the free energy. However 2nd order phase transitions were later renamed
as critical phase transitions because it became clear that the free energy does
not behave analytically at the point of the phase transition, which for critical
phase transitions are known as a critical point. Critical phase transitions are
also sometimes called continuous phase transitions.

A critical point is a point in parameter space where the difference between
two different phases become extinct. This happens between the gas and liquid
phase of water at high pressure and high temperature, Pc = 22.064MPa and
Tc = 647.096K respectively, see Figure 2.14. Above these values the gas and
liquid phase become indistinguishable, and as such you can move from one phase
to the other without ever crossing a phase transition. E.g. if you start in the
gas phase at T > Tc and P < Pc, then increase the pressure such that it goes
above the critical pressure, then you lover the temperature below Tc and finally
you reduce the pressure again below Pc. You will then have moved from the gas
phase to the liquid phase, without ever crossing a phase transition.

While the critical point of water is situated at some rather arbitrary and,
you could argue, not very interesting values of pressure and temperature, other
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Figure 2.14: The phase diagram of water. At the critical point, which is situated
at the critical temperature of Tc = 647.096K and a critical pressure of Pc =
22.064MPa the phase transition through the critical point becomes a 2nd order
phase transition, or a critical phase transition. You can circumvent the phase
transition completely by going around the critical point. This is however not
possible for magnetism where the critical point is at 0 T, which is impossible to
circumvent due to negative magnetic fields being unphysical.

systems have critical points much closer to values that you would normally
encounter. Most notably the phase transition between the ferro- or antiferro-
magnetic state and the paramagnetic state has a critical point at 0T external
magnetic field. The external field that we are influenced by on the surface of
the earth is very low, between 25 µT and 65 µT , as such normal experimen-
tal conditions approach this critical point and therefore it is of great interest
experimentally.

Another crucial difference between first order and critical phase transitions
is that there is a latent heat involved in the first order transition, thus it requires
energy to change the system from one phase to the other, for a critical phase
transition this is not so. Alternatively a critical phase transition exhibits some
rather remarkable features close to the critical point such as a power law decay
of the correlation length, which is assumed to reach infinity at the actual critical
point.

Critical phase transitions are always characterized by the fact that exper-
iments show critical scattering near the phase transition. The origin of this
critical scattering is the fact that as you approach the critical temperature from
either side, micro regions of the opposite phase appear, these are short lived,
but nevertheless contribute to the coherent scattering of the sample. These mi-
croregions grow in size the closer to the critical point you get and at the critical
temperature these micro regions are of the same size as the ordinary regions,
above the critical temperature, the micro regions become larger than the ordi-
nary regions until what we previously called the micro regions take up all space,
and the system is effectively in a new state. This is illustrated in figure 2.15.

19



Figure 2.15: Figure (A) shows the evolution of the order parameter (green) and
the correlation length (purple) as the critical temperature of the phase transition
is approached. Figures (1) through (5) show the growth of the disordered
phase (red) within the ordered phase (yellow). As the critical temperature is
approached these micro regions of the disordered state will start to appear and
grow larger the higher the temperature gets. At the phase transition (3) the size
of the regions of the disordered state is just as large as that of the ordered one.
Above the critical temperature the regions of the disordered state dominate until
the regions of ordered state disappear completely as the temperature increases
even further. Figure from [25].
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Critical phase transitions can be described as a global symmetry which
breaks at the critical temperature Tc. For example the orientation of the spins of
a paramagnet is randomized in all possible directions, when you cool the param-
agnet below Tc all the spins align in some direction and a general magnetization
of the material takes place, therefore the magnetization of the system now de-
pends on the rotation of the sample which means that the rotational symmetry
that was present above Tc has been broken below. The magnetization of the
material can therefore be used as an indicator of whether we are below or above
Tc, as such we can call the magnetization an order parameter because it tells
us whether the system is ordered or not. A general order parameter η have the
following properties: For temperatures T above the critical temperature of the
phase transition Tc the order parameter is 0, while below it is different from 0,
or put more simply

η = 0, T > Tc (2.5.1)
η 6= 0, T < Tc (2.5.2)

Each global symmetry has an order parameter related to it, for the spin orien-
tation it is the magnetization M , which will be our main interest in this work.
Other examples could be the polarization P as well as the strain ε.

Near the critical point there will be fluctuations between the two phases in
small micro regions throughout the crystal. The correlation length ξ, which
corresponds to the linear extend of these regions approaches infinity at the
critical point. The response time of the system also tends to infinity as the
critical point is approached from any direction. This is known as critically
slowing down [13].

Several methods have been introduced over the years to describe critical
phase transitions, some of those will be shown below.

2.5.1 Landau theory
Landau theory or sometimes known as mean field theory is the simplest approach
to handle critical phase transitions. The basic assumption of Landau theory is
that the properties of the system can be described by a Taylor expansion of
the free energy F (T, η) of the system. For the magnetic case the free energy is
the Helmholtz free energy F (T,M). Since the free energy of the magnetization
is the same for positive and negative values of M the odd terms in the taylor
expansion will be 0 and we are left with:

F (T,M) = F0(T ) + a(T )M2 + b(T )M4 + . . . (2.5.3)

If the constant in front of the highest order term is positive, and enough terms
need to be included until this requirement is fulfilled, then the free energy will
have a minimum somewhere and the system will be in equilibrium. This criteria
can also be stated as

∂F

∂M

∣∣∣∣
T

=0 (2.5.4)

∂2F

∂M2

∣∣∣∣
T

>0 (2.5.5)
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which yields the following equations

a(T )M + 2b(T )M3 =0 (2.5.6)

and

a(T ) + 6b(T )M2 >0 (2.5.7)

above Tc the order parameter must be zero, M = 0, therefore it follows from
equation 2.5.7 that

a(T ) > 0, T > Tc (2.5.8)

Below Tc we require that M 6= 0, from equation 2.5.6 this gives

a(T ) = −2b(T )M2, T < Tc (2.5.9)

from which it is clear that the only possibility to create a minimum at a place
where M 6= 0 is to require that a(T ) < 0 for T < Tc. As such

b(T )M2 > 0 =⇒ b(T ) > 0, T < Tc (2.5.10)

now by expanding a(T ) around T = Tc to the lowest nonzero term, we get

a(T ) = (T − Tc)a0 (2.5.11)

where a0 is a positive constant, and solve for the magnetization M below Tc:

a(T ) =− 2b(T )M2 (2.5.12)

a0(T − Tc) =− 2b(T )M2 (2.5.13)

M2 =− a0(T − Tc)
2b(T )

(2.5.14)

M2 =
a0(Tc − T )

2b(T )
(2.5.15)

M =

(
a0(Tc − T )

2b(T )

) 1
2

(2.5.16)

Putting this back into equation 2.5.3 the free energy at equilibrium above and
below Tc is given by

F (T,M) = F0(T ), T > Tc (2.5.17)

F (T,M) = F0(T )− a20(Tc − T )2

4b(T )
, T < Tc (2.5.18)

From this we can compute several thermodynamic properties like the specific
heat and the thermal susceptibility, however these often give results which are
vastly different from experiment. this is because the assumption that you can
Taylor expand the free energy usually breaks down near a critical phase transi-
tion because the free energy, as stated previously, is a nonanalytical function at
the critical point.
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Figure 2.16: An illustration of the relationship between the magnetization and
the temperature. Below the critical temperature TC the system is in an ordered
state, while this order breaks down above TC . Close to TC the magnetization
generally follow a power law relation with temperature indicated in green on
the figure. Figure from [10].

2.5.2 Critical exponents
Experimentally it has been shown that close to a critical phase transition prop-
erties like the susceptibility, specific heat, the correlation length and the mag-
netization all obey power laws, of which the first three diverge while the last
one goes to 0 at Tc. First a reduced temperature t is defined as

t =
T − Tc
Tc

(2.5.19)

such that t = 0 when we reach the critical temperature Tc. Then e.g. the
magnetization can be described by the power law:

M(t) = (−t)β =

(
Tc − T
Tc

)β
. (2.5.20)

In general plotting the magnetization versus temperature yields a plot that looks
similar to figure 2.16 where the ordered state is below the critical temperature
TC while the disordered state is above it. Close to TC the magnetization as a
function of temperature will follow a power law relation. This critical region can
be determined as seen in section 4.1.3 and then fitted to determine the value of
the critical exponent. From equation 2.5.16 it is clear that in Landau Theory
the value of β is simply 1

2 . Two other critical exponents will be determined in
this thesis, that is the critical exponent ν related to the correlation length by

23



the power law

ξ(t) ∼ tν (2.5.21)

and the critical exponent γ associated with the magnetic susceptibility χ

χ(t) ∼ t−γ (2.5.22)

Other critical exponents exist, such as α associated with the specific heat and η
with the correlation function. These however will not be measured in this work,
and as such will not be used further.

2.5.3 Universality
The concept of universality is that the features of phase transitions are universal,
and therefore independent of the system involved.

For a continuous phase transition the static critical exponents depend only
on the dimensionality of the system, d. The symmetry of the order parameter,
D (which in simple cases is equivalent to the number of dimenstions in which the
order parameter is free to vary). Whether the forces involved are short or long
range. To include the dynamical critical exponents (e.g. those originating from
phonons and magnons) a fourth condition is added which is: The dynamical
critical exponents also depend on the conservation law of the system.

As such you can know everything there is about a continuous phase transition
of any material with parameters d, D and the same range, simply by studying
it in the simplest case, which is usually magnetism.

The standard models are: Ginzburg-Landau for long range forces. And for
short range forces we have the Ising Model, X-Y model, and the 3 dimensional
Heisenberg model as introduced in section 2.2.3.

While these models are interesting, they are only in special cases solvable
analytically. The general cases that can be solved are one dimensional (d = 1),
but no critical phase transitions can occur in a one dimensional chain when
you only consider short range order. According to Landau this is due to the
fact that the energy cost of creating a domain wall in one dimension is finite,
while the entropy gain of creating such a wall increases with the length of the
system [26]. In four or more dimensions (d ≥ 4), which is always solvable
and always give Ginzburg-Landau solutions, however these are obviously non
physical solutions. The two dimensional Ising model (d = 2, D = 1) and the
spherical model (D = ∞) also have analytical solutions. And finally all cases
where the interaction range is infinite which give Ginzburg-Landau solutions.

As should be apparent most physically interesting systems cannot be solved
analytically, so experimental methods and to some degree numerical simulations
is the way forward to understanding these systems.

2.5.4 Scaling
In order to tackle the problem of short range interactions in multidimensional
systems, the scaling theory approach can be applied. The basis of scaling theory
is that regions of the other phase exist in the primary phase close to the critical
temperature Tc. These regions have a volume with dimensions of the order of
the correlation length ξ, see equation 2.5.21, inside any given volume it is a good
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approximation that the order parameter remains equal throughout the region,
while only fluctuating slowly in time. If we divide a region into cells with L
lattice sites on each side, then in a d-dimensional lattice this would yield Ld

sites per cell. As we enter the critical region near Tc, ξ increases as we approach
Tc and diverge at Tc, if L is chosen such that there is always a large number of
sites, then we can always make the assumption that

a� La� ξ (2.5.23)

where a is the lattice parameter. The assumption that the form of the Hamilto-
nian does not change as we vary the cell size, only the spin, S, and the effective
field between cells He change. In the correlated region S and He should be
similar for neighbouring cells while He should be uniform within a cell. This
approach yields the so called scaling laws between the various critical exponents.
The derivation of this can be found in [13], but will be omitted here.

A selection of scaling laws can be seen here. In this thesis the exponents β,
γ, and ν will be measured, so scaling laws with these are of particular interest.
The first scaling laws relates α to ν.

2− α = dν (2.5.24)

where d is the spatial dimensions of the system and α is the critical exponent
related to the specific heat. The three critical exponents used in this thesis
relates to each other by

dν = 2β + γ (2.5.25)

The critical exponent η is a measure of the size of the correlations at the critical
temperature. It relates to γ and ν in the following way.

2− η =
γ

ν
(2.5.26)

The critical exponent for the specific heat α can be determined from β and γ
by combining equations 2.5.24 and 2.5.25 to

2− α = 2β + γ (2.5.27)
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Chapter 3

Methods

For this thesis several experiments were conducted on the SINQ neutron source
at the Paul Scherrer Institut [27] in Switzerland, using the triple axis spectrome-
ter RITA-II [28] and eiger [29]. Following is an introduction to the experimental
technique of neutron scattering.

3.1 Properties of the Neutron
The neutron is a electrically neutral spin-1/2 particle with a magnetic moment
µn given by [30]

µn = γµNσ = γ
e~

2mp
σ (3.1.1)

where γ = −1.913 is the gyromagnetic ratio for a neutron, µN is the nuclear
magneton, which consists of the elementary charge e, the reduced Planck con-
stant ~, and the mass of the protonmp. At first glance it is odd that the neutron
has a magnetic moment in the first place since it requires the particle in ques-
tion to have an electric charge, and the neutron has 0. However the neutron
is a composite particle made up of one up quark and two down quarks each
with electric charge of +2/3 and −1/3 respectively. Each of these quarks have
a magnetic moment of their own, which combine to give the neutron its mag-
netic moment as shown in [31]. In addition neutrons possess the particle-wave
duality common to all particles. A neutron moving with constant speed v has
a De-Broglie wavelength of

λ =
2π~
mv

. (3.1.2)

The neutron wave number k is defined as

k =
2π

λ
. (3.1.3)

k is the length of the wave vector k, which has the same direction as the velocity.
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3.2 Why Neutrons?
The experimental technique used in the work of this thesis is all based on neutron
scattering. Neutron scattering is used to investigate the structure and dynam-
ics of materials, so the use of it covers much the same area of investigation as
X-ray scattering. However, compared to X-rays, you need large scale facilities
to produce neutrons in any significant amount to do experiments other than of
the most elementary sort. As such neutron facilities are sadly fairly rare despite
the fact that the properties of neutrons make it an extremely efficient probe to
measure several properties of interest to a broad range of scientific fields, and
in a number of cases the neutron is vastly superior to X-rays.

The wavelength of a neutron beam can be tuned to be in the same order
of magnitude as the typical inter-atomic distances in a crystal lattice (∼ 2Å).
As such neutron scattering can be used alongside X-rays to do crystallography
experiments. In addition, due to the fact that a neutron has a magnetic moment,
it can be used to resolve magnetic structures as well, giving it a distinct edge
over X-rays when it comes to the study of magnetism.

Using a moderator the energy of neutrons can be tuned to that of excitations
in the crystal lattice, and those in the magnetic structure, section 2.3 gives a
general introduction to the theory of these excitations. The energy of these
excitations are typically in the meV range, which can be achieved by cold and
thermal neutrons (∼ 1 − 200meV). The possibility to study excitations with
neutrons is one of the premier reasons to choose the technique over X-rays,
which typically has energies in the ∼ 100keV range, which are much too large
to effectively study excitations. You can produce X-rays with more reasonable
energies, down to around 20 meV, but this comes with a large loss of flux and
the energy resolution will be considerably worse than that of e.g. a Triple Axis
Spectrometer, see section 3.5.1.

Neutrons only interact weakly with most atoms, this allows neutrons to
penetrate deep into samples and are such able to study bulk samples. In addition
neutrons can fairly easily penetrate sample environments, making the technique
ideal for experiments requiring a cryostat, furnace, high pressure, etc. One last
bonus of this is that higher order effects e.g. more than one interaction with
the sample are fairly uncommon, and therefore neutron data is fairly simple to
compare with theoretical models.

The scattering cross section of neutrons varies enormously between atoms,
and even between isotopes of the same atom. The reason for this seemingly
random cross section is not fully understood, however it is very useful. For an
example the scattering cross section of hydrogen is much larger for neutrons than
it is for X-rays, which hardly interacts with hydrogen at all. This makes neutrons
ideal for studying samples where hydrogen matter like biological samples and
certain types of cements. In addition the huge contrast between isotopes of the
same atom can be used to distinguish between them using neutrons, and clever
use of isotope concentrations can give valuable insight into the structure of e.g.
biological samples.
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3.3 Neutron Scattering
The method of neutron scattering is an experimental technique, where neutrons
are fired at a sample, interacts with it in some manner, and then hits a detector.
This section will deal with neutrons interaction with the sample, where the next
one will explain how neutrons are produced, guided to their target, and then
finally measured.

Scattering Cross Section

When neutrons interact with a sample, its cross section σ is a measure of how
large the interaction is. For low cross sections the sample is very transparent
and neutrons easily penetrate deep and all the way through the sample, whereas
for high cross sections the sample becomes more opaque and interacts heavily
with the neutrons. To develop an expression for the cross section we first need
to define the flux Ψ. The flux is defined as the number of neutrons per second
that goes through a given surface area perpendicular to the beam of neutrons
[9]:

Ψ =
Number of neutrons per second

Surface area perpendicular to the neutron beam
. (3.3.1)

The flux is often given in the unit n/cm2. Now the scattering cross section σ
can be defined as the fraction between the number of neutrons scattered per
second and the flux

σ =
Number of neutrons scattered pr second

Ψ
(3.3.2)

which is in units of area.

3.3.1 Differential scattering cross section
A relevant parameter is the angular dependence of the scattered neutrons, as
such we define a differential scattering cross section as the number of neutrons
per second scattered into a given solid angle dΩ

dσ
dΩ

=
Number of neutrons scattered per second into solid angle dΩ

ΨdΩ
. (3.3.3)

This can be further developed to allow inelastic scattering, where energy is
exchanged between the incident neutrons and the sample. In inelastic scattering
a energy transfer to or from the sample of size ∆E = ~ω is given by

~ω = Ei − Ef =
~(k2i − k2f )

2mn
(3.3.4)

where E denotes the energy, the ”i” and ”f” subscript denotes initial and final
state respectively, k is the length of the wave vector. The energy transfer of
inelastic neutron scattering can be included in the cross section, by defining the

partial differential cross section as

d2σ
dΩdEf

=
Number of neutrons scattered per second into solid angle dΩ with energies[Ef ;Ef + dEf ]

ΨdΩdEf
.

(3.3.5)
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3.3.2 Semi-classical description of elastic scattering
Following a semi-classical approach we can determine how neutrons scatter elas-
tically of the nuclei of atoms.
First the neutron can be described as a complex plane wave function ψ with the
form [9]

ψi(r) =
1√
Y
eiki·r (3.3.6)

where Y is simply a normalization factor. When the initial neutron plane wave
interacts with a single nuclei labeled j, it scatters, and the final neutron wave
has the form of a sphere. If we assume elastic scattering the final neutron wave
is on the form

ψf (r) = ψi(rj)
−bj
|r − rj |

eikf |r−rj | (3.3.7)

where bj is called the scattering length since it has the dimension of length. The
value of the scattering length is an intrinsic property of any given nuclei and
can have both positive and negative values. The sign in front of bj is chosen
such that most nuclei has a positive value of scattering length [9].
Expanding the above to elastic scattering from two nuclei, labeled j and j′, with
equal scattering lengths bj = bj′ ≡ b. The above becomes

ψf (r) = −b
(
ψi(rj)

|r − rj |
eikf |r−rj | +

ψi(rj′)

|r − rj′ |
eikf |r−rj′ |

)
(3.3.8)

which following the procedure in [9] can be rewritten as

ψf (r) = − b

r
√
Y
eikf ·r

(
ei(ki−kf )·rj + ei(ki−kf )·rj′

)
. (3.3.9)

By defining the central concept of the scattering vector

q = ki − kf (3.3.10)

and generalizing to a system of particles, potentially with different scattering
lengths we get

ψf (r) = − 1

r
√
Y
eikf ·r

∑
j

bje
iq·rj . (3.3.11)

where the sum is over all particles j with scattering lengths bj . To get the
differential scattering cross section we use that the flux can be written as the

Ψ = v|ψ|2 (3.3.12)

which means that the flux through any small area dA can be expressed as
v|ψ|2dA [9], such that the number of neutrons scattered through the small area
dA is vf |ψf |2dA. Now the differential scattering cross section (3.3.3) can be
rewritten as

dσ
dΩ

=
vf |ψf |2dA
vi|ψi|2dΩ

. (3.3.13)
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Using (3.1.2) and (3.1.3) and assuming all scattering to be elastic, we see that
vf = vi and as such the above becomes

dσ
dΩ

=
|ψf |2dA
|ψi|2dΩ

. (3.3.14)

Using that dA = r2dΩ [9] we get

dσ
dΩ

=
|ψf |2r2

|ψi|2
. (3.3.15)

inserting the expression for the initial (3.3.6) and final (3.3.11) wave functions
we get

dσ
dΩ

=
| 1
r
√
Y
eikf ·r

∑
j bje

iq·rj |2r2

| 1√
Y
eiki·r|2

. (3.3.16)

the minus sign has been removed from the final wave function, since we take
the numerical value and square it anyway. Reducing the above yields

dσ
dΩ

=
|eikf ·r

∑
j bje

iq·rj |2

|eiki·r|2
. (3.3.17)

Now using that |eia|2 = 1 we obtain the final equation for the elastic scattering
of neutrons on a system of nuclei

dσ
dΩ

= |
∑
j

bje
iq·rj |2. (3.3.18)

For any system with a significant amount of nuclei the above sum will almost
always be zero, except when q · rj = 2πn. When this condition is fulfilled con-
structive interference occurs and scattering occurs for that value of q. When
using neutron scattering on a periodic crystalline sample, with reciprocal lattice
vector length τ = 2π/d, where d is the inter-atomic distance between neighbor-
ing nuclei, then the length of rj must be rj = a as such the condition q·rj = 2πn
is therefore met when

q = τ (3.3.19)

which is often called the Laue condition.
The figure 3.1 illustrates the scattering geometry and shows the scattering

q vector, as well as the initial and final wave vectors ki and kf . In addition
the figure illustrates the concept of the scattering angle θ. In an experiment
however, one would measure 2θ. In an elastic experiment the scattering angle
relates to the scattering vector by the following equation

q = 2k sin(θ) =
4π sin(θ)

λ
(3.3.20)

Using the Laue condition and rearranging the terms we obtain Bragg’s law.

nλ = 2d sin(θ). (3.3.21)
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Figure 3.1: This figure demonstrates the scattering geometry, with the initial ki
and kf wave vectors, the scattering vector q, and the scattering angle θ. Figure
from [10].

Expanding (3.3.18) to allow for more complex structures, the sum is divided
into a sum over the atoms in a unit cell, denoted with subscript j, and a sum
over the unit cells themselves, denoted with subscript k,

dσ
dΩ

= |
∑
j,k

bje
iq·(rj+rk)|2 = |

∑
j

bje
iq·rj |2|

∑
k

eiq·rk |2 (3.3.22)

since scattering only occurs when the Laue-condition is fulfilled such that the
scattering vector is equal to that of a reciprocal lattice vector, the sum over the
unit cells can be simplified to

|
∑
k

eiq·rk |2 = N
∑
k

δ (q − τ ) (3.3.23)

where N is the number of cells and δ (q − τ ) is a delta function ensuring that
the Laue-condition are met. As such (3.3.22) becomes

dσ
dΩ

= N
∑
k

δ (q − τ ) |
∑
j

bje
iq·rj |2 (3.3.24)

The sum over the atoms inside the unit cell is known as the nuclear structure
factor FN

FN = |
∑
j

bje
iq·rj |2 (3.3.25)

The intensity you measure in a neutron scattering experiment is proportional
to

I ∝
∑
k

δ (q − τ ) |FN |2 (3.3.26)
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where the proportionality depends on a number of factors including the sample
volume the incoming intensity on the sample, and the so called Debye-Waller
factor e−2W which is a term that accounts for the thermal vibrations of neutrons
[9].

3.3.3 Inelastic neutron scattering
When a neutron interacts with the nuclei of a sample it may transfer energy to or
from the sample. This process is known as inelastic scattering. When conducting
inelastic scattering experiments the partial differential cross section is measured
(3.3.5). The explicit derivation of the partial differential cross section is shown
in Lefmann [9], which finds(

d2σ
dΩdEf

)
λi→λf

=
kf
ki

( mn

2π~2
)2 ∣∣∣〈λiψi| V̂ |λfψf 〉∣∣∣2 δ (~ω − (Eλf − Eλi))

(3.3.27)

where 〈λfψf | and |λfψf 〉 is the final and initial state of the sample, the delta
function ensures that energy is conserved such that the energy transferred to or
from the sample equals the energy transferred from or to the neutron. Finally
V̂ is the scattering potential often approximated by the fermi pseudo potential

V̂ =
2π~2

mn

∑
j

bjδ (r − rj) (3.3.28)

where the sum is over all the atoms j.

3.3.4 One-phonon cross section
As explained in section 2.3 if the sample is has a crystal structure, then the
lattice vibrations will be quantized, each with energy ~ω. For a simple Bravais
lattice, with one atom in a unit cell, a single phonon can be created or absorbed
by a neutron interacting with the lattice. The partial differential cross section
for this simple lattice is computed in Lefmann [9] and is(

d2σ
dΩdEf

)
λi→λf

= e−2W
kf
ki
b2

(2π)3

2MV0

∑
q′

∑
τ

3∑
p=1

(q′ · eq′,p)
ωq′,p

× ((nq′,p + 1)δ(ω − ωq′,p)δ(q − q′ + τ )

+nq′,pδ(ω + ωq′,p)δ(q + q′ + τ )) (3.3.29)

where e−2W is the Debye-Waller Factor, M is the nuclear mass of the atoms in
the unit cell, eq′,p is a polarization unit vector, such that the product (q′ ·eq′,p)
ensures that the neutron only interacts with vibrations that are parallel with
the scattering vector q′. The term on the second line accounts for a neutron
transferring some energy to the lattice and as such creating a phonon, while
the term on the third line is the opposite process, where a neutron absorbs
energy from the lattice and as such annihilating a phonon. The term nq′,p is the
occupation number, which from Bose statistics is given by eq. 2.3.6. The +1
in the 2nd line illustrates the fact that at zero temperature you can only create
phonons, while no phonons exists that can be absorbed, since nq′,p = 0.
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3.3.5 Magnetic neutron scattering
Neutrons carry a magnetic moment, and as such interacts with any magnetic
field they encounter. Some atoms and ions create magnetic fields due to un-
paired electrons orbiting in their shells and the spin of the electrons themselves.
Because of this, and the high penetration of neutrons, they can be used as a
probe to investigate the magnetic structure and dynamics within a sample. The
neutron interacts with a magnetic field through the nuclear Zeeman term Hz in
an external magnetic field B

HZ = −µ ·B = −γµN σ̂ ·B, (3.3.30)

where γ is the gyromagnetic ratio, µN is the magnetic moment of the neutron,
and σ̂ is the pauli spin matrices of the neutron. Since we assume that the
angular contribution to the magnetic moment is quenched, see section 2.2.1,
only the magnetic moment of the electrons spin µe,j contribute

µe,j = −gµBsj (3.3.31)

where g is the g-factor, µB is the Bohr magneton and sj is the spin of the
electron. The magnetic field from a dipole placed at the origin is

B =
µ0

4π
∇×

(
µe ×

r

r3

)
. (3.3.32)

Inserting (3.3.31) yields

Bj = −µ0

4π
gµB∇×

(
sj ×

r

r3

)
(3.3.33)

which we insert into (3.3.30), giving

HZ,j =
µ0

4π
gµBγµN σ̂ · ∇ ×

(
sj × (r − rj)
|r − rj |3

)
. (3.3.34)

This term is used as the potential, V , in the expression for the partial differ-
ential cross section (3.3.27) leading to this expression for the magnetic partial
differential cross section for neutrons(

d2σ
dΩdEf

)
σi→σf ,λi→λf

=
kf
ki

( mn

2π~2
µ0

4π
gµBγµN

)2 ∑
λi,λf

pλi

×

∣∣∣∣∣∣〈kiλiσi|
∑
j

σ̂ · ∇ ×

(
sj × (r − rj)
|r − rj |3

)
|kfλfσf 〉

∣∣∣∣∣∣
2

× δ
(
~ω −

(
Eλf − Eλi

))
(3.3.35)

where
∑
λi,λf

pλi is a sum over all possible final states of the sample, and over
all initial states which occur with probability pλi .
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Again an explicit derivation of the full magnetic partial differential cross
section can be seen in Lefmann [9], but the above is transformed into(

d2σ
dΩdEf

)
magn

= (γr0)
2 kf
ki

[g
2
F (q)

]2
e−2W

∑
αβ

(
δαβ − q̂αq̂β

)
× N

2π~

∫ ∞
−∞

∑
j

eiq·rj
〈
sα0 (0)sβj (t)

〉
e−iωt (3.3.36)

where exp(−2W ) is the Debye-Waller factor, α and β run over the Cartesian
coordinates (x, y, z), 〈〉 means thermal average, and F (q) is the magnetic form
factor

F (q) =

∫
eiq·r ŝ(r)d3r (3.3.37)

where ŝ(r) is the normalized spin density. Equation (3.3.36) is the starting point
of most calculations of the magnetic scattering cross section. Equation (3.3.36)
is the Fourier transform of the spin-spin correlation function, see e.g [32] for a
more general introduction to correlation functions.
In the special case of elastic scattering off of a ordered magnetic crystal structure
the magnetic differential cross section simplifies to(
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)
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(3.3.38)

see section 2.1 for a description of the reciprocal lattice vector τ and the ordering
vector of the magnetic structure Q, FM (q) is the magnetic structure factor,
which is analogous to the nuclear structure factor, equation (3.3.25), in that it
is a sum of the magnetic moments inside the magnetic unit cell. The magnetic
structure factor takes the form

FM (q) =
∑
j

e−iq·∆j 〈sj,⊥〉 (3.3.39)

where ∆j is a vector pointing to the magnetic sites inside the magnetic unit
cell and sj,⊥ is the spin component perpendicular to q. Since YMnO3 is an
antiferromagnet, the result of the inelastic magnetic scattering cross section for
an antiferromagnet will be stated here, see Lefmann [9] for a derivation from
equation (3.3.36).(
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]
(3.3.40)
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here τ is the reciprocal lattice vector of a sub lattice, ρ is a vector joining the
sub lattice, and nB is the Bose factor. The equation is to be understood in the
following way: The 2nd line creates a spin wave of energy ~ω by absorbing an
equal amount of energy ~ωq′ from a neutron, whereas the 3rd line annihilates
a spin wave by transferring it to a neutron. The last line is a coherence factor,
the final term, cos (ρ · τ ) is 1 at a nuclear peak and −1 at an anti ferromagnetic
peak. The other terms are

u2q′ + v2q′ =2S
2SJ(0)− 2s [J1(0)− J1(q′)] + 2gµBBA

Ω(q′)

uq′vq′ =− (2S)
2
J(q′)

2Ω(q′)
(3.3.41)

where

Ω(q′) =

√
[SJ(0)− S(J1(0)− J1(q′)) + gµBBA]

2 − S2J(q′)2 (3.3.42)

where BA is the size of the effective anisotropy field BA, S comes from the
produkt of the spins on identical sites S2 = Sj · Sj , and finally J(q′) is the
fourier transform of the spin-spin interaction of neighbouring sites

J(q′) =
∑
δ

Jδe
iq′·rδ (3.3.43)

here the subscript δ refers to the neighbour number, such that 1 is nearest
neighbour and so forth, Jδ is the coupling strength between a spin and its
neighbour, see equation (2.2.18). J is the coupling of spins on the opposite sub
lattice of the antiferromagnet, while J1 is the coupling of spins on the same
sublattice, see figure 2.6.

3.3.6 Critical scattering
Critical scattering is the additional scattering that occurs close to the Néel
temperature TN due to the divergence of the correlation length ξ between the
magnetic moments in the sample as TN is approached. In an experiment this
critical scattering is seen as a Lorentzian broadening of the signal because the
spin-spin correlation function from equation 3.3.36 can be reasonably approxi-
mated by an exponential function〈

sα0 (0)sβj (t)
〉
≈ e−

r
ξ (3.3.44)

where r is the distance between the two spins and ξ is the correlation length
at a given temperature. As such the correlation function decays exponentially
as the distance between two spins is increased. When this expression is Fourier
transformed into q-space it becomes a Lorentzian distribution.

Fr(e−
r
ξ )(q) =

1

ξ

1

|q −Q|2 + 1
ξ2

(3.3.45)

which is what is measured in an experiment using elastic neutrons.
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3.4 Neutron Instrumentation
In order to utilize neutrons for scattering experiments, you need to ensure that
you can produce and deliver neutrons to a target experiment, and finally also
detect the neutrons that scatter off your sample. In addition you are often
only interested in neutrons with the correct properties, e.g. a specific energy.
Therefore the ’white’ neutron beam is often attenuated to ensure that only
neutrons with the desired properties interact with the sample or are detected.

3.4.1 Neutron production
An effective production method of neutrons is needed. Currently there are
two main methods of neutron production. The first is using a nuclear reactor
as the source, where the neutrons that escape the reactor core can be used
as a continuous source. The second method is called spallation, where a heavy
element is bombarded with high energy protons, exciting the nuclei of the atoms
which then emits a number of neutrons.

Nuclear reactors fission heavy actinide elements, most commonly Uranium-
235, by bombarding the nucleus of the isotope with thermal neutrons. During
the fission process the nucleus of the atom split into two small nuclei and a
number of new fast neutrons. A schematic of a typical fission reaction can be
seen in the top of figure 3.2. To maintain the chain reaction in the reactor,
these fast neutrons are then slowed by a moderator to thermal energies, and
then interact with new Uranium nuclei. However, since reactors have a finite
size, some of these produced neutrons will inevitably escape the reactor core.
These escapees can then be used as the source of neutrons for experiments.

Spallation works differently. A spallation source works by accelerating a
proton to a fraction of the speed of light. The energy of this proton at the end
of the accelerator is usually in the 1 − 3GeV range. This proton is then fired
into a heavy, neutron rich, element like wolfram [9]. This high energy proton
highly excites the target nuclei releasing a large number of fragments of which
10-20 are neutrons. These neutrons can then be used for experiments. The
reaction in a spallation source is illustrated in the bottom picture of figure 3.2.
For a more detailed introduction to nuclear and reactor physics see textbooks
like Krane [33] and Stacey [34].

3.4.2 The moderator
The neutrons produced in both reactors and spallation sources are fast neutrons,
with energies in the MeV range. Fast neutrons are used in some reactors, and for
experiments in reactor physics, however, for almost all scattering experiments
in material research the energy of these ’raw’ neutrons are several orders of
magnitude too high. Therefore a moderator is used to slow them down. A
moderator is simply a material which has some temperature. When the neutrons
enters the moderator they will hit the molecules of the moderator and transfer
some of their kinetic energy to them. Thus the neutrons will quickly reach
thermal equilibrium with the moderator and have an energy similar to that
of the temperature of the moderator. It is important that the material the
moderator is made from has fairly high scattering cross section, thereby ensuring
that thermal equilibrium between neutrons and moderator happens rapidly. At
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Figure 3.2: On the top figure the process of nuclear fission is depicted. A target
nucleus is hit by an incoming neutron, this can create a highly unstable nucleus
which splits into two daughter nuclei and a number of fast neutrons depending
on the exact reaction. The bottom figure show the spallation process where
a high energy proton hits a heavy target nucleus which become excited, the
excited nucleus then releases a high number of fast neutrons. Figures adapted
from [35] and [36]

.

the same time it should have a low absorption cross section as you want the
neutrons to persist. Examples of moderators are water and graphite.

3.4.3 Neutron guides
having produced the neutrons and changed their energy to a more desirable
level, the next step is to get the neutrons to the target. For this a neutron
guide is used. A neutron guide uses that neutrons, like photons, can experience
total reflection from a surface if the incident angle is low enough. As such it is
possible to transport neutrons through a guide system to a target, as long as
the incident angle is kept sufficiently low.

The maximum angle that can give rise to total reflection is defined as the
critical angle θ(λ)c, which depends on the wavelength of the incident neutron.
A critical scattering vector qc can be defined from eq. 3.3.20 as

qc = 2k sin(θ(λ)c) ≈ 4π
θ(λ)c
λ

(3.4.1)

Above the critical angle, the reflectivity for neutrons falls off very quickly. Most
commonly nickel is used as the guide material. The critical scattering vector for
nickel is

qc,Ni = 0.0217Å−1 (3.4.2)

To increase the reflectivity of guides above θ(λ)c, multiple layers are used. The
effect of making multiple layers is that the reflectivity decreases more slowly as
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Figure 3.3: Left: The scattering geometry of a neutron guide, where total re-
flection occurs off of the side, when the incident neutrons come in at an angle at
or below the critical angle θ(λ)c. Right: The reflectivity of a multilayer nickel
neutron guide as a function of q. The effect of the multiple layers is to extend
the range of q’s where the reflectivity of the guide is nonzero. Figures from [9].

you go above the critical angle of the outermost layer [9]. The geometry of total
reflection from a neutron guide as well as the reflectivity as a function of q can
be seen in figure 3.3.
The neutron guide will in most cases be slightly curved. With a curved guide
high energy neutrons with a small wavelength will not be reflected by the sides
of the guide. This ensures that none of the high energy neutrons that might
make it through the moderator does not reach the experiment, in addition it
will remove some of the higher order neutrons that would otherwise be Bragg
reflected by the monochromator.

3.4.4 Monochromators
It is often of great value to know the properties of the incident neutrons on
the target. One method to select a specific wavelength from a source of ’white’
neutrons is to use a monochromator chrystal. A monochromator crystal is a
crystal with a well known lattice spacing d, if the direction of incoming neu-
trons is well known then according to Bragg’s law, eq. 3.3.21, only neutrons
with wavelengths which fulfill the Laue condition, eq. 3.3.19, will be scattered
from the crystal. The first order of scattered neutrons from a monochromator
correspond to n = 1 in Bragg’s law, the 2nd order to n = 2 and so on, see
equation 3.3.21. These neutrons are then Bragg reflected toward the sample
position.

3.4.5 Filters, slits and collimators
To further refine the properties of the beam a number of inserts on the beam
can be used if necessary. To remove any remaining higher order neutrons that
made it through the guide and was reflected off of the monochromator a filter
is often used. A typical filter is the beryllium filter or a berylliumoxide filter,
these transmit neutrons below a certain energy because Bragg scattering cannot
take place if the wavelength of the neutron is more than twice that of the lattice
spacing in the crystal, see equation 3.3.21. Therefore a Be filter transmits neu-
trons with a energy of less than 5.2 meV, while a BeO filter transmits neutrons
of less than 3.8 meV [9]. Using filters such as these, some or all of the undesired
higher order neutrons from the monochromator can be removed.
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Figure 3.4: Left: A slit with an adjustable hole. A slit is used to remove neutrons
that would not hit the sample from the beam, thus reducing background levels.
Two slits in a row can be used to make a pinhole collimator, which in addition
also reduces the divergence of the incident neutron beam. Right: A soller
collimator. The thin equidistant slices are made of a neutron absorbing material,
the parallel slices reduces the divergence. Pictures are from the vendor JJ-Xray
APS [37].

In an experiment one wants to minimize the number of neutrons not hitting
the sample as these will contribute to the background. Therefore an adjustable
slit is used, made from neutron absorbing materials, such that the opening is
as close as possible to the dimensions of the sample. Two such slits can be
used after one another to reduce the divergence of the beam, by only allowing
neutrons which pass through both holes to reach the sample. This is called
pinhole collimation.

Another type of collimator is a Soller collimator, which consists of a number
of thin, equidistant slices of neutron absorbing materials placed parallel to each
other. The walls of the collimator will absorb neutrons hitting the walls, and
such the divergence is decreased depending on the distance between the slices
and the length of the collimator. An example of a slit and Soller collimator can
be seen in figure 3.4.
Sometimes the properties of the scattered neutrons will need to be controlled
as well. As such a collimator and filter can also be installed after the sample,
e.g. a filter could be used to remove higher order scattering from the sample.
If you need to control the energy of your scattered neutrons a monochromator
can be installed after the sample, if this is the case the monochromator crystal
is called an analyzer crystal which is the principle in a Triple Axis Spectrometer
as used in this work, see section 3.5.1.

3.4.6 Neutron detectors
The neutrons that scatter off of the sample, as described in section 3.3, then
needs to be detected. Neutrons can interact with the nuclei of atoms, as such
detection processes involves measuring whether such an interaction has hap-
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pened. Neutron capture is used as the detection method. When a neutron is
captured by an atom it can create a fairly large amount of energy, the high
energy particles released can then be detected in very much the same way as
ionizing radiation in a Geiger-Müller counter. The most efficient and most used
is neutron capture in Helium-3.

3
2He + 1

0n→ 3
1H + 1

1H +Q (3.4.3)

While He-3 detectors are the most common other types of detectors also see
use. e.g. 6

3Li and 10
5 B.

The monitor is a special kind of neutron detector. The role of the monitor
is to normalize the number of neutrons coming from the source, which may
fluctuate. To ensure that a set of measurements all have the same counting
statistics one usually takes data untill a certain monitor count is reached before
the next measurement happens. If time was used instead, you would have to
take the fluctuations of the source into account. A monitor is a weak neutron
detector that only detects a small fraction, usually in the range of 1 in 100 to
1 in 1000, of the neutrons passing through it, the rest is allowed to continue
towards the experiment. The monitor is usually placed at the end of the guide
system.

3.5 Neutron Spectroscopy
Of the myriad of possible neutron scattering experiments only the Triple Axis
Spectrometer will be introduced in this work, as it is the only experimental
technique that have been used. A triple axis instrument can perform both elastic
and inelastic measurements, both techniques will be utilized in this work.

3.5.1 Triple axis spectrometers
A triple axis spectrometer, or TAS, is a kind of neutron scattering experiment,
which is designed such that both the energy of the incoming neutrons and the
energy of the scattered neutrons are known. This makes it possible to mea-
sure the energy transfer happening inside the sample and as such measure both
structural excitations, phonons, and magnetic excitations, magnons, see section
2.3. Bertram Brockhouse shared the 1994 Nobel prize in physics for the innova-
tive design of the TAS experiment which were developed in 1955-1956 at Chalk
River Laboratories in Canada.

The basic layout of a TAS experiment can be seen in figure 3.5. From the
source, the white neutron beam travel through a guide system to a monochro-
mator crystal, which select a few specific wavelengths from the white beam. In
a TAS experiment the monitor is usually placed right after the monochromator
crystal.

A triple axis experiment has 3 axes of rotation hence why it is named so.
These are the rotation of the monochromater crystal that is used to select the
wavelength of the neutrons being reflected toward the sample position. Next
is the rotation of the sample itself, which can be rotated to choose a specific
reflection within the sample that the neutrons will scatter off, finally the analyzer
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Figure 3.5: Sketch of a triple axis spectrometer. The white beam from the source
is Bragg reflected off of the monochromator crystal to select the incoming energy
of the neutrons. The rotation of the monochromator constitute the first axis
of rotation. The reflected beam can be adjusted by various inserts like a filter
and collimator before interacting with the sample itself. The rotation of the
sample is the 2nd axis of rotation. The neutrons reflected from the sample can
then pass through additional inserts before the final energy of the neutrons are
selected by the analyzer crystal by rotating this about the third and final axis.
Finally the neutrons are detected. Figure from [38]

.

crystal, which is essentially similar to the monochromator crystal but named
differently to distinguish the two, can be rotated to once again select a specific
wavelength to be Bragg reflected into the detector.

A Triple axis spectrometer is usually described with 6 angles, angles A1,
A3, and A5 describe the angle of rotation of the monochromater, sample and
analyzer respectively, while angle A2 is the angle between the incoming white
beam and the reflected beam of off the monochromater, A4 is the angle between
the beam coming from the monochromator and then the beam reflected by the
sample toward the analyzer crystal, finally A6 is the angle between the incoming
beam from the sample toward the analyzer and the outgoing beam reflected
toward the detector.

Both filters, collimators, and slits can usually be placed on both the incom-
ing and outgoing beam to and from the sample position. The addition of the
analyzer crystal is what sets a Triple Axis Spectrometer apart from a two axis
one. In a two axis spectrometer there is no analyzer crystal and thus the detec-
tor integrates over all energies coming from the sample. This greatly increases
the number of neutrons measured in the experiment and is therefore an excellent
method to measure nuclear and magnetic structures. The trade off is then of
course that you can no longer know the final energies of the neutrons scattered
from the sample, therefore measurements of the dynamics are no longer possible.
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Figure 3.6: Resolution ellipsoids of h-YMnO3 measured on the thermal TAS
instrument EIGER at the (hkl) = (030) Bragg reflection. Figure from [10].

Both elastic and inelastic measurements can be done with TAS instruments.
To do elastic scattering the incoming and final energy is kept the same such
that Ei = Ef while scanning q, in this way only neutrons where the energy
transfer ~ω = 0 should reach the detector. Inelastic scans are usually then
done by keeping the final energy and q constant, while scanning the incoming
energy. One can choose to scan the final energy instead of the incoming, but the
advantage of scanning the incoming energy is that you do not have to account
for the factor kf

Ki
in the partial differential scattering cross section see equation

3.3.27.

3.5.2 Instrument resolution
An instruments resolution is dictated by several factors. For a TAS experiment
the following factors play a role. The path of the neutrons in the white beam
from the moderator will never be perfectly parallel, as such neutrons will hit at
slightly different angles, and thus a distribution of energies will be scattered from
the monochromator. The monochromator itself is never completely perfect, due
to imperfections and the mosaicity of the crystal itself a single wavelength will
never be perfectly selected, see section 3.6. The same applies to the analyzer
crystal after the sample. The finite physical size of the sample and detectors,
which can never be infinitely small ensures that neutrons with slightly different
q will be counted in the same detector. All this means that any instrument will
have a resolution function, which will be some distribution. Often the resolution
function is a Gaussian, but it is not necessarily so.

The resolution function of a given instrument can be found by measuring
the broadening of a Bragg peak at very low temperatures. The resolution of a
TAS is usually an ellipsoid in four dimensions, three reciprocal space dimensions,
(hkl), and one with energy transfer ~ω. For an example on the left plot in figure
3.6 a Bragg peak is measured on h-YMnO3 in the h-k-plane. While the middle
and right figure are the same peak but with k and h versus energy transfer ~ω
respectively. The resolution ellipsoid of q versus energy is usually tilted to one
side as is evident in the middle and right plots of figure 3.6. As such a better
resolution can be obtained by measuring on the side of the dispersion where the
direction of the elongation of the resolution ellipsoid matches the direction of
the dispersion, which will yield a more well narrow energy resolution. See figure
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Figure 3.7: The left figure illustrates the dispersion relation and the resolution
ellipsoid of the instrument, if the measurement is done to the left the resolution
ellipsoid (green) overlaps the dispersion relation in a larger range of energy
transfers, while if it is done on the right the ellipsoids (blue) only overlaps the
dispersion in a much more narrow range of energy transfers. The right figure
illustrates the intensity one would measure as a function of energy transfer and
it is clear that the energy resolution is much better in the blue case. Figure
from [10].

3.7. The q-resolution is determined by the angular resolution of the scattering
angle and thus depends mainly on how well collimated the beam is both before
and after the sample.

3.5.3 RITA-II
The experiments in this thesis were done on the cold neutron triple axis spec-
trometer, RITA-II, situated at the SINQ neutron spallation source at PSI in
Switzerland. A sketch of RITA-II can be seen in figure 3.8. The neutrons for
RITA-II comes from a cold moderator of liquid Deuterium, these are fed into a
42 m long curved guide system at the end of which sits the monochromator of
RITA-II. The vertically focused pyrolytic graphite (PG) monochromator crys-
tal can select neutrons within the energy range of 2.5meV-20meV. The flux at
the sample is on the order of ∼ 106 neutrons/second. However both the flux
and the resolution depends on the wavelength used. The resolution improves as
the wavelength is increased. Be and BeO filters can be inserted if desired both
before and after the sample, which will remove higher order neutrons.

The analyzer on RITA-II is rather unique. The analyzer consists of 9 blades
of PG crystal, which can be individually turned to reflect a unique wavelength
towards a detector. This allows one to make 9 simultaneous measurements of
(q, ~ω). Finally the detector is a position sensitive 3He-detector.

I took part in several experiments with h-YMnO3 on RITA-II and on the
thermal TAS instrument EIGER, also located at PSI, in the period 2014-2016.
The data analyzed in this thesis however came from an earlier period of exper-
iments conducted at RITA-II in 2012.

3.6 Line Forms
When making a theoretical scattering experiment on an infinite crystal, all
Bragg-peaks are δ-functions. However in reality several factors limit the va-
lidity of this assumption. First the size of the crystal is relevant, for small
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Figure 3.8: Sketch of the RITA-II instrument at PSI, Switzerland. Figure from
[28]

.

crystals the finite size of the crystal allows for scattering when the Laue condi-
tion, 3.3.19, is not met. Since no crystal is infinite, this always play some role,
however the relevance of this decreases as the size of the crystal is increased.
For experiments with dimensions of millimeters or larger, one can fairly safely
assume that the Laue condition is satisfied for almost all scattering within the
crystal, and as such one can keep the assumption that scattering is δ-functions.

Almost no crystal of this size is a true single crystal though as these are
notoriously difficult to manufacture, the exception to this is of course the semi-
conductor industry that have managed to produce extremely pure silicon single
crystals in the length of meters and with a weight of hundreds of kilograms,
but for almost all other crystals of fairly large sizes the crystal will be made
up of smaller crystallites that are oriented in slightly different directions. This
gives rise to the mosaicity of the crystal that is a measure of the difference in
orientation of the different crystallites within the larger crystal. The mosaicity
of the crystal also plays a role in the line form measured from a crystal, but its
contribution is small if the variance of the crystallite orientations are small.

One factor that always impacts a measurement is the resolution function of
an instrument. Any signal in the sample will always be broadened by the resolu-
tion function of the measurement. The measured signal can be determined from
the true signal and the resolution function of the instrument by doing a con-
volution. The convolution of the theoretical line form L(x) and the Resolution
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function R(x) of the instrument is

L(x) ∗R(x) =

∫ ∞
−∞

L(y)R(x− y)dy (3.6.1)

Convolutions follow several mathematical rules. In the following the distribu-
tions f , g, and h are all line forms of the same variable t. Convolutions are
commutative, such that

f(t) ∗ g(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ =

∫ ∞
−∞

g(u)f(t− u)du = g(t) ∗ f(t) (3.6.2)

where a simple substitution of integration variable u = t − τ yields the result.
Convolutions are also associative

f ∗ (g ∗ h) = (f ∗ g) ∗ h (3.6.3)

and distributive

f ∗ (g + h) = f ∗ g + f ∗ h. (3.6.4)

A very important identity is the convolution of a function with the delta function
simply gives the function

f ∗ δ = f. (3.6.5)

From this it immediately follows that if you can assume your signal to be a delta
function, the resolution function is simple whatever line form you measure. As
such the resolution function can be determined by measuring a Bragg peak in a
sufficiently large crystal, and that is how the resolution is measured as in figure
3.6.

As previously stated the resolution function is usually a simple Gaussian
function, however on RITA-II a small Lorentzian contribution exists. In this
thesis it is of great concern to get an as good resolution function as possible,
as such both the Gaussian and the Lorentzian part of the resolution function
must be included in the analysis. Therefore a good approximation of the true
resolution function is he convolution of a Gaussian, G(x), distribution function
and a Lorentzian, L(x), which is called a Voigt function, V (x), defined as

V (x) = G(x) ∗ L(x). (3.6.6)

The Voigt function does not have an analytical expression, but can be handled
by most modern fitting routines, such as those used by Spec1D for Matlab.

Close to the Néel temperature, critical scattering will begin to be part of the
signal. Critical scattering is seen as a Lorentzian contribution, see section 3.3.6,
and this signal will also be convolved by the instrument resolution function,
leading to an expression of the form

Critical(q) = Lcri(q) ∗ Vres(q) (3.6.7)

Where the subscripts cri and res represents the contribution from the critical
scattering and the resolution function respectively. Using the definition of the
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Voigt function in equation 3.6.6 and the fact that convolutions are both com-
mutative and associative the following expression can be found for the critical
scattering

Lcri(q) ∗ Vres(q) = Lcri(q) ∗ (Gres(q) ∗ Lres(q)) = Gres(q) ∗ (Lcri(q) ∗ Lres(q))
(3.6.8)

To evaluate this expression the convolution of two Lorentzian distributions is
needed. Fortunately the convolution of a Lorentzian with another Lorentzian is
just a new Lorentzian where the intensity is the product of the individual inten-
sities, and the width is the sum of the widths of the two convoluted Lorentzians
[39]. As such the above equation becomes

Gres(q) ∗ (Lcri(q) ∗ Lres(q)) = Gres(q) ∗ Lconv(q) (3.6.9)

where Lconv(q is the new Lorentzian stemming from the convolution of the
critical scattering signal and the Lorentzian part of the resolution function.

This means that the measured signal with critical scattering is once again
just the convolution of a Gaussian and a Lorentzian

Gres(q) ∗ Lconv(q) = Vfinal(q) (3.6.10)

where the width of the Lorentzian part of this Voigt function is the sum of widths
of the critical scattering and the Lorentzian part of the resolution function.

3.7 Introduction to YMnO3

The most studied of the rare earth manganites is YMnO3. In this thesis the
focus is on hexagonal h-YMnO3. Below the Néel temperature, TN , h-YMnO3

transitions from a paramagnet to a spin 2 (S = 2) antiferromagnet, where the
Mn3+ ions have the quantum numbers S = 2 and L = 2„ however due to quench-
ing L is not a good quantum number and as such the Mn3+ ions in h-YMnO3

just become J = S = 2, see section 2.2.1. h-YMnO3 has a ferroelectric ordering
at a temperature of 1258K [40], while the magnetic phase transition happens at
a much lower temperature of roughly 72K [41, 42, 3]. The temperature of the
magnetic phase transition is however heavily debated in the literature. Some
report the magnetic transition temperatures to be as low as 69.9K [43], where
others are as high as 74-75K [44, 45].

The unit cell of h-YMnO3 consists of two layers of manganese ions stacked
on top of each other, with Yttrium and oxygen filling the void between the
layers, see figure 3.9 left. The magnetic structure of h-YMnO3 is formed of
triangles of the magnetic manganese (S = 2) ions with 120 degrees between the
spins in the a − b plane, which are then stacked in the c-direction. The exact
magnetic structure have been a subject of considerable debate, but the study by
Holm-Dahlin et al. confirmed the magnetic structure to be P6′3cm

′, see figure
3.9 right.

Holm-Dahlin et al. [46] show that the magnetic interactions in h-YMnO3

are mainly an Heisenberg nearest-neighbor exchange interaction with J = −2.4
meV, the second most relevant term, although much weaker, is an easy-plane
anisotropy of strength D = 0.32 meV and lastly an even weaker ferromagnetic
interlayer exchange of strength Jz = 0.151 meV. That means that h-YMnO3 are
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Figure 3.9: Left: The unit cell of h-YMnO3 with stacked layers of manganese
ions with Yttrium and oxygen in between. Right: The best candidate for the
magnetic structure of h-YMnO3. Figure from [3]

described well as a 2-dimensional triangular lattice Heisenberg antiferromagnet
with a small easy-plane anisotropy.

Because of the hexagonal lattice of h-YMnO3 and the antiferromagnetic
interaction between the spins, they also become frustrated meaning the spins
have difficulty ordering even below the Néel temperature, see section 2.2.4. The
Curie-Weiss temperature of h-YMnO3 is θCW = −500K [45] yielding a rather
large frustration index f , as defined in equation 2.2.22, between roughly 6.7 and
7.1. depending on the Néel temperature one uses from literature.

In addition to being a frustrated antiferromagnetic system h-YMnO3 is also
multiferroic with couplings between the magnetic, electric, and elastic order pa-
rameters. The much higher ferroelectric ordering temperature compared to that
of the magnetic ordering means that h-YMnO3 is a type-I multiferroic.

The excitations of h-YMnO3 have been studied as well, the phonon and
magnon dispersions were measured and calculated by Holm et al [46] and can
be seen in figure 3.10 where the measured data are in the top row, while the
corresponding theoretical models are shown in the bottom row. Their data
show a phonon-magnon interaction due to an avoided crossing at the K point
in inserts d and h. they also show that the upper magnetic mode is degenerate
and splits into two modes with an applied field as seen when comparing inserts
b and c as well as f and g.

The recent study by Holm-Dahlin et al [3] on the same data as used in this
thesis investigates the magnetic phase transition temperature as well as how
the excitation energy of the magnon depends on the temperature of the sample.
They also determine the value of the relevant critical exponent β associated
with the magnetic phase transition and show that the temperature dependence
of the excitation energy of the lower magnon also follow a power law with a
critical exponent β′ which they show to be reasonably equivalent with β within
the uncertainty.

A number of experimental results of the Néel temperature of h-YMnO3 and
relevant critical exponents have been summarized in table 3.1. The table also
includes the theoretical values of the same critical exponents in various models.

There have been considerable difficulty in locking down a specific universality

47



Figure 3.10: Left: plot a-d show the measured dispersion relations of h-YMnO3,
a shows the phonon dispersion at q = (300) while b and c show the magnon
dispersion at q = (300) with b being with 0 applied field and c being with an
applied field of 13T clearly showing that the upper mode is degenerate and splits
into tow separate modes with an applied field. d then shows both the magnon
and the phonon dispersions at q = (300) . Right: The best candidate for the
magnetic structure of h-YMnO3. Figure from [46].

Table 3.1: Table of relevant critical exponents for this thesis. β is the critical
exponent for the magnetization M , γ is the critical exponent for the magnetic
susceptibility, and ν is the critical exponent for the magnetic correlation length
[13]. The table also include the value of the Néel temperature TN found by
other studies.

theoretical models TN [K] β γ ν
2D 3d XY 0.345 1.316 0.669
1D 3d Ising 0.326 1.2378 0.6312
1D 2d Ising 0.125 1.75 1
3D 3d Heisenberg 0.367 1.388 0.707
Mean Field 0.5 1 0.5
Experiments
Holm-Dahlin et al. [3] (elastic) 72.11 ± 0.05 0.206 ± 0.003 - -
Holm-Dahlin et al. [3] (inelastic) 72.4 ± 0.3 0.24 ± 0.02 - -
Chatterji et al. [30] 69.89 ± 0.05 0.295 0.97 0.45
Roessli et al. [41] 72.1 ± 0.05 0.187 - 0.57
Kawamura [47] 0.25 1.1 0.53

48



Figure 3.11: Picture of the sample mounted on its aluminium holder.

class of h-YMnO3. as evident from table 3.1 none of the studies cited here
match the critical exponents of any of the theoretical universality classes well.
It has been proposed [3, 41, 47] that triangular frustrated systems could have a
completely new universality class.

3.8 Experimental Setup

3.8.1 The sample
The sample used is of hexagonal yttrium-manganite with a small doping of
2% Europium h− (Y0.98 Eu0.02)MnO3. The Europium doping was discovered
after the experiments had been conducted, however a doping this small is not
expected to have any significant influence on the sample, which should behave
almost exactly as pure h-YMnO3 [48][49]. Because this small Europium doping
is expected to be negligible the sample will continue to be referenced as just h-
YMnO3 throughout this thesis. The sample is a rod with a total mass of 5.25 g
mounted with glue on an aluminum holder, see figure 3.11. The sample quality
is in general of good quality with a single phase and limited mosaicity. The
quality of the samples were assessed using X-ray and neutron Laue diffraction
spectroscopy by Sonja Holm-Dahlin for her PhD used on the same sample [10].
The most recent study where the lattice parameters were determined on the
sample used in this work are by Holm-Dahlin et al. [3] and the lattice parameters
of this sample of h-YMnO3 are a = b = 6.108Å and c = 11.39Å.

3.8.2 Measurements
Elastic measurements were done at the RITA-II instrument at PSI, see section
3.5.3, using the monochromatic three-axis imaging mode with a constant in-
coming and final energy of 5.0 meV [50]. A beryllium filter were placed on the
outgoing side, while the collimations were 80’ incoming and the imaging mode of
RITA-II gives the instrument a natural outgoing collimation of 40’. The scans
were done in the Across the magnetic Bragg peak at q = (01̄0).

For the inelastic measurements the setup was very similar, except of course
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that the incoming energy of the neutrons were varied, while the final energy
were fixed at 5.0 meV. This gives an energy resolution of about 0.2 − 0.3 meV
and a resolution in q-space of 0.015 r.l.u.. [51]. The energy scans were done at
constant q = (100).

In all measurements an orange ILL-type 1.5 K cryostat was used to control
the temperature of the sample.
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Chapter 4

Experimental Results

This section details the measurements and the analysis of the data on h-YMnO3.
The sample used contains a 2% europium doping, but as stated in section 3.8
this is not expected to have any influence on the data, as such the sample will
be referred to as simply h-YMnO3.

This section is split into three subsections, the first two details the results of
the elastic and inelastic neutron scattering measurements respectively, while the
third one contains a recap of these results, and some calculations of other critical
exponents based on the measured critical exponents from the experiments.

4.1 Results of the Elastic Measurements
In this section the results from the elastic neutron scattering measurements at
the magnetic Bragg peak at q = (01̄0) will be explained. Much of the analysis
is to determine the correct fitting function for the data at low temperatures to
find a well suited instrument resolution function. Having a good description of
the instrument resolution function allows the critical scattering close to the Néel
temperature, TN , to be found as the additional scattering occurring close to the
magnetic phase transition. Both TN and the critical exponents, β, γ, and ν,
associated with the critical phase transition are found. The introduction to TN
and the critical exponents can be found in section 2. In addition a discussion
about some of the choices one needs to make during this type of analysis is
included.

4.1.1 Fitting the line forms
Several line forms are used for fitting data in this section. For an introduction
to the line forms used see section 3.6.

4.1.2 The instrument resolution function
First the instrument resolution function need to be determined. To do this lon-
gitudinal scans were made across a magnetic Bragg peak located at q = (01̄0)
at low temperatures, and fitted to an appropriate resolution function. Critical
scattering will start to be a relevant factor at higher temperatures close to the
Néel temperature. Therefore only data points significantly lower than TN would

51



Table 4.1: Table of reduced χ2 values for the Voigt, Gaussian, and Lorentzian
resolution functions at low temperatures

Temperature [K] Voigt reduced χ2 Gaussian reduced χ2 Lorentzian reduced χ2

1.5 1.86 2.27 248
1.7 1.42 2.16 240
2.0 1.68 2.38 247
3.0 1.78 2.22 243
4.0 1.24 1.97 236
5.0 1.26 2.09 242
5.0 1.25 2.02 231
6.0 1.26 2.09 241
7.0 1.73 1.91 251
8.0 2.04 2.49 247
9.0 1.36 2.23 235
10.0 1.51 2.21 251
10.0 1.38 2.21 232
15.0 1.69 2.19 239
20.0 1.63 2.22 233
25.0 1.06 1.89 226
30.1 1.33 2.06 221
35.1 1.29 2.11 219
37.0 1.22 1.97 217
39.0 1.41 2.03 229

be used to determine the instrument resolution function. Previous work suggest
that TN ≈ 70K, therefore only temperatures in the range [0K; 40K] would be
used for this, yielding 20 data points to determine a proper resolution function.

Several instrument resolution functions were considered for use in this thesis.
Namely the Gaussian function, the Lorentzian function, and the convolution of
the two, the Voigt function. All three types of possible resolution functions were
fitted to data and compared to get the best fit, see figure 4.1 for six examples of
resolution function fits at different temperatures, figure 4.2 shows the same data
and fits, but with a logarithmic y-scale. Both the χ2 value and visual inspection
were used to determine the quality of the fits.

The Lorentzian function fits the data quite poorly, while both the Gaussian
and Voigt does it quite well. From the non logarithmic plots it can be seen that
the Gaussian consistently does not fit the top of the peak well, while the Voigt
does a much better job at this. In addition there seems to be a small broad
tails on either side as can be clearly seen in the logarithmic plots. The Voigt
function catches some of the scattering in these tails.

The Voigt function appears visually to be a superior resolution function
compared to both the Gaussian and especially the Lorentzian. This is also
confirmed by the reduced χ2 values for the different functions, which can be
seen in table 4.1. The reduced χ2 is closer to one for the Voigt compared to the
Gaussian in all cases, while the value for the Lorentzian is much bigger.
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Figure 4.1: Scans of YMnO3 across the magnetic Bragg peak at q = (01̄0) at
low temperatures. The data represents the scattering of the magnetic Bragg peak
convoluted by the resolution function of the instrument. At low temperatures the
Bragg peak is assumed to be a delta function, the measured signal is therefore
just the resolution function. Three different line forms were fitted to the data to
determine the best model for the resolution function, the Lorentzian (dark blue),
Gaussian (red), and the Voigt function (cyan).
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Figure 4.2: Same data and fits as in figure 4.1, but with a logarithmic y-scale.
These plots clearly reveal that there is some small, but broad tail in the res-
olution function of RITA-II. The logarithmic plots confirm that the Gaussian
Gaussian (red), Voigt (cyan) fits are indeed superior to the Lorentzian (dark
blue). In addition, while far from perfect, the Voigt does at least catch some of
the broadening at the tails of the peak, thus indicating that it is superior to the
Gaussian.

54



Q [0 1 0]

In
te

gr
at

ed
 I

nt
en

si
ty

 [
A

rb
. u

ni
ts

]
1.7K
10.0K
30.1K
39.0K
44.9K
50.8K
54.8K
57.7K
60.6K
62.8K
64.4K
65.9K
67.5K
69.0K
70.5K
72.0K
74.0K

Figure 4.3: Longitudinal scans of YMnO3 across the magnetic Bragg peak at
q = (01̄0) at various temperatures from base to just above the Néel temperature
TN ≈ 72K. Single Voigt profiles have been fitted to all data.

The Voigt function clearly outperforms the other candidates both with re-
spect to the reduced χ2 in addition to being visually better. As such the Voigt
function was chosen as the instrument resolution function for this thesis.

The parameters of the instrument resolution function was determined as the
average width of the Gaussian part and the average width of the Lorentzian part
of the Voigt function. The remaining data points at higher temperatures were
fitted to Voigt profiles with the Gaussian and Lorentzian widths locked to the
values found at low temperatures, while the intensity, center and background
were free parameters. Examples of Voigt profiles at various temperatures can
be seen in figure 4.3 where data taken at lower temperatures are in blue, and
higher temperatures are in red.

4.1.3 Fitting the critical scattering
To fit the critical exponent, β, of the power law relation between the magneti-
zation and the temperature, the critical region must be determined, see section
2.5.2. In the critical region the relationship between M and T is a power law,
which will look linear when plotted on double logarithmic axes. One method is
to make an initial guess of TN , and then plot the reduced temperature TN−T

TN
versus the intensity. A good guess of TN will give a long range of values where
there is a power law relation and thus a long range which looks linear on double
logarithmic axes, a bad guess on the other hand will give a shorter range. Sev-
eral plots have been made starting from a guess of TN = 71.1K in increments
of 0.2K, see figure 4.4, enough plots were made to be sure that the maximum
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linear range (red data points) was found.
From these plots it was determined that a guess of TN = 71.5K was the best

initial approximation of the Néel temperature because it had the longest linear
range, spanning from 53.8K to 70.0K while both lower and higher guesses of TN
gave shorter ranges. The range of temperatures from 53.8K to 70.0K is then
the range in which there is a power law relation between the magnetization and
the temperature. The data in this range were fitted to the following power law
based on equation 2.5.20

I = Ibkg + I0

(
TN − T
TN

)2β

(4.1.1)

where I is the integrated intensity of the q = (01̄0) reflection, Ibkg is the back-
ground intensity coming from the nuclear contribution to the scattering, I0 is the
intensity, while both TN and 2β were free parameters in this fit. this result can
be seen in figure 4.5 where the red data points were fitted to a power law. A Néel
temperature of TN = 71.53 ± 0.05 and the critical exponent β = 0.179 ± 0.002
were found. Evidently as the temperature approaches TN the relationship be-
tween the scattering intensity and the temperature is no longer described by
a power law due to critical scattering happening in this temperature region.
Critical scattering causes Lorentzian Broadening of the signal close to TN , see
section 3.3.6, this scattering can be fitted by a Lorentzian function convoluted
by the resolution function, the convolution of a Voigt function with a Lorentzian
yields just another Voigt function where the width of the Lorentzian contribu-
tion is just the sum of the two Lorentzian Widths, see section 3.6. In the region
where critical scattering occurs there might still be some contribution from the
magnetic scattering, in order to fit the critical scattering two Voigts were used,
one for the magnetic scattering where the Gaussian and the Lorentzian width
were locked by the resolution function, and then one for the critical scattering
where only the Gaussian width were locked from the resolution function, but
where the Lorentzian width was allowed to be larger than the Lorentzian width
of the resolution function, since the critical scattering should broaden the signal.

This yielded figure 4.6 where the total fit of the magnetic and critical scat-
tering give the blue fit, while the magnetic scattering contribution is given in
cyan and the critical scattering contribution is given in red.

4.1.4 The Néel temperature and critical exponents
By removing the critical scattering and using only the magnetic part of the fit
from figure 4.6, it is possible to extend the power law fit with equation 4.1.1 from
figure 4.5 all the way to TN . This can be seen in figure 4.7. The uncertainties
close to TN become rather large. The widths of the scattering from the Bragg
peak and the critical scattering are very comparable very close to TN , which
means the fitting routine has a hard time distinguishing between the two very
close to the Néel temperature, yielding higher uncertainties very close to the
phase transition.

Separating the scattering into the magnetic signal and the critical scattering
signal only gave a small adjustment to the value of the Néel temperature and β.
A value of TN = 71.48± 0.02K is in general agreement with other publications
which gives finds TN to be in the range of roughly 70− 75K, see table 4.2.
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Linear T-range 52.7-68.5K

Tn = 71.1K

Linear T-range 54.8-69.0K

Tn = 71.3K

Linear T-range 53.8-70.0K

Tn = 71.5K

Linear T-range 56.7-70.0K

Tn = 71.7K

Linear T-range 58.7-70.0K

Tn = 71.9K

Linear T-range 60.6-71.0K

Tn = 72.1K

Figure 4.4: Double logarithmic plots of the reduced temperature TN−T
TN

versus
the integrated intensity for various assumed values of the Néel temperature TN .
The part of the data that has a power law relation will look linear when plotted
with double logarithmic axes. The closer the assumed value of TN is to the true
value the larger range of temperatures will look linear.
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Figure 4.5: The integrated intensity of the scattering versus the temperature.
The optimal fitting range determined from the plots in figure 4.4 are bounded
by the two vertical lines, outside of these data points in blue represent data that
were not included in the fit. A power law, equation 4.1.1, have been fitted to the
red data points with the purple line showing the fit. The fit finds the values of
TN = 71.53± 0.05 and β = 0.179± 0.002.

The critical exponents are all fitted to the power law relations detailed in
section 2.5.2.

The value of β = 0.179 ± 0.002 is quite close to the value found by Roessli
et al [41] and fairly close to Holm-Dahlin et al [3], but quite far from the value
found by e.g. Chatterji [30]. It also differs from the value predicted by various
models, coming closest to that predicted by a 1D 2d Ising model, which gives
β = 0.125, which is still far away from the result found in this work.

An estimate of the critical exponent γ can be determined by fitting the
intensity of the critical scattering to a power law based on 2.5.22

ICritical = A

(
TN − T
TN

)−γ
(4.1.2)

where A is the amplitude of the critical scattering. The critical scattering below
and above TN from figure 4.6 were fitted to the power law in equation 4.1.2.
This is done in figure 4.8. where the data points and fit in yellow is the critical
scattering below TN which yielded γ = 1.12 ± 0.02 from the fit. The data
points and fit in blue are the critical scattering above TN where the fit gave
γ = 1.063±0.002. This result is very close to the theoretical value of 1 found in
a mean field model. And also in good agreement with the results of Chatterji
[30] and Kawamura [47], which posted values of γ = 0.97 and 1.1 respectively.
Finally the HWHM of the critical scattering were also fitted to a power law to
get the critical exponent ν based on 2.5.21.

HWHM = A

(
TN − T
TN

)ν
(4.1.3)
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Figure 4.6: Longitudinal scans of YMnO3 in the critical region. Both the mag-
netic Bragg peak (cyan) and the critical scattering (red) contributes to the mea-
sured scattering in this temperature region. To fit this two Voigt profiles have
been fitted to all data, the sum of which is the blue fit line. The first one, in
cyan, is the scattering from the magnetic Bragg peak which has both its Gaus-
sian and Lorentzian widths locked by the instrument resolution function. The
other from the critical scattering, in red, where the Lorentzian width were a free
parameter, with the restriction that the fit had to find a width larger than that
of the instrument resolution function.
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Figure 4.7: The integrated intensity of the scattering from the magnetic Bragg
peak versus temperature. The critical scattering close to TN has been excluded
from this fit, see figure 4.6, leaving only scattering from the Bragg peak. This is
used to make a small correction to the fit from figure 4.5 where the temperature
range which was fitted have been extended all the way to TN . This changes the
values found earlier to TN = 71.48± 0.002K and β = 0.179± 0.002.
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Figure 4.8: Intensity of various contributions to the scattering versus tempera-
ture close to the Néel temperature. The red data points are the intensity of the
scattering from the magnetic Bragg peak below TN with a power law in purple
fitted to it, see figure 4.7, while the blue data points are the intensity of the
magnetic Bragg peak above TN , all of which are 0. In addition to this, the crit-
ical scattering are included with points below TN in yellow and above in cyan.
A power law fit to both of these data ranges are included in the same color
as the data points. The power law fit to the critical scattering below TN gives
γ = 1.12± 0.02 while the power law fit to the critical scattering above TN gives
γ = 1.063± 0.002.
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The fits of the HWHM above and below TN can be seen in figure 4.9. The
left figure shows the HWHM of the critical scattering below TN , while the right
shows the same for the critical scattering above TN . The determined values
of ν is 6.3 ± 0.2 for the data points below TN , while ν = 4.1 ± 1.0 above
TN . Both of these values differ greatly from both the theoretical models and
other published experimental results. These all give values of ν of 1 or less,
see table 4.2 where as the ones found here both are quite higher than 1. The
reason for this is not immediately clear, however a yet to be published paper by
Janas et al [52] investigates the inelastic, but coherent, scattering in h-YMnO3.
They report persistent coherent inelastic scattering far beyond what you would
expect the critical range to be on both sides of TN . This they claim is due
to the competing interactions within the system due to the fact that it is a
geometrically frustrated system which causes a highly extended critical range.
This additional scattering might influence the properties in some yet unknown
way, but could maybe explain why the value of ν is so far from anything seen
before. All these results are summarized in table 4.2.
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Figure 4.9: The HWHM of the critical scattering fitted to power laws gives the
critical exponent ν. On the left is the data below TN which give a value of
ν is 6.3 ± 0.2. Right: HWHM of the critical scattering above TN , which give
ν = 4.1± 1.0

4.1.5 Variational analysis of the temperature range used
for fitting TN and β

The method of plotting the intensity versus the reduced temperature on double
logarithmic axes, as was done in figure 4.4, to determine the data range in which
a power law can be fitted to get TN and β is prone to human error and bias,
as you have to make a choice on which data points are a part of the linear
part and which are not. Some points might be included or omitted that should
actually have been left out or used. The effects of including points or not can
be investigated, by simply exploring the results one can obtain for TN and β,
by varying the highest and lowest temperature included in the power law fits.

To this end the plots in figure 4.10 were made. The color of the data points
dictate the high end of the temperature range used for the power law fits, while
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the x-axes show the low end of the temperature range used. The y-axes then
show the found values of the Néel temperature TN for figure a) and the values
of 2β for figures b).
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Figure 4.10: Variational analysis of the temperature fitting range. The color
of the points determine the highest temperature of the fitting range used, e.g.
the highest temperature used in the fits for all the green points are 70.5K, while
the x-axes tells the lowest temperature used in the fits. The left plot has the
Néel temperature, TN , one obtains by fitting a power law to the data in the
temperature range from the value on the x-axis to the temperature indicated by
the color of the data point. The right plot has the value of 2β. The obtained
values of TN and 2β seem to increase almost linearly with the lowest temperature
used in the fits, up until a temperature close to the maximum temperature. See
figure 4.12 for a zoomed in version of this area.

These plots clearly show that the values one can obtain for TN and β can
vary quite substantially given ones choice of data points to include. This clearly
shows that great caution should be used when using the method of double
logarithmic plots to determine ones data range. Especially a few features show
themselves using this method. First there is a general small bump in the values
of TN and β just above using 60K as the lowest temperature in the fit, this shows
that the results obtained can be very delicate and vary quite substantially with
the addition of just one more data point. An even more extreme example of
this is that the data range that has T = 72K (cyan) as the highest temperature
give the same results as the range with T = 71.5K (orange) as the highest
temperature up until just above 50K after which the cyan data range makes
a large jump and parts ways with orange for good. The difference between
including the one point or not is substantial and the difference can be seen in
figure 4.11, where two fits have been made using 72K as the highest temperature
in the fitting range, the red fit does not include the point while the cyan fit does
include the point.

Perhaps a more robust method of determining the data range to be fitted
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Figure 4.11: The results from the power law fit can vary a great deal just by
including one more point in the fit. This plot shows two fits, the first one in
red uses the red data points only. The cyan fit uses the red data points, but also
includes the cyan data point in the fit. Whether the cyan point is included or
not changes the values of TN and 2β by quite a margin. Especially 2β changes
by about 7%

.

can be found. In general there seem to be a tendency in figure 4.10 that the
value of TN and β that is obtained rises somewhat linearly with the choice of
the lower bound of temperature, up to a certain temperature after which the
values of TN and β rises more sharply for a few points, and after this they seem
to be more constant and reaches what could be called a plateau, see figure 4.12,
which is a zoomed in version of figure 4.10.

A plateau is reached for the data ranges that has a maximum fitted tem-
perature of T = 70.0K (red), T = 71.0K (blue), and T = 71.5K (orange). The
green points that has a maximum temperature range of T = 70.5K also show
some signs of plateauing, but the final data point makes quite a jump upwards.
No plateauing happens for the one that has a maximum fitted temperature of
T = 72K (cyan), this could perhaps indicate that T = 72K is above or too close
to the Néel temperature.

Since less data points are used in the fit to determine TN and β the closer
the lowest temperature gets to the highest, the uncertainty of the results also
increases, so this tendency of plateauing could also just be an artifact of having
less data points available. Also the uncertainty is too high in the region where
the values of TN and β plateau, to safely say whether the results show that the
temperature ranges that has a maximum below 72K plateau at the same level of
TN and β or if they depend on the choice of the maximum temperature chosen.

If they do not depend on the maximum temperature chosen, as long as it
is below TN , then finding this plateau could be an entirely novel method of
determining TN and β, which could be more robust than the double logarithmic
plot method. However it would require a larger number of data points close to
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Figure 4.12: Zoomed in version of figure 4.10 showing the values of TN and 2β
one obtain as the lowest fitting temperature approaches the highest one. The
tendency changes from resembling a linear trend to a more steep increase in the
values found, to a plateau as the lowest fitting temperature comes very close to
the highest. The fact that the values of TN and 2β seems to find a stable plateau
might indicate a novel way to determine the temperature range one should use
when fitting, as an alternative to the double logarithmic plot method used in
figure 4.4. The dashed black line in both plots indicate an estimate where the
value of TN and β would be, if the plateau model explained in the text were used.

the critical temperature to reduce the uncertainty, verify that this plateauing
does in fact happen, and to determine TN and β from it.

Assuming this method does work though, it would probably yield values of
TN and β close to the constant values indicated by the dashed black line in both
plots of figure 4.12, meaning that TN ≈ 72.15 and β ≈ 0.22. The dashed black
line is not a fit, rather an estimate based on the region of plateauing.
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4.2 Results of the Inelastic Neutron Scattering
Measurements

This section details the findings from the data analysis of the inelastic neutron
scattering measurements. The main goal here is to determine whether the exci-
tation energy of the magnons, see section 2.3, depends on the temperature in a
similar fashion as the magnetization, meaning that the same critical exponent
associated with the magnetization, β, also determines the excitation energy of
a magnon close to TN .

4.2.1 Fitting the magnon
The inelastic neutron scattering scans reveal two distinct magnon modes at low
temperatures, see figure 4.13. This is in general agreement with the literature
on h-YMnO3, [43, 53, 54, 55, 56, 3], however 3 modes actually exist, the upper
mode is degenerate and is actually two modes as shown by Holm et al in [46] as it
splits into two separate modes when an external magnetic field is applied. Since
all the experiments in this paper were made with 0 applied field, these two higher
modes are generally considered as one in this thesis. At the lowest temperature
the lower magnon is situated at an energy transfer of about ~ω = 2.3 meV while
the upper magnons is at ~ω = 5.4 meV. This is in good agreement by the findings
of Holm-Dahlin, Chatterji, and Sato [3, 43, 53]. As the temperature is increased
the energies of the two magnon modes are lowered with the lowest one seemingly
approaching ~ω = 0 as the temperature approaches the Néel temperature, but
the mode is completely absorbed by the quasi-elastic scattering line close to TN ,
because the amplitude of it increases enormously as the temperature approaches
TN . The energy of the higher modes does not go to 0, but the amplitude of it
does as TN is approached.

The data shows the existence of two magnon modes and a central quasi-
elastic scattering mode at ~ω = 0. The central quasielastic scattering has been
fitted to a simple Lorentzian line shape, while the two magnon modes have been
fitted to a skewed Gaussian each. The Gaussians are skewed due to a combina-
tion of factors, one contributing factor is the instrument resolution function for
the momentum transfer, and second, the density of states follow a step function
at the minimum magnon mode. These two contributions skew the Gaussians.

I(E) =ILorentz(E) + Imagnon1(E) + Imagnon1(E) +Bkg
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for the Lorentzian the fitted parameters are the peak intensity IL, the center
µL, and the width σL. Each of the skewed Gaussians are fitted with the same
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parameters, the subscript n=1 denotes the lower magnon mode and the the
subscript n=2 denotes the higher magnon modes, since we have no applied field,
these are just fitted by one function, since they are completely degenerate at 0
applied field. The parameters are Imn is the peak intensity, µmn is the center,
the width is σmn , and finally γmn is the skewness parameter of the skewed
Gaussians. In addition a flat background was included in the fitting function.
The fits at all temperatures can be seen in figure 4.13. Where the total fit is in
red, the greenish line is the skew Gaussian fit of the lower magnon mode, the
blue line is the fit of the higher magnon modes, and turquoise is the Lorentzian
fit of the quasi-elastic scattering. At temperatures above T = 71.75K the fitting
function, equation 4.2.1, no longer converged to anything meaningful. As such
these data series were not fitted. All the fitting parameters are plotted in figure
A.1 found in the appendix.

When fitting a skewed Gauss the position of the center of the Gaussian is
different from the position of the peak of the curve, the difference is dependent on
the skewness γ. In this work the position of the peak was numerically determined
using the maximum point of the given fit to a skew Gaussian.

4.2.2 Finding β using the magnon
It is expected from spin wave theory in an anisotropic Heisenberg model that the
excitation gap, ∆, of the low magnon mode is proportional to the effective spin
∆ ∝ 〈S〉. It is well documented in the literature that the spin waves of h-YMnO3

can be reasonably modeled by a Heisenberg Hamiltonian including in and out
of plane anisotropies [43][53]. Therefore it is expected that the excitation gap
also shows a power law critical behavior in the vicinity of TN

∆ ∝
(
TN − T
TN

)β
(4.2.2)

similar to the magnetization, see equation 4.1.1. The only difference being
that the exponent here is just β instead of 2β. Fitting this power law to the
temperature vs the excitation gap yields figure 4.14. The fit is only made to
the data in the same temperature range as the magnetization data, figure 4.5,
to ensure that the findings can be easily compared between the two. This
method gives a value for TN = 73 ± 2K, which is consistent with the findings
of TN from the magnetization within one standard deviation. The value of
β = 0.28±0.08 is consistent with the previously found value of β = 0.179±0.002
within two standard deviations. The uncertainties here are fairly high due to the
small number of data points within the fitted temperature range, but the data
certainly supports that the critical exponent β is similar for the temperature
dependence of the magnetization and the excitation gap of the lower magnon
mode. This value agrees well with that found by Holm-Dahlin et al [3].

4.2.3 Novel critical exponents
The fits in figure 4.13 showed that the gap ∆ exhibited power law behavior
in the vicinity of the Néel temperature. However a closer look at the fitting
parameters in figure A.1 shows that the intensity and width of the Lorentzian
fitting function used to determine the properties of the quasi-elastic scattering
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1st skew Gaussian
2nd skew Gaussian
Lorentzian
Data

Figure 4.13: Fits of the inelastic neutron scattering data. The two magnon
modes are fitted to skewed Gaussians, where the lower magnon mode is in dirty
green, and the higher magnon modes is in blue. The quasi-elastic neutron scat-
tering data is fitted to a turquoise Lorentzian shape and the sum of the fits are
in red. The fitting function can be seen in equation 4.2.1. As the temperature
rises the quasi-elastic scattering increases, while the peak intensity of the higher
magnon modes decreases. The energy transfer of the lower magnon mode goes
from ~ω = 2.3 meV to 0 as the temperature approaches TN .
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Figure 4.14: Power-law fit of the excitation gap, ∆, vs temperature. The fitted
function is 4.2.2. The critical exponent β = 0.28 ± 0.08 is similar to the value
of β found from the relation between magnetization and temperature. The Néel
temperature TN = 73 ± 2K is also in agreement with previous findings in this
work.

centered at ~ω = 0 meV could also have power law like behavior. Normally
the intensity and width of this scattering is measured in q-space and fitted to
power laws giving the critical exponents γ and ν respectively as was done above.
However no prior examples of fitting the intensity and width in energy-space
have been found in the literature search, nor any theoretical predictions of this.
In figure 4.13 it is clear that the quasi-elastic scattering centered at ~ω = 0 meV
rises in intensity as the temperature approaches TN . This rise in intensity of the
Lorentzian part of equation 4.2.1 were fitted to a power law similar to equation
4.1.2, with the new critical exponent ζ

ICritical ∝
(
TN − T
TN

)−ζ
(4.2.3)

This power law fits the data well and can be seen in figure 4.15 giving the
following values for TN = 74.0 ± 0.5 and ζ = 0.72 ± 0.07. This value of TN
is within one standard deviation of the value of TN = 73 ± 2 found using the
excitation gap of the magnon, but quite far from TN = 71.48± 0.04 found from
the magnetization. The value of the new critical exponent ζ = 0.72 ± 0.07 is
significantly smaller than those usually found for γ, see table 4.2, so while both
of these critical exponents come from the intensity of the critical scattering they
do not seem to be related based on this data.

The evolution of the width of the Lorentzian of the quasi-elastic neutron
scattering centered at ~ω = 0 as the temperature approaches TN were also
fitted to a power law. In a similar manner to ζ a power law with a new critical
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Figure 4.15: Plot of the peak intensity of the quasi-elastic scattering IL. The
intensity rises sharply as the temperature approaches the temperature of the
critical phase transition TN . The fit to the data is the power law function given
in equation 4.1.2. The following values are found TN = 74.0 ± 0.5 and ζ =
0.72± 0.07.

exponent ρ is defined as

HWHM ∝
(
TN − T
TN

)ρ
. (4.2.4)

This power law relation resembles that of ν used to fit the width of the elastic
critical scattering in q-space, see equation 4.1.3. The fit of the HWHM of the
Lorentzian can be seen in figure 4.16 and seem to fit the data well. The value
of TN = 71.79± 0.04 is in general agreement with previous results, interestingly
it is closer to the magnetization result of TN = 71.48 ± 0.04, rather than the
values of TN found previously from the inelastic neutron scattering data.
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Figure 4.16: The HWHM of the quasi-elastic scattering, σL, decreases as TN is
approached. The data has been fitted to the power law function in equation 4.1.3
giving the following values for TN = 71.79± 0.04 and ρ = 0.45± 0.02.

70



Table 4.2: Table of relevant critical exponents for this thesis. β is the critical exponent for the magnetizationM , γ is the critical exponent
for the magnetic susceptibility, and ν is the critical exponent for the correlation length [13]. The novel exponents ζ and ρ are presently
just measured in the current work, but their significance remain unknown.

Theoretical models TN [K] β γ ν ζ ρ
2D 3d XY 0.345 1.316 0.669 - -
1D 3d Ising 0.326 1.2378 0.6312 - -
1D 2d Ising 0.125 1.75 1 - -
3D 3d Heisenberg 0.367 1.388 0.707 - -
Mean Field 0.5 1 0.5 - -
Experiments
Holm-Dahlin et al. [3] Elastic data 72.11 ± 0.05 0.206 ± 0.003 - - - -
Holm-Dahlin et al. [3] Inelastic data 72.4 ± 0.3 0.24 ± 0.02 - - - -
Chatterji et al. [30] 69.89 ± 0.05 0.295 0.97 0.45 - -
Roessli et al. [41] 72.1 ± 0.05 0.187 - 0.57 - -
Kawamura [47] 0.25 1.1 0.53 - -
Present work
Elastic data 71.48 ± 0.04 0.179 ± 0.002 1.063 ± 0.002 (> TN )) 4.1 ± 1.0 (> TN ) - -

1.12 ± 0.02 (< TN ) 6.3 ± 0.2 (< TN ) - -
Inelastic data ∆ 73 ± 2 0.28 ± 0.08 - - - -
Inelastic data IL 74.0 ± 0.5 - - - 0.72 ± 0.07
Inelastic data σL 71.79 ± 0.04 - - - - 0.45 ± 0.02
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Chapter 5

Summarizing Discussion and
Conclusion

5.1 Summary of the Results
The measured values of the Néel temperature, TN , and the critical exponents
β, γ, and ν in addition to the previous results by other studies found in table
3.1 are all included in table 4.2 as well as the new exponents ζ and ρ unique to
this study.

The values obtained for TN matches the results of previous studies well, all
lying in the range from 71.4K to 74K. For the elastic neutron scattering data
the value of β matches the one found by Roessli et al nicely, while γ is very
close to that expected from mean field theory. ν on the other hand is very far
from both theoretical models and previous studies, but as previously stated in
section 4.1.4 this could be due to the competing interactions due to frustration
that create a highly extended critical range as explained in the article by Janas
et al [52].

The value of β from the inelastic neutron scattering measurements matches
well with the results obtained by Chatterji et al. The meaning of the new expo-
nents ζ and ρ, related to the intensity and width of the quasi-elastic scattering
centered at ~ω = 0 respectively, are unknown. It is however, remarkable how
well the width of the critical scattering measured in q by Chatterji et al matches
the evolution of the width in energy measured in this work.

in section 2.5.4 several scaling laws between various critical exponents were
introduced. Due to the fact that the values obtained for ν cannot be trusted
as discussed above, the scaling laws that include ν, such as equation 2.5.24 and
2.5.26, are not expected to give meaningful results. The critical exponent for
the specific heat, α however, only depend on β and γ. To calculate α equation
2.5.27 can be reformed into

α = 2− 2β − γ (5.1.1)

which yields α = 0.52. This is a quite high value compared to the results
by Tachibana et al. [57] measured the specific heat capacity as a function of
temperature. The specific heat capacity were measures by a relaxation method
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using a PPMS. Tachibana et al report a value of α = −0.16 which correspond
well to a the expected value of α = −0.12 in the standard Heisenberg model.

5.2 The Néel Temperature
In this thesis the Néel temperature have been measured in several ways, both
with elastic and inelastic neutron scattering. The signal strength of the elastic
neutron scattering data is significantly higher than of the inelastic. Therefore
the value of TN = 71.48±0.04 obtained from the elastic neutron scattering data
will be considered the most reliable estimate of the critical temperature in this
work. The reliability of the log-log plot method to determine the critical range
is a fair method, though one that should be used cautiously as discussed in sec-
tion 4.1.5 and later in section 5.4. The critical scattering close to TN were fitted
such that the temperature dependency of the magnetization could be fitted all
through the critical range as seen in figure 4.7 and 4.8. Fitting the power-law
relation all the way to TN in this fashion makes the values obtained for TN and
also β from the elastic neutron scattering data more reliable.

The results obtained here generally agree well with other results reported in
the literature, especially that of Roessli et al. and Holm-Dahlin et al. [41, 3].

The study by Holm-Dahlin et al. [3] is based on the same data, and thus
is expected to agree well with this study. Some differences are present though
Holm-Dahlin et al. reports a slightly higher TN for their elastic data. However
this discrepancy is easily explained by them having a chosen a fitting range
for their power law of 60 − 71.2 K while the one used in this thesis was from
53.8 − 70.0 K. From figures 4.10 and 4.12 in this thesis, their result for TN =
72.11 K is also obtained if the same fitting range is used. Interestingly Holm-
Dahlin et al. have hit the small ’bump’ in TN that happens when the minimum
temperature of the fitting range is just around 60K, had they used a slightly
lower or higher lowest fitting temperature, they would most likely have obtained
a fractionally lower value of TN .

There is quite a difference between the optimal fitting range used in this
work and in the article by Holm-Dahlin et al. [3] despite the analysis being
done on the same data. In their article they describe the log-log method as a
robust method, however the rather large difference between their fitting range
and the one used in this work questions this claim.

Another difference between the analysis conducted here and that of Holm-
Dahlin is that they used Gaussian line-shapes for all their fits, while Voigts have
been used here. The Voigt function is superior in fitting the data from RITA-II
as demonstrated in table 4.1. This gives this study the advantage that with a
better fitted line-shape of the resolution function deviations from this will be
more easily identified. This can perhaps explain why a longer fitting range was
achieved in this work compared to theirs and why some critical scattering were
found in this work.

Chatterji et al. [43] reports a significantly lower TN = 69.89 K compared
to this analysis. Their experiment however were done on a thermal two-axis
diffraction spectrometer as opposed to a cold triple axis spectrometer. Curi-
ously they do not show the existence of any critical scattering close to TN in
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figures 2 a) and b) of their article. This is in contrast to the presence of critical
scattering found in this work as can be seen in figures 4.5 through 4.8. It is not
clear why they do not see any critical scattering, however there seems to be a
quite significant difference in both method and analysis that it is perhaps not
surprising that the results they obtain differ from those found in this thesis.

5.3 Critical Exponents
Several critical exponents were computed in this thesis. Primarily β, γ, and ν
from power law fits to the magnetization, the intensity of the critical scattering,
and the width of the critical scattering respectively. In addition a value of α
were determined from a scaling law.

Both β = 0.179±0.002 as well as γ = 1.063±0.002 above and γ = 1.12±0.02
below TN respetively, fits decently with previous studies though not the same
ones. β is, like the critical temperature, in general agreement with the studies
of both Roessli and Holm-Dahlin while γ is quite close to the value found by
Chatterji et al. and Kawamura. Neither Roessli nor Holm-Dahlin have deter-
mined γ however, as such no comparison to these studies can be made for γ.

Both the value above TN of ν4.1 ± 1.0 and below ν = 6.3 ± 0.2 found in
this work is much higher than should be theoretically possible, and does not
remotely agree with anything reported in the literature. It is most likely due
to some error in the methodology used in this thesis, and the value of ν found
here should not be given any credence.

In general the values of the critical exponents found here does not support
assigning any known universality class to h-YMnO3. As such this study agrees
with Holm-Dahlin et al. [3] and the yet to be published study by Janas et al.
[52] that a new universality class is needed for triangular anti-ferromagnets.

The value of β = 0.28±0.08 from the inelastic neutron scattering data asso-
ciated with the excitation gap of the lower magnon mode, matches that of the
value of β = 0.179 ± 0.002 associated with the magnetization from the elastic
data within two standard deviations. As such this work corroborates the con-
clusion by Holm-Dahlin et al. [3] that the two β’s are indeed the same.

In addition two completely new critical exponents have been determined in
this work, namely ζ = 0.72± 0.07 and ρ = 0.45± 0.02 which are related to the
intensity of the quasi-elastic scattering centered at ~ω = 0 and the width of the
same. As these are computed in energy transfer ~ω and not in q these are to
the authors best knowledge completely novel critical exponents, though they do
mimic the function of γ and ν in q.

The consequence, or indeed usefulness, of these are currently unknown and
hard to speculate on, but perhaps the addition of these and perhaps more critical
exponents could lead to some interesting new revelations eventually. Curiously
the value of ρ is close to the value of ν found by both Chatterji and Roessli,
since both ρ and ν relates to the width of scattering there may be a connection,
but this is purely speculation at this point and beyond the scope of this thesis.
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5.4 The Fitting Method in Light of the Varia-
tional Analysis

Perhaps the most immediately relevant new result of this work is the variational
analysis of the fitting parameters from section 4.1.5. This show that one should
use caution when applying the log-log plot method in determining the critical
range of neutron scattering data. The result of an analysis is quite sensitive to
the exact critical range that is chosen, as such the log-log plot method is not
a very robust method. This is exemplified in the difference between the results
obtained here and those by Holm-Dahlin et al. [3] even though both studies are
based on the same dataset. An alternative approach to measuring the critical
range is to measure the critical scattering away from a Bragg-peak as a function
of temperature, however doing this will cause the signal strength to be weaker.

The variational analysis however also indicated that a new method to de-
termine the critical range might exist. In this new method one selects a given
maximum fitting temperature and then plots the results of either the critical
temperature or β versus the lowest temperature in the fitting range, which is
then systematically varied. This can then be repeated for a new maximum
fitting temperature allowing one to systematically vary the fitting range and
computing all the possible values of the critical temperature and β that can be
obtained from the data.

As shown in figure 4.12 there seems to be a tendency that the result obtained
for both TN and β quickly increases as the lowest fitting temperature rises after
which the results converges to a specific value and appear to plateau. The
plateauing happens for all maximum fitting temperatures, except 72 K (cyan),
at a lowest fitting temperature of about ∼ 64 K. Due to less and less data points
being used in the fits as the lowest fitting temperature approaches that of the
maximum fitting temperature the uncertainty gets rather large, so it is not clear
whether this is a real effect or not.

If the plateau is an indication of a true critical range, then the critical range
used both here and by Holm-Dahlin et al. [3] to fit the magnetization as a func-
tion of temperature to a power-law are too large and especially begins at a too
low temperature. The fact that the obtained results using the highest fitting
temperature of 72 K does not plateau is very interesting. 72 K is very close
to TN , as such the lack of a plateau might indicate that the maximum fitting
temperature is too high.

A new approach could then be devised based on this analysis where the lower
bound on the critical region is found by the onset of plateauing while the upper
bound is set by the highest maximum fitting temperature where plateauing
still occurs. This method, if valid, could perhaps be a more robust method to
determine the critical range. The supposed true critical range in this data can
then be gauged from this method and would be roughly 64-71 K. An estimate
of where this method would find the values are provided by the dashed black
line in figure 4.12 and would yield approximately TN ≈ 72.15 and β ≈ 0.22.
Both of these values are somewhat higher than those found by the log-log plot
method in this work, though further study is required to validate if these are
more correct than those otherwise reported here.
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Chapter 6

Outlook

The critical exponents found here and in other studies do not correspond to any
known universality class. As such further theoretical modeling is needed to find
a new universality class for triangular frustrated magnets such as h-YMnO3, in
addition further studies of all the critical exponents of h-YMnO3 will aid in this
endeavor.

Further study would be needed to confirm whether the proposed method to
determine the critical range is useful or not. In this work the uncertainty of the
fitted values of TN and β at the onset of the proposed plateauing were becoming
too large to asses whether the effect is real or not.

A further study to validate this method would need a good deal more mea-
surements at temperatures from perhaps 10 or 15 K below TN all the way to
the critical temperature such that the uncertainty can be decreased sufficiently
to see if this plateauing does in fact occur.

Finally it would be interesting to see what can come from the novel critical
exponents ζ and ρ if anything. This would require both considerable experimen-
tal and theoretical work, to investigate the nature of critical exponents related
to inelastic neutron scattering .
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Figure A.1: All fitting parameters for the fits seen in figure 4.13 using the fitting
function in equation 4.2.1. Blue indicates free parameters while red indicates
locked parameters. The center of the quasi-elastic scattering is locked at ~ω = 0
meV for all fits. The background were also locked to 0 because whenever the
fitting routine was allowed to fit with a nonzero background it consistently
found a negative background, which is physically impossible. The final fit at
T = 71.75K also had a locked width of the higher magnon mode, this was done
because otherwise the fit in general would not converge to anything meaningful.
It was assumed to be the same as the fit at T = 71.50K.
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