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Abstract

Capturing and storing large amounts of data on systems connected to digi-
tal measurement tools can be taxing on local storage capabilities. Therefore,
captured data is usually transferred to a remote storage solution that offers cen-
tralized access to datasets. The transferred data can be packaged in advanced
file formats in order to prepare it for being used efficiently in data analysis. The
processes of packaging and uploading data are normally performed separately
when data capturing has completed. This leaves room for improvement, as data
entries can be packaged and uploaded continuously as they become available,
instead of waiting for the entire data capturing process to complete.
This thesis presents the FUR framework to automate uploading, packaging and
cleanup of data stored on systems connected to digital measurement tools. The
main feature of FUR is continuously uploading data in batches to a HDF5 file
stored on a remote storage solution and automatically remove local data once
it has been uploaded. FUR uses remote file objects that are opened with the
SFTP protocol to manage transferring data.
The results of testing the FUR implementation indicate that it is able to match
the uploading speed of standard SFTP uploading methods when uploading
typed data to a remote HDF5 file. The results also showed that using the
implementation of FUR for uploading binary data to a remote HDF5 file in-
troduces additional overhead, which leaves room for improvement. Finally, the
results also indicate that FUR works cross platform and is scalable when used
with faster bandwidth connections.



Abbreviations:

• FUR : Framework for Uploading Research data

• I/O : Input/Output

• RTT : Round Trip Time

• HDF5: Hierarchical Data Format 5

• TCP : Transmission Control Protocol

• SSH : Secure Shell

• SFTP : SSH File Transfer Protocol

• FTPS : File Transfer Protocol Secure

• RAM : Random Access Memory
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1 Introduction
Digital measurement tools have a wide range of uses in many industries, but need
efficient software and frameworks in order to analyze and automate tasks. Digital
measurement tools, such as cameras, are usually connected to an embedded or local
system that is able to establish network connections. These systems can manage the
process of producing and storing data locally, but need software to help the process
of uploading the produced data from the local system to a remote storage solution.
As the amount of data produced by digital measurement tools can be massive and
taxing to store on local resources, it calls for software to aid automate tasks such as
cleanup, packaging and buffering of locally stored data in order to assist the process
of uploading it to remote storage solutions.

Cloud storage solutions, such as ERDA[1] offer remote access to centralized storage,
powerful processing capabilities and scalability beyond the capabilities of personal
computers. This allows for simulations, or data analysis, relying on access to large
datasets and performing resource heavy computations to move towards these solu-
tions in order to optimize these processes. With this in mind it is important that new
and improved software solutions are developed in order to enable the use of current
and future cloud storage solutions. As data analysis performed through resources
of cloud storage solutions rely on having given datasets available, it is important
to have efficient tools for uploading and storing data in efficient and advanced file
formats.

This thesis introduces Framework for Uploading Research data (FUR) that will
address the abovementioned problems. It is a framework designed for automating
and optimizing the process of uploading data to remote storage solutions in the
Hierarchical Data Format version 5 (HDF5) [2] file format.

1.1 Motivation

In preparation of the thesis, the Center for Advanced Bioimaging Denmark (CAB)
[3] was contacted to inquire about the potential need of a framework, such as the one
presented in this thesis. The department, and general field, rely on high resolution
images taken with various filters and lighting using advanced microscopes. The
current state of their microscopes is that they are connected to a local University
of Copenhagen science computer with no cloud integration, therefore making access
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to produced image data rely on physical presence and alternate storage solutions.
No current automated solutions were known or used, and manual solutions such as
USB’s are used to transfer and access data from the locally connected computer.
Furthermore, the storage of the computer system connected to the microscopes has
to be manually deleted by an office administrator, as the amount of locally stored
image data fills up the storage capabilities of the system. The problems of CAB
fit the problems that the framework presented in this thesis tries to solve, as both
the issue of data portability by automating uploads and cleanup of local files are
addressed.

1.2 Pre-project

In preparation for the presented thesis a pre-project [4] was conducted using an in-
dustrial camera connected to an Embedded Linux system as the digital measurement
tool. The pre-project was conducted in order to gather knowledge and experience
with regards to the challenges of efficiently producing, packaging and uploading im-
age data concurrently with data production. The aim of the pre-project was to
tailor a solution to the specific Embedded Linux system by trying to optimize all
steps of the data flow from the system to a remote storage solution, based on hard-
ware and bandwidth limitations. The presented solution in the pre-project consisted
of optimizing compression of the produced image data, using RAM for temporary
storage and packaging batches of image data in the HDF5 file format before upload-
ing it. When all the HDF5 files had been uploaded to the remote storage solution,
an internal resource from ERDA was specified to perform a job mounting the folder
containing the uploaded files and merging all HDF5 files into one main HDF5 file.
The architecture of the solution is shown in figure 1.

The solution presented in the pre-project did solve the specific problem for the
specific system, but did not present a generalized solution that can avoid the extra
step of post processing files after upload (as indicated by the orange box in figure 1).
Some paragraphs and figures in this paper are similar or used from the pre-project
paper, the relevant parts will have a notation.
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Figure 1: Architecture of Embedded Linux Camera and remote storage solution
from pre-project, showing the flow of data. Blue indicates the local Camera and
Embedded Linux System, Green indicates ERDA and Yellow indicates a resource
within the ERDA network

1.3 Related work

h5s3:
h5s3 [5] is a driver developed for client-side access to HDF5 files stored on Amazon
Simple Storage Service (Amazon S3) [6]. Amazon s3 is a cloud storage solution that
offers storing data objects remotely. The driver is compatible to be used in Python
applications along with h5py [7]. The h5s3 driver work with HDF5 versions 1.8 and
1.10, which allows for efficiently working with HDF5 files by having them transpar-
ently stored in Amazon s3. Features of the h5s3 driver include fetching subsets of
remotely stored HDF5 files, which can help manage distributed computation when
working with large remotely stored HDF5 files. The h5s3 driver has not been up-
dated since January 2018, which indicates that it is no longer maintained and new
solutions are needed.

While h5s3 does deal with interaction with remotely stored HDF5 files, it does not
deal with how to efficiently and continuously upload data to a HDF5 file through
a remote connection. Furthermore, the solution is not general from a server per-
spective, as it only works with Amazon s3. As FUR strives to be general and these
were some of the reasons why FUR did not expand upon h5s3. However, h5s3 did
provide inspiration for the creation of FUR, as it showed that it is possible to create
libraries using h5py to perform file interaction with remotely stored HDF5 files.
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Filezilla and WinSCP:
Filezilla [8] and WinSCP [9] are both open source cross-platform applications sup-
porting multiple file transfer functionality and protocols such as FTP, FTPS, SFTP,
SCP, etc. They also provide services beyond standard file downloads/uploads be-
tween clients and servers, including file synchronisation, upload/download automa-
tion, and allowing pausing and resuming of file transfers.

The two abovementioned solutions are great for standard file transferring functional-
ity and can provide easy access to the functionality through graphical user interfaces.
File synchronisation could be used for continuously uploading a growing HDF file to
a server, but the method does include the need of having to store the entire HDF5 file
locally. In addition, synchronizing files or folders introduces a lot of overhead, which
could result in the method quickly will become slow and insufficient, especially with
large amounts of data. This could result in a solution that might be infeasible due
to limited storage space of the client system, or result in a solution that is slow and
makes bad use of resources. So while they are great applications for standard file
transfer functionality, they fall a bit short when it comes to solving the introduced
problems.

General Approaches:
There are currently two fundamental approaches to transferring data to a remote
storage solution in a single file using an advanced file format, such as the HDF5 file
format. The first approach is to package and format the data into a HDF5 file locally
either during or after data capturing. When the formatted file is completed on the
local system, the HDF5 file is then uploaded. The second approach is to upload data
as-is and format it to a single HDF5 file through the use of a script run by internal
resources of the remote storage solution. Both approaches have their cons, such as
wasting unnecessary time and storage space during the data capturing process, or
inefficiently using available resources during data transfer from client to remote stor-
age solution. In addition, the second approach consisting of server-side formatting
might not be available through remote connections, as server environments intended
for remote access by several users, generally allow limited options for remote file
interaction and the possibility of running scripts server-side.

4



1.4 New approach and proposed solution

This thesis presents the Framework for Uploading Research data (FUR) that uses a
new approach for uploading and storing data in the HDF5 file format by using re-
mote file objects. The approach is to perform continuous formatting of data during
upload to a remote HDF5 file object via the possibilities and functionality of the
SSH [10] File Transfer Protocol (SFTP) [11]. The introduced approach will provide
the possibility of uploading data to a remote file in the HDF5 format, while running
concurrently with data production, and aiming to maximize the speed potential of
the data transfer. The idea is to minimize overhead in the implementation of the
introduced upload approach in FUR, such that FUR is able to make efficient use
of time and resources that are not fully utilized in the two introduced general ap-
proaches. FUR will also allow for the possibility to perform cleanup of locally stored
data once it has been uploaded. For the implementation of FUR to be a success, it
should perform just as well as standard uploading methods, while automating the
process of storing data in the HDF5 file format on remote storage solutions.

In order for FUR to be as general as possible, it will aim to be flexible with re-
gard to different data types produced by digital measurement tools. It will also try
to be adaptable in regard to hardware specifications, bandwidth connections and
other limitations of a system connected to a digital measurement tool. Furthermore,
the solution will take into account that some systems might want to have FUR work
in a continuous manner, running concurrently with the data production, while other
systems want to wait for the data production to complete, before using FUR.

The working space of the framework will be client-side, where it will handle the
packaging, buffering, cleanup and upload of data to a remote storage solution. It
will be implemented in Python 3, tested on three separate systems with different ca-
pabilities, operating systems, bandwidth connections, etc., to ensure that the imple-
mentation of FUR works cross-platform and scales well. The framework is designed
to work with ERDA [1] and tested with ERDA as a remote storage solution, but the
framework aims to be a general solution that can work with other remote storage
solutions as long as they support SFTP.
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1.5 Outline

The remainder of the thesis is structured as follows:

• Section 2 presents the main properties and functionality of the HDF5 format
and its features, which are relevant for the work in this thesis.

• Section 3 briefly covers information regarding the dynamic of clients and servers,
file transfers, pipeling, remote file objects and transfer protocols. At the end
of the section the design of FUR is presented.

• Section 4 covers the Python implementation of the FUR framework. The sub-
sections focus on covering the implementation and optimization process of the
HDF5 appending upload method, which is the main feature of the framework.

• Section 5 introduces the systems used for benchmarking and production of test
data.

• Section 6 shows and reflects upon results of upload speeds for uploads per-
formed by the FUR implementation. The benchmarks will give an indication of
the performance of the FUR implementation of the appending upload method
and compare them to the performance of other uploading methods.

• Section 7 features discussions of the used test setup, and advantages and lim-
itations in the design and implementation of FUR.

• Section 8 discusses future work and possible improvements of the FUR frame-
work.

• Section 9 concludes upon the work in this thesis.
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2 The HDF5 file format
This section introduces the HDF5 file format and its features such as groups, datasets
and chunked storage. Knowing the properties of the HDF5 file format and its func-
tionalities will be critical to analysing and improving the performance of how differ-
ently typed data is stored in the format. Therefore, knowledge from this section will
be important in the implementation of the HDF5 appending upload method.

The Hierarchical Data Format version 5 (HDF5)[2] is a file format developed by
the non-profit HDF5 group. It is a file format designed for efficiently storing and
accessing scientific data and is intended for large scale data problems. It can be used
to store many different data types including complex types, such as complex num-
bers. Storing different data types together in a single file through the use of multiple
datasets and groupings is natively supported. The file format is designed with fast
I/O performance in mind and has a rich set of features for optimizing this. The for-
mat also supports the traditional contiguous storage of data to disk. Some examples
of storage optimization and I/O performance features are chunked data storage and
creation of datasets with transparent compression using various compression filters
such as GZIP [12]. This allows for automatic compression of data on its way to disk
and automatic decompression when data is read, when I/O operations are performed
with a file in the format using the HDF5 library.

These features and the versatility of the format are some of the reasons as to why the
format provides excellent speed for both reading and writing, while minimizing the
amount of disk storage used. Furthermore, the HDF5 file formats supports parallel
I/O processing through the Message Passing Interface(MPI) [13], a high performance
message passing library built for use in parallel or multi-threaded applications. This
is a strong feature that allow the HDF5 format to be used for storing large data
instances used by simulations and data analysis that rely on MPI. An example of
the structure of an HDF5 file can be seen in figure 2.
The HDF5 file format is cross-platform and supported in multiple languages such as
C, C++, Python, Fortran through the HDF5 library API [15].

2.1 Groups and Datasets

A group in the HDF5 file format is a container that contains 0 or more groups or
datasets. When a HDF5 files is created the root group , denoted by "/", is created
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Figure 2: Structure of an example HDF5 file displayed as a tree with its groups
and datasets. The grey cylinder depicts both the HDF5 file and the root group.
Green folder symbols depict groups and red file symbols depict datasets. Metadata
associated with a group or dataset is shown in brown beneath the given group or
dataset. Image is taken from www.neonscience.org [14]

and it has the special rule that it may not belong to any other groups. Groups are
the backbone of how HDF5 files are structured and they also contain meta data
regarding the given group they describe. The structure of groups within the HDF5
format can be a tree structure like in figure 2 or as directed graph with the root group
as the specified entry point. Groups in HDF5 are comparable to folders known from
the file systems seen in the POSIX family, while datasets are comparable to POSIX
files. This is also seen in figure 2 with groups depicted as folders and datasets as files.

Datasets are objects within HDF5 files containing data, along with all relevant infor-
mation about that data with regards to reading from and writing to it. Datasets are
stored in two parts as a header file and a homogeneous array. The header file con-
tains relevant information about how the array is stored on disk. This includes how
to interpret the array and other metadata associated with the dataset, such as the
dataset object name and dataset dimensionality. As mentioned in the beginning of
this section, datasets in HDF5 have a rich set of transparent storage features such as
compression filters and chunked storage. These features and other properties of the
datasets are specified upon creation of datasets and are unchangeable thereafter, as
to ensure the integrity of all stored data throughout the lifespan of a dataset. Com-
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pression Filters are stored as a part of the dataset and can not be removed, added
or changed after the creation of the dataset. After creation of a HDF5 dataset, the
HDF5 library handles locating chunked data and the use of compression filters when
data from the dataset is accessed, allowing for applications to read from and write
to a dataset without worrying about its underlying features.

2.2 Chunked Storage

Chunked data storage splits the array of a dataset into several equally sized chunks
of data, which are stored separately on disk. If dataset chunking is not specified
in the creation of a HDF5 dataset, the array of the dataset is stored as row-major
contiguously on disk. An example of this method for disk storage can be seen in
figure 3, where a 10x10 2d array is stored contiguously. In the left part of the figure,
5 adjacent array indexes from a row are accessed, which does not cause any concerns
as they are adjacently stored on disk. In the right part of the figure, a problem of
using contiguous storage is showcased. If the dataset is going to be used for accessing
adjacent array indexes from a column of the array, the read of data will be inefficient,
as this data is not stored adjacent on disk. In order to read these 5 array indexes, 5
rows equalling 50 array indexes need to be read, which is inefficient as only 5 array
indexes are needed. The same problem could occur if data was stored column-major
and the five adjacent indexes were from a row.

Figure 3: 10x10 array stored row-major and contiguously. Some indexes are high-
lighted with purple color and overlaying arrows indicate how many total indexes are
needed to be read in order to access these highlighted indexes. Image taken from
portal.hdfgroup.org [16]

The solution to the problem in figure 3 is shown in figure 4. Here the 10x10 array
is stored in chunks of 1x10, resulting in adjacent column indexes in the array being
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stored adjacent on disk. The chunking of the dataset then allows for reading 5 ad-
jacent column indexes without having to read unnecessary data from disk.
Chunking of datasets is not limited to splitting the data into whole rows and columns.
Chunks can be any shape as long as the shape of the dataset is a multiple of the
chunking shape. The array from figure 3 could e.g. be split into 4 chunks of shape
5x5 or 5 chunks of shape 2x10, depending on what makes sense for the purpose of
the dataset.

Figure 4: The array from figure 3 stored with chunks of shape 10x1. Some indexes
are highlighted with purple color and overlaying arrows indicate how many total
indexes are needed to be read in order to access these highlighted indexes. Image
taken from portal.hdfgroup.org [16]

Chunking also allows for resizable datasets in HDF5 to exist, as new data can be
stored flexibly at available space on disk, as chunks are stored separately on disk.
Chunking is automatically enabled for resizable dataset, as a HDF5 file does not
control if the disk storage adjacent to the storage used for the dataset array on disk
is used for other storage purposes.

Even though chunking provides HDF5 datasets with great features and storage pos-
sibilities that can result in improved I/O performance, they can prove inefficient if
used incorrectly. The sizes and amount of chunks used for storing data are two mea-
sures that can have a big impact on performance if used efficiently or inefficiently.
Every chunk in a dataset requires the dataset to store its metadata, resulting in file
size growth. If chunk sizes are specified to be too small this might result in file sizes
that are unnecessarily large, compared to the actual data that the file stores. Having
many chunks also increases the height of the b-tree indexing the dataset, resulting
in longer search times. On the other side, if chunk sizes are too big it can also
have negative consequences for performance. Whenever a chunk is read, it is read
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in its entirety from disk to RAM. In the case of use of compression filters the whole
chunk is also needed to allow for decompression, before being available for further
processing. This can cause reads to be expensive if the chunk size is too big. In the
case that only partial parts of the data is needed, it will make data reads from the
dataset very inefficient. Therefore, if I/O performance is important to users of the
HDF5 file format, it can prove useful to analyze data and its uses before storing it
in the format.

2.3 Indexing and b-trees

In the HDF5 format b-trees [17] are used for indexing chunks of data from a dataset
on disk storage. The b-tree data structure is also used throughout the HDF5 format
whenever a data structure needs indexing. A b-tree is a self-balancing tree data
structure. The data structure is well suited for indexing disk storage, as it can
drastically reduce the amount of disk reads when locating data on disk. This is
possible since the amount of keys and children in b-tree nodes are limited by the
order of the b-tree. This means that a b-tree of order 500, has the possibility to
eliminate close to 500 subtrees for each step in its search through indexed disk
storage. In comparison, a standard self-balancing binary tree eliminates a single
subtree at every step, and the height of it will generally be bigger than a b-tree
storing the same information. The standard binary tree might be faster when used
for indexing and searching through data that fits into RAM. This is due to b-trees
needing to search through the current node, which holds an amount of keys between
the order of the tree divided by two and the order, before going to the next node
in a search. However in locating data stored on disk, reads from disk will be the
bottleneck of the operation. The b-tree data structure can make better use of read
block of data, compared to a standard self-balancing binary tree, due to its possibility
of keeping multiple keys in each node. The specific uses and implementations of b-
trees used in the HDF5 file format can be found in the HDF5 documentation [18].

3 Data transfers and design of framework
This section briefly covers the dynamic of clients and servers, transfer & application
protocols, pipelining, remote file objects and general challenges in file transfers.
This information will be important when designing the FUR framework and provide
background knowledge of tools used in its implementation. At the end of the section
the design and thought process behind the FUR framework is explained.
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3.1 Client, Server & network protocols

The sender-receiver model is used for describing processes that are communicating
with each other, where a sender is defined by being the process initiating the con-
nection. Processes may be running on the same system, but are typically running
on separate systems. Communication in this model consists of transferring data be-
tween processes. An example is that the user client in the FUR framework acts a
sender in this model and the remote storage solution (server) acts a receiver.

In order for a client and server to communicate with each other they need to under-
stand the data packets that are sent between them. This part of the communication
is done through application layer protocols that packages and formats data. A con-
nection between client and server is established and handled through a transport
layer protocol through the notion of sockets. Transport layer protocols and under-
lying protocols work in conjunction with application protocols in order to aid data
transfers between clients and servers. There are several transport layer protocols, but
two of the most popularly used are the Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). These two protocols have significant differences,
as TCP is a connection-oriented protocol, whereas UDP is connectionless. Being
connection-oriented means that both client and server keep a state of the connection
and communication is two-way. This allows for the server to give acknowledgements
to clients whenever data packets are received serverside. It also means that the client
through protocol communication can be alerted when packet loss occurs, allowing
for re-transmission of unaccounted packets. This makes connection-oriented proto-
cols useful for file transfers, as we want remotely transferred files to be 100 percent
intact when a file transfer is complete. The main drawback of connection-oriented
protocols is that the communication does introduce additional overhead in the com-
munication process. The communication of connectionless protocols are one-way
from client to server. They can prove useful for applications such as video stream-
ing or multiplayer-gaming, where packet loss is less consequential and unnoticeable
if kept minimal. The downside to connectionless protocols are that they do not
guarantee that all packets are received serverside. The upside is that they have low
overhead, specially when compared to connection-oriented protocols.

The main limitation when building applications that rely on processes communi-
cating across systems is that both the client and server system need to support an
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identical application protocol. There are several possibilities for optimizing the use
of transfer protocols for efficient data transfers, such as providing local buffers to aid
the flow of data transfer or protocol pipelining to minimize protocol overhead. The
two protocols discussed and used in FUR are SSH File Transfer Protocol (SFTP)
and File Transfer Protocol Secure (FTPS) [19], which both are connection-oriented
protocols that use TCP as the underlying transport protocol. Both SFTP and FTPS
allow for authentication of user data, verification of server key fingerprint, encryp-
tion of application data, etc. Both standard methods for file uploads with SFTP and
FTPS require that data intended for transfer with the protocols needs to be stored
locally in files.

Figure 5: Protocol pipeling in connections. Green arrows indicate data packets from
client to sever and red arrows the reverse.

An important factor in communication between client and server is the notion of
Round Trip Time (RTT) for connection-oriented protocols. RTT is the time that
passes from when a client sends a packet to a server until the client receives ac-
knowledgement of that packet being received from the server. An example of RTT is
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depicted in figure 5. A connection-oriented protocol will want to acknowledge that
all packets have been received before sending more packets, sometimes waiting for
acknowledgements of individual packets or using an acknowledgement for a group of
packets. In either case, The RTT can become a significant factor in the rate of file
transfers if the transfer protocol is not managed properly. In order to avoid RTT
from causing slow transfer rates, it is possible to pipeline a protocol. Figure 5 shows
how pipelining works, by sending packets from a client without waiting for acknowl-
edgements from the server, hence improving the performance of the protocol. The
use of pipelining introduces some risks in the file transfer, such as handling which
packet(s) where lost during a packet loss. This can result in a client application
having loaded new data ready for transport, but having to discard the work of load-
ing and preparing that data, in order to solve the data loss issue of the lost packet(s).

TCP is also generally inefficient at uploading smaller files due to it using the slow
start [20] algorithm for handling network congestion. The slow start algorithm starts
of by sending a minimal amount of data packets, and then exponentially ramps up
the amount upon receiving acknowledgements, until one of three situations occur.
The first is that data loss occurs, the second is that the Slow Start Threshold (SST)
is reached and the third is that the servers receive window limit is reached. When
packet loss occurs, TCP saves the amount of packets that were sent during the
packet loss. This amount is divided by two and saved as the new SST for the con-
nection. Then the protocol either resets to sending the a minimal number of packets
or sending packets equal to the new SST, depending on TCP implementation. If
TCP instead has reached the SST, it would start to scale the amount of packets sent
linearly, which is also what happens in the case of a TCP connection that has had
packet loss reaches the SST.

Lastly, bandwidth is the maximum speed of a given connection either for receiv-
ing or sending data packets. In the case of a connection between a client and server,
the lowest throughput of the bandwidth connections of server and client is what
determines the theoretically achievable transfer rate. In order to fully optimize file
transfers, it is the goal of both client and server to optimize the use of protocols
and hardware in order to saturate the available bandwidth. The bandwidth is also
reliant on many other factors such as network cards, cabling, routers, etc. As these
areas are not the focus or meddled with in this thesis, all they get is a mention
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acknowledging their importance in determining the rate of data transfers.

3.2 Handling remote files via application protocols

Some application protocols, such as SFTP and FTPS, grant users the possibility of
creating and deleting remote files, and performing file operations on remote files,
through the notion of remote file objects. This allows client applications more possi-
bilities in regards to transferring data in comparison to standard file uploads. Using
remote file objects, data packets are still sent and received as per usual, however
the packets sent can now contain instructions for file operations, which the server
can interpret, along with actual data that needs to be written to a file. This means
that all work of loading and preparing data is still done and controlled by the client.
Working with remote file objects is identical to working with normal file objects from
an application point of view. However, some remote file objects only allow for a lim-
ited subset of file operations. Reading and writing to files are I/O bound operations,
being dependent on the speed of disk reads and writes instead of CPU speed. This
means that in addition to being limited by the speed of disk read and writes on the
server, file operations and interaction performed with remote file objects are also
limited by the throughput of the used connection. As with local file objects, writing
as sequentially as possible to disk will perform best, as it reduces the impact of the
overhead introduced by disk access and moving of file pointers. This means that in
order to optimize storing received data serverside, it would be most efficient if data
is received in sequential fashion. TCP sends data in sequential order, but does not
guarantee that data packets are received in a sequential fashion serverside.

3.3 Analysis and Design

The design of the FUR framework will be based on trying to optimize the upload
speed between clients and servers, while storing data in the HDF5 file format. It will
do so based upon the possibilities and limitations covered by the topics in sections
2 and 3. FUR is designed for being used with ERDA, but is intended to work with
remote storage solutions as long as they support SFTP or FTPS.

In order to define the role of FUR it is important to note what it expects from
the data it is going to process and upload, as FUR does not aid in production of
data. FUR assumes that incoming data is produced by other applications and stored
locally in files, in a manner such that the data files are available to an application
running the framework. Furthermore, FUR expects the data files to be stored in the
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same location and be named in a sequential fashion, based on how they should be
ordered in packaging and uploading functionalities of FUR. The reasoning behind
this design choice is that scientific data, such as image data or time series, are usually
dependent on the order in which data was captured. The last expectations of the
incoming data is that the users must specify the total number of data files that are
going to be handled for the given use case.

The focus in the design of FUR is to make sure that the overhead of the work
performed by the framework has as minimal impact as possible, while optimizing
the rate of data transfers. This means that the focus of the design will try mini-
mize time spent not uploading data and optimize the upload speed when uploads
are occurring. As bandwidth most likely will act as the major bottleneck of FUR,
it is important that FUR tries to utilize the given bandwidth connection as best as
possible. This will help FUR stay relevant, as bandwidth connections grow faster.

There are three main cases between the relation of the data production rate and
the data transfer rate that FUR has to take into account. The first case is that
the frameworks is able to transfer data faster than the rate of data production and
the second being the reverse situation. The third option is that all data production
has finished before the framework is invoked. It would be optimal if the first case
was always true, but the design of the framework has to take some measures if it
is not. Therefore, whenever data is packaged in FUR it will be stored in files on
disk. Storing packaged data in RAM is also an option, which for local I/O purposes
should be faster. However, as systems usually have more disk storage than RAM,
and local I/O should not pose as the bottleneck of the framework, using RAM would
increase the chances of unwanted side effects. Filling up RAM can have an impact
upon other applications running locally, such as a data capturing process running
concurrently with FUR.

The framework design provides three ways of continuously uploading data to a re-
mote storage solution. All three uploading methods support both binary and typed
data.

1. Uploading data files separately as-is

2. Uploading data batches separately packaged as HDF5 files
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3. Uploading an initial empty HDF5 file and perform appending uploads of data
batches to this file

FUR will seek to upload data batches whenever they are made available. It will be
possible to specify how many data entries a batch should consist of, such that users
of the framework can choose the best batch size for their data. Once the batch size
has been determined it remains static throughout the entire run. The framework
will also allow the possibility of choosing whether to remove local data files after
their data has been uploaded to the remote storage solution.

The work performed by every upload method in the framework is designed to be
split into two functions, a runner function and an upload function, that share a
buffer. The runner functions do the main lifting in the framework and performs a
wide range of tasks. The main purpose of a runner function is to have data buffered,
such that the the upload function can concentrate on reading buffered data and
uploading it. Upload functions handle retrieving packaged data from the buffer, up-
loading the data and cleaning up intermediate files used for storing packaged data.
The reasoning behind splitting up the work into runner and upload functions is that
the work in both functions are I/O bound, as they do not perform any CPU heavy
operations. This design will allow the two functions to run in separate threads in
order to run concurrently. This will hopefully result in the two functions being able
to utilize the waiting times of I/O operations of one another. The choice of us-
ing a shared buffer between two threads also introduces potential problems, such
as race conditions [21]. In order to account for race conditions and synchronization
issues a shared lock for accessing the buffer will be used in the both type of functions.

The framework is designed to create an initial connection via SFTP or FTPS and
create the remote directories of the specified storage location if needed. It will keep
this connection running throughout the lifespan of the runner function in order to
avoid the cost associated with creating a connection multiple times. The framework
is also designed to allow for packaging of files into batches before being uploaded.
This design choice can aid in reducing the impact that RTT and TCP slow start can
have on uploading speed, as multiple uploads are condensed into a single continuous
upload.

The main differences between the two supported file transfer protocols are their
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methods for encryption, authentication and the number of connections used. FTPS
runs asynchronously over two channels, a control and data channel, whereas SFTP
runs everything over a single channel. This gives FTPS a slight edge speedwise, but
not enough to make the protocol choice massively impactful on the data transfer
rate, when put up against the bandwidth of the connection. Both protocols are used
in FUR to increase the versatility of the framework.

Whenever the transfer of data is the bottleneck of an application, it can prove useful
to spend resources compressing the data. Compression is CPU bound, and depend-
ing on compression method and and data sizes, it can be taxing for the system
performing the encoding. The FUR framework design includes the use of encoding
through the HDF5 GZIP filter. When using this filter with remote file objects for
appending data to a HDF5 dataset, it will use the resources of the client system
to carry out the encoding. This makes for another compelling argument as to why
runner and upload functions in FUR should run in two separate threads, as the CPU
bound encoding in the upload function hopefully can make use of the CPU in the
time that the runner function spends waiting for I/O operations to finish.

4 Implementation
This section will cover the implementation of the FUR framework with a focus on
the implementation and optimization of the appending upload method for typed and
binary data. The end of the section will introduce two use-case examples. The code
for the implementation can be found and downloaded at:
https://github.com/DraeberNiels/FUR.

4.1 Language

The framework is implemented in Python 3 and is therefore available as a python
module named fur. Python 3 was the language chosen for implementation purposes
due to several reasons, such as its ease of use and strong support by libraries for
data processing and analysis.

4.2 Creating HDF5 files and datasets

The design of the framework requires the creation of local HDF5 files, and these files
are created with the h5py [7] library. Specifications of the dataset in the created
HDF5 files are gathered from input parameters, which are able to specify datatype,
chunk shape, the use of a compression filter and size of the dataset. Created datasets
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that are used with the appending upload method are defined to have an empty
shape and unlimited max shape upon creation. This will allow for the dataset to be
resizable and make the HDF5 file as small as possible for the initial file transfer.
The framework supports storing data in HDF5 datasets as integers (8-64 bit), floats
(16-64 bit) and as binary data. The binary datatype allows for storage of data that
comes in heterogeneous shapes and binary file formats, such as the JPEG file format.

4.3 Creating a connection

Before processing data or starting an additional thread for running an uploading
function, the _runner_* functions start by establishing a connection to the specified
server by using the specified file transfer protocol. The Python libraries ftplib [22]
and pysftp [23] are used for creating FTPS and SFTP connections respectively.
After establishing the connection, the directories of the path defined in the input
parameters are created recursively if they do not exist already. After this step is
completed, _runner_* functions spawn the corresponding upload function in a new
thread, passing the connection and other needed parameters. Connections are closed
when the last batch of data transfer is completed by the given upload function.

4.4 Gathering and buffering files

Gathering and buffering files is the responsibility of the three _runner_* functions in
the fur module, where each functions corresponds to one of the uploading methods.
The _runner_simple handles the upload method of uploading individual data files
as-is, _runner_hdf5 handles the upload, packaging and cleanup of separate batch
sized HDF5 files and the _runner_hdf5_append handles appending upload of data
batches to a single remote HDF5 file. In the cases of the uploading methods that
include HDF5 formatting, the corresponding runner functions perform a brief anal-
ysis on the first available data file. The analysis extracts measures such as the shape
of the data and what type that makes sense to use for storing the data in the HDF5
format. After the initial analysis, the runner function starts waiting for the first
batch of data to complete. It then processes and buffers the data of the current
batch, making it available to the spawned upload function. This step is then re-
peated until all data batches have been processed and buffered. Then it waits for
the upload thread to join back before returning.

Buffers used throughout the framework contain file names. The _runner_simple

and _runner_hdf5, use their buffer to store files that are ready for upload via SFTP
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or FTPS. This is also the reason why the two functions both spawn threads run-
ning identical upload functions. The _runner_hdf5_append function uses its buffer
to store filenames of packaged npy files for batches of data. As this data needs to
be further processed before the appending upload, the function spawns a different
upload function in a new thread, which is designed to handle the buffered data and
perform the appending upload. All synchronization issues with regards to shared
buffers are handled by the lock implementation of the Threading module [24]. Both
functions wait to acquire the shared lock before accessing data in the buffer and
eventually release the lock when the access is done.

4.5 Implementing HDF5 appending upload

The implementation of the HDF5 appending upload method is based on the use
of the h5py, pysftp [23] and numpy [25] libraries. The h5py library is a python
interface to the HDF5 file format and the pysftp library allows for creating SFTP
connections. The pysftp library uses the Paramiko [26] library, which is a python
implementation of SSH(version 2).

FUR uses a SFTP connection created with pysftp to access a file object of a re-
motely stored HDF5 file. This remote HDF5 file object is then opened and made
available for HDF5 file operations with h5py. In order to open a HDF5 file object
with pysftp, whether be it local or remote, the file object must support binary I/O
and the file operations read, write, seek, tell, truncate and flush. Remote file
objects opened with ftplib or other Python 3 FTPS libraries did not support all
necessary file operations, hence the only choice found for implementing the HDF5
appending upload method was with SFTP.

When a remote HDF5 file is opened in this fashion, all normal available functionality
of the h5py library is made available to read and modify the HDF5 file. This allows
for transfer of data by appending locally stored data to a dataset of a remote HDF5
file object, hence the name: appending upload. As mentioned in section 2, the array
part of datasets are homogeneously typed arrays. This along with h5py supporting
python array slice notation for HDF5 datasets, makes it very compatible with numpy

arrays, as they share identical properties. This is also the reason why data batches
in FUR for the HDF5 appending upload method are packaged and buffered into npy

files, such that the data can be read with numpy and directly appended to the remote
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HDF5 dataset by using Python slice notation.

The main problem of the straightforward implementation of the HDF5 appending
upload method is that it is very slow, approximately transferring data at 1/10 of the
rate when compared to file uploads using the SFTP put method, as shown by the
result of Table 1. This shows that even though the implementation of the method
is functional, it is very inefficient compared to the SFTP put method.

Protocol Mean Upload time Standard deviation Mb/s
SFTP 14.90 s 1.02 53.69
SFTP
Append

Unoptimized
152.85 s 5.23 3.54

Table 1: Mean upload time in seconds, its standard deviation and the upload speed.
Test consisted of 10 upload tests to ERDA with 100 MB dataset of typed image data
with SFTP put method and unoptimized HDF5 appending upload. The amount of
uploads in the test was chosen to reduce the significance of a bad runs dictating
the results. The size of the dataset was chosen as it seemed fitting for giving an
indication of upload speed, while stile being small enough for a quick test. Tests
were performed on the Laptop, which is described in the section 5

4.6 Optimizing append upload remote HDF5

If the presented implementation of the HDF5 appending upload method seeks to
be efficient and competitive, it must be able to match the speed of other uploading
methods. The first step in investigating bottlenecks of the method was to perform
some tests locally. The tests consisted of measuring the speed of appending data
to a HDF5 dataset and comparing it to the speed of a sequential write operation
to a plain text file with the same amount of data. These tests showed that there
was no significant overhead introduced in appending data to a HDF5 dataset that
would explain the significant slowdown experienced using remote file objects. The
tests did show that storing data in binary format introduced a small amount of extra
overhead, but again nothing that could explain the significant slowdown. These tests
gave the indication that the slowdown of the appending upload method was not due
to the h5py library.
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The next step in the process was to perform the same tests, but now using remote
file objects for the two file types. The results showed that performing sequential
writes with the same amount of data to a remote text file was just as slow as the
appending upload method. These results indicated that the slowdown could be a
product of the write function of the SFTP file object. The documentation of the
SFTP paramiko implementation, states that standard file uploads methods such as
the put function uses pipelining for improved speed. It also states that it is possi-
ble to enable pipeling for write operations done to a SFTP file object. Enabling
pipelining does introduce the risk, that the first non-write operation, such as close,
can result in a write error being thrown from that operation instead of being thrown
from the write operation. Pipeling was enabled for both the remote file objects and
tests repeated. This resulted in the speed of sequentially writing to a text file and
HDF5 appending upload with typed data matching the upload speed of the SFTP
put method. However, using pipelining with the appending upload method for bi-
nary data resulted in timeout errors.

As the speed of write operations had been pipelined, the next step was to dis-
sect the steps of appending to HDF5 datasets, in order to figure out what caused
the erroneous appending of binary data. All datasets used with the framework are
resizable datasets, which automatically enables chunking. The problem with binary
data and chunked storage is that chunks for storing binary data cannot be allocated,
as the sizes of each data entry is unpredictable. Therefore, in comparison to homoge-
neously typed and sized data, the storage method does not know how much storage
will be used in total per chunk. This is solved by h5py by storing the binary data
to disk, and storing two pointers to the start and end addresses of the given binary
data entry in an chunk index. These additional storage measures are most likely one
of the causes of the extra overhead of the HDF5 appending upload method when
using binary data.

The appending upload with h5py is done in two main steps. The first step is to
resize the remote HDF5 dataset and the second is to append local data to the newly
resized remote HDF5 dataset through standard Python slice notation. The actual
h5py resize command does not change the byte size of an HDF5 dataset storing
binary data, but only the metadata in the HDF5 dataset that is in charge of the
dataset size. This means that storage is not allocated upon resizing, which is most
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likely in a effort to not have to allocate storage that is not yet in use. Whenever
data is appended to the resized HDF5 dataset the storage is then allocated. The
errors and timeouts occurred whenever appending was done across multiple chunks
or whenever a new chunk in a dataset was being appended to. The work in this
thesis did not fully uncover why the errors and timeouts with binary data occurred,
so further work is needed to investigate the issue. However, experimentation with
HDF5 appending uploads and different functionality during the thesis did uncover
how to fix the issue. The issue with the appending upload method with binary data
was fixed by pipelining the upload of an entire batch of data except for the last
data entry of the batch. Appending the last data entry was done separately with
pipelining turned off. Furthermore, the file flush operation needs to be performed
after the last append, forcing all buffered writes out of the file object write buffer.
The solution to the problem indicates that the errors and timeouts were the result
of mixing pipeling of the write operations of SFTP file objects and the h5py/HDF5
method of allocating chunked storage space for datasets, but more investigation of
the issue is needed.

4.7 Use-case examples

This subsection gives two examples of how FUR can be used and what the framework
can provide to systems connected to digital measurement tools.

4.7.1 CAB microscope

Center for Advanced Bio imaging Copenhagen have several advanced microscopes,
which are connected to cameras and local computer systems. Data capturing is
managed through capturing software on the local system, and all data is stored
locally. The FUR framework can be used to run concurrently to the image capturing
process and help automate the upload of the image data to a remote storage solution,
thereby centralizing access to the data. The number of images captured per session
tends to be within the two-digit range and adjustments to the given microscope is
usually performed between the capture of two images. Therefore, it is expected that
the FUR uploading method of uploading data files separately as-is will be of use
for this type of system. Furthermore, FUR can be helpful in the cleanup of already
uploaded local image data, such that the memory of the local systems connected to
the microscopes do not have to be manually cleaned.
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4.7.2 Industrial camera connected to an embedded system

Another use case could be using FUR on an Industrial camera connected to an
embedded system. Embedded system solutions can allow for more specific control of
formatting and capturing of image data, but usually have limited memory as they
are not meant to be storage units. If image data is captured at a set framerate
throughout long periods of time, the framework could run in a separate process
to help with continuously uploading batches of the image data and deleting local
copies upon completed uploads. This type of scenario is something that the HDF5
appending upload method of FUR is suited for. Furthermore, if the upload speed of
FUR is able to match the data production rate, and cleanup of locally stored data is
enabled, it means that local storage capabilities no longer become the limiting factor
of how much image data can be captured and stored in one session. Use of the FUR
framework can reduce the risk of the connected system running out of disk storage
and it can make captured image data accessible through the used remote storage
solution.

5 Systems
This section briefly introduces the systems used for production of data and testing.
It will give a more detailed description of the Embedded Linux system connected
to the Industrial Camera and ERDA, and show the specifications of the remaining
systems in a table.

5.1 Industrial Camera & Embedded Linux System

This subsection is taken from the preproject [4].
The camera used for producing test data for the results section in this thesis was pro-
vided by Qtec. It is a modular industrial camera that runs an Embedded Linux dis-
tribution named Poky Qtec 2.2, based on the Yocto Project 2.7 Reference Distro[27].
The camera device supports capturing pixel resolutions up to a height of 1792 and
width of 1264 with up to 30 frames er second (FPS) and it has two read buffers. For
storage capabilities, it has 3.4 GB RAM and 15 GB disk storage. All interaction be-
tween the camera device and Linux system is handled through the Video4Linux2[28]
(v4l2) framework. The framework supports real-time video capture on Linux sys-
tems and is supported by the Linux kernel. The Embedded Linux system has an
AMD G-T56N processor with 1,65 GHz with a total of 2 cores.
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Device / Measure Operating system Processor RAM Bandwith (down/up)

Embedded Linux System Poky Qtec
AMD G-T56N
1.65 GHz, 2 cores.

2 GB 300/60 Mb/s

Laptop macOS Mojave
Intel Core i5
2.4 GHz, 2 cores

4 GB 300/60 Mb/s

CAB computer Windows 10
Intel Core i5-7500
3.40 GHz, 4 cores.

8 GB 1000/1000 Mb/s

Table 2: Specifications of the systems used for testing and producing results in this
paper

5.2 Specifications of used systems

Table 2 shows the specifications of the three systems that are used for testing and
producing results. The Embedded Linux System and Laptop used the same band-
width connection, just wired and wireless respectively. Using a wireless connection
for testing is suboptimal, as it can introduce a lot of variability in the connection
speed. However, as a sufficient cable was not available, it was a choice of testing with
a wireless connection or not testing with the Laptop system. Speed tests performed
with the wired connection with speedtest-cli [29] showed an upload speed of just
below 69 Mb/s. The same tests performed with the wireless connection showed
an upload speed of just below 68 Mb/s. The CAB computer used a wired fiber
connection and speed tests showed an upload speed of around 960 Mb/s.

5.3 ERDA

Electronic Research Data Archive (ERDA) [1] is a storage and archiving server pro-
vided by the University of Copenhagen. Stored files on ERDA can be accessed
through a browser interface, SFTP, FTPS, internal clusters and resources within
the ERDA setup. ERDA has a fiber connection and therefore should theoretically
support upload speeds of up to 1000 Mb/s. However, this connection speed might
not always be accessible, as multiple users can access ERDA at any given time,
which can have a big impact on connection speed. Therefore, the connection speed
to ERDA can vary depending on when tests are performed, since there is no way of
telling how many users that are currently connecting to ERDA. There are no hard
limits on storage space per user on ERDA, but it is suggested that users do not use
more than a couple of terabytes. It will serve as the remote storage solution used
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for testing the FUR in this thesis, as it will likely not cause a bottleneck due to its
fiber connection, it supports SFTP and it provides plenty of storage space. More
information about features and setup of ERDA can be found in the ERDA user guide
[30].

6 Results and Benchmarks
This section will present the results and benchmarks of using the FUR framework
functionality on different data sizes and types. The tests will be performed with
the three systems and ERDA that are all described in the systems section. As the
HDF5 appending upload method is the most interesting and complicated uploading
method in FUR, this section will focus on showing results of its implementation. At
the end of the section a bottleneck analysis of the implementation will be performed
based on the showcased results.

6.1 Data used for benchmarks

In order to fairly compare the performance of the framework functionality across
systems, identical datasets were used across systems. The used datasets consisted of
image data produced by the industrial camera described in the systems section. All
datasets consisted of 1800 image frames in RGB (Red Green Blue) [31] format or
JPEG (Joint Photographic Experts Group) [32] format. These two data types allow
for testing both the typed and binary HDF5 appending upload implementations.
The sizes of the HDF5 test files and frames used in the tests do not serve a specific
purpose, besides being of a size such that RTT and other factors did not become
dominant in the test results.
It was chosen to use prerecorded data instead of generating data, in order to minimize
variability across systems by giving the same starting point for all tests performed.

6.2 Different measures of the framework functionality

In order to compare the speed of uploading files with SFTP and FTPS with the
upload speed of the HDF5 appending upload method, it is important to explain how
the upload speed of the FUR implementation was measured. The upload speed of
the HDF5 appending upload functionality includes the time spent uploading the ini-
tial empty HDF5 file and the time spent both resizing and appending to the remote
HDF5 file.

Besides the actual upload speed of the HDF5 appending upload implementation
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of FUR, the introduced overhead of packaging and managing buffered data in the
given upload function was also measured, as to not neglect the additional work that
is being done to support perform the uploading method. In order to test that the
integrity of the test image data was intact after uploads had finished, random frames
of the remote HDF5 dataset were displayed and value checked programmatically.

6.3 Test setup

All test results presented throughout this section consisted of timing 10 consecutive
runs of uploads with the specified data and system. Before the 10 consecutive up-
loads were measured, a single warmup run of the given test was performed to ensure
that it worked. From the timing of the 10 uploads, metrics such as the mean upload
time in seconds, the corresponding standard deviation, and upload speed in Mb/s
were calculated. The two measuring units that where used throughout testing were
time in seconds and the amount of bytes stored in the final version of the uploaded
files. As bandwidth connections generally are measured in Mb/s (Megabit per sec-
ond), the following equation was used to calculate Mb/s from the test measuring
units : (bytes transferred) * 8 / (seconds used uploading) * 10−6.

The tests results from the Embedded Linux camera and Laptop were all performed
at midnight, in order to reduce variability in connection speed. The tests performed
on the CAB system where done around 12 pm. due to limited accessibility. All
uploading tests throughout this section use ERDA as the remote storage solution.

6.4 Baseline tests

In order to establish a baseline for comparison of upload speeds of the various meth-
ods across the three test systems, tests of directly uploading a 1016 MB file to ERDA
with SFTP and FTPS were performed on all systems. The 1016 MB file size was
chosen for this test, as its size should be big enough to give an appropriate picture
of upload speeds when uploaded with the test systems and their bandwidth connec-
tions. The results of the baseline tests can be seen in table 3.

Even though the contents of Figure 3 are baseline results, they still provide im-
portant information and provide grounds for comparisons of results later on in this
section. It seems that with the 1016 MB file size, uploads via FTPS on the Lap-
top and Embedded Linux system were able to reach upload speeds very close to
the results of their bandwidth speedtests from section 5.3. As expected, the results
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Device / Measure Protocol Mean Upload time Standard deviation Mb/s
Embedded Linux System SFTP 253.08 s 1.90 32.12
Laptop SFTP 131.88 s 3.59 61.64
CAB computer SFTP 27.88 s 1.51 291.58
Embedded Linux System FTPS 120.32 s 0.34 67.56
Laptop FTPS 124.10 s 3.63 65.51
CAB computer FTPS * * *

Table 3: Baseline test for upload speeds of SFTP and FTPS for uploading a single
1016 MB file to ERDA. The results of uploading the 1016 MB file with FTPS on
the CAB computer are missing, due to a mistake in the test script of not closing the
FTPS connection after upload of the file had completed.

produced with wired connections show more consistency, which the lower values of
the respective standard deviations indicate. Protocol-wise, the speed of file uploads
via FTPS is faster than the speed of file uploads via SFTP by a significant amount.
Furthermore, the results indicate that SFTP on the Embedded Linux is only able to
upload files at approximately 50 percent of the speed when compared to the upload
speed of using FTPS on the same system. The same does not seem to be a problem
with using SFTP on the Laptop, which uses the exact same bandwidth connection
just wireless, as the baseline results produced with the Laptop show only a minor
slowdown between the file uploading speeds of FTPS and SFTP. As bandwidth does
not seem to be causing the problem, this is likely caused by the SSH installation
and could be e.g. an encryption issue. This issue was not further investigated, as it
is not the responsibility of FUR to manage SFTP installations, but rather to make
use of the provided installations. Even though this has a significant influence on
upload speeds of the Embedded Linux Systems throughout this test section, as the
appending upload method uses SFTP, it can show how reliant the performance of
FUR can be on the provided SSH installation.

The baseline tests performed on the CAB computer show that even though the
computer has a bandwidth connection of 1000 Mb/s upload, it is not able to be
saturated through file transfers via SFTP or FTPS. This is likely not caused by the
choice of protocols, as upload speed is reliant on many factors, such as limitations
of the network used on the way to ERDA and ERDA’s congestion policy. However,
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this is again not a major problem, as this thesis does not look to optimize or create
new protocol implementations, but rather make the best use of existing protocols to
enable and effectivise HDF5 appending uploads.

6.5 HDF5 append upload tests

6.5.1 Tests with typed data

The results of testing the HDF5 appending upload method using a dataset of 1016
MB typed data consisting of 1800 frames can be seen in figure 4. The reasons for
using this size of dataset, besides the reasons mentioned for using the size in the
baseline tests, is to give the a basis for comparison with the baseline tests. The
chunk sizes used with all typed data tests were approximately 0.3 MB, as small pre-
liminary testing showed that this optimized the transfer rate to ERDA. All tests in
this subsection also use a batch size of 400 frames, to also test if the FUR imple-
mentation works with batch sizes that are not a multiple of the total dataset size.

Device / Measure Protocol Mean Upload time Standard deviation Mb/s

Embedded Linux System
SFTP
Append

262.48 s 6.62 30.96

Laptop
SFTP
Append

131.65 s 1.68 61.75

CAB computer
SFTP
Append

25.90 s 0.45 313.84

Table 4: Tests of HDF5 appending upload via SFTP to ERDA with 1.016 GB dataset
of image data consisting of 1800 frames in RGB format. Batch size was 400 frames.

Results produced with the CAB computer and Laptop in Table 4 show an increase
in upload speed compared to the baseline tests. The consistency of the results on
these two systems is also great, as indicated by the small standard deviations. Tak-
ing a look at the mean upload time, the difference between the test results on the
Laptop and its baseline tests is minimal, indicating a similar performance of the two
uploading methods. The mean upload time of the results from the CAB computer
shows an improvement in upload speed of around 7 percent, which is also very con-
sistent according to the standard deviation. This is likely caused by fluctuations in
the connection speed, as the throughput of the tests are still far from the theoretical
limit. The tests from the Embedded Linux system show that the upload speed of

29



the appending upload is slower when compared to the baseline tests. Looking at
the mean upload time, these tests show a significant slowdown of around 8 seconds,
which is a decrease of around 3 percent. The standard deviation of these tests is
also percentually the biggest, even though the Embedded Linux system used a wired
bandwidth connection, which was close to being saturated via uploads with FTPS
in the baseline tests. Therefore, the explanation of this variability could again be
explained by limitations of the SSH installation.

The differences of speed between the HDF5 appending upload method and base-
line results experienced across the three systems are somewhat expected and likely
explained by variability in the connections. Besides variability in the connection
speed, this difference could also be explained by differences in the uploading meth-
ods, such as the put function of SFTP checking the file size of an uploaded file after
upload completion. Furthermore, the FUR implementation of the appending upload
method loads a batch of image data into memory before performing the upload,
where the work of doing this is included in the results of using the put function
of SFTP. Results of using the appending upload method that include the time of
loading the image data into memory and deleting the corresponding npy file can be
seen in table 5.

Device / Measure Protocol Mean Upload time Standard deviation Mb/s

Embedded Linux System
SFTP
Append

266.94 s 7.67 30.45

Laptop
SFTP
Append

133.82 s 1.72 60.74

CAB computer
SFTP
Append

26.51 s 0.46 306.62

Table 5: Tests of HDF5 appending upload via SFTP to ERDA with 1.016 GB dataset
of image data consisting of 1800 frames in RGB format. Batch size was 400 frames.
This Table shows results including time for loading data into memory and deleting
temporary npy files

The results of table 5 show that when the time for loading data into memory and
deleting the buffered npy file are factored in, the decrease in upload speed is between
3.1 percent, 1.6 percent and 2.3 percent for the results produced on the Embedded
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Linux system, Laptop and CAB computer respectively. This makes the tests of the
upload speed on both the Embedded Linux system and Laptop slower than the base-
line tests, while the results of the CAB computer tests are still 5 percent faster than
the baseline tests.

The results of tables 4 and 5 indicate that the HDF5 appending upload method
with typed data performs just as well as standard file uploads with the SFTP put

method when it comes to upload speed. They also indicate that the appending up-
load method is able to scale well when used with systems with different bandwidth
connection speeds, as the HDF5 appending upload implementation shows a similar
relation to the speed of the SFTP put method across all test systems.

6.5.2 Test with increasing sizes of typed data

In Figure 6 the results of performing tests of the HDF5 appending upload method
with datasets of size of 254 MB, 508 MB and 1016 MB are shown. These sizes of
the datasets were based on the 1016 MB dataset used in the prior tests. This was
done to investigate how the upload speed of the HDF5 appending method behaves
with scaling data sizes. Batch sizes were kept as 400 frames for the upload tests of
all datasets, which results in different byte sizes of data batches. The upload speed
results include the time for loading data into memory and removing the correspond-
ing npy files. The tests were performed on the CAB computer as it was deemed the
most resourceful system and had stability with using a wired connection.

The boxplot in Figure 6 shows that the tests with 508 MB dataset were fluctu-
ating just over 100 Mb/s between the minimun and maximum and around 60 Mb/s
in the interquartile range. These are some big fluctuations that are likely generated
by variability in the connection, which could be caused by several issues as dis-
cussed earlier. The tests of the other datasizes were much more consistent, as their
more condensed boxplots show. A potential trend that shows is that the increase in
dataset size and hence increase in byte size of batches, results in an increase in the
Mean upload time. However, more datapoints with greater consistency are needed
to determine if this is a trend or merely caused by something such as bandwidth
variability.

With that said, it is expected that an increase in byte size of batches will improve
the upload speed, as the overhead of handling batches will be less significant and
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Boxplot of HDF5 appending upload speed with scaling dataset sizes

Figure 6: Boxplot of HDF5 appending upload via SFTP to ERDA with datasets of
254 MB, 508 MB and 1.016 GB of image data in RGB format from CAB computer.
Batch size for all tests was 400 frames. The orange lines depict the medians of the
test results and the dotted green lines the means.

a larger amount of data is uploaded continuously. Even though the tests with the
254 MB and 508 MB datasets transported one fourth and half of the bytes of the
1016 MB dataset respectively, results with all three datasizes show very similar mean
upload times. This lightly indicates that the implementation of the HDF5 append-
ing upload method when used with batches of smaller byte size, is able to perform
just as well as the SFTP put method when it comes to upload speed. In light of
this, it is expected that if byte sizes of batches get too small it can have a major
negative impact on upload speeds. It would be interesting to investigate how the
upload speed behaves for batches with even smaller byte sizes. This calls for further
testing of the FUR implementation to be done.

6.5.3 Tests with binary data

The results of tests using binary data with the HDF5 appending upload method can
be seen in figure 6. These tests were conducted using a dataset of 333.07 MB image
data consisting of 1800 frames in JPEG format. This dataset size was deemed fitting
to get a decent measure of upload speeds. Results from Figure 6 with a 254 MB
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dataset indicated that upload speeds of tests using one fourth the size of dataset in
the baseline tests, were able to achieve similar upload speeds to the baseline tests.
Hence, using a dataset that is one third of the size should not prove too problematic,
but using a binary dataset with a size of 1016 MB would have been optimal. The
chunk size for these tests was set to be equal to the batch size and the timing of the
results included time for loading data into memory and deleting temporary npy files.

Device / Measure Protocol Mean Upload time Standard deviation Mb/s

Embedded Linux System
SFTP
Append-Bin

115.02 s 0.35 24.28

Laptop
SFTP
Append-Bin

60.12 s 1.44 46.46

CAB computer
SFTP
Append-Bin

12.34 s 0.31 226.35

Table 6: Tests of HDF5 appending upload via SFTP to ERDA with dataset of 333.07
MB image data consisting of 1800 frames in JPEG format. This Table shows results
including time for loading data into memory and deleting temporary npy files

The results of figure 6 show that performing appending uploads with binary data to
the HDF5 file format is slower than both the baseline and typed data results. The
decrease in upload speed is likely caused by the introduced overhead of two factors.
The first factor is that storing binary data in chunks in the HDF5 file format is more
complicated due to the uncertainties of the heterogeneous data sizes, as explained
in earlier sections. The second factor is the additional work in turning of pipelining
for appending the last element of every batch and executing a file flush afterwards.
It is noteworthy that upload speeds are all consistently 22-25 percent slower across
all systems when compared to the baseline results. This indicates that the HDF5
appending upload method does introduce a slowdown compared to the put method,
but does so consistently at around 25 percent.

6.6 Test of other framework functionality

The functionality of the two other upload methods of FUR were also tested with all
systems to ensure that they worked. These tests were purely to test for functional-
ity, as both uploading methods simply consist of uploading files via SFTP or FTPS,
making them not too interesting. As for the upload method of uploading data files
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separately as-is, it is expected it will provide the lowest upload speed of the three
upload methods, as it has to perform the overhead associated with a file transfer
operation for every single data entry. As the size of data files grow towards 1016
MB, it is anticipated that the upload speed of the method will begin to resemble the
results from the baseline tests.

The upload method of packaging data batches in HDF5 files and uploading them
separately is expected to perform upload speeds very similar to the upload speed
of the HDF5 appending upload method, when both methods use SFTP, identical
data and batch sizes. It it anticipated that it will be a bit slower, as extra overhead
is introduced with transferring multiple files instead of just one. The advantage of
this upload method is that it is able to use FTPS, so this could possibly cause this
upload method to be faster than the HDF5 appending upload method.
Tests of using the GZIP compression filter with datasets for the HDF5 appending
upload method was also performed with all systems, but these tests were again only
performed to ensure that the feature worked. A reason for not going into detail
about encoding performance, is that encoding speeds are very system dependant, as
encoding is performed client side before data is transferred. Furthermore, the use
GZIP compression filters in FUR is simply using the h5py functionality, so no actual
implementation of compression filters has been made in this thesis. Therefore testing
and analyzing the use of compression filters would have close to nothing to do with
the FUR implementation but all to do with the h5py library.

6.7 Bottleneck analysis of HDF5 appending upload method

The results from this section indicate that the overhanging bottleneck of the FUR
implementation of the HDF5 appending upload method was the speed of the band-
width. This means that the implementation of the framework achieved its goal of
not acting as a bottleneck in the upload of data. Uploading binary data with the
HDF5 appending upload method did make the upload speed approximately 25 per-
cent slower, but results showed that this was consistent across all test systems, which
all used different bandwidth connections. This indicates that the speed of the band-
width connection was still the main bottleneck, as the upload speed kept increasing
with faster bandwith connections.

Generally, using SFTP for file transfers did introduce a minor slowdown in uploading
speed when compared to uploads done via FTPS, but using SFTP did not act as a
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significant bottleneck on the Laptop or CAB computer. However, the results of the
tests performed with the Embedded Linux system showed that FUR can be reliant on
SFTP installations. The upload speeds performed by the Embedded Linux system
with SFTP only managed approximately 50 percent upload speed when compared to
file uploads with FTPS on the same system. When this was combined with storing
binary data in the HDF5 format, it acted as a major bottleneck, slowing down the
upload speed approximately 65 percent compared to baseline tests performed with
FTPS. Further testing is needed to show if the upload speed of the system with
SFTP would improve with a faster bandwidth connection.

7 Discussion
This section critiques the test setup and discusses the advantages and limitations of
the design and implementation of FUR.

7.1 Critique of test setup

The tests and results provided in section 6 do provide some decent indications of
the performance of the implementation of the HDF5 appending upload method in
FUR. However, there are things that could be improved in the test setup in order to
better support the indications of the results.

The biggest point of critique is the low amount of repetitions in the test setup.
As mentioned, time and access was limited with the CAB computer resulting in a
low number of test repetitions, and tests on the other two systems were conducted
in a consistent manner. Ideally, more repetitions of the tests performed on the two
other test systems could have been done, in order to achieve a stronger foundation
for concluding upon the produced results.

Another point where the test setup could improve is to test a much wider range
of dataset and batch sizes. As mentioned in the the test section, it would be inter-
esting to see how smaller datasets and batch sizes affect the upload speed and at
what size point the upload speed becomes significantly slower. While it did seem
reasonable using a 1016 MB file for testing upload speeds, as the baseline results
were very close to the speed tests of the given bandwith connections, this file size is
still considered very small in the world of data exchange. Therefore, it would also
be interesting to perform tests with much bigger file sizes.
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7.2 Advantages

As the results section showed, the implementation of HDF5 appending upload method
in FUR proved to be able to match the upload speed of the SFTP put method. This
is an advantage in itself, as the HDF5 appending upload method can run concurrently
with data production to store produced data to a remote HDF5 file continuously.
This can result in saving time and resources by making efficient use of the time
during data capturing and by avoiding the need for formatting data to the HDF5
format on the remote storage solution. By not making use of post processing meth-
ods for merging uploaded data to the HDF5 format, such as done in the preproject
[4], the need for installing any software to handle processing on the remote storage
solution is removed. These advantages become amplified when used together with
other features of the FUR framework, such as performing cleanup of local data once
it has been uploaded.

If the FUR framework is run concurrently with data production, it is able to extend
the possible amount of captured data that can be stored, as FUR can perform con-
tinuous uploads and cleanup of the locally produced data. Furthermore, if cleanup
of local data is enabled and the upload speed of the chosen uploading method from
FUR is faster than the rate of data production, the amount of data that can be
stored will be limited by the disk storage available on the remote storage solution,
instead of being limited by the storage capabilities of the local system. This can
prove very usable when used with systems such as embedded systems connected to
digital measurement tools, as the memory and disk storage usually are very limited
resources of such systems.

It is also an important advantage that the test results indicate that the FUR im-
plementation scales with faster bandwidth connections. This along with the FUR
framework being able to work with remote storage solutions as long as they support
SFTP, makes for a general and seemingly efficient framework.

7.3 Limitations

The implementation and design of the FUR framework does not claim to be perfect
and therefore does come with its limitations that users should be made aware of. One
such limitation is that running functionality of FUR on a system concurrently to the
data capturing process can cause buffering, packaging and uploading of data to im-
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pact the data capturing process, if the given system does not have enough resources
available for running the framework efficiently in a separate thread or process. The
processing impacts of packaging and buffering never presented any bottlenecks, so
their impacts were not investigated. This is definitely a shortcoming and should be
investigated in future work, as this processing can have a big impact on low power
systems.

The current implementation of the HDF5 appending upload method will at some
point during runtime store a copy of data entries locally when it is packaged into npy
files. As of the current implementation, FUR packages a batch of data as soon as it
is available and then deletes the packaged batch after uploading it has completed.
This means that if cleanup of local data is not enabled to remove the initial data
files, and if the rate of data production and packaging are much higher than the
upload speed, this can cause FUR to put a lot of unnecessary stress on local storage
capabilities. Possible solutions to this problem are addressed in section 8.

The FUR framework also has its limitations when it comes to incoming data and
how it can stored in the HDF5 format. The HDF5 appending upload implementation
only works for chunked and resizable HDF5 datasets. This means that if contiguous
storage in a HDF5 dataset is wanted FUR does not provide a solution for this. As
explained in section 3, the FUR framework is designed to work with sequentially
named data, which might not fit all types of data capturing. A possible solution for
solving this could be a feature that sorts files by their creation timestamp. How-
ever, such a feature could also introduce some problems if ordering of the data is
important. An example being that if there is no guarantee that captured files from
a digital measurement tool are timestamped sequentially on the connected local sys-
tem, it could result in storing data out of order.

It is recommended that users of FUR accommodate themselves with chunking of
HDF5 datasets, as chunks have an impact on file size and speed of I/O operations.
The optimal chunk size for uses in data analysis might not be the same as the op-
timal chunk size for minimizing the size of the HDF5 file. Therefore, users should
analyze and base the chunk sizes of datasets on whether file size or I/O speed for
data analysis it the most import factor, before using FUR.
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8 Future work
This section discusses potential improvements of FUR.

8.1 Extending functionality of appending upload

As of now, the FUR implementation of the HDF5 appending upload method only
allows for creating a new HDF5 file locally with a single empty dataset, which then is
stored remotely and then appended to. A feature that could be introduced is to allow
for appending uploads to already existing remote HDF5 files, either by creating a
new dataset or possibly extending an existing dataset. It is expected that the upload
speed of this feature would match the upload speed of the current HDF5 appending
upload implementation, as the main difference is would be the need and location of
creating a new dataset. This feature is at the top of the list for future development
of the FUR implementation.

8.2 Optimize packaging and buffering in _runner functions

The process of buffering and packaging data has potential for optimization. This
has not been a major focus point in the current implementation of FUR, since local
I/O operations generally are much faster than bandwidth upload speed. However, if
bandwidth connections and file transfer protocols get to a point where local I/O can
potentially become a bottleneck, or FUR is used with a low power system, it will be
important to have this part of the FUR framework optimized.

An optimization idea could be that packaging of data into buffered files is started as
soon as any given data entries from a batch are available, instead of waiting until the
last file of a given batch becomes available. Gradually scaling the batch size based
on data production and upload rates could also be introduced, instead of keeping
batch sizes static.

Another idea to optimize the use of local storage capabilities could be to perform
a continuous analysis of the upload speed versus the rate of data production. This
analysis could help in guiding buffering and packaging, such that in situations where
data cleanup is not enabled, the local system does not end up storing packaged data
unnecessarily if its not needed immediately for upload. Alternatively, FUR could al-
low for the option of doing both packaging and uploading of the current data batch
in a single function, but warn users that this will likely reduce the speed of uploading
data wit FUR.
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8.3 Investigation of HDF5 appending upload with binary data

As mentioned in section 4, a further investigation is needed to pinpoint what causes
the need for temporarily turning off pipelining and executing a file flush, when
using binary data with the HDF5 appending upload method. Solving this this issue
could give an indication of whether transferring binary typed data can be just as
efficient as using typed data with the FUR framework.
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9 Conclusion
There is a need for efficient software to aid local systems connected to digital mea-
surement tools in uploading data to remote storage solutions. In order to address
this need this thesis presented the FUR framework.

The FUR framework is designed to help automate and effectivize packaging and
uploading data in the HDF5 file format to a remote storage solution, while also pro-
viding functionality for cleanup of local data. With a suitable hardware and network
setup, the FUR implementation allows for remotely stored HDF5 files, which have
been created with the framework, to exceed local storage possibilities of systems
connected to digital measurement tools.

A functioning version of FUR was implemented in Python 3. The details of the FUR
implementation were presented, along with challenges in optimizing the HDF5 ap-
pending upload method. The FUR implementation and its functionality was tested
across three separate systems with different operating systems, hardware specifi-
cations and network setups to help ensure that the framework works as a general
solution. The results of the performed tests work well to give preliminary indications
of the performance of the FUR implementation. However, more testing is needed
with a wider range of data sizes and higher number of repetitions in order to better
support the indications of the produced results.

The produced results indicate that the FUR implementation of the HDF5 append-
ing upload method with typed data is able to match uploading speeds of standard
file uploading methods. They also indicate that using binary data with the HDF5
appending upload method causes an slowdown approximate to 25 percent in upload
speed. Results were produced with systems using different bandwidth connections,
which indicated that the upload speed of the HDF5 appending upload method scales
with faster bandwidth connections. Therefore, FUR seems to be a well functioning
solution that can help local systems connected to digital measurement tools with
storing data on remote storage solutions.
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