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Abstract

Defective interfering particles or DIPs are viral mutants which interfere with

standard viruses in order to make new copies: a DIP, in fact, requires the

coinfection of a host cell by another virus, called helper virus, which provides

viral nucleic acid that the DIP lacks. This doubly-infected host cell will produce

a proportion of DIP copies and a proportion of helper-virus copies. We have

investigated whether it is best for a DIP species if the doubly-infected cells

produce mostly DIPs, mostly helper viruses or similar proportions of the two:

in fact, since the replication of the DIP species requires both DIPs and helper

viruses, it is not trivial what the best strategy is. We found that: when there is

no flux, the cells which produce DIPs increase the fastest whether they produce

DIPs and helpers in similar proportions or whether they produce mostly DIPs;

under slow dilution, the DIP-genome level in the system is low only if the

proportion of DIPs produced is very low or very high; under fast dilution, the

proportion of DIPs produced has to surpass a threshold for the DIP species

to survive. With a stochastic model, we verified that under slow dilution the

DIP species is more at risk when the DIPs are produced in either low or high

proportions: in this case, demographic stochasticity led the DIP species to

extinction more rapidly, compared to when helpers and DIPs are produced in

similar proportions.

A system of cells affected by two DIP species and two helper-virus species

sees two competitions: one between the two DIP species and one between the

two helper species. We studied how these competitions are affected by the

proportions of DIPs produced by the cells infected by a DIP and a helper: we

found that specific proportions determine a winning DIP species and a winning

helper species. However, if no winner is determined, the levels of free DIPs,

free-helper viruses and infected cells oscillate. The probability of extinction of

a DIP species driven by demographic stochasticity is affected by this oscillating

dynamics: this probability oscillates with the same frequency.

The simulation of a lattice of cells affected by a DIP species and a helper-virus

species, where the doubly-infected cells produce only DIPs and no helper,



showed the propagation of a leading front of helper infection followed by

a front of DIP infection. The DIP-infection front could not stop the helper-

infection front. Almost all cells ended up infected with both species; a small

minority ended up infected only by a DIP; an even smaller minority remained

uninfected. Whether or not some regions of the lattice were without cells, the

infection dynamics appeared almost identical.
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1
Introduction

1.1 What is a virus?

Viruses are obligate intracellular parasites [1], i.e. microparasites that can

only grow and reproduce inside host cells. After they infect a cell, they can

steer the cellular machinery to produce copies of the same virus.

A virus is made up of a DNA or RNA genome inside a protein shell called a

capsid. Some viruses also have an external membrane envelope [2].

Viruses are very diverse, and different viruses can infect different types of

hosts; there exist viruses that infect [2]:

• animal cells

• plant cells

• bacteria

• archaea

The viruses that infect bacteria or archaea are typically called bacteriophages

or simply phages.

In figure 1.1 are illustrations and micrographs of various types of virus.
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Figure 1.1.: Examples of viruses infecting different types of hosts and their structures.
(a) Tobacco mosaic virus (plant virus). (b) Adenovirus, (c) Influenza
virus (animal viruses). (d) Bacteriophage T4. Credit to [2] for the
illustration.

1.2 How do viruses operate?

Although viruses can be very diverse, they replicate following a general pattern

consisting of 5 steps [3]:

1. Attachment: The virus recognises and binds to a host cell via a receptor

molecule on the cell surface.

2. Entry: The virus or just the viral nucleic acid enters the cell.

3. Synthesis: The host cell copies the viral genome, expresses the viral

genes and makes new viral proteins.

4. Assembly: The host cell assembles new viral particles from the viral

genome copies and the viral proteins.

5. Release: The cell releases the newly formed viruses.

Figure 1.2 shows a visual representation of these 5 steps.
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Figure 1.2.: Simplified replicative cycle of a virus. The virus attaches to a cell, enters
it and releases its genome (attachment and entry). The host replicates
the viral genome and also makes new capsid proteins, which are encoded
in the viral genome (synthesis). Viral genomes and capsid proteins self-
assemble into new virus particles, which exit the cell (assembly and
release). Credit to [2] for the illustration.

1.3 Different host types and their viruses

As we mentioned above, a virus may infect animal cells, plant cells, bacteria or

archaea. The main difference between these cells is [2]:

1.3 Different host types and their viruses 5



• animal and plant cells are eukaryotic, i.e. they contain membrane-bound

organelles, including a nucleus which contains the cell genome;

• bacteria and archaea are prokaryotic cells, i.e. they do not contain any

membrane-bound organelle, so their genome is not surrounded by a

nuclear membrane.

Another difference is that prokaryotic cells typically have a diameter of

0.5 − 5µm, much smaller than the 10 − 100µm diameter of many eukary-

otic cells [2]. (As a comparison, viruses are even smaller, where their sizes

range between 20− 200nm [2].)

For the scope of this thesis, we illustrate the replication strategy of one type of

animal virus, the retrovirus, and the three replication strategies of bacterio-

phages.

1.3.1 Retroviruses and their replication strategy

Among the animal viruses are many strategies of viral replication. We will

focus on one type of virus: the retrovirus.

A retrovirus is an RNA virus which contains and encodes an enzyme called

reverse transcriptase: inside the host cell, this enzyme converts the viral RNA

into DNA, which will be incorporated into the cell DNA [4]. One example of a

retrovirus is HIV (Human Immunodeficiency Virus), a virus that causes AIDS

(Acquired Immunodeficiency Syndrome) [2].

The retroviral replicative cycle is the following. After a retrovirus enters a host

cell, its reverse transcriptase molecules catalyse the synthesis of viral DNA.

Next, the newly made viral DNA enters the cell’s nucleus and integrates into

the cellular DNA. The integrated viral DNA, called a provirus, never leaves

the host’s genome, remaining a permanent resident of the cell. Now that the

viral genome is integrated into the host’s genome, the host transcribes RNA

molecules and synthesises capsid proteins and reverse transcriptases and will

assemble them into new viruses. Finally, the cell will release the newly made

viruses [2]. In figure 1.3 is a representation of this process.
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Figure 1.3.: Simplified replicative cycle of HIV. The envelope enables the virus to
bind to receptors on the cell. The virus fuses with the cell’s membrane.
The capsid proteins are removed, releasing the RNA and reverse tran-
scriptases. The reverse transcriptases catalyse the synthesis of viral DNA
from the viral RNA. The viral DNA is incorporated as a provirus into the
cell’s DNA. Proviral genes are transcribed into RNA molecules, which
serve as genomes for progeny viruses, and capsid proteins and reverse
transcriptases are synthesised. New viruses are assembled and bud from
the host cell. Credit to [2] for the illustration.

1.3.2 The replication strategies of bacteriophages

Bacteriophages are the most understood of all viruses. Phages can replicate

with three different strategies:

1.3 Different host types and their viruses 7



• Virulent phages replicate only by a lytic cycle. During a lytic cycle, the

viral genes immediately turn the host cell into a phage-producing factory,

and the cell soon lyses (breaks open) and releases its virus progeny. An

example of virulent phage is the phage T4 which infects the bacterium

Escherichia coli [2].

• Temperate phages can use both a lytic cycle or a lysogenic cycle. The

lysogenic cycle allows replication of the phage genome without tearing

apart the host. Once the phage genome has entered the host, either the

lytic cycle or lysogenic cycle can be induced. During a lysogenic cycle,

the phage genome can be incorporated into the bacterial chromosome.

Once integrated into the bacterial chromosome, the viral genome is

called a prophage. (While a retroviral provirus never leaves the host’s

genome, a prophage instead leaves the host’s genome at the start of a

lytic cycle.) Every time the cell gets ready to divide, it replicates the

phage genome along with its own chromosome so that each daughter

cell inherits the phage genome. A single infected cell can give rise to a

large population of bacteria carrying the phage genome. This mechanism

allows temperate phages to propagate without killing the host cells on

which they rely. The term lysogenic means that the phage genome is

capable of generating active phages that lyse their host cells, i.e. that the

phage genome can be induced to initiate a lytic cycle. One example of a

temperate phage is the λ phage, which also infects E. coli [2].

• Chronic phages are non-lytic, i.e. they do not kill the infected host cell.

Infected host cells continue to grow and to divide indefinitely while at

the same time assembling and secreting viral particles. Chronic phages

and retroviruses are comparable, in that the infected host cell produces

and releases new copies of the virus without being destroyed, as instead

occurs at the end of the lytic cycle of a virulent or temperate phage. An

example of chronic phage is the phage M13, which also infects E. coli
[5].
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Figure 1.4.: The lytic and lysogenic cycles of the temperate phage λ. After penetrating
the cell and circularizing (this circle of DNA is called plasmid), the λ DNA
can immediately initiate the production of a large number of progeny
phages (lytic cycle) or integrate into the bacterial chromosome (lysogenic
cycle). Credit to [2] for the illustration.

Figure 1.5.: Simplified replicative cycle of the chronic phage M13. After the viral
genome has entered the cell and has formed a plasmid, new copies of
the phage are created and released from the E. coli without lysis of the
cell. Credit to [6] for the illustration.

1.3 Different host types and their viruses 9



1.4 Special types of viruses: defective
interfering particles and pirate phages

Defective interfering particles, or DIPs, are animal or plant viral mutants that

cannot hijack cellular machinery on their own. The defect of the DIPs consists

in the lack of some of their nucleic acid. They must be complemented by a

standard virus, which we call helper virus. DIPs replicate at the expense of this

helper virus, thus interfering with it, and operate as parasites of viruses [7].

The interference by DIPs is observed as the hampering of the absolute number

of standard virus copies created by hosts infected by both the DIP and the

standard virus, compared to the number created by hosts infected only by the

standard virus.

HIV and the influenza virus are examples of virus that can be a DIP [8, 9].

When it comes to influenza, for example, the majority of influenza viruses are

non-infectious [10]. As Von Magnus demonstrated in 1954, the non-infective

influenza viruses can hamper the replication of the infectious viruses [10].

Because of the significant lessening of infectious virus production caused by

DIPs, they have been suggested as antiviral agents, to be an alternative to

vaccination or treatment with other antivirals [10]. For example, DIPs were

proposed as a way to control the HIV/AIDS pandemic [9]. These engineered

DIPs are called therapeutic interfering particles or TIPs and have been pre-

dicted to reduce viral levels in patients and viral transmission events across

populations [11].

Pirate phages, also known as satellite phages, are similar to DIPs but are

instead bacteriophages. Pirate phages infect bacteria and hijack standard

phages, which we call helper phages.

The term piracy refers to the fact that the so-called pirate phages use the

structural proteins encoded by the helpers for the assembly of their own copies

[12, 13]. When the pirate genome is alone in the host, the host does not

produce new copies of the pirate phage. However, suppose the helper phage

genome is also present in the host: in that case, the pirate can take advantage

of the helper phage structural proteins to make new pirates, thus interfering

with the production of copies of the helper.

There exist pirates of both temperate phages and chronic phages. If we con-
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sider the pirate phage of a temperate phage, when the pirate genome is alone

in the host, it behaves as a prophage.

The best-studied example of phage piracy is that of the pirate P4 and the tem-

perate helper P2 [12]. The P2 phage encodes most of the proteins that make

up the P4 capsid: the P4 genome lacks the information for these structural

proteins, but also for the lysis of the host cell [14, 15].

If we instead talk about chronic phages, satellite phages can appear in stocks

of phage M13 [16].

1.5 Motivations behind this thesis

DIPs are attractive because of their potential as alternative antiviral agents.

However, what is the best strategy for a DIP species to disrupt the production

of helper viruses? Let us focus on the following quantity: the probability that a
newly produced virus, made by a cell infected by both a DIP and its helper, is a new
DIP. If this probability is close to 0, then the production of DIPs will be low;

at the same time, if this probability is close to 1, the production of helpers by

these doubly-infected cells will be low, and the DIPs need helpers to produce

new DIP copies. Thus, both low and high probability appear disadvantageous

for the DIP species, for two different reasons. Then is there an optimal range

of values of this probability for the propagation of the DIP? If there is,

what is it? And more in general, how do the DIP and helper population

dynamics change with this parameter?

Now, we can imagine a system of cells and viruses which is replenished with

new, uninfected cells more or less rapidly and the cells and viruses are diluted

more or less rapidly. Does the optimal range of values for the probability

vary under such varying flux conditions? And how do the population

dynamics change?

We can also imagine a system of cells and viruses with not only one DIP species

and one helper species, but two closely-related DIP species and two closely-

related helper species with superinfection exclusion: superinfection exclusion

means that the first infection of a cell by a DIP prevents the infection by the

other DIP (and analogously for the two helpers). What are the population

dynamics, in this different scenario?

1.5 Motivations behind this thesis 11



Finally, how might the propagation of a DIP species and its helper species

look like in space?

We try to answer these questions throughout this thesis.

1.6 Outline of the thesis

We performed a qualitative study of the population dynamics of DIPs and

helper viruses infecting the same animal cells. Our models do not apply

precisely to the case of pirate phages and helper phages infecting the same

bacteria, because cell growth is not contemplated. However, the models can

still be informative for the context of the interference between pirate and

helper phages.

The thesis is divided into 4 parts. Each part studies different types of models:

1. well-mixed models with 1 DIP species and 1 helper-virus species;

2. a well-mixed model with 2 superinfection-exclusive DIP species and 1

helper-virus species;

3. well-mixed models with 2 superinfection-exclusive DIP species and 2

superinfection-exclusive helper virus species;

4. a spatial model with 1 DIP species and 1 helper-virus species.

Parts 1 and 3, where we study well-mixed models, are themselves divided into

three sections.

a) First, we use a deterministic model where we do not consider influx or

outflow of the elements in the system.

b) Next, we use another deterministic model with an inflow of new, unin-

fected cells and the dilution of all elements of the system.

c) Finally we have a stochastic model with an inflow of uninfected cells and

the dilution of the elements.
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In part 2, we use only a deterministic model with an inflow of new, uninfected

cells and the dilution of all elements of the system.

The well-mixed deterministic models (models 1a, 1b, 2, 3a, 3b) are used

to investigate the dynamics between cells, DIPs and helper viruses. The models

describe systems of infinite volume with ordinary differential equations.

The well-mixed stochastic models (models 1c, 3c) are used to investigate

the extinction of viruses. The models describe systems of finite volume that

advance according to the Gillespie algorithm.

The spatial model (model 4) is used to investigate the spreading of a DIP

species and a helper-virus species. This is an agent-based model of a 2D lattice

of cells.

1.6 Outline of the thesis 13





2The interference of one DIP
species with one
helper-virus species

2.1 For a rapid IHP increase, high DIP
production is not necessary

The first model we consider is deterministic, and it is described by ordinary

differential equations. The model is of a system of host cells that can be

infected by a DIP and by a helper virus. This system has no flux: no element

enters the system, and no element is removed from the system.

2.1.1 Description of the elements in the model and
their interactions

Here we describe the cells and viruses in the model and their interactions. The

elements of the system are described as concentrations. The free viruses are

described by

• P , the concentration of free DIPs

• H, the concentration of free helper viruses

• V = H + P , the concentration of all free viruses

The cells are described by

• B, the concentration of uninfected cells

15



• IP , the concentration of cells infected only by the DIP

• IH , the concentration of cells infected only by the helper

• IHP , the concentration of cells infected by both the DIP and the helper

• T = B + IH + IP + IHP , the concentration of all cells

The cells and viruses interact in various ways. One or more parameters

accompany each type of interaction.

• Absorption of a virus by a cell: each cell can absorb any virus. If a cell

is not already infected by the type of virus it absorbed, then it becomes

infected by it. The rate of absorption is η

 1
concentration · time

.

• Production of a virus by a cell: the cells IH can produce helper viruses;

the cells IHP can produce both DIPs and helper viruses. When an IHP

produces a new virus, it is a DIP with probability f ; it follows that the

probability for this newly made virus to be a helper is 1− f . The rate of

virus production is β

 1
time

.

2.1.2 The ODEs of the model

We start with an initial concentration of uninfected cells, free DIPs and free

helper viruses. We then let the system evolve.

The equations describing the evolution of the system are

dB

dt
= −ηV B (2.1)

dIP

dt
= ηPB − ηHIP (2.2)

16 Chapter 2 The interference of one DIP species with one helper-virus species



dIH

dt
= ηHB − ηPIH (2.3)

dIHP

dt
= ηPIH + ηHIP (2.4)

dP

dt
= βfIHP − ηPT (2.5)

dH

dt
= β [IH + (1− f)IHP ]− ηHT (2.6)

We can simplify the model by rescaling it. We can rescale time and concentra-

tion by using the parameters η and β.

We define

t′ ≡
t

1/β (2.7)

B′ ≡
B

β/η
(2.8)

and so on for all other concentrations.

The unit of t′ is

1
β

(2.9)

while the unit of the concentrations primed is

β

η
(2.10)

2.1 For a rapid IHP increase, high DIP production is not necessary 17



The parameters η and β have to be rescaled too, and they are obviously

substituted by

η′ ≡
η

η
= 1 (2.11)

β′ ≡
β

β
= 1 (2.12)

(The reader can find in the appendix A examples of values of the parameters η

and β found in the literature for various viruses.)

Now we drop the index ′ for simplicity. The equations therefore become

dB

dt
= −V B (2.13)

dIP

dt
= PB −HIP (2.14)

dIH

dt
= HB − PIH (2.15)

dIHP

dt
= PIH +HIP (2.16)

dP

dt
= fIHP − PT (2.17)

dH

dt
= [IH + (1− f)IHP ]−HT (2.18)

18 Chapter 2 The interference of one DIP species with one helper-virus species



Thus now f is the only parameter.

As we said earlier, we start with only uninfected cells and free DIPs and

helper viruses. As we can see from the equations, all cells are doomed to

become infected by both a DIP and a helper.

2.1.3 Results

Let us focus on the DIP and the parameter f . We wanted to investigate which

values of f are better for the DIP: is it better for the DIP if f is close to 0; close

to 1; or maybe about 0.5? I.e., is it better for the DIP if the IHP cells produce

more DIPs, more helper viruses or balanced amounts of the two? It is not

trivial to identify which strategy is better:

• if f is close to 0, the IHP produce mainly helper viruses, and it is good

for the DIPs if there are plenty of helpers, but this comes at the expense

of the production of DIPs themselves;

• if f is close to 0, the IHP produce mainly DIPs, and it is good if many

DIPs are produced, but this comes at the expense of the production of

helper viruses.

So what is better for the DIPs? If the IHP cells produce mostly DIPs; if

they produce mostly helpers; or if they produce DIPs and helpers in similar

proportions?

(Obviously we did not consider f = 0, as in that case the IHP cells produce no

DIP.)

The way we measure the quality of the parameter f from the perspective of

the DIP is by measuring how fast 90% of the cells become IHP : as we said, all

cells are going to become IHP , and the IHP cells are the "mothers" of the DIPs,

so the sooner the cells become IHP , the sooner all cells produce DIPs.

2.1 For a rapid IHP increase, high DIP production is not necessary 19



The initial concentrations of the cells are

• B(t = 0) = 1

• H(t = 0) = 0.5× 10−7

• P (t = 0) = 0.5× 10−7

• all other concentrations are zero at t = 0

We let the system evolve until it reached saturation. Once saturation was

reached, we imagined taking a small sample of the saturated system, precisely

1 part in 107, and injecting it onto another system made of only uninfected cells

(i.e. type-B cells). Then the second system would evolve and reach saturation

itself. We can see an example of the time evolution of the concentrations in

figure .

The time when we start measuring how long it takes for 90% of the cells to

become IHP is the moment of injection. We did this because we wanted the

IHP cells to drive the dynamics. In fact, the droplet we inject onto the second

system is made of IHP with P and H at equilibrium between absorption and

production by the IHP cells.

We call the length of time we measure T90%.
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(a)

(b)

Figure 2.1.: Time evolution of the concentrations of cells and viruses. The parameter
f here is f = 0.3. The plots show the concentrations in the first system
up until t = 150; then they show the concentrations in the second system.
At t = 150 the first system is saturated, and at that moment the injection
onto the second system is done. t = 150 is an arbitrary time that we
chose once the first system was saturated. (a) Cell concentrations vs
time. (b) Virus concentrations vs time.

T90% has been studied for f ∈ ]0, 1]. We see the result of this study in figure

2.2.
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(a) (b)

Figure 2.2.: T90% vs. f . (a) All the values of T90% we obtained. (b) A closer look at
the minimum.

There are two distinct behaviours for T90%, as we can see in figure 2.2a. In the

first ∼ 20% of the domain of f , T90% varies rapidly and spans two orders of

magnitude; in comparison, in the rest of the domain T90% is almost constant.

One thing worth noting is that T90% increases again very close to f = 1, but

not significantly. A conclusion we can make is that low production of DIPs

(low f) is worse than low production of helpers (high f) when thinking about

the growth of IHP . Another conclusion regards the fastest growth of these

cells: the minimum of T90% is for f ' 0.93, i.e. very close to 1 (figure 2.2b);

therefore, the IHP prefer a low production of helpers (high f), instead of a

similar production between helpers and pirates (f ' 0.5). This may be because

the IH already provide helpers.
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2.2 Cell-inflow and dilution interfere with
the DIP-helper interaction

Next, we look at another deterministic model. This model is an expansion of

the previous model: now there is also an influx of uninfected cells and the

dilution of the viruses and cells. We studied this model because the influx

of cells and the outflow of the components must enforce a dynamic balance

between the components of the system. The components of the system, i.e.

the cells and the viruses, are the same as in the previous model. Once again,

among the processes, we have the absorption of a free virus by a cell and the

release of a virus by a cell. The two processes are described by the rates η and

β once again. In order to describe the addition of cells of type B, we introduce

the rate of influx of B-type cells C

cells
time

. To describe the outflow of the

components of the system, we introduce the rate of dilution γ

 1
time

.

2.2.1 The ODEs of the model

The ODEs which describe the time evolution of the system are

dB

dt
= C − ηV B − γB (2.19)

dIH

dt
= ηHB − ηPIH − γIH (2.20)

dIP

dt
= ηPB − ηHIP − γIP (2.21)

dIHP

dt
= ηPIH + ηHIP − γIHP (2.22)
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dH

dt
= β [IH + (1− f)IHP ]− ηHT − γH (2.23)

dP

dt
= βfIHP − ηPT − γP (2.24)

Once again we can rescale the model just like before by introducing t′ (2.7)

and B′ (2.8) and so on for the other concentrations. This means that the

parameters η and β are substituted again by η′ = 1 (2.11) and β′ = 1 (2.12),

while C and γ are substituted by

C ′ ≡
C · η
β2 (2.25)

γ′ ≡
γ

β
(2.26)

Once again, we remove the index ′ for simplicity. The rescaled equations are

dB

dt
= C − V B − γB (2.27)

dIH

dt
= HB − PIH − γIH (2.28)

dIP

dt
= PB −HIP − γIP (2.29)

dIHP

dt
= PIH +HIP − γIHP (2.30)

dH

dt
= [IH + (1− f)IHP ]−HT − γH (2.31)
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dP

dt
= fIHP − PT − γP (2.32)

Thus now we have 3 parameters: C, γ and f .

Our question is: under different flux conditions, does the same value of

f affect the system differently?

Before we look at the results of the study, we need to define two quantities.

• We define the DIP genome or P genome as gP ≡ P + IP + IHP . It is the

total concentration of cells and viruses containing the genome of the DIP.

• Analogously, we define the helper genome or H genome as gH ≡ H +
IH + IHP . This is the total concentration of cells and viruses containing

the genome of the helper virus.

gP and gH are useful quantities to study the disappearance of the DIP or the

helper from the system. In this model, if one of the two genomes reaches

the value 0, then the corresponding virus cannot come back and it is extinct,

because the only thing that enters the system is uninfected cells, not viruses.

We used initial conditions just like in the previous model, i.e. only uninfected

cells, DIPs and helper viruses are present at the start. Given a combination of

the parameters C, γ and f , we let the system evolve.

The initial conditions are

• B(t = 0) = 1

• H(t = 0) = 0.5× 10−7

• P (t = 0) = 0.5× 10−7

• all other concentrations are zero at t = 0
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2.2.2 Results

We can see an example of the time evolution of the system in figure 2.3. As

it turns out, the components reach a steady-state (except for the case f ' 1,

which we will look at later).

(a)

(b)

Figure 2.3.: Example of evolution of the system. Here the parameters are f = 0.1,
C = 0.1, γ = 0.01 (a) Time evolution of the cell levels. (b) Time evolution
of the virus levels.
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What we did was studying the steady-state concentrations of the genomes

gP and gH , and also of the viruses and of the cell types, whilst scanning the

parameters C, γ and f . We scanned

• f in the interval ]0, 1[

• C and γ in the interval [0.01, 1]

First, we look in figure 2.4 at the steady-state gP and gH levels for three values

of f : 0.1, 0.5, 0.9.
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(a)

(b)

(c)

Figure 2.4.: Steady-state levels of gP and gH for three values of the parameter f : (a)
f = 0.1; (b) f = 0.5; (c) f = 0.9.
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We can observe that with intense dilution, i.e. high γ, the two genomes gener-

ally disappear.

With low f , f = 0.1 in figure 2.4a, part of the (C, γ) parameter space sees the

extinction of the DIP and the survival of the helper. Let us focus our attention

on this region of the (C, γ) parameter space, but let us use f = 0.9 (figure

2.4c). The same region does not give the extinction of the DIP. And if we

compare figure 2.4c with figure 2.4b, we can see that the region of survival of

the DIP (and of the helper) is pretty much the same. Thus, it would appear

that, for the DIP, f ≥ 0.5 is better than f < 0.5.

Let us now consider two specific points of the (C, γ) parameter space:

• (C, γ) = (0.1, 0.01) - Here the DIP does not go extinct for f = 0.1 or f = 0.9.

• (C, γ) = (0.1, 0.2) - Here C is the same, but the dilution rate γ is higher,

and the DIP goes extinct for f = 0.1 but not for f = 0.9.

We want to look at how the steady-state levels of the two genomes change

with the parameter f in these two points. We see the results in figure 2.5.

2.2 Cell-inflow and dilution interfere with the DIP-helper interaction 29



(a)

(b)

Figure 2.5.: The steady-state levels of the two genomes vs f , in both cases with
C = 0.1, but with two different dilution rates γ. (In figure B.2 in the
appendices we show the steady-state levels of only the infected cells vs
f for the two dilution rates.) (a) γ = 0.01 (slower dilution) (b) γ = 0.2
(faster dilution).
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• With slower dilution (figure 2.5a) f ' 0 and f ' 1 both lead to low

levels of gP , while only f ' 1 leads to a low level of gH . In the rest of

the domain of f , the two genome levels are consistently ' 10, and they

have the same value for f ' 0.5.

• With faster dilution (figure 2.5b), for f up to ∼ 0.3, the DIP goes extinct;

instead, f ' 1 is not a problem either for the DIP genome or the helper

genome. Also, the two genome levels do not cross at f ' 0.5, but at

f ' 0.8.

Now we will try to explain why f ' 1 does not lead to a drop of the two

genome levels when the dilution is faster.

• The IH cells produce only helpers.

• The IHP cells mostly produce DIPs and very few helpers, because f ' 1.

• To obtain IH , only one "step" is necessary: B +H → IH .

• Instead, to obtain IHP , two "steps" are necessary: B +H → IH and then

IH + P → IHP ,

or alternatively B + P → IP and then IP +H → IHP

The faster dilution hinders the processes of the system because it removes cells

and viruses which could interact with one another. Because the IHP formation

requires two steps, instead of the only step necessary to form IH , the IHP
formation is disadvantaged compared to the IH formation. This disadvantage

indirectly hinders the creation of DIPs. Thus, a faster dilution balances a high

value of f : in fact, with faster dilution (figure 2.5b) not all cells become IHP
before they are diluted; instead, with slower dilution (figure 2.5a), the cells

have time to become IHP before they are diluted, so the IHP cells become

the dominant type of cells. This implies that with slower dilution, the IHP
cells are the predominant makers of helpers, whilst the IH do not have much

influence in the helper production. There is symmetry in the productions of

DIPs and helpers because it is essentially only the IHP cells to produce both

of them; so the two steady-state genome levels cross at f ' 0.5. Instead,

with faster dilution, the IH cells have a bigger role in the helper production,

so the symmetry in the productions of DIPs and helpers disappears: the two
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steady-state genome levels cross at a higher f , f ' 0.8. The IHP cells need to

make more DIPs than helpers in order to balance the helper production by the

IH cells and for the two genome levels to be equal.

If we break down the steady-state genome levels seen in figure 2.4 into

the distinct levels of viruses and infected cells, we find (see figure B.1 in

appendices) that the steady-state genome is mostly made of

• IHP and IH for f = 0.1

• IHP for f = 0.5

• IHP and IP for f = 0.9.

Now let us instead break down the steady-state genome levels shown in figure

2.5 into individual types of virus or cell. Once again, we are looking at a case

of slower dilution and one of faster dilution. This breakdown is in figure 2.6.

• In the case of slower dilution (figure 2.6a), IHP is the dominant type

of cell if f 6= 0 and f 6= 1. If f ' 0 and f ' 1, IH and IP become the

dominant cells respectively. We can see this even better in figure B.2a.

• In the case of faster dilution (figure 2.6b), where the DIPs survive (f &

0.3), IH and IP maintain levels similar to that of IHP for the reason

described before, i.e. the faster dilution hinders the formation of the

more complex species IHP . We can see even better the similar levels of

these species in figure B.2b.
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(a)

(b)

Figure 2.6.: Steady-state levels of the viruses and infected cells vs f , with two
different rates of dilution γ. C is the same in the two cases. (a)
(C, γ) = (0.1, 0.01) (slower dilution). (b) (C, γ) = (0.1, 0.2) (faster dilu-
tion). In figure B.2 in the appendices is a closer look at the levels of the
infected cells.
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2.2.3 What if the IHP cells produce only DIPs?

Let us now consider the special case f = 1. If f = 1, new helper viruses are

produced only by the IH cells, and the IHP cells only make DIPs. As we just

saw, f ' 1 allows for the survival of the DIPs if the dilution is fast enough.

One more thing we found was that in a region of the (C, γ) parameter space,

the levels of viruses and cells oscillate. Let us take a look at this.

While studying this model, we saw that the levels in the system usually reach

a steady-state. However, the levels may oscillate instead. We noticed that this

occurred for f ' 1 when there is a slow influx of cells and slow dilution of

cells and viruses. More precisely, when f = 1, we saw oscillations for

• C . 3× 10−2

• γ . 3× 10−2

In figure 2.7 we see, for C ∈ [0.01, 1] and γ ∈ [0.01, 1], the region of the (C, γ)
parameter space that gives oscillations when f = 1.

34 Chapter 2 The interference of one DIP species with one helper-virus species



Figure 2.7.: In figure 2.7f, in magenta is the (C, γ) region that gives oscillation of the
virus and cell levels, and in cyan is the region which gives a steady-state.
In figures 2.7a-e are the steady-state levels when there is a steady-state,
and the average levels when the levels oscillate. There is no discontinuity
between the steady-state levels and the average levels. Also, the region
with oscillations is a region of low average IHP and IH , i.e. the makers
of DIPs and helpers respectively.

In figure 2.8 is an example of oscillating levels (the parameters are (C, γ) =
(0.01, 0.03)).

2.2 Cell-inflow and dilution interfere with the DIP-helper interaction 35



(a)

(b)

Figure 2.8.: Oscillating levels of cells and viruses. (C, γ) = (0.01, 0.03). (a) Cell
concentrations. (b) Virus concentrations.

Let us try to explain why the levels oscillate. We will start from a trough of

IHP .
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• Because IHP is low, few P are produced.

• IH is not much lower than IHP . These cells produce H viruses, which in

turn transform B cells into more IH cells.

• At the same time, some H viruses produced by IH turn some IP into IHP ;

this reaction H + IP → IHP occurs more frequently than the reaction

H +B → IH because there are more IP cells than B cells.

• The IHP surpass the B: now the absorption of H by IHP becomes more

frequent than the absorption of H by B. Thus the reaction H +B → IH

is neutralised, and IH decreases, also because the IHP are producing P ,

which turn IH into IHP .

• IHP increases due to the reaction H + IP → IHP until the IH become

very low.

• Once IH has become very low, the formation of IHP becomes rare because

the few IH produce few H, which could transform IP into IHP .

• So, the dilution of IHP becomes more frequent than its formation and

IHP starts to decrease.

• With lower IHP and IH , the B cells are infected less, so B manages to

grow.

• Eventually, B becomes high enough compared to IP and IHP : the B

cells become easier targets for the H produced by the IH , and more and

more B are transformed into additional IH . So now we are back at the

beginning.

A scheme of these upregulations and downregulations is in figure 2.9.
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(a)

(b)

Figure 2.9.: Upregulations and downregulations between some of the components
of the system (a) When the levels of IH and IHP are comparable, IH
manages to increase thanks to the positive feedback loop between IH and
H. At the same time, IHP increases. (b) Once the level of IHP is high
enough, it downregulates the level of H, IH and B, which later leads to
a decrease of IHP itself due to negative feedback loops. Eventually, IHP
has decreased so much that IH can increase again.
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2.3 Under low dilution, the DIP and helper
species are safest when produced in
similar proportions

The models we have considered so far assumed that the volume of the system

was infinite: this way, the cells and the viruses, which are discrete quantities,

can be treated as continuous quantities through their concentrations.

However, if we choose to study a system of finite volume, the model has to

change: in fact, now the concentrations are not continuous quantities any

longer. If the volume of the system is finite, we should study the absolute

amounts of the cells and viruses, and these are discrete quantities.

Now that we want to study a system of finite volume, we have to take one

more thing into account: now we cannot ignore the effects of noise, more

precisely demographic stochasticity. Demographic stochasticity describes the

random fluctuations in a population’s size occurring because each person’s

birth and death is a discrete and probabilistic event. Demographic stochasticity

tends to average out in large populations and has a greater impact on small

populations [17–19]. Now, we did not study people, but cells and viruses:

thus

• the births correspond to the introduction of new uninfected cells and

release of new viruses by cells, while

• the deaths correspond to the dilution of cells and viruses and absorption

of viruses by cells.

2.3.1 The new stochastic model

Let us now look at the details of the model. As we said, we do not use

concentrations any longer, but absolute amounts; therefore we define the

quantities below.

• P̃ : number of DIPs

• H̃: number of helper viruses
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• B̃: number of uninfected cells

• ĨP : number of cells infected by the DIP only

• ĨH: number of cells infected by the helper virus only

• ĨHP : number of cells infected by both types of virus.

Now that we have introduced the components of the system let us focus on

the processes that can happen. Previously, ODEs described the time evolution

of the system; we cannot do that any longer, because now the system is finite

and the components are in finite amounts. The Gillespie algorithm [20] now

handles the time evolution of the system. The rates for the Gillespie algorithm

derive from the addends of the ordinary differential equations 2.27-2.32.

Below we list these rates and their processes, which we indicate as chemical

reactions; we wrote the rates on top of the reaction arrows. Note that the

rates are affected by the volume v of the system, because the variables are not

concentrations like before, but absolute amounts.

• Introduction of one uninfected cell

∅ C · v−−→ B̃ (2.33)

• Absorption of a virus by a cell

P̃ + B̃
η/v · P̃ · B̃−−−−−−→ ĨP (2.34)

H̃ + B̃
η/v · H̃ · B̃−−−−−−→ ĨH (2.35)

P̃ + ĨP
η/v · P̃ · ĨP−−−−−−→ ĨP (2.36)

H̃ + ĨP
η/v · H̃ · ĨP−−−−−−→ ĨHP (2.37)
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P̃ + ĨH
η/v · P̃ · ĨH−−−−−−→ ĨHP (2.38)

H̃ + ĨH
η/v · H̃ · ĨH−−−−−−→ ĨH (2.39)

H̃ + ĨHP
η/v · H̃ · ĨHP−−−−−−−→ ĨHP (2.40)

P̃ + ĨHP
η/v · P̃ · ĨHP−−−−−−−→ ĨHP (2.41)

• Production of a virus

ĨHP
f · β · ĨHP−−−−−→ ĨHP + P̃ (2.42)

ĨHP
β · ĨH + (1− f)β · ĨHP−−−−−−−−−−−−−→ ĨHP + P̃ (2.43)

• Dilution of a virus or cell

P̃
γ · P̃−−→ ∅ (2.44)

H̃
γ · H̃−−→ ∅ (2.45)

B̃
γ · B̃−−→ ∅ (2.46)

ĨP
γ · ĨP−−−→ ∅ (2.47)

ĨH
γ · ĨH−−−→ ∅ (2.48)
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ĨHP
γ · ĨHP−−−−→ ∅ (2.49)

Once again, we rescale the system. We redefine t′ (2.7) and define v′

v′ =
v

η/β
(2.50)

The parameters are rescaled according to (2.11) (η′ = 1), (2.12) (β′ = 1),

(2.25) (C ′), (2.26) (γ′). We drop the index ′ for simplicity.

Thus now we have 4 parameters: C, γ, v and f . What we wanted to do was

investigate which values of f are best for the DIPs in this type of system, where

demographic stochasticity plays an important role. We thus fixed the three

remaining parameters. C and γ are C = 0.1 and γ =
1

300 (we used a dilution

rate lower than those scanned in section 2.2 so that the dilution has little

interference with the dynamics between cells and viruses). We will look at the

chosen value of v in a moment: first, we will discuss the initial conditions for

this model.

We wanted to focus on the effects of stochasticity on the system: therefore

we used initial conditions that reflect dynamic-equilibrium levels in a system

of infinite volume. So the initial amounts are the product of the steady-state

concentrations of the infinite-volume system times the volume of this system,

rounded to the nearest integer. The steady-state concentration derive from the

model in section 2.2. We chose our volume v so that the initial amounts would

be low, and the effect of the noise significant. Our choice was

v = 0.33. (2.51)

In figure 2.10 are the product of v times the infinite-volume steady-state

concentrations, and their roundings, for a series of values of f :

f ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99} (2.52)
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(a)

(b)

Figure 2.10.: v times the infinite-volume steady-state concentrations, and their round-
ings to the nearest integer, i.e. the initial amounts for this stochastic
model. (a) Initial amounts of DIPs and helper viruses. v times the
infinite-volume steady-state virus concentrations are < 0.5 every time.
Therefore the initial amounts of viruses will be 0. (b) Initial amounts
of cells. The initial amounts of cells infected by only one virus are 0 for
some values of f .
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The list of initial amounts of cells and viruses is in table B.1 in the appendices.

The initial state includes

• only ĨHP for 0.1 ≤ f ≤ 0.9

• mostly ĨHP with some ĨH if f < 0.1

• mostly ĨHP with some ĨP if f > 0.9.

An example of time evolution of the system is in figure 2.11 (f = 0.1).

Figure 2.11.: An example of time-evolution of the numbers of viruses and cells. Here
f = 0.1. The amounts are plotted every 100 seconds.
The oscillation due to stochasticity of ĨHP are about the initial amount
ĨHP,0, amount which reflects the dynamic equilibrium of the infinite-
volume system. The other initial amounts were 0 (see table B.1).

As we said, we want to study what values are better for the DIPs in this kind

of system. However, how do we measure how good the value of f is for

the DIP? By studying the extinction of the DIP itself. This system has low

amounts, and the demographic stochasticity could lead the DIP to extinction.
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We wanted to see how differently the stochasticity would lead the DIP to

extinction depending on the value of f , so this is what we studied.

2.3.2 Results

In figure 2.12 is an example of time evolution of the system with extinction

of the DIP species. (In the appendices, with figure B.3 the reader can see an

example of time evolution where the DIP and the helper species go extinct

simultaneously).

Figure 2.12.: Example of time evolution of the system with extinction of the DIP. In
this example f = 0.1.

We let the system evolve according to the model until the discrete DIP genome

g̃P

g̃P ≡ P̃ + ĨP + ĨHP (2.53)

reached the value 0.

We define TP as the time of extinction of the DIP. We measured it with 40000

runs of the model and studied its statistics. This was done for each value of f

listed in (2.52).
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Let us look at an example of statistics of TP : in figure 2.13 are the statistics of

TP for f = 0.5.

Figure 2.13.: Statistics of TP with 40000 iterations of the model. Here f = 0.5.
The vertical scale is logarithmic. The columns represent the frequency
density of the times in the bins, i.e. the frequency normalised
by (bin width)×(total number of events).

For each value of f we considered, TP is Poisson-distributed, i.e. TP follows

the decaying-exponential distribution

h(TP ) = rP · exp(−rPTP ) (2.54)

We can find the rate rP of the distribution with a linear fit of the logarithms of

the frequency densities. The fitting function is

l(TP ) ≡ log(h(TP )) = log(rP )− rPTP (2.55)

So we searched rP , i.e. the rate of disappearance of the DIP for the already

mentioned values of f (list (2.52)). The results are in figure 2.14.
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Figure 2.14.: rP vs. f

rP is consistently ' 2 × 10−6 in the range 0.1 ≤ f ≤ 0.9, while it increases

rapidly and significantly as f approaches 0 and 1.

rP shows symmetry around f = 0.5. Thus the rate of extinction of the DIP is

the same whether the probability f that the IHP just produced a DIP has a

certain value or the probability 1− f that the IHP just produced a helper virus

has the same value.

It is possible that the helper virus goes extinct before the DIP. In the appendices

(figure B.4), we show the example of a system where this occurs.

Thus, during the 40000 system simulations for each value of f , we recorded

how frequently the helper went extinct before the DIP, and also the time when

the helper went extinct, which we call TH .

Does the value of f affect how frequently the helper goes extinct before the

DIP does? What is the distribution of TH? Moreover, how does it depend on f?

In figure 2.15 is the relative frequency that the helper goes extinct before or

simultaneously as the DIP, for each value of f . We call this relative frequency

R.
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Figure 2.15.: The relative frequency R vs. f . R is the fraction of times when the
helper virus goes extinct before or simultaneously as the DIP in the
40000 simulations.

The relative frequency R monotonically increases with f , and while it is ' 0
for f = 0.01, it is already more than 60% for f = 0.2.

Next we show how R breaks down into the relative frequency of helper

extinction before DIP extinction and the relative frequency of helper-DIP

simultaneous extinction. We call these Rhelper before DIP and Rsimultaneous.

Rh. before DIP +Rsim. = R. We also plot (1−R), i.e. the relative frequency of

events when the DIP goes extinct while the helper is still present in the system.

The three quantities are in figure 2.16.
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Figure 2.16.: The relative frequencies Rh. before DIP , Rsim. and (1−R) vs. f .
Rh. before DIP is the relative frequency of events when the helper goes
extinct before the DIP does. Rsim. is the relative frequency of events
when the helper and the DIP go extinct simultaneously. (1−R) is the
relative frequency of events when the DIP goes extinct while the helper
is still present in the system.

We can see that for f ≤ 0.8 the helper goes extinct before the DIP (Rh. before DIP )

more often than simultaneously (Rsim.).

We can also see that Rh. before DIP and (1−R) are specular to each other. (We

remind the reader that (1−R) is the relative frequency that the DIP goes

extinct while the helper is still in the system.) This symmetry is due to the low

levels of IP and IH: in fact, the DIP and the helper are asymmetrical in that

IP and IH function differently (IP is sterile, IH produces helpers); since the

levels of IP and IH are scarce, the asymmetry is weakened.

Next, we look at the distribution of TH , i.e. the time when the helper goes

extinct if it goes extinct before the DIP. It turns out that TH follows a Poissonian

distribution just like TP does (we show an example of a distribution of TH in

the appendices in figure B.5). From

h(TH) = rH · exp(−rHTH) (2.56)
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we obtain

l(TH) = log(h(TH)) = log(rH)− rHTH (2.57)

and we use it to fit the frequency densities to obtain the extinction rate of the

helper, which we call rH . We show rH plotted against f in figure .

Figure 2.17.: rH vs f . We plot also rP .

rP is specular to rH because the amounts of IP and IH are scarce. Therefore

the asymmetry between DIP and helper is weakened.

The last thing we investigated with this model was for how long the DIP

survives in the system after the extinction of the helper virus. For the cases

where the helper goes extinct before the DIP, we define ∆T ≡ TP − TH . An

example of statistics of ∆T (for f = 0.5) is shown in the appendices in figure

B.6.

Also this quantity follows a Poisson distribution. Thus after introducing
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h(∆T ) = r∗ · exp(−r∗∆T ) (2.58)

we fitted the frequency densities with

l(∆T ) = log(h(∆T )) = log(r∗)− r∗∆T (2.59)

The resulting rates r∗ are in figure 2.18.

Figure 2.18.: r∗ vs. f . r∗ is the rate of extinction of the DIP since the extinction of the
helper.

r∗ is consistently about 3.25 × 10−3 for 0.2 ≤ f ≤ 0.7. Closer to 0 and 1 r∗

drops a little, but the change is not by orders of magnitude like for the rates

rP and rH (see figure 2.17).

The fact that the rate r∗ decreases for f closer to 0 and 1 means that the

moment the helper goes extinct more DIPs are left in the system, compared to

the case 0.2 . f . 0.7.
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3The interference of one DIP
species with two
helper-virus species

Let us consider a system of cells with two standard virus species; let us assume

there is also a DIP species that can be helped by both. What are the dynamics

going to be?

3.1 When two helper species compete for
the same DIP species, one wins

We use a deterministic model of well-mixed cells and viruses, with an influx of

uninfected cells and the dilution of all cells and viruses, similar to the model

in section 2.2. In that model, there was only one helper species; now we have

two, and we will distinguish them with the indices 1 and 2. Thus now we have

the species P , B, IP but also

• H1 and H2, the free helper viruses

• IH1 and IH2, the cells infected by a helper virus

• IH1P and IH2P , the cells infected by both a helper and a DIP

We assume that there is superinfection exclusion. Superinfection exclusion
or homologous interference is defined as the ability of an established virus

infection to interfere with a secondary infection by the same virus or by a

closely related virus [Tscherne2007SuperinfectionFrom, 21]. Superinfection

exclusion has been described for several virus-host systems, including viruses

that cause serious diseases in humans, animals, and plants [21]. Because of
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this assumption, in our model, once a cell has absorbed its first helper virus,

any subsequent absorption of a helper will not have any effect. Therefore we

cannot have a cell IH1H2 or IH1H2P .

3.1.1 The ODEs of the model

The equations of the model are

dB

dt
= C − ηV B − γB (3.1)

dIH1

dt
= ηH1B − ηPIH1 − γIH1 (3.2)

dIH2

dt
= ηH2B − ηPIH2 − γIH2 (3.3)

dIP

dt
= ηPB − η (H1 +H2) IP − γIP (3.4)

dIH1P

dt
= ηPIH1 + ηH1IP − γIH1P (3.5)

dIH2P

dt
= ηPIH2 + ηH2IP − γIH2P (3.6)

dH1

dt
= β [IH1 + (1− f1)IH1P ]− ηH1T − γH1 (3.7)

dH2

dt
= β [IH2 + (1− f2)IH2P ]− ηH2T − γH2 (3.8)
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dP

dt
= β (f1IH1P + f2IH2P )− ηPT − γP (3.9)

where V ≡ P + H1 + H2, f1 is the probability of a virus just made by a IH1P

cell to be a DIP and analogously for f2 and the IH2P cells.

We rescale time and the concentrations like in section 2.1: we use t′ (see eq.

(2.7)) and B′ (2.8) and so on for the other concentrations. So once again the

parameters η, β, C and γ are substituted by η′ (eq. (2.11)), β′ (2.12), C ′ (2.25),

γ′ (2.26). Now we remove the ′ to simplify,

We simulated a system that in the beginning is only made of uninfected

cells and free viruses: the initial conditions are

• B(t = 0) = 1

• H1(t = 0) = 0.25× 10−7

• H2(t = 0) = 0.25× 10−7

• P (t = 0) = 0.25× 10−7

• all other concentrations are zero at t = 0

3.1.2 Results

This system evolves in the following way: the system reaches a steady state

where the helper virus with the higher parameter f has gone extinct. We can

see an example in figure 3.1: in that case, f1 = 0.1 and f2 = 0.3, f2 > f1 and

the helper 2 goes extinct.
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(a)

(b)

(c)

Figure 3.1.: Time evolution of the viruses and cells of a system with one DIP species
and two helper species. f1 = 0.1, f2 = 0.3. (a) The free viruses. Helper
virus 2 goes extinct. (b) The cells that are uninfected or infected by only
one type of virus. (c) The cells infected by both the DIP and one type of
helper.
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So the rule for the extinction of one of the two species of helper is:

• if f1 > f2, helper virus 1 goes extinct

• if f2 > f1, helper virus 2 goes extinct

In figure 3.2 is evidence of this.

Figure 3.2.: The steady-state levels of the viruses and infected cells vs. (f1, f2).
Beneath the parameter-space diagonal, i.e. the region f1 > f2, helper
virus 1 goes extinct (and vice versa in the region f2 > f1, where helper
virus 2 goes extinct).

We do not consider the case f1 = f2, because in that case, the two types

of helper virus would effectively be the same: in fact in our model what

distinguishes the two species is the parameter f , i.e. how the species of helper

virus interacts with the DIP.
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4The interference of two DIP
species with two
helper-virus species

We just saw that the destiny of a system with two helper species and one DIP

species is determined. However, what happens if there is not only one DIP

species, but there are two?

Once again we have the species H1, H2, B, IH1 and IH2. But as we have two

types of DIP, which we label a and b, now we have also the following species:

• Pa and Pb, the free DIPs

• IPa and IPb
, the cells infected by one type of DIP

• IH1Pa, IH1Pb
, IH2Pa and IH2Pb

, the cells infected by one type of DIP and

one type of helper virus.

Because in our model we assume superinfection exclusion, once a cell has

absorbed a DIP, the subsequent absorption of another DIP has no effect. There-

fore a cell cannot be IPaPb
. In general, a cell cannot have more than two

simultaneous infections, and if a cell has two infections, they must be a DIP

infection and a helper infection.

In this model we have four species of cells infected by a helper virus and a DIP,

thus now we have four parameters f , one for each of these doubly-infected

species. We will write these four parameters as a 2× 2 matrix, which we call

f̄ :

f̄ =
f 1

a f 1
b

f 2
a f 2

b

 (4.1)
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The questions are: now that the DIP species are two, is there once again a

clear loser between the two helper species, like in section 3?

And what about the DIP species? Will one of them go extinct? Or will they

coexist?

Finally, do the answers to these questions depend on the matrix f̄?

4.1 Won competitions and ongoing
competitions between DIP species and
between helper species

We start with a deterministic model, with well-mixed viruses and cells, and no

flux. This model is similar to that of section 2.1.

4.1.1 The ODEs of the model

The equations of the model are

dB

dt
= ηV B (4.2)

dIH1

dt
= ηH1B − η

(∑
i

Pi

)
IH1 (4.3)

dIH2

dt
= ηH2B − η

(∑
i

Pi

)
IH2 (4.4)

dIPa

dt
= ηPaB − η

(∑
i

Hi

)
IPa (4.5)

dIPb

dt
= ηPbB − η

(∑
i

Hi

)
IPb

(4.6)
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dIH1Pa

dt
= ηPaIH1 + ηH1IPa (4.7)

dIH1Pb

dt
= ηPbIH1 + ηH1IPb

(4.8)

dIH2Pa

dt
= ηPaIH2 + ηH2IPa (4.9)

dIH2Pb

dt
= ηPbIH2 + ηH2IPb

(4.10)

dH1

dt
= β

[
IH1 +

∑
i

(1− f 1
i )IH1Pi

]
− ηH1T (4.11)

dH2

dt
= β

[
IH2 +

∑
i

(1− f 2
i )IH2Pi

]
− ηH2T (4.12)

dPa

dt
= β

∑
i

f iaIHiPa − ηPaT (4.13)

dPb

dt
= β

∑
i

f ibIHiPb
− ηPbT (4.14)

where

V ≡ H1 +H2 + Pa + Pb (4.15)

and
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T ≡ B + IH1 + IH2 + IPa + IPb
+ IH1Pa + IH1Pb

+ IH2Pa + IH2Pb
. (4.16)

We do the rescaling of time and concentrations according to eq. (2.7) and eq.

(2.8). The parameters η and β are substituted by η′ (eq. (2.11)) and β′ (2.12).

We drop the ′ for simplicity.

We start with a system of uninfected cells, free helper viruses of both types

and free DIPs of both types: the initial conditions are

• B = 1

• H1 = H2 = Pa = Pb = 0.25× 10−7

• all other quantities equal to 0

After choosing the values for the parameter matrix f̄ , we let the system

advance.

4.1.2 Results

This type of system reaches saturation, i.e. all cells are eventually infected by

a helper and a DIP. An example of time evolution up until saturation is shown

in figure 4.1.
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Figure 4.1.: Time evolution of the virus and cell levels up until saturation. The
parameters of the matrix f̄ are: f1

a = 0.6, f1
b = 0.5, f2

a = 0.3, f2
b = 0.4.

Once saturation was reached, we took a small sample of the saturated system

(1 part in 107) and injected it onto a new system made of only uninfected cells,

with concentration B = 1. We then let this new system advance, until it too

reached saturation (figure 4.2).
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Figure 4.2.: Time evolution of the virus and cell levels in the second system, i.e. the
system that received the injection from the original system. Time starts
at the moment of injection. This figure is a follow-up to figure 4.1, i.e. a
part of the saturated system in figure 4.1 was injected to form the second
system. The matrix f̄ is the same as in figure 4.1: f1

a = 0.6, f1
b = 0.5,

f2
a = 0.3, f2

b = 0.4.

Next, we took a small sample of the second system and injected it onto a third

system, once again made of only uninfected cells with concentration B = 1.

And so on.

What we noticed was that, for certain choices of f̄ , the saturation levels of

IH1Pa, IH2Pa, IH1Pb
and IH2Pb

would approach specific values more and more

with each new injection, and eventually the saturation levels would converge

to these values (figure 4.3). However, for other choices of f̄ , the saturation

levels of those four species would not converge but oscillate (figure 4.4).
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Figure 4.3.: Example of converging saturation levels. The matrix f̄ here is: f1
a = 0.6,

f1
b = 0.5, f2

a = 0.3, f2
b = 0.4. On the x-axis is the order of the systems:

at x = 1 are the saturation levels of the original system; at x = 2 are the
saturation levels of the second system, i.e. the one that received the first
injection; and so on.
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Figure 4.4.: Example of oscillating saturation levels. The matrix f̄ here is f1
a = 0.6,

f1
b = 0.5, f2

a = 0.3, f2
b = 0.7. On the x-axis is the order of the systems:

at x = 1 are the saturation levels of the original system; at x = 2 are the
saturation levels of the second system, i.e. the one that received the first
injection; and so on.

We found that the convergence and oscillation follow this rule:

if the condition



f 1
i > f 1

j

f 1
i > f 2

i

f 2
j > f 1

j

f 2
j > f 2

i with i, j ∈ {a, b}, i 6= j

(4.17)

is satisfied, then the saturation levels oscillate; otherwise, they converge.

The parameters f̄ that give oscillation do so because they cannot determine a

winning helper or a winning DIP.

Let us focus on the doubly-infected cells, the IHP -like cells.
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• If we compare two such species that make the same helper virus, the

species making more DIPs wins.

• If we compare two IHP -like species that make the same DIP, the one

making more helpers wins.

We can imagine that there are 4 duels:

1. two duels between IHP -like species making the same helper

a) IH1Pa vs. IH1Pb

b) IH2Pa vs. IH2Pb

2. and two duels between IHP -like species making the same DIP

a) IH1Pa vs. IH2Pa

b) IH1Pb
vs. IH2Pb

Duels (1a) and (1b) are won by the species with the higher f . Duels (2a) and

(2b) are won by the species with the lower f . If in a duel the two species have

the same f , then there is a tie.

If two species making the same DIP (e.g. IH1Pa and IH2Pa) win the duels

(1a) and (1b), then we know that the winning DIP is the DIP made by both

(Pa). If one of the duels (1a) and (1b) is a tie, the winner of the other duel

determines the winning DIP, i.e. the DIP it produces. If both duels (1a) and

(1b) are ties, we cannot determine a winning DIP by comparing the IHP -like

species that produce the same helpers. However, if we find a winning DIP, we

are in a situation like that in section 3: we have two helper species and one

DIP species. We compare the two IHP -like species left: the species with the

lower f wins, and it determines the winning helper, i.e. the helper it produces.

So we have found a winning DIP and a winning helper.

Alternatively, if two species making the same helper virus (e.g. IH1Pa and

IH1Pb
) win the duels (2a) and (2b), then the winning helper is the one both

species produce (H1). If one of these two duels is a tie, the winner of the other
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duel determines the winning helper, i.e. the helper it produces. If both duels

(2a) and (2b) are ties, we cannot determine a winning helper by comparing

the IHP -like species that produce the same DIP. However, if we find a winning

helper, we are in a situation similar to that in section 3: we have one helper
species and two DIP species. In this case, we compare the two IHP -like species

left, and the one with the higher f wins, and it determines the winning helper,

i.e. the one it produces. So we have found a winning helper and a winning DIP.

Let us look at figure 4.3. In this case, f 1
a > f 2

a , f 1
b > f 2

b . The winners in

the duels (2a) and (2b) are IH2Pa and IH2Pb
, thus the winning helper virus is

H2. Now we just have to compare f 2
a and f 2

b . The parameter that gives more

DIPs determines the winner: f 2
b > f 2

a , therefore Pb is the winner.

Oscillations occur when a different DIP species wins each of the duels (1a) and

(1b), and at the same time, a different helper species wins each of the duels

(2a) and (2b) (condition (4.17)).

The rules to find a winning DIP species and a winning helper species are

in figure 4.5 (in the appendices, in figure C.1, is the complete set of rules,

which contemplates the case of a tie between IHP -like species).
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METHOD A 
 

   • Compare the IHP -like species making the same helper:  
 

IH1Pa   vs  IH1Pb 

IH2Pa   vs  IH2Pb 

 
I.e., look at the rows of the matrix !.̅ 
 

!̅ = $		!!
1					!#1
!!2					!#2

		& 
 

In a row, the species with higher ! wins. 
 
Example: 

#̅ = &		0.6					0.70.5					0.2		- 
 

First row: IH1Pb  wins. 
Second row: IH2Pa  wins. 

 
If the two species that win make the same DIP (same 
column), this DIP is the winning DIP. 
Otherwise, this method does not determine a winning DIP; 
use method B. 

 
Example: 
In the previous example, the winning IHP -like species do not make the 

same DIP ⇒	this method does not determine a winning DIP. 
 
   • Now compare the two winning IHP -like species: 
the one with lower ! wins; 
the helper it makes is the winning helper. 
 
 Example: 

Imagine that in the previous example IH1Pb  and IH2Pb  had won. 
#%& > #%' ⇒	IH2Pb  would win ⇒	the winning helper would be H2 . 

  

(a)

4.1 Won competitions and ongoing competitions between DIP species and between helper
species 69



METHOD B 
 

   • Compare the IHP -like species making the same DIP: 
 

 

IH1Pa 

vs 
IH2Pa 

 

 

IH1Pb 

vs 
IH2Pb 

 

 
I.e., look at the columns of the matrix !.̅ 

 

!̅ = $		!!
1					!#1
!!2					!#2

		& 
 

In a column, the species with lower ! wins. 
 

Example:  

#̅ = &		0.6					0.70.5					0.2		- 
 

First column: IH2Pa  wins. 
Second column: IH2Pb  wins. 

 
If the two species that win make the same helper (same 
row), this helper is the winning helper. 
Otherwise, this method does not determine a winning 
helper; use method A. 

 
Example: 

In the previous example, the winning IHP -like species make the same 
helper (H2)		⇒ H2 is the winning helper.	

 
   • Now compare the two winning IHP -like species:  
the one with higher ! wins; 
the DIP it makes is the winning DIP. 
 
 Example: 

In the previous example, IH2Pa  and IH2Pb  won. 
#(' > #%' ⇒	IH2Pa  wins ⇒	 the winning DIP is Pa . 

(b)

Figure 4.5.: Set of rules to find the winning DIP and the winning helper virus. There
are two alternative methods. (a) According to method A, one starts by
looking for the winning DIP. (b) According to method B, one starts by
looking for the winning helper virus.
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4.2 Cell-influx and dilution can lead to an
endless viral competition

Suppose we change the previous model by preventing saturation with an influx

of infected cells and the dilution of cells and viruses. Will there be oscillatory

behaviour?

4.2.1 The ODEs of the model

The equations of the model are

dB

dt
= C − ηV B − γB (4.18)

dIH1

dt
= ηH1B − η

(∑
i

Pi

)
IH1 − γIH1 (4.19)

dIH2

dt
= ηH2B − η

(∑
i

Pi

)
IH2 − γIH2 (4.20)

dIPa

dt
= ηPaB − η

(∑
i

Hi

)
IPa − γIPa (4.21)

dIPb

dt
= ηPbB − η

(∑
i

Hi

)
IPb
− γIPb

(4.22)

dIH1Pa

dt
= ηPaIH1 + ηH1IPa − γIH1Pa (4.23)

dIH1Pb

dt
= ηPbIH1 + ηH1IPb

− γIH1Pb
(4.24)
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dIH2Pa

dt
= ηPaIH2 + ηH2IPa − γIH2Pa (4.25)

dIH2Pb

dt
= ηPbIH2 + ηH2IPb

− γIH2Pb
(4.26)

dH1

dt
= β

[
IH1 +

∑
i

(1− f 1
i )IH1Pi

]
− ηH1T − γIH1 (4.27)

dH2

dt
= β

[
IH2 +

∑
i

(1− f 2
i )IH2Pi

]
− ηH2T − γIH2 (4.28)

dPa

dt
= β

∑
i

f iaIHiPa − ηPaT − γIPa (4.29)

dPb

dt
= β

∑
i

f ibIHiPb
− ηPbT − γIPb

(4.30)

This is an extension of the model in section 4.1. Here we reintroduce the

parameters C and γ. Once again, we rescale the model according to 2.7 and

2.8. The parameters η, β, C and γ are substituted by η′ (eq. (2.11)), β′ (2.12),

C ′ (2.25), γ′ (2.26). We drop the ′ for simplicity.

Once again the system is initially made of only uninfected cells and free DIPs

and helper viruses.
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The initial conditions are

• B = 1

• H1 = 0.229× 10−7

• H2 = 0.242× 10−7

• Pa = 0.247× 10−7

• Pb = 0.264× 10−7

• all other quantities equal to 0 at t = 0

We will explain in a moment why the initial concentrations of free DIPs and

helper viruses are all slightly off 0.25× 10−7 and not equal to each other.

4.2.2 Results

It turns out that the concentrations of cells and viruses in the systems described

by this model can oscillate; the levels either oscillate or reach a steady state.

In figure 4.7 is an example of oscillating levels and in figure 4.6 is an example

of steady-state levels.
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(a)

(b)

(c)

Figure 4.6.: The values of the matrix f̄ are: f1
a = 0.6, f1

b = 0.2, f2
a = 0.4, f2

b = 0.8.
The system reaches a steady state. (a) Levels of the uninfected and
singly-infected cells. (b) Levels of the doubly-infected cells. (c) Levels of
the free helper viruses and DIPs.
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(a)

(b)

(c)

Figure 4.7.: The values of the matrix f̄ are: f1
a = 0.6, f1

b = 0.2, f2
a = 0.4, f2

b = 0.8.
The levels of cells and viruses oscillate. (a) Levels of the uninfected and
singly-infected cells. (b) Levels of the doubly-infected cells. (c) Levels of
the free helper viruses and DIPs.
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We found that the levels of cells and viruses oscillate if the condition (4.17) is

met, i.e. the condition found for the model in section 4.1 that allows for the

saturation levels to oscillate. If the condition is not met, the system goes to a

steady state.

Now we will explain why we used initial conditions with levels of helper

viruses and DIPs similar to each other but not equal. We found that if



f 1
a = f 2

b

f 2
a = f 1

b

Pa(t = 0) = Pb(t = 0)

H1(t = 0) = H2(t = 0)

(4.31)

the levels always reach a steady state; so, even if condition (4.17) is met, the

levels do not oscillate but reach a steady state. In the appendices, in figures

C.2 and C.3, are the time-evolutions of the levels for a matrix f̄ with values

f 1
a = f 2

b , f 2
a = f 1

b ; however, in the two figures we have the two different types

of initial conditions:

• in figure C.2, the initial conditions satisfy H1(t = 0) 6= H2(t = 0),
Pa(t = 0) 6= Pb(t = 0) and the levels oscillate;

• in figure C.3, the initial conditions satisfy H1(t = 0) = H2(t = 0),
Pa(t = 0) = Pb(t = 0) and the levels reach a steady state.

4.2.3 Analysis of the oscillating levels

Now, the system described by this model is a system of infinite volume. How-

ever, if the volume is finite, and the DIPs and helpers are few, the extinction of

a DIP or helper species is possible. If the levels in the system oscillate, does the

oscillation affect the extinction? We will study viral extinction in a system with

two DIP species and two helper species in section 4.3. Now we continue to

use the current model to study something that may be useful for the extinction

study, i.e. the minima and averages of the oscillating levels.
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To simplify the system, we set f 1
b and f 2

a in the matrix f̄ to zero:

f̄∗ =
f 1

a 0
0 f 2

b

 (4.32)

This means that the species IH1Pb
and IH2Pa will produce only helper viruses

and no DIP. We also fixed f 1
a 6= 0 and f 2

b 6= 0. Because the matrix f̄∗ satisfies

condition (4.17), the levels of the system will oscillate.

We focus on the levels of the doubly-infected cells because they are the domi-

nant species in the system. We searched how the minima and averages of the

four doubly-infected cell species depend on the parameters f 1
a and f 2

b (figure

4.8).

(a)

(b)
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(c)

(d)

Figure 4.8.: The averages and minima of the doubly-infected cells vs. (f1
a , f2

b ): (a)
IH1Pa; (b) IH2Pb

; (c) IH1Pb
; (d) IH2Pa . Notice the symmetry between (a)

and (b) and the symmetry between (c) and (d).

The system is symmetrical to the double switch of the indices 1←→2 and

a←→b, so clearly the plots for IH1Pa are symmetrical to those for IH2Pb
, and

clearly the plots for IH1Pb
are symmetrical to those for IH2Pa.

It turns out that f 1
a ' 0 and f 2

b ' 0 give the lowest averages and minima: more

precisely

• if f 1
a ' 0, the average of IH2Pb

and the minima of IH1Pb
and IH2Pb

are

lower than on the rest of the (f 1
a , f 2

b ) parameter space;

• if f 2
b ' 0, the average of IH1Pa and the minima of IH1Pa and IH2Pa are

lower than on the rest of the (f 1
a , f 2

b ) parameter space.
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From these results we suspect that in a finite-volume system with few viruses

and cells, the extinction of a DIP or helper species would be more affected

by the oscillations if f 1
a ' 0 or f 2

b ' 0. In fact, under these conditions, the

dynamics of the system would lead certain doubly-infected cell species to reach

lower minima while oscillating than in the rest of the (f 1
a , f 2

b ) parameter space;

and the lower the numbers of a species, the more the species is going to be

affected by demographic noise. Demographic noise could then push certain

doubly-infected cell species to 0, and the doubly-infected cells are the only

makers of DIPs and the primary makers of helpers (since they are the dominant

cell species).

The fact that, if f 1
a ' 0 or f 2

b ' 0, IH2Pb
and IH1Pa respectively have low aver-

ages, possibly makes these two cell species more likely to be pushed to 0 by

demographic noise.

Notice also that f 1
a ' 0 would appear to put at risk the DIP species b, or

at least more at risk than the DIP species a: in fact, we saw that if f 1
a ' 0,

the average and minimum of IH2Pb
are significantly low. Somebody might

find this unintuitive: maybe one would think that this condition would be

dangerous or more dangerous to DIP a since it means that the species IH1Pa

makes mostly helpers of species 1 and scarcely DIPs a. (We can make the

analogous argument for f 2
b ' 0: this condition would appear to put at risk DIP

a, or at least more at risk than DIP b.)

We show an example of oscillations with f 2
b ' 0 in figure 4.9, where the

average of IH1Pa and the minima of IH1Pa and IH2Pa are particularly low.
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(a)

(b)

Figure 4.9.: Oscillating levels of the doubly-infected cells, with the following values
for the matrix f̄∗: f1

a = 0.9, f2
b = 0.05. With f2

b ' 0, the average of
IH1Pa and the minima of IH1Pa and IH2Pa are significantly lower than
the levels of IH1Pb

and IH2Pb
. (a) Linear scale. (b) Logarithmic scale.
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4.3 Oscillating dynamics affect the
probability of viral extinction

We now want to consider a finite-volume system with low numbers of cells,

DIPs and helper viruses, where the DIP species are two, and the helper species

are two. We keep in mind the deterministic model in section 4.2 and derive a

new, stochastic model similar to that in section 2.3.

4.3.1 The new stochastic model

Our system will not evolve according to some ODEs, but according to the

Gillespie algorithm. We now define the variables in the system, i.e. the finite

amounts of cells and viruses.

• P̃a, P̃b: amounts of free DIPs;

• H̃1, H̃2: amounts of free helper viruses;

• B̃: amount of uninfected cells;

• ĨPa, ĨPb
: amounts of cells infected only by a DIP;

• ĨH1, ĨH2: amounts of cells infected only by a helper virus;

• ĨH1Pa, ĨH2Pa, ĨH1Pb
, ĨH2Pb

: amounts of cells infected by both a DIP and a

helper virus.

Next, we show the possible events and their Gillespie rates. The rates derive

from the terms of the model equations in section 4.2. Note that v is the volume

of the system.

• Introduction of an uninfected cell

∅ C · v−−→ B̃ (4.33)
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• Absorption of a virus by a cell

P̃a,b + B̃
η/v · P̃a,b · B̃−−−−−−−→ ĨPa,b

(4.34)

H̃1,2 + B̃
η/v · H̃1,2 · B̃−−−−−−−→ ĨH1,2 (4.35)

P̃a,b + ĨPa,b

η/v · P̃a,b · ĨPa,b−−−−−−−−−→ ĨPa,b
(4.36)

H̃1,2 + ĨPa,b

η/v · H̃1,2 · ĨPa,b−−−−−−−−−→ ĨH1,2Pa,b
(4.37)

P̃a,b + ĨH1,2

η/v · P̃a,b · ĨH1,2−−−−−−−−−→ ĨH1,2Pa,b
(4.38)

H̃1,2 + ĨH1,2

η/v · H̃1,2 · ĨH1,2−−−−−−−−−→ ĨH1,2 (4.39)

H̃1,2 + ĨH1,2Pa,b

η/v · H̃1,2 · ĨH1,2Pa,b−−−−−−−−−−−→ ĨH1,2Pa,b
(4.40)

P̃a,b + ĨH1,2Pa,b

η/v · P̃a,b · ĨH1,2Pa,b−−−−−−−−−−−→ ĨH1,2Pa,b
(4.41)

• Production of a virus

ĨH1,2Pa,b

f · β · ĨH1,2Pa,b−−−−−−−−→ ĨH1,2Pa,b
+ P̃a,b (4.42)

ĨH1,2Pa,b

β · ĨH1,2 + (1− f)β · ĨH1,2Pa,b−−−−−−−−−−−−−−−−−→ ĨH1,2Pa,b
+ P̃a,b (4.43)
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• Dilution
P̃a,b

γ · P̃a,b−−−−→ ∅ (4.44)

H̃1,2
γ · H̃1,2−−−−→ ∅ (4.45)

B̃
γ · B̃−−→ ∅ (4.46)

ĨPa,b

γ · ĨPa,b−−−−→ ∅ (4.47)

ĨH1,2

γ · ĨH1,2−−−−→ ∅ (4.48)

ĨH1,2Pa,b

γ · ĨH1,2Pa,b−−−−−−→ ∅ (4.49)

We will use the matrix f̄∗ (eq. 4.32), i.e. we fix f 1
b = f 2

a = 0.

Now let us discuss the initial conditions. We made this model to study how

the extinction of DIP species or helper species is affected by the oscillations

seen in section 4.2. So we want the current, stochastic model to reproduce the

oscillations found in section 4.2. Thus, for each choice of f̄∗, the initial condi-

tions will be the product of v times the concentrations from the deterministic

model at a chosen time.

However, this model has a big difference compared to the model in section 4.2:

because this is a finite-volume system, there will be demographic noise. More-

over, because demographic noise disturbs small systems more significantly, the

smaller the volume v, the more influential is the demographic noise, as we can

see in the example of figure 4.10.
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(a)

(b)

Figure 4.10.: Comparison between the levels of doubly-infected cells in two systems
with different volumes. We chose the doubly-infected cells as they are
the dominant species. In both systems, the values of the matrix f̄∗ are:
f1
a = 0.7, f2

b = 0.5. The time-evolution of the amounts in the finite-
volume system overlays the time-evolution of the concentrations in the
infinite-volume system, i.e. the system described by the model in section
4.2. (a) The volume of this system is v = 1000. The time evolution is
similar to that of the infinite-volume system. (b) The volume of this
system is v = 50. In this smaller system, the demographic stochasticity
is more influential, and the finite-volume levels deviate more from the
infinite-volume levels.
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4.3.2 Study of the first extinction

The first thing we measure is which DIP/helper virus goes extinct first. We

measure this for certain values of the matrix f̄∗: we fix f 2
b = 0.5, and f 1

a will

be scanned according to

f 1
a ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (4.50)

Now we want to be more detailed about the initial conditions. We kept in mind

that the doubly-infected cells (the IHP -like cells) are the dominant species. We

wanted to use initial conditions that would not put the IHP -like species with

the lowest minimum at a disadvantage. Thus we chose a time when this IHP
species has a maximum, and we used the concentrations (from the model in

section 4.2) of virus and cells at this time.

The species with the lowest minimum is

• IH1Pb
for f 1

a < 0.5;

• IH1Pa for f 1
a > 0.5;

• for f 1
a = 0.5, the four IHP -like species have the same minimum.

Because we want to see extinction, we chose to use the volume v = 10. This

volume is even smaller than that in figure 4.10b, thus:

1. the levels will be even lower;

2. the demographic stochasticity will be even more influential.

These two aspects will lead to more likely extinctions.

In table C.1 in the appendices we show the resulting initial conditions for each

value of f 1
a . We remind the reader that they correspond to the product of v

times the concentrations just mentioned, i.e. the concentrations (from the

model in section 4.2) when the IHP species with the lowest minimum has a

peak. The product is rounded to the closest integer.
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For each value of f 1
a we ran 2000 simulations according to the model until

either a DIP species or helper species went extinct. In figure 4.11 we show

how frequently each of these species went extinct first for each f 1
a .

Figure 4.11.: Relative frequencies of the first viral species to disappear from the
system. For each f1

a , 2000 simulations were run.

These simulations confirmed the suspicion mentioned at the end of section 4.2,

i.e. f 1
a ' 0 puts the DIP species b at a risk, not the DIP species a. For f 1

a < 0.5,

DIP b was the first to go extinct, and for f 1
a > 0.5 DIP a was the first to go

extinct; instead, for f 1
a = 0.5 the two frequencies are ∼ 50%. Also notice that

the extinction frequencies of the two DIP species are symmetrical.

Another thing to notice is that the helper species went extinct first only with the

extremal values of f 1
a , and even then they went extinct much less frequently

than the DIP species.
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4.3.3 Results

Now we want to see the effect of the oscillatory dynamics seen in section 4.2

on the time of extinction of a DIP or helper species. It is reasonable to think

that whenever the amount of one of the four IHP -like species is at a trough

of its oscillation, it has a higher chance to reach zero due to demographic

stochasticity than at any other moment of its oscillation. The IHP -like cells are

the dominant components in the system, and if one of them reaches zero, there

may be a disruption of the system. This disruption may lead to the extinction

of a DIP or helper species.

We made a precise choice of the matrix f̄∗: we chose f 1
a = 0.1 and f 2

b = 0.5.

With this choice of parameters, it is the DIP species b to go extinct most fre-

quently. We will focus on the time of extinction of this species.

We chose to consider three different volumes: v = 10, v = 50, v = 100. The

value of the volume may affect the extinction time of DIP species b.

As initial conditions, once again, we used the product of v times the concentra-

tions when the IHP -like species with the lowest minimum is at its maximum.

This product is rounded to the nearest integer. (With our choice of f̄∗, the IHP -

like species with the lowest minimum is IH1Pb
.) In table C.2 in the appendices

are the initial conditions for the three different values of v.

For each value of v, we simulated the system 40000 times up until a DIP or

helper species went extinct.

DIP species b was indeed the first viral species to go extinct most of the times

for all three values of v (figure 4.12). The helper species 2 went extinct first

sometimes only with the smallest volume, v = 10. For the larger volumes,

every single time it was DIP species b to go extinct first.
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Figure 4.12.: Relative frequencies of the first viral species to go extinct for different
values of v. The number of simulations for each v is 40000.

Now we will look at the distribution of the extinction time of DIP species b for

the three different v. We call this time Text. In figure 4.13 are the distributions

of Text for the three values of v.
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Figure 4.13.: The distribution of Text, i.e. the time of extinction of the DIP species b,
for the three values of v.

For the lowest volume, v = 10, the distribution of Text has only one peak. The

larger the volume, the more peaks there are.

We can see one more thing: the peak for v = 10 is not at a random time, but

instead it coincides with half a period of the oscillations in the infinite system:

the period of that system for f 1
a = 0.1 and f 2

b = 0.5, which we call ∆Tosc, was

Tosc ' 6.68× 103 (found by using the model in section 4.2). We said that the

current simulations started at a peak of IH1Pb
. Thus the extinction of DIP b

tended to happen at the trough of IH1Pb
.

For the two larger volumes, it appears the first peak of the Text distribution is

delayed after the trough of IH1Pb
. Additionally, the delay for v = 100 appears

longer than the delay for v = 50. However, it looks like the peaks appear with

a specific frequency. As we can see in figures 4.14 and , the peaks appear at

regular intervals which are equal to ∆Tosc.

4.3 Oscillating dynamics affect the probability of viral extinction 89



Figure 4.14.: Distribution of Text for v = 50. If we define Tf as the centre of the
modal bin in the first extinction peak, the green vertical lines are placed
in Tf + k ·∆Tosc, with k ∈ {0, 1, 2}. The following peaks approximately
match the green lines. Thus the peaks of extinction have approximately
the same frequency as the oscillations in the deterministic system
(section 4.2).
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Figure 4.15.: Distribution of Text for v = 100. If we define Tf as the centre of
the modal bin in the first extinction peak, the green vertical lines are
placed in Tf + k ·∆Tosc, with k ∈ {0, 1, 2, 3, 4}. The following peaks
approximately match the green lines. Thus the peaks of extinction have
approximately the same frequency as the oscillations in the determinis-
tic system (section 4.2).

Thus, the larger the volume v, the longer the delay of the extinction events of

DIP species b after each trough of IH1Pb
. However, the peaks of the extinction

events occur with a specific frequency (and thus with the same delay after

each trough of IH1Pb
).
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5One DIP species interfering
with one helper-virus
species in space

5.1 The DIP propagation does not halt the
helper-virus propagation

So far, we have used models of well-mixed systems to study the interplay of

DIPs and helpers and the extinction of viruses. Now we want to move on and

study something different: the spreading of a DIP species and a helper species

in space.

5.1.1 The lattice model

We now introduce a 2D square lattice where each site is a cell, and each cell

can be infected by a DIP and a helper virus. We will not treat the viruses as

particles like in the previous models; instead, the viruses will only be apparent

in the infected states of the cells.

Each cell can be in one of four different states.

• state B: the cell is not infected

• state IP : the cell is infected by the DIP only

• state IH: the cell is infected by the helper only

• state IHP : the cell is infected by both the DIP and the helper
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This is an agent-based model, where the agents are the cells. If a cell is IH
or IHP , it can infect adjacent cells. Due to time constraints, we assume that

the IHP cells only release DIP progeny, i.e. that their parameter f is f = 1. In

this model, this is the worst possible value of f for the spreading of the helper

species: once a cell becomes IHP , this state is final, and now this cell only

produces DIPs.

The cells can infect other cells in the following ways.

• an IH cell can turn a B neighbour into IH

• an IH cell can turn an IP neighbour into IHP

• an IHP cell can turn a B neighbour into IP

• an IHP cell can turn a IH neighbour into IHP

The algorithm that regulates the progression of the system is the following:

1. We start at time t = 0.

2. We randomly pick a cell (which we call cell 1). We randomly select one

neighbour (cell 2). If cell 1 can infect cell 2, the infection occurs. Then

we pick another random cell and another random neighbour; we check if

the new cell 1 can infect the new cell 2, and so on until we have picked

N pairs of cells, where N is the number of sites in the lattice. Then, we

increase the time t by 1 unit.

3. Repeat the previous step.

We used a large square lattice with side L = 800 and thus N = L×L = 640000
sites. The lattice has open boundary conditions.

The initial conditions we used are meant to represent a glass completely

covered in cells; we imagine that we deposit a drop containing DIPs and helper

viruses onto the cells, and rapidly tilt the glass so that the viruses can infect a

straight line of cells from side to side of the glass, covering 800 sites (cells).

The 800 cells that become covered by the drop become either IP or IH and

essentially divide the glass into two halves.
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We imagine that the viruses in the drop are ∼ 1.5% helpers and the rest

DIPs. We made this choice to show the ease of DIPs to spread even with few

helpers.

5.1.2 Results

Now the system is ready to advance. The advancement of such system is in

figure 5.1.

Two fronts develop: a leading front of IH state followed by a front of IHP state.

In other words, there is a leading front of helper infection followed by a front

of DIP infection. We remind the reader that f = 1: because there is a leading

front of helper infection with f = 1, we expect that there would be this leading

front of helper infection also with f < 1.

The DIP infection does not manage to overtake and stop the helper infection.

Occasionally, the DIP-infection front manages to catch up and wrap some

uninfected B cells that become IP surrounded by IHP cells (figure 5.4a).

Sometimes, the DIP-infection front manages to wrap enough B cells, that

inside the wrapped IP cells, there may also be some uninfected B cells.
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Figure 5.1.: Snapshots of the time-evolution of the system. (a) t = 50. (b) t = 100.
(c) t = 200. (d) t = 400. (e) t = 600. (f) t = 950. Notice the front of IH
state followed by the front of IHP state. The cells are not moving; the
infections are propagating.
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5.2 A partially-empty lattice does not
change the infection dynamics

We investigated whether a lattice with empty regions (i.e. regions without

cells) could allow the DIP-infection front to stop the helper-infection front.

5.2.1 Description of the new lattices

We made two new lattices: one with circular empty regions, and one with

square empty regions. We made this choice to see whether different curvatures

of the empty regions could affect the system differently.

For these two lattices, we made the following choices:

1. if the first lattice has a circular empty region centered in site (i, j), the

second lattice has a square empty region centered in site (i, j);

2. if the circular empty region with centre (i, j) (in the first lattice) has a

diameter equal to n sites, the square empty region with centre (i, j) (in

the second lattice) has a side equal to n sites;

3. in both cases we used the same initial conditions used for the lattice in

section 5.1: i.e., the initial IP and IH cells are in the same positions;

4. in both cases we used the same seed used for the lattice in section 5.1

for the random number generator.

We made these four choices to see the differences in time-evolution due to the

different lattices.

5.2.2 Results

The time-evolutions of the systems with circular and square empty regions are

in figures 5.2 and D.1 (in the appendices) respectively. Also with empty regions,

a first front of IH develops, and is followed by a front of IHP . Moreover, also
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with empty regions, the DIP infection does not manage to stop the helper

infection.

Just like without empty regions, the DIP-infection front can catch up to the

helper-infection front and wrap some uninfected B cells, turn them into IP
cells and these IP cells end up surrounded by IHP cells. Moreover, just like

without empty regions, sometimes the DIP-infection front can wrap so many

uninfected B cells that inside the trapped IP cells are also some trapped B

cells.

It appears that, if the DIP-infection front catches up to the helper-infection

front when the helper-infection front has hit a flat edge of an empty region,

the DIP-infection front may wrap B cells more easily; thus the structure of

trapped IP cells surrounding trapped B cells may appear more easily. This

phenomenon is shown in figure 5.4.
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Figure 5.2.: Snapshots of the time-evolution of the system with circular empty-
regions. (a) t = 50. (b) t = 100. (c) t = 200. (d) t = 400. (e)
t = 600. (f) t = 950. Once again a front of the IH state develops and is
followed by a front of the IHP state.
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Figure 5.3.: Snapshots of the three systems at t = 600. (a) Lattice with no empty
regions. (b) Lattice with circular empty regions. (c) Lattice with square
empty regions. With and without empty regions, the development of
the three systems is very similar. Therefore, neither type of obstacles
interfered majorly with the spread of the infections. (There is a difference
in figure (c), in the bottom-left corner, but that is because there is a
"peninsula" of cells touched by a "sea" of empty sites that is not present
in the other two lattices.)

Figure 5.4.: Examples of IP cells surrounded by IHP cells, and of B cells surrounded
by IP cells. These snapshots are at t = 950, i.e. once the lattice is no
longer developing. (a) Close-up of the lattice with no empty regions.
(b) Close-up of the lattice with circular empty regions. (c) Close-up
of the lattice with square empty regions. Against two flat edges of
empty regions, IHP -cells are surrounding IP -cells which themselves are
surrounding B-cells.
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6Conclusions

We have performed a qualitative study of the population dynamics of DIPs and

helper viruses which infect the same cells.

We began with only one DIP species and one helper species. We saw that, with-

out flux, the transformation of the cells into IHP cells takes a similar amount

of time whether the IHP cells make DIPs and helpers in similar proportions

of whether they produce mostly DIPs: this is because the IH cells too produce

new helper viruses. Instead, the transformation of the cells takes longer if the

IHP cells produce mostly helpers.

We saw that if we introduce an influx of uninfected cells and the dilution of

the cells, DIPs and helpers, then a dynamic balance develops. This dynamic

balance is different depending on how fast the dilution is. If the dilution is

relatively slow, then the steady-state level of the IHP cells is unchanging for

different proportions of DIPs produced by the IHP cells, unless these cells

produce a great majority of either DIPs or helpers. Instead, if the dilution is

relatively fast, the formation of IHP cells is hampered by dilution itself. This

causes the DIP species not to be able to survive unless the proportion of DIPs

made by the IHP cells is higher than a threshold. Another consequence is that

even if the IHP cells produce only DIPs, with fast dilution the DIP and helper

species manage to survive, because not all IH cells become IHP cells before

being diluted. This causes the IH cells and IHP cells to take the respective

roles of helper-virus producers and DIP producers.

We then saw that the DIP species goes extinct much more rapidly if the IHP
cells produce either mostly DIPs or mostly helpers. The helper species can

go extinct before the extinction of the DIP species or at the same time: there

is a direct proportionality between the frequency of this type of event and

the proportion of DIPs produced by the IHP cells. When the helper species

goes extinct before the DIP species, this extinction happens much more rapidly

when the IHP cells produce mostly DIPs. Once the helper species has gone

extinct before the DIP species, the DIP species manages to survive in the system

for a longer time if the IHP were not producing mostly DIPs or helpers: in fact,

if the IHP cells were producing similar proportions of DIPs and helpers, at the
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time of the helper extinction there are more DIPs left in the system.

We saw that in a system with two helper species and one DIP species which

can use both helper species, there is a clear winner between the helper species,

i.e. the one which is produced in a greater proportion by the cells infected

by both this helper and the DIP. However, if the DIP species are two, things

become more interesting. In fact, depending on the proportions of DIPs and

helper viruses produced by the doubly-infected cells, not always there is a

winner between the helper species or a winner between the DIP species; and if

there are no clear winners, the DIP and helper levels and the levels of infected

cells oscillate (if there is an influx of uninfected cells and the dilution of DIPs,

helpers and cells). If each DIP species can take advantage of only one helper

species and not the same helper species, a DIP species has the lowest levels

when the other DIP species is produced in low proportions. This DIP species

with the lowest level becomes the most likely to go extinct first among the

DIP and helper species. Additionally, if there are oscillating dynamics, the

probability of extinction of this DIP species oscillates with the same frequency

as the oscillating levels.

We finally considered a spatial model with one DIP species and one helper

species, where the IHP cells produce only DIPs. Two infection fronts developed,

a leading helper-infection front followed by a DIP-infection front. Most cells

ended up infected by both the DIP and the helper, but a few ended up infected

only by the DIP, and even fewer ended up not infected at all. These uninfected

cells were protected by a layer of DIP-infected cells, which cannot infect. As

the very last thing, we found that a cell-lattice with empty regions did not

hamper the infection propagation. However, it appeared that the flat surface

of an empty region might lead to a more likely formation of only-DIP infected

cells or uninfected cells.

6.1 Perspectives

There are features which we did not investigate due to time constraints; how-

ever, it would be interesting to include these in a future study.

One could create a lattice model with one DIP species and one helper species

where the IHP cells produce DIPs with varying proportions. It would be inter-

esting to study how fast the DIP infection propagates depending on f .
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Another lattice model could include two superinfection-exclusive DIP species

and two superinfection-exclusive helper species. We studied the competitions

between DIP species and between helper species in a well-mixed model, but

we do not know how space would affect these two competitions. In this spatial

model, could the virus and cells levels oscillate?

One could create models where the cells divide: such models would bet-

ter depict systems of bacteria with pirate and helper phages. The growth

rate of a cell would depend on its infection state: the infection of a host can

slow down its growth [22]. Pirate and helper phages would spread not only

through infection but also through growth of their hosts. However, cell growth

could become a disadvantage for the pirate: pirate replication requires two

infections, helper replication only one. If a doubly-infected cell, which makes

pirates, grows more slowly than a cell infected only by a helper, the pirate

would be at a disadvantage. This disadvantage would affect the population

dynamics.

In a model, whether it is well-mixed or spatial, one could also model the

cell receptors. Let us consider a system with multiple DIP species and multiple

helper species. Each helper species can only use one type of receptor [23], but

a DIP species could possibly take advantage of more than one helper species.

This would make this DIP species able to use more than one receptor, as

opposed to the helper viruses which can only use one receptor. This advantage

of the DIPs would counterweigh their fundamental disadvantage, i.e. the fact

that they need the coinfection of a helper virus in a cell to create new copies

of themselves. Thus this would be an additional ingredient for the dynamics

between DIPs and helper viruses.
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AValues of η and β

Here we include the values found in the literature of the rates η (rate of virus

absorption by a cell) and β (rate of virus release by a cell) for three viral

species.

Virus η β

HIV-1 (retrovirus) 0.65× 10−3 µl · day−1 [24] 850 day−1 [24]

SHIV-KS661 (retrovirus) 8.61× 10−11 ml · day−1 [25] 3.24× 104 day−1 [25]

M13 (chronic phage) 1.6× 105 µm3 · h−1 [26] 1.66× 103 h−1 [27]

Table A.1.: Values of η and β for a few example viruses. SHIV-KS661 is a
simian-human immunodeficiency virus [25]. M13 is a bacteriophage

with a satellite/pirate variant [16].
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B
Additional figures and
tables - Chapter 2

B.1 Steady-state levels of viruses and
infected cells (follow-up to figure 2.4)

Here we break down figure 2.4 into distinct steady-state levels of viruses and

infected cells.
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Figure B.1.: Steady-state concentrations of the viruses and infected cells for different
values of f . Compare with figure 2.4. (a) f = 0.1. (b) f = 0.5. (c)
f = 0.9.
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B.2 Steady-state levels of the infected cells
for two different dilution rates
(follow-up to figure 2.5)

(a)

(b)

Figure B.2.: Steady-state levels of only the infected cells vs f , with two different
rates of dilution γ. C is the same in the two cases. See figure 2.5
for the genome levels. (a) (C, γ) = (0.1, 0.01) (slower dilution) (b)
(C, γ) = (0.1, 0.2) (faster dilution)
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2.5) 109



B.3 Initial conditions for the stochastic
model in section 2.3.1

Here we show the initial conditions used for the model described in section

2.3.1.

f 0.01 0.05 0.1, ... , 0.9 0.95 0.99

P̃0 0 0 0 0 0

H̃0 0 0 0 0 0

B̃0 0 0 0 0 0

ĨP,0 0 0 0 1 3

ĨH,0 3 1 0 0 0

ĨHP,0 7 9 10 9 7

Table B.1.: The initial amounts of viruses and cells for each value of f .
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B.4 Example of time evolution of a system
with 1 DIP species and 1 helper
species where the two species go
extinct simultaneously (compare with
figure 2.12)

Here we show an example of time evolution of a system that advances accord-

ing to the model in section 2.3.1: in this example the DIP and helper species

go extinct simultaneously.

Figure B.3.: Another example of time evolution of the system with extinction of the
DIP. In this example f = 0.1, just like for figure 2.12. Here the DIP and
the helper virus go extinct at the same time: in fact, ĨHP reaches 0 when
ĨP , ĨH , P̃ , H̃ are already all 0.

B.4 Example of time evolution of a system with 1 DIP species and 1 helper species where the two
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B.5 Example of time evolution of a system
with one DIP species and one helper
species where the helper species goes
extinct before the DIP species
(compare with figures 2.12 and B.3)

Here we show the time evolution of a system that advances according to the

model in section 2.3.1: in this example, the helper goes extinct before the DIP

does.

Figure B.4.: In this example the helper virus goes extinct before the DIP does. Here
f = 0.9.
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B.6 Example of distribution of TH (section
2.3.2)

Figure B.5.: The statistics of TH for f = 0.5. The vertical scale is logarithmic. (The
total frequency is less than 40000, in fact R < 1 for f = 0.5. For f = 0.5
the frequency was 33118, corresponding to R ' 0.83.)
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B.7 Example of distribution of ∆T (section
2.3.2)

Figure B.6.: The statistics of ∆T for f = 0.5. The vertical scale is logarithmic. (The
total frequency is less than 40000, in fact R < 1 for f = 0.5. For f = 0.5
the frequency was 33118, corresponding to R ' 0.83.)
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Additional figures and
tables - Chapter 4
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C.1 Complete set of rules to find a winning
DIP species and a winning helper
species (expansion of figure 4.5)

METHOD A 
 

   • Compare the IHP -like species making the same helper:  
 

IH1Pa   vs  IH1Pb 

IH2Pa   vs  IH2Pb 

 
You do this by looking at the rows of the matrix !.̅ 
 

!̅ = $		!!
1					!b1
!!2					!b2

		& 
 

In a row, the species with higher ! wins. If ! is the same, it’s 
a tie. 
 
i. If the two duels are won by two species making the 

same DIP (same column), this DIP is the winning DIP. 
ii. If one duel is a tie, the DIP made by the winner of the 

other duel is the winning DIP. 
iii. If both duels are ties, use method B. 
iv. If the two duels are won by two species making 

different DIPs (different columns), use method B. 
 
   • Now you can find the winning helper by comparing the 
two IHP -like species left: the one with lower ! wins and the 
helper virus it produces is the winning helper. 
If the two IHP -like species left have a tie, compare the two 
losing species from the first part of this method: the species 
with lower ! wins and the helper it produces is the winning 
helper. 
  

(a)
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METHOD B 
 

   • Compare the IHP -like species making the same DIP: 
 

 

IH1Pa 

vs 
IH2Pa 

 

 

IH1Pb 

vs 
IH2Pb 

 

 
You do this by looking at the columns of the matrix !.̅ 

 

!̅ = $		!!
1					!b1
!!2					!b2

		& 
 

In a column, the species with lower ! wins. If ! is the same, 
it’s a tie. 
 
i. If the two duels are won by two species making the 

same helper, this helper is the winning helper. 
ii. If one duel is a tie, the helper made by the winner of 

the other duel is the winning helper. 
iii. If both duels are ties, use method A. 
iv. If the two duels are won by two species making 

different helpers (different rows), use method A. 
 

   • Now you can find the winning DIP by comparing the two 
IHP -like species left: the one with higher ! wins and the DIP 
it produces is the winning DIP. 
If the two IHP -like species left have a tie, compare the two 
losing species from the first part of this method: the species 
with higher ! wins and the DIP it produces is the winning 
DIP. 
 
 
 
 

(b)

Figure C.1.: Complete set of rules to find the winning DIP and the winning helper
virus: here we contemplate the case of a tie between IHP -like species.
There are two alternative methods. (a) According to method A, one
starts by looking for the winning DIP. (b) According to method B, one
starts by looking for the winning helper virus.
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C.2 Examples of oscillating levels and
steady-state levels based on the initial
conditions when f 1

a = f 2
b and f 1

b = f 2
a

(section 4.2.2)
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(a)

(b)

(c)

Figure C.2.: The levels of cells and viruses oscillate. The matrix f̄ has values f1
a =

f2
b = 0.6, f1

b = f2
a = 0.2. The initial conditions are H1(t = 0) =

0.229 × 10−7, H2(t = 0) = 0.242 × 10−7, Pa(t = 0) = 0.247 × 10−7,
Pb(t = 0) = 0.264 × 10−7. Thus H1(t = 0) 6= H2(t = 0), Pa(t = 0) 6=
Pb(t = 0). (a) The levels of the uninfected and singly-infected cells. (b)
The levels of the doubly-infected cells. (c) The levels of the free helper
viruses and DIPs.

C.2 Examples of oscillating levels and steady-state levels based on the initial conditions when
f1

a = f2
b and f1

b = f2
a (section 4.2.2) 119



(a)

(b)

(c)

Figure C.3.: The levels of cells and viruses reach a steady state, even though the
condition (4.17) is met: in fact, the values of the matrix f are f1

a = f2
b =

0.6, f1
b = f2

a = 0.2. The initial conditions are Pa(t = 0) = Pb(t = 0) =
0.3× 10−7 and H1(t = 0) = H2(t = 0) = 0.2× 10−7.

120 Chapter C Additional figures and tables - Chapter 4



C.3 Initial conditions for the study of the
first viral extinction (section 4.3.2)

f 1
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P̃a,0 1 1 1 1 1 2 2 2 2
P̃b,0 0 1 1 1 2 1 1 1 2
H̃1,0 8 6 5 4 4 3 3 3 2
H̃2,0 2 2 3 3 4 4 4 4 4

B̃0 1 1 1 1 1 1 1 1 1

ĨPa,0 0 0 0 0 0 0 0 0 0
ĨPb,0 0 0 0 0 0 0 0 0 0
ĨH1,0 9 4 3 2 1 1 1 1 1
ĨH2,0 2 2 2 2 1 1 1 1 1

ĨH1Pa,0 157 117 88 68 54 80 69 60 52
ĨH2Pa,0 36 53 61 64 64 82 81 80 78
ĨH1Pb,0 78 85 86 85 82 66 67 68 67
ĨH2Pb,0 17 38 59 78 95 67 79 89 99

Table C.1.: The initial amounts of DIPs, helper viruses and cells, for each value of f1
a .

Notice that the IHP -type cells are dominating.
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C.4 Initial conditions for the study of the
viral extinction-time distribution
(section 4.3.3)

v 10 50 100

P̃a,0 1 3 5
P̃b,0 0 1 3
H̃1,0 8 38 76
H̃2,0 2 8 15

B̃0 1 5 10

ĨPa,0 0 0 1
ĨPb,0 0 0 0
ĨH1,0 9 45 89
ĨH2,0 2 9 18

ĨH1Pa,0 157 786 1572
ĨH2Pa,0 36 180 359
ĨH1Pb,0 78 388 775
ĨH2Pb,0 17 87 175

Table C.2.: The initial amounts of DIPs, helper viruses and cells for each value of v.
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DAdditional figures - Chapter
5
D.1 Time-evolution of the system with

square empty regions (section 5.2.2)

Figure D.1.: Snapshots of the time-evolution of the system with square empty-regions.
(a) t = 50. (b) t = 100. (c) t = 200. (d) t = 400. (e) t = 600. (f)
t = 950. Once again a front of the IH state develops and is followed by
a front of the IHP state.
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