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Abstract

In this thesis I describe the design process of a uniaxial pressure cell for use in neu-
tron scattering experiments. The cell is optimized for measuring the broad and diffuse
magnetic scattering signals that are characteristic of magnetically frustrated compounds.
Furthermore, the room temperature and low temperature calibration, of a load gauge for
in situ pressure determination, is presented. Neutron measurements demonstrate that the
pressure cell has a homogeneous and largely non-magnetic background. The result is a
pressure cell with in-situ pressure determination, accurate within 10 %, that is functional
up to 3 GPa.
Neutron experiments are performed on the spin ice material Ho2Ti2O7 under uniaxial
pressure. Spin ice materials gained interest in the late 20th century for their substantial
zero-point entropy and the apparent emergence of magnetic monopole excitations. Previ-
ous work has shown that the magnetic susceptibility of the very similar Dy2Ti2O7 has a
significant pressure response. New theoretical work suggest that this response is a result
of the uniaxial pressure lifting the ground state degeneracy, reducing the size of the ground
state manifold.
I show results that, with low statistical significance, are consistent with theory. The peak
intensity of the spin flip scattering shows an increased intensity of 4± 4 %. Furthermore,
the pinch point scattering shows a significant increase as a function of pressure. This
change is not predicted by the theoretical model.
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Chapter 1

Introduction

For more than a century, the study of solid state physics have yielded spectacular result.
The discovery of superconductivity [1] and the quantum theory of magnetism [2] heralded
in a new era. One where macroscopic phenomena, needed to be understood via quantum
interactions at the microscopic scale. The diversity that solid state systems offer, in terms
of stable quantum states and emergent phenomena, makes them ideal for testing our un-
derstanding of the fundamental principles of our universe.
In more recent years, developments in synthesis methods and measuring techniques has
meant that design of quantum devices has become possible. The prospect of quantum
computing has driven progress in spintronics and quantum transport [3].

In the world of magnetic research, a lot of work has gone into the investigation of frustrated
magnetism. Magnetic systems that due to their geometry, has a suppressed ordering tem-
perature. Due to the lack of order, these materials offer a unique opportunity to study short
range quantum interactions. They originally gained interest for their suspected connection
to high temperature superconductivity [4, 5], Since then, continued studies have revealed
that the competing interactions may give rise to long range entanglement and topological
states [6].
Around the turn of the 21st century, a number of paperswere published on the so called spin
ice - materials. Frustrated systems that show no long range order down to mK tempera-
tures. The measurement of the substantial, zero point entropy [7] and subsequent evidence
of magnetic monopole excitations [8], means that spin ice compounds has garnered a lot of
attention from the scientific community over the past 20 years [9–11]. In this project I aim
to build on this work by studying the spin ice compoundHo2Ti2O7 under uniaxial pressure.

The use of pressure in the study of condensed matter physics has in the past yielded
significant results. Pressure as a tuning parameter offers a unique opportunity to change
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Chapter 1. Introduction

the structure of a solid at the atomic scale, leading to new phases of matter. Applying
pressure can turn insulators metallic or even superconducting. Recently, E. Snider et al.
showed evidence of superconductivity at 285 K in a Hydrogen-Sulphur compound at 267
GPa [12]. In the field of magnetism, pressure offers an exciting opportunity to tune the
coupling between magnetic moments and induce new phases.

As a probe for studying condensed matter systems, few tools are as versatile as neu-
tron scattering. The unique combination of magnetic moment, no electric charge and an
energy scale that matches fundamental excitations makes neutron scattering a powerful
tool in material science.
In neutron scattering, high pressure research is dominated almost exclusively by hydrostatic
pressure experiments. This is experimentally simpler to realise than uniaxial pressure, as
there is no need to consider the Poisson effect and thus the risk of breaking the sample is
much smaller. The drawback of this is that hydrostatic pressure is applied symmetrically
and is thus, in most cases, incapable of changing the relative distances in the system.
Availability of uniaxial pressure would make it possible to break symmetries and tune the
dimensionality of the magnetic or conductive properties of the sample.
In relation to frustrated magnets, uniaxial pressure could prove an extremely powerful
tuning parameter. As frustration is a result of competing interactions, being able to tune
these interactions independently of each other might lead to new, interesting phases of
matter.
Scattering from magnetically frustrated materials is characterized by being broad and
diffuse. As a consequence of this a uniaxial pressure cell designed for studying these
materials will have to obey a strict set of criteria:

• The pressure cell needs to have a low and and homogeneous background.

• It has to be constructed from materials with no magnetic correlations to enable
polarization analysis.

• It needs to be possible to scan a broad Q-range to map the broad features character-
istic of magnetically frustrated systems.

The purpose of this project has been twofold. First, I will present the design, and
calibration process of a uniaxial pressure cell optimized for use in neutron scattering
experiments on frustrated magnetic systems. Second, I will present neutron measurements
of spin ice material Ho2Ti2O7 under uniaxial pressure. In addition, I will discuss possible
improvements and future applications of the uniaxial pressure cell. I will, however, begin
with a brief introduction to the theory of magnetism in condensed matter systems and to
the technique of neutron scattering.
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Chapter 2

Magnetism

This chapter provides a brief introduction to the study of magnetism in solid matter. For
a much more thorough introduction to the field, see [13, 14].

Macroscopic magnetism is an emergent feature deriving from quantum mechanical in-
teractions on the atomic scale. It arises as a consequence of electrons in solids carrying
orbital angular momentum, L, and inherent angular momentum, spin, S. In many ele-
ments this does not result in a net angular momentum. Electrons are filled into shells
by minimizing the total energy of the atom, this process can be approximated by a set of
empirically determined rules, Hunds rules [13]. In some cases, these energy minimization
rules will lead to an only partially filled outer electron shell, giving the ion a net total
angular momentum J = S+L. For some ions a strong crystal field interaction, causes the
angular momentum to be quenched leading to the state with lowest energy to be one with
L = 0. Thus the total angular momentum is J = S and the resulting magnetic moment is
given as

µ = gµBS, (2.1)

where µB is the Bohr magneton. As magnetism arise from ensembles of ions, we need
to consider how spins interact with each other. From electromagnetism we know that
magnetic dipoles in a vacuum interact via the magnetic dipole interaction. For two
isolated dipoles separated with distance r and with magnetic moments µ1, µ2and, such as
two spins, the energy of this interaction is

E =
µ0

4πr3

[
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

]
. (2.2)

Given a typical inter atomic distance in a physical lattice, r = 1 Å and magnetic moments
µ = µB this interaction energy can be estimated to µ2

4πr3
≈ 1 K. While this can be a

significant contribution in systems with very large magnetic moments, it is never large
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Chapter 2. Magnetism

enough to explain the existence of room temperature magnetism. To explain this, we need
to consider the exchange interaction.

Consider two electrons (S = 1
2
) with spatial wavefunctions (ψa, ψb). When brought

close to each other the spins can either form a triplet (S = 1) or a singlet (S = 0). To obey
fermionic exchange statistics the total wavefunction must be anti-symmetric. The triplet
state is symmetric and the singlet is anti-symmetric and this constrains the spatial part of
the wavefunctions and yields two possible total wavefunctions, given by

|ΨS〉 =
1√
2

[
ψa(r2)ψb(r1) + ψa(r1)ψb(r2)

]
χS, (2.3a)

|ΨT 〉 =
1√
2

[
ψa(r2)ψb(r1)− ψa(r1)ψb(r2)

]
χT . (2.3b)

Estimating the energy difference between these states results in

J =
1

2

(
〈ΨS|H|ΨS〉 − 〈ΨT |H|ΨT 〉

)
=

∫
ψ∗a(r1)ψ∗b (r2)Hψa(r2)ψb(r1)dr2dr1. (2.4)

WhereHis the Hamiltonian associated with the Coulomb repulsion between the electrons.
This result indicates that the spin interactions are entirely governed by the electrostatic
interactions between the electrons and the system will essentially pick any spin state that
minimizes the Coulomb energy. The value of J can vary from a few mK to hundreds of
K and as it turns out is the main mechanism behind most magnetic phenomena.

Generalising to an ensemble of N magnetic particles it is possible to show that the
interaction energy of such an ensemble is given as the Heisenberg Hamiltonian,

HH = −
N∑

<i,j>

Ji,j Si · Sj. (2.5)

In this case the interaction is truncated to nearest neighbour interaction, this is denoted
by the angled brackets. Determining Ji,j analytically can be very difficult. The value
of Ji,j is affected by the geometry of the lattice, the bond length and by neighbouring
non-magnetic ions. It is however possible to determine experimentally in a number of
ways e.g by measuring the spin wave dispersion (2.8).
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2.1. Magnetic Order

2.1 Magnetic Order

Let us consider what would happen in one of the simplest geometries, the cubic lattice.
Intuitively, the square lattice is simpler but according to the Mermin-Wagner theorem no
long range order can occur in one or two dimensional lattices at finite temperature [15]. At
temperatures that are high compared to the exchange interaction J , thermal fluctuations
will dominate the system and spins will be pointing in random directions. This is known
as the paramagnetic phase, (figure 2.1a). "Para" meaning with or along, alluding to the
fact that in this phase the magnetic properties are limited to the ability to be magnetized
by an external magnetic field (B) described by the Zeeman Hamiltonian

HZ = gµB
∑
i

Si ·B. (2.6)

When the system is then cooled below some ordering temperature defined by the exchange
interaction, it will order. For J > 0 the state with the lowest energy is one where the spins
are aligned with their nearest neighbours as seen in figure 2.1b, this is known as the ferro-
magnetic ground state. In the same manner, for J < 0 the energy is minimized when all
of the spins are anti-aligned with their nearest neighbours, yielding the antiferromagnetic
ground state, shown in figure 2.1c.
A puzzling feature of this ordering is the fact that the spins seem to choose a preferred
direction, although there is apparently no underlying preference for any specific direction.

(a) (b) (c)

Figure 2.1: Above the ordering temperature the system is in the paramagnetic phase, the
system is completely isotropic as the spins are oriented randomly. When cooled below the
ordering temperature, the system will order into the Ferromagnetic state (b) if J > 0 or
Antiferromagnetic state (c) for J < 0.

For a mathematically perfect lattice, there is in fact no preferred direction and the ground
state is actually just a metastable state as the state with (Though random transition between
the different ground states is virtually impossible). In real systems however, an anisotropic
crystal field or even impurities will result in a preferred direction.
The ordering temperature can be estimated by fitting the high temperature susceptibility
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Chapter 2. Magnetism

with the Curie-Weiss law [13]
χ ∝ 1

T − |ΘCW |
. (2.7)

This estimate is known as the Curie-Weiss temperature, |ΘCW |. The Curie-Weiss law
derives from a mean-field approximation of the magnetisation. It can therefore be quite
inaccuratewhen there are competing interactions or geometries that are not described in the
mean field model. Therefore, the ordering temperature is better measured experimentally
by looking for divergences in the magnetic susceptibilities or by measuring the magnetic
Bragg scattering, present only in the case of long range order (Section 3.4). For a
ferromagnet the ordering temperature is called the Curie temperature (TC), whereas the
antiferromagnetic ordering temperature is known as the Néel temperature (TN ).

2.1.1 Spin Waves

Figure 2.2: Spin wave in an isotropic ferromagnet, the perturbation causes the spins to
precess around the equilibrium axis.

In the temperature range between ordering at TC /TN and T = 0 K, there is still plenty of
thermal energy present to create excitations, the most well known of which are the spin
waves, or magnons.

For an isotropic ferromagnetic spin chain with a large magnetic moment S > 1
2
at T = 0

K. The system will be in the ferromagnetic ground state, all spins pointing in the same
direction (figure 2.1b). One spin is then perturbed slightly away from the equilibrium po-
sition. This perturbation could be caused by exchanging energy with the lattice vibrations
or by scattering with a neutron. The spin will start precessing around the equilibrium axis,
this precession then propagates through the spin chain in the manner shown in figure 2.2.
Formalizing this through the time evolution of the spin operator it is possible to calculate
the ferro- and antiferromagnetic spin wave distributions [13]

Ferromagnet : ~ωq = 4JS(1− cos qa), (2.8)

Antiferromagnet : ~ωq = 4JS| sin qa|. (2.9)

Both of them are plotted in figure 2.3.
Spin waves are exclusively a product of long range order. Thus, they can not exist above
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2.2. Frustrated Magnetism

the ordering temperature or in systems with only short range order.

Figure 2.3: Ferromagnetic spin wave dispersion (blue) and antiferromagnetic spin wave
dispersion (orange). As they both go to zero continuously, there exists spin wave modes
that cost no energy to excite with q = 0, π.

2.2 Frustrated Magnetism

Frustratedmaterials refers to a subset ofmagneticmaterialswhere the ordering temperature
is suppressed due to a large ground state degeneracy [16]. This most commonly occurs
due to geometrical constraints. Consider the Ising interaction

H= −J
∑
<i,j>

Szi S
z
j . (2.10)

This is a simplified version of the Heisenberg Hamiltonian where only the z-components
of the spins interact. This is used to described a system with a strong easy axis anisotropy,
which may occur as a consequence of an asymmetric crystal field [13]. If J < 0, the
ground state of this Hamiltonian should be one where all the spins are anti-aligned with
their nearest neighbours and along the z-axis. This is indeed the case for the square lattice
(figure 2.4a.), but turns out to be impossible for the triangular lattice (figure 2.4b.).

?
(a) (b)

Figure 2.4: The antiferromagnetic Ising state on the square lattice results in a stable
ground state (a). The same nearest neighbour exchange interaction on the triangular lattice
results in a degenerate ground state manifold (b).
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Chapter 2. Magnetism

Anti-aligning two spin leaves the third spin "undecided". As flipping the third spin doesn’t
change the total energy, the resulting ground state is degenerate [13].
By generalizing this principle to larger lattices it quickly becomes clear that a physical
lattice will host a massively degenerate ground state manifold. This will result in a system
that has no ordered phase but instead fluctuates between the many spin configurations of
the ground state manifold.

In general, frustrated systems are dominated by short range correlations, this is known as
cooperative paramagnetism. In many real systems other interactions will break the degen-
eracy at low temperatures resulting in a suppressed ordering temperature and cooperative
paramagnetism between |ΘCW | and the ordering temperature TN . The actual ground state
of the 2D triangular lattice has been a subject of much research.
In 1973 Anderson proposed that it is the so called RVB state [4, 17]. He showed that
the energy of a state where the spins couple two and two in singlet states have a a lower
energy than the Néel state. This discovery and its believed connection to high temperature
superconductivity [5] became the basis of the entire field of quantum spin liquids [6, 10].
A phase of matter that can only exist at T = 0 K as it is dominated by long range quantum
entanglement.

As frustrated systems show no long range order, excitations can not manifest in the
form of spin waves. Excitations will instead manifest themselves in other ways. The form
they take varies a lot, but in general they will be short range in nature. Fundamentally,
frustrated systems are difficult to describe, this is because the global symmetries that allow
us to describe ordered magnetic systems are not upheld. This in turn is also one of the
things that makes magnetic frustration interesting.

The example presented in figure 2.4 is a 2D lattice, there are however multiple real
world examples of 3D frustrated lattices, such as the hyperkagomé [18] or pyrochlore
lattice. The latter of which has been the focus of this project.

2.3 Spin Ice Materials

In this thesis I will deal with a subclass of magnetically frustrated materials, the so called
Spin Ice materials [19]. They have the chemical composition A3+

2 B4+
2 O7, where A is

a magnetic rare earth ion, such as Holmium, Dysprosium or Ytterbium and B is a non-
magnetic transitionmetal ion. Spin ice have the pyrochlore lattice structure shown in figure
2.5, the magnetic ions are on corner sharing tetrahedra. Classical spin ice, characterized
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2.3. Spin Ice Materials

Figure 2.5: Spin ice is characterized by the magnetic ions being on corner sharing
tetrahedra. The strong local 〈111〉 Ising anisotropy gives rise to the two-in-two-out spin
structure, depicted. Figure from [10].

by its very large magnetic moment1, is modelled by using the dipolar spin ice model
(DSM), the associated Hamiltonian is [20]

HDSM = Jnn
∑
<i,j>

Szii · S
zj
j +Dr3

nn

∑
i>j

Szii · S
zj
j

|rij|3
−

3(Szii · rij)(S
zj
j · rij)

|rij|5
. (2.11)

The first term in (2.11) corresponds to the nearest neighbour exchange interaction (nn).
As we are only dealing with classical spins we would expect a nearest neighbour term
identical to the one in (2.5). However, there is a strong local 〈111〉-Ising anisotropy which
essentially forces the spins to point along the local 〈111〉-axis, running between the centres
of neighbouring tetrahedra. This means that even though the magnetic moment in these
materials is large, the spin behaves like an Ising spin.

The second term in (2.11) corresponds to the dipolar term, this is relevant due to the
very large magnetic moment of the magnetic ions, D denotes the magnitude of this inter-
action. Given the long range nature of the dipolar term, one would think that it would lead
to long range order at low temperature. However, it turns out that the dipolar interaction
almost perfectly self-screens [21], cancelling and resulting in the same ground state as
would be found with only the nn interaction. Namely, the spins pointing along the 〈111〉,
easy-axis, two towards and two away from the centre of each tetrahedron as depicted in
figure 2.5.

This configuration is what gives spin ice its name. The "two-in-two-out" structure, referred
to as the ice rule, resembles the placement of the hydrogen ions relative to the oxygen ions
in water ice. Figure 2.6 shows a comparison between the two.

1lower moments is a subject in and of it self, an introduction can be found in [9].
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Chapter 2. Magnetism

Figure 2.6: Comparison between water ice (left) and spin ice (right). In water ice, the
hydrogen ions (closed circles) are organized in a tetrahedral structure, with two of them
being close to the oxygen ion (open circles) in the centre of the tetrahedron and two of
them further away. Figure from [19].

This resemblance with water ice goes even further. According to thermodynamics, the
entropy of any system should go to zero as it settles in to its ground state. In 1935 Linus
Pauling showed that due to the degeneracy of the state shown in figure 2.6, water ice will
have a residual zero point entropy of

S0 =
1

2
R ln

(
3

2

)
, (2.12)

per hydrogen ion at T = 0 K. The same thing should be true for the spin entropy of a
spin ice system, if the mapping described above is accurate. In 1999 this was indeed
found to be the case, when the residual entropy of the spin ice Dy2Ti2O7 was measured
experimentally by Ramirez et al. [22].

2.3.1 Magnetic Monopoles

Figure 2.7: Excitations in spin ice. Flipping one spin introduces a local defect of opposite
magnetic charge in the tetrahedra connected by the spin. Flipping another spin in either
of the tetrahedra restores the ice rule in the original tetrahedron, moving the defects away
from each other. These excitations can be described as magnetic monopoles. Figure
from [8].

10



2.3. Spin Ice Materials

Due to the lack of long range order, there are no spin waves in spin ice systems, there are
however long range interactions. Suppose the system is in one of the magnetic ground
states, all tetrahedra have two spins pointing toward the centre and two pointing away
(figure 2.7A). The lowest possible excitation would then, naturally, be flipping one spin
(figure 2.7B). This introduces a differing magnetic "charge" in the two neighbouring
tetrahedra. It is then apparent that flipping another spin in one of these tetrahedra does
not change the total energy of the system as long as it restores the ice rule in that first
tetrahedron. This effectively moves the magnetic "charges" away from each other (figure
2.7C) [7].

Figure 2.8: Diffraction scattering pattern of Ho2Ti2O7, experiment (A-C) and theory
(D-F). The total scattering (C, F) is the sum of the spin flip (SF) and non spin flip signal
(NSF). Figure from [8].

As they interact very weakly they can be modelled as magnetic monopoles, free to move
throughout the latticewith no additional energy cost. The series of flipped spins connecting
the two monopoles of opposite charge is known as a Dirac string.
In 2009 polarized neutron scattering was used to measure the scattering from the spin ice
Ho2Ti2O7. This was done by Fennell et al. [8] and at the same time by Morris et al. [23].
Figure 2.8 shows the spin flip scattering pattern measured by Fennell et al. compared to
simulations. The details of neutron scattering is explained in chapter 3. The spin flip
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Chapter 2. Magnetism

scattering denotes the part of the scattering that flipped the spin of the neutron. Whereas
the opposite is true for the non-spin flip case. The total is the sum of the two.
The broad features in the scattering pattern corresponds to short range correlations, this
is consistent with the degenerate nature of the ground state. Broad features are in general
characteristic for the scattering pattern of magnetically frustrated systems. A much more
unique feature are the pinch-points, referring to the regions where the broad features
narrow and become almost point like. These are considered evidence for the Dirac strings
connecting the magnetic monopoles discussed above.
There are a few discrepancies between theory and data. Most significantly, the experiment
shows quite a large magnetic contribution in the NSF data, which is not present in the
theoretical scattering pattern.

2.3.2 Spin Ice Under Uniaxial Pressure

For some time, it has been theorized that perturbing a spin ice system using pressure, would
induce a new phase of matter. Neutron experiments performed by Mirebeau et al. [24]
on Ho2Ti2O7 under hydrostatic pressure of up to 6 GPa, however, show no deviation
from the scattering pattern at ambient pressure. As shown in figure 2.9, the modulation
amplitude does not vary with hydrostatic pressure. The modulation amplitude is defined
as Imax − Imin in the Q-window shown in the inset of the figure.
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Figure 2.9: Modulation amplitude plotted as a function of temperature for ambient
pressure as well as 5 GPa and 6 GPa. The inset depicts the ambient pressure and 6 GPa
data at 1.4 K. The modulation amplitude is defined as Imax − Imin (length of the arrow).
Figure from [24].
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2.3. Spin Ice Materials
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Figure 2.10: The three different directions that pressure is applied in the model. The
number of parameters needed to model the system differs depending on the direction of
the pressure. Note that the value of J|| is not necessarily the same for the different cases.
Figure from [25]

In 2007 Mito et al. showed that the spin ice material Dy2Ti2O7 display a significant
magnetisation response under uniaxial pressure [26]. This data is shown in figure 2.11.
Subsequent theoretical models using only nearest neighbour interactions suggest a uniaxial
pressure induced phase transition to a ferromagnetic state [27]. Richard Edberg at KTH,
Stockholm has expanded the model to include dipolar interactions and it is this theoretical
work that forms the basis for this project [25].

Figure 2.11: Magnetisation data measure by Mito et al. [26] plotted along with MC fits
generated using the DSM model. κ denotes the compression of the lattice in the direction
of the pressure. Figure from [25]

The pressure is modelled along three orthogonal directions. When the crystal is com-
pressed, the exchange interactions will change with pressure. It is assumed that the
interactions perpendicular to the pressure will not change. The notation is introduced in
figure 2.10. Due to the symmetries of the system, the all the interactions can be described
with two different values, J|| and J⊥ for pressure in the (001) and (111) directions where
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Chapter 2. Magnetism

as three J1||, J2|| and J⊥ are needed for the (110 plane).

As the previous work has been done one Dy2Ti2O7 (DTO) [26], this is chosen as the model
system. DTO is however not very suitable for neutron experiments as Dysprosium has
a very large neutron absorption cross section [28]. For this reason, simulations are also
performed for the very similar Ho2Ti2O7 (HTO), as the goal is to do neutronmeasurements
on this material.
The parameters of the model (2.11) are then optimized, so that they offer the best fit to
the magnetization data measured by Mito et al. The resulting fits are shown in figure 2.11
along with data.
As the response is clearly most significant for pressure in the (001) direction, this case is
examinedmore thoroughly. The associated ground state turns out not to be a ferromagnetic
state as has been previously proposed. The added dipolar term seems to maintain some
of the degeneracy in the system. Figure 2.12 shows the four different possible states in
the phase diagram of DTO. At ambient pressure, DTO is on the phase boundary between
theM⊥, which has spin chains perpendicular to the (001) andM|| which has spin chains
parallel to (001). This means that all of the states that obey the ice rule are degenerate.
When pressure is applied, the exchange interactions are distorted, causing all the phase
boundaries tomove. At the same time, DTOalso shifts in the phase diagram, pushing it into
the M|| state. This is what leads to increased magnetization in the direction of the pressure
in figure 2.11. The ground state manifold has been reduced to only include the ones with
spin chains in the direction of the pressure. The previously proposed ferromagnetic state
is not accessible unless the pressure is much higher. By linear extrapolation of J||, the
pressure has to be as high as 3.4 GPa.
It is then possible to compute the relative change in the scattering cross section scattering
cross section

∆S(Q)

S(Q)
=
S(Q)P>0 − S(Q)P=0

S(Q)P=0

(2.13)

for the parameters found by fitting to the magnetization data. These can be seen in figure
2.13. It is this theoretical work that founds the basis of the experimental studies in this
thesis. The same model described here were used to calculate the neutron cross section
Ho2Ti2O7 under uniaxial pressure, that will be discussed in subsequent chapters.
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2.3. Spin Ice Materials

Figure 2.12: The four possible ground states plotted with the corresponding phase bound-
aries Jci for ambient pressure and Jκci for P > 0. Applied pressure distorts the phase
boundaries and also shifts DTO in the phase diagram. Figure from [25]
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2.3. Spin Ice Materials

2.3.3 Ho2Ti2O7 Sample

In this project, neutron experiments were performed on Holmium Titanate. Ho2Ti2O7

(HTO) is a spin ice material as discussed above, with nearest neighbour exchange
Jnn = 1.56 K [29]. As Ho3+ has total angular momentum, J = 8, it consequently
has a very large magnetic moment, µ ∼ 10µB. For this reason it has a significant dipolar
interaction, given by the parameter D = 1.41 K [29]. HTO has a cubic unit cell with
lattice parameter 10.1Å [30].
HTO has a ferromagnetic Curie-Weiss temperature of ΘCW ∼ 2 K, but due to frustration
it does not order down to mK temperatures. Around ΘCW it instead transitions into the
spin ice state, dominated by short range correlations.

In this project, the goal is to measure HTO under uniaxial pressure and thus the sam-
ple has to be aligned very accurately and cut very precisely to ensure a completely flat
contact surface between the pressure cell and the sample. For this reason, the alignment
and cutting is outsourced to a company that specialise in this. In figure 2.14, an image of
the entire sample, as it is grown, is shown next to an image after it is cut.

Figure 2.14: HTO sample after it is grown (left). The sample is then cut into cylinders
with dimensions h = 3 mm and d = 3 mm or d = 2 mm (right). The samples are synthesised
and grown by Ingrid Marie Bakke Fjellvåg.
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Chapter 3

Neutron Scattering

Neutron scattering has proved a versatile method for determining structure and dynamics
in solid state systems. This section provides an overview of the techniques relevant to
this project. The field of neutron scattering is much larger and more varied than what is
presented here, sources for additional information include [31, 32].

3.1 The Neutron

As neutrons are uncharged, they only interact with the sample via the short ranged nuclear
interactions. This means that as opposed to primarily scattering from the surface of the
sample, neutrons provide bulk measurements. This property also means that it is possible
to have a significant sample environment around the sample, as neutrons interact quite
weakly with matter.
Furthermore, the energy scale of neutrons match that of fundamental excitations very well
making them a perfect probe for studying the vibrational modes of materials.
Lastly as neutrons have spin, they are ideally suited to probe both the magnetic structure
and magnetic excitations. It is even possible, in the case of weakly correlated magnetic
materials, to separate the magnetic and structural scattering signals completely.

The neutron is an integral part of almost all matter, as it can be found in the nucleus
of all known elements except for the most common hydrogen isotope 1He. When in the
nucleus, the neutron is stable but in its free state is has a lifetime of around 15 minutes.
The neutron has a mass of mn = 1.675 · 10−27 kg, very close to that of the proton. It
carries no charge but due to its spin, it has a magnetic moment,

µ̂ = γµN σ̂. (3.1)
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3.2. Scattering Theory

Where µN is the nuclear magneton, γ is the gyromagnetic ratio and σ̂ is the Pauli
spin operator. According to quantum mechanics, neutrons have both particle and wave
properties. As a consequence of this, a neutron moving with velocity v can be described
by its associated De Broglie wavelength [32]

λ =
2π~
mnv

. (3.2)

As neutrons are bound in the nuclei of atoms, it is not entirely straight forward to obtain free
neutrons, to perform scattering experiments. Therefore neutron experiments are limited
to large scale facilities. They fall in to two categories, the older reactor sources (FRM-2,
NIST,HFIR, ILL) that produce neutrons in fission reactors and the newer spallation sources
(SNS, ISIS, PSI, ESS), that produce neutrons by accelerating protons into a neutron-rich
target [32].

3.2 Scattering Theory

Figure 3.1: Schematic of a scattering event. The incoming neutron beam hits the sample
and is scattered with scattering angle 2θ and azimuthal angle φ into solid angle dΩ. Figure
adapted from [33].

A scattering event as the one depicted in figure 3.1 consists of a sample and an incoming
beam of neutrons, that scatters off the sample. The incoming beam can be described as a
plane wave by a wave vector ki [31]

ψi(r) =
1√
Y

exp(iki · r). (3.3)
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Chapter 3. Neutron Scattering

Where Y is a normalisation constant. The neutron beam is scattered by the sample with
scattering angle 2θ, the scattered neutrons are likewise described by a plane wave, with
wave vector kf . To quantify the number of neutrons scattered into a given solid angle dΩ

the differential scattering cross section is defined

dσ
dΩ

=
# of neutrons scattered in to dΩ

dΩ I0

, (3.4)

where I0 is the total flux of the incoming neutron beam. By considering the possibility
that the scattering event changes the energy of the neutron from Ei to Ef , (3.4) can in turn
be generalised into the partial differential scattering cross section

dσ2

dΩdEf
=

# of neutrons scattered in to dΩ,with energies [Ef , Ef + dEf ]
dΩ dEf I0

. (3.5)

To calculate (3.5), it is necessary to determine the transition probability between a plane-
wave state with wave vector ki and one with wave vector kf . This probability is given by
Fermi’s Golden rule

Wi→f =
2π

~

∣∣∣〈ψf |V̂ |ψi〉∣∣∣2 ρ(Ef ). (3.6)

V̂ is the interaction potential given by the sample, and ρ(Ef ) is the density of states per
unit energy of the scattered neutrons. Calculating this and normalising by incident flux
yields the partial differential scattering cross section

dσ2

dΩdEf
=

(
Y mn

2π~2

)2
kf
ki

∣∣∣〈ψf , λf |V̂ |ψi, λi〉∣∣∣2 δ(Eλi − Eλf + ~ω). (3.7)

The initial and final state of the sample is denoted as λi,f and ~ω = Ei − Ef is the
energy transferred to the sample by the neutron. Thus the delta function ensures energy
conservation. In the following we will examine the elastic contribution to the scattering
cross section, denoted

( dσ
dΩ

)
el. thus we will assume ~ω = 0 and ki = kf .

3.3 Nuclear Scattering

I will begin by considering scattering from the nuclei of a static lattice. This interaction
can be approximated with the Fermi pseudo-potential

V̂ (r) =
∑
j

2π~
mn

bj δ(r− rj). (3.8)
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3.3. Nuclear Scattering

Here, the j’th nucleus in the lattice is approximated as a delta function in space at position
rj . The scattering length, bj is an inherent property of the isotope. It has units of length
and sets the magnitude of the interaction between the neutron and the nucleus. Inserting
3.8 into 3.7, yields

(
dσ
dΩ

)
nuc, el.

=
Y 2m2

n

4π2~4

∣∣∣∣∣〈ψf , λf |2π~mn

N∑
j

bjδ(r− rj)|ψi, λi〉
∣∣∣∣∣
2

=

∣∣∣∣∣
N∑
j

bj exp(iQ · rj)
∣∣∣∣∣
2

(3.9)
Here, the scattering vector Q has been defined as Q ≡ ki − kf . This quantity turns out
to be extremely useful and has a physical interpretation, ~Q is the momentum exchanged
with the sample in the scattering event. For an elastic scattering event, there is no energy
transfer and thus ki = kf = k. Using this, we arrive at

Q =
4π sin(θ)

λ
, (3.10)

where λ is the wavelength of the neutron. (3.9) holds true only in the case were the
nuclei are fixed in space. Real atoms however, vibrate and this vibration adds a certain
dampening to the elastic scattering signal, known as the Debye-Waller factor

exp(−2Wj) = exp(−2 〈Q · uj(t)〉2). (3.11)

Hereuj(t) is the displacement from equilibrium of the j’th atom as a function of time. The
angled bracket denotes the time average. It is usually assumed that this term is identical
for all atoms. Multiplying (3.11) with (3.9), we have in principle arrived at the nuclear
scattering cross section.

So far we have considered the general case of an ensemble of nuclei. Let us consider
the specific case of scattering with a crystalline material. This means that the material has
translational symmetry, one such lattice is shown in figure 3.2.
By employing this periodicity of the lattice it is possible to change the sum over the atoms
to two sums, one over the individual atoms in the unit cell (i) and one over the unit cells j.
By defining the relative position of the i’th nucleus inside the unit cell as ∆i, we arrive at,

(
dσ
dΩ

)
nuc, el.

= exp(−2W )

∣∣∣∣∣∑
i

bi exp(iQ ·∆i)
∑
j

exp(iQ · rj)
∣∣∣∣∣
2

. (3.12)
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Chapter 3. Neutron Scattering

Q

Figure 3.2: Scattering from a crystalline material. Scattering will result in Bragg peaks
corresponding to different lattice spacings in the material (d1 and d3). Some spacings
produce destructive interference (d2 and d4), resulting in |FN(Q)|2 = 0. Figure from [34].

By performing the sum over the unit cells (j) we obtain(
dσ
dΩ

)
nuc, el

= N
(2π)3

V0

exp(−2W )|FN(Q)|2
∑
G

δ(Q−G). (3.13)

Here V0 is the volume of the unit cell and FN(Q) is the nuclear structure factor,

FN(Q) =
∑
i

bi exp(iQ ·∆i). (3.14)

The delta function in (3.13) is what is known as the Laue Condition, it means that
scattering only occurs when Q is equal to a reciprocal lattice vector G. This is more
famously expressed in terms of the Bragg law [34]

nλ = 2d sin(θ), (3.15)

where n is an integer and d is the spacing between lattice planes. This does not mean
that there is scattering from every reciprocal lattice point. Depending on the geometry
of the lattice, scattering from some lattice planes will result in destructive interference,
manifesting as FN(G) = 0. Different lattice plane choices can be seen in figure 3.2.
In figure 3.3 the structural Bragg scattering from spin ice material Ho2Ti2O7 has been
plotted as a function of 2θ (left) along with their position in Q-space (right). It has been
calculated by inserting the scattering lengths of Ho, Ti and O along with their respective
positions in the unit cell in (3.13) and calculating the corresponding scattering angle from
(3.10).
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3.4. Magnetic Scattering

Figure 3.3: Bragg peaks of Ho2Ti2O7, calculated using (3.13). The relative intensity
of each peak plotted as a function of scattering angle 2θ (left). Position of Bragg peaks
plotted in reciprocal space along with the reciprocal unit cell (right). The center of each
unit cell corresponds to a Bragg point (Q = G).

3.4 Magnetic Scattering

As preciously stated, the neutron has a magnetic moment. This means that the neutron
interacts with the spin state of the sample, leading to a magnetic contribution to the
scattering cross section. The magnetic field generated by an electron at position rj is
given as [31]

H(r, rj) = ∇×
(
µe × (r− rj)

|r− rj|3
)
. (3.16)

This is the magnetic field from a localised magnetic dipole with dipole moment equal
to that of the electron µe (2.1). Given the magnetic moment of the neutron (3.1), the
magnetic interaction potential becomes,

V̂m = −γµN σ̂ ·
∑
j

H(r, rj). (3.17)

To calculate the corresponding scattering cross section, (3.17) is inserted in (3.7), yielding(
dσ
dΩ

)
mag

=

(
Y mn

2π~2

)2 ∣∣∣〈ψf , χf , λf |V̂m|ψi, χi, λi〉∣∣∣2 . (3.18)

As we are here dealing with the interaction of the neutron spin with the magnetic corre-
lations in the system, the spin state of the neutron χ has been included. Evaluating the
spatial part of this is rather complicated, by doing it we arrive at [35],
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Chapter 3. Neutron Scattering

(
dσ
dΩ

)
mag

= (γr0)2 |〈χf , λf |σ̂ ·M⊥|χi, λi〉|2 . (3.19)

r0 = 2.818 · 10−15 m is the classical radius of the electron and M⊥ = Q̂ × (M × Q̂) is
the part of the Fourier transformed spins,

M =
∑
j

exp(iQ · rj)sj, (3.20)

that is perpendicular to the scattering vector Q. This shows that the neutrons will only
scatter with the spin component perpendicular to Q. Assuming an unpolarised beam of
incident neutrons, it is possible to show that (3.19) becomes [35](

dσ
dΩ

)
mag

=
∣∣∣g
2
F (Q)

∣∣∣2 exp(−2W )(γr0)2
∑
αβ

(δαβ − Q̂αQ̂β)

×
∑
λi

pλi
∑
j,j′

exp(iQ · (rj′ − rj)) 〈λi|sαj sβj′ |λi〉 . (3.21)

∑
αβ is a sum over the x, y, z components of the spins. Q̂α refers to the α component of

the scattering vector of unit length. pλi is the probability that the sample is in the initial
state λi. The term in the last sum is the Fourier transform of the spin correlation function.
This is sometimes referred to as S(Q) and this term contains all information about the
magnetic structure.

F (Q) =

∫
s(r) exp(iQ · r)dr, (3.22)

is the magnetic form factor of the individual magnetic ion, where s(r) is the normalised
density of unpaired electrons [35]. The magnetic form factor is a continuous function for
which it is true that F (0) = 1 and F (Q→∞) = 0.

By assuming a static and periodic structure, it is possible to show that scattering from
an ordered magnetic system results in delta peaks in reciprocal space. The positions of
these, the magnetic Bragg reflections, in reciprocal space are calculated in a completely
analogous manner to (3.13),

(
dσ
dΩ

)
magn, el

=(γr0)2N(2π)3

V0

exp(−2W )
[g

2
F (Q)

]2

× |FM(Q)|2
∑
G

δ(Q−G− τ ). (3.23)
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3.4. Magnetic Scattering

Here τ is the magnetic ordering vector and FM(Q) is the magnetic structure factor. As
this project is not concerned with ordered systems, I will not go further into discussing
(3.23).
While a static, long range ordered, magnetic system is one extreme on the spectrum of
magnetic structures, the other extreme is a paramagnet. Here the spins are completely
uncorrelated,

〈sj · sj′〉 = 0. (3.24)

In this case only j = j′ terms contribute in (3.21), yielding(
dσ
dΩ

)
mag

=
2

3
Ns(s+ 1)

∣∣∣g
2
F (Q)

∣∣∣2 exp(−2W )(γr0)2 (3.25)

Thus, scattering from a paramagnet does not depend on anything but the magnetic form
factor and has no distinct features.

For the case of frustrated materials at T > TN the system is somewhere in between
the fully ordered case and the completely uncorrelated paramagnet. Nearby spins are
correlated, but the correlation dies off with some characteristic correlation length ξ,

〈sj · sj′〉 ∝ exp(−|rj′ − rj|/ξ). (3.26)

By Fourier transforming this term, it is possible to show that [36]

S(Q) ∝ 1
1
ξ2

+ |Q−G|2 . (3.27)

This Lorentzian is what appears in the specific case, when the correlation length decreases
exponentially with the distance between the spins. Any system with finite correlation
length will produce scattering peaks with finite widths. Shorter correlation lengths will
lead to broader, more diffuse features.

Experimental Considerations

In the previous we have arrived at an expression for both the magnetic and nuclear elastic
scattering cross sections. There are however several other contributions to the total cross
section. First of all, there are inelastic components to both the magnetic and nuclear cross
sections. Experimentally, there are ways to look at these exclusively or eliminate them to
study just the elastic cross section. In this project, the total cross section is measured.
There are also incoherent contributions to the scattering cross section, giving rise to signals
that are isotropic in Q. A magnetic contribution, due to uncorrelated spins, an isotope
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Chapter 3. Neutron Scattering

incoherent contribution due to the local variation in the scattering length and a nuclear
spin incoherent contribution.
With all these different contributions, broad and diffuse magnetic features can be very hard
to resolve. This problem is further exacerbated by the fact that when doing an experiment,
the scattering cross section is not measured directly, but is instead convolved with the
resolution function of the instrument. This can be approximated as a convolution with a
Gaussian function and this effect also serves to broaden all the features in the scattering
signal. Luckily, there is a way to separate magnetic and nuclear scattering. This is done
by polarizing the neutron beam.

3.4.1 Polarization Analysis

This section is built on [35, 37], both of which provide a more in depth analysis. I will
begin by analysing the case where a magnetic field is applied to polarize the neutrons in
the z-direction. As the neutron has s = 1

2
, the spin state can be described by the eigenstates

to the z-component of the Pauli spin operator σz, given as the spinors

|χ+〉 =

(
1

0

)
, |χ−〉 =

(
0

1

)
. (3.28)

The polarization state of the incident beam is then characterized by the polarization vector

P = êz
n+ − n−
n+ + n−

(3.29)

êz is the unit vector in the z-direction and n denotes the number of neutrons in the up or
down spin state (3.28).
The magnetic scattering potential can be taken as (3.19) and the nuclear scattering can be
taken as (3.13). The latter does not affect the spin state and is thus denoted by a constant,
b, yielding

V̂ = −γr0σ̂ ·M⊥ + b. (3.30)

Using this interaction potential, the transition probability between spin states is then
proportional to

U = 〈χf |V̂ |χi〉 . (3.31)

26



3.4. Magnetic Scattering

The matrix elements of which are,

U++ = 〈χ+|V̂ |χ+〉 = b− γr0

2
M⊥z +

1

3
bsi, (3.32a)

U−− = 〈χ−|V̂ |χ−〉 = b+
γr0

2
M⊥z +

1

3
bsi, (3.32b)

U+− = 〈χ+|V̂ |χ−〉 = −γr0

2
(M⊥x + iM⊥y) +

2

3
bsi, (3.32c)

U−+ = 〈χ−|V̂ |χ+〉 = −γr0

2
(M⊥x − iM⊥y) +

2

3
bsi. (3.32d)

Here I have also introduced the incoherent scattering contribution bsi for the nuclear spin
incoherent scattering. The isotope incoherent part is absorbed into b. A derivation of these
terms can be found in [37]. U++ and U−− describes scattering that does not change the
spin state of the neutron, so called non spin flip (NSF) scattering. U+− and U−+ describes
the other case, when the spin state of the neutron changes, so called spin flip scattering
(SF).
It is possible to show [37] that these scattering cross sections for a paramagnet or a short
range antiferromagnet become(

dσ
dΩ

)
nsf

=
1

2

(
dσ
dΩ

)
mag

(
1− (P̂ · Q̂)2

)
+

(
dσ
dΩ

)
nuc

+
1

3

(
dσ
dΩ

)
si
, (3.33a)(

dσ
dΩ

)
sf

=
1

2

(
dσ
dΩ

)
mag

(
1 + (P̂ · Q̂)2

)
+

2

3

(
dσ
dΩ

)
si
. (3.33b)

Here the magnetic and nuclear cross sections are the ones we arrived at earlier (3.21),
(3.13).

These equations enables a complete separation of the magnetic and nuclear scattering
signals, this is done by measuring with neutron polarization along three perpendicular
directions,

P̂x =

1

0

0

 , P̂y =

0

1

0

 , P̂z =

0

0

1

 . (3.34)

If scattering is only measured in the x,y plane (see figure 3.4) the normalised scattering
vector is

Q̂ =

cos(α)

sin(α)

0

 . (3.35)

Where α is the angle between the scattering vector and the arbitrarily chosen x axis. The
setup is shown schematically in figure 3.4.
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Figure 3.4: Setup for polarisation analysis, the incident neutrons scatter with the sample
at the origin into a detector measuring scattering only in the plane. The polarisation is
oriented along the x,y and z direction in turn. Figure from [37]

Inserting (3.35) and (3.34) in (3.33) yields the SF and NSF neutron cross section for all
three different polarization directions [37]
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By linear combination of these equations, it is possible to separate the magnetic and
nuclear scattering completely from each other.(

dσ
dΩ

)
mag

= 2

(
dσ
dΩ

)sf

x

+ 2

(
dσ
dΩ

)sf

y

− 4

(
dσ
dΩ

)sf

z

. (3.37)

(
dσ
dΩ

)
nuc

=
1

6

[
2

(
dσ
dΩ

)
Tnsf
−
(
dσ
dΩ

)
Tsf

]
. (3.38)

Tnsf and Tsf denoting the sum of the non spin flip and spin flip cross section respectively.
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It is important to note that these equations are only valid for systems that are not correlated
over long distances and that have no ferromagnetic domains. The magnetic field from a
ferromagnetically correlated system will depolarise the scattered beam. Similar equations
can be obtained for ordered antiferromagnets, but it requires prior knowledge about the
magnetic structure factor or that the orientation of M is known.

3.5 D7 - Diffuse Scattering Spectrometer

In this project, measurements have been performed at the diffuse scattering spectrometer
D7 at ILL in Grenoble, France [37]. A schematic overview of D7 is presented in figure
3.5. The instrument is designed for measuring diffuse magnetic and nuclear scattering
signals and is equipped with full xyz polarization analysis as described above.

Figure 3.5: Schematic overview of the diffuse scattering spectrometer D7 at ILL. It has
xyz polarization analysis and a detector bank covering 5o < 2θ < 150o. Figure from [38].

The neutrons travel through the neutron guide from the source, in the case of ILL it is
a reactor source. The beam scatters from a monochromator. The monochromator is a
piece of pyrolytic graphite, which scatters according to Bragg’s law (3.15), such that it is
possible to pick a distinct incoming wavelength. On D7 there are three different choices
of incoming wavelength (3.1 Å, 4.8 Å, 5.8 Å), accessible via a suitable rotation.
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Chapter 3. Neutron Scattering

The neutrons then pass through a collimator and, optionally, a beryllium filter. The Beryl-
lium filter serves to eliminate higher order Bragg scattering, i.e. scattering from neutrons
with wavelength λ

2
, λ

3
, λ

4
, etc.

The polarization analysis begins in the polarizer, which is a polarizing super mirror.
They work by exploiting the fact that for a very small range of incident angles, a neutron
beam will be polarized when reflecting off a ferromagnetic material [32]. In this case, the
polarizer is positioned so it polarizes the beam in the z-direction.
The Mezei-flipper non-adiabatically flips the spins, whether this is on or not, determines
whether spin flip or non spin flip scattering is measured. The sample is surrounded by a
guide field in the z-direction. This is to ensure that the beam stays polarized. The XYZ
coils produce a magnetic field that adiabatically rotates the spins into the direction of
choice. When the neutron beam scatters off the sample, the spin then either flips or does
not, before the guide field rotates it back into the z-direction.
Scattering is then measured by a detector bank covering 5o < 2θ < 150o, with mounted
supermirror analyzer to measure only one spin polarization. The detector bank is in vac-
uum to reduce air scattering.
The fermi chopper is only used in spectroscopy mode and as only diffraction data was
measured in this project, this is not relevant.

It is not possible to produce detectors, flippers or supermirrors that are 100 % efficient
and as the data need to be comparable between detectors, a correction is needed. As
vanadium only scatters incoherently for the incident energies in question, a measurement
of vanadium will provide a good estimate of the differing intensity between detectors.
For producing a correction of the polarization analysis, a rod of quartz is measured. As
quartz is amorphous it scatter homogeneously across the detector bank. More importantly,
it has no magnetic or spin incoherent cross section, so there should be no spin flip scat-
tering. The amount of wrongly attributed spin flip scattering in each detector can then be
used to correct the data.
These measurements have to be performed before each experiment with both vanadium
and quartz the same dimensions as the sample.
It is possible to use a variety of sample environments on D7. In this project we used a
standard cryostat capable of reaching a base temperature of around 1.5 K. As well as the
uniaxial pressure cell, the details of which I will describe in the next chapter.
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Uniaxial Pressure Cell

In this chapter I will describe the uniaxial pressure design and the improvements we made
during the project. Furthermore I will detail the calibration process of a load gauge for in-
situ pressure measurement. The pressure cell presented in this section has been designed
by Lise Sandberg, Malcolm Guthrie, Pascale Deen, Kim Lefmann, Dennis Westphal, Keld
Theodor, Jan Oechsle, Alexander Holmes and myself.
The challenges of uniaxial pressure experiments are numerous and difficult to overcome.
Many of these difficulties are exacerbated when designing a pressure cell for diffuse
magnetic neutron experiments, as this puts further constraints on the choice of materials.
Before we get into the specifics of the design process, I will give a brief introduction to
mechanical properties of materials under pressure.

4.1 Material Properties

All of the concepts discussed here are described in [39]. Consider the stress-strain curve
in figure 4.1. The stress, usually denoted σ, is the uniaxial pressure exerted on the sample,
in units of Pa.
The strain is the deformation that happens to the sample under a given strain and is usually
denoted ε. It is defined as the contraction or expansion of the material, normalised to
unloaded length and thus, it is dimensionless.
At low strain, in the elastic regime, the material will contract or expand according to its
Young’s modulus or modulus of elasticity (EY ). This is the willingness of the material to
stretch or compress under strain and is given as the slope of the stress-strain curve, in the
linear regime

EY =
σel
εel
. (4.1)

A material with a large Young’s modulus is rigid, whereas a material with a low value
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is flexible. At some higher pressure, eventually the elastic regime stops, this pressure is
known as the yield strength.

Figure 4.1: Stress-strain curve for Copper-Beryllium C17510, at three different tempera-
tures. Looking at the 295 K curve, the material deforms elastically up to the yield strength
of around 700 MPa. It then deforms plastically up to the ultimate strength just below 800
MPa before failing at ε ≈ 0.1 and σ = 700 MPa. Figure from [40].

Yield strength, also known as the elastic limit, is the total pressure that can be exerted on
a material before it starts deforming permanently. This is the point where the stress-strain
curve (figure 4.1) stops being linear. This is one of the main quantities of interest when
choosing materials for the pressure cell, as this is what determines the maximum load.
When the stress is increased above the yield strength, the material will start deforming
plastically. In this regime, the deformation is irreversible. It should be noted that this
curve may look different for compression and elongation. The yield strength is noted for
relevant materials in table 4.1. It should be noted that these values are just approximate as
impurities may cause them to vary quite dramatically.

The Poisson effect refers to an effect that causes a material to expand in the direction
perpendicular to the compressive stress. It is described by the Poisson ratio, the ratio
between the transverse and longitudinal strain,

RP = −εt
εl
. (4.2)

This ratio is different for different materials, for non-isotropic materials it may even be
different in each of the directions perpendicular to the strain. There are theoretical models
to calculate this for different materials, but they are not very accurate and RP has to be
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determined experimentally.
This effectmeans that uniaxial pressurewill distort the pressure cell in all three dimensions,
possibly introducing a pressure dependent component to the neutron background.

Material Maximum yield strength (MPa)

Copper Beryllium 25 AT 1350
Stainless Steel AISI 316 [41] 290
Titanium grade 2 [42] 448
Tungsten Carbide (WC) [43] 6833

Table 4.1: Maximum yield strength of relevant materials. For Tungsten Carbide, the
compressive strength is noted. A data sheet for CuBe 25 can be found in appendix B.

4.2 Cell Version 1

The initial version of the cell design, shown in figure 4.2 is largely based on existing
diamond anvil cell designs.
The sample is placed between the anvils and pressure is applied with a hydraulic press,
pushing down on the piston through the hole in the lid. The screws in the lid are then tight-
ened to hold the piston down and thus keep pressure constant, after which the hydraulic
press is released. The cell can then be placed on a neutron beamline and the pressure
will remain constant throughout the experiment. The dimensions of the pressure cell are
carefully chosen to fit inside an Orange cryostat.

Before choosing materials for the pressure cell, it is necessary to estimate how much
pressure is needed. To induce theM|| phase transition in DTO, described in section 2.3.2,
a minimum pressure of∼1.5 GPa is needed. To induce the ferromagnetic phase transition,
we need to go to 3.4 GPa. We therefore aim for a minimum pressure of around 3 GPa.
While this is not enough to induce the ferromagnetic state, it is hopefully a realistic goal.
As a good safety margin is required to operate the cell at neutron facilities, the cell will
have to be able to withstand 1.5 times that pressure without breaking. We imagine the cell
will be used with a cylindrical sample with dimensions h = 3 mm and d = 3 mm. This
means that the body of the cell has to withstand a force of

Fmax = 4.5 GPa · π(1.5 mm)2 = 32 kN. (4.3)

Furthermore, the material chosen for the body has to be non-magnetic. The polariza-
tion analysis described in the earlier chapter is completely dependent on there being no
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ferromagnetic couplings in the neutron beam.

Figure 4.2: The first design for the pressure cell, the cell is made from CuBe and steel.
This design has windows at the sample position to ensure a good signal strength.

For this reason, the body is machined from Copper-Beryllium 25 AT (CuBe) (Appendix
B). CuBe is a copper alloy widely used in industry for making high durability tools. It
was chosen because of the high yield strength (after heat treatment) of 1350 MPa, as
well as for being non-magnetic. It does have one significant drawback, namely that the
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incoherent scattering cross section of copper is not particularly low [28] and thus will pro-
duce quite a large background, as well as possible attenuate the neutron beam significantly.
For these reasons, the cell has two 70o windows to ensure a broadQ-region of transmission.

The anvils are the parts of the cell that need the largest yield strength, as they are in
direct contact with the sample and thus. Their yield strength should be at least 4.5 GPa.
Furthermore the anvils have to be extremely flat, to reduce the risk of the sample breaking.
These requirement turns out to be very difficult to satisfy at the same time. Materials
with yield strengths of that magnitude are extremely hard to come by and very difficult to
machine.
In the first iteration of the cell design, this decision was postponed and seats of steel 316
were machined. This was chosen due to steel being readily available, easy to machine
and cheap. With a yield strength of up to 290 MPa, this is not nearly enough to achieve
the pressure needed to induce the phase transition. They are however sufficient to start
testing the theory, as the scattering signal of HTO is predicted to change continuously
with pressure. Table 4.2 contains the maximum applied force the critical components of
the cell can withstand, as well as the sample pressure that this corresponds to.
Neutron measurements performed with this cell design is presented in chapter 5. These
measurements led to several changes in the design.

Component Material Maximum Force (kN) Sample Pressure (GPa)

Screws Steel 316 22.6 3.2
Cell walls CuBe Alloy 272.1 38.5
Anvils Steel 316 2.05 0.3

Table 4.2: The force at which the critical components of cell v1 will yield and the
corresponding pressure that is achievable on a cylindrical sample with diameter d = 3 mm.

4.3 Cell Version 2

The second cell design, presented in figure 4.3, was constructed to combat the most critical
issues from the initial neutron experiment with the first pressure cell. These measurements
proved rather inconclusive, this was mainly due to two things:

• First, the windows in the cell walls proved to do more harm than good, as they
introduced artefacts in the data. The extensive data correction that was needed
made it difficult to deduce much about HTO under pressure. However, the CuBe
body proved to be transparent enough that the windows could just be eliminated.
Instead, the thickness of the cell wall was reduced around the sample position from
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3 mm to 1.5 mm to reduce attenuation and background. With this change, the cell
walls will yield at an applied force of 213.1 kN, corresponding to a sample pressure
of 30.1 GPa, well above the requirement. Thus it is still the steel anvils that are the
limiting factor.

HBM load gauge

Figure 4.3: The second version of the cell design. A space for a commercial HBM
load gauge has been added. Furthermore the windows have been removed, and in their
place, the wall thickness is reduced around the sample position. New components and
components that have been changed are in bold.

• Second, the thermal contraction of the cell and the sample after cooling, meant
that the applied pressure was actual unknown during the measurement. A method
for measuring in-situ pressure at low temperature is therefore needed. In industry,
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a variety of load gauges are used, but none are designed for use at cryogenic
temperatures. Even so, we first settled on using a commercially available 40 KMR
load gauge from HBM [44]. It has a strain gauge based setup, the details of which
are unknown as that is proprietary information. The calibration process of this load
gauge is described in [45]. Unfortunately the gauge turned out not to be able to
withstand the continued thermal cycling and thus this iteration of the design had
no functioning load gauge. The body of the pressure cell was also extended to
accommodate the load gauge. It is placed in the bottom of the cell because the
length of the piston is carefully determined to ensure that the sample will be at the
beam-height.

As the steel anvils did not break during the first experiments, these were kept for the
next version of the cell. A neutron experiment was performed with this cell design, it is
presented in chapter 6

4.4 Cell Version 3

The second set of neutron measurements were much more promising than the first, as the
cell background proved largely homogeneous. There were, however, issues with the steel
anvils indenting and the pressure was still highly uncertain.
The third and so far final iteration of the cell design is largely identical to the second
version and is presented in figure 4.5. There are however, two significant difference. New
seats have been designed and the softer steel seats are changed for a new seat design with
a CuBe cage and an anvil made from cemented Tungsten Carbide (WC).
WC has a compressive yield strength of upwards of 7 GPa [43], making it hard enough to
achieve the pressures required to induce the phase transitions in HTO. The idea behind the
design is that the pressure is distributed evenly into the CuBe cage, as depicted in figure
4.4, preventing it from deforming permanently.

P

Figure 4.4: CuBe cage with WC seats (dashed blue). When pressure is applied to the WC
seat, it is distributed evenly into the CuBe cage.
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CuBe load gauge

Al ring for supporting the gauge

Figure 4.5: The pressure cell design v3. A load gauge is constructed and added to the
cell, to allow in-situ pressure measurements. The steel anvils are here changed for the
much harder WC anvils. New components and components that have been changed are in
bold.

Additionally, a new load gauge is designed. It is built on a strain gauge based set-up,
just as the HBM gauge. The difference is that this is designed using strain gauges that
are designed for cryogenic temperatures [46]. The details of the design and calibration is
presented in the next sections. The screws, holding the pressure constant is changed for
identical titanium screws. Titanium is non-magnetic and has a higher yield strength. The
forces at which the critical components of this design fails can be found in table 4.3.
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This means that we should have achieved our goal of being able to go to approximately
4.5 GPa. Keep in mind that these numbers are the best case value of the yield strength
so the actual components may very well have small impurities that reduces the maximum
force achievable quite a lot. The limits could however quite easily be pushed further by
using a higher grade titanium for the screws. The complete set of drawings of each of the
components are presented in Appendix C.

Component Material Maximum Force (kN) Sample pressure (GPa)

Screws Titanium grade 2 35.2 4.9
Cell Walls CuBe 25 AT 213.1 30.1
Load Gauge CuBe 25 AT 106.0 15.0
Anvils Tungsten Carbide 48.3 6.8

Table 4.3: The force at which the critical components of cell v3 will yield and the
corresponding pressure that is achievable on a cylindrical sample with diameter d = 3 mm.

4.5 Load Gauge

The load gauge consists of a CuBe cage with four mounted strain gauges. Strain gauges
are resistors, designed to change resistance when under strain in one direction, while being
much less sensitive to strain in the perpendicular direction. Both the CuBe cage and a
strain gauge are depicted schematically in figure 4.6.

P

ε

R

Figure 4.6: The CuBe cage (left), with mounted strain gauges (marked in green), the hole
in the side is for the wiring. Pressure is applied from above, the resulting strain on the
strain gauge (right) changes the measured resistance. Only strain applied along the length
of the wires will change the resistance significantly.

The strain gauges used are manufactured by TokyoMeasuring Instruments Lab. and are of
the type CFLA-1-350 they are designed to work at cryogenic temperatures and are tested
down to 4 K, they are glued onto the CuBe cage using a cryogenic glue (type C-1) [46,47].
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The strain gauges (SG) are arranged in a Wheatstone bridge, one is depicted in figure 4.7.
It consists of four resistances, in this case strain gauges, connected in the manner depicted.

SG
1 SG

2

SG
3SG

4

Vm VE

Figure 4.7: A Wheatstone bridge, consisting of four strain gauges (SG). They are
placed on the CuBe cage so that when a pressure is applied, they experience a strain. An
excitation voltage (VE) is applied across the bridge and the response is measured as the
relative voltage Vm

VE
.

A constant excitation voltage (VE) is applied and the voltage drop across the bridge is
measured (Vm). The load gauge response is then the relative voltage Vm

VE
. If the bridge

is balanced, meaning that the unloaded resistance of all the strain gauges are the same
the unloaded signal will be zero. When stress is then applied, the induced strain will
change the resistance in the gauges, offsetting the bridge. The Wheatstone bridge set-up
was originally designed to determine the value of an unknown resistance accurately, but
is useful when measuring strain as even small deviations from strain will cause the signal
to deviate from zero [48].

Figure 4.8: Finite element analysis showing the strain on the CuBe cage under 2 tonnes
of force (left), the positioning of the strain gauges are shown in black. Picture of the load
gauge taken before the wiring is done (right). The strain gauges are mounted next to a
pt100 thermometer.
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The gauges are carefully placed so that pressure applied to the centre of the CuBe cage will
only result in strain along the gauges. A picture taken from the bottom of the load gauge,
before it was wired, is shown to the right in figure 4.8. A finite element analysis has since
been performed by Karl-Emil Nielsen at the workshop at NBI to test whether the gauges
are placed ideally. The resulting figure, including the chosen strain gauge positions can be
seen in figure 4.8. The strain gauges operate optimally around ε =1 ‰, evidently they are
not placed optimally. However, as we shall see in this section, the signal is strong enough
with the current placement and we decided to keep it this way. A Pt100 thermometer
was also placed on the bottom of the gauge for monitoring the temperature during testing.
The signal from this, as well as the relative voltage is measured using the HBM Quantum
MX440B universal measuring amplifier [49].

4.5.1 Room Temperature Calibration

This load gauge design has to be calibrated to translate the measured relative voltage to an
applied force. To do this, force is applied with a hydraulic press, while the corresponding
relative voltage is measured. The accuracy of the press is not known, so a commercially
available load gauge is utilised as a reference measurement.

Figure 4.9: Applied force plotted as a function of relative voltage for one pressure cycle,
increasing pressure (blue) and decreasing (orange). The gauge exhibits a small amount of
hysteresis, on the order of 1 kN.

All the measurements are performed with the load gauge inside the cell. This is done to
ensure that pressure is applied as precisely as possible to the centre of the gauge, as we
discovered that misalignment changed the response quite dramatically. To combat this, we
developed a method for centralising the gauge in the cell. When the gauge is centralised
there is approximately 2.5 mm to each cell wall and thus four 2.5 mm drills proved ideal
as spacers, to control the centralisation.
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Figure 4.10: Room temperature pressure calibration measurements of the load gauge.
The data has been fitted with a 3rd order polynomial, the parameters of which can be
found in table 4.4.

Figure 4.11: The absolute residual difference between the data and the fit (a). The relative
residual difference between the data and the fit (b). The ± 10 % zone has been marked
with dashed lines.

In figure 4.9, the applied force is plotted as a function of relative voltage for one such
measurement, for both increasing and decreasing force. It is evident that there is a small
amount hysteresis in the gauge, on the order of 1-2 kN. This is a little unfortunate, but
virtually unavoidable as it is an inherent property of most materials. This measurement
was repeated three times. The gauge was then removed from the cell and re-centralised.
This process is repeated five times. resulting in 15 pressure cycles. The curves are split
into increasing and decreasing pressure, the increasing part is plotted in figure 4.10. The
data has been fitted with a third order polynomial, of the form

F = aV 3
R + bV 2

R + cVR + d. (4.4)

42



4.6. Temperature Calibration

Temperature (K) a b c d

296 -1.07 ± 0.02 5.77 ± 0.08 3.52 ± 0.08 -1.42 ± 0.03
195 -0.399 ± 0.003 3.887 ± 0.011 5.739 ± 0.011 -1.788 ± 0.003
125 -1.795 ± 0.010 7.98 ± 0.03 4.22 ± 0.03 -1.308 ± 0.009
77 -1.005 ± 0.011 5.21 ± 0.04 6.77 ± 0.03 -1.740 ± 0.010

Table 4.4: Fit Parameters of 3rd degree polynomial fit to the calibration data presented in
figures 4.10 and 4.14.

Here F is the applied force in kN and VR is the relative voltage in units of mV
V . The

parameters to this fit can be found in table 4.4. In figure 4.11a, the residual difference
between the fit and the data is plotted. It is evident that the systematic error related to the
alignment of the applied force is much larger than the statistical error associated with the
measurements. The error is no larger than 1 kN. By plotting the calculating the relative
residual difference (figure 4.11b) it is clear that the residuals more or less all fall within the
10 % boundary. In the high pressure limit, they all fall within 5 %. This is an encouraging
result as this indicates that we will be able to estimate the pressure with a fairly high
precision.

4.6 Temperature Calibration

The cell is to be used down to 1 K and when cooling, the sample and the cell will
both contract, most likely at different rates, this will change the pressure. Thus a tempera-
ture calibration of the load gauge is required to be able to accurately determine this change.

When cooling there are several effects that will change the response of the load gauge
gauge:

• The resistance of the strain gauges will change. This will most likely lead to a change
in both the unloaded offset and the pressure response. This effect is expected to be
rather small, as the gauges are designed for cryogenic temperatures, they are likely
made from an alloy that has a weak temperature dependence of its resistivity. This
is confirmed by measuring the resistance as a function of temperature (Appendix
D).

• The CuBe cage will contract according to the curve in figure 4.12, resulting in a
change in the unloaded offset. This change is not too much of an issue as this
offset can easily be determined by measuring the unloaded response as a function
of temperature which just requires a cryostat.
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• Lastly the modulus of elasticity of CuBe changes with temperature as well. This
change means that the response of the load gauge will change as a function of
temperature. For this reason a measurement of the response from the unloaded
gauge as a function of temperature is not sufficient. A pressure curve is needed at
low temperature, i.e 1.5 K to be able to accurately determine the pressure. This was
however not possible in this project.

Figure 4.12: Thermal contraction of CuBe plotted as the relative length change of a block
of CuBe between temperature T and 293 K. The points are data [50], the line is a fit
from [51].

4.6.1 LN2 Calibration

To probe the low-T properties of the pressure cell, we make the assumption that the
elasticity of CuBe will not change much below liquid Nitrogen (LN2) temperature of 77
K. This is a reasonable postulate as this is the case for a wide range of materials, including
Copper [40], the primary constituent of CuBe. Furthermore the thermal contraction of
CuBe (figure 4.12) clearly stops around this temperature. If this is the case it should be
sufficient to take a pressure curve at 77 K and use that to determine the pressure at very
low temperatures.
These calibration measurements was performed by Lise Ørduk Sandberg using the set-up
in figure 4.13. The pressure cell containing the load gauge was submerged in liquid
Nitrogen. The temperature is measured using the Pt100 thermometer,
Pressure is applied with a stainless steel rod with the commercial gaugemounted at the top.
This ensures that there is a weak thermal link between the cell at 77 K and the commercial
gauge at room temperature, providing the reference measurement.
Pressure curves are taken at 77 K as well as at 125 K, while heating.
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The temperature changed slowly enough that it was possible to obtain an additional curve
without the temperature drifting more than a couple of K.

P

Figure 4.13: The set-up used when measuring pressure calibration curves. The cell is
submerged in liquid Nitrogen or dry ice and once equilibrium temperature is reached,
pressure is applied using a stainless steel rod mounted on a hydraulic press. The steel rod
serves to reduce the thermal link between the sample and the commercial gauge mounted
at the top of the rod.

Additionally, a pressure curvewas takenwith the same set-up, except that LN2 was changed
for dry ice, giving T = 195 K. All of these curves with associated fits are shown in figure
4.14.

Figure 4.14: Pressure curves taken at 296 K, at 195 K (Dry ice), 77 K (LN2) and 125
K. The latter temperature curve is almost hidden behind the 77 K data. It was achieved
as an intermediate step while the LN2 was evaporating, it is thus not an entirely stable
temperature estimate.
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These measurements show that the curve changes quite dramatically down to 77 K. The
majority of the change happens above 125 K as the curve changes very little between 125
K and 77 K. In fact the 125 K and 77 K curves are right on top of each other. This further
corroborates the fact that the Young’s modulus of CuBe is more or less constant at low
temperatures.

The same set-up was used to measure the unloaded offset as a function of tempera-
ture, as plotted in figure 4.15. The data is very noisy, which is likely a result of the very
fast and inhomogeneous cooling, caused by submerging the gauge in the coolant. This
is supported by the fact that the cooling curves are much more noisy than the heating
curves. The offset change is quite small compared to the effect of pressure, at least in the
temperature range measured here.
To further investigate the behaviour of the gauge at lower temperatures, measurements are
performed in a cryostat.

Figure 4.15: Gauge response at ambient pressure as a function temperature. The response
is also measured upon submerging the load gauge in LN2 and dry ice. The temperature is
measured with a pt100 sensor attached to the load gauge.

4.6.2 CCR Calibration

To go to lower temperatures, a closed-cycle-cryostat is utilised. It has a base temperature
of around 20 K, depending on the thermal mass of the sample and the thermal link between
the cold head and the sample. As previously stated, it is not possible to get pressure curves
at these lower temperatures, as there is no way of changing the pressure in-situ. Instead,
we will gain insight by applying pressure at room temperature and measuring the relative
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voltage at low temperatures. The gauge is placed in the cell, which is attached to the cold
head as shown in figure 4.16.

Figure 4.16: The pressure cell (red square) mounted on the CCR. The temperature is
measured with a thermometer on the bottom of the cell.

Initially the response from the load gauge is measured unloaded. One ramp between 300
K and 26 is presented in figure 4.17.

Figure 4.17: load gauge response and sample temperature as a function of time. The data
marked in blue is where the response from the load gauge has stabilised.

On the left axis, the load gauge response is plotted and on the right the temperature of
the sample. Looking at the temperature curve, it is evident that the cell was very slow to
thermalise. At first we believed that this was because of the large thermal mass. After
finishing the unloaded measurements, it became apparent that the thermal contact between
the cell and the cold head had been, due to some screws not being tight enough.
Two full temperature cycles were measured, in addition to one at a 10 K increment between
100 K and 26 K.
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Figure 4.18: Unloaded temperature calibration curve of the load gauge between 300 K
and 26 K, decreasing temperature (blue) and increasing (orange). There appears to be a
slight hysteresis in the response, though this may be an effect of the very poor thermal
contact.

For each temperature setting, the part of the data where the temperature had stabilized
was chosen (shown in blue in figure 4.18) and the average was taken. The resulting data
is plotted in figure 4.18.
These measurements are completely consistent with the LN2 measurement in figure 4.15
and also support the assertion that the rapid fluctuations in the LN2 measurements, were
only due to the very rapid and irregular cooling. The curve in figure 4.18 appears to be
linear down to around 70 K and then flattens slightly.
This is also consistent with the thermal contraction of CuBe (figure 4.12). As expected, this
indicates that the change in the unloaded offset is mainly caused by the thermal contraction.

While we are not able to obtain a pressure curve at base temperature, we are able to
test whether it is likely that the Young’s modulus of CuBe changes alot between 77 K and
20 K. To do this, a loaded measurement has to be performed. A pressure of 8.9 kN is
applied and a temperature cycle is measured, the time series is plotted in figure 4.19.
Interestingly, this curve looks very different from the unloaded curve in figure 4.17. It
is clear that the thermal contact was much better this time, since the temperature curve
stabilizes much faster than in the unloaded case. Additionally, when the temperature is
changed the pressure increases quite a lot before falling back down and stabilizing. This
is believed to be because of the thermal gradient across the cell. As the cold-head cools
down very rapidly, this causes the adjacent part of the cell to also cool and thus contract,
much more rapidly than the part of the cell furthest from the cold head. This causes the
pressure to increase.
As this gradient disappears when the entire cell reaches a common temperature, the pres-
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4.6. Temperature Calibration

Figure 4.19: Load gauge response and sample temperature as a function of time. A force
of 8.9 kN kN was applied at room temperature. As the thermal link between the cold head
and pressure cell was better this time, resulting in a lower base temperature of 20 K.

sure drops again, stabilizing at a new value.
From figure 4.19 it is also apparent that the pressure drifts quite a lot at 300 K. This drift
disappears at lower temperature, an explanation is given in section 4.6.3.

Three measurements are performed and as before, data is chosen based on when the
load gauge has stabilised. The resulting curves are plotted in figure 4.20. Initially a force
of 8.9 kN is applied to the cell. Contrary to the unloaded case, the relative voltage increases
down to around 100 K. This corresponds to the pressure inside the cell increasing due to
the thermal contraction of the cell components. At 77 K the applied force has increased
to 12.0 kN.
Below 77 K the relative voltage changes only changes 0.08 mV

V , exactly the same amount
as the change in the same temperature range in the unloaded case (figure 4.18). This leads
me to conclude that the change in the relative voltage in this regime does not correspond
to a change in the pressure or in the elasticity of the load gauge. Instead, the change is a
result of the thermal contraction of the load gauge and the temperature dependence of the
resistivity in the strain gauges.

Upon heating to 300 K the pressure has drifted to 8.6 kN. Another curve is therefore
taken without extracting the cell to test the reproducibility of the result. Once the pressure
has decreased to 8.4 kN another curve is measured showing exactly the same behaviour.
Lastly, the cell is extracted from the CCR and a force of 17.1 kN is applied, increasing to
21.7 kN at 77 K. This curve shows exactly same behaviour, confirming that the gauge is
not deforming permanently and the thermal cycling has not broken the gauge either.
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Figure 4.20: Temperature curves for three different applied pressures between 300 K and
20 K. Decreasing temperature (blue) and increasing (orange). The applied force noted is
calculated at 300 K and 77 K using the curves in figure 4.10.

With these measurements, it is reasonable to postulate that the 1 K pressure can be
estimated accurately using the 77 K pressure curve, the parameters of which can be found
in table 4.4. I estimate, based on the relative residual difference that the pressure can
be determined with a 10 % error. This is just a rough estimate and I believe additional
pressure curves should be taken at 77 K to investigate this.

These measurements were performed with the steel anvils in the cell, meaning that the
large increase in pressure inside the cell upon cooling may not be a feature of the new cell
design with the CuBe - WC anvils.

4.6.3 High Temperature Drift

The high temperature drift, observed in figure 4.19 seems rather mysterious, however, the
fact that the drift disappears at lower temperature is a significant clue as to what could be
causing it. Initially, I believed that the load gauge or some other part of the pressure cell
was deforming permanently. As yield strength usually increases at lower temperature, this
would explain why the drift disappears when cooling. There are, however, two reasons
that this seems rather unlikely. First, the forces were not nearly high enough to be close to
the yield strength of any of the cell components. Second, upon careful examination of all
the cell components, I found no evidence of deformation. If the load gauge had deformed,
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4.6. Temperature Calibration

this would also have appeared as a change in the unloaded offset.

Figure 4.21: The load gauge response as as a function of time (a) for 10 K intervals
between 300 K and 250 K, fitted with linear curves. The drift speed clearly decreases as
a function of temperature. The slope of the fits as a function of temperature (b).

Alternatively, the drift may be caused by the internal friction in the cell being too low.
When pressure is applied, the only thing that keeps it constant is the internal pressure in
the cell, mainly the friction between the screw and the thread. When the cell is cooled, it
contracts. Some parts will contract more than others and this could increase the internal
friction, which may in turn cause the drift to stop. I believe this is the most likely explana-
tion. This could be tested by increasing the friction, for example by changing the screws.
To quantify the drift, it was measured at 10 K intervals between 300 K and 250 K at an
applied force of 16.8 kN. The resulting curves are plotted in figure 4.21a. They are all fitted
with linear fits and the temperature dependence of the drift speed is plotted in figure 4.21b.

Over a longer period of time, the drift is not linear. This is consistent with the explanation
that the internal friction in the cell is responsible for the drift. When the pressure drops,
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Chapter 4. Uniaxial Pressure Cell

less friction will be required to keep the pressure from dropping further and thus the drift
is expected to slowly drop off. In figure 4.22, the drift is shown for a period of 30 hours at
300 K.

Figure 4.22: Load gauge response as a function of time, measured with an initial applied
force of 8.9 kN at 300 K.
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Chapter 5

Neutron Measurements on HTO with
Cell v1

The experiment presented in this section was performed at D7, ILL in October 2018. It
was performed by Pascale Deen, Ingrid Marie Bakke Fjellvåg and Richard Edberg. The
data analysis was performed by me, in collaboration with Lise Sandberg.

Figure 5.1: Frontal view of the cell (left), covered in a sheet of cadmium to increase
neutron absorption [28]. HTO sample (red square) in cell (right). After pressure has been
applied, cracks start to appear.

The incoming neutron wavelength was λ = 4.8 Å, and the sample was aligned so that
scattering was measured in the (h, k, 0) plane. All measurements were performed in the
first version of the cell, v1, the design of which is detailed in section 4.2. A cylindrical
HTO sample (h = 3 mm, d = 2 mm) was measured in a 180o sample rotation range at
ambient pressure and with 2 kN and 4 kN of applied force, corresponding to 0.6 GPa and
1.2 GPa uniaxial pressure, respectively.
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Figure 5.2: Spin flip measurement of HTO taken at T = 50 K, in the Paramagnetic phase
and under 4 kN of applied force.

These pressures are the room temperature pressures, disregarding thermal contraction of
the cell and sample during cooling. A picture of the sample in the pressure cell is shown
in figure 5.1. The cell is covered in a sheet of Cadmium to increase neutron absorption.

One way to estimate the background from the pressure cell, is to look at the paramagnetic
signal. As scattering from the HTO sample in this phase is expected to be completely
rotationally symmetric (3.25), any rotation dependent feature, must be an artefact of the
pressure cell.

Figure 5.3: Spin flip measurement of HTO at T = 1.5 K, in the spin ice phase under an
applied pressure of 2 kN (left) and 4 kN (right).

The data in figure 5.2 was taken at T = 50 K, in the paramangetic phase of HTO. The
data is clearly not rotationally symmetric. The pressure cell produces substantial artefacts
in the data. This is not at all surprising, since the idea behind this cell design was that
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scattering would only be possible through the windows. It therefore makes sense that there
are some areas of high intensity, when scattering is measured through the windows and
some with lower intensity, when it is measured through the walls of the pressure cell.
These effects are also clearly present in the low temperaturemeasurements, taken at T = 1.5
K, presented in figure 5.3. This is problematic, since this makes it difficult to distinguish
the changes caused by the pressure and ones caused by the cell background. The logical
thing would be to normalize the low temperature data with the paramagnetic data, as this
would then eliminate the attenuation caused by the cell as well as correct for the magnetic
form factor. This, however, turns out not to be possible, the paramagnetic signal is too
noisy and thus this corrections introduces a lot of unwanted noise in the data. Another
avenue of correction has to be pursued.

5.1 The Simulation

Weare confident that the regions of high and low intensity in the data are due to thewindows
in the cell. There appears to be three distinct levels of intensity in the paramagnetic signal.
Presumably these correspond to the neutron beam being attenuated either once, twice or
not at all depending on whether the incoming, outgoing, both or neither of the beams
passes through a cell wall and is attenuated. If this is the case, it it possible to simulate the
attenuation of the signal at every Q-point, given a scattering angle 2θ and cell and sample
rotation ω.

Incident
neutrons

Incident
neutrons

ω1 ω2

Figure 5.4: The geometry of the simple simulation of the attenuation by the cell. This is
shown for two different cell and sample rotations ω1 and ω2. The neutron beam scatters
at the sample position, in the centre of the pressure cell and is measured at the detector
covering 2θ = (5o - 150o). For the left case, the incoming beam passes through a window,
causing the signal to be attenuated either one time or not at all. For the right case, the
incoming beam passes through a wall and thus the signal is attenuated once or twice.

Such a simulation is created inMatlab. Iterating over the sample rotation ω = (0o − 360o)

and the scattering angle 2θ = (5o − 150o) the beam is attenuated zero, one or two times
depending on how many times the beam passes through a cell wall. This process is shown
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Chapter 5. Neutron Measurements on HTO with Cell v1

schematically in figure 5.4. The attenuated intensity (IA) is calculated as

IA = I0 exp(−µd), (5.1)

Where I0 is the non attenuated intensity, set to 1, d = 3 mm is the thickness of the cell
wall and µ is the attenuation coefficient. This is calculated for copper beryllium using the
online resource provided by NIST [52], yielding µ = 0.086 mm−1. As we also wish to
correct the data for the magnetic form factor, this is calculated for Ho3+ and multiplied
with the simulation.

This yields the transmission of the cell as a function of |Q| and sample rotation ω as
plotted to the left in figure 5.5. However, to transform to the experimental parameters Qx,
Qy, a transformation between ω and the polar angle, φ = tan−1

(
Qy

Qx

)
is needed.

Figure 5.5: The simulation of the attenuation caused by the pressure cell as a function of
|Q| and sample rotation, ω (left) and Polar Angle, φ (right).

By geometric analysis it is possible to show that, assuming elastic scattering ki = kf , the
polar angle can be calculated as

φ =
π

2
− θ + 2θ − ω =

π

2
+ θ − ω. (5.2)

The geometry of the problem is shown in figure 5.6. Using this coordinate transformation
we arrive at the right plot in figure 5.5.
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ω
φ
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Q

2θ
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2

−θ

Figure 5.6: The geometry of a scattering event. The polar angle φ can be described in
terms of the scattering angle 2θ and the sample rotation ω.

5.1.1 Fitting

To ensure that the rotation offset of the simulation matches that of the experiment, a
φ-offset is added to the simulation. Furthermore, since the data only covers a 180o angle,
a 180o dark zone is added to the simulation.

dark zone offset

Figure 5.7: The paramagnetic signal (left) and the simulation (right) as a function of polar
angle φ and |Q|. The edge of the dark zone (in red) and the offset in φ are then varied to
fit the simulation to the paramagnetic signal.

To make it possible to fit the simulation to the paramagnetic data, the data is interpolated
onto the same grid as the simulation and the intensity of the simulation is normalized to
the average intensity of the paramagnetic scan. The paramagnetic data and the simulation
is plotted for comparison in figure 5.7. To estimate the goodness of fit, the χ2 value is
calculated

χ2 =
(Isim − S(Q)SF,param)2

σ2
SF, param

. (5.3)
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Chapter 5. Neutron Measurements on HTO with Cell v1

It would of course be naive to believe that this simple simulation can accurately capture
every feature of the paramagnetic signal. This fitting routine should however be able to
find the parameters that ensure the best agreement with data. In figure 5.8, the χ2-value is
plotted for a range of different values of the parameters. Choosing the parameters with the
lowest χ2, normalising the maximum intensity of the simulation back to 1 and converting
it to Qx, Qy, yields the result shown in figure 5.9. When comparing this result with the
paramagnetic data in figure 5.2, it is clear that the simulation has reproduced all main
features in the signal. Whether the relative intensities are correct can only be tested by
attempting to correct the paramagnetic signal.

1.5

2

2.5

3

3.5

4

Figure 5.8: The χ2 plotted as a function of φ offset and dark zone offset. The minimum
χ2 is marked with a red dot.

Figure 5.9: The finished simulation with φ offset and dark zone fitted to the paramagnetic
signal. Comparing this with figure 5.2, the same basic features have clearly been recreated.
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5.2. Correcting the Data

5.2 Correcting the Data

The paramagnetic and the low temperature data is interpolated onto the same grid as the
simulation to enable the correction.

5.2.1 Paramagnetic data

To test the quality of the simulation, the paramagnetic signal is normalised to the simula-
tion results and plotted in figure 5.10a. It is clear that the simulation has greatly reduced
the artefact from the cell attenuation, it is however not perfect. For example there is a
region of lower intensity around (−0.5,−1) Å−1. It appears as though the attenuation by
the cell might be more significant than what was calculated.

As the paramagnetic data was taken with an applied force of 4 kN, some level of dis-
crepancy could be expected.

Figure 5.10: The paramagnetic signal normalised to the final simulation results, with
ambient wall thickness (a) and fitted wall thickness of 3.2 mm (b). Clear features of the
cell attenuation in the data still remain.

When the cell is pressurised the cell walls will expand perpendicular to the pressure,
according to the Poisson effect (4.2), resulting in an increased attenuation. The thickness
of the cell walls is implemented as a fitting parameter in the fitting routine described above,
yielding a value of dfit = 3.2 mm compared to the value at ambient pressure of d = 3

mm. The paramagnetic data is corrected using dfit, the resulting data is plotted in figure
5.10b. This result is very hard to distinguish from the correction using the ambient value
of the wall thickness.
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Chapter 5. Neutron Measurements on HTO with Cell v1

5.2.2 Low Temperature Spin Flip Data

Correcting the pressurised, low temperature data is then trivial, as both of these data sets
were taken at the same ω value as the paramagnetic scan. The resulting data can be seen
in figure 5.11.

Figure 5.11: Spin flip measurement of HTO at 1.5 K under 2 kN (a) and 4 kN (b). The
data has been corrected by the simulation of the cell attenuation.

Here, the 2 kN data (figure 5.11a) has been corrected with the attenuation resulting from
the ambient value for the wall thickness d. This is of course not entirely physical as we
would expect the actual value to be somewhere between 3 mm and 3.2 mm. While the
correction has definitely managed to reduce the artefacts from the cell, there are still some
quite significant cell features in the data. Most significantly, around the edges of the cell
features (2, 3 in figure 5.11a), sharp edges are still present, indicating that the correction is
not completely accurate. There is also a ring (1) of slightly increased scattering at constant
Q.
The 4 kN data (figure 5.11b) is corrected using the fitted wall thickness dfit, as the param-
agneticwas also taken at 4 kN.The same remnants of the cell artefacts are still present (2, 3).

The Ambient pressure measurement was taken at a different rotation offset and thus it
is necessary to fit the φ offset once again. The ambient pressure data is then corrected
using d = 3 mm, the result of this correction can be seen in figure 5.12. Where the same
cell artefacts are also present (2, 3).
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Figure 5.12: Spin flip data measurement of HTO at ambient pressure and 1.5 K. It
has been corrected by the simulation discussed above, using the attenuation coefficient
obtained by fitting to the paramagnetic data

As the increase in wall thickness is directly related to the pressure applied, the pressure
can be estimated. This estimate relies on the room temperature values of the elasticity and
Poisson ratio of CuBe, as the low temperature values are unknown. The Poisson ratio of
CuBe is RP = 0.3 and the Young’s modulus is EY = 122 GPa [40]. The corresponding
applied pressure can then be calculated as

P = EY εl =
EY (dfit − d)

dRP

= 27 GPa. (5.4)

This is obviously not physical as multiple cell components, as well as the sample will fail
long before this pressure is reached. In later experiments, we saw indentation of the steel
anvils with as little pressure applied as 0.7 GPa. This does however tell us that there are
aspects of the cell background that we do not yet understand. The applied forces of 2 kN
and 4 kN should be taken with a grain of salt. It is certain that some amount of pressure
was applied, but exactly how much is quite uncertain.

5.3 Comparing with Theory

Given the uncertainty related to how much pressure was applied during each of the mea-
surements, as well as our lacking understanding of the cell background, it is not possible
to ascribe much certainty to a quantitative comparison between the data and theory. It
is however interesting to make a qualitative comparison between the corrected data and
theory.
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Figure 5.13: Relative change in the spin flip scattering between ambient pressure and 4
kN, comparison between theory (left) and data (right). The high Q region shows slight
agreement between theory and data (circled). Figure from [25]

In figure 5.13 the relative change between ambient and 4 kN data is plotted along with
the change in the theoretical cross section at ambient pressure and 1.5 GPa. This figure
was made by Richard Edberg and published in [25]. The data has been symmetrized to
increase the overlap between the two data sets. The low-Q region is completely feature-
less. It seems that any information there may have been in the low-Q region have been
destroyed by the pressure cell. In the high-Q region, there are areas of increased intensity
in the regions that theory predict. This is promising and indicate that with a cleaner cell
background we may have seen a more substantial agreement with theory.
The problems with the background corrections and the need for more accurate pressure
determination led to the new cell design, discussed in section 4.3. Neutron measurements
were also performed with this cell, they are discussed in the next chapter.
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Chapter 6

Neutron Measurements on HTO with
Cell v2

A second set of neutron measurements were performed at D7, ILL in October 2019,
this time using the second version of the cell design (section 4.3). The experiment was
performed by Pascale Deen, Denis Vasiukov and myself. The aim was to characterize the
background of the new pressure cell design, as well as to try to quantify the change in the
spin flip scattering.
As in the previous experiment, the outside of the cell was covered in cadmium (figure 6.1),
everywhere except for at the sample position.

Figure 6.1: Image of the pressure cell v2. The cell has been covered in a sheet of
cadmium, everywhere but at the sample position.
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6.1 Measuring the Cell Background

Initially a background measurement was performed at 300 K with an aluminium nut at the
sample position. Aluminiumhas a very low incoherent scattering cross section and thus the
resulting signal will be almost exclusively scattering from the cell and aluminium powder
lines. With a wavelength of λ = 4.8 Å, these should be at 2θ = 84o, 110o, and 144o. Both
the spin flip and non-spin flip part of the background is plotted as a function of scattering
angle (2θ) and sample rotation (ω) in figure 6.2.
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Figure 6.2: Background measurement of the cell at 300 K, taken at D7 with λ = 4.8 Å.
An aluminium nut was placed at the sample position to separate the anvils. Both the spin
flip (top) and non spin flip (bottom) signal are presented.

Examining the background signal, it looks to be largely independent of sample rotation.
Especially the non spin flip signal appears to be almost entirely ω- independent. The case
is less clear when looking at the spin flip scattering. Although there is no indication of
any large ω-dependent features, the relatively low statistics makes it impossible to rule
out completely. However, the cell is entirely rotation symmetric, except for the two small
"view ports", so it seems likely that the SF background should also be rotation symmetric.
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To substantiate this claim the ω-average is performed, this is then compared to several
2θ cuts, six of which are shown in figure 6.3. There is no evidence that any of the cuts
disagree with the average in any significant way, therefore we choose to use the average as
the background.
It would of course be more ideal to also have done these measurements at low temperature,
as the measurements we are trying to correct are done at T = 1.5 K. However due to
time constraints this was not possible. This may seem problematic, but as the cell is
constructed to be almost entirely non-magnetic, the SF scattering from the cell should not
be too temperature dependent.

ω = 31o ω = 60o

ω = 70o ω = 100o

Figure 6.3: Four ω cuts (blue) in the SF background plotted along with the intensity
averaged across ω (orange) as a function of 2θ. Some of the cuts have slight deviations
from the average, but these deviations are not statistically significant.
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6.2 Low Temperature Spin Flip Data

A measurement of a HTO cylinder (h = 3 mm, r = 3 mm ) in the cell was performed
at T = 1.5 K and ambient pressure. The sample was aligned so that scattering was
measured in the (h,−h, l)-plane Only z-polarization was measured, as the z spin flip
cross section can be calculated directly from the theoretical simulations (section 2.3.2),
there is no immediate need to separate the total magnetic cross section. In the future
a full measurement of all polarization directions could be performed to extract the total
magnetic scattering cross section of the background. The spin flip scan is presented in
figure 6.4a.
The sample was then extracted in order to apply pressure with a hydraulic press. The
first attempt failed because the pressure was applied too fast causing the first sample to
break and the steel anvils to indent at F < 5 kN. A second identical sample was used and
pressure was increased to F ∼ 2.5 kN, which corresponds to approximately P = 0.35

GPa, at which point clear cracks were observed in the crystal. This should however not
be a problem as the pressure will keep the sample fixed. To verify that there was no
misalignment and that the sample didn’t break, a structural Bragg peak was scanned as a
function of temperature and showed no change.
The cell and sample were then cooled back down to T = 1.5 K and a measurement was
performed, the data can be seen in figure 6.4b.

Figure 6.4: Spin flip measurement of HTO at ambient pressure (a) and P = 0.35 GPa (b)
applied in the (110) direction, perpendicular to the scattering plane. The data has been
symmetrised to maximize overlap between the two data sets. Published in [29].

Due to a misidentification of a structural Bragg peak during the experiment, the two
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measurement were not performed over the same ω-range and they do not have the amount
of overlap that we would have liked. Therefore the datasets were symmetrized. The
(h,−h, l) plane has two mirror planes, the x- and y-axis, the data has been mirrored in
both.
Comparing the two data sets, it seems as though the background in the data taken under
pressure is slightly lower, furthermore it looks as though the broad features in figure 6.4b.
e.g. at (h, k, l) = (1.7,−1.7, 1.7) are slightly more well defined. At first glance it may
also appear that the pinch points have become slightly more intense. To investigate this
further, the relative change in scattering intensity is plotted in figure 6.5 along with theory.
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Figure 6.5: Relative change in the spin slip scattering of HTO under unixial pressure, MC
simulation at P = 1 GPa (left) and data (right). The theoretical map has been cropped to
ease comparison with data. Simulations have been performed by Richard Edberg.

There seems to be some agreement between theory and data. Especially the lines of
decreased scattering seems to be at least qualitatively consistent between theory and data.
Furthermore, close to (0, 0, 0), the two data sets have a similar horizontal features along
(h,−h, 0). The experiment does not however, convincingly recreate the lines of increased
intensity going from the origin to (−2, 2, 2) in a zig-zag pattern.

Quantifying the changes that are observed requires some additional examination. Several
cuts are made to try and estimate the precise change, first an angular cut is made across the
broad feature at (1.7,−1.7, 1.7) as shown in figure 6.6. The change seems very small and
indeed, it turns out to be insignificant. Fitting the peaks with a Gaussian and comparing
the peak amplitude of the fits yields a change of 4%±4%. This is obviously not significant.
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As the pinch point is indicative of the long range interactions of the magnetic monopoles,
it is interesting to see whether this interaction increases as a function of pressure. A cut
is made across a pinch point and plotted, along with theory, in figure 6.7. It does look as
though the intensity of the pinch point increases as a function of pressure. This increase
is not captured by theory. As a limited number of spins can be simulated, it is reasonable
that theory has trouble capturing these long range features in detail.
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Figure 6.6: Angular cut of data (points), between |Q| = 1.38 Å and |Q| = 1.78 Å, from
D7 experiment with fitted Gaussians (solid) compared to theory (dashed). The data is cut
be5 The theoretical lines have been rescaled and a background parameter has been added
for it to be comparable to data. The cut through reciprocal space is shown in the inset.
Published in [29].
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Figure 6.7: Angular cut of data (points) across pinch point, compared to theory (dashed).
The theoretical lines have been rescaled to be comparable to the experimental data. The
cut through reciprocal space is shown in the inset.
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6.3 Low Temperature Non Spin Flip Data

As stated earlier (3.36e), a significant fraction of the non spin flip signal is magnetic. As
the spin flip signal gave some rather inconclusive results, it could be interesting to try and
examine the magnetic part of the non spin flip signal. The measurements are shown in
figure 6.8.

Figure 6.8: Non-spin flip measurement of HTO at ambient pressure (a) and P = 0.35
GPa (b) applied in the (110) direction, perpendicular to the scattering plane. The data has
been symmetrised to maximize overlap between the two data sets.

It is immediately clear that there are some issues with the background subtraction as both
data sets have large regions of negative intensity. This is not surprising as the background
measurement was done at 300 K and it is expected that scattering from lattice vibrations
in the cell will decrease at lower temperature.

The background in the data taken under pressure is significantly more negative. This
is an indication that the background, at least the NSF part, is pressure dependent. As the
cell is compressed by the pressure, the cell walls will thicken slightly due to the Poisson
effect and the beam will be attenuated more, just as discussed in the previous chapter.

Attempts were made to correct the background, by fitting fitting the |Q| - dependence of
the background with a high order polynomial and then dividing the data by the fit. This
did not however result in anything useful as any diffuse magnetic feature were distorted or
destroyed by the process.
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6.4 Paramagnetic Data

A paramagnetic scan was done at 50 K and ambient pressure, it is presented in figure 6.9.
The SF background has been subtracted, in the same way as the data in figure 6.4. As The
paramagnetic phase have uncorrelated spins, the corresponding spin flip scattering should
be entirely flat, except for the magnetic form factor which is only |Q| dependent (3.22).
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Figure 6.9: HTO at 50 K, in the paramagnetic phase. The spin flip background (figure
6.2) has been subtracted. Given a perfect background subtraction, this signal should have
been complete rotation symmetric. This is however not the case as there is a strong
ω-dependent feature (red arrow).

At first glance it looks like the scan has very weak spin ice features (marked by a red
arrow). When doing a line cut (figure 6.10) it is clear that this is not the case, as the
peak does not obey the crystal symmetries. The origin of this feature, is unclear. There is
no apparent reason that the background has rotation dependent features. The cell wall is
completely rotation symmetric, except for the two viewports (figure 4.3).

A future experiment to map the pressure and temperature dependence of the background
is essential to understand the limitations of the current cell design as well as to determine
the best possible background subtraction for future experiments.
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6.4. Paramagnetic Data

Figure 6.10: Line cut of spin-flip measurement of HTO at 50 K, in the paramagnetic
phase. The dashed red line indicates the mirror plane of the (h,−h, l) - plane
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Chapter 7

Discussion and Outlook

7.1 Uniaxial Pressure Cell

The pressure cell design presented in this report is at a place where I am convinced that
it is possible to consistently perform neutron experiments under a constant and accurately
determined (to within 10 %) pressure, up to 3 GPa. There are however still several more
challenges that needs to be resolved before I would deem the design finished.

First, even with the load gauge ensuring in situ monitoring of the pressure on the sample
during an experiment, there is no way to ensure that the sample actually stays pressurised.
If the sample has a much larger thermal contraction than the pressure cell around it, the
pressure may drop a lot. While this would of course be measured by the load gauge, it
would still mean that it would not be possible to measure at the desired pressure. Of
course the opposite may also prove an issue as the thermal contraction of the sample may
cause it to crush itself if it is too small compared to the pressure cell. These effects could
potentially limit the choice of sample quite dramatically.
One way to alleviate this is to create a cell design that makes it possible to change the
pressure in situ. Such pressure cells already exist for other techniques, such as suscepti-
bility measurements and X-ray scattering. One designed by C. Hicks et al [53] is based
on piezoelectric components. The pressure is changed by utilizing the fact that the piezo-
electric elements contract or expand when a voltage is applied. This means that they are
only able to apply relatively small forces, which in turn means that they require very small
samples to achieve significant pressures. For this reason, these designs do not work for
application in neutron scattering experiments. Especially in the case of magnetic, diffuse
scattering.
Another solution would be a design that employs a pressurised membrane to apply the
pressure. Such a design already exists and could fairly easily be modified to fit this cell.
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7.1. Uniaxial Pressure Cell

The membrane would then be connected to a supply of pressurised Helium at room tem-
perature.Which would be used to change the pressure without having to extract the cell.
This design would, however, require extensive modifications to the set-up at the neutron
beamline.

The most significant problem that I have not discussed in the previous chapters is the
fact that it is extremely difficult to apply a precise pressure. The issue is depicted in figure
7.1. When pressure is applied with a hydraulic press, the piston, anvils, sample and load
gauge are compressed.
The idea then is that when the screws are tightened and the press is released, the screws
will keep the pressure constant. However, when the screws are tightened and the press
is released, the body of the cell experience a strain in the opposite direction, causing the
body to stretch. This relaxation will in turn reduce the pressure inside the cell.

This effect turns out to be quite significant, reducing an applied force of 20 kN to around
15 kN. The precise amount varies with exactly how much the screws are tightened and
how much force is applied. This means that it is difficult to achieve pressures that are
close to the yield point of either the cell or the sample.

P1

P2

σ

Figure 7.1: Pressure applied to the pressure cell, with a hydraulic press (left) and after the
screws are tightened and the press released (right). Parts that are under compressive stress
are marked in red, parts that are being stretched are blue. When the press is released, the
cell body is stretched, leading to a drop in the internal pressure (P1 > P2).

It is possible to get around this issue by not using a press to apply the pressure. Instead,
pressure can be applied by simply tightening the screws. This approach makes it very
difficult to ensure an even distribution of pressure from each of the four screws, increasing
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the risk of breaking the sample and so this is not a viable solution.
It may be possible to mitigate the problem by using a more rigid material for the cell
body, but I would not recommend this cause of action. To resolve this issue I would
rather recommend a manner of applying pressure where the entire cell is strained from the
beginning. This could for example be a design that utilize one central screw in the lid to
apply the pressure.

7.1.1 The Load Gauge

The load gauge is in a functional state. The room temperature pressure curves are re-
producible and it holds up well under repeated loading and thermal cycling. Ideally, I
would have measured additional pressure curves in the LN2 set-up at 77 K to test the
reproducibility of these curves. At the moment the gauge has to be centred very precisely
to ensure an accurate pressure measurement. This is difficult and results in a systematic
error. To combat this, I would suggest making two improvements.
First, changing the strain gauges for bigger ones would likely alleviate the problem. The
strain gauges that are used in the current design are quite small, this makes them very
sensitive to local strain fluctuations. Larger strain gauges would measure the average strain
over a larger area and thus a small misalignment of the gauge would play a smaller role.
Second, constructing a ring to surround the load gauge would align it more accurately,
and would make it easier to reproduce the gauge placement between measurements.

Given a lot more time and resources, it would also be ideal to obtain pressure curves
at lower temperatures. As previously stated, this is currently not possible in the Copen-
hagen region. There is a set-up available at the SNS, in Tennessee. This set-up utilizes a
pressurised membrane to change the pressure in situ. At the moment, however, I do not
believe that this is necessary. The low temperature behaviour of the gauge is understood
well enough to accurately estimate the pressure.

7.2 Ho2Ti2O7 Under Pressure

The neutron data presented in this thesis is rather inconclusive. While we did observe
changes to the scattering signal that are consistent with theory, the change in peak intensity
of 4 ± 4 % is not significant. The fact that the pinch point scattering seems to increase
with pressure is however, more promising. It could be, at least intuitively, interpreted
as an increased interaction between the magnetic monopoles. Further modelling and
experiments with a more well determined pressure is however needed before any concrete
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conclusions can be drawn. These things taken together does nonetheless indicate that
uniaxial pressure has measurable effects on the magnetic interactions in HTO. This is
further corroborated by magnetisation measurements.

7.2.1 Magnetisation Measurements

Magnetisation measurements on HTO under uniaxial pressure were performed in Japan
by Ingid Marie Bakke Fjellvåg, Patrik Henelius and Pascale Deen. This was done with
the assistance of M. Mito and his group, using their experimental set-up [29].
The relative difference in magnetization is plotted in figure 7.2(a-c) along with theory.
The three different plots correspond to pressure applied along the three different directions
(001), (111), (110). The original magnetisation measurements on DTO, discussed in
section 2.3.2 are plotted in figure 7.2d for comparison.

(d)(c)

(a) (b)

Figure 7.2: Magnetization measurements of HTO (a-c) from [25] and DTO (d) from [29].
The relative change in magnetization between ambient pressure and the pressure noted in
the legend is plotted as a function of temperature, along with theory.

Theory provides excellent fits for pressure along (001) and (111). There is however quite a
large discrepancy between data and theory in the case of pressure along the (110) direction
(figure 7.2c (lower line)). The magnetization is expected to saturate at some sufficiently
high field. This does not appear to happen in the (110) case. This discrepancy is believed
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to be due to a misalignment when pressure was applied [29]. This misalignment is taken
into account in the fitting, producing a better result (figure 7.2c (upper line)). In the case
of DTO, it was concluded that uniaxial pressure broke the degeneracy between the two
different dipolar chain states (M⊥, M||) and at high pressure (3.4 GPa) would induce a
ferromagnetic ground state [25]. The same thing appears to be the case for HTO, with
pressure along (001) and (111). Here HTO is expected to transition into the ferromagnetic
ground state at 3.3 GPa and 4 GPa respectively. With pressure along (110), it turns out
that the degeneracy is upheld. The change in the nearest neighbour interaction is cancelled
by the change in the dipolar interaction.
This may explain the very insubstantial change observed in the second neutron experiment,
where pressure was applied along the (110) axis.
This allows us to conclude that measurements should ideally be performed with pressure
applied along (001) as this is where the change will be most significant and the transition
to the ferromagnetic state will occur at the lowest pressure (3.3 GPa).

The issue now becomes whether or not the sample will actually be able to withstand
these high pressures. During the second neutron experiment the sample broke and the
steel anvils indented below 0.7 GPa. This leads me to conclude that the pressures reached
during the first experiment can not have been as high as previously noted (0.6 GPa and
1.2 GPa). With the new WC - anvils it may be possible to go to higher pressures as they
won’t indent, but the sample has not become any stronger and will likely break at pressures
much lower than 3.3 GPa.
During the magnetization measurements, the sample was supported by epoxy, making it
possible to go to 1.5 GPa, this is much higher than what was reached during the neutron
measurements, but still well below the goal of 3.3 GPa. Furthermore, epoxy is unprob-
lematic in a magnetization experiment, but with its high hydrogen content it would create
a massive neutron background. One possible solution could be to use deuterated epoxy.
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7.3 Future Projects

The spin ice study is by no means finished. It is however, still a useful exercise to consider
possible future projects with the pressure cell. I will attempt to outline one suggestion as
to where the application of uniaxial pressure may prove interesting.

Recently Coak et al. published a hydrostatic pressure study on FePS3 [54]. They showed
that by applying hydrostatic pressure on a powder sample they were able to induce two
structural phase transitions, depicted in figure 7.3. FePS3 is a largely 2D material, with
a very weak out of plane coupling along the c-axis, only bound by weak van-der-Walls
forces.

Figure 7.3: Structural phase transitions of FePS3 under uniaxial pressure. Under ambient
pressure (left), the ions are strongly bound in the a-b plane and only bound with van-der-
Walls forces out of plane. Under 101 kbar (middle), corresponding to 10.1 GPa, the sample
undergoes a shear-transition, displacing the layers with respect to each other. Under 180
kbar (right), corresponding to 18 GPa, the c-axis collapses. Figure from [54].

The Fe ions couple antiferromagnetically within the plane and have a weak out of plane
antiferromagnetic coupling. Hydrostatic pressure is applied to the powder sample and
the strong intra-planar binding ensures that it mainly affects the c-axis, making it pseudo-
uniaxial.
At 101 kbar, corresponding to 10.1 GPa a transition occurs that is a shear of the plane,
changing the orientation of the c-axis. At 180 kbar, corresponding to 18 GPa, a second
transition occurs. This transition is a collapse of the c-axis.

In an expansion on this piece of work Coak et al. [55] present magnetic powder diffraction
measurements of the same compound, as well as the magnetic phase diagram uncovered
(figure 7.4). They demonstrate several magnetic phase transitions between different an-
tiferromagnetic states. At ∼14 GPa a transition to a metallic state is accompanied by a
transition to a novel magnetic phase, exhibiting short range order.

The application of uniaxial pressure on this compound seems to be an even stronger
tool. It would then be possible to ensure that it is indeed only the c-axis that is being
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compressed. The pressures discussed here are obviously much higher than the ∼ 3 GPa
that our pressure cell can achieve. There is however, a likely possibility that the phase
diagram will look quite different under uniaxial pressure and with a single crystal sample,
so that interesting behaviour is within reach.

In general these van-der-Walls materials seem like obvious candidates for uniaxial pressure
studies. This class of compounds exhibit a host of interesting magnetic and electronic
properties and their weak out of plane coupling makes them an ideal testing ground for
testing the effects of uniaxial pressure.
There is, however, one major issue, I have not been able to find synthesis results of sin-
gle crystals large enough for neutron scattering and they may not even be possible to
synthesise.

Figure 7.4: Phase diagram of FePS3 with hydrostatic pressure as a tuning parameter. The
compound undergoes severeal antiferromagnetic transitions as a function of temperature.
Upon metallisation, the long range magnetic order disappears and a short range magnetic
order emerges. Figure from [55]
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Chapter 8

Conclusion

In this thesis, I have presented a design of a uniaxial pressure cell optimized for diffuse,
magnetic neutron scattering studies. The cell is capable of achieving pressures of up to 3
GPa with a cylindrical sample with dimensions h = 3 mm and d = 3 mm. I have detailed
the calibration process of a load gauge for in situ measurement of the pressure, with an
accuracy of around 10 %.
While there are still substantial challenges related to the application of pressure, after some
further adjustments of the cell design, it will be ready to be used on neutron beamlines at
both the ILL and in the future, the ESS. The work presented here clearly demonstrates that
while the pressure dependence of the neutron background is not yet fully understood, the
background is largely non-magnetic and homogeneous. This means that the background
contribution to the scattering signal can be subtracted, making the cell ideal for studies of
diffuse magnetic signals.

Neutron measurements on spin ice material Ho2Ti2O7 show a non-significant change
in the peak intensity of 4± 4 % as a function of uniaxial pressure. There does, however,
seem to be increased scattering from the pinch points, indicating some possible increase
in the interaction between the monopole excitation, an effect not described effectively by
theory. I believe the reasons that the neutron results have proved rather inconclusive is
mainly three things.
First, the experiments were performed while the pressure cell was still under development.
This meant that the background from the pressure cell was not well understood, leading
to extensive issues with the background subtraction. Additionally, the uncertainty on the
applied pressure, made the theoretical modelling quite a lot more difficult.
Second, there is no indication that the samples are able to withstand pressures as high
as would be needed to reach the ferromagnetic state proposed by theory. This may be
alleviated by finding some way of supporting the sample.
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Chapter 8. Conclusion

Third, in the second neutron experiment, where the cell background was fairly well un-
derstood and a decent background subtraction could be made, the pressure was applied
along the (110) direction. Subsequent susceptibility measurements showed that this is the
direction where the weakest pressure response would be expected.

Combining these things, it is not very surprising that the neutron experiments have been
unable to produce significant agreement with theory. I do, however, believe that the cell
is now in a state, where it would be possible to preform the experiments needed to test the
theoretical predictions. That is, provided that the samples are able to survive the applied
pressure or that a hydrogen-free method for supporting the sample can be found.
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Appendix B

CuBe Properties

The alloy used for the cell is CuBe 25 AT (c17200), this alloy contains 1.8 - 2.0 %
Beryllium and approximately 98 % Copper, with small Co, Ni and Fe impurities. The
mechanical properties can be found in figure B.1. The pressure cell has been heat treated
for 3 hours at 315oC.

Figure B.1: Copper Beryllium properties, the alloy used is marked in read.
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Appendix C

Cell Drawings

The drawings here have been made by Keld Theodor and the designs have been realised
by the workshop at NBI.
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Appendix C. Cell Drawings
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Appendix C. Cell Drawings
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Appendix D

Resistance Calibration

Measurements of the total resistance of the Wheatstone bridge was done in the CCR.
The resulting curves corroborate the assumption that the resistivity of the strain gauges
has a small temperature dependence. The measurements are presented in figure D.1. The
resistance change of the bridge over the entire temperature range is∼ 0.5Ω, corresponding
to ∼ 0.1%.

Figure D.1: Resistance as a function of temperature, during the first measurement, the
gauge was loaded to 2.5 kN, during the second it was loaded with 16.8 kN. Both of these
were the initial forces at room temperature.
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