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"Another reason you should turn
Your attention to the motes that drift and tumble in the light:
Such turmoil means that there are secret motions, out of sight,
That lie concealed in matter. For you’ll see the motes careen
Off course, and then bounce back again, by means of blows unseen,
Drifting now in this direction, now that, on every side.
You may be sure this starts with atoms; they are what provide
The base of this unrest. For atoms are moving on their own,
Then small formations of them, nearest them in scale, are thrown
Into agitation by unseen atomic blows,
And these strike slightly larger clusters, and on and on it goes –
A movement that begins on the atomic level, by slight
Degrees ascends until it is perceptible to our sight,
So that we can behold the dust-motes dancing in the sun,
Although the blows that move them can’t be seen by anyone."

Lucretius, "On the Nature of Things", First century BC
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Abstract

Active systems convert energy from the environment into directed motion at the level of the individual
constituents and are thus driven far from equilibrium. Examples include bacteria, molecular motors and
flocks of birds. The potential for real-world applications from these systems is large and includes drug
delivery [1] and nano/micro-robots with a multitude of uses [2, 3, 4], which in turn calls for the need to
build a novel, predictive framework for the control of such systems. The control encompasses minimiz-
ing the dissipation of the system while driving it with a protocol from an initial to a final state. As these
systems operate far from equilibrium, the framework of equilibrium thermodynamics is insufficient
to build such an optimal control framework. Here we then utilize recent developments in stochastic
thermodynamics and non-equilibrium response theory to build a framework that can predict the opti-
mal protocols for minimizing the dissipated work of active systems which operate arbitrarily far from
equilibrium. We start by presenting an in-depth analysis of the optimal control of a passive Brownian
particle in a harmonic potential which provides the fundamentals for the rest of the thesis. Inspired by
this approach, we then construct a framework which can predict the optimal protocol for the dissipated
work for an active system. We find that the agreement between the exact, numerical solution and the
approximated, analytical solution is remarkably good, even for small protocol durations. Specifically,
we show that the dissipated work for an active Ornstein-Uhlenbeck particle (AOUP) follows the same
dissipation as its passive counterpart, agreeing within the same regime of protocol durations, but with a
different friction coefficient. This work extends and bridges the optimal control framework developed
by Sivak and Crooks [5] to encompass active systems and the framework developed by Davis et al. [6]
to also include the dissipated work, thus broadening the tools available to optimally control active and
passive systems.
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1 Introduction

Life inherently operates out of equilibrium. Whether it is a bacterium, a flock of birds, the firing of neu-
rons in the brain or a molecular machine such as kinesin, what is central to all of them is that they take in
energy from the environment and convert it to useful work while dissipating heat in the process. What hap-
pens when these biological systems stop this process is what we naturally refer to as death, or "the decay into
thermodynamical equilibrium" as fittingly described by Schrödinger [7]. This tacitly implies that equilibrium
thermodynamics is incapable of describing living systems, thus demanding a framework of non-equilibrium
thermodynamics. Historically, the field of thermodynamics has been confined to describing macroscopic
systems at equilibrium and the transitions between different states of equilibrium. However, during the
last couple of decades the theoretical framework of stochastic thermodynamics has emerged and produced
important and groundbreaking results for non-equilibrium systems, particularly small scale systems [8], [9].
These include for example colloidal particles, biological macromolecules and molecular motors [10], [5].

One step in trying to understand living systems is to elucidate the design principles governing them, specif-
ically how these systems operate out of equilibrium most efficiently, for example by minimizing excessive
dissipation of heat into the environment [5]. For instance the rotary molecular motor F1-ATPase has been
shown to sometimes operate at 100% efficiency[11, 12]. These motors are often more efficient than human-
mademotors, prompting us to understand their design principles in order to engineermore energy-efficient
devices.
Constructing a theoretical framework to understand and control such systems is the focus of this work,
particularly how to optimally drive a process out of equilibrium with externally controllable protocols. We
can imagine that an experimentalist has access to such protocols and can change them over time from an
initial state to a final state and thereby drive the system between those two states. An example of a protocol
could be the trap stiffness of an optical tweezer or the position of an optical bead trapped in the tweezer [13].
An optimal protocol is then the specific protocol varied over time that minimizes the dissipation (for example
the work or heat) to the environment [13].

A specific class of non-equilibrium systems that has gained alot of attention recently is active matter [14, 15,
16, 17, 18, 19], which covers a broad range of active systems that operate far from thermodynamic equilib-
rium. What characterizes all of them is that the individual constituents of the system convert energy from
the surroundings into useful work, propelling themselves forward or generating other types of directed
motion. As a consequence these systems display emergent phenomena that are not found at equilibrium
such as collective motion [20, 21], active turbulence [22] and motility-induced phase separation (MIPS) [23].
Examples span different length scales and include both natural and artificial systems such as social animal
groups (flocking birds, human crowds) [24], swarming bacteria [25, 26], colloids activated by light [27] and
cells moving during wound healing [28]. There is considerable interest in developing a framework for how
to optimally control active matter, both for understanding the underlying principles and the physics of ac-
tive systems, but also importantly for the potential real-world applications this may provide. These include
drug delivery targeted at specific organs [1], nano/micro-robots with complex swarming behavior [2, 3, 4] as
well as novel synthetic materials [29].

So far in the literature on active matter, two central questions have been: how far from equilibrium are
active-matter systems and what can we do far from equilibrium? [30] The former entails finding quantita-
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tive measures of irreversibility (as done in for example [17]), whereas the latter, which is also the focus of
this thesis, is centered around applications and control of active matter.

In this work, we utilize stochastic thermodynamics and response theory to develop a theoretical framework
which is capable of predicting the optimal protocols when driving both a passive and an active system. For
the active system, we build upon the framework recently developed by Davis et. al [6]. We construct our
framework in general terms and for testing our results on model systems, we specifically consider a passive
Brownian particle in a harmonic potential as the model system for the passive case and an active Ornstein-
Uhlenbeck particle (AOUP) [31, 32, 33, 34] as the model system for the active case.

We end this introduction with a few practical remarks:
The thesis is written for a target audience of fellow physics students who have a basic knowledge of ther-
modynamics, statistical mechanics, stochastic processes and probability theory. All code and calculations
done with mathematical software are not included in the appendix, but can be found at GitHub at this link:
MasterThesis

1.1 Outline

Aiming at presenting a broad understanding of the theoretical tools that underlie the subject, section 2
describes the basics of stochastic thermodynamics, the Langevin formalism, the fluctuation-dissipation re-
lation (FDR) and linear response theory.
In section 3, we derive the optimal protocols for a passive system, further implementing this framework for
a Brownian particle in a harmonic potential in one dimension in section 4. This system is then simulated
with the optimal protocols in section 5 and compared with the analytical predictions.
We then move on to derive an optimal control framework for an active system in section 6. Following this,
we then use the optimal control framework derived in the previous section on an active system, an active
Ornstein-Uhlenbeck particle in one dimension, in section 7. Lastly, in section 8, we numerically simulate this
particle and use the optimal protocols derived in the previous section to compare the numerically calculated
work with the analytical prediction. We then discuss the results obtained in this thesis, the challenges and
future perspectives in section 9, and then end the thesis with a conclusion in section 10.
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2 Theory

We start by giving an overview of the theoretical framework used in this thesis.
First we present the basic concepts of stochastic thermodynamics and establish a formal introduction to
the Langevin equation. From here we discuss the concepts of heat and work in stochastic thermodynamics
leading to a description of linear response theory, fromwhichwederive the fluctuation-dissipation theorem.

2.1 Basics of stochastic thermodynamics

During the last couple of decades, stochastic thermodynamics has emerged as a new theoretical framework
describing the thermodynamics of small systemswhere, at thismesoscopic length scale, thermal fluctuations
become relevant for the system. Usual concepts from equilibrium thermodynamics such as heat, work and
entropy are defined at the individual level of the system, for example a particle immersed in a heat bath [10].
The particle will fluctuate around equilibrium values (for example the position) due to the thermal fluctu-
ations arising from the bath resulting in random motion, i.e. stochastic behavior. Such a particle will trace
out a specific trajectory due to this stochasticity and the heat, work and entropy are each assigned to this
trajectory.

It is not necessary to assume that the individual particle is at equilibrium with the heat bath, which makes
us able to describe non-equilibrium behavior. We do however need to assume that the heat bath is at equi-
librium which is usually a fair assumption if the heat bath relaxes to equilibrium fast enough compared to
the timescale of the dynamics of the particle, meaning that at this timescale the heat bath is approximately
at equilibrium [10].

The particle can be driven out of equilibrium in different ways. One way is by external manipulations such
as controlling it with an optical tweezer [10], which is what we will primarily consider in this thesis. Active
systems, on the other hand, are furthermore driven out of equilibrium by their own self-propulsion which
further increases the complexity of the system.
When we model a non-equilibrium system in stochastic thermodynamics, we primarily use two different
frameworks depending on whether the state of the system is continuous (for example the position of the
particle) or discrete (for example the configurational changes of a biological molecule, such as the reaction
scheme of ATP hydrolysis) [10]. If the state is continuous one method is to use the so-called Langevin equa-
tion. Amethod for describing a discrete system is by using a master equation which gives the time evolution
of the system in terms of the transition rates between discrete states. In this thesis, we will deal with systems
described by continuous variables which makes the Langevin equation the natural choice.

2.2 The Langevin equation

The Langevin equation is a stochastic differential equation modelling the motion of a particle submerged
in an aqueous solution. The particle will display so-called Brownian motion as it collides with the water
molecules. To an observer it will look like the particle is jiggling around, which is something that can be seen
by for example scattering pollen grains or other small particles on the surface of the solution, for example
water or other solutions. The dynamics in 1 dimension can be described by:
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𝑚
d𝑣
d𝑡

= −Z 𝑣 + [(𝑡) (1)

where𝑚 is the mass of the particle, 𝑣 its velocity and Z is a constant and the last term, [(𝑡), is a random force
which will be elaborated on below.

The particle experiences the forces on the right-hand side of the equation which are, respectively, a friction
force proportional to the velocity 𝑣 of the particle and a force [(𝑡) due to random kicks from the water
molecules [35]. The Langevin equation can essentially be seen as the equivalent of Newton’s 2nd law for
this particular type of particle. If there is no net velocity, the particle gets kicked around uniformly which
means it is fair to assume that the random force should be 0 on average, ie. we require that ⟨[(𝑡)⟩ = 0.
Furthermore, as each collision is approximately instantaneous, the random force kicking the particle at
time 𝑡 and at another time 𝑡′ are assumed to be uncorrelated, i.e. we require that ⟨[(𝑡)[(𝑡′)⟩ = Γ𝛿 (𝑡 − 𝑡′),
where Γ is a constant which determines the strength of the random force [36]. This constant can be shown
to be related to the friction, 𝛾 = Z

𝑚
, by solving the equation (1) and then calculating the mean square velocity

of the particle and taking the long time limit 𝑡 → ∞, to obtain [36]

lim
𝑡→∞

〈
𝑣(𝑡)2

〉
=

Γ

2𝑚2𝛾
(2)

In this limit the system has reached equilibrium and the equipartition theorem then holds:

lim
𝑡→∞

1
2
𝑚

〈
𝑣(𝑡)2

〉
=
1
2
𝑘𝐵𝑇 (3)

Comparing (2) and (3) then leads to the relation

Γ

2𝑚𝛾
= 𝑘𝐵𝑇 (4)

which relates the constant Γ that determines the fluctuations in the system with the constant 𝛾 which de-
termines the friction (which always involves dissipation) [36]. This relation between fluctuations and dis-
sipation is required for the system to reach thermal equilibrium at long times, as the dissipation tends to
drive the system to a dead state while the fluctuations keep the system alive, thus balancing each other out
and making it physically possible to reach an equilibrium distribution [35], [36]. This is a simple form of the
fluctuation-dissipation theorem which we will encounter in more general terms later in the thesis.

The case that we will deal with most often involves the particle being subjected to an external force and if
the particle is small enough (or if we consider long enough time scales), its motionwill be overdamped as the
viscous forces of the medium will dominate the inertial forces [37]. Modifying (1) accordingly by setting the
left-hand side to zero and moving terms around, the overdamped Langevin equation will take the following
form [10]:

𝑣 =
d𝑥
d𝑡

= `𝐹 (𝑥, 𝑡) + b (𝑡) = `
(
−𝜕𝜖(𝑥, _)

𝜕𝑥
+ 𝑓 (𝑥, 𝑡)

)
+ b (𝑡) (5)

where the first term expanded from 𝐹 (𝑥, 𝑡) is a conservative force (the derivative of a potential) and the
second term a non-conservative force. Here the energy 𝜖(𝑥, _) depends on the external protocol _(𝑡), which
is varied between two states _0 and _𝑓 . This is the quantity we will optimize later on. Furthermore, we
define ` = 1/Z as the mobility and we rescale the original noise [(𝑡) as b (𝑡) = 1

Z
[(𝑡). The correlations for

the rescaled noise are now given as
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⟨b (𝑡)b (𝑡′)⟩ = Γ

Z 2
𝛿 (𝑡 − 𝑡′) = 2𝑘𝐵𝑇

Z
𝛿 (𝑡 − 𝑡′) = 2`𝑘𝐵𝑇𝛿 (𝑡 − 𝑡′) (6)

Here we can also define 𝐷 = `𝑘𝐵𝑇 which is known as the Einstein relation and relates the diffusion coeffi-
cient 𝐷 with the mobility `. Equation (5) describes the dynamics of a colloidal particle and can be regarded
as the paradigmatic model for stochastic thermodynamics [9].

2.3 Heat and work in stochastic thermodynamics

Solutions to the Langevin equation in (1) generate stochastic trajectories, {𝒙(𝒕)}, and in stochastic thermo-
dynamics we define heat and work along these trajectories, which means that heat and work also will be
stochastic variables [10]. Sekimoto [38] was one of the first to connect the Langevin equation with thermo-
dynamics and to define heat and work along these trajectories, of which we will give a brief account in the
following.

We start by considering the work along the trajectory which is made up of two contributions:

d𝑤 =
𝜕𝜖(𝑥, _)
𝜕_

d_ + 𝑓 (𝑥, 𝑡) ◦ d𝑥 (7)

where ◦ denotes the Stratonovich product. The first term is the contribution to the incremental work due
to a manipulation from the manipulation protocol _ and the second term is the contribution to the incre-
mental work from an external non-conservative force (such as a driving force) [10]. Both represent forces
that are external to the heat bath.

In order to formulate a 1st law of stochastic thermodynamics, we consider the incremental change in energy
along a trajectory

d𝜖(𝑥, _) = d𝑤 − d𝑞 (8)

By inserting (7) into (8) and using the definition of d𝜖 we have

d𝜖(𝑥, _) = 𝜕

𝜕𝑥
𝜖(𝑥, _) ◦ d𝑥 + 𝜕𝜖(𝑥, _)

𝜕_
d_ (9)

=
𝜕𝜖(𝑥, _)
𝜕_

d_ + 𝑓 (𝑥, 𝑡) ◦ d𝑥 − d𝑞 (10)

(11)

which tells us that the heat increment d𝑞must then take the form

d𝑞 = − 𝜕

𝜕𝑥
𝜖(𝑥, _) ◦ d𝑥 + 𝑓 (𝑥, 𝑡) ◦ d𝑥 = 𝐹 (𝑥, 𝑡) ◦ d𝑥 (12)

These two expressions for the incremental heat and work (equations (12) and (7)) then constitute the 1st law
of thermodynamics at trajectory-level. It is possible to derive expressions for the entropy production along
a trajectory, however this is outside the scope of this work.
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2.4 Linear Response Theory

A first step in describing systems out of equilibriummight be to try to "poke" a system that is initially in equi-
librium and observe how it responds. In this way the system is gently pushed out of equilibrium, and we can
then use suitable approximation techniques to understand the perturbed system, as long as the perturba-
tions are small. This is the general idea in linear response theory. We perturb the system out of equilibrium
and then do a series expansion in the perturbation variable and keep the linear terms.

If the system is perturbed by a weak, time-dependent field 𝑓 (𝑡), we can describe it with a Hamiltonian given
by

𝐻 (𝑋) = 𝐻0(𝑋) − 𝑓 (𝑡)𝑋, (13)

where 𝑋 is a given observable and 𝐻0(𝑋) is the equilibrium Hamiltonian. The system is initially in thermal
equilibrium and has the Hamiltonian 𝐻0 and is then perturbed out of equilibrium by the field 𝑓 (𝑡) at time
𝑡. At equilibrium the observable has the ensemble average ⟨𝑋⟩0. We are interested in describing the non-
equilibrium ensemble average ⟨𝑋⟩, which is caused by perturbing the system out of equilibrium.

In stochastic thermodynamics, the external field 𝑓 (𝑡) is usually a so-calledmanipulation protocol _(𝑡), which
is an experimental protocol that an outside experimenter has access to. An example could be changing the
stiffness of an optical tweezer, or moving the tweezer spatially.

Instead of the notation in (13), we use the following notation:

𝜖𝑥 (_) = 𝜖𝑥,0 −
𝑟∑︁
𝛼=1

_𝛼𝑋𝛼,𝑥 , (14)

where 𝜖𝑥 is the energy associated with the state 𝑥, the 𝑟 different ways of manipulating the system is encoded
in the summation and 𝑋𝛼,𝑥 is a given observable which is a function of the state 𝑥.
If we then expand an observable

〈
𝑋𝛽 (𝑡)

〉
in powers of the protocol _𝛼 , we get:

〈
𝑋𝛽 (𝑡)

〉
= ⟨𝑋𝛼⟩0 +

∞∫
−∞

𝑟∑︁
𝛼=1

K𝛽,𝛼 (𝑡, 𝑡′)_𝛼 (𝑡′)d𝑡′ +O(_2𝛼) (15)

The first term ⟨𝑋𝛼⟩0 is the zeroth order term which is independent of the protocol _, while the second term
is the first-order term which depends linearly on _. Here K is the so-called linear response function which
weighs the perturbation _ over the entire duration of the perturbation up until and including time 𝑡 where
we observe the system.

To gain another perspective on K, consider for a moment the situation where we just have one protocol
parameter and for simplicity take the time interval to be −∞ to 𝑡 so that (15) becomes

⟨𝑋 (𝑡)⟩ = ⟨𝑋⟩0 +
𝑡∫

−∞

K(𝑡, 𝑡′)_(𝑡′)d𝑡′ +O(_2) (16)
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Specifically, ⟨𝑋 (𝑡)⟩ is a functional of _(𝑡). Now we discretize time into 𝑁 parts so that 𝑡𝑁 = 𝑁ℎ where ℎ is
the spacing between times. We then have a corresponding value of _ at each discretized timestep and write
this as 𝝀 = {_(𝑡)} = {_(𝑡0), _(𝑡1), . . . , _(𝑡𝑁 )} = {_0, _1, . . . , _𝑁 }. Now using a Taylor expansion analogue
for functionals [39, 40], we expand ⟨𝑋 (𝑡)⟩[𝝀] around _ = 0 to obtain

⟨𝑋 (𝑡)⟩[𝝀] = ⟨𝑋 (𝑡)⟩[{_(𝑡0), _(𝑡1), . . . , _(𝑡𝑁 )}] (17)

= ⟨𝑋 (𝑡)⟩[{_(𝑡 = 0)}] +
𝑁∑︁

𝑖=−∞

(
𝜕 ⟨𝑋⟩
𝜕_𝑖

)
_𝑖=0

_𝑖 +O(_2𝑖 ) (18)

And taking the continuum limit ℎ→ 0, we obtain

⟨𝑋 (𝑡)⟩[𝝀] = ⟨𝑋 (𝑡)⟩0 +
𝑡∫

−∞

(
𝛿 ⟨𝑋 (𝑡)⟩
𝛿 _(𝑡′)

)
_(𝑡′)d𝑡′ +O(_(𝑡′)2) (19)

where in this limit the partial derivatives turn into the functional derivative [41] and we can identify the
linear response function from (16) as

K(𝑡, 𝑡′) = 𝛿 ⟨𝑋 (𝑡)⟩
𝛿 _(𝑡′) (20)

This has the interpretation that the response function is the rate of change of ⟨𝑋 (𝑡)⟩ due to the change in
the external perturbation _(𝑡′) at time 𝑡′ [39].

The linear response functionK furthermore has some properties that are important to note:

• Causality: There can be no response from the system if the perturbation from the protocol has not
been applied yet. We express this formally as K𝛽,𝛼 (𝑡, 𝑡′) = 0 for 𝑡′ > 𝑡 [10]. This means we can adjust
the integration limits in (15) to −∞ to 𝑡, where 𝑡 is the time we observe the system.

• Time invariance: The system must be invariant under time translations as only the time difference
between applying the protocol and observing the system is relevant. We formalize this as

K𝛽,𝛼 (𝑡, 𝑡′) = K𝛽,𝛼 (𝑡 − 𝑡′) (21)

As we saw earlier in (4), there is a fundamental connection between fluctuations and dissipation in systems
that are in equilibrium.
Wewill now derive a generalization of this concept in the framework of linear response theory. Specifically,
we will show that the fluctuations in equilibrium (quantified by equilibrium correlation functions) are inti-
mately connected to the non-equilibrium response of a system perturbed by a small external driving force
in the form of a manipulation protocol [42].
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2.4.1 Deriving the fluctuation-dissipation theorem

In the followingwe derive the fluctuation-dissipation theorem in the context of stochastic thermodynamics,
following Peliti and Pigolotti [10].
We assume that the average ⟨𝑋𝛼⟩0 = 0 for all 𝛼 without loss of generality. It is possible to derive it with
the averages, but we derive it in a more simple way here for the sake of brevity. In the following, ⟨. . . ⟩0
means an ensemble average with _ = 0 and ⟨. . . ⟩{_(𝑡)} denotes a non-equilibrium ensemble average under
the entire protocol history {_(𝑡)}.

We start by considering the manipulation protocol _(𝑡) = _0\(−𝑡) where \(𝑡) is the Heaviside step function
defined as

\(𝑡) =
{
1, 𝑡 > 0
0, 𝑡 ≤ 0

(22)

This type of protocol means that the manipulation acts as a constant _0 from 𝑡 = −∞ and is then turned off
at 𝑡 = 0. This implies that at 𝑡 = 0 the probability distribution of the system is the Boltzmann distribution
𝑝𝑒𝑞(_) for _ = _0 and with Hamiltonian 𝜖𝑥 (_0) = 𝜖𝑥,0 −

∑
𝛼
_𝛼,0𝑋𝛼,𝑥 .

The Boltzmann distribution is given by

𝑝
𝑒𝑞

𝑖
=
exp(−𝜖𝑖/𝑘𝐵𝑇)

𝑍
(23)

where 𝜖𝑖 is the energy associated with microstate 𝑖 and 𝑍 is the partition function given by

𝑍 =
∑︁
𝑖

exp(−𝜖𝑖/𝑘𝐵𝑇) (24)

The partition function is related to the free energy as

𝐹 = −𝑘𝐵𝑇 ln 𝑍. (25)

If we then write 𝑍 as

exp(−𝐹/𝑘𝐵𝑇) = 𝑍, (26)

we can write the Boltzmann distribution as

𝑝
𝑒𝑞

𝑖
=
exp(−𝜖𝑖/𝑘𝐵𝑇)
exp(−𝐹/𝑘𝐵𝑇)

= exp((−𝜖𝑖 + 𝐹)/𝑘𝐵𝑇) (27)

Using this way of writing the distribution, we then have

𝑝𝑥 (𝑡 = 0; {_(𝑡)}) = 𝑝
𝑒𝑞
𝑥 (_0) = exp

(
𝐹 (_0) − 𝜖𝑥 (_0)

𝑘𝐵𝑇

)
= exp ©«

𝐹 (_0) − 𝜖𝑥,0 +
∑
𝛼
_𝛼,0𝑋𝛼,𝑥

𝑘𝐵𝑇

ª®¬ (28)

Here 𝑝𝑥 (𝑡 = 0; {_(𝑡)}) means the distribution at 𝑡 = 0 under the influence of the entire history of _(𝑡)
(which in this case simplifies to _0).
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We now expand 𝐹 (_0) to first order in _0 as 𝐹 (_0) = 𝐹 (0) +
∑
𝛼
_𝛼

𝜕𝐹 (_0)
𝜕_𝛼

���
_0=0

+O
(
_2𝛼

𝜕2𝐹 (_0)
𝜕_2𝛼

���
_0=0

)
.

We then keep the linear terms, and at the same time note the following:

𝜕𝐹 (_0)
𝜕_𝛼

����
_0=0

= −𝑘𝐵𝑇
𝜕 ln 𝑍(_0)

𝜕_𝛼

����
_0=0

(29)

= −𝑘𝐵𝑇
𝑍

d𝑍(_0)
d_𝛼

����
_0=0

(30)

= −𝑘𝐵𝑇
𝑍

d
d_𝛼

∑︁
𝑥

exp(−𝜖𝑥 (_0)/𝑘𝐵𝑇)
��
_0=0

(31)

= −𝑘𝐵𝑇
𝑍

∑︁
𝑥

d
d_𝛼

exp

(
(−𝜖𝑥,0 +

∑︁
𝛽

_𝛽,0𝑋𝛽,𝑥)/𝑘𝐵𝑇
)�����
_0=0

(32)

= −𝑘𝐵𝑇
𝑍

∑︁
𝑥

exp(−𝜖𝑥 (_0)/𝑘𝐵𝑇)
(
d
d_𝛼

∑︁
𝛽

_𝛽𝑋𝛽,𝑥/𝑘𝐵𝑇
)�����
_0=0

(33)

= − 1
𝑍

∑︁
𝑥

exp(−𝜖𝑥 (_0)/𝑘𝐵𝑇)
(∑︁

𝛽

𝛿𝛽,𝛼𝑋𝛽,𝑥

)�����
_0=0

(34)

= − 1
𝑍

∑︁
𝑥

exp(−𝜖𝑥 (_0)/𝑘𝐵𝑇)𝑋𝛼,𝑥
��
_0=0

(35)

= − ⟨𝑋𝛼⟩0 , (36)

where we in (33) used the chain rule and 𝛿𝛽,𝛼 in (34) is the Kronecker delta. Now since we assumed this to be
0, this means we are just left with the 𝐹 (0) in the expansion.
We thus obtain

𝑝𝑥 (0; {_(𝑡)}) ≈ exp ©«
𝐹 (0) − 𝜖𝑥,0 +

∑
𝛼
_𝛼,0𝑋𝛼,𝑥

𝑘𝐵𝑇

ª®¬ (37)

= exp
(
𝐹 (0) − 𝜖𝑥,0

𝑘𝐵𝑇

)
exp ©«

∑
𝛼
_𝛼,0𝑋𝛼,𝑥

𝑘𝐵𝑇

ª®¬ (38)

≈ 𝑝
𝑒𝑞
𝑥 (𝑡 = 0)

(
1 + 1

𝑘𝐵𝑇

∑︁
𝛼

_𝛼,0𝑋𝛼,𝑥

)
(39)

where we used the first order Taylor expansion exp(𝑥) ≈ 1 + 𝑥 in (39).
We nowfind an expression for the probability distribution 𝑝𝑥 (𝑡; {_(𝑡)}) aswe are interested in an expression
for

〈
𝑋𝛽 (𝑡)

〉
{_(𝑡)}.

Using what we just derived in (37), we get:

𝑝𝑥 (𝑡) =
∑︁
𝑥′
𝐺𝑥𝑥′ (𝑡)𝑝𝑥′ (0; {_(𝑡)}) ≈

∑︁
𝑥′
𝐺𝑥𝑥′ (𝑡)𝑝𝑒𝑞𝑥′ (0)

(
1 + 1

𝑘𝐵𝑇

∑︁
𝛼

_𝛼,0𝑋𝛼,𝑥′

)
(40)
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Here 𝐺𝑥𝑥′ (𝑡) denotes the Green function 𝐺𝑥𝑥′ (𝑡, 0) = 𝑝𝑥;𝑡 |𝑥′;𝑡=0, where we in general have 𝐺𝑥𝑥′ (𝑡, 𝑡′) =

𝑝𝑥;𝑡 |𝑥′;𝑡′ [10].
We then have that

𝑝𝑥 (𝑡) =
∑︁
𝑥′
𝑝𝑥;𝑡 |𝑥′;𝑡′ 𝑝𝑥′ (𝑡′) =

∑︁
𝑥′
𝐺𝑥𝑥′ (𝑡, 𝑡′)𝑝𝑥′ (𝑡′) (41)

If we have the initial condition 𝑝𝑥′ (𝑡 = 0; {_(𝑡)}) the solution of 𝑝𝑥 (𝑡) is given by [10]:

𝑝𝑥 (𝑡) =
∑︁
𝑥′
𝐺𝑥𝑥′ (𝑡)𝑝𝑥′ (𝑡 = 0; {_(𝑡)}) (42)

We furthermore have that
𝑝
𝑒𝑞
𝑥 (0) =

∑︁
𝑥′
𝐺𝑥𝑥′ (𝑡)𝑝𝑒𝑞𝑥′ (0) (43)

since if the system starts in an equilibrium distribution and propagate forwards, it will still be in the equi-
librium distribution at a later time.

Using this relation on the first term in (40), we get

𝑝𝑥 (𝑡) ≈ 𝑝
𝑒𝑞
𝑥 (0) +

1
𝑘𝐵𝑇

∑︁
𝑥′
𝐺𝑥𝑥′ (𝑡)

∑︁
𝛼

𝑝
𝑒𝑞

𝑥′ (0)_𝛼,0𝑋𝛼,𝑥′ (44)

We now turn to calculating (15). By definition the ensemble average is given by

〈
𝑋𝛽 (𝑡)

〉
{_(𝑡)} =

∑︁
𝑥

𝑋𝛽,𝑥𝑝𝑥 (𝑡) (45)

≈
∑︁
𝑥

𝑋𝛽,𝑥

(
𝑝
𝑒𝑞
𝑥 (0) +

1
𝑘𝐵𝑇

∑︁
𝑥′
𝐺𝑥𝑥′ (𝑡)

∑︁
𝛼

𝑝
𝑒𝑞

𝑥′ (0)_𝛼,0𝑋𝛼,𝑥′
)

(46)

=
〈
𝑋𝛽,𝑥

〉
0 +

1
𝑘𝐵𝑇

∑︁
𝑥

∑︁
𝑥′
𝑋𝛽,𝑥𝐺𝑥𝑥′ (𝑡)

∑︁
𝛼

𝑝
𝑒𝑞

𝑥′ (0)_𝛼,0𝑋𝛼,𝑥′ (47)

=
1
𝑘𝐵𝑇

∑︁
𝛼

_𝛼,0

∑︁
𝑥

∑︁
𝑥′
𝑋𝛽,𝑥𝐺𝑥𝑥′ (𝑡)𝑋𝛼,𝑥′ 𝑝𝑒𝑞𝑥′ (0) (48)

=
1
𝑘𝐵𝑇

∑︁
𝛼

_𝛼,0

∑︁
𝑥

∑︁
𝑥′
𝑋𝛽,𝑥𝑋𝛼,𝑥′ 𝑝𝑥;𝑡 |𝑥′;0𝑝

𝑒𝑞

𝑥′ (0) (49)

=
1
𝑘𝐵𝑇

∑︁
𝛼

_𝛼,0

∑︁
𝑥

∑︁
𝑥′
𝑋𝛽,𝑥𝑋𝛼,𝑥′ 𝑝𝑥;𝑡,𝑥′;0 (50)

=
1
𝑘𝐵𝑇

∑︁
𝛼

_𝛼,0
〈
𝑋𝛽 (𝑡)𝑋𝛼 (0)

〉
0 (51)

where we in (50) used the definition of conditional probability.
Comparing this expression with the original expression in (15), we can identify the following relation

∞∫
−∞

∑︁
𝛼

𝐾𝛽𝛼 (𝑡 − 𝑡′)_𝛼 (𝑡′)d𝑡′ =
1
𝑘𝐵𝑇

∑︁
𝛼

_𝛼,0
〈
𝑋𝛽,𝑥 (𝑡)𝑋𝛼,𝑥 (0)

〉
(52)
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Since we defined our protocol to be _(𝑡) = _0\(−𝑡), the LHS is 0 from 𝑡 = 0 to 𝑡 = ∞ and we get

0∫
−∞

𝐾𝛽𝛼 (𝑡 − 𝑡′)d𝑡′ =
1
𝑘𝐵𝑇

〈
𝑋𝛽,𝑥 (𝑡)𝑋𝛼,𝑥 (0)

〉
(53)

Using the substitution 𝑡′′ = 𝑡 − 𝑡′ we can rewrite the integral

0∫
−∞

𝐾𝛽𝛼 (𝑡 − 𝑡′) =
𝑡∫

∞

𝐾𝛽𝛼 (𝑡′′) (−d𝑡′′) =
∞∫
𝑡

𝐾𝛽𝛼 (𝑡′′)d𝑡′′ (54)

Substituting this into (53) and differentiating both sides, we get

𝐾𝛽𝛼 (𝑡) = − \(𝑡)
𝑘𝐵𝑇

d
d𝑡

〈
𝑋𝛽 (𝑡)𝑋𝛼 (0)

〉
0 = − \(𝑡)

𝑘𝐵𝑇

d
d𝑡
𝐶𝛽𝛼 (𝑡) (55)

where we introduce the time-dependent equilibrium correlation function,𝐶𝛽𝛼 (𝑡), and where the Heaviside
function makes sure that 𝐾𝛽𝛼 (𝑡) vanishes for 𝑡 < 0.

This result is known as the fluctuation-dissipation theorem and relates spontaneous fluctuations in the equi-
librium system at different times (as measured by the correlation function) with the response of a non-
equilibrium system to an external manipulation (as measured by the response function) [10], [39] - in the lin-
ear regime (close to equilibrium). This important theorem gives us a way of predicting the non-equilibrium
behavior of a systemby probing the equilibriumfluctuations [43], which is an observable parameter through-
out experimental setups.

We have presented the basic theoretical tools used in the thesis. In the next section, we will develop the
framework for finding the optimal protocols for a system in the linear response regime. The Langevin
equation will be the basis for the dynamics as we will start by considering the work produced along a tra-
jectory of the system, and then use linear response theory to obtain an expression for the average work rate
in terms of equilibrium correlation functions and the speeds of the protocols.
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3 Optimal protocols

In this section, we derive the optimal protocol framework which serves as a basis for much of the work in
the rest of the thesis. This entails considering the work along a trajectory of the system when the system
is perturbed by an external protocol, and then using linear-response theory to obtain an expression for the
average work rate.

When driving a system out of equilibrium, we are interested in finding the optimal ways of doing so in order
to minimize excessive dissipation.
Driving a system out of equilibrium usually involves some kind of manipulation of the system. For the case
of a Brownian particle in a harmonic potential, the manipulation could be shifting the harmonic potential
across space or increasing the strength of the potential. There are many different ways of performing these
manipulation protocols and the optimal protocols are defined as those that minimize some specific cost
function. In our situation, we choose this cost function to be the average dissipated work [10], in line with
previous work [5, 13, 44].

The setup is such that we consider a system that can be manipulated by a collection of potentially different
protocols {_𝛼 (𝑡)} with 𝛼 ∈ {1, . . . , 𝑟}. We start in equilibrium at time 𝑡 = 𝑡0 with protocol parameters _(𝑡0)
and then drive the system with the protocols to a final state at 𝑡 = 𝑡𝑓 with protocol parameters _(𝑡𝑓 ). In
equilibrium themacroscopic state of the system is specified by the Boltzmann distribution and is completely
determined by the values of the protocol control parameters [5], for example _(𝑡0) or _(𝑡𝑓 ). In conventional
thermodynamics only quasistatic processes are fully describable [45], and when we consider realistic, finite-
time processes and drive them between two states, some work will be dissipated to the environment as a
consequence. This dissipated work is given by [10, 46, 47]

𝑊𝑑𝑖𝑠𝑠 = 𝑊 − Δ𝐹 = 𝑊 − (𝐹 (_𝑓 ) − 𝐹 (_0)) ≥ 0 (56)
Here the change in free energy is the change in energy between the initial and final states, given that the sys-
tem has had time to reach equilibrium after the protocol has been switched off. Driving the system infinitely
slowly (ie. quasistatically) the amount of work is then equal to the free energy difference which means that
𝑊𝑑𝑖𝑠𝑠 is then equal to 0 [10]. Out of equilibrium, on the other hand, the probability distribution is no longer
the Boltzmann distribution as it depends on the full history of the protocol which we denote by {_(𝑡)}.

To derive an expression for the average dissipated work, we first consider the work increment (7). Instead
of one manipulation protocol _, we now have more than one, and we also assume that the work can only
change due to the manipulation protocol:

d𝑤 =
∑︁
𝛼

𝜕𝜖(𝑥, _𝛼)
𝜕_𝛼

d_𝛼 =
∑︁
𝛼

𝜕𝜖(𝑥, _𝛼)
𝜕_𝛼

d_𝛼
d𝑡

d𝑡. (57)

Rearranging and taking the ensemble average, we have:

d ⟨𝑤⟩{_(𝑡)}
d𝑡

=
∑︁
𝛼

〈
𝜕𝜖(𝑥, _𝛼)
𝜕_𝛼

〉
{_(𝑡)}

¤_𝛼 =
∑︁
𝛼

¤_𝛼 ⟨𝑋𝛼 (_(𝑡))⟩{_(𝑡)} (58)

where ⟨. . . ⟩{_(𝑡)} is the non-equilibrium ensemble average with the protocol history {_(𝑡)}, and we define
the observable 𝑋𝛼 ≡ 𝜕𝜖(𝑥,_𝛼)

𝜕_𝛼
.
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We now consider the average rate of dissipated work, which is the excess rate of work produced by the
external manipulation compared to a reference system at equilibrium [10]:

d⟨𝑤𝑑𝑖𝑠𝑠⟩{_(𝑡)}
d𝑡

=
∑︁
𝛼

d_𝛼
d𝑡

⟨Δ𝑋𝛼 (𝑡)⟩{_(𝑡)} (59)

where Δ𝑋𝛼 (𝑡) = 𝑋𝛼 (𝑡) − ⟨𝑋𝛼⟩𝑒𝑞_(𝑡) is the deviation of 𝑋𝛼 (𝑡) from its equilibrium value under the manipula-
tion _(𝑡) and ⟨. . . ⟩𝑒𝑞

_(𝑡) denotes an equilibrium ensemble average with the given value of _.

We now use the linear response framework we derived earlier in section 2.4 to describe Δ𝑋𝛼 (𝑡).

We have

⟨Δ𝑋𝛼 (𝑡)⟩{_(𝑡)} = ⟨𝑋𝛼 (𝑡)⟩{_(𝑡)} − ⟨𝑋𝛼⟩𝑒𝑞_(𝑡) (60)

=
∑︁
𝛽

𝑡∫
−∞

𝐾𝛼𝛽 (𝑡 − 𝑡′)_𝛽 (𝑡′)d𝑡′ −
∑︁
𝛽

𝑡∫
−∞

𝐾𝛼𝛽 (𝑡 − 𝑡′)_𝛽 (𝑡)d𝑡′ (61)

=
∑︁
𝛽

𝑡∫
−∞

𝐾𝛼𝛽 (𝑡 − 𝑡′) (_𝛽 (𝑡′) − _𝛽 (𝑡))d𝑡′ (62)

where

𝐾𝛼𝛽 (𝑡 − 𝑡′) = − \(𝑡 − 𝑡
′)

𝑘𝐵𝑇

d
d𝑡
𝐶𝛼𝛽 (𝑡 − 𝑡′) (63)

is the linear response function we derived in (55). We define the correlation function in this context as:

𝐶𝛼𝛽 (𝑡) =
〈
Δ𝑋𝛼Δ𝑋𝛽

〉𝑒𝑞
_(𝑡) =

〈
(𝑋𝛼 (𝑡) − ⟨𝑋𝛼⟩𝑒𝑞_(𝑡)) (𝑋𝛽 (0) −

〈
𝑋𝛽

〉𝑒𝑞
_(𝑡))

〉𝑒𝑞
_(𝑡)

(64)

where again ⟨· · ·⟩𝑒𝑞
_(𝑡) is the equilibrium average at constant control parameter and we also included the

averages that we previously neglected in section 2.4.

Substituting eq. (62) into eq. (59), we get to linear order in the perturbation:

d⟨𝑤𝑑𝑖𝑠𝑠⟩{_(𝑡)}
d𝑡

=
∑︁
𝛼

d_𝛼
d𝑡

∑︁
𝛽

𝑡∫
−∞

𝐾𝛼𝛽 (𝑡 − 𝑡′) (_𝛽 (𝑡′) − _𝛽 (𝑡))d𝑡′ (65)

=
∑︁
𝛼

∑︁
𝛽

d_𝛼
d𝑡

𝑡∫
−∞

− \(𝑡 − 𝑡
′)

𝑘𝐵𝑇

d
d𝑡
𝐶𝛼𝛽 (𝑡 − 𝑡′) (_𝛽 (𝑡′) − _𝛽 (𝑡))d𝑡′ (66)

= − 1
𝑘𝐵𝑇

∑︁
𝛼

∑︁
𝛽

d_𝛼
d𝑡

𝑡∫
−∞

d
d𝑡
𝐶𝛼𝛽 (𝑡 − 𝑡′) (_𝛽 (𝑡′) − _𝛽 (𝑡))d𝑡′ (67)

Now using integration by parts we get:
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d⟨𝑤𝑑𝑖𝑠𝑠⟩{_(𝑡)}
d𝑡

= − 1
𝑘𝐵𝑇

∑︁
𝛼

∑︁
𝛽

d_𝛼
d𝑡

( [
𝐶𝛼𝛽 (𝑡 − 𝑡′) (_𝛽 (𝑡′) − _𝛽 (𝑡))

] 𝑡′=𝑡
𝑡′=−∞ (68)

−
𝑡∫

−∞

𝐶𝛼𝛽 (𝑡 − 𝑡′)
d
d𝑡′

(_𝛽 (𝑡′) − _𝛽 (𝑡))d𝑡′
)

(69)

=
1
𝑘𝐵𝑇

∑︁
𝛼

∑︁
𝛽

d_𝛼
d𝑡

©«
𝑡∫

−∞

𝐶𝛼𝛽 (𝑡 − 𝑡′)
d_𝛽 (𝑡′)
d𝑡′

d𝑡′ª®¬ (70)

where the boundary term at 𝑡′ = 𝑡 vanishes trivially and the other term at 𝑡′ = −∞ vanishes since here there
are no correlations between 𝑋𝛼 (𝑡) and 𝑋𝛽 (0) causing the correlation function 𝐶𝛼𝛽 to be zero. This we can
fulfill if we for example assume that the system is initially in equilibrium at 𝑡 = −∞.

Changing variables to 𝑡′′ = 𝑡 − 𝑡′ such that d𝑡′ = −d𝑡′′ and evaluating the new boundaries at 𝑡′′(𝑡) and then
taking the limit lim𝑡→−∞ 𝑡′′(𝑡) we get

d⟨𝑤𝑑𝑖𝑠𝑠⟩{_(𝑡)}
d𝑡

=
1
𝑘𝐵𝑇

∑︁
𝛼

∑︁
𝛽

d_𝛼
d𝑡

∞∫
0

𝐶𝛼𝛽 (𝑡′′)
d_𝛽 (𝑡′)
d𝑡′

����
𝑡′=𝑡−𝑡′′

d𝑡′′ (71)

Now Taylor expanding the control parameter velocities in (71) around 𝑡 using the Taylor expansion in the

form of 𝑓 (𝑥 − ℎ) = 𝑓 (𝑥) − ℎd𝑓 (𝑥)
d𝑥

+ ℎ2

2
d2𝑓 (𝑥)
d𝑥2

+O(ℎ3) we get

d_𝛽 (𝑡′)
d𝑡′

����
𝑡′=𝑡−𝑡′′

=
d_𝛽 (𝑡′)
d𝑡′

����
𝑡′=𝑡

− 𝑡′′
d2_𝛽 (𝑡′)
d𝑡′2

����
𝑡′=𝑡

+O
(
𝑡′′2

d3_𝛽 (𝑡′)
d𝑡′3

����
𝑡′=𝑡

)
(72)

(73)

Assuming that the control parameter velocities are slow and change on time scales slower than the correla-
tion time of the system, we can keep the first term in the expansion and get:

d⟨𝑤𝑑𝑖𝑠𝑠⟩{_(𝑡)}
d𝑡

=
1
𝑘𝐵𝑇

∑︁
𝛼

∑︁
𝛽

d_𝛼
d𝑡

∞∫
0

𝐶𝛼𝛽 (𝑡′′)
d_𝛽 (𝑡)
d𝑡

d𝑡′′ (74)

=
∑︁
𝛼

∑︁
𝛽

d_𝛼
d𝑡

Z𝛼𝛽 (_(𝑡))
d_𝛽 (𝑡)
d𝑡

(75)

where we introduce the friction tensor [10], [5]

Z𝛼𝛽 (_(𝑡)) =
1
𝑘𝐵𝑇

∞∫
0

𝐶𝛼𝛽 (𝑡′′)d𝑡′′ (76)

which is a time-independent equilibriummatrix that is symmetric, positive semidefinite and varies smoothly
except at macroscopic phase transitions [5].
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To sum up, we have derived an optimal protocol framework by expressing the dissipation in terms of the
friction tensor [5] and the experimentally controllable protocol velocities ¤_𝛼 (𝑡), in the regime where the
system obeys linear response theory. The optimal protocol can then be obtained by optimizing (75) by using
the Euler-Lagrange equations. In the next section we will demonstrate how to use this framework on a
simple model.
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4 Passive Brownian particle in a harmonic potential

In this section we will consider in detail an example of using the optimal protocol framework, which we
derived in the last section. The model system we are considering is the overdamped Langevin equation
with a harmonic potential, i.e. a passive Brownian particle diffusing in a harmonic trap. This model can for
example describe a small colloidal particle or piece of DNA being trapped in an optical tweezer where we
have a controllable parameter ^ which sets the strength of the optical trap and a parameter 𝑙 which controls
the position of the harmonic trap (and therefore on average, the particle).
The dynamics are given by:

d𝑥
d𝑡

= −`𝑃^(𝑥 − 𝑙) + b (𝑡), (77)

where ^ is the strength of the harmonic potential and 𝑙 is the position. The noise is delta-correlated and 0
on average, ie. ⟨b (𝑡)⟩ = 0 and ⟨b (𝑡)b (𝑡′)⟩ = 2`𝑃𝑘𝐵𝑇𝛿 (𝑡 − 𝑡′).
The energy associated with the force from the harmonic potential is given by:

𝐸(𝑥, 𝑙, ^) = 1
2
^(𝑥 − 𝑙)2 (78)

The relevant observables (as defined earlier in (58)) are in this case given by

𝑋𝑙 =
𝜕𝐸(𝑥, 𝑙, ^)

𝜕𝑙
= −^(𝑥 − 𝑙), (79)

𝑋𝑘 =
𝜕𝐸(𝑥, 𝑙, ^)

𝜕𝑘
=
1
2
(𝑥 − 𝑙)2. (80)

(81)

We are interested in finding the optimal protocols for this system for which we need to calculate the friction
coefficient from (76). As these depend on the correlation functions, we will start by obtaining expressions
for them.

4.1 Calculation of the correlation functions

To calculate the correlationswe startwith (64). For this specific problem, this expressionwill be a 2𝑥2-matrix
since we have 2 variables ^ and 𝑙, so we will proceed by calculating this entry by entry. However before we
do this, it is convenient to calculate some specific quantities beforehand. When doing the correlationmatrix
calculations, we will encounter terms like ⟨𝑋𝑙⟩𝑒𝑞 = −^ ⟨(𝑥 − 𝑙)⟩𝑒𝑞 and ⟨𝑋^⟩𝑒𝑞 = 1

2

〈
(𝑥 − 𝑙)2

〉𝑒𝑞 and as we are
considering a system in equilibrium the moments ⟨𝑥⟩𝑒𝑞,

〈
𝑥2

〉𝑒𝑞 etc. can be calculated as:

⟨𝑥𝑛⟩ =
∞∫

−∞

𝑥𝑛𝑝(𝑥)𝑑𝑥 (82)

where

𝑝(𝑥) = 1
𝑍
exp

(
−𝐸(𝑥, 𝑙, ^)

𝑘𝐵𝑇

)
=

1
𝑍
exp

(
−1
2
^(𝑥 − 𝑙)2
𝑘𝐵𝑇

)
(83)
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and 𝑍 is a normalization constant (the partition function). Imposing the normalization
∞∫

−∞
𝑝(𝑥)𝑑𝑥 = 1

we can find 𝑍 to be equal to
√︃

2𝜋𝑘𝐵𝑇
^

. Writing this as 𝑍 =
√
2𝜋

√︃
𝑘𝐵𝑇

^
=

√
2𝜋𝜎 , we can then identify the

distribution in (83) as a normal distribution with mean 𝑙 and standard deviation 𝜎 =
√︁
𝑘𝐵𝑇/^:

𝑝(𝑥) = 1
√
2𝜋𝜎

exp

(
−1
2

(√
^(𝑥 − 𝑙)
√
𝑘𝐵𝑇

)2)
=

1
√
2𝜋𝜎

exp

(
−1
2

(
(𝑥 − 𝑙)
𝜎

)2)
(84)

One way to obtain the moments for the normal distribution is by using the moment-generating function
for the normal distribution [10, 48]

𝑀 (𝑡) = ⟨exp(𝑡𝑋)⟩ = exp(𝑙𝑡) exp
(
1
2
(𝜎 𝑡)2

)
(85)

then the 𝑛’th moment is given by

𝑀𝑛 = ⟨𝑋𝑛⟩ = d𝑛𝑀 (𝑡)
d𝑡𝑛

����
𝑡=0

(86)

We then have that the first 2 moments are given by:

⟨𝑥⟩ = d𝑀 (𝑡)
d𝑡

����
𝑡=0

=
d
d𝑡

exp
(
𝑙𝑡 + 1

2
(𝜎 𝑡)2

)����
𝑡=0

(87)

= exp
(
𝑙𝑡 + 1

2
(𝜎 𝑡)2

)
(𝑙 + 𝜎 2𝑡)

����
𝑡=0

(88)

= 𝑙 (89)

and

〈
𝑥2

〉
=
d2𝑀 (𝑡)
d𝑡2

����
𝑡=0

=
d
d𝑡

(
exp

(
𝑙𝑡 + 1

2
(𝜎 𝑡)2

)
(𝑙 + 𝜎 2𝑡)

)����
𝑡=0

(90)

=
(
𝑀 (𝑡)𝜎 2 + (𝑙 + 𝜎 2𝑡)𝑀 (𝑡) (𝑙 + 𝜎 2𝑡)

) ��
𝑡=0 (91)

= 𝑀 (𝑡) (𝜎 2 + (𝑙 + 𝜎 2𝑡)2)
��
𝑡=0 (92)

= (𝜎 2 + 𝑙2) (93)

=

(
𝑘𝐵𝑇

^
+ 𝑙2

)
(94)

Moving on, the correlation matrix for this problem looks like this

𝐶(𝑙, ^, 𝑡) =
(
𝐶𝑙,𝑙 (𝑡) 𝐶𝑙,^ (𝑡)
𝐶^,𝑙 (𝑡) 𝐶^,^ (𝑡)

)
(95)

We start by calculating the first entry 𝐶(𝑡)𝑙,𝑙 . We have by definition:
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𝐶(𝑡)𝑙,𝑙 = ⟨(𝑋𝑙 (𝑡) − ⟨𝑋𝑙⟩𝑒𝑞) (𝑋𝑙 (0) − ⟨𝑋𝑙⟩𝑒𝑞)⟩𝑒𝑞 (96)

= ⟨𝑋𝑙 (𝑡) (𝑋𝑙 (0) − 𝑋𝑙 (𝑡)⟨𝑋𝑙⟩𝑒𝑞 − 𝑋𝑙 (0)⟨𝑋𝑙⟩𝑒𝑞 + (⟨𝑋𝑙⟩𝑒𝑞)2⟩𝑒𝑞 (97)
= ⟨𝑋𝑙 (𝑡)𝑋𝑙 (0)⟩𝑒𝑞 − ⟨𝑋𝑙 (𝑡)⟩𝑒𝑞⟨𝑋𝑙⟩𝑒𝑞 (98)

= ^2 ⟨(𝑥(𝑡) − 𝑙) (𝑥(0) − 𝑙)⟩𝑒𝑞 − ^2 ⟨(𝑥(𝑡) − 𝑙)⟩𝑒𝑞 ⟨(𝑥 − 𝑙)⟩𝑒𝑞 (99)

= ^2(⟨𝑥(𝑡)𝑥(0)⟩𝑒𝑞 − ⟨𝑥(𝑡)𝑙⟩𝑒𝑞 − ⟨𝑥(0)𝑙⟩𝑒𝑞 + 𝑙2) − ^2(⟨𝑥(𝑡)⟩𝑒𝑞 ⟨𝑥⟩𝑒𝑞 − ⟨𝑥(𝑡)𝑙⟩𝑒𝑞 − ⟨𝑥𝑙⟩𝑒𝑞 + 𝑙2) (100)

= ^2 ⟨𝑥(𝑡)𝑥(0)⟩𝑒𝑞 − ^2 ⟨𝑥(𝑡)⟩𝑒𝑞 ⟨𝑥⟩𝑒𝑞 (101)

where ⟨. . . ⟩𝑒𝑞 is an equilibrium ensemble average which means that we can use stationarity (⟨𝑥(𝑡)⟩ =

⟨𝑥(𝑡 + 𝜏)⟩ where 𝜏 is an arbitrary time interval. This also implies that ⟨𝑋𝑙 (0)⟩𝑒𝑞 = ⟨𝑋𝑙 (𝑡)⟩𝑒𝑞 = ⟨𝑋𝑙⟩𝑒𝑞,
and that ⟨𝑥⟩𝑒𝑞 = 𝑙 (which follows from (87)).

Differentiating this expression we get (the second term is not time-dependent and therefore disappears):

d𝐶(𝑡)𝑙,𝑙
d𝑡

= ^2
d
d𝑡
(⟨𝑥(𝑡)𝑥(0)⟩𝑒𝑞 (102)

We now make use of Ito’s formula [49] in the following form:

d𝑓 =
(
`𝑡
𝜕𝑓

𝜕𝑥
+
𝜎 2𝑡
2
𝜕2𝑓

𝜕𝑥2

)
d𝑡 + 𝜎𝑡

𝜕𝑓

𝜕𝑥
𝑑𝑊𝑡 (103)

where 𝑓 (𝑋 (𝑡)) is a function of the Ito process 𝑋 (𝑡) satisfying the following SDE:

d𝑋 (𝑡) = `𝑡d𝑡 + 𝜎𝑡𝑑𝑊𝑡 (104)

where𝑊𝑡 is the Wiener process.

In our case, this Ito SDE corresponds to

d𝑥 = `𝑡d𝑡 + 𝜎𝑡𝑑𝑊𝑡 = −`𝑃^(𝑥 − 𝑙)d𝑡 +
√︁
2^`𝑘𝐵𝑇b (𝑡)d𝑡 (105)

making it possible to identify `𝑡 = −`𝑃^(𝑥 − 𝑙) and 𝜎𝑡 =
√︁
2^`𝑘𝐵𝑇 .

To proceed further, we let 𝑓 = 𝑥(𝑡)𝑥(0) so that

d𝑓
d𝑡

= −^`(𝑥(𝑡) − 𝑙) 𝜕
𝜕𝑥

(𝑥(𝑡)𝑥(0)) + ^`𝑘𝐵𝑇
𝜕2

𝜕𝑥2
(𝑥(𝑡)𝑥(0) +

√︁
2^`𝑘𝐵𝑇

𝜕

𝜕𝑥
(𝑥(𝑡)𝑥(0))b (𝑡) (106)

= −^`(𝑥(𝑡)𝑥(0) − 𝑙𝑥(0)) +
√︁
2^`𝑘𝐵𝑇𝑥(0)b (𝑡) (107)

and b (𝑡) =
d𝑊𝑡

d𝑡
is the noise which is provided in the given form for notational convenience and is not

mathematically rigorous.

Now taking the ensemble average, we then have

d ⟨𝑓 ⟩
d𝑡

= −^`(⟨𝑥(𝑡)𝑥(0)⟩ − ⟨𝑙𝑥(0)⟩) = −^`(⟨𝑥(𝑡)𝑥(0)⟩ − ⟨𝑥(𝑡)⟩ ⟨𝑥(0)⟩) (108)
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wherewe used that ⟨𝑥(0)b (𝑡)⟩𝑒𝑞 = ⟨𝑥(0)⟩𝑒𝑞 ⟨b (𝑡)⟩𝑒𝑞 = 0 since a random force at time 𝑡must be uncorrelated
with the position of the particle at 𝑡 = 0 and the fact that ⟨b (𝑡)⟩ = 0.

Substituting this back into (102) we get:

d𝐶(𝑡)𝑙,𝑙
d𝑡

= ^2
d
d𝑡

⟨𝑓 ⟩𝑒𝑞 (109)

= ^2(−^`(⟨𝑥(𝑡)𝑥(0)⟩𝑒𝑞 − ⟨𝑥(𝑡)⟩𝑒𝑞 ⟨𝑥(0)⟩𝑒𝑞) (110)

= −^`(^2 ⟨𝑥(𝑡)𝑥(0)⟩𝑒𝑞 − ^2 ⟨𝑥(𝑡)⟩𝑒𝑞 ⟨𝑥(0)⟩𝑒𝑞) (111)
= −^`𝐶(𝑡)𝑙,𝑙 (112)

where the final line follows from (101).

This is a simple separable differential equation with an exponential solution given by

𝐶(𝑡)𝑙,𝑙 = 𝐶(0)𝑙,𝑙 exp(−`^ |𝑡 |) (113)
where we have taken 𝑡 to be |𝑡 | instead, as the correlation function needs to be symmetric.
The next challenge is to determine the constant 𝐶(0)𝑙,𝑙 . We get:

𝐶(0)𝑙,𝑙 = ⟨(𝑋𝑙 (0) − ⟨𝑋𝑙⟩𝑒𝑞) (𝑋𝑙 (0) − ⟨𝑋𝑙⟩𝑒𝑞)⟩𝑒𝑞 (114)

= ⟨𝑋𝑙 (0)2⟩𝑒𝑞 + (⟨𝑋𝑙⟩𝑒𝑞)2 − 2⟨𝑋𝑙 (0)⟩𝑒𝑞⟨𝑋𝑙⟩𝑒𝑞 (115)

= ⟨𝑋𝑙 (0)2⟩𝑒𝑞 − (⟨𝑋𝑙⟩𝑒𝑞)2 (116)

= ^2⟨(𝑥(0) − 𝑙)2⟩𝑒𝑞 − ^2(⟨(𝑥 − 𝑙)⟩𝑒𝑞)2 (117)

= ^2(⟨𝑥(0)2⟩𝑒𝑞 − (⟨𝑥⟩𝑒𝑞)2) (118)

= ^2(⟨𝑥(0)2⟩𝑒𝑞 − 𝑙2) (119)

= ^2
(
𝑙2 + 𝑘𝐵𝑇

^
− 𝑙2

)
(120)

= ^𝑘𝐵𝑇 (121)

where the second to last line follows from previous calculations of
〈
𝑥2

〉
in (90). All in all we have:

𝐶(𝑡)𝑙,𝑙 = ^𝑘𝐵𝑇 exp(−`^ |𝑡 |) (122)
And now we calculate 𝐶(𝑡)^,^:

𝐶(𝑡)^,^ = ⟨(𝑋^ (𝑡) − ⟨𝑋^⟩𝑒𝑞) (𝑋^ (0) − ⟨𝑋^⟩𝑒𝑞)⟩𝑒𝑞 (123)

= ⟨𝑋^ (𝑡) (𝑋^ (0) − 𝑋^ (𝑡)⟨𝑋^⟩𝑒𝑞 − 𝑋^ (0)⟨𝑋^⟩𝑒𝑞 + (⟨𝑋^⟩𝑒𝑞)2⟩𝑒𝑞 (124)
= ⟨𝑋^ (𝑡)𝑋^ (0)⟩𝑒𝑞 − ⟨𝑋^ (𝑡)⟩𝑒𝑞⟨𝑋^⟩𝑒𝑞 (125)

=

〈
1
2
(𝑥(𝑡) − 𝑙)21

2
(𝑥(0) − 𝑙)2

〉𝑒𝑞
−

〈
1
2
(𝑥(𝑡) − 𝑙)2

〉𝑒𝑞 〈1
2
(𝑥 − 𝑙)2

〉𝑒𝑞
(126)

=
1
4

〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉𝑒𝑞 − 1
4

〈
(𝑥(𝑡) − 𝑙)2

〉𝑒𝑞 〈(𝑥 − 𝑙)2〉𝑒𝑞 (127)

=
1
4

〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉𝑒𝑞 − 1
4

(〈
(𝑥(𝑡) − 𝑙)2

〉𝑒𝑞)2 (128)
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Similarly to the case for 𝐶(𝑡)𝑙,𝑙 we can define 𝑓 = (𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2 and using Ito’s lemma, we get:

d𝑓
d𝑡

= −^`(𝑥(𝑡) − 𝑙) 𝜕
𝜕𝑥

[
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2)

]
(129)

+
𝜎 2𝑡
2
𝜕2

𝜕𝑥2

[
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

]
+ 𝜎𝑡

𝜕

𝜕𝑥

[
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

]
b (𝑡) (130)

= −^`(𝑥(𝑡) − 𝑙) (𝑥(0) − 𝑙)2(2(𝑥(𝑡) − 𝑙)) +
𝜎 2𝑡
2
((𝑥(0) − 𝑙)2)2 (131)

+ 𝜎𝑡 ((𝑥(0) − 𝑙)2(2(𝑥(𝑡) − 𝑙))b (𝑡) (132)

= −2^`(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2) + 𝜎 2𝑡 (𝑥(0) − 𝑙)2 + 2𝜎𝑡 ((𝑥(0) − 𝑙)2(𝑥(𝑡) − 𝑙))b (𝑡) (133)
(134)

We then have

d ⟨𝑓 ⟩
d𝑡

= −2^`
〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉
+ 𝜎 2𝑡

〈
(𝑥(0) − 𝑙)2

〉
(135)

We can expand the last term to get:

〈
(𝑥(0) − 𝑙)2

〉
=

〈
𝑥(0)2 + 𝑙2 − 2𝑥(0)𝑙

〉
(136)

=
〈
𝑥(0)2

〉
+ 𝑙2 − 2 ⟨𝑥(0)⟩ 𝑙 (137)

=
〈
𝑥(0)2

〉
− 𝑙2 (138)

=
〈
𝑥2

〉
− ⟨𝑥⟩2 (139)

where we used the fact that ⟨𝑥(0)⟩ = ⟨𝑥(𝑡)⟩ = ⟨𝑥⟩ = 𝑙 in equilibrium.

Again using the moment calculations from (87) and (90), we then get:〈
(𝑥(0) − 𝑙)2

〉
=

〈
𝑥2

〉
− ⟨𝑥⟩2 = 𝑙2 + 𝑘𝐵𝑇

^
− 𝑙2 = 𝑘𝐵𝑇

^
(140)

We have that 𝜎 2𝑡 =

(√︁
2`𝑘𝐵𝑇

)2
= 2`𝑘𝐵𝑇 , and thus we get

d ⟨𝑓 ⟩
d𝑡

= −2^`
〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉
+ 𝜎 2𝑡

〈
(𝑥(0) − 𝑙)2

〉
(141)

= −2^`
〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉
+ 2`𝑘𝐵𝑇

(
𝑘𝐵𝑇

^

)
(142)

And now using

d𝐶(𝑡)^,^
d𝑡

=
d
d𝑡

(
1
4

〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉𝑒𝑞 − 1
4

(〈
(𝑥(𝑡) − 𝑙)2

〉𝑒𝑞)2) (143)

=
1
4
d
d𝑡

〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉𝑒𝑞 (144)
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as the second term does not have any time dependence. Continuing on:

d𝐶(𝑡)^,^
d𝑡

=
1
4
d
d𝑡

〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉𝑒𝑞 (145)

=
1
4
d
d𝑡

⟨𝑓 ⟩ (146)

=
1
4

(
−2^`

〈
(𝑥(𝑡) − 𝑙)2(𝑥(0) − 𝑙)2

〉
+ 2`𝑘𝐵𝑇

(
𝑘𝐵𝑇

^

))
(147)

= −2^`
(
𝐶(𝑡)^,^ +

1
4

(〈
(𝑥(𝑡) − 𝑙)2

〉𝑒𝑞)2) + 1
4
2`𝑘𝐵𝑇

(
𝑘𝐵𝑇

^

)
(148)

= −2^`𝐶(𝑡)^,^ − 2^`
1
4

(
𝑘𝐵𝑇

^

)2
+ 1
4
2`𝑘𝐵𝑇

(
𝑘𝐵𝑇

^

)
(149)

= −2^`𝐶(𝑡)^,^ − `
1
2

(
(𝑘𝐵𝑇)2
^

)
+ 1
2
`

(
(𝑘𝐵𝑇)2
^

)
(150)

= −2^`𝐶(𝑡)^,^ (151)

which can be solved similarly to the case for 𝐶(𝑡)𝑙,𝑙 .
Now determining the constant 𝐶(0)^,^ , we get

𝐶(0)^,^ = ⟨(𝑋^ (0) − ⟨𝑋^⟩𝑒𝑞) (𝑋^ (0) − ⟨𝑋^⟩𝑒𝑞)⟩𝑒𝑞 (152)

= ⟨(𝑋^ (0) − ⟨𝑋^⟩𝑒𝑞)2⟩𝑒𝑞 (153)

= ⟨𝑋^ (0)2⟩𝑒𝑞 + (⟨𝑋^⟩𝑒𝑞)2 − 2⟨𝑋𝑙 (0)⟩𝑒𝑞⟨𝑋^⟩𝑒𝑞 (154)

= ⟨𝑋^ (0)2⟩𝑒𝑞 − (⟨𝑋^⟩𝑒𝑞)2 (155)

=
1
4
⟨(𝑥(0) − 𝑙)4⟩𝑒𝑞 −

(
1
2
⟨(𝑥(0) − 𝑙)2⟩𝑒𝑞

)2
(156)

We start by calculating the first term which can be expanded as:

⟨(𝑥(0) − 𝑙)4⟩𝑒𝑞 = ⟨𝑥(0)4 − 4𝑥(0)3𝑙 + 6𝑥(0)2𝑙2 − 4𝑥(0)𝑙3 + 𝑙4⟩𝑒𝑞 (157)

= ⟨𝑥(0)4⟩𝑒𝑞 − 4
〈
𝑥(0)3

〉𝑒𝑞
𝑙 + 6

〈
𝑥(0)2

〉𝑒𝑞
𝑙2 − 4 ⟨𝑥(0)⟩𝑒𝑞 𝑙3 + 𝑙4 (158)

Here we only need to calculate ⟨𝑥(0)4⟩𝑒𝑞 and
〈
𝑥(0)3

〉𝑒𝑞 as we already know the other moments. These can
be found by the same approach introduced in (86), however are here just provided due to spatial concerns:

⟨𝑥(0)4⟩𝑒𝑞 =
∞∫

−∞

𝑥4𝑝(𝑥)𝑑𝑥 = 𝑙4 + 6𝑘𝐵𝑇𝑙2

^
+ 3

(
𝑘𝐵𝑇

^

)2
(159)

and

⟨𝑥(0)3⟩𝑒𝑞 =
∞∫

−∞

𝑥3𝑝(𝑥)𝑑𝑥 = 𝑙3 + 3𝑘𝐵𝑇𝑙
^

(160)
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We then get:

⟨(𝑥(0) − 𝑙)4⟩𝑒𝑞 = 𝑙4 + 6𝑘𝐵𝑇𝑙2

^
+ 3

(
𝑘𝐵𝑇

^

)2
− 4𝑙

(
𝑙3 + 3𝑘𝐵𝑇𝑙

^

)
+ 6𝑙2

(
𝑙2 + 𝑘𝐵𝑇

^

)
− 4𝑙4 + 𝑙4 (161)

=
6𝑘𝐵𝑇𝑙2

^
+ 3

(
𝑘𝐵𝑇

^

)2
− 12𝑘𝐵𝑇𝑙2

^
+ 6𝑘𝐵𝑇𝑙2

^
(162)

= 3
(
𝑘𝐵𝑇

^

)2
(163)

which means that equation (152) becomes:

𝐶(0)^,^ =
1
4
⟨(𝑥(0) − 𝑙)4⟩𝑒𝑞 −

(
1
2
⟨(𝑥(0) − 𝑙)2⟩𝑒𝑞

)2
(164)

=
3
4

(
𝑘𝐵𝑇

^

)2
− 1
4

(
𝑘𝐵𝑇

^

)2
(165)

=
1
2

(
𝑘𝐵𝑇

^

)2
(166)

thus arriving at

𝐶(𝑡)^,^ =
1
2

(
𝑘𝐵𝑇

^

)2
exp(−2^`|𝑡 |) (167)

Now we have calculated the diagonal entries of the correlation matrix. We still need to calculate the off-
diagonals:

𝐶(𝑡)𝑙,^ = ⟨(𝑋𝑙 (𝑡) − ⟨𝑋𝑙⟩𝑒𝑞) (𝑋^ (0) − ⟨𝑋^⟩𝑒𝑞)⟩𝑒𝑞 (168)
= ⟨𝑋𝑙 (𝑡)𝑋^ (0) − 𝑋𝑙 (𝑡)⟨𝑋^⟩𝑒𝑞 − 𝑋^ (0)⟨𝑋𝑙⟩𝑒𝑞 + ⟨𝑋𝑙⟩𝑒𝑞 ⟨𝑋^⟩𝑒𝑞⟩𝑒𝑞 (169)
= ⟨𝑋𝑙 (𝑡)𝑋^ (0)⟩𝑒𝑞 − ⟨𝑋𝑙 (𝑡)⟩𝑒𝑞 ⟨𝑋^⟩𝑒𝑞 − ⟨𝑋^ (0)⟩𝑒𝑞 ⟨𝑋𝑙⟩𝑒𝑞 + ⟨𝑋𝑙⟩𝑒𝑞 ⟨𝑋^⟩𝑒𝑞 (170)
= ⟨𝑋𝑙 (𝑡)𝑋^ (0)⟩𝑒𝑞 − ⟨𝑋𝑙 (𝑡)⟩𝑒𝑞 ⟨𝑋^⟩𝑒𝑞 (171)

= −1
2
^
〈
(𝑥(𝑡) − 𝑙) (𝑥(0) − 𝑙)2

〉𝑒𝑞 + 1
2
^ ⟨(𝑥(𝑡) − 𝑙)⟩𝑒𝑞

〈
(𝑥 − 𝑙)2

〉𝑒𝑞 (172)

(173)

We can get a differential equation for 𝐶(𝑡)𝑙,^ in the same way we did for the two diagonal terms by using
Ito’s lemma. But when we calculate the constant 𝐶(𝑡 = 0)𝑙,^ we see that it is equal to 0:
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𝐶(0)𝑙,^ = ⟨(𝑋𝑙 (0) − ⟨𝑋𝑙⟩𝑒𝑞) (𝑋^ (0) − ⟨𝑋^⟩𝑒𝑞)⟩𝑒𝑞 (174)
= ⟨𝑋𝑙 (0)𝑋^ (0) − 𝑋𝑙 (0)⟨𝑋^⟩𝑒𝑞 − 𝑋^ (0)⟨𝑋𝑙⟩𝑒𝑞 + ⟨𝑋𝑙⟩𝑒𝑞 ⟨𝑋^⟩𝑒𝑞⟩𝑒𝑞 (175)
= ⟨𝑋𝑙 (0)𝑋^ (0)⟩𝑒𝑞 − ⟨𝑋𝑙 (0)⟩𝑒𝑞 ⟨𝑋^⟩𝑒𝑞 − ⟨𝑋^ (0)⟩𝑒𝑞 ⟨𝑋𝑙⟩𝑒𝑞 + ⟨𝑋𝑙⟩𝑒𝑞 ⟨𝑋^⟩𝑒𝑞 (176)
= ⟨𝑋𝑙 (0)𝑋^ (0)⟩𝑒𝑞 − ⟨𝑋𝑙 (0)⟩𝑒𝑞 ⟨𝑋^⟩𝑒𝑞 (177)

= −1
2
^
〈
(𝑥(0) − 𝑙) (𝑥(0) − 𝑙)2

〉𝑒𝑞 + 1
2
^ ⟨(𝑥(0) − 𝑙)⟩𝑒𝑞

〈
(𝑥 − 𝑙)2

〉𝑒𝑞 (178)

= −1
2
^
〈
(𝑥(0) − 𝑙)3

〉𝑒𝑞 + 1
2
^ ⟨(𝑥(0) − 𝑙)⟩𝑒𝑞

〈
(𝑥 − 𝑙)2

〉𝑒𝑞 (179)

(180)

The first term gives:

−1
2
^
〈
(𝑥(0)3 − 3𝑥(0)2𝑙 + 3𝑥(0)𝑙2 − 𝑙3)

〉𝑒𝑞
= −1

2
^

(〈
𝑥(0)3

〉𝑒𝑞 − 3
〈
𝑥(0)2

〉𝑒𝑞
𝑙 + 2𝑙3

)
(181)

= −1
2
^

(
𝑙3 + 3𝑘𝐵𝑇𝑙

^
− 3𝑙

(
𝑙2 + 𝑘𝐵𝑇

^

)
+ 2𝑙3

)
(182)

= −1
2
^

(
3𝑘𝐵𝑇𝑙
^

− 3𝑙
𝑘𝐵𝑇

^

)
(183)

= 0 (184)

And the second term also gives 0 since

1
2
^ ⟨(𝑥(0) − 𝑙)⟩𝑒𝑞 = 1

2
^(⟨𝑥(0)⟩𝑒𝑞 − 𝑙) = 0 (185)

This means that𝐶(0)𝑙,^ = 0which in turn implies that𝐶(𝑡)𝑙,^ = 0. Doing the same analysis on𝐶(𝑡)^,𝑙 reveals
the same pattern, just in reverse order, leading to 𝐶(𝑡)^,𝑙 = 0 as well.

Summing up, the equilibrium correlation matrix is then given by:

𝐶(𝑙, ^, 𝑡) =
(
^𝑘𝐵𝑇 exp(−`^ |𝑡 |) 0

0 1
2

(
𝑘𝐵𝑇

^

)2
exp(−2^`|𝑡 |)

)
(186)

If we simulate a system given by the Langevin equation in (77) and let it reach equilibrium, we can calculate
all the relevant quantities numerically (the entries of the correlation matrix) and thereby show that (186)
holds. Plotting the numerically calculated quantities and the entries of (186) with 𝑘𝐵𝑇 = 1, we obtain the
following relations:
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Figure 1: Comparison of the analytical expressions in the correlation matrix (186) vs. correlations obtained by numerical simu-
lation. Simulation parameters are: ` = 1, 𝑘𝐵𝑇 = 1, ^ = 1, 𝑙 = 0.

which verifies our analytical calculations of the correlation matrix.

4.2 Calculating the friction coefficient matrix

As we now have the correlation matrix, we can calculate the friction coefficient matrix introduced earlier
in equation (76):

28



Z 𝑙,𝑙 (𝑡) =
1
𝑘𝐵𝑇

∞∫
0

𝐶𝑙,𝑙 (𝑡)d𝑡 =
1
𝑘𝐵𝑇

∞∫
0

^𝑘𝐵𝑇 exp(−`^𝑡)d𝑡 (187)

= ^

[
−exp(−`^𝑡)

`^

] 𝑡=∞
𝑡=0

(188)

= −1
`
(0 − exp(0)) (189)

=
1
`

(190)

and

Z^,^ (𝑡) =
1
𝑘𝐵𝑇

∞∫
0

𝐶^,^ (𝑡)d𝑡 =
1
𝑘𝐵𝑇

∞∫
0

1
2

(
𝑘𝐵𝑇

^

)2
exp(−2^`𝑡)d𝑡 (191)

=
𝑘𝐵𝑇

2^2

[
−exp(−2`^𝑡)

2`^

] 𝑡=∞
𝑡=0

(192)

= − 𝑘𝐵𝑇
4`^3

(0 − exp(0)) (193)

=
𝑘𝐵𝑇

4`^3
(194)

And the off-diagonals are equal to 0. The friction coefficient matrix is then given by:

Z (𝑙, ^) =
(
1
`

0
0 𝑘𝐵𝑇

4`^3

)
(195)

The two results derived here (the correlation matrix and friction coefficient matrix) are consistent with the
results in [10] and [5].

4.3 Finding the optimal protocols

We now turn to finding the optimal protocols for the passive Brownian particle in a harmonic trap, i.e. the
control parameter protocols that minimize the dissipatedwork. We imagine that we start out in equilibrium
with the control parameter given by _(𝑡0) and then change the control parameter until we reach a final state
_(𝑡𝑓 ) where the protocol must transition between these 2 states in a time interval𝑇 = 𝑡𝑓 − 𝑡0 [10], [5]. As this
is an optimization problem, we solve the Euler-Lagrange equations [50] where the function to be minimized
is the dissipated work rate, 𝑓 (_(𝑡), ¤_) = ¤_Z (_(𝑡)) ¤_, where _(𝑡) in the given system corresponds to 𝑙(𝑡) or
^(𝑡) but we keep it general for now.

We have
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𝜕

𝜕_
𝑓 (𝑡, _, ¤_) − d

d𝑡
𝜕

𝜕 ¤_
𝑓 (𝑡, _, ¤_) = 0 ⇒ (196)

¤_2Z ′(_) − d
d𝑡
(2 ¤_Z (_)) = 0 (197)

¤_2Z ′(_) − 2( ¥_Z (_) + ¤_Z ′(_) ¤_) = 0 (198)

−¤_2Z ′(_) − 2¥_Z (_) = 0 (199)

where we used the product rule and the chain rule in (198).
This is a second-order ODE which we solve with mathematical software. For the 𝑙-protocol we get:

−d𝑙(𝑡)
d𝑡

2dZ (𝑙(𝑡))
d𝑙

− 2
d2𝑙(𝑡)
d𝑡2

Z (𝑙(𝑡)) = 0 (200)

We know the friction tensor for this problem from earlier. It is given by

Z (𝑙, ^) =
(
1
`

0
0 𝑘𝐵𝑇

4`^3

)
(201)

Substituting Z 𝑙,𝑙 = Z (𝑙(𝑡)) = 1
`
into (200) we get

−2
`

d2𝑙(𝑡)
d𝑡2

= 0 (202)

which yields 𝑙(𝑡) = 𝑐1𝑡 + 𝑐2 where 𝑐1 and 𝑐2 are integration constants to be determined by the boundary
conditions. In the rest of this section, we take 𝑡0 = 0 for simplicity. We then get that 𝑙(𝑡0) = 𝑐2. For 𝑡𝑓 we
get 𝑙(𝑡𝑓 ) = 𝑐1𝑡𝑓 + 𝑙(0) which gives 𝑐1 = (𝑙(𝑡𝑓 ) − 𝑙(0))/𝑡𝑓 so all in all we get:

𝑙(𝑡) =
𝑙𝑓 − 𝑙0
𝑡𝑓

𝑡 + 𝑙0 (203)

For the ^-protocol we get:

−d^(𝑡)
d𝑡

2dZ (^(𝑡))
d^

− 2
d2^(𝑡)
d𝑡2

Z (^(𝑡)) = 0 ⇒ (204)

−d^(𝑡)
d𝑡

2 d
d^

(
𝑘𝐵𝑇

4`^3

)
− 2

d2^(𝑡)
d𝑡2

(
𝑘𝐵𝑇

4`^3

)
= 0 (205)

d^(𝑡)
d𝑡

2 (
3𝑘𝐵𝑇
4`^4

)
− d2^(𝑡)

d𝑡2

(
𝑘𝐵𝑇

2`^3

)
= 0 (206)

3
2
d^(𝑡)
d𝑡

2
− d2^(𝑡)

d𝑡2
^(𝑡) = 0 (207)

Solving this differential equation for ^(𝑡) we get

^(𝑡) = 4
(𝑐1𝑡 + 𝑐2)2

(208)

where 𝑐1 and 𝑐2 are integration constants. Determining them we get:
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^(0) = 4
𝑐22

⇒ 𝑐2 = ±
√︂

4
^(0) = ± 2√︁

^(0)
(209)

Determining 𝑐1 we get:

^(𝑡𝑓 ) =
4(

𝑐1𝑡𝑓 ± 2√
^(0)

)2 ⇒ (210)

±
√︄

4
^(𝑡𝑓 )

= 𝑐1𝑡𝑓 ±
2√︁
^(0)

⇒ (211)(√︄
4

^(𝑡𝑓 )
− 2√︁

^(0)

)
1
𝑡𝑓

= 𝑐1 and

(
−
√︄

4
^(𝑡𝑓 )

+ 2√︁
^(0)

)
1
𝑡𝑓

= 𝑐1 (212)

(213)

so

𝑐1 = ± 2
𝑡𝑓

(
1√︁
^(𝑡𝑓 )

− 1√︁
^(0)

)
(214)

which means ^(𝑡) is given by

^(𝑡) = 4(
± 2
𝑡𝑓

(
1√
^(𝑡𝑓 )

− 1√
^(0)

)
𝑡 ± 2√

^(0)

)2 (215)

=
1(

1
𝑡𝑓

(
1√
^(𝑡𝑓 )

− 1√
^(0)

)
𝑡 + 1√

^(0)

)2 (216)

As we have the friction coefficient matrix and expressions for both the 𝑙 and ^ protocols, we can calculate
the average dissipation rate for the optimal protocols. For 𝑙 we get:

d𝑊 𝑑𝑖𝑠𝑠

d𝑡
=
d𝑙(𝑡)
d𝑡

2
Z (𝑙(𝑡)) =

𝑐21
`

(217)

where we used that
d𝑙(𝑡)
d𝑡

= 𝑐1. Now solving (217) we get:

𝑊 𝑑𝑖𝑠𝑠 =

𝑡=𝑡𝑓∫
𝑡=0

d𝑙(𝑡)
d𝑡

2
Z (𝑙(𝑡))d𝑡 =

𝑡=𝑡𝑓∫
𝑡=0

(
𝑙𝑓 − 𝑙0
𝑡𝑓

)2 1
`
d𝑡 =

1
`

(
𝑙𝑓 − 𝑙0
𝑡𝑓

)2
𝑡𝑓 =

1
`

(
𝑙𝑓 − 𝑙0

)2
𝑡𝑓

(218)

For ^ we get:
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d𝑊 𝑑𝑖𝑠𝑠

d𝑡
=
d^(𝑡)
d𝑡

2
Z (^(𝑡)) (219)

=

(
d
d𝑡

(
4

(𝑐1𝑡 + 𝑐2)2

))2
𝑘𝐵𝑇

4`^(𝑡)3 (220)

=

(
−8𝑐1

(𝑐1𝑡 + 𝑐2)3

)2
𝑘𝐵𝑇

4`^(𝑡)3 (221)

=

(
64𝑐21

(𝑐1𝑡 + 𝑐2)6

)
𝑘𝐵𝑇

4`
1(
4

(𝑐1𝑡+𝑐2)2
)3 (222)

=
𝑘𝐵𝑇

4
𝑐21
`

(223)

Solving this differential equation we get:

𝑊 𝑑𝑖𝑠𝑠 =
𝑘𝐵𝑇

4
𝑐21
`

𝑡=𝑡𝑓∫
𝑡=0

𝑑𝑡 =
𝑘𝐵𝑇

4
𝑐21
`
𝑡𝑓 (224)

=
𝑘𝐵𝑇

4`

(
± 2
𝑡𝑓

(
1√︁
^(𝑡𝑓 )

− 1√︁
^(0)

))2
𝑡𝑓 (225)

=
𝑘𝐵𝑇

`

(
1√︁
^(𝑡𝑓 )

− 1√︁
^(0)

)2
1
𝑡𝑓

(226)

Finally equipped with both expressions for the dissipated work (for the 𝑙-protocol and the ^-protocol), we
can test our analytical expressions against numerical simulations and verify our results, as will be the subject
of the following chapter.
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5 Numerical simulation of a passive Brownian particle in a har-
monic potential

In this section, we numerically simulate a passive Brownian particle in 1D driven by the optimal protocols
for the 𝑙- and ^-protocols, calculate the work for each process and compare with the analytically derived
expressions from the previous section.

To simulate the system we use the Euler-Maruyama method to solve the Langevin equation numerically.
We want to drive the system between the values _0 and _𝑓 which means that besides solving the SDE nu-
merically, we also calculate the optimal protocols ((203) and (208)) at each time step, as they are an explicit
part of the Langevin dynamics. We then also discretize the incremental heat, work and energy and calculate
them numerically along each simulated trajectory of the Langevin equation using the previously introduced
expressions (12), (7) and (8).
As the dissipated work is given by [10]

𝑊 𝑑𝑖𝑠𝑠 = 𝑊 − (𝐹_𝑓 − 𝐹_0) = 𝑊 − Δ𝐹, (227)

thismeans that whenwe simulate the system and calculate thework, we also need to subtract the free energy
difference between the initial state of the system (where it is in equilibrium with protocol value _0) and the
final state (where it is in equilibrium with protocol value _𝑓 ). The free energy is given by

𝐹 = ⟨𝐸⟩ − 𝑇 ⟨𝑆⟩ (228)

where 𝐸 is the internal energy,𝑇 the temperature and 𝑆 the entropy. As 𝑆 = −𝑘𝐵
∑
𝑝𝑖 ln(𝑝𝑖), where 𝑝𝑖 is the

Boltzmann distribution, this is something we can easily calculate by using the Boltzmann distribution cal-
culated in the 2 equilibrium states _0 and _𝑓 (see corresponding Maple documents at MasterThesisGitHub).
We also simulate equilibrium reservoirs at the two values of _ in order to draw samples from these. These
equilibrium distributions are also used as the initial conditions for the Langevin equation simulation.
We then do simulations for each of the 2 protocols, while keeping the other protocol constant throughout,
specifically we take 𝑙 = 0 while driving ^ and take ^ = 1 while driving 𝑙. We use the following parameters
in the simulation:

Passive Brownian particle _0 _𝑓 𝑑𝑡 ` 𝑁 k𝐵𝑇

𝑙-protocol 0 5 0.001 1 20000 1
^-protocol 1 2 0.001 1 20000 1

Table 1: Parameter values for the simulation of a passive Brownian particle.

Below we plot the simulations for the two protocols using the values given in Table 1
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Figure 2: Passive Brownian particle in a one dimensional harmonic potential driven by the optimal ^-protocol that changes the
strength of the potential. A) Comparison of the numerical and analytical solution of the average dissipated work B) Log-scale of
A).

Figure 3: Passive Brownian particle in a one dimensional harmonic potential driven by the optimal 𝑙-protocol that shifts the
potential in space. A) Comparison of the numerical and analytical solution of the average dissipated work B) Log-scale of A).
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From the B) plots above, we can deduce that the the average dissipatedwork declines as 1/𝑡𝑝 since this would
produce a line with slope equal to −1 on a log-log plot. Furthermore, we observe that the numerical (exact)
solution agrees with the analytical (approximated) solution for slow protocols (i.e. long protocol durations).
This means that driving the protocols infinitely slowly is the optimal protocol duration which dissipates the
least amount of work. The exact and approximated solutions start to diverge for smaller protocol durations,
since here the linear response framework (which we used to derive the optimal protocols) breaks down as
it is only able to accommodate slow and weak driving. The results obtained above in Figures 2 and 3 are
consistent with [5].

To obtain a comparison between an optimal protocol and a naive protocol, we furthermore simulate the
system being driven by a naive protocol. A naive protocol is a sub-optimal protocol, for example for the
^-protocol, this would be a linear protocol, meaning that the protocol speed is constant. We implement such
a protocol in the case where we change the strength of the harmonic potential (^). We do this numerically
by changing ^ through discrete and evenly spaced values for example ^0 = 0.01, ^1 = 0.02, ^2 = 0.03 and
so forth. We use the values in Table 1 except this time we simulate 𝑁 = 105 trajectories. We obtain the
following plot

Figure 4: Passive Brownian particle in a one dimensional harmonic potential with ^ being driven by a linear (naive) protocol
and an optimal protocol. A) Comparison of the numerical and analytical solution of the average dissipated work for an optimal
protocol (red and green) and a numerically calculated naive protocol (blue) B) Log-scale of A).

Wewould expect the system driven by the naive protocol to dissipate more work than the system driven by
the optimal protocol. This is also what we observe in figure 4, however the difference between the dissipated
work for the 2 systems is rather small. We reflect on why this might be later in the discussion.

Summing up, we have implemented and simulated numerically the optimal protocols for a passive Brown-
ian particle and obtained agreement between the analytically derived and numerically simulated dissipated
work, as well as considered the case of a naive protocol. Taking a step further in the direction of describ-
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ing more complex systems, we derive an optimal protocol framework for active systems in the following
section.
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6 Optimal control for an active system

We now have a framework for handling passive systems close to equilibrium, and in this section we will
derive an optimal protocol framework for an active system. We will consider active systems that are out of
equilibrium partly by their own activity and partly by being driven by external protocols. We thus proceed
in a way similar to the passive case.

Our system of interest is a modified version of the passive Brownian particle in the sense that we now have
an active term in the equations of motion. This active term can be seen as an extra, active force that acts
on the particle. It is stochastic in nature and amounts to a self-propulsion which means the particle propels
itself forward, on average.

We consider an entire system 𝑁 of these active particles and describe their motion with the following equa-
tion [6]

d𝒓𝒊
d𝑡

= −`∇𝑖𝜙 + 𝒗𝒊 +
√
2𝐷𝜼𝒊 (229)

where 𝒓 𝑖 is the position of the 𝑖’th particle, 𝜙(𝛼, {𝒓}) is the potential energy which is a function of the pro-
tocol parameter 𝛼 and all the particle positions {𝒓}. 𝜼𝒊 is Gaussian vector noise with zero mean and unit
variance. We also define the force 𝒇 𝑖 = −∇𝑖𝜙 + 𝒗𝒊/`.

Among the many models used to model active systems, 3 popular ones are obtained by different choices of
the active force 𝒗𝒊. Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) have a constant
magnitude of 𝒗𝒊 while the orientation of the particle changes due to either rotational diffusion in ABPs or
due to sudden changes in orientation that are Poisson-distributed in RTPs [15]. Here RTP is a popular choice
for modelling bacteria dynamics as they often reorient themselves with their flagellum stochastically. The
third option, which is our baseline for this work, is the active Ornstein-Uhlenbeck particle (AOUP) where
𝒗𝒊 is a self-propulsion velocity modelled as a simple Ornstein-Uhlenbeck process:

𝜏
d𝒗𝒊
d𝑡

= −𝒗𝒊 +
√︁
2𝐷1𝜻𝒊 (230)

Here 𝜏 is the persistence time which is the characteristic time scale over which the particles retain their
self-propulsion before changing direction [51] and the noise 𝜻𝒊 is Gaussian noise with zero mean and unit
variance. The velocity correlations are given by ⟨𝑣𝑖,𝛼 (𝑡)𝑣𝑖,𝛽 (𝑡′)⟩ = 𝛿𝑖,𝑗𝛿𝛼,𝛽

𝐷1
𝜏
exp(−|𝑡 − 𝑡′|/𝜏), where 𝑖, 𝑗 in-

dexes the particles and 𝛼, 𝛽 the coordinates.

It is important to note the distinction between passive and active dynamics here: The fact that a passive
Brownian particle is immersed in an aqueous solution (that also acts as a heat bath) gives rise to both the
dissipation and the input of energy: the dissipation comes from the drag that the particle experiences due to
the average force exerted by the water molecules, −1

`
¤𝒓𝒊, while the energy input comes from the fluctuations

due to the stochastic force,
√
2𝐷𝜼𝒊, which is caused by collisions between the particle and the surrounding

water molecules [15]. When the particle is in equilibrium with the heat bath, dissipation and injection of en-
ergy are related by the fluctuation-dissipation theorem through the Einstein relation 𝐷 = `𝑘𝐵𝑇 . However,
for an active particle much of the injection of energy comes from the self-propulsion 𝒗𝒊 and would thus
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not satisfy the fluctuation-dissipation theorem. The assumption here is that 𝒗𝒊 is not Gaussian white noise,
otherwise the particle would indeed behave like a passive Brownian particle with a shift in temperature [15].

However keeping this in mind, much of the theory and methods from the passive case we considered in the
previous section carry over to the analysis of the active system. To find the optimal protocols for the work
for the active system, we thus follow similar steps as those we took in the passive case and start from the
definition in (7):

d𝑤 =
𝜕𝜙(𝛼, 𝒓)
𝜕𝛼

d𝛼 =
𝜕𝜙(𝛼, 𝒓)
𝜕𝛼

d𝛼
d𝑡

d𝑡 =
𝜕𝜙(𝛼, 𝒓)
𝜕𝛼

¤𝛼d𝑡 (231)

Integrating both sides and taking the ensemble average we get

⟨𝑊⟩ =
𝑡𝑝∫

0

〈
𝜕𝜙(𝛼, 𝒓)
𝜕𝛼

〉
¤𝛼d𝑡 (232)

where 𝑡𝑝 is the final time point of the protocol duration.
Similar to the expression we obtained in (62), where the expansion was linear, we now expand a given
observable 𝑋 (𝑡) to second order. We have [6]

⟨𝑋 (𝑡)⟩ ≈ ⟨𝑋⟩𝑠𝑠 +
𝑡∫

−∞

Δ𝛼𝑡,𝑡′𝑅1(𝑋 ; 𝑡, 𝑡′)d𝑡′ (233)

+
𝑡∫

−∞

𝑡′∫
−∞

Δ𝛼𝑡,𝑡′Δ𝛼𝑡,𝑡′′𝑅2(𝑋 ; 𝑡, 𝑡′, 𝑡′′)d𝑡′d𝑡′′ (234)

where 𝑡′′ ≤ 𝑡′ ≤ 𝑡, Δ𝛼𝑡,𝑡′ = 𝛼(𝑡) − 𝛼(𝑡′) and 𝑅1 and 𝑅2 are the first-order and second-order response
functions, respectively, defined from (19) as

𝑅1(𝑋 ; 𝑡, 𝑡′) =
𝛿 ⟨𝑋 (𝑡)⟩
𝛿Δ𝛼𝑡,𝑡′

����
Δ𝛼→0

, (235)

𝑅2(𝑋 ; 𝑡, 𝑡′, 𝑡′′) =
𝛿2 ⟨𝑋 (𝑡)⟩

𝛿Δ𝛼𝑡,𝑡′𝛿Δ𝛼𝑡,𝑡′′

����
Δ𝛼→0

(236)

As we are now expanding around a non-equilibrium steady state, ⟨𝑋⟩𝑠𝑠 denotes a steady state ensemble
average. By expanding the observable ⟨𝑋 (𝑡)⟩ in this way, it is implicitly assumed that we drive the protocols
slowly and weakly so that 𝛼(𝑡) has at least continuous second-order derivatives.
Similar to the passive case where we expanded the protocol velocities ¤_(𝑡), we now expand Δ𝛼𝑡,𝑡′ as

Δ𝛼𝑡,𝑡′ = (𝑡 − 𝑡′) ¤𝛼(𝑡′) + (𝑡 − 𝑡′)2
2

¥𝛼(𝑡′) +O((𝑡 − 𝑡′)3) (237)

To get an expression for the average work (equation (232)), we then expand
〈
𝜕𝜙(𝛼, 𝒓)
𝜕𝛼

〉
to first order in ¤𝛼 so

the average work becomes of order 1/𝑡𝑝, as in the passive linear response case. We do this by using (233) and
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(237) and we use the notation
𝜕𝜙(𝛼, 𝒓)
𝜕𝛼

= 𝜕𝛼𝜙 for simplifcation.

We have:

⟨𝜕𝛼𝜙⟩ ≈ ⟨𝜕𝛼𝜙⟩𝑠𝑠 +
𝑡∫

−∞

Δ𝛼𝑡,𝑡′𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′)𝑑𝑡′ (238)

+
𝑡∫

−∞

𝑡′∫
−∞

Δ𝛼𝑡,𝑡′Δ𝛼𝑡,𝑡′′𝑅2(𝜕𝛼𝜙; 𝑡, 𝑡′, 𝑡′′)d𝑡′′d𝑡′ (239)

≈ ⟨𝜕𝛼𝜙⟩𝑠𝑠 +
𝑡∫

−∞

(
(𝑡 − 𝑡′) ¤𝛼(𝑡) + (𝑡 − 𝑡′)2

2
¥𝛼(𝑡)

)
𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′)𝑑𝑡′ (240)

+
𝑡∫

−∞

𝑡′∫
−∞

(𝑡 − 𝑡′) (𝑡 − 𝑡′′) ¤𝛼2(𝑡)𝑅2(𝜕𝛼𝜙; 𝑡, 𝑡′, 𝑡′′)d𝑡′′d𝑡′ (241)

= ⟨𝜕𝛼𝜙⟩𝑠𝑠 + ¤𝛼(𝑡)𝑓 (𝛼) + 1
2
¥𝛼(𝑡)𝑔(𝛼) + ¤𝛼2(𝑡)ℎ(𝛼) (242)

where

𝑓 (𝛼) =
𝑡∫

−∞

𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′) (𝑡 − 𝑡′)d𝑡′ (243)

𝑔(𝛼) =
𝑡∫

−∞

𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′) (𝑡 − 𝑡′)2d𝑡′ (244)

ℎ(𝛼) =
𝑡∫

−∞

𝑡′∫
−∞

𝑅2(𝜕𝛼𝜙; 𝑡, 𝑡′, 𝑡′′) (𝑡 − 𝑡′) (𝑡 − 𝑡′′)d𝑡′d𝑡′′ (245)

This results in the following expression for the work

⟨𝑊⟩ ≈
𝑡𝑝∫

0

⟨𝜕𝛼𝜙⟩𝑠𝑠 ¤𝛼(𝑡)d𝑡 +
𝑡𝑝∫

0

[(
¤𝛼(𝑡)𝑓 (𝛼) + 1

2
¥𝛼(𝑡)𝑔(𝛼) + ¤𝛼2(𝑡)ℎ(𝛼)

)
¤𝛼(𝑡)

]
d𝑡 (246)

=

𝛼𝑓∫
𝛼0

⟨𝜕𝛼𝜙⟩𝑠𝑠 d𝛼 +
𝑡𝑝∫

0

[
¤𝛼2(𝑡)𝑓 (𝛼) + 1

2
¤𝛼(𝑡) ¥𝛼(𝑡)𝑔(𝛼) + ¤𝛼3(𝑡)ℎ(𝛼)

]
d𝑡 (247)

where we rewrote the first term using the substitution

𝑡𝑝∫
0

⟨𝜕𝛼𝜙⟩𝑠𝑠 ¤𝛼(𝑡)d𝑡 =
𝛼(𝑡𝑝)∫

𝛼(0)

⟨𝜕𝛼𝜙⟩𝑠𝑠 d𝛼 (248)
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We assume that the protocol is varying slowly, and keep terms up to the order of ¤𝛼2 in the integral in (247).
Considering the second term, we can write

¤𝛼(𝑡) ¥𝛼(𝑡) = 1
2
d
d𝑡

¤𝛼2(𝑡) (249)

so we have for the second term

1
2

𝑡𝑝∫
0

¤𝛼 ¥𝛼𝑔(𝛼)𝑑𝑡 = 1
4

𝑡𝑝∫
0

d
d𝑡

¤𝛼2𝑔(𝛼)d𝑡 (250)

=
1
4

( [
¤𝛼2𝑔(𝛼)

] 𝑡𝑝
0 −

𝑡𝑝∫
0

¤𝛼2 d
d𝑡
𝑔(𝛼)︸  ︷︷  ︸

=𝑔′ (𝛼) ¤𝛼

d𝑡
)

(251)

Both terms in the above scale as ¤𝛼2 and thus can be neglected, which means that we finally obtain

⟨𝑊⟩ ≈
𝛼𝑓∫

𝛼0

⟨𝜕𝛼𝜙⟩𝑠𝑠 d𝛼 +
𝑡𝑝∫

0

[
¤𝛼2(𝑡)𝑓 (𝛼)

]
d𝑡 (252)

= 𝐵(𝛼0, 𝛼𝑡𝑝 , ¤𝛼0, ¤𝛼𝑡𝑝) +
𝑡𝑝∫

0

L(𝛼, ¤𝛼)d𝑡 (253)

We can now see that the first term is a boundary term (which we denote 𝐵) dependent on the initial and
final state of the protocol (the free energy difference between the two states) while for the second term we
can identify a Lagrangian L which explicitly depends on 𝛼(𝑡) and ¤𝛼(𝑡), and which is the term we need to
optimize.
Comparing with the passive case, we can identify 𝑓 (𝛼) as the friction coefficient (eq. (76)) and the boundary
term as the "non-equilibrium free energy difference", which is not obvious how to interpret for a non-
equilibrium ensemble.

Solving the Euler-Lagrange equations with the cost function L(𝛼, ¤𝛼) = ¤𝛼2𝑓 (𝛼) yields the differential equa-
tion

¤𝛼2𝑓 ′(𝛼) + 2 ¥𝛼𝑓 (𝛼) = 0 (254)

exactly like the passive case.

We however solve this in a different way (following [6]) than in the passive case by using the fact that the
Lagrangian is independent of time. We can then show that since the Lagrangian is independent of time,
there exists a conserved quantity, which we call 𝐸, that in classical mechanics corresponds to the energy of
the system [50]. This is a useful way of obtaining an expression for 𝛼(𝑡). Note however that for our system
it is not the energy as understood in the classical mechanics sense.

We are assuming that the Lagrangian L(𝛼, ¤𝛼) = ¤𝛼(𝑡)2𝑓 (𝛼) is a solution to the Euler-Lagrange equations
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𝜕

𝜕𝛼
L(𝛼, ¤𝛼) − d

d𝑡
𝜕

𝜕 ¤𝛼L(𝛼, ¤𝛼) = 0 (255)

which means that 𝛼(𝑡) is a stationary point of the action

𝑆 [𝛼] =
𝑡𝑝∫

0

L(𝛼, ¤𝛼)d𝑡 (256)

The constant of motion 𝐸 for this particular system is given by [50]

𝐸 =
𝜕L
𝜕 ¤𝛼

d𝛼
d𝑡

− L (257)

We want to show that this 𝐸 is indeed constant along 𝛼(𝑡). We have

d𝐸
d𝑡

=
d
d𝑡

(
𝜕L
𝜕 ¤𝛼

d𝛼
d𝑡

)
− dL

d𝑡
(258)

The second term is, using the chain rule, given by

dL(𝛼, ¤𝛼)
d𝑡

=
𝜕L
𝜕𝛼

d𝛼
d𝑡

+ 𝜕L
𝜕 ¤𝛼

d ¤𝛼
d𝑡

+ 𝜕L
𝜕𝑡

(259)

(260)

Substituting this into (258) we have

d𝐸
d𝑡

=
𝜕L
𝜕 ¤𝛼 ¥𝛼 + ¤𝛼 d

d𝑡
𝜕L
𝜕 ¤𝛼 −

(
𝜕L
𝜕𝛼

¤𝛼 + 𝜕L
𝜕 ¤𝛼 ¥𝛼 + 𝜕L

𝜕𝑡

)
(261)

= ¤𝛼 d
d𝑡
𝜕L
𝜕 ¤𝛼 − 𝜕L

𝜕𝛼
¤𝛼 − 𝜕L

𝜕𝑡
(262)

= ¤𝛼𝜕L
𝜕𝛼

− 𝜕L
𝜕𝛼

¤𝛼 − 𝜕L
𝜕𝑡

(263)

= −𝜕L
𝜕𝑡

(264)

where we used that d
d𝑡
𝜕L
𝜕 ¤𝛼 = 𝜕L

𝜕𝛼
from (255). As 𝜕L

𝜕𝑡
= 𝜕

𝜕𝑡
¤𝛼2𝑓 (𝛼) = 0, since the Lagrangian has no explicit

time-dependence, this means that d𝐸
d𝑡 = 0 implying that 𝐸 is a constant.

The constant of motion 𝐸 is from (257) given by

𝐸 =
𝜕L
𝜕 ¤𝛼 ¤𝛼 − L (265)

= ¤𝛼(2𝑓 (𝛼) ¤𝛼) − ¤𝛼2𝑓 (𝛼) (266)

= ¤𝛼2𝑓 (𝛼) (267)

We can identify this as the kinetic energy of the system where 𝑓 (𝛼) = 1
2𝑚.

We can then solve (265) for ¤𝛼 as
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¤𝛼 = ±

√︄
𝐸

𝑓 (𝛼) (268)

This is useful since ¤𝛼 now only depends on 𝑓 (𝛼), and we are free to choose 𝐸.
If we then separate the variables we get

d𝛼 = ±

√︄
𝐸

𝑓 (𝛼)d𝑡 (269)

giving us

d𝑡 = ±
√︂
𝑓 (𝛼)
𝐸

d𝛼 (270)

Integrating both sides and assuming we start the protocol from 𝑡 = 0 we get

𝑡𝑝 = ±
𝛼(𝑡𝑝)∫

𝛼(0)

√︂
𝑓 (𝛼)
𝐸

d𝛼 =

�����
𝛼𝑓∫

𝛼0

√︂
𝑓 (𝛼)
𝐸

d𝛼

����� (271)

We now have expressions for calculating the optimal protocol and the optimal protocol durations with
equations (268) and (271), respectively.

6.1 Calulating the response functions

Since 𝑓 (𝛼) =
𝑡∫

−∞
𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′) (𝑡−𝑡′)d𝑡′ depends on the response function 𝑅1we need to obtain an expression

for it in order to continue. As we discussed at the beginning of this chapter, an active system violates the
classical fluctuation-dissipation theoremmeaning that we cannot rely on linear response theory and appeal
to the Boltzmann distribution as we did in the passive case. We thus take a different approach inspired by
recent progress in non-equilibrium response theory [52, 53, 6].
By definition of the response function found earlier in (20) and (235) we have

𝑅1(𝑋 ; 𝑡, 𝑡′) =
𝛿 ⟨𝑋 (𝑡)⟩
𝛿Δ𝛼𝑡,𝑡′

����
Δ𝛼→0

(272)

for some observable 𝑋 (𝑡).
Using a path-integral approach [9, 6], we write 𝑋 (𝑡) as

⟨𝑋 (𝑡)⟩ = 𝑁

∫
𝑋 (𝑡) exp (−S)D[𝜼, 𝒗] (273)

whereD[𝜼, 𝒗] = ∏
𝑖 𝑃𝑣 [𝒗𝒊]D𝜼𝒊D𝒗𝒊, N is the normalization given by 𝑁 = 1∫

exp(−S)D[𝜼,𝒗] and

S = 1
4𝐷

𝑡𝑝∫
0
( ¤𝒓𝒊 − `𝒇𝒊)2d𝑡 is the associated action.

Substituting the path integral into (272), we get:
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𝑅1 =
𝛿

𝛿Δ𝛼𝑡,𝑡′

(
𝑁

∫
𝑋 (𝑡) exp(−S)D[𝜼, 𝒗]

)
(274)

=

∫
𝑋 (𝑡) 𝛿

𝛿Δ𝛼
(𝑁 exp(−S))D[𝜼, 𝒗] (275)

=

∫
𝑋 (𝑡)

(
𝛿𝑁

𝛿Δ𝛼
exp(−S) + 𝑁 𝛿 exp(−S)

𝛿Δ𝛼

)
D[𝜼, 𝒗] (276)

Using the chain rule for functionals [54], the second term is equal to 𝑁 𝛿 exp(−S)
𝛿Δ𝛼 = 𝑁 exp(−S)

(
𝛿𝑆
𝛿Δ𝛼

)
, and

the first term yields:

𝛿𝑁

𝛿Δ𝛼
=

𝛿

𝛿Δ𝛼

(
1∫

exp(−S)D[𝜼,𝒗]

)
(277)

= − 1
(
∫
exp(−S)D[𝜼,𝒗])2

𝛿

𝛿Δ𝛼

(∫
exp(−S)D[𝜼,𝒗]

)
(278)

= −𝑁2
∫

𝛿 exp(−S)
𝛿Δ𝛼

D[𝜼,𝒗] (279)

= −𝑁2
∫

exp(−S)
(
− 𝛿S
𝛿Δ𝛼

)
D[𝜼,𝒗] (280)

= 𝑁2
∫

exp(−S) 𝛿S
𝛿Δ𝛼

D[𝜼,𝒗] (281)

= 𝑁

〈
𝛿S
𝛿Δ𝛼

〉
𝑠𝑠

����
Δ𝛼→0

(282)

Substituting these two terms into (276) we get:

𝑅1 =

∫
𝑋 (𝑡)

(
𝛿𝑁

𝛿Δ𝛼
exp(−S) + 𝑁 𝛿 exp(−S)

𝛿Δ𝛼

)
D[𝜼, 𝒗] (283)

=

∫
𝑋 (𝑡)

(
𝑁

〈
𝛿S
𝛿Δ𝛼

〉
𝑠𝑠

− 𝑁 𝛿S
𝛿Δ𝛼

)
exp(−S)D[𝜼,𝒗] (284)

=

〈
𝛿S
𝛿Δ𝛼

〉
𝑠𝑠

∫
𝑋 (𝑡)𝑁 exp(−S)D[𝜼,𝒗] −

∫
𝑋 (𝑡)𝑁 𝛿S

𝛿Δ𝛼
exp(−S)D[𝜼,𝒗] (285)

=

[〈
𝛿S
𝛿Δ𝛼

〉
𝑠𝑠

⟨𝑋 (𝑡)⟩ −
〈
𝑋 (𝑡) 𝛿S

𝛿Δ𝛼

〉
𝑠𝑠

]
Δ𝛼→0

(286)

= −
[〈
𝑋 (𝑡) 𝛿S

𝛿Δ𝛼

〉
𝑠𝑠

−
〈
𝛿S
𝛿Δ𝛼

〉
𝑠𝑠

⟨𝑋 (𝑡)⟩
]
Δ𝛼→0

(287)

= −
〈〈
𝑋 (𝑡) 𝛿S

𝛿Δ𝛼

〉〉
(288)

where we define ⟨⟨𝑋 (𝑡)𝑌 (𝑡′)⟩⟩ = ⟨𝑋 (𝑡)𝑌 (𝑡′)⟩𝑠𝑠 − ⟨𝑋⟩𝑠𝑠 ⟨𝑌 ⟩𝑠𝑠.

To get an expression for the functional derivative of S in (288), we consider S when we vary Δ𝛼:
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S (Δ𝛼 + 𝛿Δ𝛼) = 1
4𝐷

𝑡𝑝∫
0

( ¤𝒓 − `𝒇 [Δ𝛼 + 𝛿Δ𝛼])2 d𝑡′ (289)

and Taylor expanding 𝑓 [Δ𝛼 + 𝛿Δ𝛼] = 𝒇 [Δ𝛼] + 𝜕𝒇
𝜕Δ𝛼 𝛿Δ𝛼 +O(𝛿Δ𝛼2) we get

S (Δ𝛼 + 𝛿Δ𝛼) = 1
4𝐷

𝑡𝑝∫
0

(
¤𝒓 − `

(
𝒇 [Δ𝛼] + 𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

))2
d𝑡′ (290)

=
1
4𝐷

𝑡𝑝∫
0

(
¤𝒓 − `𝒇 [Δ𝛼] + ` 𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

)2
d𝑡′ (291)

=
1
4𝐷

𝑡𝑝∫
0

(
( ¤𝒓 − `𝒇 [Δ𝛼])2 +

(
`
𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

)2
+ 2( ¤𝒓 − `𝒇 [Δ𝛼]) ·

(
`
𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

))
d𝑡′ (292)

=
1
4𝐷

𝑡𝑝∫
0

( ¤𝒓 − `𝒇 [Δ𝛼])2d𝑡′ + `

2𝐷

𝑡𝑝∫
0

(
( ¤𝒓 − `𝒇 [Δ𝛼]) · 𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

)
d𝑡′ + 1

4𝐷

𝑡𝑝∫
0

(
`
𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

)2
d𝑡′

(293)

= S [Δ𝛼] + `

2𝐷

𝑡𝑝∫
0

(
( ¤𝒓 − `𝒇 [Δ𝛼]) · 𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

)
d𝑡′ +O(𝛿Δ𝛼2) (294)

(295)

Subtracting S [Δ𝛼] and using the fact that 𝐷 = `𝑘𝐵𝑇 , we get

S [Δ𝛼 + 𝛿Δ𝛼] − S [Δ𝛼] = 1
2𝑘𝐵𝑇

𝑡𝑝∫
0

(
( ¤𝒓 − `𝒇 [Δ𝛼]) · 𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

)
d𝑡′ +O(𝛿Δ𝛼2) (296)

The functional derivative is defined through [41]

𝛿 𝐽 =

𝑥2∫
𝑥1

(
𝛿 𝐽

𝛿 𝑦(𝑥)

)
𝛿 𝑦(𝑥)d𝑥 (297)

where 𝛿 𝐽 is the O(𝜖)-term of the variation 𝐽 [𝑦 + 𝜖[] − 𝐽 [𝑦] , with 𝜖 a small constant and [ an arbitrary
function which vanishes at the boundaries. Correspondingly, for (296) we have

𝛿S =
1

2𝑘𝐵𝑇

𝑡𝑝∫
0

(
( ¤𝒓 − `𝒇 [Δ𝛼]) · 𝜕𝒇

𝜕Δ𝛼
𝛿Δ𝛼

)
d𝑡 (298)
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making us able to identify the functional derivative of S as

𝛿S
𝛿Δ𝛼(𝑡′) =

1
2𝑘𝐵𝑇

(
𝜕𝒇

𝜕Δ𝛼
· ( ¤𝒓 − `𝒇 [Δ𝛼])

)
𝑡′

(299)

=
1

2𝑘𝐵𝑇

(
𝜕

𝜕𝛼
(−∇𝑖𝜙 +

𝒗𝑖
`
) · ( ¤𝒓 − `𝒇 [Δ𝛼])

)
𝑡′

(300)

= − 1
2𝑘𝐵𝑇

(
𝜕

𝜕𝛼
∇𝑖𝜙 · ( ¤𝒓 − `𝒇 [Δ𝛼])

)
𝑡′

(301)

Substituting this into (288) and ignoring the higher order terms, we get for 𝑅1:

𝑅1 = −
〈〈
𝑋 (𝑡)

(
− 1
2𝑘𝐵𝑇

(
𝜕

𝜕𝛼
∇𝑖𝜙 · ( ¤𝒓 − `𝒇 [𝛼])

)
𝑡′

)〉〉
(302)

=
1

2𝑘𝐵𝑇

(〈〈
𝑋 (𝑡)

[
𝜕

𝜕𝛼
∇𝑖𝜙 · ¤𝒓

]
𝑡′

〉〉
− `

〈〈
𝑋 (𝑡)

[
𝜕

𝜕𝛼
∇𝑖𝜙 · 𝒇

]
𝑡′

〉〉)
(303)

=
1

2𝑘𝐵𝑇

(
d
d𝑡′

〈〈
𝑋 (𝑡)

[
𝜕

𝜕𝛼
𝜙

]
𝑡′

〉〉
− `

〈〈
𝑋 (𝑡)

[
𝜕

𝜕𝛼
∇𝑖𝜙 · 𝒇

]
𝑡′

〉〉)
(304)

where we used the chain rule [6]

d𝜙
d𝑡

=
∑︁
𝑖

d𝒓 𝑖
d𝑡

𝜕𝜙

𝜕𝒓 𝑖
+ 𝜕𝜙
𝜕𝛼

d𝛼
d𝑡

= 𝒓 𝑖 · ∇𝑖𝜙 (305)

and where the last term containing ¤𝛼 is 0 as 𝛼 is assumed to be constant here, since we are in the unper-
turbed, steady-state dynamics.
The result in (304) can be viewed as a generalization of the fluctuation-dissipation relation in (55) for an
active system. The difference between the two is that the generalized FDT we have obtained here contains
an extra term due to the force 𝒇 = −∇𝜙 + 𝒗/`, which contains the active force 𝒗 and thus corrects for the
self-propulsion of the active particle. It can be shown that by taking 𝒗 = 0 that the standard fluctuation-
dissipation theorem is then recovered [6].

We are now in a position to write the expression for the work more explicitly:

⟨𝑊⟩ ≈ 𝐵(𝛼0, 𝛼𝑡𝑝 , ¤𝛼0, ¤𝛼𝑡𝑝) +
𝑡𝑝∫

0

[
¤𝛼2(𝑡)𝑓 (𝛼)

]
d𝑡 (306)

= 𝐵(𝛼0, 𝛼𝑡𝑝 , ¤𝛼0, ¤𝛼𝑡𝑝) +
𝑡𝑝∫

0

 ¤𝛼2(𝑡)
𝑡∫

−∞

𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′) (𝑡 − 𝑡′)d𝑡′
 d𝑡 (307)

= 𝐵(𝛼0, 𝛼𝑡𝑝 , ¤𝛼0, ¤𝛼𝑡𝑝) +
𝑡𝑝∫

0

 ¤𝛼2(𝑡)
𝑡∫

−∞

1
2𝑘𝐵𝑇

(
d
d𝑡′

〈〈[
𝜕

𝜕𝛼
𝜙

]
𝑡

[
𝜕

𝜕𝛼
𝜙

]
𝑡′

〉〉
(308)

− `

〈〈[
𝜕

𝜕𝛼
𝜙

]
𝑡

[
𝜕

𝜕𝛼
∇𝑖𝜙 · 𝒇

]
𝑡′

〉〉)
(𝑡 − 𝑡′)d𝑡′

]
d𝑡
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In this section, we have derived a general framework for the optimal control of active systems, using dy-
namical ensembles described by path integrals and methods from non-equilibrium response theory. This
lead to a generalized fluctuation-dissipation relation in (302) and thus a different expression for the average
work in (306) compared to the passive case. In the next section, we will apply this framework to an active
particle.
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7 Active Ornstein-Uhlenbeck particle in a harmonic potential

Having derived a framework for the optimal control of active systems, we are now in a position to apply
this to the example of an active Ornstein-Uhlenbeck particle in a harmonic potential in one dimension. We
calculate the optimal work done during the protocol 𝛼(𝑡) step by step by first obtaining an expression for
the active friction coefficient 𝑓 (𝛼), which involves calculating the response function 𝑅1 and which in turn
requires calculating the appropriate correlation functions.

The dynamics are given by

¤𝑟 = `𝑓 +
√
2𝐷[ = −`𝛼𝑟 + 𝑣 +

√
2𝐷[ (309)

Figure 5 shows an illustration of the setup. The potential energy is given by 𝜙(𝑟) = 1/2𝛼𝑟2 and is changed
through 𝛼0 to 𝛼𝑓 which amounts to changing the strength of the potential.

Figure 5: Illustration of the active dynamics: an active Ornstein-Uhlenbeck particle in a harmonic potential.

We have the following quantities that we need in the calculations:

𝑓 = −𝛼𝑟 + 𝑣

`
, (310)

𝜙 =
1
2
𝛼𝑟2, (311)

𝜕𝜙

𝜕𝛼
=
1
2
𝑟2, (312)

∇𝜕𝜙
𝜕𝛼

=
𝜕

𝜕𝑟

𝜕𝜙

𝜕𝛼
= 𝑟 (313)

We start by calculating 𝑓 (𝛼) =
𝑡∫

−∞
𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′) (𝑡 − 𝑡′)d𝑡′:
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𝑡∫
−∞

𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′) (𝑡 − 𝑡′)d𝑡′ =
1

2𝑘𝐵𝑇

𝑡∫
−∞

(
d
d𝑡′

⟨⟨[𝜕𝛼𝜙]𝑡 [𝜕𝛼𝜙]𝑡′⟩⟩ − `⟨⟨[𝜕𝛼𝜙]𝑡 [(𝜕𝑟𝜕𝛼𝜙)𝑓 ]𝑡′⟩⟩
)
(𝑡 − 𝑡′)d𝑡′ (314)

=
1

2𝑘𝐵𝑇

𝑡∫
−∞

(
d
d𝑡′

⟨⟨1
4

[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ − `⟨⟨

1
2

[
𝑟2

]
𝑡

[
𝑟

(
−𝛼𝑟 + 𝑣

`

)]
𝑡′
⟩⟩
)
(𝑡 − 𝑡′)d𝑡′

(315)

=
1

2𝑘𝐵𝑇

𝑡∫
−∞

(
1
4
d
d𝑡′

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ −

1
2
`

(
⟨⟨−𝛼

[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ +

1
`
⟨⟨
[
𝑟2

]
𝑡
[𝑟𝑣]𝑡′

)
⟩⟩
)
(𝑡 − 𝑡′)d𝑡′

(316)

Applying integrating by parts to the first term, we get:

1
2𝑘𝐵𝑇

𝑡∫
−∞

1
4
d
d𝑡′

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩(𝑡 − 𝑡

′)d𝑡′ = 1
8𝑘𝐵𝑇

©«[⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩(𝑡 − 𝑡

′)]𝑡−∞ −
𝑡∫

−∞

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩

d(𝑡 − 𝑡′)
d𝑡′

d𝑡′ª®¬
(317)

=
1

8𝑘𝐵𝑇

𝑡∫
−∞

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩d𝑡

′ (318)

(319)

where the boundary terms vanish, the one at 𝑡 trivially and the other one because by definition

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ = ⟨

[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩𝑠𝑠 − ⟨

[
𝑟2

]
𝑡
⟩𝑠𝑠⟨

[
𝑟2

]
𝑡′⟩𝑠𝑠 (320)

and taking the limit lim𝑡′→−∞, ie. for large separation between 𝑡 and 𝑡′, the correlations between
[
𝑟2

]
𝑡′ and[

𝑟2
]
𝑡
are uncorrelated due to being in equilibrium. Thus we get

lim
𝑡′→−∞

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ = ⟨

[
𝑟2

]
𝑡
⟩𝑠𝑠⟨

[
𝑟2

]
𝑡′⟩𝑠𝑠 − ⟨

[
𝑟2

]
𝑡
⟩𝑠𝑠⟨

[
𝑟2

]
𝑡′⟩𝑠𝑠 = 0 (321)

Using a change of variables, with 𝑡′′ = 𝑡 − 𝑡′ we can write:

𝑡∫
−∞

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩d𝑡

′ =

𝑡′′=𝑡−𝑡∫
𝑡′′=𝑡−(−∞)

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡−𝑡′′⟩⟩(−d𝑡

′′) (322)

= −
0∫

∞

⟨⟨
[
𝑟2

]
𝑡′+𝑡′′

[
𝑟2

]
𝑡′⟩⟩d𝑡

′′ (323)

=

∞∫
0

⟨⟨
[
𝑟2

]
𝑡′′

[
𝑟2

]
0⟩⟩d𝑡

′′ (324)
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where we used that
d𝑡′′

d𝑡′
=
d(𝑡 − 𝑡′)

d𝑡′
= −1 such that d𝑡′′ = −d𝑡′ and stationarity of the correlation function

⟨⟨
[
𝑟2

]
𝑡′+𝑡′′

[
𝑟2

]
𝑡′⟩⟩ = ⟨⟨

[
𝑟2

]
𝑡′′

[
𝑟2

]
0⟩⟩

So we get:

𝑡∫
−∞

𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′) (𝑡 − 𝑡′)d𝑡′ =
1

2𝑘𝐵𝑇

𝑡∫
−∞

(
1
4
d
d𝑡′

⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ −

1
2
`

(
⟨⟨−𝛼

[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ +

1
`
⟨⟨
[
𝑟2

]
𝑡
[𝑟𝑣]𝑡′

)
⟩⟩
)
(𝑡 − 𝑡′)d𝑡′

(325)

=
1

8𝑘𝐵𝑇

∞∫
0

⟨⟨
[
𝑟2

]
𝑡′′

[
𝑟2

]
0⟩⟩d𝑡

′′ (326)

− 1
4𝑘𝐵𝑇

`

𝑡∫
−∞

(
⟨⟨−𝛼

[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ +

1
`
⟨⟨
[
𝑟2

]
𝑡
[𝑟𝑣]𝑡′

)
⟩⟩(𝑡 − 𝑡′)d𝑡′ (327)

=
1

8𝑘𝐵𝑇

∞∫
0

⟨⟨
[
𝑟2

]
𝑡′′

[
𝑟2

]
0⟩⟩d𝑡

′′ (328)

− 1
4𝑘𝐵𝑇

∞∫
0

(
⟨⟨−𝛼`

[
𝑟2

]
𝑡′′

[
𝑟2

]
0⟩⟩ + ⟨⟨

[
𝑟2

]
𝑡′′ [𝑟𝑣]0⟩⟩

)
𝑡′′d𝑡′′ (329)

=
1

4𝑘𝐵𝑇

∞∫
0

[(
1
2
+ 𝛼`𝑡′′

)
⟨⟨
[
𝑟2

]
𝑡′′

[
𝑟2

]
0⟩⟩ − ⟨⟨

[
𝑟2

]
𝑡′′ [𝑟𝑣]0⟩⟩𝑡

′′
]
d𝑡′′ (330)

In order to minimize the work, we need an expression for 𝑓 (𝛼) which involves calculating the correlation
functions ⟨⟨

[
𝑟2

]
𝑡′′

[
𝑟2

]
0⟩⟩ and ⟨⟨

[
𝑟2

]
𝑡′′ [𝑟𝑣]0⟩⟩.

Here we first need to solve the Langevin equation for the system given by (309). Various methods are viable
given this is a linear stochastic differential equation. For example we have used variation of parameters,
however not presented here due to space considerations.
The solution to (309) is given by [6]:

𝑟(𝑡) =
𝑡∫

−∞

exp(−𝛼`(𝑡 − 𝑡′))
[
𝑣(𝑡′) +

√
2𝐷[(𝑡′)

]
d𝑡′ (331)

We can now calculate the correlation functions:
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〈
[𝑟2]𝑡 [𝑟2] 𝑠

〉
=

〈 𝑡∫
−∞

𝑡∫
−∞

exp(−𝛼`(𝑡 − 𝑡′) − 𝛼`(𝑡 − 𝑡′′))
[√

2𝐷[(𝑡′) + 𝑣(𝑡′)
] [√

2𝐷[(𝑡′′) + 𝑣(𝑡′′)
]
d𝑡′d𝑡′′ ×

(332)
𝑠∫

−∞

𝑠∫
−∞

exp(−𝛼`(𝑠 − 𝑡′′′) − 𝛼`(𝑠 − 𝑡′′′′))
[√

2𝐷[(𝑡′′′) + 𝑣(𝑡′′′)
] [√

2𝐷[(𝑡′′′′) + 𝑣(𝑡′′′′)
]
d𝑡′′′d𝑡′′′′

〉
(333)

=

𝑡∫
−∞

d𝑡1

𝑡∫
−∞

d𝑡2

𝑠∫
−∞

d𝑡3

𝑠∫
−∞

d𝑡4 exp

(
𝑖=4∑︁
𝑖=1

𝑡𝑖 − 2(𝑡 + 𝑠)
)
× (334)〈[√

2𝐷[1 + 𝑣1
] [√

2𝐷[2 + 𝑣2
] [√

2𝐷[3 + 𝑣3
] [√

2𝐷[4 + 𝑣4
]〉

(335)

where we simplified the notation using 𝑣(𝑡𝑖) = 𝑣𝑖, [(𝑡𝑖) = [𝑖 to replace the dummy variables 𝑡′, 𝑡′′, .. [6]
Using the same method, we get similarly for the other correlation function:

〈
[𝑟𝑣]𝑡 [𝑟2] 𝑠

〉
=

𝑡∫
−∞

d𝑡1

𝑡∫
−∞

d𝑡2

𝑠∫
−∞

d𝑡3

𝑠∫
−∞

exp

(
𝑖=3∑︁
𝑖=1

𝑡𝑖 − (𝑡 + 2𝑠)
)
× (336)〈[√

2𝐷[1 + 𝑣1
]
𝑣(𝑡)

[√
2𝐷[2 + 𝑣2

] [√
2𝐷[3 + 𝑣3

]〉
(337)

Calculating them involves the product

〈[√
2𝐷[1 + 𝑣1

] [√
2𝐷[2 + 𝑣2

] [√
2𝐷[3 + 𝑣3

] [√
2𝐷[4 + 𝑣4

]〉
= (338)〈

(
√
2𝐷[1

√
2𝐷[2 +

√
2𝐷[1𝑣2 +

√
2𝐷[2𝑣1 + 𝑣1𝑣2) · (

√
2𝐷[3

√
2𝐷[4 +

√
2𝐷[3𝑣4 +

√
2𝐷[4𝑣3 + 𝑣3𝑣4)

〉
(339)

(340)

Here terms like ⟨[1[2[3𝑣4⟩ = ⟨[1[2⟩ ⟨[3𝑣4⟩ = 0 due to causality (i.e. ⟨[3𝑣4⟩ = 0).
In the following we let 𝑘 =

√
2𝐷, it can then be shown by straightforward algebra that the above product

gives:

𝑘4 ⟨[1[2[3[4⟩ + 𝑘2 ⟨[1[2𝑣3𝑣4⟩ + 𝑘2 ⟨[1[3𝑣2𝑣4⟩ + 𝑘2 ⟨[3[4𝑣2𝑣3⟩ (341)

+𝑘2 ⟨[2[3𝑣1𝑣4⟩ + 𝑘2 ⟨[2[4𝑣1𝑣3⟩ + 𝑘2 ⟨[3[4𝑣1𝑣2⟩ + ⟨𝑣1𝑣2𝑣3𝑣4⟩ (342)

The last term we can rewrite using Isserlis’ theorem [55]:

⟨𝑣1𝑣2𝑣3𝑣4⟩ = ⟨𝑣1𝑣2⟩ ⟨𝑣3𝑣4⟩ + ⟨𝑣1𝑣3⟩ ⟨𝑣2𝑣4⟩ + ⟨𝑣1𝑣4⟩ ⟨𝑣2𝑣3⟩ (343)

which holds for Gaussian random variables with zero-mean.
Using this fact and that ⟨[1[2[3[4⟩ = ⟨[1[2⟩ ⟨[3[4⟩ (because the noise is uncorrelated for times that are not
overlapping).
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We can then use Isserlis’ theorem and the fact that ⟨[1[2⟩ = 𝛿 (𝑡1 − 𝑡2) and ⟨𝑣(𝑡)𝑣(𝑡′)⟩ = 𝐷1
𝜏
exp(−|𝑡 − 𝑡′|/𝜏)

to calculate the correlation functions.
As an example and illustration of the method, the correlation function in (332) would take the form

〈
[𝑟2]𝑡 [𝑟2] 𝑠

〉
=

𝑡∫
−∞

d𝑡1

𝑡∫
−∞

d𝑡2

𝑠∫
−∞

d𝑡3

𝑠∫
−∞

d𝑡4 exp (𝑡1 + 𝑡2 + 𝑡3 + 𝑡4 − 2(𝑡 + 𝑠)) × (344)(
𝑘4 (⟨[1[2⟩ ⟨[3[4⟩ + ⟨[1[3⟩ ⟨[2[4⟩ + ⟨[1[4⟩ ⟨[2[3⟩) (345)

+ 𝑘2 (⟨[1[2⟩ ⟨𝑣3𝑣4⟩ + ⟨[1[3⟩ ⟨𝑣2𝑣4⟩ + ⟨[1[4⟩ ⟨𝑣2𝑣3⟩) (346)

+ 𝑘2 (⟨[2[3⟩ ⟨𝑣1𝑣4⟩ + ⟨[2[4⟩ ⟨𝑣1𝑣3⟩ + ⟨[3[4⟩ ⟨𝑣1𝑣2⟩) (347)
+ ⟨𝑣1𝑣2⟩ ⟨𝑣3𝑣4⟩ + ⟨𝑣1𝑣3⟩ ⟨𝑣2𝑣4⟩ + ⟨𝑣1𝑣4⟩ ⟨𝑣2𝑣3⟩

)
(348)

=

𝑡∫
−∞

d𝑡1

𝑡∫
−∞

d𝑡2

𝑠∫
−∞

d𝑡3

𝑠∫
−∞

d𝑡4 exp (𝑡1 + 𝑡2 + 𝑡3 + 𝑡4 − 2(𝑡 + 𝑠)) × (349)

(√
2𝐷

4
(𝛿 (𝑡1 − 𝑡2)𝛿 (𝑡3 − 𝑡4) + 𝛿 (𝑡1 − 𝑡3)𝛿 (𝑡2 − 𝑡4) + 𝛿 (𝑡1 − 𝑡4)𝛿 (𝑡2 − 𝑡3)) (350)

+
√
2𝐷

2
(
𝐷1

𝜏
exp(−|𝑡3 − 𝑡4 |/𝜏)𝛿 (𝑡1 − 𝑡2) +

𝐷1

𝜏
exp(−|𝑡2 − 𝑡4 |/𝜏)𝛿 (𝑡1 − 𝑡3) (351)

+ 𝐷1

𝜏
exp(−|𝑡2 − 𝑡3 |/𝜏)𝛿 (𝑡1 − 𝑡4) +

𝐷1

𝜏
exp(−|𝑡1 − 𝑡4 |/𝜏)𝛿 (𝑡2 − 𝑡3) (352)

+ 𝐷1

𝜏
exp(−|𝑡1 − 𝑡3 |/𝜏)𝛿 (𝑡2 − 𝑡4) +

𝐷1

𝜏
exp(−|𝑡1 − 𝑡2 |/𝜏)𝛿 (𝑡3 − 𝑡4)

)
(353)

+ 𝐷1

𝜏

2
exp(−|𝑡1 − 𝑡2 |/𝜏) exp(−|𝑡3 − 𝑡4 |/𝜏) (354)

+ 𝐷1

𝜏

2
exp(−|𝑡1 − 𝑡3 |/𝜏) exp(−|𝑡2 − 𝑡4 |/𝜏) (355)

+ 𝐷1

𝜏

2
exp(−|𝑡1 − 𝑡4 |/𝜏) exp(−|𝑡2 − 𝑡3 |/𝜏)

)
(356)

and we would get similar expressions for
〈
[𝑟𝑣]𝑡 [𝑟2] 𝑠

〉
(see also [6]). All these have been calculated using

mathematical software.

When calculating the correlation functions such as ⟨⟨
[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩⟩ = ⟨

[
𝑟2

]
𝑡

[
𝑟2

]
𝑡′⟩𝑠𝑠 − ⟨

[
𝑟2

]
𝑡
⟩𝑠𝑠⟨

[
𝑟2

]
𝑡′⟩𝑠𝑠 we

also need the steady-state averages ⟨𝑟2⟩𝑠𝑠 and ⟨𝑟𝑣⟩𝑠𝑠. Once again we can calculate these using Ito’s lemma.
Define 𝑓 = 𝑟2 to obtain

d𝑟2

d𝑡
= (−`𝛼𝑟 + 𝑣) 𝜕𝑟

2

𝜕𝑟
+
√
2𝐷

2

2
𝜕2𝑟2

𝜕𝑟2
+
√
2𝐷

𝜕𝑟2

𝜕𝑟
[ (357)

= 2𝑟(−`𝛼𝑟 + 𝑣) + 2𝐷 + 2
√
2𝐷[ (358)

= 2(−`𝛼𝑟2 + 𝑟𝑣 + 𝐷 +
√
2𝐷[) (359)

now dividing by 2 and taking the ensemble average we get
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1
2
d
d𝑡

〈
𝑟2

〉
= −`𝛼

〈
𝑟2

〉
+ ⟨𝑟𝑣⟩ + 𝐷 (360)

Similarly for 𝑓 = 𝑟𝑣 we obtain by using the multidimensional Ito formula [56]

d𝑟𝑣
d𝑡

= (−`𝛼𝑟 + 𝑣) 𝜕𝑟𝑣
𝜕𝑟

− 𝑣

𝜏

𝜕𝑟𝑣

𝜕𝑣
+
√
2𝐷

2

2
𝜕2𝑟𝑣

𝜕𝑟2
+
√
2𝐷1

2

2
𝜕2𝑟𝑣

𝜕𝑣2
+
√
2𝐷

𝜕𝑟𝑣

𝜕𝑟
[ +

√
2𝐷

𝜕𝑟𝑣

𝜕𝑣
Z (361)

= −`𝛼𝑟𝑣 + 𝑣2 − 𝑟𝑣

𝜏
+
√
2𝐷𝑣[ +

√
2𝐷𝑟Z (362)

And when taking the ensemble average we get

d
d𝑡

⟨𝑟𝑣⟩ = −`𝛼 ⟨𝑟𝑣⟩ + 𝐷1

𝜏
− ⟨𝑟𝑣⟩

𝜏
= − ⟨𝑟𝑣⟩

(
`𝛼 + 1

𝜏

)
+ 𝐷1

𝜏
(363)

We then have in steady-state that (363) and (360) each are equal to 0 which yields

⟨𝑟𝑣⟩𝑠𝑠 =
𝐷1

𝜏 (`𝛼 + 1
𝜏
)
=

𝐷1

(𝜏`𝛼 + 1) (364)

and 〈
𝑟2

〉
𝑠𝑠
=

⟨𝑟𝑣⟩
`𝛼

+ 𝐷

`𝛼
=

𝐷1

(𝜏`𝛼 + 1)`𝛼 + 𝐷

`𝛼
=

1
`𝛼

(
𝐷1

(𝜏`𝛼 + 1) + 𝐷
)

(365)

To check that the analytically derived correlation functions are correct, we calculate them numerically and
compare with the analytical results:
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Figure 6: The 2 correlation functions used in the friction coefficient 𝑓 (𝛼) compared with the solution obtained from numerical
simulations, averaged over 𝑁 = 10000 trajectories. A) Correlation function ⟨⟨

[
𝑟2

]
𝑡

[
𝑟2

]
0⟩⟩ vs. time. B) Correlation function

⟨⟨
[
𝑟2

]
𝑡
[𝑟𝑣]0⟩⟩ vs. time.

By visual inspection, we find that the calculated analytical correlations are largely in agreement with the
numerical simulations, considering the number of averaged trajectories is 𝑛 = 10000.
Continuing on, the expression we end up with for 𝑓 (𝛼) is:
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𝑓 (𝛼) =
𝑡∫

−∞

𝑅1(𝜕𝛼𝜙; 𝑡, 𝑡′) (𝑡 − 𝑡′)d𝑡′ (366)

=
1

4𝑘𝐵𝑇

∞∫
0

[(
1
2
+ 𝛼`𝑡′′

)
⟨⟨
[
𝑟2

]
𝑡′′

[
𝑟2

]
0⟩⟩ − ⟨⟨

[
𝑟2

]
𝑡′′ [𝑟𝑣]0⟩⟩𝑡

′′
]
d𝑡′′ (367)

=
𝐷1(𝛼3𝜏3`3𝐷 + 3𝜏2(𝐷 + 4𝐷1

3 )`2𝛼2 + 3`𝜏 (𝐷 + 𝐷1)𝛼 + 𝐷 + 𝐷1)
4𝛼3`3𝑘𝐵𝑇 (𝛼`𝜏 + 1)3 (368)

Considering the 2 limits 𝜏 → ∞ and 𝜏 → 0, we can recover the passive dynamics and use this to verify if
the friction coefficient reduces to what we would expect in the passive case. Both limits reproduce a passive
Brownian particle but with different strengths for the noise. Taking the limit 𝜏 → 0, we get for the noise

lim
𝜏→0

⟨𝑣𝑖,𝛼 (𝑡)𝑣𝑗,𝛽 (𝑡′)⟩ = lim
𝜏→0

𝛿𝑖,𝑗𝛿𝛼,𝛽
𝐷1

𝜏
exp(−|𝑡 − 𝑡′|/𝜏) = 𝛿𝑖,𝑗𝛿𝛼,𝛽2𝐷1𝛿 (𝑡 − 𝑡′) (369)

where we used the Dirac delta function representation 𝛿 (𝑡) = lim𝜏→0
1
2𝜏 exp(−|𝑡 |/𝜏), which means that 𝒗𝒊

becomes a zero-meanGaussianwhite noise [57] and the dynamics of the original active Ornstein-Uhlenbeck
particle in (229) becomes a passive Brownian particle with noise strength 𝐷 + 𝐷1.
Taking the other limit where 𝜏 → ∞, we obtain the passive Brownian particle dynamics with noise strength
𝐷 and which also reproduces the friction coefficient for the passive case:

lim
𝜏→∞

𝑓 (𝛼) = lim
𝜏→∞

𝐷1(𝛼3𝜏3`3𝐷 + 3𝜏2(𝐷 + 4𝐷1
3 )`2𝛼2 + 3`𝜏 (𝐷 + 𝐷1)𝛼 + 𝐷 + 𝐷1)

4𝛼3`3𝑘𝐵𝑇 (𝛼`𝜏 + 1)3 (370)

=
𝐷2

4𝛼3`3𝑘𝐵𝑇
(371)

=
(𝑘𝐵𝑇`)2
4𝛼3`3𝑘𝐵𝑇

(372)

=
𝑘𝐵𝑇

4`𝛼3
(373)

which is the same expression for the friction coefficient we obtained in equation (191).

We then use (368) to calculate the work where 𝑓 (𝛼) is used in the Lagrangian term. The work is then given
by
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⟨𝑊⟩ ≈
𝛼𝑓∫

𝛼0

⟨𝜕𝛼𝜙⟩𝑠𝑠 d𝛼 +
𝑡𝑝∫

0

[
¤𝛼2(𝑡)𝑓 (𝛼)

]
d𝑡 (374)

=
1
2

𝛼𝑓∫
𝛼0

〈
𝑟2

〉
𝑠𝑠
d𝛼 +

𝑡𝑝∫
0

[
¤𝛼2(𝑡)

𝐷1(𝛼3𝜏3`3𝐷 + 3𝜏2(𝐷 + 4𝐷1
3 )`2𝛼2 + 3`𝜏 (𝐷 + 𝐷1)𝛼 + 𝐷 + 𝐷1)

4𝛼3`3𝑘𝐵𝑇 (𝛼`𝜏 + 1)3

]
d𝑡

(375)

=
1
2`

𝛼𝑓∫
𝛼0

1
𝛼

(
𝐷1

(𝜏`𝛼 + 1) + 𝐷
)
d𝛼 +

𝑡𝑝∫
0

[
¤𝛼2(𝑡)

𝐷1(𝛼3𝜏3`3𝐷 + 3𝜏2(𝐷 + 4𝐷1
3 )`2𝛼2 + 3`𝜏 (𝐷 + 𝐷1)𝛼 + 𝐷 + 𝐷1)

4𝛼3`3𝑘𝐵𝑇 (𝛼`𝜏 + 1)3

]
d𝑡

(376)

To sum up, in this sectionwe have illustrated how to use the optimal control framework for an active system
(which we derived in section 6) on a model system consisting of an active Ornstein-Uhlenbeck particle in a
harmonic potential in 1D.We calculated the necessary quantities in the friction coefficient 𝑓 (𝛼), importantly
we showed how to obtain expressions for the correlation functions that enter into 𝑓 (𝛼). We also calculated
the correlation functions numerically in order to check that the analytically derived correlation functions
were indeed correct. Furthermore, we also checked the limiting case of 𝜏 → ∞ to verify that the friction
coefficient in this case reduced to the friction coefficient corresponding to the passive case, as we would
expect. Lastly, having obtained 𝑓 (𝛼) we then obtained an analytical expression for the work. In the next
section we simulate the system and verify whether our analytical expression for the work agrees with the
numerical solution.
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8 Numerical simulation of an active Ornstein-Uhlenbeck particle
in a harmonic potential

We now turn to simulating the active Ornstein-Uhlenbeck particle in a harmonic potential in 1D. As we now
have an analytical expression for the work from (376), we can compare this with the numerically calculated
work. We use the same Euler-Maruyama scheme as in the passive case and discretize the dynamics accord-
ingly. When simulating the system we then use (269) and (271) to numerically calculate 𝛼(𝑡) and obtain the
optimal protocol duration 𝑡𝑝 by choosing an appropriate value of 𝐸.
Using the following parameters for the simulations

active Ornstein-Uhlenbeck particle 𝛼0 𝛼𝑓 𝑑𝑡 ` `1 𝐷 𝐷1 𝜏 𝑁

𝛼-protocol 1 2 0.001 1 1 1 1 2 500, 000

Table 2: Parameter values for the simulation of an active Ornstein-Uhlenbeck particle

we start by calculating 𝑓 (𝛼) which gives

𝑓 (𝛼) = 4𝛼3 + 14𝛼2 + 6𝛼 + 1
2𝛼3(2𝛼 + 1) (377)

The work in (376) then takes the form

⟨𝑊⟩ ≈ 1
2

𝛼𝑓∫
𝛼0

1
𝛼

(
1

(2𝛼 + 1) + 1
)
d𝛼 +

𝑡𝑝∫
0

[
¤𝛼2(𝑡) 4𝛼

3 + 14𝛼2 + 6𝛼 + 1
2𝛼3(2𝛼 + 1)

]
d𝑡 (378)

Using that we already know the solution for 𝛼(𝑡) is given by 𝛼(𝑡) =
64𝑐21

(𝑐1𝑡+𝑐2)6 by virtue of the fact that the
Euler-Lagrange equations take the same form as in the passive case, we get for the work

⟨𝑊⟩ = 0.4377343691 + 0.1494582537
𝑡𝑝

(379)

As the protocol durations are determined through the constant 𝐸 in (271), we partition 𝐸 into 3 appropriate
intervals to get a sufficiently long protocol duration when simulating the system. We then plot the solution
in (379) alongside the numerical solution simulated with the parameters given in Table 2. The results are
presented in the following plot
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Figure 7: Average work for an active particle in a one dimensional harmonic potential. A) Average work vs. protocol duration
for an active Ornstein-Uhlenbeck particle in 1D in a harmonic potential driven by the 𝛼-protocol that changes the strength of
the potential. The inset is zoomed in on the part where the numerical and analytical solutions start to diverge from each other.
Error bars are 1 standard deviation scaled by 1/

√
𝑁 where 𝑁 is the number of simulations. B) Log-log plot of A).

As we can see from the plot, for long protocol durations the numerical and approximated (analytical) so-
lutions converge, as in the passive case. For shorter protocol times with 𝑡𝑝 ∼ 8, the two solutions start to
separate. This is as expected since one of our assumptionswhen deriving the analytical expressionswas slow
driving of the protocols. From this we can also deduce that the dissipated work (the second term in (374))
declines as 1/𝑡𝑝 like the passive case, which ismore interesting and leads to some considerations. In an active
system one would expect that the self-propulsion causes the system to dissipate heat to the environment but
not work, as the self-propulsion is a force that arises from the particle. This implies that when driving the
system with the protocol 𝛼(𝑡), the dissipated work would come primarily from the external protocol and
would thus lead to the same behavior as in the passive case. Considering these physical characteristics of
the system, this result is as expected. In [6] they consider the heat instead of the work and show that the
average heat grows when 𝑡𝑝 → ∞, contrary to the results for the average work we have obtained here. This
is because the system dissipates heat all the time due to the activity of the particle.

In the below plot, we also show the difference between the analytical and numerical solutions, again con-
firming that it is around 𝑡𝑝 ∼ (5, 10) that the approximation holds.
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Figure 8: The difference between the numerical and analytical solutions of the average work vs. protocol duration. Table 2
specifies the parameters used.

We have in this section simulated an active system in the form of an active Ornstein-Uhlenbeck particle in
a harmonic potential in 1D and calculated the work associated with driving the protocol 𝛼(𝑡) from 𝛼0 = 1
to 𝛼𝑓 = 2 and then plotted the numerically calculated work vs. the analytical expression for the work. We
found good agreement between the two solutions in the slow-driving regime. In the next section, we discuss
the results we have obtained in this thesis and sketch some perspectives for future work.
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9 Discussion

In this work we have presented frameworks for working with optimal protocols both for passive and active
systems. We have simulated these and compared the theoretical findings with the numerical investigations.
This has led to results on the optimal control of these systems, giving rise to questions and discussions. In
the following wewill address themost prominent of these questions, as well as the challenges and directions
for future research.

The results we have obtained in this work for the passive and active systems is a systematic construction of a
theoretical framework which extends and builds upon the framework developed in [5] and [6] to obtain the
optimal protocols for minimizing the work (dissipated work in the passive case) during the driving of the
system between two protocol values _0 and _𝑓 . In both the active and the passive case, the optimal protocol
is the longest one, ie. 𝑡𝑝 → ∞, also called the quasi-static limit [9, 6]. This is not immediately obvious for
the active case, but for the passive case, this should be expected. The reason why is that, as we know from
equilibrium thermodynamics, driving the system quasi-statically results in an energy change given by the
change in free energy between the initial and final states of the process, whereas a finite-time process will
always incur some dissipation [45, 47].

What is surprising is how robust both results seem to be against varying the protocol duration. We would
expect a large deviation for smaller protocol times as this amounts to driving the protocol fast, but as illus-
trated in Figures 2 and 7, even for protocol durations 𝑡𝑝 ∼ 8− 10, these are still reasonable approximations.
The assumptions we made when deriving the theoretical framework were slow and smooth driving of the
protocols (i.e. that we drive the protocols slowly compared to the characteristic time scale with which the
system relaxes naturally) and, additionally in the passive case, the near-equilibrium requirement of linear
response. It is therefore to be expected that the results diverge for smaller protocol durations (faster driv-
ing), but it is remarkable that the difference between the exact and approximated solutions is not larger
than observed. Indeed, it has been shown recently that optimal protocols obtained by linear response the-
ory perform well outside their expected range of validity [44, 46, 58]. Interestingly, and reported even more
recently, the passive framework has been applied to the exact same active system considered in this work,
showing that protocols obtained from the passive framework surpass the performance of naive protocols
[57]. This again confirms the robustness of the passive framework.

As we have built the active framework with the same tools as the passive framework [5] using response
theory, this robustness carries over to the active framework which displays surprisingly good agreement
between the numerical solution and analytical expression for the work, also for shorter protocol durations
(seen for both the passive and active cases for the same protocol (the strength of the harmonic trap) in Figures
2 and 7).
Theoretically, it should be possible to include higher-order response functions to obtain agreement with
even faster driving, though it would quickly become cumbersome to calculate the response functions an-
alytically. This is one of the downsides of our approach, being constrained to (linear) response theory and
thus sacrificing generality for convenience. In relation to this, the example of a Brownian particle in a har-
monic potential which we used to showcase the optimal protocol framework in the passive case is the only
known analytical solution for this type of optimal control [44]. This and the fact that the analytical expres-
sions for the higher-order response functions become hard to evaluate raises the question of whether future
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work for active systems should focus on numerical solutions, and not analytical solutions.
On the topic of analytical solutions, in hindsight the calculations we did in section 4 could have been simpli-
fied and done in smarter ways by for example using the substitution 𝑦 = 𝑥 − 𝑙 to obtain the new stochastic
variable 𝑦 which would have simplified calculations significantly. Furthermore, the off-diagonal terms in
the correlationmatrix (186) could have been realized to be equal to zero by inspection of equation (168) which
contains an odd product of Gaussian random variables and are thus, by Isserlis’ theorem [55], equal to zero.

The noticeable difference in how much the dissipated work fluctuates in Figures 2 and 3 when driving the
two different protocols 𝑙 and ^, we attribute to the fact that the scale of the dissipated work is different
between the two protocols, partly due to the fact that the protocol duration is different between the two
cases. The 𝑙-protocol does, however, also dissipate a factor of about 10 − 15 times more work than the
^-protocol, for equal protocol durations of length unity (compare 2 with 9 in Appendix A). The difference in
fluctuations is then obscured by this scale and there is thus no difference in the stochastic behavior between
the two systems.

There is a difference in howwell the optimal protocols for ^ and 𝑙 perform, most notably seen by comparing
Figures 2 and 4. The numerical dissipated work for the ^-protocol agrees well with the analytical solution
already around 𝑡𝑝 ∼ 5, whereas the same is true for the 𝑙-protocol beyond 𝑡𝑝 ∼ 10. This indicates that the
robustness depends on the type of protocol and that the slow driving assumption may be relaxed for some
protocols.

The naive protocol we considered in the passive case in 4 showed that the work dissipated using the optimal
protocol is smaller than what it would be for a corresponding system with a protocol driven naively. The
reason that the difference in the dissipated work between the two systems driven by the optimal and naive
protocols is rather small, we attribute to the fact that the functional form of the optimal protocol might be
close to the naive (linear) protocol. For example, the reason we did not showcase the naive protocol for 𝑙
(changing the position of the harmonic potential), is because the naive protocol in this case is also the opti-
mal protocol. It would be interesting for future work to implement a naive protocol for the active system
in order to be able to obtain a benchmark for how well the optimal protocol performs in this case.

The fact that the dissipated work in the active system decays as 1/𝑡𝑝 similarly to the passive system may
at first glance seem counter-intuitive, but the actual active force from 229 never enters into the work ex-
pression in 231. The work dissipated by the system only comes from the external work performed by the
protocol, and the difference between the two results (active vs. passive) in figure 2 and 7 (in which the dis-
sipated work is approximately 2 − 3 times larger in the active case), we attribute to the fact that an active
system is "harder" to drive, as it also contains internal dissipation, i.e. the particle constantly changing di-
rection due to the activity. The parameters of the two simulations are the same. The difference between the
passive and the active case is essentially that the friction coefficients (equations (76) and (243)) are different
between the two systems (as well as the boundary conditions), each yielding different correlation functions
because of different dynamics.

Simulating the systems (both passive and active), is a computationally heavy task and the corresponding
code takes a considerable time to run if run sequentially and for large ensembles. If given more time, we
would like to have run the simulations for even larger ensembles in order to obtain larger statistics and
thus smoother curves for the results. We appreciate that further work would benefit from optimizing the
computations by implementing to a low-level language or to run the code in parallel, making it feasible to
investigate larger systems. In this thesis, we chose to calculate the exact expressions for the work using tra-
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jectories of the Langevin equation and then calculating the work using the definitions in equations (8) - (12).
We could have obtained the exact expression using equation (246) instead, as done by [6] (for the heat instead
of the work). This might be more computionally efficient. Furthermore, obtaining the optimal protocol du-
ration using equation (271) when simulating the active system entails solving the integral numerically. We
used the function quad from the scipy.integrate-library, but other more efficient numerical integration
techniques might be a better choice.

For the passive case, methods exist to obtain fast and strong driving (see [44] for an overview of the regimes
of thermodynamic control), but it is not immediately clear how these would work for active systems. Since
active systems generally exhibit richer behavior than their passive counterparts, such as emergent, collec-
tive effects and non-equilibrium phase transitions (for example motility-induced phase separation [23]), the
assumption of weak driving in the active framework may be a hindrance to describe dynamics near phase-
transitions as it is possible that the protocol is no longer smooth when crossing phase boundaries [6]. Fur-
thermore, phase transitions like motility-induced phase separation happen for large collections of particles
and many active matter systems are modelled hydrodynamically, begging the question of whether an opti-
mal control framework could be extended and generalized to a coarse-grained field theory which would be
an interesting line for future work. Indeed, it is an open research question how to connect thermodynamics
and active field theory, as there is no obvious way to define how coarse-grained active systems exchange en-
ergy with their environment [59]. One approach is presented in [59] by embedding active field theory within
linear irreversible thermodynamics as developed by Onsager and Prigogine since here there is a natural
definition of entropy production and dissipation at the hydrodynamic level [59]. For future work, this may
be one starting point for the development of an optimal control framework for active systems described
by active field theory. Additionally, as the active Ornstein-Uhlenbeck particle model is a highly simplified
model of active matter, packing all the complexities of self-propulsion into a single term 𝑣, it would be in-
teresting for future work to use our framework for other active systems displaying more complex behavior,
such as active Brownian particles or run-and-tumble particles.

For the active framework, in the spirit of previous works [5, 45, 13, 46, 57], we have chosen to optimize the
work. We could have chosen to optimize for example the heat, as done by [6]. Here the functional form of
the dissipation is different due to extra terms coming from the heat which stems from the activity of the
particle.
Furthermore, we have considered overdamped dynamics in this work, but it should be possible to gener-
alize the framework to include inertial effects as the dynamics in 229 would be changed according to (1).
Additionally, we used one protocol 𝛼(𝑡) when deriving the active framework, but it should also be possible
to generalize it to multiple different protocols as we did in the passive case.

The passive framework has so far been used to optimize the dissipation in two model systems, theoreti-
cally in the molecular motor F1-ATPase [60] and experimentally in DNA-hairpin pulling experiments [61].
In both cases, it has been found that the designed protocols obtained from the optimal protocol framework
were much more efficient than naive (undesigned) ones. To our knowledge, no experimental designs have
been conducted yet of the optimal protocols for an active system. Though as suggested by [57], it should
be possible by modifying a DNA-hairpin pulling experiment by letting the hairpin beads experience noise
from electrodes coupled to a resistor and an amplifier.
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10 Conclusion

To conclude, we have developed a robust, predictive framework for obtaining the optimal protocols for the
work for active systems. We have applied this to a model system, an active Ornstein-Uhlenbeck particle in
one dimension, by first calculating the friction coefficient, the response function and the associated correla-
tion functions and then comparing the work following a protocol obtained from the analytical calculations
with the work obtained from numerical simulations, following the same protocol. The two solutions dis-
play a surprising level of agreement over a large interval of protocol durations despite the assumptions of
slow and weak driving of the protocols. Furthermore, we have also built an optimal control framework
in the case of a passive Brownian particle, which was originally presented in Sivak and Crooks [5]. This
then served as the base and inspiration for creating an optimal control framework for active systems. In the
passive case, we calculated the relevant correlation functions, associated friction coefficients and from these
the optimal protocols. We then compared the analytically obtained expressions for the dissipated workwith
numerical simulations, obtaining results in agreement with the literature [5, 46, 10]. We have thus bridged
the frameworks presented in [5] and [6] and extended the framework presented in [6] to be able to describe
the work alongside the heat, suggesting the possibility for a unifying theoretical framework for the optimal
control of passive and active systems. Lastly, we have also sketched perspectives and directions for future
research, suggesting further investigations into the possiblities of developing an optimal control framework
for active matter systems described by active field theory.
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A Additional plots

Figure 9: Passive Brownian particle in a one dimensional harmonic potential driven by the optimal 𝑙-protocol from 𝑙0 = 0 to
𝑙𝑓 = 1. A) Comparison of the numerical and analytical solution of the average dissipated work B) Log-scale of A).
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