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Abstract

This thesis is part of a larger project which aims to analyse data from the
ATLAS experiment at the Large Hadron Collider, in order to calculate R(K∗0)
for the B0 → K∗0ll decay, in order to find violations of the Lepton Universality
predicted by the Standard Model. The work in the thesis, which deals with the
case were ll is an electron-positron pair, focuses on separating signal events (the
ones corresponding to the decay in question) from background events (all the other
interactions happening in the ATLAS detector), obtained from both Monte Carlo
(MC) simulations and experimental results from the ATLAS detector, in order
to help obtain the proper values for the calculation of R(K∗0). This was done
by using the data to train a Gradient Boosted Decision Tree, a type of machine
learning algorithm, which was then applied to the Monte Carlo and ATLAS data
in order to test its ability to accept signal events and reject background ones. The
resulting selection was able to effectively separate signal from background, albeit
with some fluctuations in the efficiency of background rejection.

The B0 and ee mass distributions for the signal events were also fitted to gaus-
sian and crystal-ball curves in order to better understand their expected shape,
which can also help separate them from the background. We were able to suc-
cessfully fit them to a curve formed by the sum of a gaussian and a crystal-ball
function. Finally, the different sources of systematic uncertainty for the results
were considered.

Hopefully, the work done here will complement work already done in the LHCb
experiment [6][54][55][56], in order to provide solid evidence for violations of Lepton
Universality, and the presence of Physics beyond the Standard Model.
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Introduction

The Standard Model (SM) is one of the most important theories in Physics, as it
explains the fundamental particles that make up the matter and carry (most of) the
forces present in our Universe. The existence of all the funndamental particles predicted
by it has been experimentally confirmed since 2012. That being said, the theory fails to
explain some important aspects of our Universe, such as the nature of dark matter, or
how gravity works (gravity is the only fundamental force not included in the Standard
Model). Physicists have therefore tried to study the so-called ”New Physics” (NP),
which is Physics that goes beyond the Standard Model, tackling and explaining effects
and findings that cannot be explained by the SM. One of the most important ways of
experimentally studying Particle Physics theories, including the SM and NP, is through
particle colliders, of which the Large Hadron Collider (LHC) is the largest. Some of the
main detectors/experiments at the LHC include ATLAS (”A Toroidal LHC ApparatuS”),
CMS (”Compact Muon Solenoid”) and the LHCb (”Large Hadron Collider beauty”)
experiment.

This thesis is part of a larger project within ATLAS which aims to find evidence of
NP in the B0 → K∗0ll decay, where ”l” refers to a lepton (for example, and electron or
a muon). A property of the SM called Lepton Universality (LU) predicts that the decay
rates for B0 → K∗0ll should be the same when l is a muon or an electron, and the ratio
between them, called RK∗0 , is predicted by the SM to be 1, and deviations from this value
can indicate the existence of NP processes or particles in the decay. LHCb has already
obtained values of RK∗0 quite smaller than 1 [54], and if an ATLAS team manages to
itself obtain deviations in the same direction, the results will be significant, since these
are two independent experiments obtaining similar results.

The idea is then to analyse measurements from the ATLAS detector to study the
relevant decays. But since most of the interactions happening in ATLAS are not relevant
to us, we must find ways of separating these background interactions from the signal
ones. We are thus developing machine learning (ML) algorithms that can perform this
separation, and finding other ways of analysing and understanding the different interac-
tions. The work in this thesis involves using a ML algorithm called a Gradient Boosted
Decision Tree (GBDT), and also analysing and fitting the curves of mass distributions of
signal interactions, in order to be able to better identify and separate them. The focus
will be on the case where the leptons in the decay are electrons (the muon case is being
studied by other people within the larger project I’m a part of), and we will use both real
data from ATLAS and simulations of ATLAS decays and their measurements, in order
to develop the relevant algorithms.

The first 3 chapters of the thesis introduce concepts and information relevant to the
results and how they were obtained. The first chapter explains the SM, its particles and
limitations , the need for NP, and the basics of B-Physics (field of Physics that studies B
hadrons, which contain at least one bottom quark), which includes the B0 → K∗0ll decay.
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Chapter 2 presents the LHC and the ATLAS detector, including all its components, and
also its trigger systems and the problems involved with the identification, isolation and
reconstruction of electrons in the detector. Chapter 3 describes ML and GBDT, and
explains the process of developing an ML algorithm.

Chapter 4 contains the actual results of our analysis. It showcases the data (both
real and simulated) chosen for the algorithm, the result of the pre-selection imposed on
this data, the training and results of the GBDT, and the fitting of the distribution of
the B∗0 and di-electron pair masses. Finally, a study of possible sources of systematic
uncertainty in our results is carried out, which does not include measurements of our
own for these uncertainties, but references some measurementss from other experiments,
alongside estimates on how ATLAS results might compare to these.
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Chapter 1

Theory

1.1 The Standard Model of Particle Physics

The Standard Model (SM) is arguably the most important model in Particle Physics,
with numerous success stories since its introduction in the early 1970s [19]. These include
the prediction of the existence of the W and Z particles (experimentally observed in 1983
at CERN [31]), the bottom and top quarks (observed at Fermilab in 1977 [23] and 1995
[51] [53], respectively), the tau neutrino (observed at Fermilab in the year 2000 [24])
and the gluons (observed in 1978-1979 at DESY [43] [45]). Finally, the Higgs boson was
found in 2012 at CERN by both the ATLAS [47] and CMS [52] experiments, and with
this discovery, all the building blocks of the SM have been experimentally found [37].

a Elementary particles: fermions and bosons

The basic components of the Standard Model are found in the image below:

Figure 1.1: Elementary Particles of the Standard Model [36]

As we see in figure 1.1, the elementary particles can be divided in two major types:
fermions and bosons.
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. Fermions are the building blocks of matter. They have half-integer spin (specifically
1/2 for all the ones we know of) and follow the Pauli Exclusion Principle (meaning
that multiple identical fermions cannot be in the same quantum state [41, p. 264]), which
leads to them following Fermi-Dirac statistics (hence the name) [39, p. 205]. The fermions
can be divided into quarks, which interact via the strong force, and leptons, which do
not. Additionally, they can be divided into three generations. The particles in the first
generation are less massive and more stable than ones in generation II and III, and due
to this most of the matter we encounter in our daily life is made up of fermions from
generation I [19](atoms, the basic building blocks of everyday matter, are made up of
electrons, neutrons and protons, and these last two are made up of trios of up and down
quarks). While the figure only showcases 12 types of fermions (the term ”flavour” is
generally used for these types, so we say there are 6 flavours of both leptons and quarks),
there are actually 24, since every particle has a corresponding antiparticle with the same
mass and opposite charge (e.g. the positron, which is the positively charged antiparticle
of the electron).
Bosons have integer spin, are not beholden to the Pauli Exclusion principle (so multiple
identical particles can occupy the same state) and consequently follow Bose-Einstein
statistics [39, p. 205] (hence, once again, the name). The gauge bosons have spin 1
(making them vector bosons) and are force-carriers for three of the fundamental forces:
electromagnetism (carried by the photon), the strong nuclear force (carried by the gluon)
and the weak nuclear force (carried by the W± and Z bosons)[19]. The Higgs boson
has spin 0 (making it a scalar boson), and is the visible quantum manifestation of the
Higgs field, which interacts with all elementary particles to give them mass through the
Brout-Englert-Higgs mechanism. [17]

b Hadrons: baryons and mesons

The particles mentioned until now were the elementary particles of the Standard
Model (i.e. the most fundamental ones, not made up of any smaller components-at
least not according to the SM), but these can combine to form more complex composite
particles. Notably, quarks combine into bound states called hadrons, which can be divided
into two main types, : baryons and mesons. The quarks are connected through the strong
nuclear force (mediated by the gluon).[38]

The quantum field theory describing how quarks interact through the strong force is
called quantum chromodynamics (QCD). According to this theory, each quark can be
assigned a property called ”colour” (note that this term is used for the sake of analogy,
and isn’t physically connected to what we normally understand as being the colour of an
object, which depends on the frequency of the light reflected or emitted by it). Quarks can
then be ”red”, ”green” or ”blue”, and antiquarks are ”antired”, ”antigreen” or ”antiblue”.
Colour confinement tells us that free particles united by the strong force (baryons) must
be ”white” or ”colourless”, meaning that they must either be composed of three red green
and blue quarks (baryons) or a quark and anti-quark pair with complementing colours
(mesons) (n.b. technically baryons and mesons can contain more particles than indicated
here, needing only to have an odd or even amount of quarks/antiquarks, respectively,
but most hadrons will only have the 2 or 3 quarks). Due to the rules of spin addition,
baryons are fermions, while mesons are bosons [38].

The two most well known hadrons are the proton (quark composition: uud) and
the neutron (quark composition: udd), both baryons that make up the atomic nucleus.
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Mesons aren’t something most come across in their daily life, but some of them are very
relevant to this project, and will be discussed later on in section 1.2. [38]

Hadrons have antiparticles, just like their elementary constituents. The quark com-
position of an antihadron is the corresponding composition of its hadron but with the
quarks replaced with their respective antiquarks, and vice-versa. For example, the an-
tiproton’s quark composition is uud (n.b. in this context, a line over the symbol of a
quark indicates its repective antiquark, so e.g. u is the up antiquark). It should be noted
that some mesons, such as J/ψ (quark composition: cc) can be their own antiparticle.

c Limitations of the Standard Model and New Physics

Despite the successes of the SM, it is not perfect, and has issues that indicate it is
not the final theory for Particle Physics. There are quite a few unexplained phenomena
that the SM does not account for. These include the fact that we find more matter than
antimatter in our Universe (when the SM predicted they should have been generated in
equal amounts), the existence and unexplained nature of dark matter and energy, the
fact that neutrinos appear to have mass, among others. [19]

One of the most prominent features missing from the SM is a Quantum Field Theory
for gravity. While we currently have quantum theories for the other three fundamental
forces (electromagnetism and the weak and strong nuclear forces), such as Quantum Elec-
trodynamics (QED) for electromagnetism and QCD for the strong force, and have found
the corresponding gauge bosons for these interactions, our best theory with experimental
evidence for the gravitational force is Einstein’s General Theory of Relativity, which is not
quantum in nature. Particle Physics was developped through the combination of Special
Relativity and Quantum Mechanics, but the fusion of General Relativity and Quantum
Mechanics has still not been completely achieved. Still, theoretical predictions have been
made, and we even have a hypothetical gauge boson for gravity, the graviton, which we
expect to have spin 2 (tensor boson). [39, p. 403-407] But no experimental evidence for
such a particle has been found yet.

Because of these issues, physicists have worked on new theories that go beyond the
Standard Model and try to make up for its shortcomings. These theories and hypotheses
are collectively referred to as New Physics (NP), or ”Physics Beyond the Standard Model”
(BSM) and have attracted a lot of projects and experiments (including the one my work
is tied to).

1.2 B-Physics

a B mesons

B mesons are a small family of mesons containing a bottom antiquark. The other
particle must either be a strange (B0

s ), charm (B+
c ), up (B+) or down(B0/Bd/B

0
d) quark

(n.b. the other particle being a top quark is thought impossible, and if its a bottom quark
the meson is called bottomonium and is not considered a B meson). There are of course
also antiparticles for each of these with a bottom quark and corresponding antiquarks for
each type.
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b The B0 → K∗0ll decay

The B0 meson has a mean life of only 1.5 ps (1 ps=10−12 s)[38], meaning that it must
quickly decay to other particles. It has over 500 channels of decay, but the one relevant
to this thesis is the B0 → K∗0ll decay (n.b. K∗0 here refers specifically to the K∗(892)0

variation of the kaon, and we usee ll to indicate l+l−, i.e. an lepton-antilepton pair,
particularly muons and electrons). The K∗0 will go on to decay into a K+π− pair. As
always, there is a corresponding antiparticle decay B0 → K∗0ll, where K∗0 → K−π+.

If this decay happens directly , it is referred to as a non-resonant decay, but it can
also happen through intermediary particles, which call a resonant decay. It is of specific
interest to us cases where the intermediate particles go on to decay into the leptons. One
example is the J/ψ resonance: B0 → K∗0J/ψ where J/ψ → ll. Other possible resonances
are through the D0, ψ(2s), η, ω, and ϕ mesons, among others.

The table below lists some of the mesons most relevant to this thesis:

Meson
Quark
composition

Mass (MeV/c2) Antiparticle
Mean
lifetime (ps)

B0 db 5280 B
0
(bd) 1.519

B+ ub 5279 B−(bu) 1.638

K∗0 ds 892 K
∗0
(sd) Negligible

K+ us 494 K−(su) 1.238 · 104

π+ ud 140 π−(du) 2.603 · 104

π0 ≈ uu−dd
2

135 Itself Negligible

η ≈ uu+dd−2ss√
2

548 Itself Negligible

J/ψ cc 3097 Itself Negligible

ψ(2S) cc 3686 Itself Negligible

ϕ ss(almost purely) 1019 Itself Negligible

Table 1: List of relevant mesons and their basic properties.[38]

c Some useful concepts: Feynman Diagrams and Branching Ra-
tios

Feynman Diagrams are some of the most important tools in Particle Physics. On a
surface level they may just look like basic representations of interactions between particles,
but they actually represent mathematical terms that can be summed together to predict
results. A certain interaction, with given inputs and outcomes, can be represented by
different diagrams, and by summing all the diagrams together (there are generally infinite
diagrams in theory, but we can limit ourselves to the leading order contributions, as is
customary in all of Physics) we can obtain the complex amplitude A for this interaction.
The square of the absolute value of this amplitude corresponds to the probability of the
interaction occurring, and this in turn can be used to calculate various quantities such
as cross-sections or, more relevant to us, decay rates (Γ).

Branching ratios (B), also known as branching fractions, indicate what fraction of the
decays of a certain particle correspond to a specific decay. For example the branching
ratio of the B0 → J/ψK∗0 decay is around 1.27 ·10−3, meaning that approximately 0.127
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% of decays of the B0 mesons will be into J/ψK∗0[38]. The branching ratio can also be
defined as the ratio of the decay rate of a specific decay mode to the total decay rate of
the particle (Γi/Γ), which is mathematically equivalent to the previous definition.

d Flavour Changing Neutral Currents, Lepton Flavour Univer-
sality and New Physics

The B0 → K∗0ll decay is an example of a flavour-changing neutral current (FCNC),
which is a process where a lepton changes its flavour but not its charge. In this particular
case, the bottom antiquark of the neutral B meson turns into the strange antiquark of
the neutral Kaon, and both antiparticles have the charge +1

3
. According to the SM, the

Feynman diagrams of FCNCs must contain a loop, i.e. they cannot be tree diagrams. But
in NP we can consider the possibility of tree diagrams for FCNCs, involving hypothetical
new particles like leptoquarks or unknown gauge bosons. The figure below exemplifies
leading-order contributions from both SM and NP diagrams:

Figure 1.2: Feynman Diagrams for the B0 → K∗0ll decay. The top ones are allowed by the
SM and contain loops with electroweak couplings (i.e. couplings involving electromagnetic
and/or weak nuclear forces and gauge bosons), more especifically a penguin loop for the
left and a box loop for the right. The bottom ones are tree-level diagrams mediated by
hypothetical NP particles, like a new gauge boson we refer to as Z ′ (left) or a leptoquark
we refer to as LQ (right) [54]

We can therefore separate the contributions to the total amplitude of this decay into
2: the contributions from processes compliant with the SM, whose sum we call ASM ,
and the ones only allowed in Physics beyond the SM, which add up to ABSM . Thus,
according to the SM, the probability of the decay will be given by |ASM |2, while in NP
it expands to |ASM +ABSM |2.

Changes in which Feynman diagrams contribute to the amplitude and probability of
the decay can lead to observable differences in the way the decay occurs, and we can try
to measure these. One method is to do an angular analysis of the decay, defining and
measuring various angular parameters and comparing these to the SM predictions, to see
if there are significant differences. This method is not relevant to this thesis.

Another method involves a property from the SM called Lepton Universality (LU).
According to LU, the interactions between electroweak gauge bosons (W±,Z0 and γ) and
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leptons must be independent of the flavour of the latter. Thus the upper diagrams in
figure 1.2 must contribute equally to the amplitude regardless of whether l is an electron
or a muon (we concentrate on these 2 lepton flavours because the heavy tau lepton is
harder to measure and calculate with, and neutrinos are very hard to detect at all). Since
the amplitudes will directly affect decay rates (Γ), as mentioned, in the SM we expect
the following ratio to be equal to 1:

RH =

∫ dΓ(B0→Hµ+µ−)
dq2

dq2∫ dΓ(B0→He+e−)
dq2

dq2
(1.1)

Here H can represent any hadron with an s quark, particularly K∗0 [54]. We integrate
the decay rate over every possible value of the square of the dilepton invariant mass, from
q2min = 4m2

l to q2max = (mB0 − mH)
2, assuming we’re working in the rest frame of the

B meson. Moving onto the specific H = K∗0 case, this formula can also be represented
in the following form (keep again in mind that branching rations can be represented as
ratios between decay rates):

RK∗0 =
B(B0 → K∗0µ+µ−)

B(B0 → K∗0e+e−)
(1.2)

However, we will calibrate both of these non-resonant channels by dividing their
branching ratio by the branching ratio of the corresponding J/ψ resonant channel. By do-
ing so, we can remove many systematic uncertainties that the resonant and non-resonant
channels have in common:

RK∗0 =
B(B0 → K∗0µ+µ−)

B(B0 → K∗0e+e−)
· B(B

0 → K∗0J/ψ(→ e+e−))

B(B0 → K∗0J/ψ(→ µ+µ−))
(1.3)

In order for the two versions of the ratio be equal, we must have rJ/ψ = B(B0→K∗0J/ψ(→µ+µ−))
B(B0→K∗0J/ψ(→e+e−))

=

1. This ratio was measured in [54] to be 1.043 ± 0.006(stat.) ± 0.045(syst.), which is in
good agreement with unity once we consider the statistical and systematic uncertainties.

The deviation of RK∗0 from unity is therefore a good indicator of violation of LU, and
the presence of NP processes.

Now, it can be asked why we decided to use the J/ψ resonance instead of some of
the others already mentioned. Well, beside knowing that rJ/ψ has been measured to be
close to unity, which would minimize further systematic uncertainties brought forth by
the calibration, there is also the fact that the J/ψ resonance has the highest branching
ratio of them all, and also its decay to leptons also has higher branching ratio than the
others, and these higher branching rations reduce statistical error.

e Current status of measurements

Various experiments for detecting NP and LU violations in B meson decays have al-
ready been carried out at CERN. Angular analyses of theB0 → K∗0µ+µ− decay have been
done by LHCb [6] and ATLAS [4] back in 2016 and 2018, respectively. Meanwhile, in 2017
LHCb calculated RK∗0 to be 0.66+0.11

−0.07(stat)± 0.03(syst), for 0.045 < q2 < 1.1 GeV 2/c4,
and 0.69+0.11

−0.07(stat)±0.05(syst), for 1.1 < q2 < 6 GeV 2/c4, which corresponds to a differ-
ence of 2.1-2.3 and 2.4-2.5 standard deviations from the expected SM value, respectively
[54].
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LU violations have also been studied in other B meson decays. In March 2021, for the
B+ → K+ll decay, the LHCb experiment calculatedRK+ to be 0.846+0.042

−0.039(stat)
+0.013
−0.012(syst),

for 1.1 < q2 < 6 GeV 2/c4, which corresponds to a difference of 3.1 standard deviations
from the expected SM value[55]. In October of the same year, for the B0 → K0

Sll and
B+ → K∗+ll decays, LHCb calculated RK0

S
= 0.66+0.20

−0.14(stat)
+0.02
−0.04(syst), for 1.1 < q2 <

6 GeV 2/c4 and RK∗+
S

= 0.70+0.18
−0.13(stat)

+0.03
−0.04(syst), for 0.6 < q2 < 6 GeV 2/c4, corre-

sponding to a separation of 1.5 and 1.4 standard deviations from the SM prediction,
respectively[56].

Lepton Universality tests have been done in other facilities outside of the LHC and
CERN, such as BaBar at SLAC, in the USA, and Belle at Kek, in Japan. Tests have also
been done with decays of other particles than B mesons, such as e.g. Z and W bosons,
pions, kaons, D mesons, and even decays of the τ lepton into neutrinos, electrons and
muons. [16]
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Chapter 2

The ATLAS experiment

2.1 The LHC

The Large Hadron Collider (LHC), is a particle accelerator located between the border
of France and Switzerland, near Geneva, developed by the European Organization for
Nuclear Research (CERN). It began operating on the 10th of September 2008, but due
to technical issues had to stop 9 days later. It eventually was repaired and particle beams
began circulation in November 2009, leading to the first collisions of protons. [44]

a Structure and functioning of the CERN Accelerator Complex
and the LHC

The LHC is part of a larger system called the CERN accelerator complex, whose
structure is visualized in the image below:

Figure 2.1: The CERN Accelerator Complex [34]
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This complex accelerates the hadrons using various different accelerators, which grad-
ually give them more and more energy. Protons (technically hydrogen anyons, protons
with two electrons), for example, are accelerated in the Linear Accelerator 4 (Linac4),
the PS Booster (upon entering this the electrons are removed, leaving only protons),
the Proton Synchroton (PS) and the Super Proton Synchroton (SPS), after which they
are finally inserted into the LHC in two beam pipes, and both beams are accelerated to
speeds close to the speed of light, and acquire a maximum energy of 6.5 TeV (this value
was increased to 6.8 TeV in Run 3 of the LHC, leading to a total energy of 13.6 TeV).
The complex can also accelerate lead ions instead of protons, using the Linac3 and the
LEIR(Low Energy Ion Ring), before sending the ions into the PS. [18]

Shaped like a ring, the LHC has a circumference of 27 kilometers. It uses supercon-
ducting electromagnets (kept at a temperature of -271.3ºC, through the use of e.g. liquid
helium. Their superconducting state allows us to neutralize resistivity and loss of energy
through heat) to guide the two beams of high-energy hadrons around the structure in
opposite directions, until their eventual collision. Each proton beam is divided into 2808
bunches which each contain 11 · 1011 protons at start, giving us a peak design luminosity
(number of particles per second per unit of area) of 1034 ·cm−2 ·s−1. An ultrahigh vacuum
is kept inside the two beam pipes (the pressure inside is of the order of 10−10 to 10−11

mbar) the hadrons travel in. The particles are accelerated here using 16 radiofrequency
(RF) cavities, who operate in a superconducting state and use electric pulses (created by
klystrons, tubes with electrons inside) to increase the particles’ energy from 450 GeV to
their final 6.5 TeV, a process which takes around 20 minutes. At this energy, the particles
complete 11 245 revolutions per second. The LHC uses almost 9600 magnets to guide the
beams, including 1232 beam-bending dipole magnets and 392 beam-focusing magnets.

There are 4 main LHC experiments, located at 4 possible collision points for the
hadrons: ATLAS (”A Toroidal LHC ApparatuS”), CMS (”Compact Muon Solenoid”),
ALICE (”A Large Ion Collider Experiment”) and the LHCb (”Large Hadron Collider
beauty”) experiment. There are also 3 smaller experiments installed close to one of
the main ones: the LHCf (”Large Hadron Collider forward”) experiment, the TOTEM
(”TOTal Elastic and diffractive cross section Measurement”) experiment, and MoEDAL
(”Monopole and Exotics Detector at the LHC”). These experiments can contain multiple
detectors, for the purpose of detecting and analyzing the particles resulting from the
collisions. [18]

2.2 The ATLAS detector

This thesis was written as part of the ATLAS collaboration, so we will be focusing on
this experiment/detector.

Located 100 m underground, ATLAS is a 44 meters long and 25 meters wide cylindrical
detector weighing 7000 tonnes. These dimensions make it the detector at the LHC with
the largest volume. More than a billion collisions occurs in here every second, though
only a millionth of these are further studied. [46] [10]

Below we see a labelled diagram of the detector and its components.
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Figure 2.2: The ATLAS detector [46]

a Coordinate system

Both ATLAS and CMS employ a coordinate system with an origin at the collision/in-
teraction point of the hadrons. The z axis has the direction of the beam, the x-axis
points at the center of the collider, and the y-axis points upward. The x-y plane is of
course transverse to the beam, and this is where the transverse momentum pT and the
radial distance r of the different particles are defined. We can define the directions of
the particles using the polar angle θ, measured from the positive z axis, and the azimutal
angle ϕ, measured in the transverse plane from the positive z-axis. This allows us to
define the transverse energy ET = E · sin θ, where E is the total energy of the particles.

From the polar angle, we define the pseudorapidity as η = −ln [tan(θ/2)], whose
absolute value can vary between 0(if the particle is moving perpendicular to the beam)
and infinity (for particles moving along the beam) (see fig. 2.3 ). The advantage of using
this quantity over θ is the fact that differences in pseudorapidity are Lorentz invariant
under boosts along the beam axis, which is useful when dealing with beams of particles
moving very close to the speed of light. Angular distances between particles are generally
defined in the (η,ϕ) plane as ∆R =

√
∆η2 +∆ϕ2 (this quantity will of course also be

Lorentz invariant under boosts, as it depends on ∆η, not η).
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Figure 2.3: Values of the pseudorapidity for different values of the polar angle [27]

b The different ATLAS detector systems

ATLAS contains multiple detector systems that contribute to the detection and mea-
surement of the properties of particles resulting from the hadron collisions. They are
generally cylindrically shaped and enclose each other like layers in an onion [46].

The inner detector

Figure 2.4: The ATLAS inner detector [46]

The ATLAS Inner Detector (ID) is the first detector system the resulting particles of
the p-p collisions encounter, and its main function is tracking these particles and mea-
suring their momentum, direction and charge. As seen in fig. 2.4, it contains three types
of detectors: Pixel detectors, Semiconductor Trackers (SCT) and Transition Radiation
Trackers (TRT).

The pixel detectors contain over 92 million pixels in total, which are divided between
the 4 barrel layers around the beam (note: the innermost layer, the Insertable B-layer,
was inserted in 2014 and is made up of 14 staves), containing 1736 sensor modules, and 3
disks at each end-cap, containing 288 modules. When a particle passes through the pixel
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detectors, they trigger signals that can be used to measure the particles momentum and
determine its origin. The pixel detectors are located in the radial interval of 33-150 mm.

Around the pixel detector is the SCT, which reconstructs the tracks of the charged
particles using silicon sensors, with 4088 modules containing over 6 million ”micro-strips”
of silicon sensors. These are contained in 4 barrel layers and 9 discs at each end-cap. The
SCT is contained in the 299–560 mm radial interval.

Around the SCT is the TRT, which is made up of 300000 ”straws”, thin-walled drift
tubes with a diameter of 4 mm, which contain a goldplated tungsten wire inside of them,
and which are filled with a mixture of gases. The wire is kept at high voltage, thus creating
an electric field around t. When passing by, the particles ionise the gasses, and the free
electrons move to the wires under the influence of their fields, thus creating signals that
can be used to reconstruct their tracks. Fibres (in the barrel) and foils (in the endcaps) of
a polymer material fill out the space between the straws, and when a relativistic particle
traverses the boundary between the different materials it emits transiition radiation,
which can be used to identify it (this effect depends only on γ = E

m
is therefore strongest

for lower mass particles like the electrons and weaker for e.g. hadrons, if the particles have
similar energy. This allows for particle discrimination by imposing probability thresholds)
[57]. 50000 of the straws are located in the barrel region, and the rest at the end-caps.
The TRT is contained in the 563–1066 mm radial interval.

Around the ID is a solenoid electromagnet, which creates a magnetic field with the
direction of the field and an intensity of 2T, in which the previously mentioned sensors
are immersed. Liquid argon cryostats are used for cooling the ID, in order to minimize
thermal noise.[46] [11] Figure 2.5 is a diagram showcasing a cross-section of the entire ID
in the r-z plane:

Figure 2.5: Diagram of the ID in the r-z plane, including a magnified view of the pixel
detector. The new Insertable B-layer is shown in orange [49]
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The calorimeters

Figure 2.6: The ATLAS calorimetry system [46]

After interacting with the inner detector, the particles encounter the calorimeters.
These will stop most of the particles (notable expceptions being muons and neutrinos)
and absorb their energy, which can then be measured. (At ATLAS, the calorimeters can
also be divided into two parts, based on their structure and composition: the Liquid
Argon (LAr) Calorimeter and the Tile Hadronic Calorimeter). For electrons and pho-
tons, electromagnetic (EM) calorimeters measure their energy through their interactions
with matter, while hadrons’ energy is measured by hadronic calorimeters through their
interaction with the nuclei of atoms.

Surrounding the ID are the LAr calorimeters, which are made up of metal layers
with liquid Argon (kept at -184ºC) between them. Through absorption by the metal,
particles turn into a shower of particles (see fig. 2.7) which ionise the Argon, leading to
the creation of electrical currents which can be used to calculate the energy of the original
particles. The electromagnetic barrel part has a length of 6.4 m, while the endcaps are
disks with a radius of 2.09 m, and can be either electromagnetic or hadronic. Imbedded
in the endcaps is the forward calorimeter, which is composed of three modules (first one
is electromagnetic, the other two hadronic) with a radius of 0.455 m.

Surrounding the LAr Calorimeters is the Tile Calorimeter, whose purpose is to absorb
and measure the remaining energy of the hadrons, since these are not fully absorbed by
the LAr Hadronic Calorimeters. They contain steel layers, which turn incident particles
into particle showers that interact with the ca. 420000 plastic scintillator tiles, causing
these to emit photons which generate electrical currents that can once again be used
to calculate the particle’s energy. The Tile Calorimeter is composed 3 barrels with 64
wedges each: a center barrel with 5.6 m long wedges, and two extended barrels with 2.6
m long wedges. [46] [8]
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Figure 2.7: Particle shower created by an electron. When a high energy electron (or
positron) interacts with the material in the calorimeter, it is decelerated and loses energy
by emitting photons (bremsstrahlung). These photons can then turn into an electron-
positron pair, and the process continues, until all the original electron’s energy has been
deposited in the calorimeter [42]

The muon spectrometer

Figure 2.8: The ATLAS muon spectrometer [46]

The muons leaving the calorimeter are identified by the muon spectrometer, which
also measures their momentum, based on the bending of their tracks under the influence
of a magnetic field created by a toroid. The muon system contains 4000 chambers and
employs 4 different technologies. The triggering and measurement of the 2nd coordinate
(direction perpendicular to the plane where the bending occurs) is done by Resistive
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Plate Chambers at the barrel region and Thin Gap Chambers at the endcap. Precision
measurements of the curves of tracks is done by the Monitored Drift Tubes, while the
Cathode Strip Chambers carry out precision measurements at the innermost plane of the
spectrometer (see fig. 2.8). [46] [9]

c The trigger system

As mentioned, ATLAS experiences more than a billion collisions every single second.
Analysing all of these would be extremely taxing, even for computers (the data obtained
from all these collision corresponds to more than 1 PB every second). The purpose of
the Trigger and Data Acquisition (TDAQ) system is selecting the fraction of these events
which might actually be interesting to study and analyse. The structure of the TDAQ is
visualized in the diagram below, which will be (partially) explained afterwards:

Figure 2.9: The ATLAS TDAQ system during Run 2 of the LHC. The image was slightly
edited for this thesis, its source being [48]

There are two levels for the trigger system. The first level (L1) is hardware based, and
decides whether to accept an event based on information obtained from the calorimeters
and muon spectrometer. It takes less than 2.5 µs after an event’s occurrence for it to
be rejected or accepted by L1. When an event is accepted, the information from the
detector’s front-end (FE) electronics related to the event is transferred to its read-out
drivers (ROD) and then buffered in the Read-Out System (ROS). Up to 100000 events
can be accepted at L1 and transferred to the second level every second.

The second level, known as the High-Level trigger (HLT) is software based. With
its processing power of about 40000 CPU cores, it analyses the events in 200 µs. Its
triggering algorithms are based on Region of Interest (RoI) information received from L1.
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Around 1000 events per second are approved by the HLT, and these are subsequentaly
transferred to storage and then to the CERN TIER-0 facility where they can be analysed
and reconstructed offline later. [48] [12]

d Electron particle identification

A big issue for the analysis is the identification, isolation and reconstruction of elec-
trons (n.b. electron can mean either electron or positron in this context). Electrons are
detected through their tracks in the ID and the energy they deposit in the calorimeters.
However, given the low energy of electrons in this analysis, the signal is not very striking
and the background is enormous, and these methods bring with them the risk of misiden-
tifying the particles, and sometimes it can be hard to separate the electrons resulting
from the decays we are studying from e.g. misidentified hadrons, or even electrons from
different reactions we are not interested in.

When interacting with the material in the detector, an electron might lose energy
(causing it to slow down) through the emission of radiation known as bremstrahlung
(”braking radiation”), in the form of photons. These photons might give origin to an
electron-positron pair, and these particles may in turn emit more radiation, continuing
the process. Thus, a single electron resulting from the decay can turn into an entire
electromagnetic cluster of photons and electrons. Reconstruction of the original electron
is done by matching tracks left by the electrons/positrons in the ID and clusters of energy
left by the particles in the calorimeters. Error might happen here if tracks are missed or
wrongfully added to an electron’s reconstruction.

Identification/selection of prompt electrons is done using a likelihood function:

LS(B)(x) =
n∏
i=1

PS(B),i(xi) (2.1)

The n inputs of the likelihood function, saved in the vector x, are values obtained from
the calorimeters and tracking systems. The likelihood can be calculated for signal (S)
or background (B) electrons, using their respective probability density functions for each
variable, Pi. From the likelihood, we can calculate a discriminant for each candidate:

d′L = −τ−1ln(d−2
L − 1), with dL =

LS
LS + LB

(2.2)

Here τ is set at 15. The reason we use the transformed discriminant d′L instead of dL
is because the later has sharp peaks at 0 and 1, making it inconvenient to deal with,
both numerically and in subsequent analysis. Four values of the discriminant are used as
operating points, called VeryLoose, Loose, Medium and Tight, corresponding to tresholds
for acceptance of a candidate. For all of these some amount of background and signal
will always be accepted and rejected, and the tighter the operating point, the higher the
rejection is for both.

Differentiating the signal promp electrons from background candidates can be done
by analyzing the activity in the vicinity of a candidate, e.g. by defining a cone with a
certain angular distance ∆R value around the candidate, and summing transverse energy
(from the calorimeters) or transverse momenta (of tracks in the ID) inside this cone.
Thus, results from the calorimeter and ID are used to quantify the electron isolation.
Once again, requirements on the isolation of the particles can be varied, with different
efficiencies for signal and background rejection.
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Lastly, the identification of the electron charges is done by analysing the curvature of
the reconstructed track in the ID. Sources of misidentification include matching incorrect
tracks to the candidate (remember that multiple tracks can be produced by the same
electron, and there might be other electrons/photons close-by that can cause issues), and
difficulties in determining the curvature of the track of the primary electron, e.g. due to
bad reconstruction, emission of photons or tracks becoming very straight at high energies
or large values of η, which makes it harder to measure their curvature. [13] [14]
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Chapter 3

Introduction to Machine Learning
and LightGBM

Machine learning (ML) models, as implied by their name, allow computers to learn by
themselves how to solve a problem. They do this by first trying out a solution, analyzing
their errors, and adjusting the models in order to minimize these errors and improve.
Two of the main tasks in machine learning are regression, where the model outputs real
numbers (or sequences) based on the data points it uses as input, and classification, where
the output is an integer that indicates a class (e.g. 1 for signal and 0 for background),
based again on the inputs.[25, ch. 1.5] This project is a classification problem, since we
need to determine whether each event is a background or signal event.

3.1 Mathematical definitions

Since we’re trying to develop algorithms for computers, it is useful to mathematically
describe what we’re doing, and define terms such as ”errors”.

We have the data, which will be our input for the model. In our specific case, we have
for each event a collection of n attributes x1, ...xn, which are something like the mean
lifetime of the B meson or the transverse momentum of the electrons, and also a label yT
(T for ”TRUE”) which can be 0 (for background) or 1 (for signal).

The model will assign to each event a label ŷ based on the inputs, i.e. ŷ = f(x1...xn),
where f is a function representing the model. ŷ is an estimate of yT , although it can take
values between 0 and 1.

A loss function is a way of mathematically defining the ”error” of the model. For
regression problems it’s generally the root mean squared of the difference between ŷ and
yT , but for classification problems with the options ”0” and ”1”we can use the binary
cross entropy loss function (logloss), shown below:

Loss = − 1

N

∑
i

yT,i · log(ŷi) + (1− yT,i) · log(1− ŷi) (3.1)

Where N is the total number of events. [20]
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3.2 Gradient boosted decision trees and LightGBM

One of the simplest machine learning models are decision trees (DT). They divide
the events on the data into different nodes depending on the values of the inputs. If
these nodes don’t divide further they are considered ”leaves” and all the events in it are
assigned a classification. The maximum number of decisions an event can go through
before being assigned a leaf is called the depth of the tree. Below we see a hypothetical
decision tree with three leaves and a depth of two:

Figure 3.1: Basic example of a decision tree, created by me at https://app.diagrams.
net

Decision trees by themselves are quite simple and considered weak learners, but can
be improved upon through the use of gradient boosting. While some events might be
clearly within the signal or background groups based on their parameters, others are less
clear and might end up mislabelled. Gradient boosting allows us to develop more trees
where we give more weight to the mislabelled events, allowing us to focus more on them
and their proper separation. Thus we obtain gradient boosted decision tress (GBDT).
By creating more trees with this boosting, the idea is to reduce the loss function (the
gradient in GBDT of the loss function as it decreases). A parameter called the learning
rate (α) determines how fast the learning happens and how quickly the loss function
decreases. A good machine learning algorithm must have a learning rate that is neither
too slow, which would make it inefficient, or too fast, which could cause problems like
missing the minimum of the loss. For each event, the GBDTs vote on how to classify it
through their output.[7]

A good framework for creating GBDTs is LightGBM[30]. Its trees grow in a leaf-wise
manner, meaning the algorithm develops the tree by picking the leaf whose splitting will
maximize the loss difference: [33]
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Figure 3.2: Showcasing of the development of decision trees in LightGBM [32]

3.3 Training, testing and validation sets. Overfitting

and early stopping

After creating the algorithm using our data, it is good to verify how accurate it is. So
we apply the model to the data and see how well the results match. However, it doesn’t
make sense to apply the algorithm to the same data that we used to train the model,
since they will obviously be very correlated and biased. And therefore we divide our data
into three sets: training, validation and testing. The training data, which was 60% of the
total in this project, is the data the algorithm learns from to develop the trees.

As mentioned before, the model can keep creating more trees with the intention of
reducing the loss function. And therefore we can constantly decrease the loss of the
validation set towards 0. However, if we go too far we can start overfitting, where we
create a model that tries to follow too closely the particular set we used for training,
including statistical fluctuations, while not being applicable to the rest of the data. The
purpose of the validation set (we use 20 % of the data for this) is to stop the process
before we enter that zone. So we apply the model created both to the training and
the validation data, and while the training loss will keep on decreasing (although it does
plateau, because it won’t go below zero), the loss of the validation will not only eventually
stop decreasing as we increase the number of trees, but will even start increasing as we
go on. So we stop at the point where the validation set’s reaches its lowest value. This
method is called early stopping.

After we’ve determined the ideal number of trees for our model, we can then test it
on the testing set, which makes up the remaining 20 % of the data. [26] [40]
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Chapter 4

Analysis

4.1 Analysis overview

a The decays: signal and background. Monte Carlo and data

As mentioned in chapter 1, the project aims to study the B0 → K∗0ll decay, with the
objective of calculating RK∗0. My analysis focuses specifically on the electron channel,i.e.
theB0 → K∗0ee decay (once again, electron here can denote either an electron or positron,
and ee means e+e−).

A big problem with the analysis is the large amount of background decays happening
at the same time. Since we can’t observe the decays directly, but only make measurements
in the detector of the properties of products resulting from these decays, it is important
to find ways to differentiate the resulting particles from decays we are studying (signal
decays), from similar resulting particles of other decays (background decays).

Monte Carlo (MC) simulations were used to simulate both the signal and background
decays we wanted to consider. Through these simulations, we can not only simulate the
events themselves, but also the measured properties of the final particles resulting from
the event. When trying to reconstruct an event, there might be multiple ”candidates”
for the final particles, which for the decay we’re studying should be two electrons and a
K+π− pair ( note that since the detectors can’t completely identify the resulting hadrons,
there are many particles that could be mistaken for a K+ or a π−), and an advantage of
simulation is that the signal files include a flag indicating which of the candidates is the
correct one for reconstructing the events.

Aside from the results of the MC simulation, we also used real data from measurements
of the resulting particles from pp collisions, taken in 2018 during Run-2 of the LHC.
The data comes from different periods, and the center-of-mass energy of the collisions
is 13 TeV. An overwhelming amount of the results obtained from the data will be from
background events, especially for masses significantly different from the B0 mass of 5280
MeV, so we can use the candidates from these data events as background as well.

b Selection of event candidates: pre-selection and GBDT

Before plotting the results, all the candidates were subjected to a pre-selection process
whose aim was to remove any candidates that are too different from the expected values
for results of the signal decays, or real results of a decay in general. For this pre-selection
we consider things like angular distance (∆R) between electrons, |η| and pT of electrons
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and tracks, quality of tracks and the masses of the electron pair, the hadron pair and the
reconstructed B meson. Note that this pre-selection was already chosen by the ATLAS
group I’m working with.

The events that pass the pre-selection will then be used to train a Gradient Boosted
Decision Tree (GBDT), specifically one obtained from the Light Gradient Boosting Ma-
chine (LightGBM) framework. This algorithm is quite good at separating background
from signal, and is much faster than the Graph Neural Networks (GNN) used by other
members of the ATLAS group, as the GBDT can be trained with more than 300000 signal
and background events in less than 10 seconds.

Since we are studying and graphing the distribution of the invariant B mass and di-
electron mass of the different events, and we will also observe the effect of the GBDT
selection on these distributions, we want the features fed to the ML algorithm to be
independent from both of these masses, so that the output is also independent. Otherwise,
we risk the algorithm becoming familiar with the shape of these distributions and trying
to replicate it in its selection.

c Fitting

We studied the mass distributions of the signal events further through fitting them to
certain functions.

The distribution of the invariant mass of the reconstructed B meson for each signal
event was fitted to a sum of a gaussian and a crystal ball function. This was done for
different regions of the value of η of each electron, corresponding to different parts of the
detector that were reached by these.

4.2 The data used for analysis

The data was extracted from measurements carried out in the ATLAS detector in
2018 during Run 2 of the LHC. This data started being collected in June of 2018, leading
to an integrated luminosity in the ATLAS detector of approximately 30 fb−1 until the
end of the year, as can be seen in figure 4.1 (keep in mind again that data gathering
only started in June). Of course, most of this data will not come from the decay we’re
studying, but other processes (and on the other hand, most of the B meson decays will
not be detected). The center-of-mass energy in these interactions (

√
s) was 13 TeV.
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Figure 4.1: Graph of the total cumulative luminosity in the ATLAS detector throughout
2018, with distinctions between delivered luminosity (green), recorded luminosity (yellow)
and luminosity of events with good data quality (blue). [50]

The advantage of using data from towards the end of Run-2 of the LHC is the avail-
ability of a more developped trigger system, specifically the addition of the Level-1 Topo-
logical Processor (L1Topo), which is one of the components appearing in figure 2.9. Due
to the increase in luminosity, and consequently trigger rates in Run-2, it was necessary
to filter more events, but simply raising the existing thresholds would remove too many
of the useful events. L1Topo allows the hardware system to make new topological se-
lections using treshold for new angular and kinematic quantities of individual objects in
the events. B-physics project like this one benefit a lot from the new triggering options
afforded by the L1Topo, since it can make selections based on e.g. the angular distance
(∆R) between the resulting leptons[5].An example of the difference in trigger rates with
or without topological selections can be seen below, for muons:
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Figure 4.2: Comparison between dimuon trigger rates for the non-topological (red) and
topological (blue) L1 triggers. Both types make a selection on the transverse momentum
of the two muons, both the topological trigger also considers their angular distance and
invariant mass. This leads us to a reduction of 4 in the trigger rate, with only a loss of
20 % in signal efficiency [5]

a Simulation

We simulated the following signal and background events in MC:
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Decay type Decay formula DSID B

Signal

B0 → K∗0ee 300590
1.03× 10−6

B0 → K∗0ee 300591

B0 → K∗0J/ψ(ee) 300592
1.27× 10−3

B0 → K∗0J/ψ(ee) 300593

Background

B+ → π+J/ψ(ee) 300718
3.92× 10−5

B− → π−J/ψ(ee) 300719

B+ → K+π0(eeγ) 300722
1.29× 10−5

B− → K−π0(eeγ) 300723

B+ → π+π0(eeγ) 300724
5.5× 10−6

B− → π−π0(eeγ) 300725

B+ → π+η(eeγ) 300726
4.02× 10−6

B− → π−η(eeγ) 300727

B+ → K+η(eeγ) 300730
2.4× 10−6

B− → K−η(eeγ) 300731

B0 → K+π−J/ψ(ee) 300734
1.15× 10−3

B0 → K−π+J/ψ(ee) 300735

B0 → K+π−ψ(2S)(ee) 300738
5.8× 10−4

B0 → K−π+ψ(2S)(ee) 300739

B0 → K+π−π0(eeγ) 300742
3.78× 10−5

B0 → K−π+π0(eeγ) 300743

B0 → K∗0η(eeγ) 300744
1.59× 10−5

B0 → K∗0η(eeγ) 300745

B0 → K∗0π0(eeγ) 300748
3.3× 10−6

B0 → K∗0π0(eeγ) 300749

Table 1: Decays simulated in Monte Carlo. DSID stands for ”Dataset Identification”,
and they are internal numbers assigned to the simulated interaction’s datasets. The
branching ratios were obtained from [38].

On top of simulating the decays, the detection of the resulting particles and conse-
quent measured values were also simulated. Many times, there were different ”candidates”
among the results for reconstructing the original particles, and they are all registered
alongside their results in the simulation files.
The signal decays include the direct (non-resonant) decay and the decay through the
J/ψ resonance, which is the control decay, as mentioned in chapter 1 (the antiparticle
versions are also included, of course). Although there were available simulation results
for the ψ(2S) resonance, they didn’t include information of which candidate was the true
candidate, so they weren’t used.
The chosen background decays are ones whose final decay results can be mistaken for
results of the signal decays. These final results will include a pair of electrons and K±

and/or π± particles that can be mistaken for the Kπ pair resulting from the K∗0 decay.
It should be noted that these are only some of the possible decays that might serve as
background for the decay, and they were chosen based on their frequency and branching
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ratios. Ideally, more could have been chosen, and the group I have worked with have
already acquired simulations of further background progress, for example occuring from
decays of the Λb or B

0
s meson.

Below we see the distribution of the presupposed invariant B mass, invariant mass of
the 2 electrons, and invariant mass of the pressuposed Kπ pair resulting from the decay
of the K∗0 meson. These distributions were created using ROOT [1] version 6.24/04,
through which the resulting .root files containing information from the simulations were
accessed. For each signal file, 23000 events were picked, and for each the candidate
flagged as ”true” was chosen for the distribution. For each background file, 3500 events
were chosen, and for each a random candidate was chosen, since they’re all false. If an
event contained no candidates or,for signal events, contained either zero or multiple true
candidates, it was skipped. After all these eliminations, we ended up with information
from 61758 signal candidates and 65147 background candidates, and these numbers are
large and similar enough to be usable for the LGBM algorithm.
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Figure 4.3: Histogram of invariant B mass for the signal (blue) and background (red)
candidates

As expected the signal has a peak around the actual value of the mass of B (5280
MeV)[38]. The background is more of a plateau.
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Figure 4.4: Histogram of invariant di-electron mass for the signal (blue) and background
(red) candidates

There are peaks around the J/Ψ mass (3097 MeV)[38], as expected. Background also
has a peak around the Ψ(2S) mass (3686 MeV [38]), and signal would probably also had
had a peak there if the decays B0 → K0ψ(2S)(ee) and the corresponding anti-particle
version had been included in the signal. The peak around 0, especially for signal, can
maybe be explained by the way the measurement of the energy and momentum of the
electrons was made (consider also that they have very low rest mass).
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Figure 4.5: Histogram of invariant K∗0 mass for the signal (blue) and background (red)
candidates

The signal is peaking more or less around the K∗0 mass (895 MeV) [38].

It should be noted that a more realistic depiction of the background would include
events from each decay based on the frequency of each decay, instead of uniformly picking
from every decay file. This is a problem that can be addressed in future work.
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4.3 Pre-selection

The pre-selection, whose goal is to remove events that are too far off the expected
values for the signal decays (or even any real processes at all) was decided by the group
I was a part of before I even joined, so it uses the same conditions for approval of them,
which will be listed below (note that ”track” means track and we hypothesise these are
the tracks of the K or π particles):

• ∆R(ee) > 0.1. The system of the two electrons coming from the decay should
have most of its invariant mass around the invariant mass of the J/ψ. Meanwhile,
many background electrons will probably come from the common γ → ee decays
happening in the detector, and since the photon has invariant mass of 0, these decays
will have a bigger tendency to create electrons going in similar directions,which give
smaller values for ∆R, and therefore this condition can help remove many of these
background candidates.

• pT (e) > 5 GeV and pT (trk) > 0.5 GeV . In general, having bigger transverse mo-
mentum is a good indication that particles came from an interaction, since back-
ground particles tend to have most of their momentum in the beam direction.

• |η(e)| < 2.5 and |η(trk)| < 2.5. Particles moving in directions wit η above 2.5 will
not be detected by any of the tracking detectors (SCT and TRT) in the ID (see fig.
2.5).

• m(ee) < 7 GeV . If the invariant mass of the di-electron system is much bigger
than the invariant mass of the J/psi, then we discard the candidate as background.
If it’s much smaller than that mass, it will probably be discarded anyway by the
trigger system or the other conditions.

• [m(B0) in (3000, 6500)MeV andm(K∗0) in (690, 1110)MeV ] or [m(B0) in (3000, 6500)MeV
and m(K∗0) in (690, 1110)MeV ]. We reconstruct the hypothesized K∗0 mass from
the two meson tracks we assume to be a K±π∓ pair, and we can reconstruct the
hypothesized B0 meson from these and the two electrons. Of course, since we’re
also considering the B0 → K∗0ee decay as signal, we can also reconstruct the orig-
inal mesons assuming they are K∗0 and B0. In either case, since particles have the
same mass as their antiparticle, we expect the reconstructed mass of B0/B0 and
K∗0/K∗0 not to be too far from the theoretical values of their rest mass.

• The charges of the two leptons must be opposite, since we expect an electron-
positron pair). The same goes for the two mesons, which we assume to be a K±π∓

pair.

• trk qual=loose,loose electron. The quality of a track is related to how close it
follows its expected helix shape. For both the meson and electron tracks we only
expect it to be loosely close to this shape.

These pre-selection conditions significantly reduced the number of background candidates
that were accepted. Due to this, we chose to accept all candidates for each event in the
background files.

Meanwhile, we also chose to include information from data files, which as mentioned
in section 4.2 correspond to measurements taken in 2018, starting in June. Specifically,
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we used data from periods K, L, M, O and Q. 2 data.root files were used for each period,
giving us a total of 10 data files. The advantage of using these files is the fact that they
contain ”real information”, and are therefor expected to be more realistic. Of course,
an overwhelming amount of the events in the data files are background, since our signal
decay is only a small fraction of all the interactions happening after the pp collision. We
therefore will be considering data as background when training our GBDT.

An important thing to keep in mind when using data is that we want our analysis
to be blinded. This means that we want to develop all our algorithms of analysis before
we apply them to the real data obtained from the LHC and calculate R(K∗0), and we in
fact don’t even want to see the real data. This prevents us from being influenced by the
actual data when developping our algorithms and methods, since seeing and working on
the actual data before could influence us to fine tune our procedures in order to obtain
specific results. So we decided to avoid using and studying the data of events close to the
B0 mass, and we therefore introduced an additional pre-selection condition for the data
files:

• [m(B0) < 4000 MeV and m(B0) < 4000 MeV ] or [m(B0) > 6250 MeV and
m(B0) > 6250MeV ]

Requiring that the data events have masses far from the B0 mass also had the advantage
of increasing even further the probability of them being background.

In the end, we used 15000 events from each MC signal file, where the candidates
marked ”true” were used in each event. From each MC background file we used around
900 candidates (as mentioned we used all candidates from the events, but if we reached
900 and there were still candidates in the current event, we also picked those. This was
done because the candidates in each event are sorted according to pT measurements, and
suddenly stopping the candidate collection could introduce bias). And finally, we used
13500 events from each data file, and the candidate was chosen randomly in each.
After collecting the candidates, we ended up with 60000 MC signal events/candidates,
18118 MC background candidates, and 135000 data events/candidates. Although there
is a larger amount of background (MC background + data) candidates than signal can-
didates for the training of the ML algorithm, they are still within the same order of
magnitude, so it’s no problem. It is also a better reflection of reality, where background
interactions vastly outnumber signal ones.

We made graphs comparing the distribution of the reconstructed Bd and Bd mass
distributions to make sure they were similar enough to justify only looking at the Bd

distributions.These graphs were made for signal MC, background MC and data.
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Figure 4.6: Histogram of invariant B0 and B0 mass for the signal candidates (MC)
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Figure 4.7: Histogram of invariant Bd and Bd mass for the background candidates (MC)
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Figure 4.8: Histogram of invariant Bd and Bd mass for the data candidates

As we can see, the two mass distributions are quite similar for all types of candidates.
There appears to be some variation in the background MC and part of the data, but it
doesn’t significantly affect the mean, and could maybe be explained by the fact that the
creation of all the particles come from the collision of two protons, which are matter, not
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antimatter, and this might affect a bit the expected symmetry.

4.4 Training and performance of the GBDT

Now that we had our data for the ML algorithm ready, it was time to apply the
ML algorithm to it. We will be using a GBDT through LightGBM.[33]. We ran the
algorithms of this package using Python [2] version 3.9.5

Since we wanted to use the GBDT to apply a selection on the distribution of both the
reconstructed invariant B0 mass and the di-electron mass, the selection algorithm, and
therefore the features used for its training, had to be independent from both of these. We
wanted enough features to allow the algorithm to more easily distinguish between signal
and background. Below is a list of the features used:

• m(K∗0) and m(K∗0).

• η and pT of both electrons and both mesons.

• Angular distance (∆R) between the mesons. We can’t use the angular distance
between the electrons because when combined with their η and pT it correlates
with their mass.

• p(χ2,ndof). In the reconstruction of the initial event that gave us the measured
results the program fits models to these measured results.χ2 here gives a measure
of the difference between the measured values and the ones predicted by the fit-
ted model, by summing the squares of these differences divided by the expected
values. ndof is the number of degrees of freedom of the mode, which is the dif-
ference between the number of experimental points and the number of parameters
of the model. χ2 is expected to follow a certain distribution for a given ndof , and
p(χ2,ndof) is a p-value that gives us the probability that an observed value of χ2

would by chance happen to be bigger than the one we actually measured.

• τ(B0). This is the calculated mean lifetime of the reconstructed B meson. This
can be calculated in different ways, the one we used was calculated by keeping the
mass constant and minimizing the transverse distance a0 to the primary vertex (the
point where the pp collision happened).

• Isolation cone values of both electrons, with width ∆R = 40. These values cor-
respond to the sum of the pT of all the particles within the isolation cone of the
electrons.

The values for these features were taken from the MC and data candidates/events
previously described. The (MC) signal candidates were given a label of ”1”, denoting
that they are our signal events, while the MC background and the data were given
the value 0, indicating they are background. The events/candidates were then shuffled
and split into training (60%), validation (20%) and testing (20%) sets. Aside from the
features, a few other parameters had to be established for the GBDT:

The first 2 parameters are explained in chapter 3. The last one is not the actual
number of estimators used, since that was determined using the early stopping method
previously described, as can be seen in the figure below:
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Parameter Value

Learning rate 0.09

Tree depth Limitless

Maximum number of estimators (i.e. trees) 2000

Table 2: Parameters of the decision trees

Figure 4.9: Logloss function for training and validation

170 estimators were used based on this early stopping method.
After training the algorithm with the established number of trees, it was applied on
the test sample. Each candidate was given a value between 0 and 1 for the predicted
probability of being signal.
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Figure 4.10: Predicted probability of samples belonging to signal, compared to their
actual classification (1 means signal, 0 background). Calculated for every 500th testing
candidate, for the sake of comprehension

Looking at fig. 4.10, we can see that generally the predicted probabillities tend to
stay closer to the actual labels, and there don’t appear to be any non-uniformities or
strange effects in the distribution of these predictions.

Below we have the distribution of the predicted probability of being signal for the
testing signal and background samples.

Figure 4.11: Distribution of the predicted probability of being signal for the testing signal
and background samples. The vertical line indicates our selectiion cut.

By looking at the figure above, it is clear that it is of course impossible to set a mini-
mum requirement for the value of the assigned probability that completely distinguishes
background from signal. However, the peaks of background and signal are still quite
distinguishable, and by carefully choosing the minimum assigned probability we can try
to find the balance between rejecting as much background and accepting as uch signal as
possible, a balance which is graphed in the ROC (receiving operator characteristic) [21]
curve below:
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Figure 4.12: ROC curve, which shows the relation between the fraction of accepted
signal candidates (True Positive Rate) and the fraction of accepted background candidates
(False Positive Rate). The dot indicates our selection cut (0.9)

The curve is quite far from the diagonal, which would correspond to randomly choosing
the assignment of signal and background (called luck in the figure). This once again shows
that background and signal can be well separated.

Due to the larger amount of background compared to signal, it is best to choose a tight
cut, and our selection therefore only accepted candidates with an assigned probability
above 0.9. This selection cut is shown in the 4.11 and 4.12 figures.

Using the algorithm we developed, we made a selection on the MC signal, MC back-
ground and data invariant mass distributions of the B0 and di-electron systems by ap-
plying the algorithm to their candidates and requiring that they pass the aforementioned
cut at 0.9. The results were presented in histograms. We also graphed out the efficiency
(ϵ) graph, where for each histogram the efficiency was calculated by dividing the number
of selected candidates/events by the total number of candidates/events in each bin (this
was only calculated in bins where the second number wasn’t 0 of course). The error for
the efficiency graphs was calculated by considering no error for the total number of can-
didates/events, and considering that each event/candidate in each bin follows a binomial
distribution with p = ϵ of being selected, and has therefore a variance ϵ(1 − ϵ), so the
error for all the events/candidates in each bin is given by:

sϵ =

√
ϵ(1− ϵ)

Nt

(4.1)

Where Nt is the total number of candidates/events in each bin. The error for the value
of the invariant mass (in the x-axis) was given by the bin width.

41



Figure 4.13: B0 invariant mass histogram for MC signal before and after selection (left),
and its respective efficiency graph (right)

Although the selection removes around half of the signal events due to our previously
mentioned tight requirements (keep in mind that the y-scale in the histogram is on log-
arithmic scale), this is fine as long as the original shape of the distribution is reasonably
kept, which means that we expect the efficiency graph to remain constant. A visual
analysis of the histogram and the efficiency graph shows us that results are more incon-
sistent (and less precise) towards the sides, but in the range around the B0 mass (where
we see the peak) the results are reasonably what we expected, although the value of the
efficiency does slowly increase with the measured mass, but its not so pronounced that
it’s a major problem.

Figure 4.14: Di-electron invariant mass histogram for MC signal before and after selection
(left), and its respective efficiency graph (right)

For the signal di-electron mass distribution, we see a similar trend: despite irregu-
lar fluctuations at the limits, around the J/ψ mass the efficiency remains more or less
constant, with a bit of oscillation and a general tendency to increase.
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Figure 4.15: B0 invariant mass histogram for MC background before and after selection
(left), and its respective efficiency graph (right)

For the MC background candidates, we can see in the above figures that they were
significantly cut (once again, remember that the y-axis in the histogram is logarithmic),
so that less than 4% remain in each bin. This is good, since ideally we want as much
background to be removed as possible. However, it can be observed in the figures that
the distribution of the selected candidates shows a peak around the B0 mass, even if this
peak wasn’t present in the original distribution, which is a problem, since it suggests the
selection process appears to have some correlation with the B0 mass distribution after all,
and is therefore trying to replicate the peak. Ideally, we would want the only contribution
to the peak after the ML selection to be due to signal.

Figure 4.16: Di-electron invariant mass histogram for MC background before and after
selection (left), and its respective efficiency graph (right)

Here we can notice in the histogram the selected events emulating the slight peak of
the total events around the J/ψ mass. But the efficiency graph appears to have a peak
closer to the ψ(2S) mass, although the uncertainties around that point are quite big, so
this result might not have much significance.
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Figure 4.17: B0 invariant mass histogram for data before and after selection (left), and
its respective efficiency graph (right)

The data events were also greatly reduced by the selection, which should be expected,
as a lot of them are considered background, and they were used as background for the
training of the algorithm. The efficiency appears to be growing towards a peak for the
lower values of mass, and the selected distribution is sort of following the distribution of
all events, but by design we can’t know what is happening around the B0 mass.

Figure 4.18: Di-electron invariant mass histogram for data before and after selection
(left), and its respective efficiency graph (right)

For lower values of mass the selected distribution seems to emulate more or less the
total distribution. The efficiency showcases a peak at a value slightlybelow 3000MeV ,
and therefore below the J/ψ mass. This peak is bizarre, but it should be noted that,
although the exclusion of events with B0 masses close to the theoretical value is less
obvious here than in the B0 mass distribution, it is still affecting results and we’re not
sure what conclusions we can then take from them.
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4.5 Fitting the signal ditribution

We created a new histogram with the B0 mass distribution from the MC signal files,
this time using 20000 events from each file, leading to a total of 80000 events. The actual
histogram of the distribution, as well as all other histograms mentioned here, has been
moved to the appendix, while we only keep its counts represented in a scatter plot (in
the y-axis of the figures below the (/50) indicates that the number of events represented
at each point is counted in bins of width 50 MeV ).

In order to gain a better understanding of the expected shape of the signal curve,
we used RooFit [3] v. 3.60 to try and to fit it to some common distributions in particle
physics (Gaussian and Crystal-Ball), in the 3500-6500 MeV range, in order to cut out
the longer tails of the original histogram that might make fitting less successful. The
result is visible below:
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Figure 4.19: The fits of a gaussian curve, a crystall-ball shaped curve and the sum of
both to a histogram of the invariant B0 mass distribution for signal

As can be observed, neither the gaussian or the crystal-ball shaped (CBS) curves were
able to properly fit the data points near the peak, but a sum of both was. This indicates
that the best curve for fitting the signal distributions might be a mix of these two types.

We decided to separate the events based on the η values of the two electrons resulting
from the decay(note that, for the sake of convenience, we use here the word ”electron” and
the letter ”e” to refer both to the electron and the positron resulting from the decay). This
is useful because, due to the cylindrical symmetry of the detector, η alone determines
what sensors and materials the electron nteracts with. We the η value range into 3
different zones: ”low” values corresponding to η < 0.8, ”medium” values corresponding
to 0.8 < η < 1.52, and ”high” values corresponding to 1.52 < η < 2.47. Electrons going
in directions with η above 2.47 will not interact with the tracking system, and η = 1.52
is where a ”crack” region which started at η = 1.37 ends, where results will have less
quality. Meanwhile η = 0.8 marks the beginning of a zone of higher material budget as
can be seen in figure 4.20:
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Figure 4.20: Material budget in the Inner Detector during run 2 [35]

We also separated the resonant from the non-resonant events, to see if their distribu-
tion varied significantly in the different zones. This also has the advantage of identifying
and isolating zones with better and worse distributions, thus preventing the power of the
better distribution results to be ”diluted” by the worse ones.The results can be seen in
the figures below (keep in mind that the labels e0 and e1 are just used to emphasize that
we are studying two distinct electrons, but they don’t refer to a specific one. This means
that e.g. if any of the electrons is in the ”low” range and the other is in the ”medium”
one, the event will appear in figure 4.24 )
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Figure 4.21: Invariant B0 mass distribution for low values of η for both electrons, with
the fits of the different curves to both the resonant and non-resonant histograms
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Figure 4.22: Invariant B0 mass distribution for medium values of η for both electrons,
with the fits of the different curves to both the resonant and non-resonant histograms
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Figure 4.23: Invariant B0 mass distribution for high values of η for both electrons, with
the fits of the different curves to both the resonant and non-resonant histograms
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Figure 4.24: Invariant B0 mass distribution when one electron has a low value of η and
the other has a medium one, with the fits of the different curves to both the resonant
and non-resonant histograms
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Figure 4.25: Invariant B0 mass distribution when one electron has a medium value of η
and the other has a high one, with the fits of the different curves to both the resonant
and non-resonant histograms

The case were one of the electrons stayed in the ”low” range and the other in the
”high” was not included because only 2 non-resonant events were in those graphs, and
they were most likely just a statistical anomaly, indicating that there’s almost no event
where the difference between the η of the two electrons is that high. This is because such
a large ∆η would lead to a large ∆R between the electrons, which would require pT of
one of the electrons to be so low that they would not pass the trigger requirement.

Observing the figures above it is clear that lower values of η for the electron correspond
to narrower (and therefore more pure) peaks, and also fitted curves closer to the data
points. This might be related to the fact that electrons with higher η will travel through
a larger part of the detector, and more material (see fig. 4.20), and therefore subjected
to worse tracking and measuring.
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The tables below showcase how the 80000 events are shared between the different
regions for resonant and non-resonant cases:

e0

e1
l m h

l 18719 5779 2

m - 7526 2339

h - - 5620

Table 3: Number of events in the
different η regions of the electrons
for non-resonant signal

e0

e1
l m h

l 18993 5517 0

m - 7793 2129

h - - 5549

Table 4: Number of events in the
different η regions of the electrons
for resonant signal

It is clear that more events are registered for lower values of pseudorapidity for the
electrons, which can also contribute to the smaller peaks and better fits mentioned above.
A possible reason for part of this imbalance is the fact that particles with lower η have
more likelihood to pass the pT trigger and pre-selection requirements. It is also of note how
the distribution of events between the zones is similar for both non-resonant and resonant
cases, which indicates that the resonant case is indeed a good choice for calibration in
the calculation of the RK∗0 ratio.

We also decided it might be useful to separate the signal di-electron invariant mass
distribution into the resonant and non-resonant parts (the histograms are once again in
the appendix)
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Figure 4.26: The fits of a gaussian curve, a crystall-ball shaped curve and the sum of
both to a histogram of the invariant ee mass distribution for resonant signal

Once again, the sum of the gaussian and the Crystal-Ball function makes for the
best fit at the peak. However, at the peak slopes (around 2700-2900 MeV and especially
3200-3700 MeV) we can observe that the fit deviates a bit from the datapoints. The
long tail towards lower values of mass is also an issue, as it will be background for the
non-resonant case.
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4.6 Systematic uncertainties

Although we have not been able to properly calculate the values for our systematic
uncertainties, we have considered the possible sources for it, looked into values obtained
by LHCb, and tried to estimate how our values would compare to those. The LHCb
values, corresponding to ∆RK∗0/RK∗0 , were obtained from table 4 in [54], where we
chose to use the values corrresponding to the hardware electron trigger (L0E) in the
[0.045,1.1] GeV/c2 (low-q2) and [1.1,6.5] GeV/c2 (central-q2) ranges of the di-electron
invariant mass. So here are the main sources of systematic uncertainty:

• Electron trigger and reconstruction efficiency. Many electrons can be missed
by the trigger system, or be lost in the reconstruction process, which will increase the
uncertainty of our final results. LHCb calculates the trigger efficiency uncertainty
to be 0.1 % for low-q2 and 0.2 % for central-q2. We expect our uncertainty to
be significantly higher since LHCb is designed to study B-Physics, and has better
systems for that, since we don’t have huge amounts of J/ψ → ee samples.

• Fit model. Our fit of the signal with the sum of a Crystall-Ball and function
distribution can carry uncertainties from the parametrization. LHCb calculates
their uncertainty for background and signal (they used the sum of two CB functions
for electrons and the sum of a CB and a gaussian function for muons ) mass fits to
be 1.4 % for low-q2 and 2.0% for medium-q2, and we expect similar values.

• Kinematic reweighing. The process of reweighing for the kinematic variables
can introduce additional uncertainty. The LHCb paper doesn’t mention reweighing,
but for kinematic selection they estimate an uncertainty of 2.1 % for both low and
central q2. We expect similar values, since this is mostly a theoretical systematic
uncertainty.

• Machine learning input. Uncertainties from the data inserted into the ML al-
gorithm will contribute to uncertainty of the results. LHCbs paper doesn’t involve
machine learning, so they don’t have uncertainty here. We could study this un-
certainty by observing data and (MC) simulated distributions of the variables, and
altering the MC distributions (through e.g. shifting or introduction of noise, or
”jittering”) to observe how that affects the signal selection. Doing this to different
degrees and analysing the distributions of the effect on the signal selection can help
us obtain the uncertainty.

• Tracking efficiency. Like the trigger efficiency, the tracking of the particles in
the detector is imperfect and can introduce uncertainty. LHCb didn’t include this
uncertainty either. In ATLAS we expect this to be at the level of a few percent, as
can be verified in e.g. [15].

• Pile-up reweighing. Pileup include all the background interactions we are not
interested in. LHCb include an uncertainty due to residual background only for
central-q2, which was calculated to be 5 %. We expect similar values (or even
lower), since e.g. the systematic uncertainties for pile-up effects of R calculated in
[15] were only 1 %.

• Acceptance. Acceptance is related to the range of kinematic values a particle
must have to be detectable. Since some particles will be excluded based on their
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properties, this introduces uncertainty. LHCb didn’t go into this, but it is again
mostly theoretical, and related to kinematic reweighing.

• Selection efficiency (data and background). As observed, some data and
background were still accepted by the algorithm which introduces uncertainty. This
will at least partially be eliminated by the ratio. LHCb didn’t consider this.

• Best candidate selection. For each event, the choice of the best candidate to
be used can be tricky, especially when dealing with real data, as a random choice
is not the best option. Using ML, I simply chose the candidate with highest BDT
score, and this might be different between data and MC, but a deeper study of this
has not yet been realized. LHCb does not go into this.

One major advantage of using the double ratio when calculating RK∗0 is the cancellation
of multiple other sources of uncertainty. Considering the very roughly estimated values,
one would expect an overall systematic on RK∗0 of around 10-12 %. The results are
summarized below:

Sources of systematic uncertainty LHCb (low-q2) LHCb (central-q2) ATLAS

Electron trigger and reconstr. efficiency 0.1% 0.2 % ++

Fit model (signal and background) 1.4% 2 % 0

Kinematic reweighing 2.1% 2.1 % 0

Machine learning input - - -

Tracking efficiency - - ≈ 0.1,1%

Pile-up reweighing - 5 % 0, low

Acceptance - - -

Selection efficiency (data and bkg. ) - - -

Best candidate selection - - -

Table 5: Possible sources of systematic uncertainty, with relevant LHCb results, and
estimates of whether our values (ATLAS) should be similar (0), higher (+). much higher
(++), or lower(low)

4.7 Outline of Combined Analysis

We will now describe how the work undertaken in the previous sections can be useful
towards achieving the final objective, that is, the measurement of R(K∗0).

The selection through the GBDT has a simple objective: create an algorithm for
cleaning out the real data it will be applied to. In order to get accurate values for the
branching ratios of the resonant and non-resonant decays, we need to be able to remove
as much of the background as possible, without (completely) removing the real signal
decay, a task made harder by the fact that there is overwhelmingly more background
interactions than signal ones in real data. Of course, as discussed, this ”cleaning” up of
the data can never be perfect, but we need to optimize it as much as possible. That is
the role of the GBDT.
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The fitting of the signal B0 mass curve is important for understanding how we expect
the peak corresponding to the interaction to look in the data, to once again better separate
it from the background distribution, which can also be fitted. This way we can know
the amount of remaining background and overall signal (resonant and non-resonant).
The fitting of the resonant signal ee mass curve and representation of both the resonant
and non-resonant distributions is important to separating these two forms of the signal
decay, whose branching ratios both need to be considered separately to calculate R(K∗0)
through the double ratio.

People from the ATLAS group I’m working with have also estimated that, from the
approximate integrated luminosity of 30 fb−1 from the 2018 data, 28 true signal events
and 581 true background events can be extracted from it (non-resonant). This gives a
total amount of 609 events, and applying the Poisson approximation (were we assume
the statistical error to be given by the square root of the total amount of events), the
statistical uncertainty for the values is around 25, which is around 90 % of the total
amount of signal events (in actuality, upon fitting, the standard deviation was found to
be around 16, corresponding to around 57 % of the total amount of signal events. The
Poisson approximation assumes indistinct events, which might not be the case)[29]. We
expect an integrated luminosity of around 200 fb−1 for the 2022-2024 period of Run-3
of the LHC [22], and this would give us a combined luminosity of around 230 fb−1 by
the end of 2024. Scaling up, we would then estimate 215 true signal events and 4454
true background events in all this data, to a total of 4669 events. Using the Poisson
approximation, we obtain a statistical uncertainty of around 68, which is around 32 %
of the total amount of signal events (and assuming the ratio between the Poisson error
and the fit error remains the same, we can estimate the fit uncertainty to be around 38,
corresponding to around 38 % of the total amount of signal events). This indicates that
our precision for the estimates of R(K∗0) will increase with time, and we might be able to
finally get a significant deviation from unity larger than 5 σ, especially when combining
our result with the results from LHCb, which are independent from ours.
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Chapter 5

Conclusion and outlook

The main conclusion to be drawn from this thesis is that the use of Gradient Boosted
Decision Trees is a viable way of analysing measurements from the ATLAS experiment in
order to isolate the signal events from the background ones, with signal here corresponding
to the resonant (B0 → K∗0J/ψ(ee)) and non-resonant (B0 → K∗0ee) decays. This
can be seen for example in the assigned probability distribution of figure 4.11 and its
corresponding ROC curve in figure 4.12. We were able to apply a strict threshold (shown
in the previous figures) where it was required that the probability assigned by the Machine
Learning algorithm be above 0.9 for an event to be selected, and still only remove around
half of the signal events, while the background and data events/candidates (both of
which were treated as background for the traning of the algorithm) were signifcantly cut
down. The results can be seen in the histograms and efficiency graphs of figures 4.13-4.18.
Although there are some observed discrepancies, the algorithm was able to perform its
task quite well.

The results from the fitting of the signal events to different curves can also be quite
useful, as a good understanding of the expected shape of these signal distributions of the
invariant B∗0 and ee masses is also important to gain a better understanding of what
these signal curves are expected to look like, making it easier to separate signal from
background, and resonant decays from non-resonant ones. Finally, the consideration of
the different sources of systematic uncertainty is something very important, as the quality
of our final results will depend both on the statistical and systematic uncertainty.

As previously mentioned, the work on this thesis is part of a bigger project within
ATLAS that aims to calculate R(K∗0). We believe that the work done here can be used
and improved upon to achieve this final goal, as the identification of relevant signal events
within the multiple interactions in the detector is fundamental when it comes to calcu-
lating this ratio precisely. Within this ATLAS group there are other people dealing with
the case of the decay into muons ((B0 → K∗0µµ)), and calculating the relevant branching
fractions for it. Members of this group have also used different machine learning algo-
rithms to carry out similar analysis to mine, specifically by using Graph Neural Networks
(GNN) instead of GBDT, and while the former is better able to separate signal from
background than the latter, it is also much slower (the training of the GBDT algorithm
only takes a few seconds, even when processing large amounts of data), indicating that
both methods have strengths and weaknesses, and it is therefore advantageous to use
different algorithms. Finally, it should be noted that even within the Niels Bohr Institute
there are already other students working on Bachelor and Master Thesis that are using
and improving upon the work presented in this thesis.
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People in the ATLAS group have already created Monte Carlo simulation files for
additional decays that weren’t considered here, but can be found listed in [28]. Ideally, one
should also take events/candidates from each file depending on the corresponding decays
frequency and branching ratio, to make the approach more realistic. It is also important
to try fitting background mass distributions, and non-resonant ee distrubutions, to get an
even better understanding of the differences between the different types of events. And
finally, we can try to study in more detail the systematic uncertainty sources and make
more accurate estimates of their value.

Hopefully, with the continuous improvement of the methods of analysis of both the
electron and muon versions of the decays, and the future influx of new data from ATLAS
due in Run 3 of the LHC, we will eventually be able to evaluate R(K∗0), which when
combining with the LHCb findings might open up a whole new understanding of Particle
Physics beyond the Standard Model, i.e. New Physics.
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Appendix A

Histograms of B0 signal mass
distributions from section 4.5
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Figure A.1: Histogram of the invariant B mass distribution for signal
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Figure A.2: Invariant B mass distribution for low values of η for both electrons. We have
the histogram for non-resonant signal (left) and resonant signal (right)
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Figure A.3: Invariant B mass distribution for medium values of η for both electrons. We
have the histogram for non-resonant signal (left) and resonant signal (right)
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Figure A.4: Invariant B mass distribution for high values of η for both electrons. We
have the histogram for non-resonant signal (left) and resonant signal (right)
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Figure A.5: Invariant B mass distribution when one electron has a low value of η and
the other has a medium one. We have the histogram for non-resonant signal (left) and
resonant signal (right)

60



h_Bmass_sigmhnr
Entries  2339
Mean    9.579±   5134 
Underflow       0

Overflow        0

2000 3000 4000 5000 6000 7000 8000
m(MeV)

0

20

40

60

80

100

120

140# h_Bmass_sigmhnr
Entries  2339
Mean    9.579±   5134 
Underflow       0

Overflow        0

 2.47 ≤  
e1

η ≤ 1.52 1.52 ≤  
e0

η ≤ 0.8 Invariant B mass for non resonant signal 
h_Bmass_sigmhr

Entries  2129
Mean    9.445±   5137 
Underflow       0

Overflow        0

2000 3000 4000 5000 6000 7000 8000
m(MeV)

0

20

40

60

80

100

120

140

# h_Bmass_sigmhr
Entries  2129
Mean    9.445±   5137 
Underflow       0

Overflow        0

 2.47 ≤  
e1

η ≤ 1.52 1.52 ≤  
e0

η ≤ 0.8 Invariant B mass for resonant signal 

Figure A.6: Invariant B mass distribution when one electron has a medium value of η
and the other has a high one. We have the histogram for non-resonant signal (left) and
resonant signal (right)
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Figure A.7: Invariant ee mass distributions. We have the histogram for non-resonant
signal (left) and resonant signal (right)
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