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Abstract

Bacteria submerged in solid growth media can grow into three dimensional
colonies. The Eden Growth model on a square lattice can model the growth
of a three dimensional clustered in vitro grown 3D colonies can be imaged
using Confocal Laser Scanning Microscopy. Colony morphology is influ-
enced by both the surrounding environment of the colony and the growth
properties of the individual cells making up the colony. In this thesis, using
a combination of lattice computer simulation and in vitro experiments, it is
shown that small fluctuations in colony environment has measurable effects
on colony morphology that are much larger than the effect of individual
bacterial cell shape.
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1
Introduction

Bacteria are biological cells, typically rod shaped, of a couple of micrometers
in length. Being one of the oldest lifeforms on earth they inhabit a diverse
range of environments such as water, soil, the human gut or the surface of a
kitchen table. Bacteria can exist as single cells or in large aggregates known
as colonies. Large colonies can originate from a single or few cells, when the
bacteria grows by dividing into two genetically identical copies of itself. If
this process is continued the colony will undergo exponential growth, until
a time at which food recourse are depleted and growth stalls and the colony
size saturates [1]. The phases of bacterial growth can be divided into four
distinct phases: 1: The lag phase, the time from the bacteria is placed in
an environment before they start growing. 2: The exponential phase where
bacteria grows exponentially. 3. Stationary phase where bacteria dies at
the same rate as they are growing often due to depletion of nutrients and 4.
The death phase where cells in the colony dies at larger rates than they are
growing due to a depletion of resources or due to an outside stress killing
the bacteria [1]. This simple growth curve does not take into account the
geometry of the colony, for large colonies competition for resources may be
local, and colonies may spread out over areas where the nutrients available
for the bacteria is non-uniform. Bacteria growing in solid media form com-
pact three dimensional colonies and shall be the focus in this thesis.

The outline of this thesis will be to develop a protocol for growing bacteria
inside solid medium such that a three dimensional colony can form. Then
image grown bacterial colonies using Confocal Laser Scannig Microscopy
CLSM in order to quantify the shape and texture of 3D colonies. In order to
do so a set of parameters characterizing the shape, structure and surface of
the colony will be introduced. Different bacterial strains grown on surfaces
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has been shown to display a wide range of colony shapes and patterns [2]
here the effect of cell morphology only on colony shape will be investigated
by comparing bacterial strains that are identical genetically except for vari-
ation in cell shape. Comparison between grown and imaged 3D colonies
and the Eden model will be made. The Eden model provides method for
easily modelling 3D colonies by a simple to understand growth process of
adding bacteria to the surface of a 3D colony [3], a theoretical framework
for quantifying growth processes such as the Eden Model already exists by
relating growth to a small set of scaling exponents. Modifications to the
growth rules of the Eden Model will be made to explore colony shape and
morphology phenomena observed experimentally.
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2
Theory

In this chapter the theoretical framework and known quantities of of the
Eden model will be outlined. First explaining the process of Eden growth
in section 2.1 and with this model as a basis introduce the scaling expo-
nents that can be used to characterize a larger family of growth models
in section 2.2. Expanding bacterial colonies can expect to encounter inho-
mogeneities in their growth conditions such as varying concentrations of
nutrients or physical obstacles as they expand into new territory. A simple
model for understanding the dynamics of bacterial fronts growing through
an inhomogeneous environment will be introduced in section 2.3. In order
to quantify real grown colonies confocal laser scanning microscopy, CLSM,
will be used, in section 2.4 the basic concepts of CLSM from flourencence
to imaging will be explained. From the 3D images provided by CLSM a set
of parameters to quantify 3D bacterial colonies will established. With this
theoretical framework to quantify and compare both real bacterial colonies
and lattice modeling of bacterial growth will have been formulated.

2.1 Eden Model
The Eden model was first described by M. Eden to model the formation of
cell colonies such as bacteria or the growth of cancer tumors[3]. The Eden
model consists of adding cells to the surface of a stationary colony placed
on a square lattice, with one bacteria each occupying a single site within the
lattice. The cluster formed by adding sites to the surface of the cluster is
called the aggregate [4].

4
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2.1.1 Growth processes

Different versions of the Eden model exist [5] two of which shall be described
here. In the first version, Version A, a seed is added in the center of a square
lattice. The model then grows by the process of defining the surface as the
set of unoccupied adjacent sites to the Eden cluster and selecting with equal
probability one of the surface sites to occupy.
The other, Version B, defines the surface as the set of occupied sites in the
Eden cluster with at least one adjacent unoccupied neighbor, one of the
surface sites is then chosen equiprobably. One of the unoccupied adjacent
neighbors is then chosen equiprobably and becomes occupied, this process
is then iterated. A visual representation of Version A and B in 2D can be
seen in figure2.1.

Figure 2.1: Version A: 1. The Eden cluster 2. The surface is defined as the
adjacent unoccupied sites 3. One site is chosen equiprobably 4. The site
becomes occupied. Version B: 1. The Eden cluster. 2. The surface is defined
as the cluster sites with at least one unoccupied neighbor. 3. A surface site
is chosen equiprobably 4. The candidate sites to grow to is the adjacent
unoccupied sites 5. One of the candidate sites is chosen equiprobably

2.1.2 Anisotropy in the Eden model

For large Eden clusters of increasing size, the shape of the cluster is distorted
away from a spherical shape into a diamond shape [6]. This distortion arises
from the fact that each growth step from one site into another must happen
along one of the lattice axes. This concept is not unique for Eden models
and is seen in various other lattice models [4]. The anisotropy, Ax̂, in a given
direction, x̂, can be measured by the ratio between the square distance from
the center to the surface in the direction, dx̂, and the mean square distance



2.2. SCALING EXPONENTS IN GROWTH MODELS 6

from the center to the surface which is just the radius of the Eden Model, R.

Ax̂ =
dx̂
R

(2.1)

For the Eden model, the anisotropy has been shown to be 2% longer in the
directions of the lattice. [6]

2.2 Scaling Exponents In Growth Models
The surfaces of growth models such as the Eden model can be characterized
by a simple set of parameters describing the growth as a whole, they provide
a method of comparing different growth models and determining if two
models with differently formulated growth rules lead to the same types of
clusters, models tat are similar in this way is called a universality class.

2.2.1 Flat Geometries

To introduce scaling exponents it can be useful to first consider a geometry
where the Eden model grows upwards from a strip of seeds in 2D or in 3D
from a plane of seeds. The height h(i, t) of a single column i at time t is then
simply the highest occupied site in that column and the average height h̄ is
the average height over all columns:

h̄(t) =
1
L

L∑
i=1

h(i, t), (2.2)

Where L is the system size, ie. the number of columns. The width of the
surface σ is the Root-Mean-Square RMS of the surface height:

σ2 =
1
L

L∑
i=1

(h(i.t) − ¯h(t))2 (2.3)

As the model grows the width increases as a power of time [7]

σ(L, t) ∼ tβ (2.4)

Where β is the growth exponent characterizing how the surface increases
in roughness as time progresses. This roughening continues until a time tx
where the width saturates at a value wsat the size of the saturation width
is dependent on the systems sizes with the width scaling as a power of the
system size [7]:

Wsat(L) ∼ Lα (2.5)



2.2. SCALING EXPONENTS IN GROWTH MODELS 7

Where α is the roughness exponent and characterizes the level of roughness
at saturation. The time where saturation is reached also scales as a power of
the system size [7]:

tx ∼ Lz (2.6)

Where z is the dynamic exponent. The three scaling exponents are not
independent, expressing the width in units of the saturation width and the
time in terms of the saturation time:

σ→
σ(L, t)

Wsat(L)
, t→

t
tx

(2.7)

The scaling of σ(L,t)
Wsat(L) becomes independent of system size, saturating at the

characteristic time t
tx . Now since scaling is independent of system size the

scaling is only a function of time:

σ(L, t)
Wsat(L)

∼ f
( t
tx

)
(2.8)

σ(L, t) ∼ Lα f
( t
Lz

)
(2.9)

Where equation (2.9) is the Family-Vicsek scaling relation [7] Since on a log-
log dividing σ(L, t) with a constant Wsat(L) only correspond to a shift in the
curve:

log
(
σ(L, t)

Wsat(L)

)
= log (σ(L, t)) − log(Wsat(L)) (2.10)

σ(L,t)
Wsat(L) should still scale as a power law like equation 2.4 before saturation

is reached:
σ(L, t)

Wsat(L)
∼ uβ u << 1 (2.11)

Where u = t
tx . Similarly the width should still saturate at some constant

value. So the function f (u) from equation 2.8 is characterized by two different
scaling regimes:

f (u) ∼ uβ u << 1 (2.12)

f (u) = constant u >> 1 (2.13)

For any growth process where equation 2.9 holds the scaling exponents can
be related by considering that at time of saturation tx it should hold that

tβx ∼ Lα (2.14)

tx ∼ L
α
β (2.15)
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According to equation 2.6 the three exponents z, α and β are related in the
following way [7]:

z =
α
β

(2.16)

2.2.2 Radial Geometries

When growing the Eden model from a single seed at origin, the surface of
the cluster is increasing at all times and the system size L increases as the
model grow and we cannot simply consider the height at each column as
when growing from a flat substrate, when calculating the width, σ, of the
model. Instead, let s be the set of surface sites within the cluster, the height
of each surface site can be calculated as the radial distance from the center
of the cluster, where both the center mass of the cluster and the origin can
be considered the center of the cluster [8]. Let x be a surface site at time t,
the height of the surface site h(x, t) is the radial distance to the origin then
the width of the cluster is the RMS of all the surface heights in the cluster:

σ2 =
1

N(s)

∑
x∈s

(h(x, t) − R)2 (2.17)

where R is the radius of the cluster defined as the average surface height.
Since the system size is increasing as the model grows,

L→∞, for t→∞ (2.18)

there is no expected surface width where the model saturates [8] therefore
the radial Eden cluster does not have a scaling exponent α and the only
scaling parameter characterizing growth is the growth exponent β.:

σ ∼ tβ (2.19)

Where time is defined such that at each step in the model time increases
as 1

N(s) . With this definition of time, R scales linearly with time such that:

σ ∼ Rβ (2.20)

For 3D radial geometries which will be the main focus in this thesis β
with respect to the origin has been found to be β = 0.1047 ± 0.0014 [8].

2.2.3 Eden universality class

It can be shown that on short length scales version A and B gives different
results. Continuing with the example cluster from figure 2.1, we can label
the sites, the model can grow to in the following step with letters A - I as
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Site A B C D E F G H I
pa 1

9
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

pb
2
15

1
15

1
6

1
10

1
10

1
10

1
10

1
6

1
15

Figure 2.3: Table of probabilities that each of the adjacent sites is selected in
for Eden model Version A pA and for Eden model version B pB

shown in figure 2.2. Using the definitions of version A and version B of the
Eden Model, the probabilities that each of the sites A - I becoming occupied
in the Eden step in both version pA and pB can be calculated. These are
shown in table 2.3. At large enough sizes however these differences does
not effect scaling exponents in flat substrate geometries [5], meaning that
both versions of Eden Growth gives the same scaling exponents and they
belong to the same universality class.

Figure 2.2: The adjacent sites of an Eden cluster in blue A - I, that can be
chosen in the following step

2.3 The Growth Effect of Finite Sized Inhomo-
geneities

Bacterial colonies may undergo more complicated phases of growth where,
growth along the colony is non uniform. In this section the effects of small
inhomogeneities in the growth conditions of the colony will be considered,
by considering a front propagating at constant speed normal to its own
surface. Starting by considering the simple case of a front moving past
a region where growth is not possible called an obstracle, the notion is
extended to a part of the front moves through a region were growth speed
is increased
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2.3.1 Obstracles

Figure 2.4: Constant Speed model. Modified from [9] fig 2. A: Front moves
at constant speed. B: The front encounters a obstacle in red and is cutoff by
it cutting the front in two. C: Beyond the widest points circular arcs normal
to the obstacle are formed as the front moves at constant speed. D: Cicular
arcs meet at the tip of the obstacle, forming a kink in the now reconnected
front. E: The kink is then smoothed out as the radii of the circle elements
continue to increase. F: Obstracles of similar widths w but diffrent heights
h leaves the same kink in the front.

Define an obstacle to be a region in space where the bacterial colony cannot
grow. Möbius, Murray and Nelson [9] proposes a constant speed model to
quantify the effect of an obstacles on front shape as the colony grows around
it. This model assumes that the front of the colony expands at constant
speed normal to its surface ignoring the microscopic details of growth. The
model is illustrated in fig 2.4 which shows a front moving at constant speed
moving beyond a rhombus shaped obstacle.
The constant speed model predicts that beyond the widest points of the
obstacle, circular arc connected between the linear part of the front and a
point such that the circular arc hits the obstacle at a 90 degree angle will form.
As the front moves with constant speed the two arc element should reconnect
as the linear part of the front has moved a distance equal to the distance from
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the widest point to the highest point of the obstacle along the surface of the
obstacle beyond the widest point. For a rhombus shaped obstacle of height

2h and width 2d this distance d is simply d =
√

w2 + h2. This form a kink of
size ∆ that then heals as the front moves forward, meaning that the size of
the kink is a function of the distance traveled beyond the widest point of the
obstacle ∆(d).
The size of the kink is given by distance between the height of the linear
front d and the height of the point of intersection between two circles with
radius d and centers located 2w apart. The intersecting point between two

such circles is at d

√
1 − w2

d2 , derived in Appendix A. Giving that the size of

the kink ∆(d) is [9]:

∆(d) = d − d

√
1 −

w2

d2
(2.21)

Expressed in unites of w

∆(d)
w

=
d
w

(1 −

√
1 −

w2

d2
) ≈

w
2d

d� w (2.22)

Showing that the size of the kink is independent on the height of the obstacle
h and only the width of the obstacle determines the shape of the perturbation
on the front caused by obstacle.

2.3.2 Hotspots

A hotspot is a small region in space where the growth rate r2 of the bacteria
located inside the hotspot is greater than than the growth rate outside of
the hotspot r1. The front dynamics caused by such a hotspot is shown in
[10] to be described by applying the least time principle to the front moving
through and beyond a hotspot, by considering the front at a given time to be
the set of points whose path back to the initial condition of the growing front
is traversed in the same amount of minimal time. The least of time principle
is equivalent to the Eikonal Equation [10], that describes the arrival time to
the front T(~x) to the as a function of the local front speed v(~x):∣∣∣∆T(~x)

∣∣∣ =
1

v(~x)
(2.23)

Where in a geometry with a hotspot, v(~x) is characterized by having two
front speeds one inside the hotspot v(~xin) and one outside the hotspot v(~xout)
where

v(~xin) > v(~xout) (2.24)
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Möbius et al [10] Found that hotspots half length l causes a bulge in the front
which is well described by a radial wave originating at the hotspot centre
with radius given by

r = d + 2l(1 −
r2
r1

) (2.25)

Where d is the distance between the unperturbed part of the front and the
centre of the Hotspot. Such a bulge is shown in figure 2.5. The bulge causes
the area of effect of the hotspot to be an increasing parabola as the front
moves beyond the hotspot. Where in a x,y reference system with origin in
the centre of the hotspots and a front moving in the positive x direction, the
area of influence from the hotspots is a sideways parabola described by the
equation [10]:

y = ±
√

k2 + 2kx (2.26)
With

k = 2l
(
1 −

r1
r2

)
(2.27)

The takeaway being that small hotspots with larger growth rates causes
small bulges that spreads out sideways to the front causing a permanent
perturbation on the shape of the front.

Figure 2.5: Bulge in the front caused by a hotspot. Figure from [10]

2.4 Imaging of Bacterial colonies
From growing 3D colonies to imaging to quantifying their structure, this
section walk through the steps of explaining the how CLSM works by first
introducing the concept of fluorescence that is used for imaging colonies and
then defining a set of parameters that can be used to quantify the colonies
imageed using CLSM
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2.4.1 Fluorescence

Fluorescence is the process in which a fluorescent molecule reverts back
to its ground state from an electronically exited state by emission of light
[11]. The mechanism of fluorescence is shown in 2.6. The electric field of a
light wave can excite electrons in its path from their ground state molecular
orbital to a higher unoccupied molecular orbital. After absorbing energy
from the excitation light the electron is in a higher vibrational state of its
electronically exited state, it first relaxed by non radiative process to one
of the lower vibrational sublevels of the first exited state. The electron the
relaxes back it the ground state by emission of light, it is this emitted light
that is called fluorescence.

Figure 2.6: Concept of fluorescence. Light excites electron from ground
state S0 to a higher vibrational state of exited state S1. Electron first relaxes
to a lower vibrational sublevel of S1, and then relaxes to the ground state
emitting fluorescence light in the process.

Due to the dissipation of energy, when the electron relaxes to a lower
vibrational sate in the first exited state, by non radiative processes. The
energy of the emitted photon has a lower energy than the incident photon
[11]. Since the energy of a light wave is:

E =
hc
λ

(2.28)

where h is planck constant, c is the speed of light and λ is the wavelength
of the light. λ of the emitted light is larger than the incident light. This is
called the Stokes shift and allows for separation of the emission light from
the excitation light, when using fluorescence for imaging.
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2.4.2 Confocal Microscopy

Confocal Laser Scanning Microscopes (CLSM) allows for high contrast im-
ages of fluorescent light sources [12]. A schematic representation of how
CLSM works is shown in 2.7. Laser light of an excitation wavelength is
focused on a fluorescent sample, causing the fluorescent molecules to emit
light of a longer wavelength than the excitation light allowing for filtering
between the laser light and the emitted fluorescent light. Emission light
passes through an objective lens and a pinhole lens through a small pinhole
as seen in figure 2.7. This process causes light emitted from a small focal
point in the sample to be the only light captured by the detector, as emission
from above and below the focal point is blocked. Moving the focal plane
pixel by pixel creating a 2D image. Scanning through a range of focal planes
allows for the construction of a 3D image from the ”z-stack” of 2D images.

Figure 2.7: Schematics of CLSM [12]: Laser light excites the fluorescent
sample. Light from only a small focal point in the sample passes through
the pinhole to the detector, blocking out emission light from above and
below the focal point
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Selecting an objective lens provides a trade off between resolution and
depth of Imaging, the objective lens is characterized by its magnification
and numerical aperture, NA, which is defined as the half angle of the cone
of light focused or collected by the objective, θ, and the refractive index, n,
of the mounting medium.

NA = nsin(θ) (2.29)

A larger NA increases the resolution, from Rayleigh’s criterion a rule of
thumb for estimating the smallest features that can be resolved laterally [12]
it can shown that a doubling in NA results in a doubling of resolution.

Rxy =
1.22λ
2NA

(2.30)

Where λ is the wavelength of emitted light. However a higher NA comes
with the trade off of an increasedθdecreasing the distance from the objective
lens to the surface of the plate of the sample, which limits the depth at which
the sample can be imaged into.

2.4.3 Quantifying 3D images

3D images captured by CLSM comes in the format of a stack of greyscale
images with the X and Y directions along the 2D images and the layers of
images being the Z direction, from these stacks Beyenal et al. [13] suggest
a set of parameters to quantify morphology and shape of 3D biofilm, five
of which shall be considered here, Aspect Ratio, Fractal Dimension, Textual
Energy, Texutual Entropy, and Textual Homogeneity. The parameters Aspect
Ratio and Fractal Dimension are calculated on binary images consisting
of pixels belonging to the colony and background pixels. Therefore an
appropriate threshold of the 3D greyscale image must be chosen, such that
the surface morphology is preserved. Textual parameters Energy, Entropy
and Homogeneity are calculated directly on 3D grey scale images.

Aspect Ratio
Aspect ratio measures the symmetry of the colony pixels in the 〈X,Y〉 direc-
tion. Thereby characterizing deviations away from spherical colony shapes.
Aspect Ratio is calculated by measuring the run length in both X and Y
direction, where a run length in the X direction is the amount of consecutive
cluster pixels when walking along the X-direction of the image. Sweeping
across the entire 3D image all run lengths in the X and Y direction can be
averaged over giving the average run lengths in X and Y, AXRL and AYRL.
The aspect ratio of a 3D image is then defined in [13] as:

Aspect Ratio =
AXRL
AYRL

(2.31)
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Fractal Dimension
To introduce the concept of fractal dimension consider first some 1,2 and 3
dimensional nonfractal objects a line, a square and a cube as seen in figure
2.8. The line of length l = 1 can be split in to two copies of itself with half
the length l = 1

2 , similarly a 2D square of length l can be split into 4 copies
of the original each one half the lengths of the original square. Finally a
cube of length l can be split into 8 copies of itself with each half the length
of the original cube. A pattern arises where a shape of dimension D can

be copied into 1
2
−D

copies of itself when the length is halved. From this
dimensionality D can be defined from how objects in that dimension scales
in number of copies N with the length scale of the copies.

N ∝ l−D (2.32)

Figure 2.8: Objects of dimension D is made up of N smaller copies of them-
selves when the length scale l

This definition of dimension can be used to calculate the dimension of
self-similar fractals such as the Sierpiński Gasket figure 2.9. It consists of 3
copies of itself with half the length, the dimension of the Sierpiński Gasket

is therefore D f = −
ln(3)

ln(1/2) = 1.5849. The definition of fractal is any shape
whose fractal dimension D f is smaller than the dimension its embedded in
[14].
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For non self-similar fractals to calculate the fractal dimension consider a
box of linear size l and count the number of boxes needed to cover the
fractal. The fractal dimension is then

D f = lim
l→0

ln(N(l))
ln(1/l)

(2.33)

For random fractals such as coastlines or surfaces of bacterial colonies the
box counting method can be used to estimate the fractal dimension. The
method consists of counting the number boxes needed to cover the fractal
for different box sizes l. Plotting the values in a log-log plot a straight line can
be fitted, the slope of this line is the fractal dimension D f . Fractals embedded
in 3D has fractal dimensions between 1 and 3 with higher fractal dimensions,
meaning a more rough surface, where as a smaller fractal dimensions are
more smooth surfaces [13].

Figure 2.9: The Sierpiński gasket consisting of three copies of itself with half
the length scale [15]

Textual Parameters
The textual parameters analyzes the texture of a 3D greyscale image and de-
scribes the microscale heterogeneity of the colony by comparing the intensity,
position and orientation of pixels [13]. Textual parameters can be calculated
from the grey level co-occurrence matrix GLCM. GLCM is measure of the
distribution of changes in grey level values between neighbouring pixels, it
is calculated by counting how many times a pixel of value a is neighbours
with a pixel of value b for all greyscale pixel values between 0 and 255, the
defining a 256x256 Matrix PXYZ where the value at PXYZ(a, b) is the amount
of times a pixel of value a is neighbours with a pixel of value b. Normalizing
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by the the sum of all elements in PXYZ gives the GLCM PN(a, b)

PN(a, b) =
1∑

PXYZ
PXYZ(a, b) (2.34)

Where the (a,b) entry of the matrix contains the probability of a pixel of value
a being neighbours with a pixel of value b [13]. From the GLCM the textual
parameters can be calculated.

Textual Energy
Textual energy can be calculated by summing over the square of the GLCM
entries

Energy =

Na∑
1

Nb∑
1

PN(a, b)2 (2.35)

Since energy increases as the square of the entries of the GLCM energy
measures the regularity in the patterns of pixels. In a homogeneous image
structure, there are a few dominant grey level transitions in the image,
causing the GLCM matrix to have a few entries with large magnitude which
will cause a larger energy measure compared to an more heterogeneous
image, due to the entries being squared when summed.

Textual Homogeneity
Textual Homogeneity can be calculated by summing the GLCM in the fol-
lowing way

Homogeneity =

Na∑
1

Nb∑
1

1
1 + (a − b)2

PN(a, b) (2.36)

Homogeneity is the sum of the GLCM entries scaled by the difference in
intensity between neighbouring pixels, with a large grey level transition
between neighbouring pixels contributing less to the homogeneity measure
than neighbouring pixels with small differences in grey level values. Tex-
tual Homogeneity like Textual Energy is a measure of homogeneity in the
image, but where Textual Energy measures the frequency in the patterns of
pixels, Textual Homogeneity measures the similarity of spatially close image
structures [13].

Textual Entropy
Textual Entropy can be calculated from the GLCM in the following way

Entropy = −

Na∑
1

Nb∑
1

PN(a, b) ln(PN(a, b)) (2.37)
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Entropy measures the randomness in the image. It is a measure of hetero-
geneity, a completly homogeneous images with only one pixel value across
the entire image would have a entropy of 0 as ln(1) = 0. Entropy becomes
large with many small entries in the GLCM as ln(x)→ −∞ as x→ 0. There-
fore Textual Entropy is a measure of heterogeneity within the image.
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3
ExperimentalMaterials and

Methods

In this chapter the bacterial strains used to compare the effects of individual
cell shape on colony shape is explained. Following this the protocol for
growing bacterial colonies is established. In section 3.3 the image processing
steps necessary to gain consistent and accurate results form the images
produced by CLSM is discussed.

3.1 Materials
Bacterial Strains
The three strains used to investigate the effect of cell shape on colony mor-
phology is described in Monds et al. [16]. The three strains are genetically
identical except for a single mutation in the genetic coding for the MreB
protein, a prokaryotic actin homolog that is found in many rod-shaped bac-
teria and is thought to coordinate the spacial pattern of new material being
inserted into the cell wall during rod-shaped elongation [16]. The wildtype
strain used is the REL606 referred to as REL, and the two mutant strains of
REL is REL606mreB A53S referred to as AS and REL606mreB A53K refered
to as AK. The two mutant strains has growth rates a close to the ancestor
REL strain, see figure 5C in [16] but differ in mean aspect ratio, with the REL
having a mean aspect ratio of 4.44, AS having one of 3.55 and AK having
one of 2.50. Phase contrast images of the 3 strains can be seen in 3.1 In all
three strains the plasmid pmaxGFP (Amaxa/Lonza) [17] was introduced for
detection of Green Fluorescent Protein with max excitation/max emission of
487nm/509nm by CLSM. The bacteria was grown on LB plates containing
1.5% agar, containing 50µg ml−1 in order to maintain their plasmids.

20
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Figure 3.1: Phase Constrast of the strains from [16], showing the wildtype
strain, REL, being a thin and long bacteria with a aspect ratio of approxi-
mately 4.4. AK being a shorter and wider bacteria of aspect ratio 2.50 and
AS being intermediate between the two with an aspect raio of 3.55

List of materials
• Bacterial Strains REL, AS and AK with pmaxGFP plasmid

• 20 ml 0.625% agar + water

• Kanamysin antibiotics

• Minimal medium: 5x M63 salt, 1mg ml−1 B1 stock solution, 1M Mag-
nesium stock solution, 20 % wv glucose stock solution

• LB medium

• 2ml Eppendorf tubes

• 4.5 cm diameter glass bottom plates

3.2 Protocol for growing 3D colonies
Now a protocol for growing 3D colonies can be established, this protocol
was used for all bacterial colonies grown and quantified in this thesis

3.2.1 Protocol
Step 1
Grow the bacterial strains in 2 ml LB medium with 50 mg/ml kanamysin at
37◦ C for 8 hours.

Step 2
After 8 hours place 2 ml Eppendorf tubes in a heat bath at 55◦C.

Step 3
Warm in microwave bottle of 20 ml 0.625% agar + water until the agar is
fully melted
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Step 4
When agar is melted add to the bottle: 5 ml 5x M63 salt, 25 µl 1 mg/ml B1
stock solution, 50 µl 1 M Magnesium stock solution, 250 µl 20 % w/v glucose
stock solution. Mix the solution.

Step 5
Quickly add 1.5 ml agar + minimal media solution to each of the Eppendorf
tubes in the 55◦C heatbath to keep the agar in a liquid state.

Step 6
Serially dilute the 10 µl bacterial culture in 1ml LB medium 3 times and add
from the final dilution 10 µl bacterial culture to the agar + minimal media in
the heat bath along with 50 mg/ml kanamysin. Such that the concentration
of bacteria added to the Eppendorf tubes in the heat bath is 10−8 times the
concentration over night culture. As shown in figure 3.2

Step 7
Pour the content of the Eppendorf tubes into glass bottom plates, and let
it sit for 5 minutes to let the agar solidify. Place in incubator and let the
colonies grow for 15 hours at 37◦C.

Figure 3.2: Serial dilution from step 6 of the protocol, ON culture is diluted
such that the concentration of bacteria added to the minimal media + agar
is 10−8 times the concentration in the ON culture
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3.2.2 Optimizing colony count

Serial dilution was done with the aim of having on average 5-8 colonies pr.
plate, 5-8 was chosen as the target colony count to avoid wasting time and
resources on plates with 0 colonies due to random fluctuations in cell count
during serial dilution and to prevent competition for nutrients between
neighbouring colonies. This turned out to give colony counts of between
0 and 15+ colonies, due to both varying initial concentration of bacteria in
the over night culture and each step in the serial dilution the concentration
of bacteria the 10µl being Poisson distributed. To get more stable colony
counts the concentration of bacteria in the ON culture was measured using
measurements of the optical density. Using OD600 a method for measuring
the density of a sample by passing light at 600nm through a sample and
measuring the absorption of light coming out of the sample, the light passed
into the sample will be scattered by the cells in the sample and this difference
is measured by measuring the absorption of the light passed through the
sample. The OD600 measure is then [18]:

OD600 = A600 ·D · c f (3.1)

Where A600 is the absorbed light, D is the dilution of the sample and C f is a
correction factor for the used spectrometer. The concentration of cells pr ml
is then a multiplier of the measured OD600, given by how many cells pr ml
corresponds to OD600 = 1.0.
A serial dilution procedure was then calculated from the concentration of
the overnight culture such that the expected cell count in one plates is 5. For
example if the the OD600 measured cell density in an overnight culture is
2.5 ·108 cells pr ml, the expected number of colonies pr plate using the serial
dilution shown in fig 3.2 would be 2-3 colonies, which with each step of the
serial dilution being Poisson distributed has a much larger zero chance of
having 0 colonies in the final plate p ≈ 8%. Instead the serial dilution could
be modified by for example taking 25µl from the overnight culture in the
first step of the dilution, resulting in the expected number of colonies to be
6-7 in the final plate and p ≈ 0.2% chance of having 0 colonies.

3.3 Image Processing

CLSM was done on a Leica SP5 confocal microscope using a 488 nm excita-
tion laser and samples were imaged using both a Leica N Plan L 40x/0.55na
DRY objective and a HC PL APO 63x/1,20na W CORR CS2 [19] objective.
Image processing was done in FIJI/IMAGEJ.

In CLSM imaging depth is limited by scattering and absorption of by the
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emission and excitation light. As the focal point is moved deeper into the
sample the excitation light has to penetrate through out of focus material,
the intermediate material between the light source and the focal point will
absorb and scatter an increasing amount of the excitation light. Similarly
emission light has to pass through material to exit the sample and reach the
detector leading to it being absorbed and scattered by the material between
the focal point and the detector [20]. This leads, as shown in fig 3.3 showing
the maximum intensity projection of the 3D colony in the XY and the YZ, to
colonies with clearly imaged bottom halves and then features slowly fading
as the focal point is placed further into the colony.

Figure 3.3: Image of REL strain type colony. Maximum intensity projection
in the A) XY plane and B) YZ plane, show how the bottom surface of the
colony is clearly images where as the colony is imaged deeper into the z
direction the intensity stats to fade and continues as a shadow of the colony
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Similarly as shown in fig 3.4 colonies ability to have any rotation in 3D
space could cause different sections of the colony to start fading at different
penetration depths. 3.4 A-B shows a REL colony seen from the XZ direction
in A and in B the same colony is shown rotated 180◦ in the −XZ direction
the side of the XZ side of the colony stats to fade at a lower penetration
depth than the −XZ side of the colony. 3.4 C1-C3 shows an illustration of
a oval shaped colony slightly tilted in the XZ plane, light is passed through
the colony in C2 on the left hand side travels longer in the Z-direction before
having to penetrate into the colony causing the left side of the colony in C3
to be imaged clearly at a focal plane marked by the red dashed line, while
the right side of the colony scattering effects is causing poor resolution due
to the light having to penetrate deeper through the colony to reach the red
focal plane.

Figure 3.4: A-B: REL strain colony imaged from the XZ plane and the -XZ
plane, showing diffrent resolutions and similar heights C1-C3: Illustration
of tilted colony being imaged causes different penetration depths between
right and left side of the colony at the same focal plane, which results in
poorer resolution on the right side of the colony
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Due to high resolution imaging depth only being available for one half of
the colony a cutoff was chosen for each 3D image file. The Cutoff was chosen
with the aim of keeping all of the surface structure of the imaged colony half.
This was done manually for all images, a segmentation of all images was
also done with manually chosen thresholds to preserve the surface structure
of the colony. 3.5 shows the XZ projection of the REL strain colony shown
before image processing and after threshold and cropping.

Figure 3.5: XZ projection of REL conlony A) Before image processing B)
After Image processing

3.4 Statistical Analysis

Each of the parameters of colony shape and texture introduced in section
2.4.3. were measured on the 3D images taken with CLSM. For statistical anal-
ysis to compare differences in measured parameters between strain Analysis
of Variance ANOVA were conducted.

ANOVA assumes samples to be Gaussian but of unknown variance. Having
a total data set of N elements with mean x̄ divided into N groups g, each
with Ng elements, where N =

∑
g Ng, mean x̄g and variance Vg. Assuming

a null hypothesis that the true mean of each group µg, of which x̄g is an
estimate, are the same any differences in measured x̂g between groups will
only be caused be statistical fluctuations due to the true unknown standard
deviation σ. σ can be estimated by the variation within the groups. F-testing
consists of comparing the variance within groups and between groups, if the
variance between groups is significantly larger than variance within groups
[21]. The F statistic is measured by calculating the sum of squares between
groups divided by the degrees of freedoms n − 1 between groups

MSB =
1

n − 1

∑
g

Ng(x̄g − x̄)2 (3.2)
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and dividing it by the sum of squares within groups divided by the degrees
of freedom within groups

MSW =
1

N − n

∑
g

∑
i∈g

(xi − x̄g)2 (3.3)

From which the F statistic can be calculated

F =
MSB
MSW

(3.4)

A large F statistic means that the variation between groups is larger than the
variation within groups, the F statistic can be compered to an F-distribution
to determine weather this difference is large enough. The null hypothesis
that all groups are the same will be rejected if the chance of drawing a mea-
sured F-statistic from its F-distribution is less than α = 0.05. Rejection of the
null hypothesis means that at least one of the measured groups are signifi-
cantly different from the others, to determine which t-test between groups
were conducted to determine which individual groups were significantly
different.
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4
Experimental Results and

Discussion

A data set consisting of 22 REL, 16 AS and 13 AK colonies was imaged with
Leica N Plan L 40x/0.55na DRY objective [22] in order to analyse the colony
shape, sizes and morphology with the parameters described in section 2.4.3,
the full dataset is available online or ERDA [23]. Before analyzing the full
dataset some observations about the morphology of the colonies is made
using a subset of the colonies shown in figure 4.1, which shows a maximum
intensity projection in the XY plane of 15 colonies 5 of each strain REL, AS
and AK with each of the five colonies belonging to their respective strain
coming from the same plate.

Colony size

Using the maximum intensity projection the order of magnitude of bacteria
in the colony can be estimated. The radius of the colonies is on the scale of
100µm, assuming spherical colonies the volume of the colonies proportional
to r3 where r is the radius of the colonies giving a colony volume V of

V ∝ (100µm)3 = 106µm3 (4.1)

Approximating the volume of a single E.coli cell to be ∼ 1µm3 as REL has
a cell width of 0.72 ± 0.01 µm and cell length of 3.06 ± 0.04 µm [16]. The
number of cells, N, in a single colony grown for 15 hours is on the order of
millions of cells:

N ∝ 106cells (4.2)

28
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Figure 4.1: Table showing 5 of each strain type REL, AS ad AK, numbered
1-5. Each of the colonies belonging to their respective strain was imaged
from the same plate

Variation of colony shape within plates
Looking a fig 4.1, colonies has shapes that deviates from spherical shapes.
REL2, AS2 and AK2 has one of its two axis that is significantly longer than the
other with pointed ends, this shape shall be referred to as ”rugby shaped”.
Where as AS4 and AK3 looks more spherical, colonies such as AS1 and REL3
looks to be an intermediate shape between a sphere and a rugby shape, this
shape shall be refered to as ”egg shaped”. Generally the colony shape within
the plate is able to vary from ruby shaped, AK2, to spherical, AK3. Mitchell
and Wimpenny [24] found that the rugby shaped colony morphology of non
motile bacterial strains could be explained by the concentration of agar in the
growth medium, they observed that rugby shapes appear at concentrations
above 0.65 % agar. Where as colonies grown in concentrations below 0.65%
agar were observed to be spherical. From figure 4.1 we see that the colony
strains within the same plate of 0.5% agar is able to be both rugby shaped
and spherically shaped, indicating that the 0.5% agar concentration used
in this experiment where close to some critical agar concentration where
colony shape flipped from spherical shapes to rugby shapes and that small
fluctuations in agar concentration across the plate could cause the colonies
in some regions to become rugby shaped whereas colonies in other regions
would become spherical or that other parameters than agar concentration
causes the variation in shape observed.
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Protrusions in the colonies

Colonies REL1, REL2, REL3, REL4 and AS2 all show small protrusions of
length ∼ 10− 20µm across the protrusions. The constant speed model intro-
duced in section 2.3 predicts that small protrusions in growing fronts can be
caused by small hotspots where the growth rate of bacterial located inside
the spacial location of the hotspots is higher than the growth rate of bacteria
outside the hotspot.

This chapter and the growth models introduced in chapters 5 and 6 will
attempt to quantify and explain these observations among other measures
of morphology and comparison of the morphology of the three strains REL,
AS and AK.

4.1 Comparing The Bacterial Strains

4.1.1 Aspect Ratio

The aspect ratio of all colonies was measured, figure 4.2 shows box plots
and histograms of each of the three strains, to calculate aspect ratio the
average run length in X and Y, AXRL and ARYL where calculated, since the
orientation of the colony in the XY plane is determined by the orientation of
the plate when imaging, aspect ratio was calculated by always dividing the
greatest of the two measured run lengths with the smallest one, causing the
aspect ratio of the colony to always be greater than 1.00.

Figure 4.2: left: Box plots of aspect ratios of strains REL, AS and AK. right:
Histograms of aspect ratios of each of the strains
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Aspect ratios of the colonies vary from was measured to be in a range
between 1.00 and 1.10, to illustrate how colony morphology changes with
aspect ratio fig 4.3 show maximum intensity image in the XY plane 5 different
colonies labeled A, B, C, D and E with measured aspect ratios of 1.09, 1.07,
1.04, 1.02 and 1.00 respectively. Colonies of 1.00 are spherical or symmetrical
E, as aspect ratio increases the colony becomes more egg shaped D and C. As
aspect ratio increases above ∼ 1.05 the colony becomes rugby shaped and A.

Figure 4.3: 5 colonies with decreasing aspect ratios: Colony A = 1.09, Colony
B = 1.07, Colony C = 1.04, Colony D = 1.02, Colony E = 1.00.

ANOVA between the three strain types gives an F-statistic of F = 0.228
with a total of 51 colonies analyzed and 3 different strain types comparing
to an F-distrubution with 2 and 48 degrees of freedom gives a p-value of
p = 0.797 comparing with a significace level of α = 0.05 the variation of
aspect ratios between the strain types is not significant enough to a level
where we reject the null-hypothesis that all the strains are similar. Therefore
colony aspect ratio is not significantly affected by the individual aspect ratios
of the bacteria.

4.1.2 Fractal Dimension

Box plots and Histograms of fractal dimension for each of the strains can be
seen in figure 4.4. ANOVA of the measured fractal dimensions between the
three strains gives an F statistic of F = 0.241, comparing the F-distribution
with 2 and 48 degrees of freedom this gives a p-value p = 0.787 the measured
fractal dimesions of the colonies are not statistically significant with the
resolution of the surface provided by the Leica N Plan L 40x/0.55na DRY
objective .
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Figure 4.4: left: Box plots of measured Fractal Dimension of strains REL, AS
and AK. right: Histograms of measured Fractal Dimension of each of the
strains

Figure 4.5: left: Box plots of measured Textual Entropy of strains REL, AS
and AK. right: Histograms of measured Textual Energy of each of the strains

4.1.3 Textual Entropy

Boxplots and histograms of the Textual Entropy measured on the colonies
can be seen in figure 4.5. ANOVA between strains gives an F-statistic of
1.348 which when comparing to F-distribution with 2 and 48 degrees of
freedom correspond to a p-value of p = 0.269. Measured differences in
textual entropy is not statistically significant.
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Strains degrees of freedom (N1 − 1) + (N2 − 1) t-score p-value
REL/AS 36 2.7145 0.0101
REL/AK 33 2.8621 0.007
AS/AK 27 0.4794 0.6355

Figure 4.6: Statistical comparison of differences in measured textual energy
between the three strains. Show that to a significance level of α = 0.05
the measured difference in textual energy in the REL strain is significantly
different from textual energy measured in AS and AK

4.1.4 Textual Homogeneity

Boxplots and histograms of the Textual Homogeneity measured on the
colonies can be seen in 4.7. ANOVA between strains gives an F-statistic
of 1.348 which correspond to a p-value of p = 0.058. Measured differences in
textual homogeneity is not statistically significant, to a 5% significance level
α = 0.05.

4.1.5 Textual Energy

Boxplots and histograms of the Textual Energy measured on the colonies can
be seen in 4.8. ANOVA between strains gives an F-statistic of 5.759 which
correspond to a p-value of p = 0.0058. Measured differences in Textual
Energy is statistically significant, to a 5% significance level = 0.05. To see
where between the three groups differences where significant T-test between
the three strains AK, AS and REL, where t-scores between two groups are
calculated as:

t =
µ1 − µ2√
σ2

1
N1

+
σ2

2
N2

(4.3)

where µi, σi and Ni are mean, sample standard deviation and number of
measurements in group i. T-scores between groups and p-values from com-
paring the t-scores to a two-tailed t-distribution can be seen in table 4.6.
Statistical comparison between groups show that to a significance level of
α = 0.05 the measured differences in textual energy of the REL strain is
significantly different than the textual energy measured in the AS and AK
strains.
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Figure 4.7: left: Box plots of measured Textual Homogeneity of strains REL,
AS and AK. right: Histograms of measured Textual Homogeneity of each of
the strains

Figure 4.8: left: Box plots of measured Textual Energy of strains REL, AS
and AK. right: Histograms of measured Textual Energy of each of the strains

4.1.6 Discussion

The Textual Energy of the REL colonies where measured to be significantly
different than the AS and AK colonies, meaning that the images of REL
colonies are more homogeneous in the sense that a frequent repeating pat-
tern of pixels within the colony. The Textual Homogeneity measured did
not show the same statistically significant difference, despite also being a
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measure of homogeneity. This would imply that there is large differences
between pixel values in the repeating pixel patterns measured by Textual
Energy, since large differences in pixel values contributes less to increase the
Textual Homogeneity. This larger measured homogeneity in the REL strain
measured in by the Textual Energy could be caused by a tighter packing
of the longer rod shaped bacteria than the increasingly more spherically
shaped AS, AK all tough this same difference was not measured between
AS and AK colonies despite AS strain being a longer rod shape relatively
compared to the AK strain.

No significant differences in the colony shape quantified Aspect Ratio where
measured between strains. Despite observing varying colony shapes as seen
in figure 4.1, these differences in shape where not measured to be related to
the individual bacterial shape, indicating that the variation in colony shape
could be determined more by local environment of the colonies such as nu-
trient concentration or the concentration in agar as measured by Mitcell and
Wimpenny [24].

No significant differences in fractal dimension were measured, this could be
due to the resolution of the 40x/0.55na objective used to image the colonies.
Using equation (2.30) the smallest features that can be resolved laterally,
with the wavelenght of the green emission lights wavelength being 510nm,
is:

Rxy =
1.22λ
2NA

=
1.22 ∗ 510nm

2 ∗ 0.55
= 565.63nm

Instead switching to 63x/1.20na objective would allow the lateral resolution
to more than double

Rxy =
1.22λ
2NA

=
1.22 ∗ 510nm

2 ∗ 1.20
= 259.25nm

Figure 4.9 show the diffrences in resolved surface structure between an
3D image of a colony taken with the Leica N Plan L 40x/0.55na DRY and the
HC PL APO 63x/1,20na W CORR CS2 objective, which visually shows a clear
diffrence in the resolution of the surface, therefore a set of images using the
63x/1.20na objective were taken to closer analyze the surface structure of the
bacteria. However since a higher resolution due to a larger NA comes with
the tradeoff of having to move the objective closer to the sample as explained
in section 2.4.2 only the very bottom of the colonies could be consistently
imaged therefore only the fractal dimension were measured on these images.
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Figure 4.9: A: Image of a colony taken using the HC PL APO 63x/1,20na
W CORR CS2 objective B: image of colony taken using the Leica N Plan L
40x/0.55na DRY objective

4.2 Closer Analysis Of The Surface Structure

All images taken with the HC PL APO 63x/1,20na W CORR CS2 objective is
available at ERDA following the link [25]. 3D Images of the colonies where
taken on three separate days, on day 1 colonies from a plate AS strains and a
plate of REL strains where imaged, on day 2 colonies from plates of AS and
AK strains where measured and on day 3 colonies from plates of each of the
three strains where measured. On days 1 and 2 no AK and REL strains where
measured respectively, this was due to no colonies grown in their respective
plates where within range of imaging for the 63x/1.20na obective. Ranges
of measured fractal dimension ranges from 2.51 at the highest and 2.11 at
the lowest. To compare the visual difference between a strain with a large
fractal dimension to one with a lower fractal dimension Figure 4.10 shows
the structural difference of an AS colony with a surface fractal dimension of
2.51 and an AS colony with surface fractal dimension 2.24 for comparison,
as an example.

Figure 4.11 shows the distribution of fractal dimensions measured on the
three strains on different days, it shows a clear pattern of fractal dimension
measured on strains from the same plate being highly correlated, but almost
no correlation between the fractal dimension measured on colonies from the
same strain but grown different days on different plates. ANOVA between
strains on the measured Fractal Dimension of all colonies gives an F-score of
1.311, with the total number of colonies being 11 of the AS strain, 9 of the AK
strain and 8 of the REL strain comparing to an F-distribution with 2 and 25
degrees of freedom this gives a p-value of p = 0.2874. This means that there
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is no significant difference in the surface structure between all the strains
imaged wit the 63x/1.20na objective. However, ANOVA between the three
AS plates measured on different days gives an F-score of 9.82 comparing to
an F-distribution with 2 and 8 degrees of freedom this gives a p-value of
p = 0.007 which to a significance level of α = 0.05 the hypothesis that plates
all with AS strains but grown in different plates are the same. Similarly t-
testing between the two REL plates and the two AK plates gives p-values of
p = 0.0001 and p = 0.084 which means that to a significance level of α = 0.05
REL plates were measurably different, while the AK plates where not.

Figure 4.10: Comparison between A a AS colony with surface fractal dimen-
sion of 2.24 and B a AS colony with fractal dimension of 2.51. Imaged with
63x/1.20na objective

Figure 4.11: Distribution of Fractal Dimensions measured of different days,
shows clear difference between individual plates, but none between REL,
AS and AK strains
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4.2.1 discussion

Using the HC PL APO 63x/1,20na W CORR CS2 objective gave sharper im-
ages of the colony surfaces, but no statistically significant differences where
measured between strains, differences between plates where however mea-
sured between different plates of different strains, similarly to the variation of
colony shape within plates when imaged with the Leica N Plan L 40x/0.55na
DRY objective no difference was found between the three strain. Once again
indicating that variation in colony shape is determined by variation the in
environment of the colony has much greater measurable effect on colony
shape than the individual cell shape, both on a surface level and when
measuring colony aspect ratio.
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5
LatticeModels

I this chapter the lattice models used to model bacterial growth will be
introduced and explained. The basis for all lattice models will be the Eden
Growth model, several modifications and additional growth rules will be
added to the Eden Growth Model to model the phenomena observed in the
real life experiments.

5.1 Basic Eden Model
The Eden Model has already been described here an algorithm to implement
both version A and version B of the Eden Model as described in section 2.1.1.
Both models have been shown to be in the same universality class [5].

5.1.1 Version A

Version A defines the surface of the Eden cluster to be the adjacent unoccu-
pied surface sites. It can be implemented with the following algorithm:

Let L be a 3D lattice. For a site in the lattice L(i, j, k), if L(i, j, k) = 0 the
site is considered empty and if L(i, j, k) = 1 the site is considered occupied
by a bacteria:

Step 1
Define the initial state of the lattice, to be an empty lattice with a single
occupied seed in the middle of the lattice.
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Step 2
For the lattice state, define the surface of the bacterial colony, S, to be all
empty sites neighbouring an occupied site. Where the 6 neighbouring sites
of a site in the lattice L(i, j, k) is L(i ± 1, j, k), L(i, j ± 1, k) and L(i, j, k ± 1).

Step 3
Chose a random surface site S(i′, j′, k′) and update the lattice by setting
L(i′, j′, k′) = 1.

Step 4
Update the surface, by removing the randomly chosen surface site S(i′, j′, k′)
from the surface and add to the surface any empty sites neighbouring the
randomly chosen site.

Step 5
repeat steps 3 and 5

5.1.2 Version B

Version B defines the surface to be any occupied site with at least one adja-
cent unoccupied neighbouring site. This version of the Eden model can be
implemented with the following algorithm:
Let L be a 3D lattice. For a site in the lattice L(i, j, k), if L(i, j, k) = 0 the site
is considered empty and if L(i, j, k) = 1 the site is considered occupied by a
bacteria:

Step 1
Define the initial state of the lattice to be an empty lattice with a single
occupied seed in the middle of the lattice.

Step 2
For a state in the lattice, let the surface S be the subset of sites that is both
occupied by a bacteria and has 1 or more neighbouring empty sites. Where
the 6 neighbouring sites of a site in the lattice L(i, j, k) is L(i±1, j, k), L(i, j±1, k)
and L(i, j, k ± 1).

Step 3
Randomly select a surface site S(i’,j’,k’).

Step 4
This site may have one or several unoccupied neighbours. Randomly select
one of the unoccupied sites neighbouring S(i′, j′, k′). Call this randomly
selected site L(a, b, c)
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Step 5
Update the Eden cluster by setting L(a, b, c) = 1

Step 6
If the newly grown to site L(a, b, c) has one or more unoccupied neighbours
update the surface S by adding L(a, b, c) to the surface.

Step 7
For each of the 6 neighbours N(i, j, k) to L(a, b, c). These sites may or may not
be occupied. If they are occupied then they would have been considered
surface sites before L(a, b, c) became occupied in step 5. However, due to
L(a, b, c) becoming occupied, these site may no longer have an unoccupied
neighbours, if that is the case then they would no longer be considered
surface sites. Therefore update the surface by doing the following for each
of the Neighbouring sites N(i, j, k)

Step 7.1
Check if N(i, j, k) is occupied.

Step 7.2
If they are occupied check if they have at least one unoccupied neighbour
site.

Step 7.3
If N(i, j, k) is occupied but does not have an occupied neighbour, remove this
site from the surface

Step 8
Repeat steps 3-8

5.2 Time in the Eden Model
When analyzing the Eden model it is useful to have a measure of time, if one
bacteria grows with time intervals τ then the time between growth events for
colonies of N bacteria would happen on average with t = τ

N intervals. In the
Eden model only the bacteria located on the surface on the cluster can grow,
since the surface in version B is defined as exactly the subset surface sites
the has an unoccupied neighbour an therefore can grow it is very natural to
measure the time between events in a Eden cluster with N surface sites, δt,
to be:

δt =
τ
N
−→

1
N

, for τ = 1 (5.1)
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In version A the surface is not defined by the amount of sites that can grow
but rather the amount of sites that can be grown into, therefore eq. 5.1
does not hold in version A. For normal Eden Growth with no additional
modifications to growth conditions this discrepancy can be accounted for by
measuring time in terms of the radius of the Eden Cluster since the radius of
the cluster scales linearly with time [8]. However since it is not a given that
this holds when making additional rules of growth, the models discussed
in the rest of the chapter will be modified versions of Version B of the Eden
Model.

5.3 Growth Model With Small Hotspots
The constant speed model described in section 2.3.2 predicts that small
hotspots will cause small protrusions in a front moving at constant speed
normal to its surface. As the front moves beyond the hotspot the protrusion
then spreads out as a sideways parabola shown in figure 2.5. Small pro-
trusions were observed in experiments as shown in figure 4.1, therefore to
model bacteria growing on a lattice with small hotspots, let bacteria occupy-
ing hotspot sites have higher growth rates, rh, than the growth rates, ro,,of
the rest of the Eden Cluster not occupying a hotspot site. Where hotspots
are defined as small spherical clusters of connected sites scatted around the
lattice. Eden Growth with hotspots can be implemented with the following
algorithm:

Let L be a 3D lattice. For a site in the lattice L(i, j, k), if L(i, j, k) = 0 the
site is considered empty and if L(i, j, k) = 1 the site is considered occupied
by a bacteria, let ro be the growth rate of a site outside a hotspot and rh be
the growth rate of a site located within a hotspot, where rh > ro:

Step 1
Define an initial state of the lattice, to be an empty lattice with a single
occupied seed in the middle of the lattice. Also define H(i, j, k) a subset of
lattice sites belonging to a hotspot cluster

Step 2
Let the surface sites So be the subset of sites that is both occupied by a
bacteria, has 1 or more neighbouring empty sites and is located outside of
H(i, j, k). And the surface sites Sh be the subset of sites that is both occupied
by a bacteria, has 1 or more unoccupied neighbouring sites and is located
inside of H(i, j, k).
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Step 3
The time between growth events of a the surface sites located outside the
Hotspots is to = 1

Noro
, and the time between growth events inside the hotspot

is th = 1
Nhrh

. Time between any growth event is on average t = 1
Noro+Nhrh

.

Select from which of the two surfaces to grow from by selecting a random
number between 0 and 1 p.

if: p <
Noro

Noro + Nhrh
Grow from surface So

else: Grow from surface Sh

Step 4
Randomly select a surface site Sh(i′, j′, k′) or So(i′, j′, k′) depending on the
choice made in step 3.

Step 5
This site may have one or several unoccupied neighbours. Randomly select
one of the unoccupied sites neighbouring S(i′, j′, k′). Call this randomly
selected site L(a, b, c).

Step 6
Update the Eden cluster by setting L(a, b, c) = 1

Step 7
If the newly grown to site L(a, b, c) has one or more unoccupied neighbours
update the surfaces by adding L(a, b, c) to Sh if L(a, b, c) ∈ H(i, j, k). Otherwise
add the newly grown to site to So.

Step 8
Remove any sites adjacent to L(a, b, c) that was part of the surface but o longer
has an occupied neighbour similarly to step 7 of Eden Model version B

Step 9
Repeat steps 3-9.
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5.4 Alignment Biased Growth Model
To model the effect of individual cell shape on colony morphology with a lat-
tice model, consider a model where the bacteria has an orientation in space,
bacteria placed on the lattice can be oriented along one of the x,y,z-axis, in
total three different orientations in space is possible. Rod shaped bacteria
has shown a tendency align themselves with the orientation of nearby cells
due to a combination of cell division and mechanical interactions between
neighbouring bacteria [26] [27]. One could imagine that correlations in align-
ment between local bacteria could influence the shape of the entire cluster.
To model these phenomena on a lattice without calculating the actual me-
chanical interactions between all the cells, let instead any site in the cluster
have an orientation and a preference towards growing into a site along its
orientation, mechanical interactions between neighbouring cells are mod-
elled for by making the newly grown to site try to align its neighbors to its
own orientation in space. Such a lattice model can be implemented with the
following growth algorithm:

Let L(i, j, k) be a 3 dimensional lattice with L(i, j, k) = 0 defined as an empty
site, L(i, j, k) = 1 defined as a site occupied by a bacteria that is aligned along
the x-axis, L(i, j, k) = 2 defined as a site occupied by a bacteria that is aligned
along the y-axis and L(i, j, k) = 3 defined as a site occupied by a bacteria that
is aligned along the z-axis

Step 1
Define the surface S as the set of occupied sites with one or more unoccupied
neighbours sites, where the neighbours of the site L(i, j, k) is defined as the 6
sites L(i ± 1, j, k), L(i, j ± 1, k) and L(i, j, k ± 1).

Step 2
Randomly select a surface site

Step 3
Check the alignment of the selected surface site.
The site may have up to two unoccupied aligned neighbours and up to four
unoccupied unaligned neighbours (fx. if L(i, j, k) = 1 the aligned neighbours
would be L(i ± 1, j, k) and the unaligned neighbours would be L(i, j ± 1, k)
and L(i, j, k ± 1)). The Selected site will prefer to grow to a neighbour along
its own alignment. However, both of these sites may be occupied.

Step 4
Count the number of unoccupied aligned neighbours NA and number of
unoccupied unaligned neighbours NU.
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If NA > 0 make decision to grow to aligned neighbour site. If NA = 0 make
decision to grow to an unaligned neighbour.

Step 5
Depending on the decision taken in step 4 randomly select an unoccupied
aligned neighbour or unoccupied unaligned neighbour.

Step 6
If in step 4 the decision was to grow to an aligned neighbour site:
Grow the colony by setting the site chosen at step 5 equal to the same value
as the value in the ”parent” site chosen at step 2.
If in step 4 the decision was to grow to an unaligned neighbour:
Set the value of the site chosen in step 5 to a random value 1,2 or 3. (ie. set
the orientation of the site to a random orientation)

Step 7
Change the alignment of any occupied sites neighbouring the site selected
in step 5, to have the same alignment as the alignment chosen in step 6.

Step 8
Update the surface of the cluster.

Step 9
Repeat steps 2 to 9.
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6
Lattice Results

In this chapter results from lattice modelling of 3D colonies and the mod-
els effect on colony shape and surface will be presented. Results, where
possible, will be compared to the results of real 3D dimensional colonies
presented in chapter 4.

Estimation of the cell count in the colonies grown experimentally for 15
hours were that the colony size were on the scale of N = 106 cells. Therefore
to model and compare results from lattice modelling to the experimental re-
sults, Eden Model clusters were grown to a size of 106 sites being occupied.
An Three dimensional Eden cluster of size 106 can be seen in figure 6.1

Figure 6.1: Approximately spherical Eden Cluster of size 106 occupieed sites

46
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The Eden Model is approximately spherical with the radius of the cluster
increasing linearly with time [8]. Aspect Ratios of the Eden Cluster mea-
sured according to equation (2.31) and never increases above 1.01, therefore
the basic Eden Model fails to model the range of colony shapes observed
experimentally with aspect ratios ranging from 1.00 to 1.10 figure 4.2. In this
chapter the Hotspot model described in section 5.3 and the alignment model
described in section 5.4 will be tested and their effect on overall colony shape
will be measured.

6.1 Hotspot Results

The constant speed model for a growing front moving through a hotspot
predicts that a small protrusion is craeted on the front as the front moves
through the hotspot. In the colonies grown experimentally, shown in figure
4.1, multiple colonies where observed to have protrusions of approximately
10−20 µm across. Therefore, in this section a model with a spherical hotspot
with a radius of 10 sites. And with the center of the hotspot located 15 sites
above the seed in the z-direction of the lattice will be considered. The effects
of such a hotspot on the shape of the colony of grown to a size of 106 cells
will be considered. Figure 6.2 shows the visual effects of such a hotspot with
growth rates inside the hotspot being double the growth rates outside the
hotspot.

Figure 6.2: Shape of an Eden Growth Cluster growing through a hotspot
after t = 17, 20, 25, 30, 40 and 50 generations. The downstream effects
of the protrusion growing as the Cluster passes trough the hotspot starting
after approximately 15 generations is a slightly eggshaped cluster after 40-50
generations
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Figure 6.2 shows a protrusion on the Eden Cluster being formed as the
cluster moves through the hotspot between generations 17 and 25. The
downstream effect of the protrusion created by the hotspot is a visually
slightly egg shaped cluster. Experimentally several egg shaped colonies
were observed. Figure 4.3 showed that colonies with an egg shape had a
measured aspect ratio of approximately 1.02 to 1.04. To quantify the effect
on the aspect ratio of the Eden Cluster growing through a hotspot figure 6.3
shows the aspect ratio as a function of generation time of an Eden Cluster
growing through a Hotspot with varying growth rates.

Figure 6.3: Aspect ratios in the XY, XZ and YZ-direction of an Eden Cluster
growing through a hotspot, with growth rates r of A: r = 2, B: r = 3, C: r = 5
and D: r = 10, located with center a distance of 25 sites above the seed of
the cluster in the z-direction. For cluster with size of 106 sites the aspect
ratios of the cluster in both XZ and YZ-directions is in the egg shaped range
between 1.2-1.4 oberserved experimentally
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The figure shows that the aspect ratio in the XZ and YZ directions of
the cluster increases with time as the cluster grows through the hotspot
and for hotspot growth rates between 3 and 10 times larger than growth
rates outside the hotspot increases the aspect ratio of the colony to values
between 1.02 and 1.04 for clusters of size 106, similarly to the aspect ratios
of egg shaped colonies observed experimentally.

Figure 6.4: REL colony imaged with 40x/0.55na objective with visible pro-
trusions, lattice modelling of surface growth of colonies single protrusions
predicts the colony to become egg shaped if continued growing

Discussion
A lattice model containing small hotspots show at least the ability to replicate
some of the shapes of the colonies seen experimentally, showing that a single
hotspot will cause the shape of the colony downstream to be egg shaped.
The question is then if the protrusions and egg shapes were actually due to
colony growing through a hotspot spot or not. One could speculate that the
solid 0.5% agar and minimal media contained a heterogeneous distribution
of nutrients which could cause bacteria in some areas of the agar to have
more nutrients available to them and therefore have an increased growth
rate locally. However, without any testing of the nutrient distribution in
the plates, this remains speculative. It should be noted that the dynamics
of the Eden Model after it has passed through a hotspot is independent
on the hotspot itself only on the shape of the perturbation caused by the
hotspot. In that sense the spreading out from the protrusion causing the



6.2. ALIGNMENT LATTICE MODEL 50

cluster to become egg shaped is only a consequence by the normal surface
growth of the Eden Model, not by a variation in growth rates induced by
the hotspot. Therefore the effect of any protrusion on the length scale tested
here, whether caused by a hotspot or not, will have the downstream effect
on the colony that it becomes egg shaped. Figure 6.4 shows an example of
an experimentally observed colony with small protrusions on the surface,
while it has proven outside the scope of this thesis to find out what caused
these protrusions in the first place, we can with the hotspot lattice model
predict what effect these protrusions will have on colony shape if growth
is continued, namely that growth of the colony normal to the surface of
the protrusions will cause the colony to become egg shaped. It can also
be speculated that he egg shaped colonies observed experimentally is a
consequence of the colony in earlier times having formed small protrusions,
this also remains speculation but could be tested by observing growing
colonies using a time lapse microscope. This would allow for tracking of the
growth over time as the colony takes shape.

6.2 Alignment Lattice Model

Figure 6.5: Diamond shaped cluster of size 106 cluster sites grown using the
Alignment biased model described in section 5.4

Figure 6.5 shows a cluster of size N = 106 sites occupied, grown using
the alignment biased model. The cluster is visibly diamond or bipyramid
shaped similarly to clusters grown by M.T. Batchelor and B.I. Henry in [6]
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where diamond shaped clusters where found using noise reduction meth-
ods while growing large Eden clusters.

The intention of the Alignment Biased Model was to model the varying
colony shapes observed experimentally. To test the effects of competition
between aligned sites on colony shape figure 6.6 shows measured aspect
ratios of 4 Alignment biased clusters showing no significant deviations in
aspect ratio away from 1.00 in any direction X, Y and Z, and never approach-
ing the ranges in aspect ratio measured in real 3D colonies that ranged from
1.00 to 1.09

Figure 6.6: Aspect ratio in all directions X,Y and Z over time for 4 clusters
shows that the clusters never deviate form symmetrical cluster shapes.

It as he imagination that variation in colony morphology in the Align-
ment Biased Model was driven by clusters of similarly aligned sites, causing
the cluster to distort away from spherical colony, this seems not to be the
case. To measure how strong correlations between similarly aligned sites, the
probability that two neighbouring points had the same alignments, Cp were
calculated . Figure 6.7 shows a cross section view of the alignment model
in the xy-plane with sites of color red being aligned in the x-directions, blue
sites being aligned in the y-direction and green sites being aligned in the
z-direction. For a model with randomly placed alignments Cp would be ex-
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pected to be Cp = 0.33 since there are three possible alignments for clusters
of size 106, Cp was found to be:

Cp = 0.4296 ± 0.0004 (6.1)

Showing that any given site is expected to have more than half of its neigh-
bouring sites have a different alignment than itself. Figure 6.7 A also visibly
shows that cluster of similarly aligned sites are relatively small compared
to the overall cluster and it is unlikely that these clusters could have large
scale effects on colony shape.

Figure 6.7: A: Cross section view of the XY plane of a cluster, red colors
is sites aligned in the x-direction, y is sites aligned in the y-direction and
green is sites aligned in the z-direction B: probability of neighbouring sites
sharing alignments as the model grows

6.2.1 Comparison to the Eden Model

Here comparison between the scaling exponents and the measured anisotropy
between the Eden model and the Alignment Biased Model is made

Anisotropy
The Eden model have been measured to be slightly anisotropic along the
axes of the lattice, being approximately 2% longer in the directions of the
lattice compared to the average distance from the surface to the center of the
colony [6]. Here the anisotropy is calculated as the ratio between the distance
from the surface to the center along the three axes of the cluster, so in total
an average of the six extrema points of the diamond shaped cluster, and the
average distance from all the surface sites to the cluster center. An average
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anisotropy of four simulations using the alignment model, measuring the
anistropy as the model growns can be seen in figure 6.8. The anisotropy, A,
of the alignment model of 106 sites is measured to be:

A = 1.16 ± 0.04 (6.2)

Significantly larger than the 2% anisotropy for large Eden clusters.

Figure 6.8: left: Anisotropy of the cluster of four simulations and right: an
average of all simulations

Scaling of the Alignment model
Scaling of the Eden model in radial geometries has found a growth exponent
ofβ = 0.1047±0.0014 [8] and the radius of the Eden cluster scales linearly with
time, R ∝ t. Figure 6.9 shows the average cluster radius of four simulations
as function of time and a loglog plot of the average width of the clusters as
function of time.

Figure 6.9: left: Scaling of radius with time and a line drawn with slope
1.27and right: scaling of width with time and a line of slope 1.74 drawn
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Fitting a straight line to the radius vs time plot in order to find the slope
of the line using the mean radius r̄ and standard deviation si of the mean
radius of the four simulations, the slope of the line was calculated by using
the weighted sum of squares according to [21] minimizing:∑

i

(r̄i −mti − c)2

si
(6.3)

Where m is the slope and c is the intercept of the line, the slope m is found
to be:

m = 1.270 ± 0.003 (6.4)

Meaning that the radius of the cluster increases with ∼ 1.27 for every unit
of time. Similarly a straight line can be fitted to the log of the mean width
of the four simulations log(σ̄) as a function of the log of the time log(t) using
that if the error of the measured σ̄ is s then the error on log(σ̄), ŝ,is:

ŝ =
s
σ̄

(6.5)

Weighted sum of squares can be used, minimizing:∑
i

(log(σ̄i) − βlog(ti) − c)2

ŝi
(6.6)

Where β is the slope, the width of the Alignment model is found to have
scaling exponent:

β = 1.74 ± 0.11 (6.7)

Which is significantly different form the scaling exponent of the radial Eden
model where β = 0.1047 ± 0.0014

6.2.2 Discussion

The Alignment Biased Model proved to be a poor model for modelling
shapes observed experimentally, only amplifying the known anisotropy of
the Eden Model leading to diamond shaped but symmetrical colony clusters
with aspect ratios of approximately 1. Its likely that modelling the mechan-
ical interactions between cells, that causes cells align themselves within
colonies [26] is poorly described by square lattice growth models where the
directions of alignment is limited to being along the three axes of the lat-
tice. An individual based model, modelling all the mechanical interactions
between cells may prove a more useful tool for modelling the effects of cell
alignment on colony shape, such as the spring model described in [28]. Mea-
suring the growth exponent β of the Alignment Biased model it was found
to have significantly different scaling from the Eden Growth model.
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7
Conclusion and Outlook

7.1 Conclusion

Experimental results showed bacterial colonies of a variety of shapes ranging
from spherical to rugby shaped. Characterizing the colony in terms of aspect
ratio equation (2.31) it was found that colonies of spherical, egg and rugby
shape could appear within the same plates, where growth conditions could
be presumed to be close to identical. Comparing the shape of three different
strains each with different aspect ratios, no statistical significant difference in
colony shape characterized by aspect ratio were found between strains. Pre-
vious work by Mitchell and Wimpenny [24] suggests that the rugby shaped
colonies of non-motile bacterial strain appears with higher concentrations of
agar above 0.65% indicating that fluctuations in agar concentration within
the plate could be responsible for the appearance of rugby shaped colonies.
Some of the observed colonies displayed small protrusions of approximately
10−20 µm in size, the constant speed model and lattice experiments predicts
that protrusions of this size on the colony size scales of 106 cells could cause
the colony shape to become egg shaped with aspect ratios of approximately
1.02 − 1.04. A high resolution look at the colony surfaces, varying in rough-
ness, shown in is 4.10. Quantifying the surface texture by measuring the
fractal dimension of the surfaces, showed no statistical difference between
the fractal dimension of colonies grown from different strains but significant
differences between plates. Lattice modelling of individual cell shape failed
to predict the colony shapes seen experimentally. Instead, the Alignment
Biased Model exaggerated the known anisotropy of the Eden Model, prov-
ing to be a poor model for predicting 3D bacterial growth. All this evidence
suggests that environmental effects on colony shape where much greater
than the effects of individual cell shape. And that the random fluctuations
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in nutrients and agar density within the experimental setup, both between
and within plates had a more significant effect on colony shape and surface
than the cell morphology.
Differences in the Textual Energy between strains, were found to statistical
significance between the wild type strain REL and its two mutant strains AS,
AK but no significant difference were found between AS and AK. Textual
Energy is a homogeneity measure, quantifying the frequency of repeating
pixel patterns in the 3D grey scale images of the colonies. Its can be specu-
lated that difference in Textual Energy comes from a tighter packing of rod
shaped bacteria compared to the shorter more spherically shaped AS and
AK strains. Since less space between neighbouring cells could lead to more
regular pixel patterns. Although without a imaging resolution allowing for
separation of individual cells this remains speculation.

7.2 Outlook
The experimental setup used in this thesis proved to have fluctuations in
the environmental conditions of the bacterial strains that out weighted the
effects of individual cell shapes on colony morphology, the next step in the
experimental setup would be to better control for nutritional and agar con-
centration variations which proved to significantly effect colony morphol-
ogy. Modelling of hotspots and their effect on colony morphology showed
that they could explain the egg shaped colony shape arising from small local
protrusions in the colony shape, imaging methods such as time lapse mi-
croscopy tracking the growth and formation of an egg shaped colony over
time would be able to test this hypothesis. Modelling of individual shape
on a lattice proved to give results inconsistent with experimentally grown
colonies. An individual based model simulating the precise mechanical in-
teractions between cells may prove more useful to understand the effect of
individual cell shape on colony growth. Finally imaging methods allowing
for detection of single cells may help illuminate the reasons for the measured
differences in Textual Energy between strains.
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8
Appendices

8.1 Intersections between two circles
For two circles with centers located 2w apart along the x-axis with radius
d, let circle A have center in (x1, y1) = (w, 0) and circle B have center in
(x2, y2) = (−w, 0) The equation for circle A is then:

(x − w)2 + y2 = d2 (8.1)

and for circle B the equation is

(x + w)2 + y2 = d2 (8.2)

To find the points of intersection equate the two equations

(x − w)2 + y2
− d2 = (x + w)2 + y2

− d2 (8.3)

4wx = 0 (8.4)

x = 0 (8.5)

w2 + y2 = d2 (8.6)

y2 = d2
− w2 (8.7)

y2 = d2(1 −
w2

d2
) (8.8)

y = ±d

√
1 −

w2

d2
(8.9)
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