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Abstract

New findings in several areas of astrophysics have put dust in focus. Mysteries of how
larger dust particles are formed and on what timescales seem to elude us still. Therefore
the need to explain the microscopic behavior of dust arises. Large-scale simulations of
astrophysical phenomena such as molecular clouds have become highly efficient due to
continued advances in computing and software that leverage these improvements. This
opens up new possibilities for investigating new solutions to questions hard to answer in
traditional ways.

In this thesis, a numeric model of dust evolution is developed, which includes the co-
agulation of dust particles and their fragmentation in the events of dust-dust collisions.
The effects of this evolution is investigated by looking at the distribution of dust particles
at a later time. To achieve this, a simple prototype model is developed and its results
are tested against similar approaches, here it is found that the results are consistent with
analytical approaches and with the results of other authors. The prototype also found
that rapid growth occurs within very short timescales of about ∼ 30yr, whereafter an
equilibrium is reached. However, this model has no dynamic component which means the
collisions are assumed to happen constantly.

This model is then implemented into the computing framework Dispatch as this frame-
work has the necessary physics implemented in order to set up a more realistic simulation
experiment. The framework handles hydrodynamics and the dynamic part of the parti-
cles. To probe the dust evolution in the cold interstellar medium, an experiment is set
up with supersonic turbulence in a 1× 1× 1 pc box. The model has a 1/100 dust-to-gas
ratio and the MRN distribution [1], with particle ranges of 5−250 nm and an exponent of
−3.5. The system is then evolved for a few turnover times, where a snapshot of the system
is taken at every ∼ 1/4 turnover time, meaning a timescale of ∼ 0.1Myr. What is seen
is the system grows very few larger particles > 100µm; This is seen already in the first
snapshot. Hereafter the number density distribution sees very minute changes through-
out several turnover times. This show a balance between the effect of coagulation and
fragmentation is reached, especially for larger particles whose fragmentation contribution
is high. therefore larger particles are likely to fragment. The fragmentation contribution
is highly dependent on the relative velocities and the fragmentation velocity–which is still
an area of some debate; thus it would be possible that the fragmentation velocity is not
accurate. Perhaps a significant fraction of the particles are crystallized and thus have
much higher fragmentation velocity. This would likely result in more significant grain
growth. However, from the given results, it seems unlikely that the interstellar medium
(ISM) is an ideal medium for grain growth.

In a second experiment. Setting up with the same particle distribution, with a slight
adjustment; a fraction of the mass is put into a particle size outside this distribution.
Thus the system starts with particles of size 5 − 250nm and a population of size 100µm
particles. What is seen is that the distribution evolves very quickly, populating bins in size
range 250nm− 100µm and particles > 100µm. However, these populations remain small,
and the system reaches equilibrium quickly. This results in the distribution not changing
significantly through timescales of ∼ 1Myr, indicating what is put into the system is more
or less what you get out millions of years later.

The particle distribution seen in the ISM is therefore dependent on the injected parti-
cles or possible sink for the particles. This means it is more likely that contributors such
as AGB stars or protostars are more likely to account for the larger dust grains that are
seen in the ISM.
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Many aspects of dust evolution and its contribution is still up for debate. Hopefully,
this implementation of dust evolution in Dispatch can assist further investigations into
these areas of discussion, ultimately impacting our understanding of the initial dust size
distribution available in protoplanetary disks and as a reservoir for planet formation.
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1 Introduction

Dust is an essential ingredient in many processes throughout the universe. Seemingly most of
the mass of terrestrial planets and cores of gas giants are made of dust accumulated to a great
degree. Most of this dust is primarily made of metals and has its origin in stars created by fusion.

This dust forms much of what we see when we look out into the universe, it shapes the
spectra we see from galaxies. As dust absorbs light and re-emits it, it blocks light from stars
giving us the characteristic dark patches we seen in the night sky. We still do not really know
exactly where this dust comes from. We observe that already in the very early universe copi-
ous amounts of dust was present, this timescale is shorter than the timescale for AGB stars,
which raises questions as to where the distribution of dust we see came from. Another string
contender is supernovae, but it cannot in itself contribute the observed amount of dust.

To form what we see we must have dust in range of different sizes, and to make sense of
this; it is proposed that dust-dust interaction is both constructive and destructive. In other
words dust have the opportunity to coagulate or fragment in collisions with one another.

In recent years the observations of exoplanets have blown up with new telescopes such as
the Kepler space telescope continuously discovering more exoplanets. This leads us to believe
that planets are commonplace in the universe and not such a rarity as once thought. However,
little is known of how these planets form and indeed how they form so frequently and quickly
as it seems to happen.

How planets form continues to be a gap in our understanding, Despite the fact that we are
now in a time where we have managed to observe a staggering number of exoplanets. It looks
more and more like a common occurrence for stars to have multiple exoplanets of different sizes
and masses. Moreover, crucially we no longer only seem to find high mass and close-in planets;
we have gotten better and better at detecting smaller Earth-like, low-mass in different orbits,
likely terrestrial planets made primarily of rock material. The question is then what drives
such prolific planet formation.

In newer studies, how such copious amounts of dust have formed in the early universe have
proposed new solutions. Which seems to lead to a discrepancy in the timescales for dust cre-
ation and dust destruction. It has been proposed that the interstellar medium (ISM) might
be responsible for some grain growth. This leads to questions of what the timescale for dust
fragmentation is and if it is possible to coagulate dust in molecular clouds (MC) or the diffuse
ISM.

These questions involved with the evolution of dust may be well explained provided a com-
prehensive model of dust coagulation and fragmentation.

Unfortunately, we do not possess the ability to do universe-scale laboratory experiments in
the real world. So we must resort to a virtual reality, where we will have to try and emulate the
real world. To do this, we must identify the dominating features of the problem and find a way
to formulate them numerically. Luckily, this has been done throughout the history of science
since the invention of the computer, and we have gotten quite good at it. Furthermore, comput-
ers have continued to improve at almost alarming rates, enabling the possibility of adding new
features to existing simulation frameworks. As well as enabling high resolution and larger scales.

page 1 of 67



NBI July 6, 2021

The goal of this thesis is to formulate the description of dust so that it can be included in
big-scale simulations in the computing framework Dispatch. Nevertheless, to make a realistic
model of how dust behaves, we must first describe the dynamics of dust and, secondly, the
evolution of dust.
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2 Dust Origins

To begin we will take a look at where dust originates from such that we have a foundational
understanding of the existence of dust in the universe, which we will later build on in terms of
dynamics and evolution.

2.1 Dust in the interstellar medium

Figure 1. Field Emission Scanning Electron Microscopy (FESEM) images showing the difference between
amorphous(left) magnesium silicates and crystalline magnesium material(right) Credit: [2].

As they are found in molecular clouds and protoplanetary disks, dust particles have their start-
ing point in stars, as stars are responsible for the metals that make up dust particles. It is
found that silicate dust, which is mostly made up of silicon, oxygen, iron, and magnesium, is
prevalent. Other types of dust include carbonaceous dust, made up of groups of carbon atoms
mixed with hydrogen. Lastly, ice dust is made up of simple molecules such as water, methane,
and carbon monoxide. These tend to form in very cold mediums, and when they are heated
up, they tend to evaporate and release accreted material. This dust type will not be in focus
throughout this thesis.

The makeup of a molecular cloud is dependent on the chemistry of the stars from which
the cloud is made up. The depletion of different materials is different, however. The depletion
of various elements in various mediums has been observed and explained from new data and
new models. It is found that substantial depletion of materials Si and Fe in a cold medium is
required, meaning these must-have coagulated to form dust grains [3].

Silicate particles can crystallize if heated sufficiently. In the case of silicates, it seems around
1000 K for several days, undergoing annealing, meaning the atoms move to a crystal struc-
ture [4]. Crystallization gives the particles a tough and compact outer shell. These crystalline
materials can form in high mass-loss oxygen-rich AGB stars, where the envelope is dense [5].
The crystalline material is also found in envelopes of a protostar, where it suggests that the
material has started as amorphous silicate in the disk undergoing annealing in the hot inner
disk and being transported to the envelope by outflows [6].

The way dusts then end up in molecular clouds and later end up in disks is by contribution
from stars, as they are the origins of the necessary metals. One known source of these metals is
the processes in asymptotic giant branch (AGB) stars. These types of stars develop circumstel-
lar envelopes where molecules are allowed to cool and form dust particles. Stellar winds then
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release these particles into the surrounding medium, the total dust input from Oxygen-rich
AGB stars is in the order of (7.5 − 8.4) · 10−7 M�yr

−1, where for Carbon-rich AGB it is a
magnitude slower at 7.8 · 10−8 M�yr

−1, which only accounts for 2% of the dust in the ISM [7].

AGB stars were thought to be the primary source of dust in the present-day Milky Way.
However, we know from quasars that the universe was already filled with dust after 700 million
years, meaning the timescales of stellar evolution of such stars are too long for them to be
considered the most significant contributor of dust in the early universe[8].

Then supernovae were considered, specifically rapidly-evolving massive stars that end in
a type-II supernova, rich in heavy elements, and are likely to condense into dust particles.
Therefore type II SN was considered likely to be the major source of dust in the early universe
[8]. However, it has been found that, meanwhile, SNe are efficient dust producers; they are not
enough on their own, as they destroy most of the larger grains they create in reverse shocks.
Destruction happens because of various interactions, mainly dust-dust collision, where acceler-
ated grains collide, and gas-dust, where the gas is heated and brings dust back to gas phase.
New calculations have shown that only 10−20% of silicate grains in size range ∼ 0.25−0.5 µm
survive these shocks [9], meaning from a 19 M� star it is possible to get 0.1 M� dust, in the
right conditions.

This has then lead to the question being posed, is dust produced in the ISM? These have
proven to be difficult as the cold diffuse ISM does not possess the ideal conditions for grain
growth [10]. In recent times protoplanetary systems have been considered as significant dust
contributors.

Mm-sized particles have been found in envelopes of protostars, and it is suggested that these
are formed by grain growth in the disk and then being transported to the envelope by outflows
[11]. Looking at how much mass is being ejected by a protostar. It is estimated that 1 M�
goes into the star, 1 M� is simply let go, and 0.5− 1 M� gets ejected after coming close to the
protostar, meaning this material could be larger processed grains.

This would suggest that the ISM is constantly being supplied with larger grains. However,
larger grains do not seem prevalent in the diffuse ISM, implying that these larger grains frag-
ment relatively fast.

It is well established that the most common way for grain destruction is by shocks in the
ISM, generated mainly by supernovae. These can reach velocities of > 200 km/s, depending on
the distance to the supernova [12]. The rate of destruction of silicate grains has been calculated
given new estimates of supernova rates to be in the order of ∼ 2 − 3 Gyr. This results in a
discrepancy between the timescale of dust creation and the timescale for dust destruction[12].

As these dust particles then exist in the diffuse ISM, they are now vulnerable to irradiation
and shocks. It is, therefore, widely believed that dust is processed such that crystallized ma-
terial goes to porous amorphous material by amorphization [13]. Much of this material enters
star-forming regions and protostellar systems, where it is processed and ends up as crystallized
material. However, it is not well known how this distribution looks, how much of the dust is
crystalline material and how much is amorphous. But there seems to be a balancing between
the destruction and creation of crystallized material. This will significantly impact how easy
these particles will fragment, as will be important in later discussions of dust evolution.
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2.2 Observing dust in the interstellar medium

Dust can be observed in the ISM in different ways. One immediate way is the way that it blocks
out light. If we were to point a telescope at the night sky, big patches of complete darkness
appear, as well as patches of reddened stars. This is due to how light is dimmed as it travels
clouds of dust, also called extinction. Dust absorbs the light and transmits it in the infrared
spectrum. Reddening happens as dust scatters blue light and lets through the red light, thus
making stars appear redder. An easy to recognize example of this is sunset, where the sky
reddens. This happens because of Rayleigh scattering, which applies to particles smaller than
the wavelength of the incoming light. In this case, air molecules are around 1 nm, these scatter
the blue light at around 500 nm in the atmosphere, and the sky appears redder. Interstellar
dust, however, is shown to have a weaker dependence on the wavelength of the incoming light.
The same features are still seen as blue light from stars is scattered.[14]. A well-known cloud
that clearly shows these consequences of dust is Barnard 68 shown in figure 2.

The extinction still hints at the size distribution of the dust, in Mathis (1997)[1] it is shown
that the extinction fits with sizes going from 5 nm to 500 nm where the number density is
distributed according to a power-law with exponent in the range −3.3 to −3.6 for graphite
(SiC). The dust-to-gas ratio is a parameter that is relatively well established but can also vary
throughout a MC[15]. It is generally around 1/100 meaning the majority of the mass in the
ISM is gas.

Dust can be observed by its thermal emission, primarily in the far-infrared and sub-millimeter
wavelengths. Properties of the spectral energy distribution (SED) can explain things like what
type of dust is present in the system.

The Spitzer telescope observed type II SN ejecta 500-700 days after outburst in MID-infrared
and found profiles consistent with dust emission profiles and optical extinction increasing over
time after the outburst [8].

AGB stars have been observed to contain the molecules C2H2, HCN, SiS, SiO, SiC2, and
CS in their envelope [16]. Meaning that indeed atoms are being released from the star and
condense in its envelope, however lacking iron.
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Figure 2. A picture of molecular cloud Barnard 68, significant in that it is close to Earth, meaning there are
no bright stars between us and it and it blocks light from star behind it, making a big black spot. It can also
be seen at the rim of the cloud that stars appear red, likely due to reddening. Credit: FORS Team, 8.2-meter
VLT Antu, ESO

2.3 Observing dust in protoplanetary disks: DSHARP

In disks of gas and dust in disks around newly formed stars, it is thought to be the ideal
conditions for planet formation. These disks and their features have recently been studied in
the first large-scale observation program at Atacama Large Millimeter Array (ALMA), dubbed
”Disk Substructures at High Angular Resolution Project” (DSHARP). The array focused on 20
specific targets for up to multiple months at a time, thus giving researchers a new and unique
look into planet-forming regions in the disks and their structures, providing hints into what the
underlying dynamics required to form planets are.

The goal of the project is to find characteristic substructures in the distribution of solid
particles in protoplanetary disks. This is achieved by observations using a very high resolution
of 5 AU , Full-Width-Half-Maximum in the 240 GHz band.

Dust is heated up by friction, the transport of angular momentum, and, radiation from the
star. This heat is radiated from the dust and shows up as a continuum emission or as blackbody
radiation. From the shape of this continuum emission, it is possible to determine how the solids
are distributed, also features in observations have been used to describe how the dust-to-gas
ratio varies in the disk[17].
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Figure 3. Picture of the system HD163296, from the DSHARP observation program.

In figure 3, an example of one of the 20 targets that the ALMA telescopes observed in the
DSHARP. With remarkably distinct gaps between the core and outer rings. These substruc-
tures are shared among the DSHARP targets, some more distinct than others, and found at
varying radii (1 AU to 100 AU). They are mostly relatively compact, no thicker than 10 AU ,
and varying in how distinct they are. These suggest that we have areas of trapping for particles
of mm/cm size. These could lead to areas of coagulation, giving rise to larger particles [17]. In
previous models of planet formation, these substructures a largely missing. Meaning DSHARP
made a considerable impact putting in focus these substructures that likely play an essential
role in many aspects of planet formation.

The coagulation of smaller dust particles to larger ones has long been believed to be the
crucial first step to forming planets. It is well established that dust can coagulate to go from
sub-micron to several microns in observations looking at Herbig Ae/Be systems by Bouwman et
al.(2001)[18] and Boekel(2003)[19] who further go on to suggesting a continuous replenishment
of micron-sized particles, at the disk surface. Also, new improvements to the large scale ALMA
VLA have given rise to new observations where it has been found that mm size dust particles
exist in the outer rings of a protoplanetary disk[20], even 1 > cm sized particles have been
found in the inner rings of a disk[21]. All these observations point to the significance of dust
evolution and seem a likely candidate for the first phases of planet formation.

In the solar system, we find dust particles in size range of 0.3 µm in diameter (Jessberger
et al. 2001), even µm sized particles have been found in meteorites. And sample studies of
comets also suggest that ≥ 1µm grains are produced in the solar system (Brownlee et al. 2006;
Zolensky et al. 2006). Typically the particle size found in primitive meteorites (chondrites,
material from early solar system) is millimeter-sized particles called chondrules, making up
80% of the chondrite (Weisberg, McCoy & Krot 2006).
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3 Dust dynamics

In this thesis, our model of coagulation and fragmentation will be driven by the relative ve-
locities of dust particles. For different-sized grains, different sources of relative velocity are
essential. The velocities will determine to which degree the effects of coagulation and fragmen-
tation, respectively, are significant. It is then clear that we must investigate the macroscopic
dynamics of protoplanetary disks and molecular clouds to determine the dominant source of
relative velocity.

Gas is located in molecular clouds, and these can become too dense and cool, which leads
to collapse and the possibility of sparking the formation a protostar. Due to the conservation
of angular momentum, a disk is formed. Through observation, we know that the disk over a
few million years will vanish, and in some cases, leave nothing but planets and some asteroids
and meteors behind. We know from observations that molecular clouds are dominated by gas
in terms of mass. Therefore It is clear that to understand dust dynamics; we must understand
the relationship between gas and dust motion.

The gas can be described by the fluid representation equation of motion. Here mass con-
servation is represented by the continuity equation

∂

∂t
ρg +∇(ρgu) = 0 . (3.1)

Here ρg is the volume density of the gas and u the velocity of the gas. Momentum conser-
vation in a fluid is given by the momentum equation as

ρg

(
∂

∂t
u + u∇u

)
= Ftot . (3.2)

Here movement of the gas in time is dependent on the forces acting upon it. The force could
as an example be given as

Ftot = −∇P − ρg∇φ , (3.3)

where Ftot is force per unit volume, P is the gas pressure, and φ the gravitational potential.
Other forces can be considered, such as the divergence of the viscous stress tensor or, in the
case of magnetohydrodynamics, where the gas is ionized and feels a Lorentz force.

The dynamics of the dust can then be described, in the same representation, essentially the
same way, however, with a difference in what forces act upon it. As the dust will be described
as a pressureless fluid

∂

∂t
u + u∇u = −∇φ+ fdrag . (3.4)

Here fdrag is the force per unit mass. The dust will feel the gravitational potential. However,
the pressure gradient term is the part that separates the dust and the gas. Nonetheless, the
dust will not feel this force directly in its interaction with the gas that acts on the dust via
drag forces. This we will go into in more detail in the sections below.

3.1 Brownian motion

The simplest form of motion in particles in a gas medium comes from the random fluctuations
in such a medium, giving rise to random movement in random directions. This type of motion
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was first described by Robert Brown(1827) when he discovered pollen suspended in water would
move about randomly[22]. The motion was thus named Brownian motion. There will be no
preferred direction of flow within a medium of thermal equilibrium, meaning the fluids’ angular
and linear momentum is 0 and does not change over time. The relative Brownian motion is
dependent on the mass of the particles and is given by

∆uBM =

√
8kbT (mi +mj)

mimj

. (3.5)

Here i and j are the two particles and T the temperature. From this, it is clearly seen that
this velocity source will be more dominant and influential for small particles as it decreases with
the mass of the objects. Meaning we will likely see a limit for particles of a specific size where
Brownian motion is no longer relevant. The movement is random, meaning that over time
particles will spread out in the medium. Such that a macroscopic feature of Brownian motion
describes a form of diffusion. In our case, this will be relevant as small particles suspended in
a gas, either the case for a protoplanetary disk of high density or in a molecular cloud, but
mediums that can primarily be described as being locally in thermal equilibrium.

If we look at some examples involving equal-sized particles, the relative velocities caused
by Brownian motion in a protoplanetary disk where we assume T ∼ 200 K for 0.1 µm sized
particles, then we have ∆uBM ∼ 4.5 cm/s, and for millimeter-sized particles, we already have
∆uBM ∼ 10−6 cm/s. Thus the fall-off is quite significant for large particles.

For a molecular cloud, the temperature could be around T = 10 K for a cold medium,
meaning the velocities are roughly 4-5 times smaller, meaning only ∆uBM ∼ 1 cm/s for a
0.1 µm sized particle, and even lower for larger particles.

3.2 Gas drag forces

Firstly, we will work under the assumption that the gas in the regions that we examine corre-
sponds to the dominant part of the mass. This significance of gas also means that since the
dust velocities are dependent on the gas velocities by way of some coupling via drag forces. We
will have to consider what velocities the gas is dominated by.

Dust particles will ’feel’ drag from the gas by way of a drag force. This drag force will
depend on the size of the dust particles and the velocity difference between the particles and
the gas as

Fdrag = Cd(πa
2)

(
1

2
ρg∆u2

)
, (3.6)

Cd is a drag coefficient that depends on many different parameters involved with fluids, such
as the viscosity, flow speed, et cetera. πa2 represents the cross-section of the particle of radius
a, and the last parentheses represent the dynamical pressure, where ρg is the gas density and
∆u is the relative velocity between the gas and the dust particle.

It is beneficial to look at the time it takes for a dust particle to be stopped. This is called the
stopping time for a particle and is defined by the particle’s momentum divided by the drag force.

τs =
mv

Fdrag
, (3.7)
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where m is the mass of the dust particle, and v the velocity, there are then different regimes
of the drag force. Which will determine the gas-to-dust coupling. These are split into regimes
depending on the size of the particles and the mean-free path of the gas. When the mean-
free-path λmfp of gas molecules is larger than the cross-section of the dust grains of radius a
such that λmfp > a4

9
, the particle will ’see’ the gas molecules one at a time. And thus, the

interaction is treated by the Epstein regime; given that the grains are solid spheres of fixed
radius, the effects due to large dust concentrations are neglected. Moreover, we assume the
specular reflections on the grains are negligible together with the differential velocity compared
to the gas sound speed is negligible[23]. Then we can express the drag force and thus the
stopping time as

Fdrag = −m∆u

τs
(3.8)

τs =
ρsa

ρgcs
, (3.9)

where ρs is the solid density of a dust grain, a is the grain size, ρg is the local gas density, and
cs is the local gas sound speed.

For the cases of bigger particles given if the mean-free-path λmfp of the gas molecules is
smaller than the cross-section of the dust grains such that λmfp < a4

9
. Then the particles

will see many gas molecules at once, and the Stokes regime now describes the interaction. In
this case, the dust particle is surrounded locally by a viscous fluid described by the Reynolds
number (Re) for the gas, which is the relationship between inertia and viscosity. for Re � 1
then

τs =
6ρsa

ρg|∆u|
, (3.10)

where the general drag force (3.6) is valid. The drag coefficient then is dependent on the
Reynolds number, which describes how laminar or turbulent a flow will be, helping to predict
flow patterns, in this case, it is given as

Re =
2a|∆u|
vg

, (3.11)

where vg is the kinematic viscosity of the gas, in the figure4, it is seen how the drag coefficient
can range from 0.1-1.5 for given Reynolds numbers, which describe the flow for different regimes.
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Figure 4. Drag coefficient for a sphere as a function of Reynolds number, from laboratory experiments.
’Smooth’ is for a sphere with a smooth surface and ’Rough’ is for a sphere with a rougher surface. Credit: [24]

In a turbulent flow, the coupling between the dust and the gas can be described by the
dimensionless constant, the Stokes number which is defined as

St :=
τs
τed

, (3.12)

where τed is the eddy turnover time. Thus it is defined as a ratio between two characteristic
times, one for the particle and one for the flow. From this, it is clear that a Stokes number of
� 1 will mean that the particle will detach from the flow. Conversely, a Stokes number of� 1
would mean a particle will follow the flow closely. The Stokes number is dependent on the drag
force on the particle, meaning it is also dependent on which regime we investigate.

3.2.1 Stokes number in a protoplanetary disk

If we focus on the Epstein regime and look at eddy turnover time in a protoplanetary disk then,
following [25] their calculation provide

τed = α1−2q 1

Ωk

, (3.13)

where α is the turbulent parameter for disk and Ωk is the Keplerian period of the disk.
q is the exponent parameter from the dimensional analysis in Birnstiel (2010). The dust-gas
coupling highly depends on the eddy turnover, so does the relative velocities between dust and
gas in the disk; thus these will therefore also depend highly on this parameter. We will here
follow [25] and set it to 1/2. Simplifying the eddy turnover time to

τed =
1

Ωk

. (3.14)

Then combining Eq. (3.9) and the previous to get the simple term for the Stokes number
in a protoplanetary disk assuming the Epstein regime

St =
πρsa

2Σg

for a <
9

4
λmfp . (3.15)

From this, we can determine that the coupling between gas and dust is linearly dependent
on the size of the dust grains. Big grains will give high Stokes numbers, and small grains will
have low Stokes numbers.
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In order to examine this further and get an idea of how coupled a specific grain would be
in a disk, we must then make some assumptions about the gas in the disk and grain density.
Assuming the solid density of the grains to be ρs = 2 g cm−3[26] and a gas surface density of
18 g cm−2 [27], we can now make a calculation of the Stokes number in the Epstein regime for
given particle size. Micron sized particles will have Stokes number of order 10−5, and particles
of a few cm will near St = 1. Meaning in a protoplanetary disk, small dust grains will ’feel’ the
gas much more and move with it, whereas larger grains will move less with the gas, however
not completely decoupled.

3.2.2 Stokes number in a molecular cloud

If we shift our focus to molecular clouds, then to understand the gas-dust coupling, we must
understand the eddy turnover time in a molecular cloud (MC) or giant molecular cloud (GMC).
To do this, we must look at the dynamics of MCs. MCs are governed by fluctuations in density,
self-gravity, magnetic interactions, amongst other processes. Fluctuations in density mean that
in regions of MCs, there are opportunities for star formation to happen. What keeps MCs from
collapsing as a whole is the presence of gas pressure, rotation and turbulence. What is shown
to be the dominant factor in determining collapse in MCs is turbulence. On larger scales, it
prevents collapse of the MC; on a small scale, it promotes local collapse [28], giving rise to
star-forming regions. Suppose we were to look at easily observable quantities of MCs such as
size, velocity dispersion, and mass surface density. Larson (1981)[28] found scaling relationships
between these aforementioned observable quantities. These have been used time and time again
ever since to describe the dynamics of MCs. These relations are given as [29]

σv ∼ 1.2 km/s ·
(

L

1 pc

)0.38

, (3.16)

2σvL
2

GM
∼ 1 , (3.17)

n ∼ n0

(
L

1 pc

)−1.1

. (3.18)

Here the first describes a power-law relationship between the velocity dispersion σv and the
size L of the MC. The second describes self-gravitational equilibrium, and the third describes
an inverse relationship between mean density n and the size. The sound crossing time in the
MC is equal to

τed = τcross =
L

2σv
. (3.19)

This gives a Stokes number as a function of stopping time

St =
2σvτs
L

. (3.20)

At the relatively low densities prevalent in molecular clouds, the most relevant regime is the
Epstein regime, which includes the assumption that particles only see gas molecules one at a
time. For well-coupled particles, this means that the thermal properties of the gas dominate
the relative velocity, this means that the sound speed such that using Eq. (3.9) then

St =
2ρsaσv
ρgcsL

, (3.21)
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from this, we can make some estimates with some additional assumptions. We assume that
the average number density of an MC is given as n ∼ 1000 cm−3, even though these densities
can reach as high as 105 in high-density regions, such as clumps. Using the molecular mass of
the gas is µ = 2.37, we then have ρg = nµmp, where mp is the mass of a proton. Thus the
sound speed at T = 10 K is cs = (kT/(µmp))

1/2 ∼ 186 m/s. Now using the Larson relations
if we have a MC of a size L = 1 pc σv = 1.2 km/s. When the Stokes number is around 0.1
we find the particle size is around 0.5 µm, thus particles under and around this size should be
tightly coupled to the gas flow.

From Mark Falkenstrom’s master thesis experiments, he found that around Stokes number
of around 0.1 and below, the relative velocities between the gas and dust were dominated by
the sound speed.

For particles with a Stokes number around 1, the particles are not well coupled to the gas.
Thus the relative velocities are not dominated by the sound speed anymore, as the particles will
no longer follow the flow of the gas. This means the relative velocity is dominated by the larger
stochastic velocity dispersion as described by the Larson relations. Thus the Stokes number is
more accurately described as

St =
2ρsa

ρgL
. (3.22)

Looking for when the Stokes number is around 1 we find that a ∼ 30 µm particle is necessary
and particles of this size move on their own with little influence from the gas.

3.3 Turbulent motion of gas

There is a differential rotation in a protoplanetary disk, giving rise to shear between elements
at different radii. This can power various instabilities in the disk, such as magnetorotational-
instabilities (MRI), Kelvin-Helmholtz instabilities, or temperature gradient-related instabilities.
These instabilities drive turbulence in the disk.

Based on the coupling between the turbulent gas and the dust particles, it is possible to
derive a closed-form expression for the relative velocities for the turbulent motion of dust
particles, this was done by Ormel & Cuzzi (2007) [30] and for equal-sized particles results in

∆uTM ≈

{
cs

√
2αSt for St� 1

cs

√
2α
St

for St� 1.
. (3.23)

Here α is the turbulence parameter is an effective way to parameterize the turbulent motion.
We will use this for prototyping our fragmentation model and use the commonly used value
10−3 for protoplanetary disks. Looking at DSHARP data, the value seems a good approxima-
tion, even though it can change throughout the disk[17], but this is not our focus. With the
relative turbulent velocity, we can see how the different grain sizes would move along with the
gas or be less coupled.

For tightly coupled particles in a protoplanetary disk with T ∼ 200 K the relative velocity
caused by turbulent motion for a 0.1 µm sized particle is ∆uTM = 4.3 cm/s and for millimeter-
sized it will be ∆uTM = 435 cm/s, clearly showing that it will dominate for larger particles.
From this, it is also possible to show that the turbulent motion of the gas is dominant, as a
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source for relative velocity for particles of Stokes number of > 10−6 which under the assump-
tions will be for particles of size > 0.1 µm. For particles under this size, the Brownian motion
will dominate the relative velocities.

In molecular clouds, the relative turbulent motion between particles is dependent on the
Stokes number, as described earlier. There is a cut-off where the sound speed is dominant for
highly coupled particles, and for decoupled particles, the velocity dispersion is dominant.
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4 Particle descriptions

Here we discuss the different ways of describing and understanding particles. These have
different benefits, and limitations that we might require in our model of dust particles. We want
different properties of particles included in our model thus we need to apply a combination of
methods in order to describe the important factors of our problem.

4.1 Eulerian-Lagrangian descriptions

Figure 5. (a) is the eulerian on a mesh description, (b) Lagrangian particle description, graphic from [31]

In the Lagrangian description, particles are described as points with coordinate vector and
velocity vector and perhaps other variables such as temperature and pressure or mass and
such. The moving particles’ mass is kept constant and the distribution of the mass in the
particle is not considered. Meaning that overlapping particles are not considered. Thus mass
conservation is simply that no particles are created and destroyed, the number of particles is
kept constant. In the Eulerian description, the properties are confined to a mesh grid, meaning
their spatial coordinates are constant

4.2 Particle-in-cell with Macro-particles

A combination of Eulerian and Langrangian and one that has had a lot of success and has been
used since the ’50s is the Particle-in-cell method. It is used to solve a certain class of partial
differential equations. Where the particles are tracked in a Langrangian way in continuous
phase-space and the densities and such are computed at the same time on Eulerian mesh
points.

Particles are thus represented in so-called macro-particles. These are ensembles of particles
where macro-quantities such as number density are assigned as a weighting. The macro particle
can be anywhere in the continuous domain however macro-quantities are only calculated on
the discrete mesh points. For a given macro-particle we assume a certain shape, determined
by the shape function S(x − xp), where x is the coordinate of the macro-particle and xp the
observation point.

As our focus is macroscopic trends of evolution in the long term of the particles it makes
sense to simplify the many-body problem in this way, as we would like to cut down on computa-
tion cost and filling the system with a gigantic number of realistic mass particles is unfortunately
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not a feasible way to computationally handle the problem.

This macro-particle is then only allowed to move with an ensemble velocity, such that the
shape of the particle is held constant and no deformation occurs. It can be described by
kinetic theory via the introduction of a smooth distribution function f(x,v, t) this is then a
6-dimensional problem, given by the Vlasov equation[32]

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
=
∂f

∂t

∣∣∣∣
c

. (4.24)

Here a is some force, as an example drag-force is an important one in our case. The
right-hand side is a collision term describing the transfer of momentum. Considering the di-
mensionality of the problem and complexity we must find a way to approximate a solution.
Firstly the distribution function in our case will be described as a macro-particle given by

fi(x,v, t) = S(x− xi)P (p− pi)wi . (4.25)

Here S is the shape function, this decides the geometric extension of the macro-particle.
P is the given shape of the particle in momentum space where we would like for all particles
within the macro-particle to have same momentum such that there is no deformation meaning
P (p− pi) = δ(p− pi). wi describes the number of physical particles per macro-particle.

The geometric shape of the particle could be constructed in different ways, often involving
some symmetry and some smooth function. Often something like a step function is used for its
simplicity. We would here like to have the simplest form possible given by the nearest-grid-point
scheme where the shape is simply considered to be a delta function[33]

S(x− xi) = δ(x− xi) . (4.26)

This means that we have basically a linear interpolation for solving the forces on the near-
est grid points, as it would only be solved on the grid point it is nearest. With this approach
we have more noise as we are not really looking at spreading out the macro-particle, we only
evaluate at one point. Other approaches have a smoother transition but with higher-order,
spreading the particle out over several points. This however is a very simple implementation
that is not very computationally heavy.

4.3 Collisions

Last we discussed how to solve the dynamic side of the Vlasov equation, now we must look at
how to handle the collision part of the Vlasov equation, here we must introduce an approxi-
mate model as well. This is the essence of this thesis, and we will go into further detail as to
how this part is handled in later sections. For now, I will explain the basic principle of the model.

As we for every macro-particle have the mass and the number of particles described, we
can then bin these particles into different sizes, such that each size has an associated number
of particles. This distribution is then evolved, by looking at what the velocities are and then
moving particles around to different sizes in adherence to some model of coagulation and frag-
mentation. Now we then have a new distribution of particles this can then be brought back to
the macro-particle. This is done by simply changing the wp factor
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Figure 6. Shown on the left is the PIC scheme with a macro-particle of some shape, here just a representation.
Location is given by the blue dot in the center. This is then translated into the binned representation, where
the collisions are evaluated in the evolution, this leads to bins being populated or depopulated. This process is
then repeated for every timestep.
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5 Dust evolution model

It is still not fully understood how nature processes µm sized particles dust particles to objects
like planetesimals and asteroids at km size. With new observations it is becoming increasingly
obvious that this is an important question to answer, as it seems very much tied to the dynam-
ics behind planet formation. Several ways of building larger particles have been discussed, such
as particles sticking caused by ice in particles outside the ice line of stars or pebble accretion.
And several instabilities in protoplanetary disks have been proposed, considering that in the
general in the diffuse ISM the dust to gas ratio is often assumed to be 1/100. This ratio is
based on observations in the milky way and is often used to assume characteristics of molec-
ular clouds. However this ratio is dependent on the metallicity of the medium and can vary
depending on where in the medium one looks, in the outer parts of galaxies, where the ratio
can vary greatly[15].

Therefore in general to have dust-dust interactions we must have a local accumulation of
dust in regions. This requires instabilities to upset the homogeneity of the medium. For exam-
ple in protoplanetary disks where dust is shown to accumulate, which happens due to several
types of instabilities that can arise in disks. As an example the streaming instability which is
based on the initial spontaneous small clumping of dust in a area which in turn slow the radial
drift down, meaning faster radial drifting particles will catch up. This leads to a concentration
of dust meaning higher dust-to-gas ratio. In general several instabilities arise due to the fact
that gas and dust move in different ways. In molecular clouds smaller dust might clump where
the gas clumps as these dust particles are well coupled to the gas motion. However larger dust
might have other characteristics.

For our model to accurately describe effects as coagulation and fragmentation we must also
investigate the zoomed in case of dust particles colliding with one another. The understanding
behind this micro-physics of dust grains has been much improved in recent years, it is not
easy to study as we cannot simply observe these collisions in space. Therefore we must make
laboratory experiments that mimic the right conditions. In recent time several experiments of
this kind have been done, using a variety of methods, some using drop towers to mimic the
gravity, some have even been done on board the space shuttle in order to make use of the effects
of microgravity[26].

Several models of coagulation of particles to bigger aggregates that have been put forth,
suggest rapid growth of centimeter-sized particles at only around 1000 years. Simple models
that assume perfect sticking do not replenish the reservoir of smaller particles, rendering a
protoplanetary disk optically thin after only 1000 years, which is not what we observe. Obser-
vations suggests that smaller grains are abundant for millions of years. To fix this the effects
of fragmentation has to be included, and this gives a more realistic picture of the outcomes of
collisions.

Many different laboratory experiments have been assembled to form figure 7, where the
collisions of different grain sizes at different velocities have been analyzed. This was done in
using a variety of methods for example using drop towers.
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(a)
(b)

Figure 7. (a) parameter space of given experiment where the boxes indicate the applicability of the individual
experiments to the collision scenario described by Weidenschilling & Cuzzi (1993) of a minimum-mass solar
nebula at 1 AU. Shown is the areas where we see ’Sticking’ as in two dust particles stick together to form larger
aggregates. Here there then is a limit where bouncing is reached, meaning particles bounce of each other and
conserve mass. Later comes fragmentation. Note diameter units in [m] (b) is the same plot with contour lines
giving the collision velocities in [cm/s]. Note diameter units in [cm] Credit: [26]

In figure 7 the letters correspond to experiments Group A: bigger aggregate dust particles
with approximately equal mass are collided. Numerals means higher mass and higher collision
velocity (for conditions in a protoplanetary disk). Group B : small solid particle (monomer)
collide with larger dust aggregate. Numerals means higher collision velocity Group C : dust
aggregate - dust aggregate collision, numerals are higher collision velocity. It is interesting how
there is this clear transition where particles bounce off of each other. We go from sticking to a
barrier of bouncing before we reach fragmentation. This gives a nice overview of the possible
interactions at given collision velocities and particles sizes. We can use this later to determine
how we will handle the question of fragmentation velocity.

To describe dust evolution, we will need to include both coagulation and fragmentation, The
Smoluchowski equation is the basic theoretical master equation to do this. It is a population
balance equation that describes how the number densities of particles changes over time with
interactions. It was first publicized in 1916 by Marian Smoluchowski[34], where it originally
only included coagulation as. It was used in statistical physics as way of describing diffusion.
This is commonly used equation when investigating grain growth. It is given as

∂

∂t
n(mk) =

∫ ∫
M(mk,mi,mj)n(mi)n(mj)dmidmj , (5.27)

where M is the kernel which describes how particles move in the distribution from one mass
to another, this can be any form of kernel one decides. In the case of fragmentation and
coagulation it can be defined as
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M(mk,mi,mj) =
1

2
K(mi,mj)δ(mi +mj −mk)

−K(mi,mj)δ(mj −mk)

+
1

2
L(mi,mj)S(mk,mi,mj)

−L(mi,mj)δ(mk −mj) .

(5.28)

Here K is the coagulation kernel, L is the fragmentation kernel and S the distribution of
fragments after collision. The first two terms describe the gain and corresponding loss of mass
due to coagulation for a specific size. The next two terms describe the fragmentation gain and
loss. The distribution of fragments I will go into detail with in 5.2.3. [25]

5.1 Coagulation

Here we want to describe how and under what circumstances dust particles stick to one another.
This is described by the coagulation kernel in the Smoluchowski equation, which is given by

K(mi,mj) = ∆ui,jσgeoi,jpc . (5.29)

Here σgeo is the geometrical cross section of the collision, ∆u the relative velocity and pc
the probability of coagulation. The cross section is easy enough, it is found by

σgeoi,j = π(aiaj)
2 , (5.30)

where a is the radius of the given particles, which are here assumed spherical.

The relative velocities we have talked a bit about already. In the case of Dispatch, which
is discussed further below, it will be handled in the framework, as there is already a system in
place to handle particles.

I will ignore bouncing of particles. Then the probability of coagulation will come from the
fact that probability of coagulation and fragmentation must pf+pc = 1 which means pc = 1−pf .
I will go into further detail of pf in 5.2.1.
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5.2 Fragmentation

Figure 8. Here a representation of four examples of dust aggregates that are grown by Brownian motion
induced collisions. These were reconstructed from 3D microscopic images from space-shuttle experiments. It
consists of SiO2 spheres with 1.9 µm diameter. The centre images shows a trajectory of a single SiO2 sphere,
recorded in a drop-tower experiment. Credit:[35]

The fragmentation kernel is described by almost the same parameters as the coagulation, except
crucially in the probability. Thus

L(mi,mj) = ∆ui,jσgeoi,jpf , (5.31)

where the fragmentation probability is dependent on the relative velocities.

5.2.1 Fragmentation velocity

Exactly when fragmentation happens is a complicated microphysical problem that has to be
investigated in the lab or through molecular dynamics modelling. In my models, the probability
for fragmentation is controlled by the simplistic function

pf =


0 if ∆u < uf − δu
1 if ∆u > uf

1− uf−∆u

δu
else .

(5.32)

Here ∆u is the velocity difference between the 2 colliding particles and uf is the velocity
at which fragmentation occurs. We also introduce a transition width of δu. Which essentially
works like a bouncing parameter, where in the given parameter space the particles neither stick
nor fragment, but simply bounce of, of each other. It also provides a parameter space where the
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fragmentation probability is being lowered such that far below the bouncing region it goes to
zero. This is the approach used in Birnstiel et al. [25], which we will later attempt to replicate
some test results of. This then allows us to set a specific velocity above which fragmentation
will be dominant.

The range at which fragmentation occurs can vary significantly in magnitudes from around
1 m/s [25] to 1 km/s [36]. Thus this fragmentation velocity is subject to some debate. It of
course depends on the kinetic energy involved in the collision. However depending also on
what type of material the particle is made of whether the particle has been thermally processed
and importantly what size of particle we are looking at. Things like the geometric shape of
the particles are also shown to be important. There is a lot of micro-physics to consider in
grain-grain collisions. There does not seem to be a nice and simple model that captures all the
complex components accurately.

Monomers will typically be structurally solid whereas bigger particles might be made up of
chains of monomers, forming aggregates that are fluffy, this changes how the collision energy
is expended. For example in these aggregates the energy will be spread out between multiple
monomers[37]. We also have crystalline structures coming from star forming regions which are
thermally processed particles. These are more compact and are held together by sitting in
crystal lattice form. Where as these fluffy particles are held together with by simply Van der
Waals attraction. Which are comparable to diamonds and the dust accumulating on your shelf
respectively. These types will vary significantly in the energy that is needed to break them apart.

With these considerations in mind we can formulate a fragmentation probability function
that is dependent on the particles’ sizes involved. So that for each possible collision of the bins
we have a matching fragmentation velocity we can check against.

If we follow the example of Dominik & Tielens (1997) [38] looking at the kinetic energy
involved then the impact energy is given as

E =
1

2
mµ(∆u)2 . (5.33)

Here mµ = m1m2/(m1 + m2) is the reduced mass of the involved particles and ∆u is the
collision velocity (The relative velocity between particles). And then using the result from
Dominik & Tielens[38] for the breaking energy which is given as

Ebr = Abr
γ5/3a

4/3
µ

E?2/3
. (5.34)

The rolling energy, energy required to roll a contact point between monomers in a aggregate
is given as

Eroll = 6π2ζcritγaµ , (5.35)

where aµ is the reduced radius of the particles. γ is the surface energy density and E? reduced
elastic modulus of the material. The parameter Abr and ζcrit in Dominik & Tielens[38] are based
on theoretical considerations and assumptions which leads to Abr = 43 and ζcrit = 10−8 cm.
However later in laboratory experiments by Poppe (1999)[39] it is shown that monomers stick
at a order of magnitude higher velocity than assumed previously. This was due to having
underestimated the energy dissipation by two orders of magnitude[39]. These factors leads to a
much higher Abr where I will follow the calculations in [37] where they estimate the parameter
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at Abr = 2.8 × 103. Also the rolling energy Ecrit is also shown to be an order of magnitude
higher than the theory. Meaning that the critical displacement ζcrit is an order of magnitude
larger. Here the new estimate is then ζcrit = 2 · 10−7 cm. From this we can then estimate the
breaking velocity or fragmentation velocity. We look at the breaking energy and isolate the
velocity such that

ufrag =

√
2Ebr
mµ

⇒ (5.36)

ufrag =
√

2Abr
γ5/6a

2/3
µ

m
1/2
µ E?1/3

. (5.37)

Here for silicate grains the material property parameters γ and E? will be set to γ =
25 erg g−2 and E? = 2.8 · 1011 dyn g−2. Now we can use this to estimate effects on monomers
with the given parameters, such that we find the scaling

ufrag =
1

22/3

√
3Abr
π

γ5/6ρ−1/2
s a

−5/6
0 E?−1/3 ⇒ (5.38)

ufrag = 8.4
m

s

(
Abr

2.8 · 103

)1/2(
γ

25 erg g−2

)5/6(
ρs

2 g cm−3

)−1/2

(
a0

0.1 µm

)−5/6( E?

3.7 · 1011 dyn g−2

)−1/3

.

(5.39)

Assuming spherical grain such that m0 = 4
3
ρsa

3
0. The subscript ’0’ describes a monomer.

This is then the collision between two equal sized grains. From this we can see that for a 0.1 µm
grain the fragmentation velocity will be 9.5m

s
, for smaller particles as 1 nm it will be 438.6m

s

and bigger particles as 1 µm it is 1.4m
s

. For even bigger particles as 1 mm it will be much lower
at 0.4 cm

s

This result is indeed only applicable to small particles since in the case of bigger particles
as aggregates of monomers, here there is the possibility of distributing the energy over several
monomers in the structure. This means we need to look at the rolling energy. By the results
of Blum & Wurm (2000)[26] then the regime for sticking is when the energy is below 5Eroll
and above we will have other types of regimes, in Ormel (2008)[37] transition areas of energy is
considered, such as restructuring of the aggregate and erosion. Here we will keep it simple and
everything above the 5Eroll limit will give us fragmentation, however these regimes are some-
thing that could go into further considerations of the model, also in the case of fragmentation.
From this energy threshold however we can again look at the kinetic energy such that

ufrag =

√
2(5Eroll)

mµ

⇒ (5.40)

ufrag =

√
60π2ζcritγaµ

mµ

. (5.41)

Now again we will like to know how this scales in terms of the size of particles. To do this
we assume spherical grain and equal size such that aµ = a0/2, we get
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ufrag =
√

60πζ
1/2
critγ

1/2a1/2
µ

(
4

3
ρsa

3
0π

)1/2

⇒ (5.42)

ufrag = 13.3
m

s

(
ζcrit

2 · 10−7cm

)1/2(
γ

25 erg g−2

)1/2(
ρs

2 g cm−3

)−1/2 (
a0

0.1 µm

)−1

. (5.43)

This is then only applicable to larger aggregates. Clearly this scaling in the size means that for
bigger aggregates, the fragmentation velocity will go down quicker than (5.39).

Thus using this new expression for fragmentation velocity we can use the same function
as we began with (5.32) now the function is just dependent on the particles colliding as the
fragmentation is now dependent on the particles’ sizes and material properties, thus

pf (i, j) =


0 if ∆ui,j < ufragi,j − δu
1 if ∆ui,j > ufragi,j

1−
ufragi,j−∆ui,j

δui,j
else

(5.44)

Now we have a matrix that for every possible collision between bins can give us a probability
for fragmentation and a for coagulation as we set pc = pf − 1. Which means they sum to unity
and we either have coagulation or fragmentation in collisions.

In Ossenkopf (1993) it is found to be the turbulence that is the dominant force behind
fragmentation, except for high density and small particles. Turbulence causes eddies which can
given high relative velocities, which are required for fragmentation[40]. This is also clear from
the results shown later.

5.2.2 Cratering

Since previous studies have shown that large dust particles tend to acquire large velocity
dispersion they therefore also tend to fragment. This is also seen in warm ionized medi-
ums[41].Therefore we introduce 2 regimes of fragmentation, depending on the masses of the
dust particles involved in the collision. We want the possibility of cratering to provide the sys-
tem with smaller particles. This could occur when one big particle and a small particle collide
at high speeds. Thus the smaller particle will dig into the bigger particle. First of we need to
determine in which specific collisions this would occur. We would here like to introduce a basic
model, so what we will do is assume a specific ratio between the masses such that when this is
small or large, corresponding to when large and small particles collide, we have cratering

When
mi

mj

> 10 ,

or
mi

mj

< 0.1 .

Which follow the same example as [42], where masses that differ by order magnitude is
assumed to give cratering. Shown in Figure 9 are the possible interactions.

As shown when cratering occurs the smaller particle will dig out material equal to its own
mass thereby giving us 2mj mass, here assuming i > j. This mass is spread into fragments.
Where as in the other case the total mass of the particles will be spread into fragments. This
results in a efficient way of limiting the particle sizes and providing small dust grains.

page 25 of 67



NBI July 6, 2021

Figure 9. Here we have the two colliding particles. If their relative velocities are above that of the fragmen-
tation velocity uf one of two scenarios will play out depending on the mass ratio of the two. Where in the first
scenario the smaller particle will make a crater in the bigger particle effectively resulting in a fragmentation
mass equal to 2mj, and leaving the rest of the larger particle. In the second scenario full fragmentation will
occur shattering both particles, feeding the system with small particles.

5.2.3 Distribution of fragments

How the fragments are spread between mass bins is typically described by a power-law. Such
that most fragments are of smaller masses. This means that in (5.28) we here need to formulate
S which is responsible for distributing fragments after collisions.

Now that we have 2 cases of fragmentation, one that includes cratering. We will similarly
handle this distributing in two separate ways. For full fragmentation we want the fragments to
be spread across all the mass bins below the largest one that is included in the collision. As we
have binned the masses the only thing we need to find is which of the indexes are the biggest
in the collision. Thus

S(k, i, j) = m−ξ
k where k < i and i > j, or where k < j and j > i, or where k < i, j and i = j ,

(5.45)
an easier way of saying this is

S(k, i, j) = m−ξ
k where k < max(i, j) . (5.46)

This gives us an array of the length given by the index of the largest particle in the collision.
Thus spreading the fragments across the bin indexes below this. This of course does not include
the index of the large particle itself.

In the case of cratering the particles dug out of the larger particle must not exceed the
smaller particle in mass, thus we will distribute the fragments in all the bins below the smaller
particle in the collision.

S(k, i, j) = m−ξ
k where k < i, j , (5.47)

where we will also have to re-normalize the array such that mass is preserved.

page 26 of 67



NBI July 6, 2021

The exponent for the power-law has been widely discussed. It ranges between 1 and 2,
both experimentally and theoretically[25]. I will here follow the lead of Brauer, Dullemond
(2008)[42] and use ξ = 1.83.

5.3 Extending the Smoluchowski equation to include momentum

My dust evolution kernel will be integrated into Dispatch which has a built-in particle system, .
It has to conserve mass and particle number densities, but it also needs to conserve momentum,
and in that case we need to be able to transfer momentum with particles that coagulate and
fragment. Luckily in the Smoluchowski equation we have a system in place for transfer of mass,
so all we need is to have the velocity of each particle, so that in each collision we can also make
sure to transfer the momentum to fragments or coagulated particles.

∂

∂t
q(mk) =

∫ ∫
M(mk,mi,mj)n(mi)n(mj)

mivi +mjvj
mi +mj

dmidmj , (5.48)

where q is momentum number density can be related to momentum density as pk = qkmk. Note
that this is in principle only valid given that the individual particle inside a macro-particle are
assumed to have the same velocity.

5.4 Analytical solution to Brownian motion

By assuming that the grain size distribution to be a delta function and the coagulation prob-
ability to be unity we can approximate the growth rate of particles in collisions. The increase
in mass is given by the mass of the particle m divided by the collision time τ

dm

dt
=
m

τ
. (5.49)

Using that dm = 4πρsa
2da and that τ = m/(ρdσ∆u), where ρd is the dust density, ρs is the

solid density of a particle, σ the cross section given as σ = 4πa2 for spherical particles and ∆u
the relative velocity between particles. If we assume the relative velocity to be given by the
Brownian motion as [25]

∆uBM =

√
16kbT

πm
, (5.50)

then integrating (5.49)

a(t) =

(
5

2

ρd

ρsπ

√
12kbT

ρs

(t− t0) + a
5
2
0

) 2
5

. (5.51)

This gives us a analytical solution to the grain growth in the simplified case which we
can test our model on as a first step. We must first make some assumptions about the disk
however. If we assume the vertical structure to be in hydrostatic equilibrium at all times, and
if the protoplanetary disk is geometrically thin meaning the pressure scale height over radius
Hp(r)/r � r and the vertical sound crossing time is much shorter than the radial drift time
scale of the gas. The isothermal vertical density structure is then given by

ρ(z) = ρ0 exp(− z2

2H2
p

) , (5.52)
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where

ρ0 =
Σg√
2πHp

, (5.53)

Hp =
cs
Ωk

, (5.54)

Ωk =

√
Gmstar

r3
. (5.55)

Here mstar is the mass of the host star, and G is the gravitational constant. If we make further
assumptions, as the temperature in the disk is T ∼ 200 K, the radius of the disk is r = 1 AU
, the stars mass is half that of the sun and we can use the ideal gas law to simplify the sound
speed to

cs =

√
kbT

µmH

. (5.56)

Here kb is the Boltzmann constant, µ is the ratio between hydrogen and other atoms, primarily
Helium, and mH is the mass of a hydrogen atom. We will assume µ = 2.37, leading to a sound
speed of cs = 823 m/s, and assume a dust-to-gas ratio of 1/100 such that Σd = Σg/100
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6 Numerical Algorithm for dust evolution

The essence of our problem, in this case, is the discretization of the mass, and the particle size.
We will do this by having an upper and lower bound for the size of the particles. Between these
two points, we will then have a logarithmic space with a set number of bins. Thus slicing the
particle size space. Even though their physical shape will not have an effect on the simulations,
as we do not take this into account in the way we describe the microphysics of dust grain
collisions, we will assume spherical dust grains meaning we can relate the particle mass and
particle size as

m =
4

3
ρsa

3π .

Where ρs is the density of the particles. We will throughout this thesis use ρs = 2 g/cm for
all dust particles.
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Figure 10. Here in simple terms the binning that we will be using is shown, the sizes and masses are discrete.
In this example we use 5 bins and the sizes ranging from 10−4 [cm] to 102[cm] this is then the limit of our
system.

6.1 Podolak algorithm: conservation of number density and mass

With equation (5.27) we describe how the particle number density evolves with time, in order to
solve this numerically, we will have to discretize it to solve the equation at discrete points. This
presents problems when a particle mass lands between 2 mass bins, here we must have some
way of splitting the mass. This was previously done by Podolak (1980)[43] for investigating
dust grain growth and was previously used in meteorological science. It has similarly been used
in other works such as Brauer (2008)[42] for studying dust grain growth.

What we require for our dust model first and foremost is to be able to conserve mass and
particle number density. This is exactly what the Podolak algorithm achieves and the algo-
rithm is relatively simple to implement in any system. This makes it suitable for our intended
purpose in handling.

As shown above we have discretized the sizes of particles and thereby the masses. We can
also use this to have an associated number density for each grid point. Such that for a grid
point mi has a number density ni associated. This means there is a specific number of particles
ni of the given size ai, where each particle has mass mi. Thus we bin all particles of a certain
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size. Particles from bin i and bin j will then have a coagulation rate from i to j per time is
given by

Qij = ninjKij . (6.57)

Here Kij is the coagulation kernel also recognized in the Smoluchowski equation. It is given
as

Kij = ∆uijσgeo.i,jpc . (6.58)

Since we are using a logarithmic space for the mass binning we have put ourselves in the
situation where when particle i and j coagulate together their mass m = mi + mj will give
us a point outside our mass grid bins, it will never actually hit a point on the discrete mass
grid. Thus we must divide the interaction between the two nearest bins, in a way that makes
physical sense. To split the mass that falls between two grid points we look at the two neighbor
bins mm < m < mn, and we split the coagulation rate linearly between these two such that

Qm = εQij,

Qn = (1− ε)Qij .
(6.59)

Here the number density will be conserved since Qm+Qn = Qij, now the key thing we need
to ensure is that we also have mass conservation. This we can enforce by setting

Qmmm +Qnmn = Qij(mi +mj) , (6.60)

which we can in turn use to define our parameter ε such that

ε =
mn − (mi +mj)

mn −mm

. (6.61)

This can then be used to define every possible coagulation interaction between particles in
bin i and j in a coefficient defined as

Cijk =


ε if mk is the largest mass grid point < mi +mj

1− ε if mk is the smallest mass grid point > mi +mj

0 else .

(6.62)

Replacing the integrals in the Smoluchowski equation with sums over discrete mass bins,
coagulation, we now have the following for evolving the particle number density with time

ṅk =
1

2

∑
ij

QijCijk −
∑
i

Qik ⇒ (6.63)

ṅk =
1

2

∑
ij

KijCijkninj −
∑
i

Kiknink . (6.64)

Other problems also arise when we consider the bins located at the far end of the mass
grid. Here we might have masses that go over the grid limit, due to coagulation. A roundabout
way to not have this happen is simply to make the grid large enough that coagulation will not
reach the maximum mass bin and/or simply not populate larger bins from the start. However
since we interested in evolution, meaning large bins will not be populated, and this is would
also only be a concern if coagulation was present, in our case we have the opposite effect of
fragmentation. This will break the larger particles, mostly preventing larger bins from being
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significantly populated. However, in areas where fragmentation is less prevalent, we might run
into trouble. Therefore we will for safety, implement that for all collisions that give us coag-
ulation that would put the particle mass to the right of the largest bin we will set σgeo = 0
for these specific collisions, thus everything in the coagulation kernel will go to zero and the
collision will in essence not happen.

At this point we must look at the change over time for the system, we have set everything
up to be able to handle various transfers of mass and conserve it as well. Now we must evolve
in time. In (6.64) we have everything related to coagulation now we just have to combine it
with the third and fourth term in (5.28) related to fragmentation giving the additional terms

ṅk =
1

2

∑
ij

(KijCijkninj + LijSijkninj)−
∑
i

(Kiknink + Liknink) . (6.65)

Thus we have our time-dependent differential equation. To solve this on the discrete grid we
employ two different methods, as they both have their advantages and disadvantages, depend-
ing on what you value most, computational speed or accuracy. Luckily much of this equation is
something that does not have to be calculated every timestep. Much of this can be calculated
beforehand, such as the coefficients C and S. In reality, only the probabilities in our case have
to be re-evaluated at each timestep but more on that below.

6.2 Explicit method

The simplest way of solving (6.65) is by using the explicit method. Explicit means to evaluate
the system at a later time given the system at the current time. Meaning

nk(t+ ∆t)− nk(t)
∆t

=
∆nk
∆t
⇒ (6.66)

nk(t+ ∆t) = nk(t) + ∆nk (6.67)

∆nk =

(
1

2

∑
ij

(KijCijkninj + LijSijkninj)−
∑
i

(Kiknink + Liknink)

)
∆t . (6.68)

So explicit does not take into account the future system when it solves the equation, thus
the only way of keeping the system from making too big changes would be to limit the timestep
∆t. For our system, this could occur in regions with high velocities or in regions with high
turbulence, where fragmentation could make significant changes to the system in a short time.
This can give rise to more severe issues, beyond accuracy. If we were to break conservation
of mass and momentum, or at least not maintain it as well as we would like, which is a likely
scenario, then maintenance of the system is no longer guaranteed. Luckily we can check for
this at runtime, to see whether the mass going in matches the mass going out of the evolution
process. We can make checks at different ∆t’s to see how small we would need to go before
mass conservation is guaranteed.

However, at some point, this is no longer practical and we would like a method that enables
us to have higher accuracy in scenarios with large ∆t.
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6.2.1 Solving momentum explicitly

We need momentum conservation for our model of coagulation, to be able to translate from
the binned description to a particle description. To do this we must keep track of the average
velocities for each size bin, such that bin i has an average velocity vi, in each physical direc-
tion. Now to maintain conservation of momentum, we must at all times have that the total
momentum of the entire system before the evolution step of coagulation and fragmentation be
the same after. To achieve this we must have the same principle for every collision, such that
the momentum before a collision is the same as after a collision. If we look at the first term of
Eq. (6.68) ∑

ij

(KijCijk + LijSijk)ninj .

This term describes the creation of particles, for a given number density bin, given by the
coagulation and fragmentation for a collision. We can reformulate this to find out how much
momentum these new particles will have by weighing by looking at what the momentum in the
colliding bins were before collision and then weighing this by the mass of the size bins, such
that the change in velocity number density is∑

ij

(KijCijk + LijSijk)ninj
mivi +mjvj
mi +mj

.

This thus determines the momentum for the new particles created, given by the momentum
of the old particles. For the second term of Eq. (6.68) we have the term that describes the
removal of particles from the system, after they have been coagulated or fragmented. In this
case, looking at the momentum then the momentum removed from the system is given by the
momentum of the particles removed from the system, such that the removal of momentum is
given by ∑

i

(Kik + Lik)ninkvk . (6.69)

This means that the explicit solution to the momentum is given by

∆qk =

(
1

2

∑
ij

(KijCijk + LijSijk)ninj
mivi +mjvj
mi +mj

−
∑
i

(Kik + Lik)ninkvk

)
∆t . (6.70)

Alternatively

∆qk =

(
1

2

∑
ij

(KijCijk + LijSijk)
njmiqi + nimjqj

mi +mj

−
∑
i

(Kik + Lik)niqk

)
∆t . (6.71)

This can then be solved separately in all directions x, y and z. Meaning we are now for
every timestep solving 4 equations. One for number density and 3 for momentum.

6.3 Implicit method

Also as I am implementing this into a bigger framework that handles various other physics
(MHD, gravity, etc.) which runs its own timestep that fits the scenarios of large-scale physics.
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These timescales in terms of dust evolution can be very large. This is another reason we would
want the possibility of doing implicit steps such that we can do any size of timesteps and still
maintain conservations.

An implicit method involves solving the equation involving both the current state of the
system and the later state. This makes the solution much more involved and does cost extra
computation time. However in many situations where arbitrarily large ∆t is required it will be
beneficial.

Now the numerical change in nk in a given change in time ∆t = ti+1 − ti, would be given
by ∆nk = ni+1

k − nik where ni+1
k is the number density at a later time ti+1 and nik is the system

at current ti. This we can use in our dicretized equation (6.65), such that

∆nk
∆t

=
1

2

∑
ij

(KijCijk + LijSijk)(ni + ∆ni)(nj + ∆nj)

−
∑
i

(Kik + Lik)(ni + ∆ni)(nk + ∆nk) ,
(6.72)

giving

∆nk
∆t

=
1

2

∑
ij

(KijCijk + LijSijk)(ninj + ni∆nj + nj∆ni +�����∆ni∆nj)

−
∑
i

(Kik + Lik)(nink + ni∆nk + nk∆ni +�����∆ni∆nk) .
(6.73)

Omitting second-order terms, as they are very small, we are left with the same starting
terms ninj and some extra terms. We will define

Ak :=
1

2

∑
ij

(KijCijk + LijSijk)(ninj)−
∑
i

(Kik + Lik)(nink) , (6.74)

and

Wijk := KijCijk + LijSijk . (6.75)

Here Ak is the explicit source term, as it is just the explicit solution. Simplifying (6.73) to

∆nk
∆t

= Ak +
1

2

∑
ij

(Wijk +Wjik)nj∆ni −
∑
i

(Kik + Lik)(ni∆nk + nk∆ni) . (6.76)

Now we can gather the rest of the terms in a matrix of the form

Jik :=
1

2

∑
j

(Wijk +Wjik)nj − (Kik + Lik)nk , (6.77)

Jkk := −
∑
i

(Kik + Lik)ni . (6.78)

Thus if we write this with vectors n and ∆n then we can write this in the complete matrix
form as (

1
∆t
− J

)
∆n = A . (6.79)
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Here J is the Jacobian of the source function and 1 is the unity matrix. Now from (6.79)
we can find the solution to the system at a later time as the difference between the solutions
at current and later times, as the solutions for each bin are independent, the solutions can be
written simply by inverting the matrix such that

ni+1 = ni + ∆n = ni +

(
1

∆t
− J

)−1

A . (6.80)

What we get is a solution to the eq. (6.65) that is more consistent in time and goes
asymptotically to the right solutions. Since using this method requires inverting a matrix it
can potentially be quite computationally heavy.

6.3.1 Solving momentum implicitly

If we use the same approach as before looking at the numerical change for a timestep ∆t =
ti+1 − ti, the change in momentum would be given by ∆qk = qi+1

k − qik. Where qi+1
k is the

momentum at a later time ti+1 and qik is the system at current ti. Since the number density
also changes in time we also have that ∆nk = ni+1

k − nik . This leads to the change given by
Eq. (6.71) and (6.65) as

∆qk
∆t

=
1

2

∑
ij

(KijCijk + LijSijk)

[
mi(qi + ∆qi)(nj + ∆nj) +mj(qj + ∆qj)(ni + ∆ni)

mi +mj

]
−
∑
i

(Kik + Lik)(ni + ∆ni)(qk + ∆qk) .

(6.81)
Then expanding this

∆qk
∆t

=
1

2

∑
ij

(KijCijk + LijSijk)

[
miqinj +mjqjni

mi +mj

+

mi

mi +mj

(qi∆nj + ∆qinj +�����∆qi∆nj)

+
mj

mi +mj

(qj∆ni + ∆qjni +�����∆qj∆ni)

−
∑
i

(Kik + Lik)(niqk + ∆niqk + ni∆qk +�����∆ni∆qk) .

(6.82)

It is thus clear that q is coupled to n, as the change in p will depend upon the change in n.
However n does not depend on q. If we again omit second order terms, we can split these terms
into matrix form such that we first have a source matrix given as

Apk :=
1

2

∑
ij

(KijCijk + LijSijk)
miqinj +mjqjni

mi +mj

−
∑
i

(Kik + Lik)niqk . (6.83)

Again using W as defined in Eq. (6.75) we can define

Jpik :=
1

2

∑
j

(Wijk +Wjik)
mjnj

mi +mj

, (6.84)

and
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Jpkk := −
∑
i

(Kik + Lik)ni . (6.85)

Lastly we have the terms that describe the coupling between momentum and the change in
n

Mp
ik =

1

2

∑
j

(Wijk +Wjik)
qjmj

mi +mj

−
∑
i

(Kik + Lik)qk . (6.86)

Now we have every part of the system describe by the matrices. We can now use vectors
n,∆n,q,∆q to describe the full coupled system, it will be given by the equation 1

∆t
− J 0

Mp 1
∆t
− Jp


∆n

∆q

 =

A

Ap

 .

From this it is clear that to solve the momentum part we must use the solution of the number
density. As we have already gone through the change in number density is then given by(

1
∆t
− J

)−1

A = ∆n , (6.88)

the next terms given by the matrix multiplication would be

Mp∆n +

(
1

∆t
− Jp

)
∆q = Ap , (6.89)

isolating the change in momentum we get

(Ap −Mp∆n)

(
1

∆t
− Jp

)−1

= ∆q . (6.90)

However this only solves the momentum for one direction, we must do this in all directions
giving us three systems of equations for momentum. In total we have four systems of equations
to solve that involves inverting a matrix. Each system is nbin × nbin in size. We note that by
first solving for the number density and then for the three momenta, we have elegantly reduced
the size of the matrix by a factor of four at the expense of solving four systems with similar
coefficients.
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7 The Dispatch framework

In order to use our model of dust evolution in the context of molecular clouds or planet forma-
tion, we need a framework that can handle a setup with all the underlying physics of such a
system. Crucially we must have setup of gas and dust that can evolve in time. This will require
solutions to equations of Hydrodynamics (HD), and a system for handling particles. Here the
Dispatch framework [44] is used.

7.1 Ideas and principles

Dispatch is a code framework, written in Fortran, that is made for high-performance computing
and is used to simulate large-scale physics confined in a box. It has some key features that
allows it to be highly scaleable and highly modular in terms of solvers and what physics to
implement. Meaning it is relatively easy to add a system to handle dust evolution on top. It is
designed to run in a highly optimized way, allowing us good resolution in simulations.

The basic idea of the framework is that the computational domain is decomposed into small
semi-independent patches, allowing asynchronous timsteps and it has its physics solvers sitting
in the middle of it all and this allows the solvers to only care about 2 things.

• It figures out the time step, taking local variables into account

• It will then update the local variables of its given datacube. This means there is no need
for parallelization in the solver as it does not care about any other pieces of data.

The framework supports many different solvers such as; HD, MHD, RMHD, non-ideal
MHD, and/or particle-in-cell, that can be used at will. Since no implementation of Message-
Passing-Interface (MPI), for implementation on clusters, or multiprocessing, for example, Open-
multiprocessing (openMP) is required in the solver, this makes it easy to implement new solvers
to the framework.

Solvers are ported from well known well documented astrophysical fluid codes and are
tested. From the RAMSES code the Godunov-type Riemann solver, the HLLC solver. This
solver solves the Euler equations of motions.

Dispatch introduces a mesh-based system where the computational space is split into prob-
lems of cache-friendly and easily vectorized chunk sizes. It is also GPU-friendly task sizes such
that many can be updated simultaneously. These tasks can be run asynchronously and semi-
independently. This gives the ideal conditions for obtaining optimized solver speed. The mesh
space can be either cartesian or orthogonal curvilinear, tasks do not have to be grid-based.
Patches can be moving or stationary and mesh can be dynamically refined or statically.
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Figure 11. The architecture of the framework is such that the solvers sit in the middle and only handle the
specific task of solving the physics in its given task area, everything else is then services functions around the
solver. The solvers do not call any interface routines. Credit: Åke Nordlund

The motivation for building the framework has come about to reduce the computation cost
of a given problem, such that it is possible to run experiments on smaller setups or simply
increase the resolution of experiments while maintaining the same computation time.

The framework is built on the same idea as many other traditional frameworks of the same
purpose with a mesh grid, meaning splitting the problem up. The mesh is divided into patches
which in turn are split into cells within each patch.

Increasing the spatial resolution in a mesh will always result in a cost increase, scaling with
the smallest resolution element’s inverse fourth-order power. This scaling is, however, some-
what mitigated in Dispatch by using local time steps.

To setup an experiment the fortran ”namelist” format is used. This namelist file is used as
an input to set parameters for the different solvers that the user wants to include. This input
file also decides the size of the experiment and scaling parameters. It is also possible to start
different tasks at different times such that the gas turbulence could evolve from the start and
then at a later time particles can be enabled.

7.2 Task-based computing

Traditionally in a mesh based approach the space is split into large equally sized chunks which
are then split further into pieces that are split across available compute nodes. This means that
the timesteps must be globally communicated as the smaller pieces must wait for the larger
chunks, as the structure is of a hierarchical form.

In Dispatch it is handled in a way that is more dynamic, as the space is split into many
smaller only loosely coupled, only locally interdependent tasks, if the system is grid based
these are called patches. These patches will then have to communicate with their neighbouring
patches as there is a dependence between tasks. For a given patch if its neighbouring patches
have advanced sufficiently in time. The evaluation is then done using a ready-to-update queue
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or a dynamic neighbor list, where the patch is put into queue if all of its neighbors are up to
date. Thus the first in queue is first to be updated. This queue is serviced by openMP threads,
where a thread computes a patch, meaning we can have simultaneous updates. However there
may be critical regions where one patch depends upon another and therefore cannot be updated
simultaneously, these regions are therefore assigned to a single threads instead.

With this we achieve ideal conditions for optimizing solvers as the problems are divided into
cache-friendly sizes. Also a framework with great scalability. And as there no longer is need
of global communications as we have a framework where each patch can have its own timestep
based upon local variables, and are no longer waiting for larger parts finishing.

7.3 Guard zones

Figure 12. Internal patches labelled ”I”, virtual patches labelled ”V” and boundary patches labelled ”B”.
Marked in red is a patch and yellow is its neighbours. Credit: Åke Nordlund

Traditionally in a mesh based approach the space is split into large equally sized chunks which
are then split further into pieces that are split across available compute nodes. This means
that the timesteps must be globally communicated as the smaller pieces must wait for the
larger chunks, as the structure is of a hierarchical form. In Dispatch it is handled in a way
that is more dynamic, as the space is split into many smaller only loosely coupled, only locally
interdependent tasks, if the system is grid based these segments are called ”patches”. These
patches are further split into very small chunks called cells. When dividing space into patches
as done in Dispatch, one is bound to run into trouble solving physics at the boundaries of the
patches, as every patch has its own time. What one must therefore do is implement a way to
make sure that a patch and its neighbors exist in the same time before trying to do physics
across boundaries. A patch will in 2D have 8 neighbours and 26 in 3D, from these neighbours
we fetch something called Guard zones. These are an overlap of cells 2-3 cells thick. You will
then have a number of relevant cells, depending on how the neighbour is situated. As seen in
figure 12 you can have neighbours on the corners, neighbours along the faces and in 3D you
also have edge neighbours. These will have a different number of relevant cells. If a uniform
grid is used, no variation in patch sizes, then if a patch is of size N × N × N . Then in 3D a
face neighbour will have N ×N × 2 relevant cells. A edge neighbour will then have N × 2× 2
relevant cells and finally a corner neighbour will have 2 × 2 × 2 cells to pass on. This can
be changed if one were to use adaptive-mesh-refinement (AMR), changing sizes of patches in
relevant regions. These guard zones are then used to obtain consistency across boundaries.
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This means that for a given patch to update it must fetch guard zones and to do this a
given patch must check if its neighbouring patches have advanced sufficiently in time. After
an update the particles that have moved outside of the patch and into the guard zones, they
are put in a ”export buffer”, such that when a neighbour starts its update it will look in these
26 export buffers and it fetches the particles that now belong to it. This can also work across
multiple nodes, here there will be a boundary between the different nodes, and thus a node will
have boundary patches at the geometric edge, neighbouring patches from the other node is here
called virtual patches. As soon as patches marked as boundary are updated a MPI package is
prepared and send to all neighbours that require it.

7.4 Treating particles in Dispatch

In the Dispatch framework, we handle particles with a particle-in-cell method as previously
described. Macro-particles are implemented to describe an ensemble of points where the shape
function is given by Eq. (4.26). Meaning we use the NGP approach where the particle is
evaluated in the nearest grid point.

The particle trajectories are then integrated using a kick-drift-kick leap-frog integrator.
From the input file it is decided how many particles there will be per cell. Here it is also
decided how many size bins. For the given cell there is a dust density assigned, this total
density is then spread out over the particles using a weight, that is normalized to this total
density. Meaning

Nbin∑
i

wi = ρcelld , (7.91)

where Nbin is the number of bins specified, wi the weight for a size bin and ρcelld the dust density
of a cell. Thus to achieve a specific starting distribution of dust particle sizes, we can use this
weight to specify in the cell how much of each size bin we want. We do this by a power-law
such that the exponent of this can be decided in the input file

wi =
ρg d2g

Nbin

(
ai
a0

)α
, (7.92)

where ρg is the gas density, d2g is the dust-to-gas ratio, a0 is the smallest size specified and
α can then be set to anything of desire. It is also possible to set a cut off for the distribution,
such that bins above this size will be empty. Thus the bins will exist in the range given, but
will only be populated by the above equation up till a cut off size, after which the remaining
bins will be empty, ready to later be populated.

In figure 6, it is seen how Dispatch is set up to handle particles for the case of the im-
plementation of coagulation and fragmentation. We split the problem up into two parts, the
dynamics, and the evolution. The dynamics part is solved by the PIC method moving particles
around, the evolution part is solved by the dust evolution model.

7.5 Modeling dust evolution in a molecular cloud

In order to then bring evolution of particles into the framework there are a couple of critical
areas that must be handled in a specific way in order to maintain the functionality present in
the prototype model.
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7.5.1 Translation from particle description to bin description

To implement a dust evolution model as described we must translate between the particle de-
scription in Dispatch and the bin description of the dust evolution model.

This is done by passing the dust density of a given cell, as well as the velocity in every
direction, to the module that handles dust evolution. This module then translates this into a
density per bin size, and in turn a number density.

The number density is then used throughout the module to calculate the evolution of the
number density distribution as well as the new velocities depending on the momentum conser-
vation.

For every timestep the particles are then integrated and passed to the evolution module
changing the distribution of the number density which is implemented in the particles.

7.5.2 Velocity difference in Dispatch

The velocity difference must be calculated between particles to compare with the fragmentation
velocity. Every particle has a x, y and z velocity, we find the bulk difference by

∆u =
√

(vix − v
j
x)2 + (viy − v

j
y)2 + (viz − v

j
z)2 , (7.93)

where v is the velocity in a given direction, and i, j denotes the specific particles. We add the
vrms in square such that

∆u =
√

(vi,x − vj,x)2 + (vi,y − vj,y)2 + (vi,z − vj,z)2 +
√
v2
i,rms + v2

j,rms . (7.94)

This gives us the total relative velocity for two colliding particles in a very simple way.

7.5.3 Fragmentation velocity

We decided to handle the fragmentation velocity in Dispatch to say that monomers would
need very high velocities even to be considered for fragmentation. Thus we set a cut-off for
small sizes. Then from the cut-off, we set the velocity as given in Eq. (5.41) where the frag-
mentation velocity is dependent on the size of the particles. At the top of the particle sizes,
we set another cut-off for particles, such as when massive aggregates collide, they will always
fragment at a certain point, since this is also what we see in laboratory experiments, see figure 7

The easiest way to achieve this was to set the fragmentation depending on the two particles
in the collisions such that

uf (i, j) =


uf,M if ai, aj < aM

uf,A if ai, aj > aA√
60π2ζcritγaµ

mµ
else .

(7.95)

Here aµ = aiaj/(ai + aj) and mµ = mimj/(mi + mj). Here aM is the monomer size and is a
cut-off parameter the user can set (1 µm per default) as the sizes at which the fragmentation
velocity is uf,M , which is can also be set by the user but is set to 1 km/s by default. In the
same way aA is the size of aggregate and is a cut off at which the fragmentation velocity is given
by uf,A, default size is 10 cm and default fragmentation velocity is 10 m/s. This means that

page 40 of 67



NBI July 6, 2021

below the cut off fragmentation is very hard to achieve and above the other cut off it is very
easily achieved. In between these two extremes the fragmentation velocity is handled by the
equation with size dependence, where particles are assumed to have aggregate like structure,
as presented in Eq. (5.41).

It would be possible to instead implement Eq. (5.37) below a certain range, such that in
this range particles are handled as monomers with a size dependent fragmentation velocity. We
chose to do a cut off with a user specified fragmentation velocity such that it would be possible
for the user to decide. Also meant to be a way of handling cases of crystallized particles, which
would have very high fragmentation velocity, higher than predicted by (5.37). As discussed
above it would be closer to 1 km/s

7.5.4 Picking the right solving method

We have a explicit method and implicit method implemented in our model. However picking
which one to use is tricky as both have their advantageous. Explicit is a rather fast and simple
method, but it can easily overshoot if we are using too large timesteps. In those cases an
implicit method would be better as it handles bigger steps better in terms of approaching the
correct solution. It tends to smear out the density more than the explicit solution. However,
the implicit solution has a much higher computational intensity due to the required matrix in-
versions. Thus it is a balancing act between taking large timestep vs. taking easy explicit steps.

The way we decide to handle this in Dispatch is by taking a single explicit step and examining
how big a change it would give to the system in terms of dn/n. We then have a set fraction
δfrac1 such that if dn/n > δfrac1 we will consider the change too large to be acceptable and we
instead take an implicit step. Along with this fraction we also consider the mass conservation
to a respectable limit.

Nbin∑
i

neimi

nsimi

− 1 < 10−6 , (7.96)

such that we are guaranteed not to violate mass conservation to a significant degree, as this
could be a accumulating problem over time. Here ne is the number density at the end of a
evolution step and ns is the number density at the start. Nbin is the number of bins. Thus
this is simply matching the total mass before and after the evolution step. A third criterion
for taking a implicit step is if the explicit step has any bin with negative number density. So
if any of these 3 criteria is met we instead take an implicit step. If these are not met we have
another δfrac2 where if dn/n > δfrac2 we will instead divide the given timestep ∆t into smaller
substeps such that ∆tsub = ∆t

Nsub
, where Nsub is decided by the user. The different fractions are

also decided by the user in a given input file.
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8 Results

In preceding chapters I have explained the background, the theory and numerical model for
investigating dust evolution. Now, I will turn my attention to the actual implementation, and
results that cast light on how dust evolves in the interstellar medium.

8.1 Prototyping the model

To ensure that the formulated dust evolution model gives reasonable results, it was decided
to compare results against previously published results [25]. This lead to building a prototype
version of the total numerical dust evolution model before the implementation into the Dispatch
framework. The programming language Python was decided for prototyping as it offers a lot
of flexibility in terms of handling units and linear algebra, which are essential features for a
working model. As the prototype is isolated from other possible code issues, and written in
Python, it makes it considerably easier to debug. Model implementation is similar to the one
described in Birnstiel, Dullemond (2010)[25] in the appendix.

A foundation of the numeric model is the logarithmic binning of the grain sizes, and these
are then related to mass. We use a starting density given by (5.53) with parameters T = 196 K,
Σg = 18 g/cm2 and we also assume as dust-to-gas ratio of 1/100, meaning Σd = 0.18 g/cm2.
The solid density of the dust grain is ρs = 1.6 g/cm3. The initial condition in the test is that
all dust is placed in the first bin, which in this case corresponds to the grain size a = 1 µm.
Different sources of the differential velocity that is driving the dust evolution and first pure
coagulation and then also fragmentation are added one by one to the system and the dust
evolution is recorded as a function of time—testing both an explicit method and an implicit
method.

8.1.1 Explicit vs. Implicit

The prototyping is meant to test the results and see whether it was possible to replicate the
results of previous papers with the same assumptions. The results in Birnstiel, Dullemond
where the numerical simulation results are compared to an analytical solution provide a simple
first benchmark to test the coagulation prototype—testing the foundational coagulation model
using an explicit method. The system starts with only the first bin populated.
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Figure 13. Here we have an example of our test of our coagulation model with only Brownian motion and
explicit method. Here we used 200 bins and a timestep of 100 yrs. The blue line denotes the peak position of
the grain size distribution. Orange is the analytical solution given in (5.51)

In Figure 13 it is seen that our results match well with those of Birnstiel, Dullemond.
Meaning the prototype model can replicate previous results and matches well with analytical
calculations. Next, the implicit implementation is tested to ensure that the same results are
obtained, regardless of the method.
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Figure 14. Here the coagulation model with only Brownian motion and, in this case, an implicit method.
Here we used 40 bins and timestep of 1000 yrs. The blue line denotes the peak position of the grain size
distribution. Orange is the analytical solution given in (5.51)

Here we see that we indeed end up with approximately the same results regardless of method.
Even though some resolution is lost, the correct trend is present. This result gives us the
confidence that thus far, the model lives up to the requirements and can be expanded. We
dropped the bin resolution down to 40 bins instead of 200 as we had for the explicit method.
This is because the implicit solution requires us to solve a matrix of size equal to the number
of bins squared, making it significantly slower for larger number of bins. However, the implicit
method enables us to go to higher ∆t without having issues with numerical instabilities.
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8.1.2 Coagulation model

We can look at the effects the coagulation has on the evolution of each bin — how mass is
moved around in the bins. This will give us some insight as to how the model is working. We
again run with the implicit method and the same parameters as mentioned above.
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Figure 15. (a) This shows a plot of the density of every size bin’s evolution during the time, here we used
10 bins with sizes a = 4 µm to a = 0.1 cm and timesteps of 100 yrs. Thus we see the effects of coagulation
with driven by Brownian motions. Annotated is the number of each bin. (b) is a pictographic representation
of the densities for every bin in the form of a heatmap, here 40 bins are used for higher resolution. Otherwise
the runs are identical.

Here, all particles first exist in the smallest size bin, and slowly, this bin loses mass as other
bins are populated. It is also clear that the smaller bins are populated right at the start and
shortly after losing particles to larger bins. It seems that the system is slowly settling, to the
effect that coagulation is slowing down, which makes sense as it rapidly loses small particles,
which drive most of the coagulation.
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8.1.3 Adding fragmentation

For fragmentation we set the a fragmentation velocity uf = 1 m/s and a transition width of
δu = 0.001 m/s. In the prototype we also use the simple model for the fragmentation velocity
with a set uf with no dependency on size, meaning using eq. (5.32).

Brownian motion, in general, is not enough for fragmentation to occur, at least not with
the given parameters. Thus we need another source of relative velocity between grains. We will
here add turbulent motion from(3.23). Turbulent motion gives high velocities and is an impor-
tant source of velocities for fragmentation both in protoplanetary disks and in the interstellar
medium.
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Figure 16. A pictographic of the matrix pf , where black is the value 0 and white the value 1, shows that for
the given bins i, j equivalent x, y what the probability for fragmentation is throughout, where black would be 0
and white 1.

In figure 16 we see that when turbulent motion is present, fragmentation will occur every-
where except for grain sizes of < 0.005 cm, which will give a constant supply of fragments to
the lower bins.
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Figure 17. A pictographic of the various matrices that dominate the Smoluchowski equation. C and S is
shown for the specific bin 20.

In figure 17 we see the matrices responsible for the coagulation and fragmentation kernel
given in eq. (5.28). K and L show the transfer for the collision of the two bins. There is a clear
cut-off where the fragmentation kernel L is dominant. The matrix C is shown for the specific
bin 20 corresponding to size a = 34.5µm. What can be seen from the color is how much the
two bins contribute to bin 20—most of the contribution coming from small particles colliding
with a particle of size 34.5µm. S shows the contribution from the two bins to that specific
fragment in a collision. So to have the fragment of size 34.5µm, the contribution mostly comes
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from two of the largest particles colliding. But also from cratering with small particles colliding
with the particle of size 34.5µm. Here the matrices C and S will be constant, and K and L
depend on the relative velocities and what the fragmentation velocity is, and it will therefore
change if the velocities change. However, in this prototype as velocities do not change nor do
these matrices.
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Figure 18. (a) Using 40 bins from a = 4 µm to a = 0.1 cm and a timestep of 0.5 yrs. Annotated on the
lines are the bin number that is followed on the line. And given in the loglog plot. (b) is a pictographic of the
densities for every bin in the form of a heatmap for the same run.

We see that the system quickly reaches a steady state where fragmentation provides frag-
ments and coagulation provides larger particles. We can also see a ceiling where the particles
do not seem to coagulate further—a limit to the size driven by fragmentation of larger particles.
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Figure 19. Similar plot to those in the coagulation section, looking at the peak position of the grain size
distribution.

It is also seen from the peak position that the system reaches an equilibrium, and the
distribution peak stays constant over time.
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Figure 20. The distribution of the density among the grain sizes, at time t = 106yr

Here we can see how the density is spread out over the grain sizes. Most of the mass has
moved to higher bins. Mass is still present in smaller grains; there is, however, a point where
the mass does not reach any further at around 50 µm, this peak is already met after only about
30 years .

An essential step in the testing was to ensure that we conserve particle number and mass
during the evolution. Of course, some mass will be lost or gained due to rounding error, but
we made sure the loss was well below significance.

8.1.4 Momentum conservation

To test whether momentum was conserved, we gave the system some start momentum. This
is done by a simple one-dimensional velocity given to the smallest bin, which is also the only
populated bin from the start. Every particle in this bin thus has a velocity of 1 cm/s.
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Figure 21. Following the velocity of every bin here, we have 40 bins a = 4 µm to a = 0.1 cm, most bins do
not have sufficient velocity to show up.

Here it is seen how the velocity spreads out to every bin, and soon all bins have the same
velocity, but at some point, the fragmentation and coagulation reaches an equilibrium, and
higher bins are not reached.

8.2 Dispatch dust evolution implementation

The way we decide on an experimental setup in Dispatch is by an input file that specifies some
starting parameters. This means the user chooses what features to turn on and what to keep
off. For our purposes, we need to set some parameters to initiate the dust evolution, which
means we must also have the particle solver enabled. To involve the dynamics of the dust, we
also include gas and hydrodynamics.

The system starts with a dust number density distribution given by the famous MRN
distribution [1], between 5 − 250 nm with an exponent of −3.5. This is run for about 4
turnover times. A snapshot is taken of the system at every t = 0.1 where this time is based on
the Larson relation as given in Eq.(3.19), meaning that we use the scaling in the code such that
the box is 1 × 1 × 1 pc and σv = 1.2 km/s means that the turnover time is τed = L/(2σv) =
1 pc/(2 · 1.2 km/s) ∼ 0.4 pc /km, meaning in the code the largest eddy has a turnover time of
t = 0.4. in years that is around 0.4 Myr. The snapshots will then contain everything necessary
about the system, such as the various densities in all the cells.
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Figure 22. Here the pictographic example of the various matrices that dominate the Smoluchowski equation
at t = 0.6. C and S are shown for the specific bin 7. Here we have 15 bins in total. This is sampled from a
corner of a random patch.

In 22 we show the different matrices that contribute to the dust evolution for bin nr. 7,
corresponding to dust particles of size 0.4µm, this is a sampling of a corner in a random patch,
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thus it is just an example. We can see that matrix L is dominant for the larger particle sizes.
This means the relative velocity is higher than the fragmentation velocity for these bins. We
also see how the coagulation matrix K contributes to smaller particles, mostly collisions of
larger particles with small particles. The 3 dimensional matrices C and S here are constant
the same for every given cell. It is therefore clear that the matrices fit well with the matrices
shown in Figure 17; this indicates that the model is working as intended.
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Figure 23. Shown is the number density averaged over all cells for every particle size. All snapshots are
shown.

In Figure 23 it is clear that first the defined distribution is set, then the system quickly
defines it as wider distribution with larger particles. Then after about a turnover time, the sys-
tem evolves to have a slightly different distribution which is held more or less constant through
the rest of the time. Large bin sizes have been populated with very small number densities;
these densities are so small that it means that in the ISM, there would not be enough particles
of larger sizes to be observable. This means that over time no new larger particles appear in
the system. Also that the distribution will mostly depend on what particles are inputted into
the system and what particles are taken out of the system.

This balance in the distribution can happen if the timescales for building larger particles
are of much larger times scales; here, we are looking at timescales of ∼ 1 Myr. Another more
likely reason and what is also seen in the prototyping results is that the system quickly reaches
a steady state as the coagulation and fragmentation is balanced, meaning larger particles are
destroyed almost as soon as they are made, reaching an equilibrium between coagulation and
fragmentation.

In order to further investigate this balance, we can sample some areas where the velocities
are high.
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Figure 24. A sampling of the contribution to the fragmentation is shown by the fragmentation kernel matrix
L and the number density distribution. In the top row, the sampling is done in a cell with the highest dust
root-mean-square velocity. In the bottom row, the sampling is done from a random cell.

In Figure 24 we see such a sampling done. We can see that in the high vrms regions, the
contribution of coagulation is large for larger particle bins at all times. We can see that there
is much less contribution found for the randomly sampled areas to begin with, and then the
picture starts to change. This is likely due to the turbulence having a large influence on the
velocities, meaning the fragmentation becomes more likely throughout the system. This then
supports that fragmentation is rampant in the system for large dust particles.
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Figure 25. A binned heatmap for the number densities. Counts (N) for how many cells have a density within
a specific density range.

From figure 25 we can see exactly how the distribution of densities evolve over time. We see
that they start relatively slim and well defined for some of the size bins, meaning less variation
in the number density. Later the distributions have all become wider, and larger size bins have
been slightly populated.

That the distribution of the number density is widening like this points to the particles
moving to less dense regions, especially for larger particles; this seems true as the tail of the
distribution is wider for the larger particles.
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Figure 26. At t = 0.6, this shows a slice of the box and all the densities in the cells, where the color red is
high-density areas, and blue is low density. This is shown for the gas ρg and some chosen size bins.

In figure 26 we see how the different size particles are distributed throughout the system
and how closely these follow the gas densities. In the second panel corresponding to particle
size 0.16 µm, we see that the high densities regions very closely resembles that of the gas
density regions. This is also what we would expect as these particle sizes are below the sizes
we estimated for a Stokes number indicating tight coupling in eq. (3.21). In the third panel,
we see the particle start to diffuse further out from the filaments. By 40 µm, there is minimal
coupling left between the gas and dust. This indeed also seems to agree with estimates made
in (3.22).
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Figure 27

In figure 27 we have a slightly different simulation run. Here the same starting distribution
is used, with a fraction of the mass put in a size bin outside the otherwise specified range. The
specific bin size populated is ∼ 100µm. Here it is clear that more or less the same thing occurs;
a slight evolution of the distribution happens until an equilibrium is reached. However, this
also shows that if very large particles are injected into the system, we can expect slight grain
growth, but more or less, what is injected into the system will remain there for large timescales.
We also see that the particles sizes we start with are also those most likely to survive, as they
stay most populated throughout time.
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9 Discussion

Here a few thoughts in regards to the implemented model itself and its given results. And its
hopefully continuous usefulness.

9.1 Results of Dispatch simulations

The simulation results show the ISM to be relatively static in dust evolution on timescales of
order dynamical times, and hence also of order star formation times.

On the other hand it is suspected that the protoplanetary disks that form around newborn
stars are important sites of dust processing, and therefore it would be interesting to run these
simulations with adaptive mesh refinement (AMR), sufficient to resolve the formation of proto-
planetary disks, and eventually also with sufficient resolution to determine how much processed
dust they return to the ISM.

With respect to the dust processing, it would be interesting to see how tweaking the frag-
mentation velocity will affect the grain growth in the ISM. I suspect that setting a higher
fragmentation velocity would cause large grains to have a better chance of surviving and thus
affecting the timescales to grow significant number densities of, for example, 100 µm sized par-
ticles.

However, since the fragmentation velocity is based on laboratory experiments, this is not
likely to be consistent with reality. However, it is possible that a significant fraction of the parti-
cles in the ISM is thermally processed material, meaning they would have higher fragmentation
velocities.

9.2 Further development of the Dispatch implementation

There are a lot of possible improvements to be made to this model. These can increase the
functionality of the model and thus the Dispatch framework. Improvements to the computa-
tional cost and accuracy might also be possible, even though a lot has already been done to
improve the module’s computation speed.

It would be possible to give particles an attribute ”Crystallinity”, or simply a boolean flag
indicating if the dust has been thermally processed. This could play into how the model should
handle the fragmentation velocity. In the case of such particles, crystalline particles will be
extremely difficult to shatter, as they are essential diamond-like. Adding this would add the
possibility of including particles processed in Class-0 protostars or AGB processed material as
these materials will have significantly higher fragmentation velocities than amorphous particles.
It would also be possible to add a population of such materials and see how the distribution
would end up after fragmentation has run its course, and how many of these particles would
survive compared to the amorphous particles.

9.3 Energy consideration in cratering regime amongst others

In our model, we have set a simple cutoff for the regime of cratering. Meaning cratering occurs
if there is an order of magnitude or more difference in the mass between the two colliding
particles. In the outcomes predicted by Dominik & Tielens (1997), which we used to deter-
mine fragmentation velocities, they consider the energy in the collision instead. Splitting the
evolution into finer regimes as
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• E < 5Eroll Sticking without restructuring

• E ≈ Eroll Onset of restructuring at impact site

• E ≈ NcEroll Maximum compression

• E ≈ 3NcEbr Onset of erosion (losing monomers in aggregate)

• E > 10NcEbr Full fragmentation

Where Nc is the number of contacts in the aggregate, it would then be possible to look at
the energies in collisions and determine some form of cratering based on both the mass of the
particles and energies involved in the specific collisions.

9.3.1 Geometry of particles

This might be a consideration of a computationally heavier nature. But the shape of particles
and whether they are smooth or rough, and how porous they are, have considerable impacts
firstly on how the particles will move with the gas as the coupling is determined in part by
the drag coefficient also shown in figure 4. Secondly, the microphysics of collisions between
particles would also change if we were to consider other ways of particles dissipating energies
in collisions by way of their structure.

9.3.2 Numerical diffusion

Often the method of solving the Smoluchowski equation is used for the dust evolution. Another
prevalent way of describing the dust evolution process, numerically, is using a Monte-Carlo ap-
proach [45], wherein the life of an ensemble representative particle is followed. These particles
are treated as representing a much larger volume. The simulation then follows these particles as
they collide and fragment or coagulate. Random numbers are used to determine which particles
collide, and depending on the properties of the colliding particles, the outcome is decided. The
advantage of this model is it is not very computationally heavy, and it is easy to add features
to the particles, and diffusion is not as much as a problem as in the Smoluchkowski method as
particles are individual masses, whereas in the Smoluchkowski method diffusion can happen as
we spread the particles into bins of number density.

This problem of numerical diffusion can show up due to lucky collisions and has been shown
to, in some cases, cause a massive overestimate of the rate at which particles break through the
bouncing barrier and an underestimate of the timescale [46]. Monte-Carlo methods have the
opposite problem due to their limited dynamic range of density; they tend to underestimate
the timescale.

However, newer models of the Smoluchkowski type aim to mitigate this diffusion issue [47].

9.3.3 Optimizing the choice of method

When we solve our Smoluchowski equation(5.27) in the discrete form, we use either an explicit
method or implicit method, each with their computational benefit. In our implementation, we
decide to have a set limit for choosing the implicit method over the explicit method. However,
one could find the optimal choice in terms of computing time compared to the order of mass
conservation desired. This could be done in the initialization of the problem, such that de-
pending on what compiler, libraries, etc., were used, the optimal choice of when the framework
would pick explicit over implicit would be set as a start parameter.
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9.3.4 Adaptive bin refinement

Adaptive bin refinement, where the number and particle size range of bins was determined
locally, for each computational patch in DISPATCH, could be a simple solution to the problem
of numeric diffusion, mentioned above. Also, it would help the issue of high memory usage by
the particle solver and the dust solver. This would also allow the user to specify a range of
bin sizes of interest and use higher resolution in these areas. From (J. Drazkowska, 2018)[47]
the conclusion is that the high-mass bins with low number density are the important area to
have higher resolution in to mitigate diffusion and overestimates. This would also be possible
if using an adaptive bin refinement method.
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10 Summary and Conclusion

I have described the dust contributors, what the defining features of dust are, and what ob-
servational evidence there is of dust accumulating and agglomerating in different mediums. I
discussed how large dust grains might form, what some of the main issues are, and implemented
a way for these issues to be resolved numerically.

I introduced the dynamics of gas and dust and how the two interact, which is necessary
to understand how the collisions of dust grains play out. I discussed several aspects of the
micro-physics involved in a single dust-dust collision, where the interaction can be split into
different regimes as; coagulation, bouncing, and fragmentation. These regimes are then defined
by various key aspects of the collision, primarily the difference in size and the relative velocity
between particles. Here if the relative velocity between particles is above a certain threshold,
I define a regime of fragmentation. If the particle size difference is large enough, I handle the
collision as a cratering event, where the smaller particle digs out fragments of the larger particle.

With these definitions and considerations, I formulated a dust evolution model that could
handle both the processes of coagulation and fragmentation in a numeric simulation. To achieve
this, I first implemented a prototype version of the model in Python. Here a number density
distribution is created from an estimate of the total dust mass in a model protoplanetary sys-
tem. This number density distribution is then evolved in time, assuming collisions happen
continuously. The model then has no dynamics to take into account. To test the code results I
compared them with the results of previous authors and found that our model matched well. In
this prototype, using the effects of coagulation and fragmentation, the dust seemed to coagulate
very quickly, reaching a peak in the distribution at around 50 µm within 30 years; whereafter
the system remains in equilibrium at this peak.

This Python prototype was then translated into Fortran and added into the code frame-
work Dispatch, in which particles have a dynamic component. Here a few difficulties arise as the
framework handles particles with a macro-particle representation. This meant the model had
to be adapted since the dust evolution handles the particles in a bin description, which means
a translation between the particle description and the bin description and back was necessary.
Also, the dust evolution had significant computational cost, which had to be circumvented to
run a reasonable experiment in a reasonable time. In the end, these challenges have been over-
come, and now a working model of dust evolution in Dispatch exists, which runs reasonably
well. The computational cost of the dust evolution module is around the same as the dynamic
solver of the particles, meaning it can easily run large-scale simulations.

I ran simulations with the new implementation, using supersonic turbulence representing
the cold interstellar medium in a 1×1×1 pc box, with an initial dust particle distribution given
by the famous MRN distribution [1]. The results show a slight initial evolution of the number
distribution, but after about a turnover time, when the supersonic turbulence is dominant in
the system, meaning fragmentation has high contributions. This leads to a more or less steady
state of the system where fragmentation and coagulation has found an approximate equilibrium,
with very small rates of net change. The conclusion is that the time scales for grain growth
and fragmentation in the cold ISM are much longer than the the typical dynamical time scales
we look at here, ∼ 1Myr.

This confirms that the ISM is not the ideal medium for the dust to evolve to larger grain
sizes. It is more likely that the ISM dust distribution is defined by a mass balance among
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the particles that are injected into it and removed from it; i.e., by the sources and sinks of
dust particles in the ISM. Sources could be supernovae, AGB stars or PPDs. If the fraction of
thermally processed material is high, this conclusion would be even more robust, since these
particle types require significantly larger collision velocities to fragment.

The main result of this thesis is a well tested dust evolution module, which can be used for
future large-scale scientific investigations, is now present in the Dispatch framework. This is
likely to be particularly important in the context of dust processing in proto-planetary disks,
which may turn out to an important source of processed dust, in addition to clearly being an
important sink of largely unprocessed dust.
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Appendix

A Algorithm of the prototype implementation

Here the full python script for running the basic simulations of the dust evolution model.

import numpy as np

import astropy.units as u

from astropy import constants as const

import matplotlib.pyplot as plt

from pylab import rcParams

rcParams['figure.figsize'] = 15, 5

basis = u.si.bases

print("Initializing starting conditions")

T = 196 *u.K

cs = (np.sqrt(const.k_B*T/(2.37*1.008*const.m_p))).decompose(basis)

r = 1 * u.au

msolar = 0.5 *u.solMass

Omega_K = np.sqrt(const.G*msolar/r**3)

Hp = (cs / Omega_K).decompose()

sigma_d = 0.18 * u.g/u.cm**2

rho_d = (sigma_d/(np.sqrt(2*np.pi)*Hp)).decompose(basis)

rho_s = 1.6 *u.g * u.cm**(-3)

a_s = 1*u.micron

m_s = (4/3*np.pi*a_s**3 * rho_s).decompose(basis)

u_f = (1*u.m/u.s).decompose(basis)

trans_width = (0.001*u.m/u.s).decompose(basis)

alpha = 1e-3

Cdt = 0.1

xi = 1.83

dt = 1000 * 60*60*24*365 * u.s

t_end = 1e6* 60*60*24*365 * u.s

save_time = 1 *u.yr

eps_time = 1.10

print("Calculating bins")

nbin = 40

a = np.logspace(-4, -1, nbin) * u.cm

st = (rho_s * a * np.pi/(2*sigma_d*100)).value

v = np.ones(nbin)
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m = (4/3 * a**3 * rho_s * np.pi).decompose(basis)

n = np.zeros(len(m)) * u.m**(-3)

n[0] = (rho_d / m[0]).decompose()

n = n.decompose(basis)

ms = np.add.outer(m,m)

mv = m.value * v

p = n.value * v

q = m.value * p

print("Calculating velocities and sigma_col")

ubm = (np.sqrt(8 * const.k_B*T * (np.add.outer(m, m)) /

(np.pi*np.outer(m, m)))).decompose(basis)

utm = cs * np.sqrt(2*alpha*st)

utm[st>1] = cs*np.sqrt(2*alpha/st[st>1])

utm = np.maximum.outer(utm,utm)

du = ubm + utm

sigma_col = np.pi * np.add.outer(a, a)**2

print("Setting up probabilities and fragmentation matrix ")

size = len(a)

mn = np.zeros((size,size))

mm = np.zeros((size,size))

pf = np.zeros((size,size))

crat_ind = (np.divide.outer(m,m) > 10) | (np.divide.outer(m,m) < 0.1)

SS = np.zeros((size,size,size))

for i in range(len(m)):

for j in range(len(m)):

kn = (np.where(m<ms[i][j])[0])[-1

if crat_ind[i][j]:

#cratering

SS[:min(i,j)+1,i,j] = a[:min(i,j)+1] ** (-3*xi)

Stot = np.sum(m.value * SS[:,i,j] ) / (m[min(i,j)].value *2)

SS[:min(i,j)+1,i,j] /= Stot

m_crat = np.abs(m[i].value-m[j].value)

l = np.where(m.value < m_crat )[0][-1]

eps = (m_crat - m[l].value)/(m[l+1].value - m[l].value)

SS[l,i,j] = 1-eps

SS[l+1,i,j] = eps

else:

#fragmentation

SS[:max(i,j)+1,i,j] = a[:max(i,j)+1] ** (-3*xi)
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Stot = np.sum(m.value * SS[:,i,j] ) / (m[i].value + m[j].value)

SS[:max(i,j)+1,i,j] /= Stot

if kn+1 < nbin:

mm[i][j] = m[kn].value

mn[i][j] = m[kn+1].value

else:

sigma_col[i][j] = 0

if du[i][j] < u_f-trans_width:

pf[i][j] = 0

elif du[i][j] > u_f:

pf[i][j] = 1

else:

pf[i][j] = 1-(u_f-du[i][j])/trans_width

pc = 1-pf

ep = (mn - ms.value) / (mn - mm)

ep[sigma_col==0] = 0

C = np.zeros((size,size,size))

for k in range(size):

imm = m[k].value == mm

imn = m[k].value == mn

C[k][imm] = ep[imm]

C[k][imn] = 1 - ep[imn]

K = (np.multiply(np.multiply(du, sigma_col), pc)

).decompose(basis)

L = (np.multiply(np.multiply(du, sigma_col), pf)

).decompose(basis)

print("Time evolving the number density")

print("Starting n: ", (n.to(1/u.cm**3)))

print("Initial velocity: ", p)

n = n.value

K = K.value

L = L.value

dt = dt.value

m = m.value

ms = ms.value

t_end = t_end.value
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t = 0

p_old = np.copy(p)

vel = np.max(p/(n+1e-10))

x = t

y = np.argmax(n*m)

y2 = np.argmax(n)

n_save = np.copy(n)

vel2 = p/(n+1e-10)

time_int = 0

has_run = False

while t < t_end:

if np.any(n < 0) or np.abs(np.sum(n*m)/rho_d.value - 1.) > 2e-1:

if np.any(n<0):

print("Negative number particles, aborting", np.argmin(n), np.min(n))

if np.abs(np.sum(n*m)/rho_d.value - 1.) > 2e-1:

print("Mass not conserved, aborting", (np.sum(n*m)/rho_d.value - 1.))

print(f"Time elapsed: {t/(60*60*24*365)} yr")

break

dn = np.zeros(size)

dn_coag = np.zeros(size)

dm = np.zeros(size)

Sp = np.zeros(size)

dq = np.zeros(size)

S = np.zeros(size)

J = np.zeros((size,size))

Jp = np.zeros((size,size))

Jm = np.zeros((size,size))

JJ = np.zeros((size*2,size*2))

nn = np.outer(n,n)

Q = np.multiply(K,nn)

Q_frag = np.multiply(L,nn)

mp = m * p

pn = (np.outer(mp, n) + np.outer(n, mp))/ms

for k in range(size):

KC_k = np.multiply(K, C[k])

LS_k = np.multiply(L, SS[k])

Kn_k = np.multiply(K[k], n)

Ln_k = np.multiply(L[k], n)

Sp[k] = 1/2 * np.sum(np.multiply(KC_k, pn ) ) - np.sum(Kn_k * p[k]) \

+ 1/2 * np.sum(np.multiply(LS_k, pn)) - np.sum(Ln_k * p[k])

S[k] = (0.5 * np.sum(np.multiply(Q, C[k])) - np.sum(Q[k])) + \
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(0.5 * np.sum(np.multiply(Q_frag, SS[k])) - np.sum(Q_frag[k]))

Jp[k] = (np.dot(KC_k/ms, n) + np.dot(LS_k/ms, n)) * m

Jp[k][k] -= np.sum(Kn_k) + np.sum(Ln_k)

Jm[k] = (np.dot(KC_k/ms, (p*m) ) + np.dot(LS_k/ms, (p*m))) \

- p[k]*K[k] - p[k]*L[k]

J[k] = (np.dot(KC_k, n) - n[k]*K[k]) + \

(np.dot(LS_k, n) - n[k]*L[k])

J[k][k] -= np.sum(Kn_k) + np.sum(Ln_k)

for i in range(size):

J[i,i]=0.0

J[i,i] = J[i,i] - np.sum(m*J[:,i])/m[i]

JJ[:size, :size] = (np.identity(size)/dt - J)

JJ[size:, size:] = (np.identity(size)/dt - Jp)

JJ[:size, size:] = Jm

SSS = np.concatenate((S, Sp))

dd = np.linalg.solve(JJ,SSS)

dn = dd[:size]

dp = dd[size:]

n += dn

p += dp

t += dt

if t > save_time.value:

time_int += 1

save_time *= eps_time

y = np.append(y, np.argmax(n*m) )

y2 = np.append(y2, np.argmax(n))

n_save = np.append(n_save, n)

x = np.append(x,t)

vel = np.append(vel, np.max(p/(n+1e-10)))

vel2 = np.append(vel2, p/(n+1e-10))

if time_int % 10==0:

print("Time left:", (t_end-t)/(60*60*24*365), \

n[0], "Stepping: ", dt/(60*60*24*365))

print("p", p[0])

print("Lost mass to total ratio : ")

print(((sum(n*m)-rho_d.value)/rho_d.value))

print("Final n: ", n)

print("Final velocity: ", p/(n+1e-30))

print("Momentum conservation: ", np.sum(p*m) -
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np.sum(p_old*m), (np.sum(p*m)-np.sum(p_old*m))/np.sum(p_old*m))
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