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Abstract

This work considers a model of sessile species, interacting with each other

according to a directed Erdős-Rényi random graph during their compe-

tition for space in a lattice. The system, first described by Mathiesen et

al. [1], exhibits a first-order phase transition in diversity as the interaction

probability is increased beyond a critical point. To investigate this transi-

tion from the high-diversity state to the low-diversity state further, parallel

computing is used to simulate the system for a range of system sizes and

interaction probabilities. For fixed interaction probabilities, the data shows

that, in the high-diversity state, the number of species grows linearly with

system-length. However, the slope of this growth decreases with larger

interaction probability.

To investigate how inhomogeneous spatial conditions affect the model, a

second interaction network is introduced to generate different update-rules

based on spatial region. If the lattice is divided into two halves, one for

each interaction network, the local diversity is increased at the boundary.

This shows that the model exhibits edge-effects, a phenomenon of special

interest in theoretical and empirical ecology [2]. Additionally, total diversity

is increased and the transition between high- and low-diversity state occurs

at a higher interaction probability. When the lattice sites governed by the

second interaction network are placed randomly in the system, the increase

in diversity and stability is much larger. This exemplifies how spatial

inhomogeneity can be utilized to increase the stabilizing effect of spatial

separation in model-ecosystems.
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Figure 1: Colorful Lichen photographed in the Lake District of Northwest England [3].
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1 Background

To better understand and appreciate the models discussed in the later sections, it is

beneficial to gain a preliminary understanding of various other models in theoretical

ecology first. As such, the following sections (Lotka-Volterra Systems (Section 1.1) and

Random Matrix Approach to large Ecosystems (Section 1.2)) introduce approaches used

in modeling ecosystems. While the models discussed are important and interesting

on their own, they are chosen here as they exemplify an underlying theme present in

parts of theoretical ecology: Attempts at describing large ecosystems mathematically

often result in instability of the system. This idea is often referred to as the stability-

complexity trade-off. In the examples of Lotka-Volterra Systems and May’s random

matrix approach, this is quantified in the instability of arbitrary states, as determined

by local stability analysis.While discussing random matrix models of large ecosystems,

a common remedy for this instability problem is introduced through another example:

The introduction of space (or more specifically, spatial separation between species) can

significantly improve the stability of the system.

In preparation of further models, probabilistic cellular automata are introduced and

one deterministic example is displayed. However, it is only meant to illustrate the

concept of cellular automata and is not directly related to further discussed models.
Following the introduction of the two important concepts of the complexity-stability

trade-off and possible stability improvement through spatial separation, research from

Buss, Jackson and Karlson is discussed, as it could be viewed as a precursor to the

models discussed in the main part of this thesis.

The model defined by Jackson and Karlson and the later discussed sessile species

model are based on probabilistic cellular automata. This change from the differential

equation models in sections 1.1 and 1.2 allows for significantly better modeling of

spatial separation. As a result these models tend to be more stable. This motivates a

different approach to classifying the system’s stability. Rather than considering the

stability of an arbitrary state, special emphasis is placed on the stability of states with

multiple species coexisting at the same time. As result the diversity D

D(S) =
∑

species i

1{i alive in S} (1)

becomes one of the most important metrics of the system S. Where 1 is the indicator

function following a simplified definition 1{x} = 1, if condition x is fulfilled and 0
otherwise.
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1.1 Lotka-Volterra Systems

Although initially intended for chemical reactions by Lotka in 1920 [4], the equation

system

dN

dt
= N(a − bP ) (2)

dP

dt
= P (cN − d) (3)

in now mostly known for its application to fish populations in the Adriatic Sea by

Volterra in 1926 [5, 6]. Following Volterra’s interpretation, N(t) is the population

of prey-fish, P (t) is the population of predator-fish, and a, b, c, and d are positive

constants. In order to show how these so-called Lotka-Volterra systems and their

extensions for k prey-species and k predator-species lead to instabilities, the arguments

from Murray [7] are summarised below:

2 Species Lotka-Volterra System

Equations (2) and (3) can be brought to the dimensionless form

du

dτ
= u(1 − v) dv

dτ
= αv(u − 1) (4)

With

u(τ) = cN(t)
d

, v(τ) = bP (t)
a

, τ = at, α = d

a
. (5)

The resulting trajectories in phase-space follow the differential equation

1 2 3 4 5

u

2

4

6

v

Figure 2: Trajectories in the (u, v)-phase

space for 4 values of H . Arrows indicate

the direction on the trajectories.

dv

du
= α

v(u − 1)
u(1 − v) (6)

with solution

αu + v − ln uαv = H, (7)

where H is determined through the

initial conditions u(0) and v(0). The

equation system (4) has two singular

points, (0, 0) and (1, 1). Linear stabil-

ity analysis at these points reveals that

(0, 0) is linearly unstable, while solu-

tion in the neighbourhood of (1, 1) are

periodic with period T = 2π
√

α.
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2k Species Lotka-Volterra System

Extending the Lotka-Volterra equations (2) and (3) for k prey-species and k predator-

species leads to

dNi

dt
= Ni

ai −
k∑

j=1
bijPj

 (8)

dPi

dt
= Pi

 k∑
j=1

cijNj − di

 , (9)

with ai, bij , cij and di being positive constants and i ∈ {1, . . . , k}. Similar to the 2
species case, the trivial steady state Ni = Pi = 0, i ∈ {1, . . . , k} is unstable.

Solutions for the nontrivial steady-state (P⃗ ∗, N⃗∗) require

BP⃗ ∗ = a⃗, CN⃗∗ = d⃗, (10)

with a⃗, B, C and d⃗ being the matrices and vectors according to ai, bij , cij and di

respectively.

Linearization of the systems dynamics at (P⃗ ∗, N⃗∗) leads to,

du⃗
dt

dv⃗
dt

 ≈ A

u⃗

v⃗

 , A =

 0 −N⃗∗T B

P⃗ ∗T Cf 0

 . (11)

With A being referred as the community matrix in mathematical biology.

Due to its structure, A must satisfy.

2k∑
i=1

λi = tr (A) = 0. (12)

This leads to two possible options. Either ℜ(λi) = 0 for all i, leading to a neutrally

stable steady-state. If this is not the case, due to (12), at least one i exist such that

ℜ(λi) > 0 and the resulting state is in-stable.

In result, one could form the intuition that as k increases, stable states are less likely

in the 2k Lotka-Volterra system. Or in the words of J.D. Murray: ”complexity usually

results in instability rather than stability”[7].
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1.2 Random Matrix Approach for Large Ecosystems

In order to give more credibility to the intuition developed in the previous section, it is

useful to consider May’s random matrix approach to large ecosystems. Following a

hypothesis developed by Gardner and Ashby [8], based on insight from their simula-

tions, May developed a mathematical model describing the possibility of stability for

large ecosystems [9]. This argument is presented following [10]:

The community matrix A is not structured as the ones in the previous section were. In-

stead, A is an element of a random matrix ensemble with the following characteristics:

1. Off-diagonal coefficients of A are 0 with probability 1 − C. If this is not the case

(with probability C), they are sampled independently from a distribution with

mean 0 and variance σ2. These elements model random integration between

species.

2. Diagonal coefficients are set to −d, d ∈ [0, ∞), representing the amount of self

regulation every species has.

This assumption conveniently eliminates the need for knowledge of the ecosystem’s

dynamics. While this is obviously a large assumption to make, considering that no com-

monly accepted set equations modeling the behavior of species in an ecosystem exist,

it provides a starting point for further analysis. Additionally, the random interaction

assumption allows for the distribution of eigenvalues to be determined analytically

through random matrix theory.

For this it is useful to first consider the eigenvalue distribution of a non-symmetric

random matrix ensemble:

First define the eigenvalue distribution itself as

µ(λ) = E

(
1
n

n∑
i=1

δ (λ − λi)
)

. (13)

Where λi are the eigenvalues, E is the expectation in respect to the entire ensemble of

random matrices and δ is the Dirac δ-function. Furthermore it is helpful to define the

so called resolvent G(z).

G(z) = E

(
1
n

n∑
i=1

1
z − λi

)
= E

( 1
n

tr(z1 − A)−1
)

(14)
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Which allows the computation of the spectral density through

µ(λ) = 1
π

lim
ϵ→0+

Im G(λ + iϵ) (15)

For a non-symmetric n×n random matrix M with all coefficients mij being iid. random

variables with E[mij ] = 0 and E[m2
ij ] = 1 then µ(λ) of M/

√
n converges to

µ(λ) =


1
π if (ℜ(λ))2 + (ℑ(λ))2 ≤ 1
0 otherwise.

(16)

as n → ∞.

From this result one can obtain the radius of eigenvalues for the random community

matrix defined by May. If A is re-scaled by
√

Cσ2, the resulting matrix A/
√

Cσ2 has

the same characteristics as M . Therefore the radius of A/
√

Cσ2 converges to 1 as

n → ∞. In order for the system remain in a stable state, the diagonal elements of the

community matrix have to remain negative. This leads to the so-called May’s stability

criterion
√

nCσ2 < d. (17)

Similar to the intuition obtained from the 2k-species Lotka-Volterra system in the

previous section, May’s stability criterion indicates that large systems sizes n and high

connectivity C are incompatible unless significant self regulation d is present in the

system.

Figure 3: Schematic of a

Meta-Ecosystem from [11] rep-

resenting 3 connected sub-

ecosystems.

Meta-Community Ecosystems

As highlighted by the examples of the 2k-species

Lotka-Volterra systems and May’s stability crite-

rion, large ecosystems should be less stable from

a mathematical viewpoint. This is commonly re-

ferred to as the complexity-stability paradox. How-

ever, when actual observations are considered,

real ecosystems are obviously not effected by this

complexity-stability trade-off to the same extent.

This discrepancy led to the development of mul-

tiple hypothesis. While no explanation has been

commonly accepted so far, a relevant contender

is the introduction of spatial separation into the

system.

As is discussed in [11], with a modification of the community-matrix structure, the

5



stability criterion (17) can be significantly relaxed. Instead of considering only a single

ecosystem, a network of connected sub-ecosystems is constructed. Individual sub-

ecosystems follow the definition of May. In the meta-ecosystem, all k sub-ecosystems

are connected, as one assumes that there is species-dispersal between them. The

community matrix of the connected system is of shape (nk × nk), where n is the

number of species in the system. Both numerical as well analytical investigations show

that an increase in the number of sub-ecosystem increases the system’s stability.

1.3 Probabilistic Cellular Automata

As shown by the example in the precious section, the introduction of space can lead to

an increase in stability of the overall ecosystem. This allowed the initially diversity-

averse May-random-matrix model to increase in stability once spatial separation

through the introduction of multiple connected sub-ecosystems was introduced. This

effect can be seen in various other model-ecosystems [12]. While the spatial separation

in the previous section was based on differential equations, using cellular automata

can lead to an arguably better separation between species and result in stabler system

states.

This expectation is used in the main focus of this thesis, the sessile species model

(described in sections 2.2, 2.3 and 2.5). Therefore it is useful to give a brief description

ofcellular automata and probabilistic cellular automata to make the introduction of the

sessile-species model more accessible to the general reader. Further information can be

found in [13]

Cellular Automata (CA) consists of a set of finite-state automata (referred to as cells),

which are arranged in a lattice. The change in cell-state for any cell i from any t to

∆t only depends on the cell-state of i and the states of its neighbors. Widely known

papers involving CA include the 1948 paper by von Neumann and Ulam [13], usually

considered the first mention of CAs, and Conway’s Game of Life [14], due to the

variety of structures it can form.
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Example: Rule 30 CA [15]

In figure (4) every square represents a cell. The cell’s state is indicated by its color.

White cells are active, black one passive. The state of a cell and it’s two nearest

neighbors at t determines the state of the cell at t + 1. If black cells are assigned the

number 0 ad white cells the number 1, the combination of the t + 1-rows (left to right,

top to bottom), reads 00011110. This is the binary representation of 30 in decimal

representation.

t

t + 1

t

t + 1

Figure 4: Schematic of all dynam-

ics in Rule 30.

t

x

Figure 5: Simulations of Rule 30. Starting

from a single active cell.

Probabilistic Cellular Automata (PCA) extend the definition of cellular automata by al-

lowing the introduction of randomness into the update rule for cell-states. This can be

done either through randomness in the set of rules describing the evolution of cells

state based on its and its neighbor’s states, or by only updating a random subset of

cells every timesteps.

Since the update for every cell only requires knowledge of its state and the states of

its neighbors, a large number of cells can be updated simultaneously with interfering

with other updated cells. This allows for excellent parallelization.

Due to their flexibility and relative ease of implementation, PCA have been used in

a variety of fields including: epidemiology [16], voting/opinion dynamics [17] and

traffic models [18].

As described later the main focus of this thesis, the sessile-species model is best

described as a partially asynchronous stochastic cellular automaton.

7



1.4 Buss-Jackson-Karlson–Model

In 1975, based on studies of limit-cycle studies of the Lotka-Volterra system for three

or more species, it was hypothesised that intransitive competition relationships could

lead to coexistence between species [19]. In the same year, proof of such relationships

was found in a bay in northern Jamaica [20]:

The observed reef was inhabited by various corals and sponges. Relative competitive

strength between species in the ecosystem was determined through the overgrowth

between species. This means that if species A was found to grow on top of species B,

as such taking over species B’s place on the reef-substrate, species A was assumed to

be competitive dominant when compared to species B. Over a long enough period and

without other interruptions, species A should have completely overtaken the adjacent

patch of species B on the reef-substrate.

A1 A2

A2

A2 A3

A3

A3

A3

A3

A4

A4

A4

A4

C1

C2

C2

C2 C2

C3

C3

C3

C3

C3

C3 C3

C3

C4

C4 C4

C4

C4

C4

C4

B3

B4

B4

B4B4

A4

D3

D4

D4

D4 D4

D3

D4

D4

D4 D4

Figure 6: Hypothetical example of a Buss-

Jackson-Karlson-Model on a 10 × 10-lattice,

showing the interaction between 4 species

{A, B, C, D}. Subscripts denote in which

interval the lattice site was recruited by its

current species. Bold lines indicated con-

tact between species. Depending of the

interaction-structure overgrowth might be

possible. Recreated from a similar example

in the original paper [21].

Following the discovery of ecosys-

tems inhabited by species with in-

transitive competition behaviors, com-

putational models were developed

to gain a deeper understanding of

the processes maintaining stability

and diversity in the system. Mim-

icking the studied corral-reef, the in-

dividuals in the model ecosystem

were assumed to be sessile. The

models simulated by Karlson and

Jackson [21], and analyzed further

by Buss [22], try to implement the

growth of coral and sponges on a

small two-dimensional lattice. These

models will be referred to as BJK-

model.

Interactions between individual species

in the BJK-model are defined explic-

itly to either form a hierarchical struc-

ture, a simple network or a complex

network. Following the definitions in

8



[21]: in the hierarchical version a species with high rank is allowed to take over any

species with lower rank. The simple network is achieved from the hierarchical struc-

ture through allowing one species with low rank to take over a species with high rank.

As a result the interaction-network has one cycle. For the complex network more cycles

are added to the interaction-network. Other than these mentioned ranking patterns,

the systems’ evolution depends on recruitment rates, growth rates, over-growth rates,

substratum size (i.e., size of a spatial array), and number of species. When measured

by their diversity, systems with complex networks performed best. Systems with the

simple network still achieved a higher diversity than the pure hierarchical version.

In contrast to the previously noted models, the BJK model exhibits multiple funda-

mental changes. As the model consists of stochastic cellular automata, linear stability

analysis is no longer applicable. The discussed theories however remain of some

use, when thinking about the mean field approximation of the BJK-model. In result,

developed intuitions might still apply here.
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2 The Sessile Species Model

The following section introduces previous research on a model ecosystem consisting of

species with random interactions. The system’s dynamics and possible effects thereof

are described in detail. Since there are minor differences between the sequential and

parallel implementations of the model, the description of the system’s update rules

is split into local updates (which are identical for the sequential and parallel imple-

mentation) and the selection-scheme determining which lattice sites should be updated.

This choice of selection-scheme is the only difference between sequential and parallel

implementations.

Figure 7: From [1]: ”Photograph of a crus-

tose lichen community on a rock in an

alpine environment (at 1300 m altitude, Jo-

tunheimen, Norway)”

Following the introduction of the sys-

tem’s dynamics, the acceleration of

cyclic interactions is discussed as a

method to significantly decrease sim-

ulation time. Afterwards, it is dis-

cussed how some immediate con-

sequences of the system’s rules ef-

fect diversity and overall structure

of the system. Finally, some ex-

ample states for the system are dis-

played.

Due to the large amount of data gen-

erated it was necessary to sub-sample

the generated states. In section 2.6 the

choice of how the data should be sub-

sampled is discussed.

For the remainder of this thesis the model described in the following sections will be

referred to as the Sessile Species Model and shortened to the acronym SSM. To differ-

entiate between the SSM and its modifications introduced later, modified versions

will be described with a fitting adjective (i.e. inactive SSM), whereas SSM will refer to

the unmodified version. Furthermore, unless otherwise mentioned, SSM refers to the

parallel implementation (discussed in section 2.3) specifically.

10



2.1 History

Partially building on results from BJK-model Mathiesen, Mitarai, Sneppen, and Trusina

introduced a model of sessile species in 2011 [1]. The overall evolution of the system

was simplified: recruitment rates, growth rates, and over-growth rates are identical for

all species. Where Jackson and Karlson tried to model coral and sponges, Mathiesen

et. al. took crustose lichen as their biological motivation for the model. An example

image from the original paper is displayed in figure (7).

Comparing the BJK-model to the SSM, assumptions regarding the structure of species-

interactions were relaxed, as it was assumed that species interactions form a Erdös-

Renyi G(n, γ) random network. As such the system is not restricted by the choice

between hierarchical interaction networks and those with circles.

Figure 8: Plot from [1] displaying the phase-

transition for a system of size 200 × 200.

Connecting lines are drawn to guide the

eye.

Furthermore, the number of species

in the system was allowed to increase,

whereas in the BJK-model it was only

possible to decrease D. In the SSM,

additional species were introduced

throughout the simulation both with

a constant random rate α, or when-

ever all dynamics in the system were

stopped (i.e. when no cell could take

over its neighbors). In the original

paper simulations with α = 0 were

referred to as quasi-static simulations.

These simulations will be the main fo-

cus of this thesis.

Depending on γ the diversity of sys-

tem shows a clear phase transition

between a high diversity state with

γ < γc or a low-diversity state with γ > γc. However, high introduction rates for new

species increase the diversity for γ > γc. As a result, the phase transition is less visible

for systems with high introduction rates.

In [23] further investigation of the SSM were conducted. To study the effect of cyclic

interactions, all cycles of length σ were removed from the interaction network G(n, γ).

In contrast to the models of Jackson and Karlson, this increased the diversity for all

Cmin <= 5. For Cmin > 5 diversity however decreased significantly.

11



In 2014 a modified version of the model, with random species introduction being re-

placed by the mutation of species, was published [24]. However, the structures formed

by the competing species were long-lasting enough to allow any given species to sig-

nificantly mutate before invading its neighbor. As such, the mutation-model behaves

similarly to its predecessor with new species being added through immigration.

Further investigations were conducted, focusing on high introduction rates α and

higher interaction probabilities, for the first time making use of parallel computation

to accelerate simulations [25].

2.2 Space, Species and Interactions

The implemented model mimics a ecosystem of sessile species with local interactions:

On a square L × L lattice with closed boundaries, every cell can be occupied by only

one species at a time.

Γi,j =


0 if i = j

1 with probability γ

0 else

(18)

Species

Every species is fully characterized by:

• species index s ∈ N

• interactions with other species

as defined by the interaction net-

work Γ

Interaction–Network Γ
The interactions between species form a directed network. In order to limit assump-

tions about the overall structure of the network, the network is defined as a directed

random network. Every species is represented by a node. Competitive dominance is

indicated by a (directed) edge in the network.

Every species is assumed to be competitively dominant to another any species with

probability γ. As a result, the network is a directed Erdős-Rényi network. For practical

purposes, it is sometimes useful to consider the adjacency matrix of said network.

Since the state of the SSM would not change if a lattice-site would invade a neighbor

of the same species, self-loops in the interaction-network are forbidden. Following, the

diagonal of the interaction-matrix, defined in (18), only consist of zeros. Throughout

this thesis the interaction network and its matrix representation will be used inter-

changeably. For reference, sponge-corral, an example for a real sessile ecosystem, has

been reported to compete with a 2.5% chance [26].

12



2.3 Updating-Schemes

Throughout the previous studies, multiple ways of updating the system have been

utilized. While the local updates are the same in all of them, differences exist in the

selection of lattice-sites (referred to as the selection-scheme). As a result, the local update

rules are introduced separately, followed by two methods of selecting the sites where

updates occur.

Since one local update only has a minor impact on the system, it is useful to define

lattice-updates (sometimes simply referred to as updates or time-steps) as the combination

of L×L local updates. On average every cell in the lattice should be active once during

a lattice-update.

2.3.1 Local Updates

A local update-steps starts with a selected lattice-site (i, j). One of the four neighbors

in its Von-Neumann neighborhood is chosen at random. If the species at the selected

site (i, j) is dominant in comparison to the species of the chosen neighbor site, the

neighboring lattice site changes to the species s(i, j). If the species at the selected site

(i, j) is not dominant in comparison to the neighboring species, no change takes place.

1.) 2.) 3.)

Figure 9: Schematic of a local update-step: 1.) Initial state. The red species is presumed

to be competitive dominant to the blue species. 2.) A cell is selected. (black lines) And

one of its 4 neighbours is randomly chosen. (dots) 3.) The neighboring cell changes

species.
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Sequential-Selection-Scheme

Only one lattice site (i, j) is chosen at a time for the sequential-updating scheme.

The selection of the lattice site is random and uniform over the entire lattice. Local

dynamics then take place between the selected site and one of its neighbors according

to local update rules. Once this process is completed, a new lattice site is chosen.

Parallel-Selection-Scheme

In the parallel version of the updating scheme, N/8 lattice sites are active at the same

time. In order to guarantee that no lattice-site is being invaded by two species at once,

the following selection method was implemented:

1.) 2.) 3.)

Figure 10: Example of parallel selection: 1.) active (white) and passive (black) blocks are

selected 2.) One defending cell (blue) is chosen per active block. 3.) Every defending

cell is assigned an adjacent attacking cell (red). Some attacking cells are outside the

displayed area.

2 × 2 - blocks in the lattice are designated as either active or passive, following a chess-

board pattern. This layout switches randomly to ensure that every site is active and

passive for equally many updates. In every active block, one lattice site is chosen as the

defending species. Every defending lattice site is assigned one corresponding attacker

out of its 4 neighbors. With defending and attacking cells chosen, the local updates

start.

To implement this selection-scheme and utilize parallel updates, the lattice-length L

has to be a multiple of 4. All simulated system-sizes are selected accordingly.
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2.4 Acceleration of Cyclic Interactions

As already noted in [23], cyclic interactions between species can significantly increase

the number of lattice-updates needed for the system to reach a static state. While occur-

rence of such cyclic interactions can impact the diversity and structure of system, the

length of the occurrence should only play a secondary role. Therefore, it is beneficial

to stop cyclic interactions after a certain time τ limit has passed. The exact procedure for

this is as follows:

n

Figure 11: Average number of lattice sites

that were in contact with a specific species.

Data based on simulations of n species on

a 100 × 100 lattice. Due to the circular inter-

action network, all species in a system are

equal and results are averaged over all n

species. 1000 simulations were conducted

for every choice on n. Systems that did

not have an active cyclic interaction after

500 lattice updates were discarded. Initial

states were randomized for every simula-

tion.

If the system is not stationary af-

ter τmin lattice-updates since the last

species has been introduced, it is

determined which species currently

have neighbors they can invade. Out

of these species one is chosen ran-

domly and all its edges in Γ indi-

cating competitive-dominance over

another species removed. There-

fore a cyclic interaction containing

this species will be hierarchical and

will stop after a short time. In

case this does not have the de-

sired effect, the procedure is re-

peated every τ limit. After the sys-

tem reaches a stationary state all re-

moved interactions are introduced

again.

As can be seen in figure (11), an area occupied by 3 or more cyclically interacting

species quickly results in every species occupying every lattice site temporarily. There-

fore, every patch neighboring this area has a chance to interact with all species inside

the area before the cyclic dynamics halt. If this well mixed state is achieved and

no neighboring patch interacts with the species inside the area, there should be no

consequence for stopping the cyclic dynamics. Cyclic interactions between only 2
species mix noticeably slower. However, it appears there is not significant effect on the

diversity if instead of this cyclical interaction a hierarchical on is created.
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The dynamics displayed in figure (11) were simulated on a 100 × 100 lattice. Based

on [23] and results discussed further below, this lattice area could be viewed as an

approximate upper bound for the sizes of observed patches. As such the simulated

500 steps should serve as a rough estimate for time needed to interact with all lattice

sites adjacent to the specified area. More complex patch shapes could influence this

estimate. In [23], even a lower τ limit of 4 × 103 caused no significant change in aver-

age diversity. However the simulations discussed in the paper were carried out with

τ limit = 4×104. For all simulations in this thesis, a threshold of τ limit of 1×104 was used.

2.5 Stochastic and Cyclic Patch Creation

Based on the previous research and after introducing the details of the SSM, it is

possible to discuss mechanism running on larger time and length scales. These mecha-

nisms, named stochastic patch creation and cyclic patch creation, play a significant role in

understanding how diversity is created [1].

Stochastic Patch Creation

As already noted in the initial paper about the SSM [1], one of the mechanisms pre-

sumably responsible for the creation of diversity is the so-called stochastic patch

creation. In its simplest form, stochastic patch creation happens during the interaction

between three species with linear interactions between them. This means that species

1 −→ 2 −→ 3, where the numbers represent species and arrows edges in the interaction

network.

An example of this is shown in figure (12). Obviously stochastic patch creation can

happen multiple times with each introduction of a new species. This by itself does not

increase diversity. But when multiple (disconnected) patches of the same species are

present in the system, one of the patches can be selected for the introduction of a new

species, while the other patches remain unchanged, ultimately increasing the diversity.
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1.) 2.) 3.)

4.) 5.) 6.)

Figure 12: Example for stochastic patch creation. 1.) Species A (yellow) and species

B (red) cannot invade each other. 2.) The system is stationary and as a result a new

species C (blue) is introduced. 3.) After species C has spread through some of the

area occupied by species A, species C comes into contact with species B. 4.) Species C

continues to spread into species A, while simultaneously being overtaken by species B.

5.) Species B separates a small area containing species A and C. 6.) Species B finished

invading species C inside that small area, leaving two protected patches of species A.

Figure 13: Photograph of Pleopsidium Flavum [27]. Some red species patches are

completely surrounded by the yellow species. As a result, they could be protected

from other species, i.e. the white species.
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Cyclic Patch Creation

When a cyclic interaction starts with 3 or more species starts (A −→ B −→ C −→ . . . −→ A),

the number of patches increases significantly in a short amount of time. As has already

been noted in [23], when these interactions finally break down, the leave some patches

behind.

Figure 14: From [23]: ”Investigation of

breakdown of cycles: Average number of

patches that are left when cycles of length

3, 4, 5, and 6 collapse due to fluctuations as-

sociated with the stochastic update of the

system. The dashed line corresponds to the

scaling P ∝ L0.75 . The inset shows the av-

erage lifetime of the cycles of length 2, . . . , 6
as a function of system size.”

This can lead to a significant increase

in the number of patches in the whole

system. Statistics about the number

of remaining patches and the time

needed until the system naturally col-

lapses are shown in figure (14):

To investigate the effect of cyclic in-

teractions further, a modified ver-

sion of the SSM was considered in

[23]. There, for every new species,

interactions were suggested accord-

ing to the standard definition of

the interaction matrix Γ in equa-

tion (18). If any of these interac-

tions would lead to the creation of

cycle of length less than Cmin in

the interaction network, the sugges-

tion was discarded. This process re-

peats until suitable interactions are

found.

The values of Cmin where chosen between 3 and 11. Additionally, data from the

unmodified SSM can be considered for the Cmin = 0 case. Simulations were initiated

from a state of high diversity, generated with random introduction rate α = 0.025 and

γ = 0.5. The two cases γ = 0.025 and γ = 0.05 were considered.
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Figure 15: From [23]. Steady state diversity

in a model ecosystem with the removal of

short cycles.

Figure (15) shows the diversity of qua-

sistatic states for various Cmin. The

notation ≥ 3 denotes that Cmin = 3,

and as such, only cycles of length 3
or larger can be present in the inter-

action network. Figure (15) would

indicate that removing cycles up to

Cmin = 5 from the interaction net-

work, increases the diversity. Whereas

the removal of larger cycles causes the

system to collapse to its low diversity

state. Therefore, one could assume that cycles of length 4 − 6 are vital in the creation

of patches and as such for the diversity of the system. This idea is revisited later in

section 4.12.
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Figure 16: Example static state of a system with size 400 × 400 and γ = 0.05, after 7000
static states. For the first 5000 static states, two species were introduced if the systems

was stationary.

19



2.6 Choice of Time-Measurements

For practical purposes it was necessary to only save a subset of the generated data, as

storing every time-step would have significantly exceeded the storage capacity. Given

this limitation, one must make a choice on which states to sample. Two options were

considered:

1. Equidistant Time Sub-sampling

In this sampling mode, states are sampled every n time-steps. In the preliminary

tests n = 1000 was chosen.

2. Static State Sub-sampling

In static state sub-sampling, states are only recorded whenever all local dynamics

in the system are stopped (when no cell can invade its neighbors).

In the initial comparisons between both sub-sampling-methods, multiple statistics like

number of patches or patch size were less noisy in the static state sub-sampling mode

when sampled at an equidistant number of sub-static states. This can be attributed

to transient dynamics being recorded in the equidistant time sub-sampling mode.

Especially cyclic dynamics could significantly increase the number of patches and

in turn add many small patches. Static states are in part immune to recording such

fluctuations.

Furthermore, one could argue that there are long stretches of time between the intro-

duction of new species in a real ecosystem. If this is the case, the introduction of a new

species to the system would be followed by a comparatively brief period of activity,

followed by an extended period of the system being completely static. As a result, one

might be more likely to encounter a static state in real ecosystems. A similar argument

is already presented in [23], where it is also assumed that in real ecosystems there

are long periods of time between the introduction of new species, and as such, the

quasi-static simulation might be more relevant that the case with α > 0.

Taking the reduced noise and the possibility of better interpretation into account, static

state sub-sampling was chosen as the main sub-sampling mode. Therefore, unless it is

explicitly specified, all data is collected with static state sub-sampling.
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3 Implementation

3.1 Technical Overview

In order to keep an easily maintainable code-base, Python was chosen as the main

programming language of this project. The GPU machine-code was generated through

the Numba package [28]. While earlier versions of Numba were supposed to work

on both Nvidia Cuda GPUs as well AMD ROCm GPUs, the current status of the

package for AMD graphics-cards is unmaintained[29]. Additionally, as only Nvidia

graphics-cards were available, it is highly unlikely that implementation is functional

on AMD GPUs.

Name Version

Linux-Kernel 5.13.0-30

Nvidia drivers 510.47.03

CUDA 11.6

Python 3.8.10

Table 1: Used versions of operating-system, Python, Nvidia drivers and CUDA.

Name Version Use

Numba 0.53.1 GPU code generation

CuPy 9.2.0 access to pre-written GPU-functions

scikit-image 0.18.1 advanced image/matrix functions

tqdm 4.61.1 progress bars

tabulate 0.8.9 improved class descriptions

Table 2: Overview of utilized Python-packages used in the class responsible for data-

generation. Italicized entries are not directly used in the simulation and are only for

ease-of-use purposes.
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3.2 Speed Comparison Between Sequential and Parallel Implementation
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Figure 17: Average time needed to update

whole lattice of a size L.

As expected, the parallel implementa-

tion of the SSM significantly outper-

forms the sequential implementation.

Although more work has been done to

ensure the parallel implementation is

optimized appropriately, by large this

difference in performance is due to the

way the lattice is updated. The par-

allel implementation’s ability to up-

date (L × L) /8 lattice sites at once per-

forms equally well to the sequential

implementation for low choices of L. For higher L the ability to update parts of the

lattice at once allows for significantly lower update times for the whole lattice.

Surprisingly, the update-time for the sequential implementation rises almost linearly

with the system length L. Since each lattice-update requires L × L local updates

steps, the total update-time would be expected to rise with L2. However, due to

parallel implementation’s significantly better performance no further investigation

was conducted into this abnormal behavior of the sequential implementation.

As already mentioned in section 2.3, the parallel method of updating the SSM is used

in all conducted simulations.

3.3 Differences between Sequential and Parallel Implementation

To compare some results between sequential and parallel implementation, the unin-

terrupted spread of a single species was simulated. This means that one cell in the

middle of the lattice was populated with a species able to invade the surrounding

empty lattice sites. Due to a large enough lattice, no interactions with the boundaries

occurred in the simulated time-frame. The results (as measured by area and boundary

length) are presented in figure (18). The simulations utilizing the sequential selection

scheme grew marginally faster. As the boundary length at t − 1 directly influences the

possible area gained by time-step t, both A and B must be considered in conjunction.

Additionally, the standard deviation of both area and boundary length are increased

for the sequential selection scheme.
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Figure 18: Area A (sum of all occupied cells), boundary length B (number all occu-

pied/unoccupied pairs) and the ratio A
B for the growth of single species in an empty

lattice. Based on 10000 simulations. In each plot the blue line represents data from

based on the parallel selection method, whereas the pink line corresponds to the ran-

dom sequential generation method.

While these deviations in area and boundary length appear minor, they could result in

differences between the sequential and parallel implementation. To illustrate how the

choice of selection scheme is affecting the probability of ending up in certain states, an

example is show below. While this example is obviously a large simplification from the

real model, it could be especially relevant in stochastic patch creation. If one considers

the interaction between two species, it is impossible to form patches when both species

touch another in a complete straight boundary. Only when the contact-boundary

between the species isn’t perfect, stochastic patch creation can occur. This is illustrated

in figure (18). This is obviously a hypothetical example, as the update-rules make it

unlikely that a species expands in a straight line to begin with. However, it highlights

how inhomogeneous spatial spread of a species (exemplified by the following tower

building example) can be beneficial to stochastic patch creation.
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A.1.) A.2.) A.3.)

B.1.) B.2.) B.3.)

Figure 19: Illustration of how inhomogeneous spread can aid stochastic patch creation.

(A) Unlikely example of completely homogeneous expansion.

(B) Inhomogeneous spread leads to the creation of two isolated patches.

Example: Tower Building

1.) 2.)

Figure 20: Illustration of the tower building example.

Assuming an initial state as displayed in figure (20.1), one wants to calculate the

probability of ending up in the state displayed in figure (20.2), given the following

interaction rules:

The red species cannot take over any of the hatched squares, but it can expand into the

surrounding white area. For a detailed discussion, one could consider three species

(red, hatched, and white). Here only the simpler yet equivalent case of one (red) species

spreading is considered.

For the sequential selection calculating the probability is trivial. At every time-step the

red species can expand in any direction it has an empty space adjacent. However, only

one direction has the desired effect. This results in the probability

p(n) =
i=n∏
i=2

1
2n − 1 (19)
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of building a tower of height n. For the case of n = 3 this leads to p(3) = 0.06.

For the parallel selection scheme, calculation is more involved. This time it is necessary

to keep track of the currently active 2 × 2 blocks as well as the height of the tower. The

transition probabilities between the individual states are denoted in figure (21).
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Figure 21: Transition network for the tower building example. The letters (A,B)

indicate which subsection of the lattice is active and the subscript lists the current

height of the tower. X3 is the state corresponding to desired height of 3, regardless of

which subsection of the lattice is active. Y indicates any other state.

This results in a transition matrix of

P =



B1 A1 A2 B2 X3

3/8 3/8 0 0 0 B1

1/4 1/4 1/8 1/8 0 A1

0 1/4 0 1/4 0 A2

0 0 3/16 3/16 1/8 B2

0 0 0 0 1 X3


(20)

Resulting in a probability of pabs ≈ 0.02722 of reaching the desired state at any point.

In this example, the sequential selection scheme is more than twice as likely to end

up at a height of 3. This means that the parallel selection scheme has a higher chance

of developing these protruding structures, resulting in more inhomogeneous species

growth. As illustrated in figure (19), this could affect patch creation, and in turn the

diversity of the system.

25



4 Results & Discussion

As the results in the following sections are loosely connected with each other, a quick

summary is given to highlight how individual sections complement and build off

each other. The appropriate section numbers are placed in brackets at the end of each

description.

After the discussion of some initial problems in the generation of stable high di-

versity states (4.1), a more reliable method of generating these states is introduced

(4.2). Since this method relies on introducing multiple species at once to build di-

versity, the average diversity and number of patches are compared between two

different introduction rates nintro (4.3). Additionally, the distribution of species (4.4)

and patch sizes (4.5) is discussed. This is followed by a closer look at the distri-

bution of time between the static states. To gain a better understanding of what

caused the problems discussed in section 4.1, smaller system sizes are investigated

(4.7) and the behaviour between SSM-simulations of different sizes are compared (4.8).

L γmin γmax nsim nbuild nmeasure

200 0.01 0.07 8 5000 5000

252 0.02 0.1 9 4000 4000

300 0.01 0.1 10 4000 4000

352 0.02 0.1 9 4000 4000

400 0.02 0.1 13 5000 5000

600 0.04 0.12 9 4000 4000

800 0.07 0.11 5 2500 2500

1000 0.08 0.1 3 2500 2500

Table 3: Simulations of the unmodified

SSM. Lowest and highest choice of γ, the

number of simulations nsim and the num-

ber of static states in building-phase nbuild

and measuring-phase nmeasure.

Afterwards, the effects of inhomo-

geneous ecosystems are investigated.

The unmodified model characterized

in the preceding sections serves as a

reference point. To start off, the effect

of removed lattice sites is described

(4.9). To see how adjacent systems in-

teract with each other, a split ecosys-

tem is introduced in section (4.10).

There the lattice is split in the mid-

dle and each sub-lattice receives a dif-

ferent interaction network. Special at-

tention is paid to the area where the

two sub-lattices interact. Building on

these results, a model with random

interaction-network assignment is in-

vestigated (4.11). Finally, the effect of

cyclic interactions is discussed and compared to previous research (4.12).

While only systems of size 400 × 400 are explicitly discussed in the following sections,

the results apply to all sufficiently large system. Results for other system sizes are

shown in the appendix.
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4.1 Generation of Initial Conditions

In the initial simulations i.e. [23] initial conditions were provided through two sep-

arate mechanisms. The main implementation introduced 100 species in the first 100
time-steps. These starting conditions should show a fluctuating diversity at first and

settle into a high-diversity state after the initial dynamics are concluded. However,

this method was only used in simulations with α > 0. Quasi-static simulations were

initiated from previously obtained high-diversity states with similar γ-values. The

intent behind this change in initial conditions was to speed up simulations.

Since there was no previous data available to serve as initial conditions, the method

of generating initial conditions for the α > 0 case from [1] were attempted in the

case of α = 0. However, despite multiple attempts, the simulation failed to produce

stable high-diversity states in the majority of simulations. To rule out that this change

in the systems behavior was due to the parallel-update rule, the sequential update

rule was implemented. In either case, the introduction of 100 species into a grid of

size 200×200 very rarely resulted in the creation of high diversity states, regardless of γ.
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Figure 22: Diversity as a function of static

state in a system of size 200 × 200. Out

of 100 initially introduced species only 80
are still alive when system reaches the first

static state a tss = 0. The system diversity

continues to decrease until the D = 1 state

is reached, approximately 300 static states

later.

With the method of updating the

system ruled out as the cause for

the change in behavior, the only re-

maining explanation is that the noise

added to the system by the intro-

duction of new species in the case

of α > 0 allowed the creation of

high-diversity states, and that the

structure built in this process was

stable enough to allow the diver-

sity to persist in the quasi-static

case.

In order to investigate further, differ-

ent combinations of starting species

and lattice sizes were attempted.

Keeping the lattice size the same

while increasing the number of start-

ing species slightly increased the time
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spent in a high diversity state. However, the system still had a tendency to collapse

and would do so in most attempts. Another set of simulations was conducted with

both system size as well as the number of starting species increased. Systems with

L = 300 and a starting diversity of 1000 showed a noticeably better chance of settling

into a high diversity state. Similar odds of settling into a high diversity state were

found for all systems with L ≥ 252 and the number of starting species up-scaled

appropriately from the choices in [23]. As these simulations were only attempts of

finding a sufficiently reliable way of generating high diversity states, no statistics were

kept about the chance of generating a stable high diversity state. However, even with

refined parameters this method of generation was deemed unreliable in the generation

of high-diversity states.

Parts of the behaviour discussed in this section could be due to the system being not

big enough to build stable diversity in the quasi-static case. The following section

introduces a significantly more reliable method of building high diversity states. How-

ever, even this method fails do deliver consistent results for low enough system-sizes,

as will be discussed in section 4.7.

4.2 Building Stable High Diversity States

Figure 23: Diversity time-series for various

of γ with nintro = 2 for tss < 5000 and

nintro = 1 for tss ≥ 5000.

As explained in the previous section,

the methods used for the generation

of high-diversity states from prior pa-

pers are not sufficient in the gener-

ation of stable, high-diversity states

in quasi-static simulations. How-

ever, with a simple modification high-

diversity states can be achieved con-

sistently, even with α = 0. In [1] and

[25] it is already discussed that the in-

troduction of more than one species

every time the system reaches a static

state causes the low diversity state to

vanish. As such, static-state introduc-

tion rates of nintro ≥ 2 can be used to

force the system into high-diversity state.
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Specifically, the system is initiated completely empty, but with a static-state introduc-

tion rate of nintro ≥ 2. (In some figures nintro will be shortened further to n.) Other

than that, no changes are made, and the simulation starts. Depending on system-size L

and interaction-probability γ, the system’s diversity should saturate in a high-diversity

state after some time. At this point the static state introduction rate is reduced back to

1. This makes it possible for the system to collapse to its low-diversity state. Figure

(23) shows the diversity D during this process. For tss < 5000 (left of the grey line)

two species are introduced at every static state, afterwards only one.

Some initial experiments were carried out with higher values of nintro. The behaviour

for all values nintro ≥ 2 was similar. Higher values resulted in slightly faster initial

diversity growth. If the introduction rate was significantly increased (i.e. nintro ≥ 10),

it was possible to achieve diversities noticeably higher than the ones expected based

on figure (24), especially for high γ. However, if the introduction rate was reduced

back to 1, diversity fell to the values displayed in figure (24). As a result, it seems

unlikely that there is another set of meta-stable states with diversities above the ones

that have so far been described as the high-diversity states.

Unless specified explicitly, this method of generating stable high diversity states is used

in all experiments. All measurements were taken far enough after the initial buildup

in diversity or the change in nintro to ensure that transitional effects are recorded. The

initial phase with nintro = 2 will be referred to as the building phase and following

phase with nintro = 1 as the measuring phase.
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4.3 Average Diversity & Number of Patches for nintro = 2 and nintro = 1

Figure 24: Average Diversity for a system

of size 400 × 400 for various values of γ.

The building phase is indicated by n = 2
and the measuring phase by n = 1

Additionally, to providing a reli-

able way of generating stable, high-

diversity states, the method intro-

duced in the previous section also pro-

vides a new set of data. While ini-

tially discussed in [1], systems with

nintro = 2 and nintro = 1 have not

been compared in full detail so far.

Figure (24) displays the average diver-

sity for a system of size 400 × 400 as

a function of γ. While the nintro =
1 case collapses to the low diversity

state for γ ≥ 0.07 , the nintro = 2 ver-

sion shows no notable change. Both

the collapse for nintro = 1 and the lack

thereof for nintro = 2 are expected, based on the research introduced in the previous sec-

tions. In further analysis the critical values of γ is assumed to be between 0.07 and 0.08.

For all simulated values of nintro the diversity grows exponentially with reducing

values of γ. Based on figure (24) alone, one could assume that the systems show no

drastic change in structure for γ > γc in the building phase.

Figure 25: Average Number of Patches for

a system of size 400 × 400 for various val-

ues of γ and two consecutive choices of n.

The average number patches, as dis-

played in figure (25), clearly shows a

change in behavior for supercritical val-

ues of γ. Both nintro = 2 and nintro = 1
are almost constant for γ < γc. As ex-

pected, the number of patches drops to

1 for nintro = 1 and γ > γc. Unlike in

the case of average diversity, the aver-

age number of patches shows different

behavior for γ > γc. Instead of staying

at a value between 7000 and 8000, it

drops with increasing γ. A closer look

at the time series of P shows that this drop in average is due to number of patches
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fluctuating between high values (> 7000) and low values (< 200). As displayed in

figure (26), for γ > γc can even lead to more patches for nintro = 2.
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Figure 26: Number of patches in a system

of size 400 × 400 for γ = 0.1 and γ = 0.02
in the case of nintro = 2.

This is not necessarily surprising, as

the D = 1 state is not absorbing with

nintro = 2. However, it is likely that

the system is unstable. Therefore,

one would expect the system to col-

lapse to a state of low diversity and

recover again after some time. Even

the heightened number of patches in

the nintro = 2 case could be explained

when cyclic patch creation is consid-

ered. The collapse of the system for

γ > γc clears large areas of the lattice

and a following cyclic interaction can therefore create more patches. An example of

this is shown in figure (27). Additionally to showing a drastic increase in the number

of patches, the figure also highlights how short lived structures are for γ > γc. As

seen in figure (28, in the sub-critical case, usually only minor differences are visible.

Whereas in the super-critical case, the entire lattice changes multiple times with the

introduction of a few species.
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Figure 27: Development of patches in a system of size 400 × 400 with γ = 0.1 and

nintro = 2. Over the course of 4 static states the diversity drops from 16 to 11, the

number of patches increases significantly from 792 to 6852.
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Figure 28: Development of a system of size 400 × 400 with γ = 0.02 and nintro = 2.

Over the course of 40 static states, the diversity drops from 963 to 959, and the number

of patches increases from 7374 to 7600. Even though a 10-times longer timescale is

displayed, the states are visually more similar to each other than in comparison to the

supercritical case displayed in figure (27).
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4.4 Species Size Distribution

To gain further insight into the structure of generated states, it is helpful to look at

more metrics than just diversity and the number of patches. An obvious choice is the

distribution of lattice sites belonging to each species. This defines the species size s for

a species with index i

s(i) =
∑

x,y=1,...,L

1{ species at (x, y) = i} (21)

Where 1 is the indicator function following the simplified definition 1{x} = 1, if

condition x is fulfilled and 0 otherwise. Like the discussion of average diversity and

patch number in the previous section, the data generated during the nintro = 2 phase,

could give some insight into the structure of states that would collapse with lower

introduction rates. Once again, equal values of γ show similar behavior for nintro = 2
and nintro = 1. This is with the obvious distinction that there are more non-collapsing

values of γ for the introduction-rate of 2. The complementary cumulative distribution

functions for the species sizes, ccdf(s), are displayed in figure (29.A).

A.) B.)

Figure 29: A.) ccdf of species sizes for a system with L = 400 during its diversity

building phase. B.) 1/λ for the fitted powerlaw (equation 22) is shown to give a rough

estimate of where the truncation is noticeable.. The area marked by the hatch-pattern

indicates all γ and approximated λ that collapsed when the introduction rate was

reduced to 1.
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Figure 30: A.) ccdf of species sizes for a system with L = 400 during its measurement

phase. B.) 1/λ for the fitted powerlaw (equation 22) is shown to give a rough estimate

of where the truncation is noticeable.

As already noted in previous research [23], species with high populations occur less

frequently, seemingly following power-law with a truncation. The data displayed in

figure (29) shows that high values of γ correspond with the truncation occurring at

higher values for both building as well as the measuring-phase.
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Figure 31: 2 Examples of the truncated

power-law fit for the cases γ = 0.02 and

γ = 0.1 in a system of size 400 × 400.

To analyze the truncation further,

a discrete, exponentially-truncated

power-law-distribution

p(x) = Cx−αe−λx (22)

was fitted to measured species-sizes

using methods from [30]. In equa-

tion (22), C is chosen to ensure that∑∞
x=xmin

p(x) = 1. Two representa-

tive examples are shown in figure

(31). Both visually fit well with the

data and are statistically preferable to

other tested distributions (exponential,

power-law, . . . ).
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4.5 Patch Size Distribution

Like the species-size distribution discussed in the previous section, the distribution

of patch-sizes can be quantified in a comparable way. Here, a patch is defined as a

connected cluster of the same species, with adjacency on the lattice defined through

von-Neumann neighborhoods.

A.) B.)

Figure 32: ccdf for patch sizes in a system of size 400 × 400. (A) depicts the building

phase and (B) the measurement phase.

Figure (32) shows how the patch-size ccdf undergoes a noticeable change as γ increases.

All values of γ far below the transition point show similar behavior and have a

maximum patch size of approximately 2 × 104. Interaction probabilities closer to the

presumed transition point of γc ≈ 0.75 show an increase in the observed maximum

patch size. Even higher γ-values finally let the maximum patch size get close to its

maximal value of 1.6 × 105.

Given the differences in the patch size distribution between γ ≤ 0.06 and γ > 0.06, the

previously assumed critical point of 0.075 seems to be too high. After-all, one would

expect the patch-size distribution and the diversity to change their behavior at the

same value of γ. Following this assumption, the observed stability in the simulation

with γ = 0.07 could only be the result of a too short simulation window. However,

this behavior is less noticeable in for nintro = 1 in figure (32.B), warranting further

investigation to reach a conclusion.
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4.6 Distribution of Time between Static States

Figure 33: Empirical probability density

function for the time between static states

∆tss for a system of size 400 × 400. Since

nintro is set to 2, the D = 1 state is not ab-

sorbing and it is possible to gain an intu-

ition into the behaviour of systems with

high γ. Kernel density estimation was used

to simplify the plot. However, this causes

narrow peaks to be smoothed out slightly.

To determine how many lattice up-

dates are between static states and

at what rate new species are intro-

duced into the system, the time be-

tween static states has been recorded

for most simulations. Once again, a

system of size 400 × 400 has been cho-

sen as an example and the results are

displayed in figure (33). As both intro-

duction rates resulted in almost iden-

tical results, only the nintro = 2 case

is plotted. The probability of the sys-

tem dynamics stopping soon after the

introduction of a new species is sim-

ilar for all values of γ. This is likely

due to the new species landing in one

of the many small patches present for

both γ < γc and γ > γc, taking over

the patch but not being able to invade

the surrounding area. Both the sub-

critical as well as super-critical values

of γ seem to have a characteristic time for system dynamics.
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Figure 34: Empirical probability density

function for the time needed to spread to

all parts of a lattice of size 400 × 400. The

data-set consists of 10000 simulations with

randomized initial conditions.

In the sub-critical case, the distinc-

tion is less pronounced, yet the

probability density function of ∆tss

is increased around 150 updates.

The behaviour in the supercritical

case is more noticeable, showing

a peak in probability for ∆tss ≈
800.

This effect might be best described by

considering the super-critical case first.

As already visible in the example dis-

played in figure (27), states in systems
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with γ > γc and nintro tend to have patches that span a large part of the entire system.

Since the size of a patch determines how like likely a new species will land in it, these

large patches are also the most likely candidate for the placement of a new species.

From there, the new species will spread over the entire area of the largest patch, which

will take roughly as long as it would take to fill the entire lattice. The time-distribution

for filling an entire 400 × 400 lattice is displayed in figure (34). For γ < γc the system

forms more complex structures and the time to fill the initial patch is therefore less

consistent. However, it could explain the slight increase in the probability density

function displayed in figure (33).

While the spikes occurring for values of ∆tss = 104 and multiples thereof seem sig-

nificant at first, they are only artifacts of the acceleration method used for cyclic

interactions, as described in section 2.4. If the dynamics in the system take longer to

complete than ∆tss = 104 lattice updates, one active species loses all of its interactions

temporarily. This has a chance to stop cyclic interactions and the system settles into

a stationary state soon afterwards. If the chosen species did not belong to an active

cycle, or there were multiple cycles occurring simultaneously, the process repeats for

multiples of ∆tss = 104. As such, all peaks in the probability density function for

∆tss ≥ 104 can be explained through the acceleration of cyclic interactions.

4.7 Lower Limit of Stable System Sizes

As already mentioned in section 4.1, a system size of 200 × 200 caused significant

difficulties in the generation of stable high diversity states. This was based on prelimi-

nary tests performed using the initial condition method from [23]. Therefore, it is of

interest to see if the method for generating high diversity states introduced in section

4.1, shows similar problems for low systems sizes. For the, up until now, discussed

system size of 400 × 400, the method produced (stable) high diversity states with very

high reliability.

To further investigate the behavior of the system for lower system sizes, systems

with L ∈ {200, 252, 300, 352} were simulated for a range of γ-values. The results are

displayed in figure (35). The cases with L ∈ {252, 300, 352} show similar behavior to

the L = 400 case, displayed in figure (23). For L = 200 the diversity time-series appear

inconsistent with all other tested systems and results from previous research. The

diversity collapses for all but one value of γ. Additionally, the interaction probability
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seems uncorrelated to the stability of the system, exemplified by system with γ = 0.01
(the lowest in the set of conducted experiments), collapsing significantly earlier than

the system with γ = 0.04.

Figure 35: Diversity time-series for systems of size L ∈ {200, 252, 300, 352} and various

γ. The highest stable γ is indicated with a ▼ in the colorbar.

Since both methods for initial condition generation run into problems when simulating

low system sizes, the system’s instability might due to its size. In the [23] this effect

could have been masked by the use of initial conditions from simulations with random

species introduction.
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On closer inspection of plots in figure (35), it is also visible that the simulations with

the highest unstable γ remain in a state of high diversity for a longer time than they did

in the case for L = 400. This effect is especially pronounced for L = 252 and L = 300.

However, as this effect is also visible for larger systems-sizes, it presumably has more

to do with how close the chosen γ is to γc. This gives further evidence that the collapse

to diversity 1 in a finite time-frame might not be the best way to determine a systems

stability.

4.8 Comparison of System Sizes

After discussing the lower end of stable system sizes in the previous section, the fol-

lowing section focuses on the SSM’s behavior for all system-sizes. While the amount

of available data was limited by the long simulation-time of individual systems, espe-

cially for large L and γ, a pattern is clearly visible.
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Figure 36: Average diversity in stable states with nintro = 1 for a range of γ and L.

Data-points are only included if a γ-values was available for multiple lengths L. Linear

regression slopes are added to guide the eye and roughly quantify the behavior of

⟨D⟩(γ, L). The slopes of this linear regression are displayed in figure (37).
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Figure (36) shows how the average diversity changes as a function of system-size for

different values of γ. For any given value of γ, the average appears to grow linearly

with system length L. To highlight this and quantify how the slope changes for differ-

ent values of γ, a linear regression has been applied to the data-points. Overall, higher

values of γ result in lower slopes.
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Figure 37: Slopes of linear regressions fitted

to the data displayed in figure (36).

Figure (37) shows how the slope re-

lates to γ for the acquired data. While

the displayed points seemingly fol-

low a exponential-function, one must

be careful with further interpretation,

as the noise in the initial data could

be amplified by the linear regres-

sion. Furthermore, the number of

available γ-values is still limited, de-

spite the simulation speed improve-

ment due to the parallel implementa-

tion.

However, it is clear that the slope

scales negatively with γ in the selected

region of L. Negative values for the slope would imply that small systems have high

diversity for high enough γ. These simulations were already discussed in [1] and show

the exact opposite effect - diversity collapses to its minimum. As a result, negative

slopes can be ruled out, leaving 0 as the obvious lower limit for slope.
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Figure 38: Average number of patches for various γ and L. To show how larger values

of γ result in more patches on average, the trends in the data are removed with a

second order polynomial (grey line), and sub-section is drawn in the inset (dashed

gray rectangle).

As seen in figure 38, the average number of patches in stable, high diversity states

grows super-linearly with system length L. To emphasize how higher γ led to a higher

average number of patches, the data was de-trended with a second order polynomial

and the result, for a selected range of L, is drawn in the inset. Comparing figure 36

and figure 38, it is obvious that a higher number of patches does not directly translate

to a higher diversity, even in systems that remained stable for a significant period.
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4.9 Ecosystems with Inactive Lattice Sites
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Figure 39: Initial state of a ecosystem with

removed lattice sites. White lattice sites are

inhabitable by all species, black sites are

removed. The majority of all white lattice

sites are connected.

To gain first insight into the behaviour

of the SSM with altered spatial con-

ditions, a set of simulations was con-

ducted with randomly introduced, in-

occupiable, lattice sites. This is equiv-

alent to initializing the system with

a completely neutral species. This

species can’t be invaded, does not in-

vade other species and is not overwrit-

ten by the introduction of new species.

The implemented code follows this in-

terpretation, as it was more compat-

ible with the existing code-base. For

the discussion here, however, the ter-

minology of removed/inactive lattice

sites was chosen. In line with that,

the model is referred to as the inactive

SSM.
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Figure 40: Example static-state for a SSM-

ecosystem with 10% of lattice sites being

completely inactive. The other system pa-

rameters are set to L = 400 and γ = 0.02.

Inactive lattice sites are colored black.

A high probability of a lattice-site be-

ing removed, would make it more

likely for clusters to be formed and

could therefore result in the high-

diversity phase being inaccessible due

to the limited space available. In

order to avoid this, the probability

of a lattice site being removed is set

to 10% for all simulations. How-

ever,removing lattice sites with a prob-

ability of 10% leads to an approxi-

mately 20% reduction in active neigh-

bours.

42



Figure 41: (A) Diversity time-series of an 400 × 400 ecosystem with 10% inactive lattice

sites. (B) Average diversity for both the basic and the inactive-SSM. Only the largest,

fully connected area is considered.
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Figure 42: Average number of patches for

both the basic and the inactive-SSM for

building and measuring phase

As seen in figure (41.A), the SSM with

in-occupiable lattice sites shows simi-

lar behaviour to the basic version. One

of the most noticeable differences is

that the diversity never collapses to

one. This is only due to very small

patches of the lattice that are com-

pletely isolated from the surround-

ing system. This means every con-

nected ecosystems still collapses to

a state with diversity 1, if γ is high

enough.

Even the apparent increase in total

diversity can be explained with disjoint subsystems changing their diversity. At

tss = 2500 some of the separate patches are still empty and are counted as belonging

to the same species. When a static state is reached and consequently a new species is

introduced, it can land in one of these patches and take it over. Therefore, the diversity

is going to rise over time as the empty subsystems get filled with different species.

The inactive SSM shows similar average diversity to the basic SSM for γ ∈ [0.04, 0.07].
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The lowest two γ seem to result in slightly less diversity in comparison. Higher γ show

a marginally higher diversity and collapse later. Figure (42) shows that the number of

patches for sub-critical γ is approximately 15% lower in the inactive-SSM.

4.10 Split Ecosystems

Another possible modification of the SSM is to increase the number of interaction-

networks in the system, allowing for the modeling of ecosystems with inhomogeneous

conditions. In this thesis, only spatial inhomogeneity is discussed. However, switching

between interaction networks based on time also would be possible with the imple-

mented code and could be used to model seasonal changes.
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Figure 43: Example static-state of a split-

SSM-ecosystem of size 400 × 400 and γ =
0.05. The boundary between the two areas

with separate interaction networks is still

visible at x = 200.

For the discussed spatial inhomogene-

ity, every lattice site (x,y) is assigned

to one of two interaction-networks.

This choice of interaction-networks

will be referred to as the condition

of the lattice site (x,y). Various eco-

logical interpretations for this are

possible: changes in the soil com-

position or different sun exposure

(i.e. on a rock partially covered

from direct sunlight). The best fit-

ting interpretation obviously depends

on how lattice conditions are cho-

sen.

For the first example, the lattice has

been split into two halves and each

half has been assigned an interaction

network. This is done to model the interaction between two adjacent SSM-ecosystems.

As such, it could be interpreted as an ecosystem at the boundary between forest and

open fields or as lichen growing on a rock partially covered from direct sunlight. To

differentiate between the basic SSM and the model introduced above, this model will

be referred to as the split-SSM and an example state is plotted in figure (43). The

boundary remains visible despite the visual noise created by the individual patches.

The boundary between the two halves is of special interest, as it could show so-called
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edge effects - an either positive or negative change in local diversity caused by the

change of environment. These effects are recorded in many empirical studies on the

interaction of ecosystems and are of special interest in theoretical ecology [2]. The

following paragraphs will show that split-SSM shows a positive edge effect at the

interaction boundary.

Figure 44: Column-wise diversity for var-

ious γ in a system of size 400 × 400. Only

non-collapsing static states generated with

nintro = 1 are considered.

As seen in figure (44), the column

wise diversity (meaning the num-

ber of active species in each col-

umn of the lattice), is significantly

increased around the boundary be-

tween the two regions. This ef-

fect is visible for all values of

γ but drops off rapidly further

away from the center. Addition-

ally, the column-wise diversity is

increased around the edges of the

ecosystem (column index = 0 and

L in the column-wise depiction).

This is likely due to another edge-

effect, this time between the sys-

tem and its closed outer bound-

ary.

Figure (45.A) shows that the diversity-collapse in the split-SSM occurs for higher

values of γ, when compared to the unmodified SSM. Additionally, one ecosystems

remains in the meta-stable high-diversity state longer than observed so far. While

some unmodified systems displayed in figure (35) show partially similar behavior, the

split-SSM with γ = 0.11 displayed in figure (45.A) remains in it’s high diversity state

roughly 4 times longer before it collapses. This increase in time to collapse could be

attributed to introduction of the spatial condition.
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Figure 45: (A) Diversity time-series for a split SSM-ecosystem of size 400 × 400. (B)

Average diversity for building and measurement-phases of the unmodified and the

split-SSM. If a ecosystem collapses, it’s average is assumed to be 0.

Figure 46: Column-wise number of patches

for various γ in a system of size 400 × 400.

Only non-collapsing static states generated

with nintro = 1 are considered. The number

of displayed γ was reduced to minimize

overlap.

The comparison between the aver-

age diversities in the split-SSM and

its unmodified counterpart, displayed

in (45.B), show that in the split ver-

sion ⟨D⟩ drops off slowly when γ

is increased. Up until the point

of collapse this is true for both

the building and the measurement-

phases.

Similar to figure (44), figure (46) shows

an increase at the boundary of the two

areas in the system. As already seen in

figure (27), even unstable γ can lead to

a large number of patches. As a result

the column-wise number of patches

for γ = 0.08 exceeds the column-wise

number of patches for the case of γ =
0.02 in most places.
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Figure 47: Average number of patches for

building and measurement-phases of the

unmodified and the split-SSM. Both with

L = 400.

As seen in figure (47), the average

number of patches for the unmodi-

fied and the split-SSM behave sim-

ilar for γ ≤ 0.07. In compari-

son, the average number of patches

drops of slower for the split-SSM

for nintro = 2. A possible expla-

nation for this is that the two spa-

tial conditions reduce the chance that

the entire lattice is overtaken by one

species.

4.11 Random Condition Ecosystems

Another obvious choice of introducing spatial inhomogeneity into the SSM is to decide

on the condition of a lattice-site randomly. As discussed in section 4.10, only systems

with 2 conditions (referred to as condition A and condition B) are discussed in this

thesis. This allows the introduction of a new parameter θ. When initializing the system,

every lattice-site is assigned to condition A with probability θ and to condition B with

probability (1 − θ). This modification of the sessile species model will be referred to as

the random-condition-SSM.

Figure 48: Diversity-time-series for 4

choices of θ in a system of size 400 × 400.

As the random-condition-SSM intro-

duces a percolation problem into the

systems, the obtained results might

be slightly harder to interpret. How-

ever, based on the results displayed

in the previous section, it is simple

to conjecture that the random assign-

ment of conditions to system, and

the resulting increase in boundary

length between conditions, should

affect the diversity in a positive

way.
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Before this possible change in diversity can be discussed, it is useful to have a closer

look at the choice of θ. Figure (48) shows diversity-time-series for 8 choices of θ. No-

ticeably only low choices of θ saturate their growth in the simulation time. For all other

θ, the diversity of the system increases throughout the simulation. It is obvious this

increase in diversity has to stop when the system size is reached. While it would be

interesting to see at what value the diversity saturates, due to the (presumably) very

long simulation time needed, these experiments were not conducted. Out of all values

of θ that finished growing in diversity during the allotted time, θ = 0.1 was chosen as

it allows for easier comparison to the inactive SSM in section 4.9.
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Figure 49: Example static-state of a SSM

with 10% random condition.

Like other modifications of the SSM,

the random-condition SSM produces

visibly different states than the basic

version or its other modifications. Fig-

ure (49) displays an example static

state in a simulation with θ = 0.1
and γ = 0.1. The randomly assigned

conditions result in static states that

look even more fragmented than in

the unmodified case. The diversity

time-series of the simulated random-

condition SSM show significantly im-

proved stability in comparison to the

basic model. This is displayed in fig-

ure (50.B). Even the highest value of

γ = 0.2 does not collapse to a state with diversity 1. While γ = 0.2 clearly shows

large fluctuations in diversity, the structure of the lattice always allows some species to

survive.
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Figure 50: (A) Diversity time-series for system of size of size 400 × 400 and two

randomly located conditions. (B) Average diversity for an unmodified SSM as well as

the random-condition SSM. Both with L = 400.
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Figure 51: Average number of patches for

the random-condition SSM and the unmod-

ified version, both with L = 400.

The improvement in stability and in-

crease in diversity are especially no-

table when the average diversity in

figure (50.B) is considered. For both

the building phase as well as the

measurement-phase, comparable av-

erage diversities are achieved at signif-

icantly higher γ. Furthermore, since

the system is able to recover from

states of low diversity, the decline in

average diversity seems to flatten off

for higher γ. Figure (51) shows that

the average number of patches de-

crease with γ. Furthermore, for the

simulated values of γ it shows no sign

of flattening off, unlike the other SSM models.
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4.12 Removal of Cyclic Interactions

Figure 52: From [23]: ”Quasistatic simu-

lation of a system of size L = 200. (a)

Diversity of a steady state short cycles of

length below 2, 3, 4, . . . are prevented from

forming in the system. Removing cycles of

length 2 is the same as allowing all cycles

≥ 3. The connecting lines are for guiding

the the eye. (b), (c) Probability of having

an active cycle of a certain length at time τ

after the introduction of a new species for,

respectively, (b) γ = 0.05 and (c) γ = 0.025.

Notice that the probabilities do not add up

to 1, which reflects the fact that the major-

ity of new species does not activate a cyclic

relation.”

When the effect of cyclic interac-

tions were first introduced in sec-

tion 2.5, they were presented fol-

lowing [23]. There it was con-

cluded that removal of short cy-

cles in the interaction network in-

creases the diversity in the sys-

tem. This effect was visible for

the removal of cycles of length

≤ 4. If larger cycles are re-

moved as well, the system col-

lapsed to its low diversity state

with D = 1. The data for

these conclusions was based on

a systems with L = 200 and

γ ∈ {0.05, 0.025}. These sys-

tems were initialized with a static

state from a system random in-

troduction rate α = 0.025 and

γ = 0.05. The appropriate

graphic together with its original

description are presented in figure

(52).

However, further analysis of the al-

gorithm used for the generation of

interaction-networks in these simu-

lations could explain the increase in

the diversity associated with the re-

moval of cycles. This algorithm is de-

fined as follows: when a new species

is introduced, its interactions with

other species are randomly chosen

with probability γ. If any of these in-

teractions would result in a cyclic interaction with length less than Cmin, the generated
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interactions for the new species are discarded. This process repeats until suitable

interactions are found.

While this algorithm succeeds in generating interaction networks of the desired cycle-

structure, it can lead to significant differences for other network metrics. Most impor-

tantly, the number of edges |E| is decreased. Ideally the network-generation should

leave the chance of interacting with other species unchanged.

To show the impact on the network, the previously discussed algorithm was imple-

mented and the data is displayed in figure (53). The maximum likelihood estimator

of γ for the entire network (γ̂) as well as the effective interaction probability for each

node γeff are considered. It is clearly visible that higher choices of Cmin result in lower

γ̂ and γeff . This effect increases as more nodes are added to the network.

Figure 53: Effects of the the cycle removal algorithm on generated networks. A.)

Maximum-likelihood estimator of γ as a function of network size. B.) Effective interac-

tion probability γeff for each node of the network.

While the removal of species could reduce this effect to some extent, systems with

higher diversity should be affected by it significantly. Due to time-constraints no

further investigations were conducted; however, the decrease of introduced edges

in the interaction-network gives a simple explanation for the increase in diversity

displayed in figure (52).
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5 Conclusions

5.1 Effects of System Size

Utilizing a parallel implementation with significantly improved simulation-speed for

larger systems, the model of sessile species was simulated for system lengths L in

[200, 800] and interaction probabilities γ in [0.01, 0.12]. As expected, increases in system

size show positive effects for the total diversity. Furthermore, larger systems allowed

simulations with higher interaction probabilities to remain in their high-diversity state

for the duration of the simulation.

Total diversity is found to grow linearly with lattice length L for a fixed value of γ

(figure 36). The slope of this linear growth decreases, seemingly exponentially, with γ

(figure 37). While higher interaction probabilities are found to produce more patches

in the system (figure 38), they do not allow the system to speciate to the same extent,

and therefore ultimately force the system to collapse to its low-diversity state.

5.2 Effects of Inhomogeneous Spatial Conditions

To investigate how inhomogeneous spatial conditions affect the SSM, three variations

are discussed: the inactive-SSM (section 4.9), the split-SSM (section 4.10) and the

random-condition SSM (section 4.11).

Out of these three, the sessile species model with inactive lattice sites showed the most

similarity to the unmodified SSM. The diversity for higher interaction probabilities γ is

slightly increased, whereas the number of patches is decreased (figure 41) and 42). The

transition from the high-diversity state to the low-diversity state occurred at a slightly

higher interaction probability.

In the split-SSM, boundaries between the two spatial conditions show clear, positive

edge-effects as the transitional area has an increased number of patches (figure 46) and

higher local diversity (figure 44). While a unmodified SSM of size 400 × 400 collapsed

to its low-diversity state for interaction probabilities γ ≥ 0.07, the split version of the

same size did not collapse until γ ≥ 0.11. This shows that a combined ecosystem

can show different behaviour than its sub-ecosystems, both globally in regards to the

collapse-threshold and the local edge-effects.

52



In comparison to the split-SSM, the random-condition SSM has longer boundaries

in more complex shapes. As a result, the random-condition SSM is able to maintain

a much higher diversity and number of patches (figure 50 and 51). Although the

diversity did decrease as the interaction probability was increased, even the highest

simulated interaction probability, γ = 0.2, did not force the random-condition SSM

into a low diversity state.

In the unmodified sessile species model the fragmentation of the lattice into patches

and the resulting spatial separation are achieved only by stochastic- and cyclic-patch

creation. If spatial inhomogeneity is introduced into the model, spatial separation is

increased further, as the spread of species is additionally hindered by spatial conditions.

This added separation leads the discussed ecosystems of sessile species to develop

higher diversities and improves their resistance to collapsing into a low-diversity state.

Diversity  Patches

cyclic &
stochastic

patch creation 

speciation

Diversity  Patches

cyclic &
stochastic

patch creation 

speciation

Area A

Area B 

Boundary
cross boundary

patch creation

Figure 54: Illustration of two areas with different interactions interacting at a boundary.

Isolated areas would only rely on the positive feedback-loop between their diversity

and patches to remain in a high-diversity state. In the combined System, the species in

area A could lead to cyclic and stochastic patch-creation in area B. These additionally

patches would allow for more species to settle, increasing diversity in area B. As this

process is symmetric an additional feedback loop is formed across the boundary.
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7 Appendix

Average Diversities for L = 252 and L = 800
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Figure 55: Average Diversity for a system of size 252 × 252 for various values of γ. The

building phase is indicated by n = 2 and the measuring phase by n = 1
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Figure 56: Average Diversity for a system of size 800 × 800 for various values of γ. The

building phase is indicated by n = 2 and the measuring phase by n = 1
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Species Size Distribution for L = 252 and L = 800 with nintro = 2

Figure 57: ccdf of species sizes for a system with L = 252 during its diversity building

phase.

Figure 58: ccdf of species sizes for a system with L = 800 during its diversity building

phase.
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Patch Size Distribution for L = 252 and L = 800 with nintro = 2

Figure 59: ccdf of patch sizes for a system with L = 252 during its diversity building

phase.

Figure 60: ccdf of patch sizes for a system with L = 800 during its diversity building

phase.
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Split-SSM of Size 800 × 800
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Figure 61: Example static-state of a split-SSM-ecosystem of size 800 × 800 and γ = 0.06.

The boundary between the two areas with separate interaction networks is still visible

at x = 400.

Figure 62: Column-wise diversity for various γ in a system of size 800 × 800. Only

non-collapsing static states generated with nintro = 1 are considered. Fewer γ were

simulated, visually resulting in larger gaps between lines when compared to figure

(44).
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