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Abstract

Tight-binding models show that many metallic carbon nanotubes have a gapped band
structure due to curvature and spin-orbit effects, making them only nearly metallic. The
predicted spin-orbit coupling and orbital magnetic moment of these tubes are however
smaller than what experiments show. In this thesis, an effective model for long range
Coulomb interactions is derived. Through the random phase approximation, it is shown
that Coulomb interactions are heavily screened due to excitations in the four Dirac cones.
The screened interaction is used to perturbatively calculate how the gap is modified by
Coulomb interactions. The results reduce the discrepancy between theoretical and exper-
imental orbital magnetic moments and spin-orbit coupling.
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Resumé

Tight-binding-beregninger har vist, at mange metalliske kulstofnanorør har et gab i b̊and-
strukturen p̊a grund af krumningseffekter og spin-banekobling. Dette b̊andgab gør, at
disse rør kun er næsten metalliske. Forsøg viser dog, at spin-banekoblingen og det or-
bitale magnetiske moment i disse rør er større end forudsagt af tight-binding-modellen. I
dette speciale bliver en effektiv model for langtrækkende Coulomb-vekselvirkninger udledt.
Det viser sig ved brug modellen random phase approximation, at disse vekselvirkninger
bliver skærmet af spontant eksciterede elektron-hulpar i de fire Dirac kegler. Den reduc-
erede Coulomb-vekselvirkning bliver brugt i førsteordens perturbationsteori til at beregne
b̊andgabet. Dette b̊andgab ligger tættere op ad eksperimentelle resultater end det b̊andgab,
tight-binding-modellen forudsiger.
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Chapter 1

Introduction

A carbon nanotube can be viewed as graphene sheet that has been rolled up into a cylinder.
Its band structure can therefore be approximated by a one-dimensional version of the
graphene band structure. By further including curvature and spin-orbit effects, one may
calculate the band structure to high precision under the assumption that the electrons do
not interact with each other. There is however increasing experimental evidence that this
calculated band structure is not the full picture [1, 2]. Recent work [3] on electron-electron
interactions in carbon nanotubes gives promising explanations of some of the discrepancies
between experiments and the non-interacting theory. The goal of this thesis is to find out
whether some of the remaining unexplained experimental results for nearly metallic carbon
nanotubes are due to long range interelectronic Coulomb interactions.

1.1 A carbon nanotube

In nature, carbon appears in several forms, including graphite. Graphite is a macroscopic
crystal structure consisting solely of carbon. It can be viewed as a stack of weakly bound
two-dimensional layers, called graphene. The carbon atoms of each graphene layer are
organized in a hexagonal lattice, and are bound much more tightly to each other than to
atoms in neighboring graphene layers in a graphite crystal [4]. The weak binding of the
graphene layers in graphite makes it easy to rub off material from a piece of graphite,
which is why it is used for pencil leads. However, graphene was first isolated in a fashion
that facilitates quantum transport measurements 2004 by Geim, Novoselov, et al. [5, 6].
As predicted by Wallace in 1947 [4], they found the band structure close to the Fermi
energy of neutral graphene to be linear,

Ek = ±vF
√
k2x + k2y, (1.1)

resembling the one for massless Dirac fermions in two-dimensional free space [7, sec. 3.2],
[8, sec. 1], [9]. vF is called the Fermi velocity, and is approximately equal to 106m/s, so
300 times less than the speed of light, by which free space massless Dirac fermions travel.
The dispersion relation thus forms a cone in energy momentum space. There are two of
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2 CHAPTER 1. INTRODUCTION

those cones in the Brillouin zone, and the momentum space coordinates of their vertices
are called the Dirac points. The band structure of graphene will be derived in Chapter 2.

A carbon nanotube can be viewed as a sheet of graphene, where two of the sides have
been folded together to create a cylinder. In the same way as graphene layers can stick
together to form graphite, carbon nanotubes can lie inside each other, a structure called a
multi-walled carbon nanotube. In this thesis we will solely be concerned with single-walled
carbon nanotubes. A typical radius of a carbon nanotube is 1 nm, while the length can be
of the order ∼ 1µm. In the same way as graphene is a quasi two-dimensional material, a
carbon nanotube is therefore quasi one-dimensional. Its properties are determined by the
radius and the chirality. The smaller the radius, the larger the curvature, so we expect
a larger difference from the graphene band structure for tubes with a small radius. The
chirality is a measure of the circumferential direction with respect to the hexagonal lattice.
This determines whether the tube is metallic or semiconducting.

The band structure of a carbon nanotube can approximately be found by a particle-
on-a-ring approximation [10, problem 6.7], giving several subbands that can be viewed
as one-dimensional slices of the graphene band structure, as seen in Fig. 3.2. For some
chiralities one of the subbands cross the Dirac point, giving a linear band structure. This
is called a metallic tube, since there is no band gap. For other chiralities there are no
subbands crossing the Dirac point. There will thus be a band gap even in the lowest
subband, making the tube semiconducting. For many metallic tubes, small gaps also open
due to curvature [11, 12] and spin-orbit effects [12], indicating that they are only nearly
metallic. It was shown that the gaps opened for spin up and down electrons are not the
same, and the whole spin up band is shifted in energy compared to the spin down band.
Therefore the energy difference between a spin up and a spin down state in the conduction
band is different from the energy difference between a spin up and a spin down state in
the valence band. For metallic tubes, theory predicts that the splitting between spin up
and spin down electrons should be smaller than the hole splitting.

At the bottom of the conduction band and top of the valence band the energy splitting
in both conduction and valence band in a nearly metallic tube has been measured by
Kuemmeth et al. [2]. They found an electron splitting of 0.37 ± 0.02meV and a hole
splitting of 0.21±0.01meV, in contradiction to the non-interacting theoretical prediction.
The conduction band splitting has also been measured by Steele et al. [1]. They got a spin
up down splitting of 3.4meV, which is 13 times larger than the theoretically predicted
value [12]. In this thesis we will show that Coulomb interactions enhance the theoretically
predicted value by a factor 1.7.

The above results can be obtained by transport experiments, where the carbon nan-
otube is placed between two electrical leads, a source and a drain. When an electric
potential difference between the source and drain is applied, a current may run through
the tube if an energy level lies between the source and drain potential. In these experi-
ments, the nanotube is also capacitively coupled to an electrical gate. When the electrical
potential of the gate is changed, the energy levels of the nanotube are shifted. This corre-
sponds to changing the chemical potential. It is therefore possible to tune the gate voltage
such that the gap lies between the source and gate potential, inhibiting current from run-
ning through the tube. By changing the gate voltage until a current starts to run, one
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may find the size of the gap. Additional information about the system can be otained by
applying a magnetic field through the tube while performing the transport experiments.
This changes the gap due to the Aharonov-Bohm effect [13, p. 141-145], [2], which is most
easily understood in the particle-on-a-ring picture. A magnetic field B through the tube
shifts the circumferential momentum vector by

k⊥ → k⊥ +
eRB

2
, (1.2)

where e is the electron charge and R is the radius of the nanotube. Since the gap in
the non-interacting theory is proportional to k⊥, it can be tuned by the magnetic field.
Typically these measurements are expressed in terms of the orbital magnetic moment,

µorb =
1

2

dEgap

dB
, (1.3)

where Egap is the energy difference between the valence and conduction band at zero
momentum. µorb can be calculated from the radius and Fermi velocity of the tube. This
has been done by Kuemmeth et al. [2], Steele et al. [1], Deshpande et al. [14], Jespersen et
al. [15], Minot et al. [16] and many others, [17, 18, 19, 20]. Kuemmeth, Steele, Jespersen
and Minot all measured orbital magnetic moments that are about twice as high as expected
from the non-interacting theory. Jespersen’s and Minot’s measurements can be explained
by short range Coulomb interactions, as shown by Kane et al. [3]. This is however not
enough to account for Kuemmeth’s and Steele’s results. It is shown in this thesis that long
range interactions may partly account for this discrepancy. The non-interacting theory
predicts that it should be possible to tune the magnetic field to zero energy gap. In
Steele’s and Deshpande’s experiments, they found a non-zero minimal energy gap of up
to 120meV. It has been proposed that this could be interpreted as a transition to a Mott
insulating state [21, 22, 23].

1.2 Coulomb interactions

The calculation of the band structure in the non-interacting theory assumes that each
electron is affected only by the fixed potential of the carbon atoms, and not by the electric
potential of all the other electrons. This might seem strange at first, since the negative
charge of the electrons is just as large as the positive charge of the nuclei. If we consider
that the charge of the electrons to be homogeneously distributed in the nanotube, each
electron would be repelled by the same amount, regardless of which state it is in. The whole
band structure would thus be shifted in energy, see Sections 5.3 and 5.6.1. Such a constant
shift is however not measurable, since the zero point energy is always measured relative
to the surroundings. In practice it would thus not alter the band structure. Therefore
only inhomogeneities in the electron cloud can change the energy levels. In Fermi liquid
theory [24, chap. 15], the interacting Hamiltonian and eigenstates are created by starting
with the non-interacting Hamiltonian and eigenstates, and then adiabatically turning on
interactions. In this way each non-interacting eigenstate is slowly transformed into an
eigenstate of the interacting Halmiltonian. This description does not work for all solid
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state systems, the most relevant example for us being metallic nanotubes, where second
order perturbation theory diverges. They can however be described by Luttinger liquid
theory instead [24, chap. 19], [25]. Through perturbation theory, nearly metallic carbon
nanotubes have also been examined using Luttinger liquid theory [26], see Section 5.4.

Most electrons are situated far below the Fermi surface, so there are no quantum
states nearby to which they can be excited by Coulomb interactions. There is only a
small amount of electrons close to the Fermi surface, for which interactions are not sup-
pressed by the energy cost of reaching the Fermi surface. Therefore interaction effects
will be dominated by these near surface electrons. Since there is a one-to-one correspon-
dence between the non-interacting and the interacting eigenstates, the exact interacting
eigenvalues can be found from infinite order perturbation theory using the interacting
Hamiltonian on the non-interacting eigenstates. As mentioned earlier, there are two Dirac
points in the Brillouin zone, so including spin there are effectively Nf = 4 Dirac cones
in our model. Coulomb interactions induce electron hole pairs, similar to excitons, in all
four cones, as described in Chapter 6. The more cones there are, the more important
exciton interactions are, compared to other types of interactions. Including only this type
of interaction is called the random phase approximation or 1/Nf expansion [27]. Due to
the high number of cones (Nf = 4), this is a good approximation, as we will see in Sec-
tion 6.3. Excitons effectively screen the electron from the field of the other electrons. The
quasiparticle eigenstates of the interacting theory can thus be viewed as bare electrons
which are protected from the surroundings by a cushion of excitons. Effectively, the ran-
dom phase approximation screens the interaction, making low order perturbation theory
in the interaction strength more precise. In Chapter 5 it is shown that the first order term
increases the gap in qualitatively the same way as was previously found in graphene [28]
and semiconducting nanotubes [3].



Chapter 2

Band structure of graphene

The band structure of a carbon nanotube is to a large extent a one-dimensional version
of the band structure of graphene. Much can therefore be learned about nanotubes from
studying graphene. Since graphene is geometrically less complex than a nanotube, the
theory is also simpler. We will therefore start out by deriving the band structure of
graphene.

2.1 The carbon atom

Carbon is the sixth element of the periodic table, and therefore has 6 electrons. Assuming
that they are non-interacting, the basis of hydrogenic eigenstates written as |nlm〉 will be
a useful representation of their quantum state [10, sec. 4.2]. Since they obey the Pauli
exclusion principle, the 1s state with n = 1 must be completely filled with two electrons,
while the four remaining electrons are distributed among the 2s, 2px, 2py, 2pz states with
n = 2.

2.2 Geometry

It has been found [5, 6] that carbon atoms can form a two-dimensional periodic hexagonal
lattice, called graphene, as shown in Fig. 2.1. Any d-dimensional periodic lattice can
be described by a unit cell and d linearly independent primitive vectors. The unit cell
is a group of atoms in some geometrical configuration. When identical unit cells are
placed next to each other to fill all of space, a periodic lattice is generated. The vectors
connecting different unit cells in the lattice are called lattice vectors. All lattice vectors r
can be expressed in terms of some primitive vectors ai as

r =
d∑
i=1

niai, ni ∈ Z (2.1)

where ni is an integer. From this definition, it can be seen that a unit cell is not uniquely
defined, since we could always double the size of our unit cell, and still be able to generate

5
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τ0
a2

a1

AB
τ2

τ1

u. c.

y

x

Figure 2.1: Graphene. The red and blue circles represent the A and B sublattices. The
hexagon is the Wigner-Seitz primitive unit cell, which contains one A and one B atom.
It generates the entire lattice through translations by integer linear combinations of the
primitive lattice vectors a1 and a2.

the entire lattice. However, for simplicity we usually define the primitive unit cell, or just
the unit cell, as the smallest possible unit cell. It is seen from Fig. 2.1 that a unit cell
containing only one atom would not be able to generate the entire graphene lattice from
only two primitive vectors. However the hexagon containing the two atoms A and B can
be used to generate the entire lattice through translations along a1 or a2, so this hexagon
must be the unit cell, and a1 and a2 a set of primitive vectors. The shape of the unit cell is
not unique as defined above. We choose to construct the unit cell as the area enclosed by
the lines perpendicular to the lattice vectors situated at the middle of the lattice vectors,
as shown in Fig. 2.1. This is called a Wigner-Seitz primitive cell.

The four nearest unit cells are displaced along the vectors a1, a2, −a1 and −a2. The
unit cells are enumerated by an index j, their position is denoted by Rj relative to the
first unit cell, and the atoms are divided into two sublattices Aj and Bj . As seen on figure
Fig. 2.1, each A-atom has three B-atoms as its nearest neighbors, with the vectors τ0, τ1
and τ2 going from the A-atom to each of the B-atoms. They are related by

τi = ai + τ0 for i ∈ {0, 1, 2}, (2.2)

(2.3)

where we have introduced a0 as the zero vector for notational simplicity. The distance
between neighboring A and B atoms is aC−C = |τi| = 1.42Å. A coordinate system is
chosen such that

τ0 = aC−C

(
−1
0

)
, (2.4)

a1 =
a

2

( √
3

−1

)
, (2.5)

a2 =
a

2

( √
3
1

)
. (2.6)
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For using Bloch’s theorem, it is convenient to define the reciprocal lattice. It has reciprocal
lattice vectors instead of lattice vectors and fundamental reciprocal lattice vectors instead
of primitive vectors. The fundamental reciprocal lattice vectors bi are found from the
primitive vectors by the condition [29, p. 61]

bi · aj = 2πδij , (2.7)

giving

b1 =
2π

a

(
1√
3

−1

)
, (2.8)

b2 =
2π

a

(
1√
3

1

)
. (2.9)

The reciprocal lattice consists of all integer linear combinations of b1 and b2, so a reciprocal
lattice vector G can be written as

G = n1b1 + n2b2 for n1, n2 ∈ N. (2.10)

The Wigner-Seitz primitive cell in the reciprocal lattice that generates the entire reciprocal
lattice through translation by the reciprocal lattice vectors, and is called the first Brillouin
zone or just the Brillouin zone. The reciprocal space is also called k-space. All quantum
states of the system can be described by a wave vector in the Brillouin zone, so each vector
outside the Brillouin zone generates the same quantum states as some vector inside the
Brillouin zone.

The s-orbital introduced in Section 2.1 is spherically symmetric, while the px−, py− and
pz-orbitals are symmetric around the x−, y− and z−axis. The two-dimensional structure
of graphene breaks the three-dimensional rotational symmetry of the carbon atom, and
the axis orthogonal to the plane will be called the z−axis [30]. In the plane, graphene is
symmetric under a 2π/3 rotation, so the eigenstates of graphene are better described by
a set of states obeying this symmetry than the s, px−, py− and pz-orbitals. Let us now
examine how the orbitals introduced in Section 2.1 hybridize in graphene. The two 1s
electrons are too tightly bound to the nucleus to participate in the formation of graphene.
The in-plane orbitals 2s, 2px, 2py hybridize to an sp2 structure. The hybridized orbitals
are given as

|σi〉 =
1√
3
|s〉+

√
2

3
|pi〉, (2.11)

where pi is a p-orbital in the direction of the bond. |σi〉 is called a σ-orbital. The wave
function of a pz-orbital is [10, p. 164], in standard spherical coordinates where r2 =
x2 + y2 + z2 and cos θ = z/r,

ψpz(r, θ, φ) = α cos θe−r/β , (2.12)
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where α is a normalization and β depends on the screened charge of the nucleus. px and
py have the same form, just aligned along the x- and y-axes instead of the z-axis. In the
|nlm〉 basis,

|2px〉 =
1√
2
(−|211〉+ |21− 1〉) , (2.13)

|2py〉 =
i√
2
(|211〉+ |21− 1〉), (2.14)

|2pz〉 = |210〉. (2.15)

It can be easily shown from Eq. (2.12) that a general p-orbital along the unit vector
aixx̂+ aiyŷ + aizẑ can be expressed as

|pi〉 = aix|px〉+ aiy|py〉+ aiz|pz〉. (2.16)

Therefore, if we choose the x-axis along the first bond, the three sp2-orbitals can be written

|σ1〉 =
1√
3
|s〉+

√
2

3
|px〉, (2.17)

|σ2〉 =
1√
3
|s〉+

√
2

3

(
cos

(
2π

3

)
|px〉+ sin

(
2π

3

)
|py〉

)
=

1√
3
|s〉+

√
2

3

(
−1

2
|px〉+

√
3

2
|py〉

)

=
1√
3
|s〉 −

√
1

6
|px〉+

√
1

2
|py〉, (2.18)

and from symmetry

|σ3〉 =
1√
3
|s〉 −

√
1

6
|px〉 −

√
1

2
|py〉. (2.19)

It is easily seen that they are orthonormal, and orthogonal to pz. The pz-orbital will be
called a π-orbital in the following.

2.3 Graphene band structure

As described in Section 2.2, the carbon atoms of graphene form a periodic lattice. To a
good approximation, this lattice can be assumed to be rigid, and we may neglect inter-
electronic interactions. Therefore the Hamiltonian of a single electron is

H = T +

N∑
i

(VAi + VBi) , (2.20)

where N is the number of unit cells, T is the kinetic energy operator, and VAi and VBi
are the spherical Coulomb potentials of the nuclei at A and B atoms in the i’th unit cell.
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This is invariant under discrete translations along the lattice vectors, so Bloch’s theorem
may be applied [29, p. 305]. It states that an eigenstate of a periodic potential will only
change by a phase when the wavefunction is translated by a lattice vector.

To calculate the band structure, the tight-binding approximation will be used. In
tight-binding, the eigenstates of the Hamiltonian are approximated as a superposition of
orbitals of free atoms, given by

|φν,k〉 =
1√
N

N∑
j

eik·Rj
∑
µ

(ανµ|φµ,A (Rj)〉+ βνµ|φµ,B(Rj)〉), (2.21)

where Rj is a lattice vector, φµ,A(B)(Rj) is an atomic orbital centered at the A(B) atom
in the unit cell at position Rj , ανµ, βνµ are constants, which have the normalization∑

µ |ανµ|2 + |βνµ|2 = 1, and k is a wave vector in the Brillouin zone. The normalization
is not exactly 1 due to the finite overlap between orbitals on neighboring atoms, but this
will be neglected. If we write |ψµ,k〉 in the position basis

ψν,k(r) =
1√
N

N∑
j

eik·Rj
∑
µ

(ανµφµ,A(r −Rj) + βνµφµ,B(r −Rj)), (2.22)

it is easily seen that it fullfills the Bloch condition, since

ψν,k(r −Ri) =
1√
N

N∑
j

eik·Rj
∑
µ

(ανµφµ,A(r −Ri −Rj) + βνµφµ,B(r −Ri −Rj))

=e−ik·Ri
1√
N

N∑
j

eik·(Rj+Ri)
∑
µ

(ανµφµ,A(r −Ri −Rj)

+ βνµφµ,B(r −Ri −Rj))

=e−ik·Riψν,k(r). (2.23)

From Bloch’s theorem, it is known that the Hamiltonian is diagonal in k space, when the
basis is chosen as Eq. (2.21).

As described in Section 2.2, the σ-orbitals form the chemical bonds that bind graphene
together. The two σ-orbitals on neighboring atoms hybridize to a bonding and an anti-
bonding state. The bonding state has a much lower energy than a free σ-orbital, thus
forming the bond. The antibonding state has a higher energy, so it is empty. Therefore
three electrons are bound in the σ-bands. Since the π-orbitals do not participate in the
bonding, their energy remains the same regardless of the formation of graphene, and their
band thus lies between the filled bonding band and the empty antibonding band. Out
of the six electrons of a carbon atom, two are bound by the 1s orbital and three by the
σ-orbitals, so there is one left for the π-band. Since there is space for two electrons in a
π-orbital, the π-band will be half filled. We are interested in transport phenomena close
to zero chemical potential, so only the π-band will participate in transport, and therefore
it is only necessary to examine the structure of the π-band.
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From Eq. (2.12) it will now be shown that a π-orbital is not only orthogonal to the
σ-orbitals on the same atom, but also to all the other σ-orbitals. The π-orbital wave
function is antisymmetric in the π-direction. A σi-orbital is rotationally symmetric around
an axis i in the plane, so it is symmetric in the π-direction. An s-orbital is also rotationally
symmetric, so it is also symmetric in the π-direction. Therefore the integral of the product
of the π− and σ−wave functions is zero, so they are orthogonal. Since the π-orbitals are
orthogonal to the σ-orbitals, the two bands do not mix, and we can examine the π-band
separately. We will follow the derivation of Lunde, [31].

The π-band wave functions must be a linear combination of the π-orbitals on the A-
and B-atom in the unit cell. Therefore

|ψk〉 =
1√
N

N∑
j

eik·Rj (α|pAπ (Rj)〉+ β|pBπ (Rj)〉), (2.24)

where α and β are constants to be determined by diagonalisation,

H|ψk〉 = εk|ψk〉. (2.25)

By multiplying from the left with 〈ψk|, we can transform this into a problem of solving a
2×2 matrix. Since |pAπ 〉 and |pBπ 〉 are not orthogonal, there will be an overlap matrix, so

(
HAA,k HAB,k

HBA,k HBB,k

)(
α
β

)
= εk

(
SAA,k SAB,k
SBA,k SBB,k

)(
α
β

)
, (2.26)

where

H∗
X′X,k = HXX′,k =

1

N

N∑
j

e−ik·Rj

N∑
l

eik·Rl〈pXπ (Rj)|H|pX′
π (Rl)〉, (2.27)

S∗
X′X,k = SXX′,k =

1

N

N∑
j

e−ik·Rj

N∑
l

eik·Rl〈pXπ (Rj)|pX
′

π (Rl)〉. (2.28)

Here we have introduced the notation X,X ′ for representing either A or B, and we will
use X̄ as not X, such that if X = A, then X̄ = B and vice versa. Since the π-orbitals fall
off exponentially fast in distance from the nucleus, everything else than nearest neighbor
interactions can be neglected. As described in Section 2.2, X-atoms only have X̄-atoms
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as nearest neighbors. Therefore

HXX,k =
1

N

N∑
j

e−ik·Rj

N∑
l

eik·Rl〈pXπ (Rj)|H|pXπ (Rl)〉δj,l

= 〈pXπ (0)|(T + VX(0))|pXπ (0)〉, (2.29)

HXX̄,k =
1

N

N∑
j

e−ik·Rj

N∑
l

eik·Rl〈pXπ (Rj)|H|pX̄π (Rl)〉
2∑
i=0

δRl−Rj ,±ai

=
2∑
i=0

e±ik·ai〈pXπ (0)|(T + VX(0) + VX̄(±ai)
)|pX̄π (±ai)〉 (2.30)

=

2∑
i=0

e±ik·ai〈pXπ (0)|(T + VX(0) + VX̄(0))|pX̄π (0)〉, (2.31)

SXX,k = 〈pXπ (0)|pXπ (0)〉 = 1, (2.32)

SXX̄,k =

2∑
i=0

e±ik·ai〈pXπ (0)|pX̄π (0)〉. (2.33)

Here we have introduced ±ai corresponding to X = A,B respectively. When going from
Eq. (2.30) to Eq. (2.31), we have used the fact that both the atomic potentials and the
π-orbitals are rotationally symmetric in the π-direction. The matrix elements are renamed
to

〈pXπ (0)|(T + VX(0))|pXπ (0)〉 = ε0, (2.34)

〈pXπ (0)|(T + VX(0) + VX̄(0))|pX̄π (0)〉 = −γ0, (2.35)

〈pXπ (0)|pX̄π (0)〉 = s0. (2.36)

The entire band structure has been calculated numerically [32] using the LCAO method
[10, sec. 7.3], where interactions have been included in the Hartree-Fock approximation [24,
sec. 4.3]. To get the same band structure from our analytical calculation, the parameters
should be γ0 = 3.033 eV and s0 = 0.129 [30, p. 27]. We will see in the following that ε0 is
fixed by the zero of the energy scale, so it bears no physical significance.

Let us define

Υ(k) =

2∑
i=0

eik·ai . (2.37)
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Then

HXX,k = ε0, (2.38)

HA,B,k = −γ0Υ(k), (2.39)

HB,A,k = −γ0Υ(k)∗, (2.40)

SXX,k = 1, (2.41)

SA,B,k = Υ(k)s0 (2.42)

SB,A,k = Υ(k)∗s0. (2.43)

Therefore we can rewrite Eq. (2.26) as(
ε0 − εk (−γ0 − s0εk)Υ(k)

(−γ0 − s0εk)Υ(k)∗ ε0 − εk

)(
α
β

)
=

(
0
0

)
. (2.44)

It is seen that ε0 enters as a constant term, so it has no influence on the eigenstates, and
only shifts the whole band structure. Therefore it can be set to zero. Eq. (2.44) only has
non-trivial solutions for α and β if the determinant of the matrix equals zero, which leads
to

ε±k = ± γ0|Υ(k)|
1∓ s0|Υ(k)|

. (2.45)

Inserting this in the first row of Eq. (2.44), the eigenstates are found,

α

β
= −(εks0 + γ0)Υ(k)

εk
. (2.46)

Inserting ε±k from Eq. (2.45),

α

β
= Υ(k)

γ0 +
±γ0s0|Υ(k)|
1∓s0|Υ(k)|

∓ γ0|Υ(k)|
1∓s0|Υ(k)|

= ∓ Υ(k)

|Υ(k)|
. (2.47)

We choose (
α
β

)
=

1√
2

(
∓ Υ(k)

|Υ(k)|
1

)
. (2.48)

This gives the band structure depicted in figure Fig. 2.2a. It is observed from Eq. (2.45)
that ε+k > 0 and ε−k < 0, so half of the states have negative energies and the other half
have positive energies. For neutral graphene the bands are half filled, so the Fermi energy
must lie where the upper and lower π-band meet. At Υ(k) = 0, ε+k = ε−k = 0. These
points are called the Dirac points, and their position in k-space will be labeled by Kτ ,
where τ = ±1. Since the two bands meet at Kτ , graphene is a conductor. However, since
the bands intersect at only two points in the Brillouin zone at the Fermi level, the density
of states is zero, so there are almost no conduction electrons. Therefore it is normally
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(a) Contour plot of the band structure of
graphene. The horizontal axes are in units of 1/a.

(b) Surface plot of the positive π-band. The
height is in units of γ0, and the horizontal axes
are in units of 1/a.

classified as a semimetal [29, p. 392]. Conventionally the Dirac point k-space vectors
are not called K+ and K− but K and K ′. For calculational simplicity we will keep the
notation Kτ in this chapter, and change to K(K ′) in the rest of the thesis.

It is seen from Eq. (2.45) that at the Dirac point, the real and imaginary parts of
Eq. (2.37) must be zero separately. For the imaginary part of Eq. (2.37) to be zero,

Kτ · a1 = −Kτ · a2 mod 2π, (2.49)

so a solution is Kτ orthogonal to a1 + a2,

Kτ ∝
(

0
1

)
. (2.50)

For this Kτ , the real part must satisfy cos(Kτ · a1) = cos(Kτ · a2) = −1
2 , so

Kτ · a2 = ±2

3
π. (2.51)

Therefore

Kτ = τ
2

3
π
2

a

(
0
1

)
= τ

4π

3a

(
0
1

)
. (2.52)

Graphene is symmetric under a 2
3π rotation, and the band structure must have the same

rotational symmetry as the real space lattice, so the Kτ rotated by 2
3π also satisfies
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Υ(k) = 0. Therefore four additional Kτ points are found, namely

Kτ,1 = τ
4π

3a

(
−

√
3
2

−1
2

)

= τ
2π

3a

(
−
√
3

−1

)
, (2.53)

Kτ,2 = τ
2π

3a

( √
3

−1

)
. (2.54)

It should be noted that these points are not different from the original K and K ′, but
have the same position in neighboring unit cells as the original K and K ′ have in the
original unit cell, i.e. they are related by a reciprocal lattice vector. Since these points are
right at the Fermi energy, transport properties are determined by the band structure in
their vicinity. Therefore it is useful to Taylor expand the band structure around Kτ .

Υ
(
Kτ + k̃

)
= 1 + ei(Kτ+k̃)·a1 + ei(Kτ+k̃)·a2

= eiKτ ·a1ik̃ · a1 + eiKτ ·a2ik̃ · a2, (2.55)

Kτ · a1 = −τ 2
3
π (2.56)

Kτ · a2 = τ
2

3
π (2.57)

⇒ eiKτ ·a1 = −1

2
− τi

√
3

2
π (2.58)

⇒ eiKτ ·a2 = −1

2
+ τi

√
3

2
π, (2.59)

k̃ · a1 =
a

2

(√
3k̃x − k̃y

)
from Eq. (2.4) (2.60)

k̃ · a2 =
a

2

(√
3k̃x + k̃y

)
(2.61)

⇒ Υ
(
Kτ + k̃

)
= −

(
1

2
+ τi

√
3

2
π

)
a

2

(√
3k̃x − k̃y

)
+

(
−1

2
+ τi

√
3

2
π

)
a

2

(√
3k̃x + k̃y

)
=

√
3a

2

(
−k̃x + τik̃y

)
(2.62)

⇒ |Υ(Kτ + k̃)| =
√
3a

2

∣∣∣k̃∣∣∣ . (2.63)

Inserting this result in the expression for the energy, Eq. (2.45), and expanding to first
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order in |k̃|, one obtains

ε±k =
±γ0

√
3a
2 |k̃|

1∓ s0
√
3a
2 |k̃|

= ±γ0
√
3a

2

∣∣∣k̃∣∣∣ . (2.64)

The energy is thus rotationally symmetric around Kτ , and linear in |k̃|. This is equivalent
to the dispersion relation of a massless relativistic particle [7, sec. 3.2], [8, sec. 1], [9],
and the band structure is called a Dirac cone, with Kτ being the Dirac point. The Fermi
velocity, equivalent to the speed of a relativistic particle, is

vF =

∣∣∣∣ ε±k|k̃|
∣∣∣∣ = γ0

√
3a

2
. (2.65)

From Eqs. (2.44), (2.62) and (2.65), the effective Hamiltonian close to the Dirac point
is

H = vF

(
0 k̃x − τik̃y

k̃x + τik̃y 0

)
. (2.66)

This Hamiltonian will be the starting point of our calculation of the carbon nanotube
band structure in the next chapter.
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Chapter 3

Band structure of a carbon
nanotube

To a large extend, the band structure of a carbon nanotube can be viewed as a set of one-
dimensional slices through the two-dimensional graphene band structure. The direction
of the slices is determined by the chirality of the tube. This gives rise to both metallic
tubes with no gap, and semiconducting tubes with gaps of the size 1/R ∼500meV.

The curvature of the tube induces small overlaps between the σ and π orbitals on
neighboring atoms. This shifts the one-dimensional band structure slices by a tiny distance
in k-space, such that many metallic tubes are no longer metallic, but only nearly metallic,
with gaps of ∼10meV. The curvature induced overlaps between the σ and π orbitals also
enhances spin-orbit coupling, so the energy bands for spin up and spin down electrons
split, with a gap difference of ∼0.1meV. The quantization axis of spin lies parallel to the
tube axis.

3.1 Geometry

A carbon nanotube can be viewed as a graphene sheet folded into a cylinder, as shown
in figure Fig. 3.1. This can be done in several ways. Imagine having a rectangular sheet
of graphene, where two of the sides are orthogonal to τ0. If the sheet is folded such that
the two sides orthogonal to τ0 meet, a cylinder is created. The pattern at the end of the
tube is seen in Fig. 3.1, and the tube is named a zig-zag tube due to this pattern. If one
choses to fold the two other sides together instead, the tube is called an armchair tube
due to the end pattern. It is also possible to have rectangular sheets where none of the
sides are parallel to any of the τ ’s. They can be folded to a carbon nanotube too, and will
give an end pattern which is neither zig-zag nor armchair. These tubes are called chiral
nanotubes. Typically, the length of the tube is much larger than the circumference, so
one should rather imagine folding a graphene ribbon than a square sheet.

It is convenient to describe the nanotube by a cylindrical coordinate system, where t̂ is
the unit vector in the axial direction, ĉ is the unit vector in the circumferential direction,
and π̂ is the unit vector in the radial direction, such that π̂× ĉ = t̂. An angle φc is defined

17
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ĉ

t̂π̂

Figure 3.1: A zig-zag carbon nanotube with a radius of 1nm. The box shows the pattern
at the end, from which is seen that it is a zig-zag tube. This figure is a modification of
the one found in [33].

as the angle from ĉ to τ0. φc must lie in the interval [0, π6 ], since we are free to choose any
of the τ ’s as τ0, and we can just choose −ĉ instead of ĉ as our circumferential vector if
that makes φc smaller. An armchair tube thus has φc = 0, and a zig-zag tube has φc =

π
6 .

The chiral angle is conventionally defined as η = π
6 − φc.

To quantify both radius and chirality, the chiral vector is introduced. It is defined as
the vector going along the short edge of the graphene sheet, so when the sheet is folded,
the chiral vector would lie in the circumferential direction, connecting an atom to itself
along the circumference. It is thus parallel to ĉ. Since any lattice vector can be written
as an integer linear combination of primitive vectors, we may define

C = na1 +ma2, for m,n ∈ Z. (3.1)

Since the tube is invariant under changing C to −C, or switching m and n, degeneracies
are avoided by introducing the additional constraint

m ≥ |n| ≥ 0. (3.2)

From the chiral vector we may derive

cosφc =
C · τ0
|C||τ0|

, (3.3)

R =
|C|
2π

, (3.4)

where R is the radius. Since both the radius and the chirality can be found from the chiral
vector, it contains all information about the geometry of the tube, except for the length.
The tube must be smooth all the way around and without any seam where the two edges
of the graphene sheet are connected, so m,n have to be integers. This means that only
some combinations of chirality and radius are possible.
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3.2 Band structure

In Section 2.2 it was seen that the entire graphene lattice could be generated by the
primitive vectors via two translation operators. This can also be done for the tube, but
now the operators do not generate translations, but helical rotations. The Hamiltonian is
formally the same as for graphene Eq. (2.20),

H = T +

N∑
i

(VAi + VBi), (3.5)

but the potentials are now not fixed on a flat lattice, but on a cylinder. Therefore the
2-dimensional discrete translational symmetry that justified the use of Bloch’s theorem is
broken. However two new helical symmetries arise instead, making it possible to still use
Bloch’s theorem. Let us define θ as the angle rotated along the ĉ direction, so for a vector
x = xcĉ + tt̂ + Rπ̂ it is given as θ = xc

R . We may then define the generator of rotations,
R(θ), which rotates the whole system an angle θ, and a generator of translations, T (t),
which translates the whole system a distance t in the t̂ direction. It is seen that for some
specific combinations of θ and t, corresponding to lattice vectors of graphene, the tube is
rotated and translated into itself. Since the Coulomb potential is rotationally symmetric,
the Hamiltonian Eq. (3.5) is invariant under the operation

R(θ)−1T (t)−1HT (t)R(θ) = H. (3.6)

3.2.1 Discretized k-vectors

If we neglect curvature effects, the carbon nanotube Hamiltonian is identical to the
graphene Hamiltonian. Therefore they must have the same eigenstates. However, the
wavefunction on the cylinder has to be periodic in the circumferential direction with the
circumference as period, so that it is continuous and differentiable everywhere. The wave-
function Eq. (2.24) satisfies this condition if

k ·C = 2πn, n ∈ N. (3.7)

For an infinite graphene sheet, there is a quantum state for each k ∈ R2. For an infinitely
long carbon nanotube, there will still be a continuum of allowed states in the t̂ direction,
while the allowed states in the ĉ direction will be spaced with a distance 1

R , as seen from
Eq. (3.7). The band structure will thus be 1-dimensional slices of the graphene band
structure, as seen in figure Fig. 3.2. Since wave vectors outside the Brillouin zone are
redundant, there will only be a finite number of wave vectors in the ĉ direction. The
Hamiltonian near a Dirac point is thus

H = vF

(
0 kc − τik

kc + τik 0

)
, (3.8)

where kc is a wave vector in the ĉ direction, and k is a wave vector in the t̂ direction.
For armchair, some zig-zag and some chiral tubes kc = 0, meaning that one of the 1-
dimensional bands passes through the Dirac point [31]. In this case the band structure
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K

K ′

K

K

K ′

K ′

Figure 3.2: The discretization of the band structure due to the finite circumference. The
hexagon is the graphene Brillouin zone, and the red and blue lines show where the one-
dimensional nanotube band structure lies in the two-dimensional graphene band structure.
The red lines are an (m,n)=(4,4) armchair nanotube, which has R = 0.271 nm. The lines
hit the Dirac points, so the tube is metallic, like all armchair tubes. The blue lines are
an (m,n)=(7,0) zig-zag nanotube with R = 0.274 nm. The lines do not cross the Dirac
points, so this tube is semiconducting.

is a 1-dimensional Dirac cone. More specifically, the criterion for a tube being metallic is
[31, p. 33]

2n+m

3
∈ Z. (3.9)

Some tubes have a finite kc, giving the energy spectrum

ε±k = ±vF
√
k2c + k2. (3.10)

The band structure is thus gapped, giving a hyperbola instead of linear dispersion. Like
Eq. (2.64) was equivalent to the dispersion for a massless Dirac fermion in two dimensions,
Eq. (3.10) is the dispersion of a one-dimensional massive Dirac fermion.

3.2.2 Non-orthogonal π- and σ-orbitals

When the transformation of the wave function from a flat graphene sheet to a cylinder
is performed, the π-orbitals point in the radial direction, while the σ-orbitals lie parallel
to the surface of the cylinder. Due to the curvature, a π-orbital on one atom is neither
parallel to the π-orbitals nor orthogonal to the σ-orbitals on neighboring atoms. This
means that the value of γ0 from Eq. (2.35) is changed, and that the π- and σ-bands
mix. Izumida et al. [12] have shown that this gives rise to a shift in k space of the one-
dimensional bands. We will now outline their calculation. It is similar to the calculation
of the graphene bandstructure in Section 2.3, except that instead of only having a 2×2
Hamiltonian containing two π-orbitals as in Eq. (2.26), it is necessary to include all four
orbitals on each atom, so the Hamiltonian will be 8×8.

In the following we will enumerate the unit cells by the index l, and whether an atom
is an A or a B atom by X. The four orbitals s, px, py, pπ will be described by the index j.
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Instead of the momentum kc we will use µ = kcR, such that µ takes integer values. This
means that kcxc = µθ. The basis is chosen as

|jXk〉 = 1√
N

∑
l

eiktl+iµθl |φjXl〉, (3.11)

where N is the number of unit cells, tl and θl are the t and θ coordinates of the l’th unit
cell, and |φjXl〉 is the j orbital on the X, l site. Equivalent to Eq. (2.24), the Hamiltonian
is diagonal in k-space, so it only has to be diagonalized in j,X space. This is done similar
to Eqs. (2.29)-(2.33), so

〈jXk|H|j′X ′k〉 =
∑
l

e−iktl−iµθl〈φjXl|H|φj′X′l′=0〉 (3.12)

≡
∑
l

e−iktl−iµθlHXX′
j,j′,l .

The states of Eq. (3.11) are not orthogonal, but a finite overlap

〈jXk|j′X ′k〉 =
∑
l

e−iktl−iµθl〈φjXl|φj′X′l′=0〉 (3.13)

≡
∑
l

e−iktl−iµθlSXX
′

j,j′,l .

The sum over l runs in principle over all unit cells, but only for neighbouring atoms do
Eqs. (3.12) and (3.13) give a non-zero inner product. Therefore for l 6= 0, SXX

′
j,j′,l and H

XX′
j,j′,l

are zero unless X ′ 6= X. Similar to Eq. (2.44), the matrix equation(
H − εkS

)
C = 0 (3.14)

is found, where H and S are the matrices for which Eqs. (3.12) and (3.13) are the elements.

HjX,j′X′ and SjX,j′X′ can be found from the graphene hopping parameters and ge-
ometrical considerations. In addition to Hπ and Sπ, Eqs. (2.35) and (2.36), it is also
necessary to introduce the remaining graphene hopping parameters,

Hτ = 〈pXτ (0)|(T + VX(0) + VX̄(0))|pX̄τ (0)〉 = 5.037eV (3.15)

Sτ = 〈pXτ (0)|pX̄τ (0)〉 = −0.146 (3.16)

Hsτ = 〈sB(0)|(T + VX(0) + VX̄(0))|pAτ (0)〉 = −5.580eV (3.17)

Ssτ = 〈sB(0)|pAτ (0)〉 = −〈sA(0)|pBτ (0)〉 = 0.102 (3.18)

Hss = 〈sX(0)|(T + VX(0) + VX̄(0))|sX̄(0)〉 = −6.769eV (3.19)

Sss = 〈sX(0)|sX̄(0)〉 = 0.212 (3.20)

εs = 〈sX(0)|(T + VX(0))|sX(0)〉 = −8.868eV. (3.21)
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Here τ denotes a p-orbital along τ0. The numerical values are given by the table in [30,
p. 32]. The diagonal terms of SXX

′
j,j′,l , meaning j = j′ and X = X ′, are equal to 1. From

the choice εp = 0 in Section 2.3, the diagonal terms of HXX′
j,j′,l are zero, except for

HXX
s,s,0 = εs. (3.22)

To calculate the off-diagonal terms HXX̄
j,j′,l and SXX̄j,j′,l, we exploit the fact that p-orbitals

can be decomposed into orthogonal components, Eq. (2.16). In Section 2.3 it was shown
that a π-orbital is orthogonal to both the p- and s-component of the σ-orbital on the
neighbouring atom in the τ direction. Therefore, in the calculation of Hsτ and Ssτ , the
only part of the p-orbital that contributes is the projection onto τ0. If we define a unit
vector n̂Xjl as being the direction of the p-orbital labeled j on the X atom in the l’th unit
cell, we may write

HBA
s,pj ,l

= −HAB
s,pj ,l

= n̂Aj0 · τ̂lHsτ , (3.23)

SBAs,pj ,l = −SABs,pj ,l = n̂Aj0 · τ̂l, (3.24)

where τ̂l is a unit vector going from the A0- to the Bl-atom, so

τ̂l =
τl

aC−C
. (3.25)

To calculate HBA
pi,pj ,l

and SBApi,pj ,l, we define a coordinate system where

n̂Ai0 = nAi0,τ τ̂l + nAi0,xx̂, (3.26)

n̂Bjl = nBjl,τ τ̂l + nBjl,xx̂+ nBjl,yŷ. (3.27)

There will be two terms, one proportional to Hτ and one proportional to Hπ. The σ-term
comes from the part parallel to τl, so it has the form

nAi0,τn
B
j0,τHτ . (3.28)

The π-term must come from the projection onto the plane orthogonal to τ , and herein
only from the part where n̂Ai0 and n̂Bjl are parallel. Therefore it has the form

nAi0,xn
B
jl,xHπ. (3.29)

To get it in coordinate independent form, we write

nAi0,xn
B
jl,x = n̂Ai0 · n̂Bjl − nAi0,τn

B
jl,τ , (3.30)

nAi0,τn
B
jl,τ =

(
n̂Ai0 · τ̂l

) (
n̂Bjl · τ̂l

)
. (3.31)

Therefore

HBA
pi,pj ,l

= HAB
pi,pj ,l

= n̂Ai0 · n̂BjlHπ +
(
n̂Ai0 · τ̂l

) (
n̂Bjl · τ̂l

)
(Hτ −Hπ) , (3.32)

SBApi,pj ,l = SABpi,pj ,l = n̂Ai0 · n̂BjlSπ +
(
n̂Ai0 · τ̂l

) (
n̂Bjl · τ̂l

)
(Sτ − Sπ) . (3.33)
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To link it to the parameters of the tube, φc and R, we will write the vectors in the ĉ, t̂, π̂
basis at atom A in the zeroth unit cell, so

n̂Ac0 = (1, 0, 0) (3.34)

n̂At0 = (0, 1, 0) (3.35)

n̂Aπ0 = (0, 0, 1) (3.36)

n̂Bcl = (cos θl, 0,− sin θl) (3.37)

n̂Btl = (0, 1, 0) (3.38)

n̂Bπl = (sin θl, 0, cos θl) (3.39)

τl = (R sin θl, tl, R(cos θl − 1)). (3.40)

tl and θl can be expressed by φc and aC−C as

tl = −aC−C sin(φc + δl), (3.41)

θl =
aC−C

R
cos(φc + δl), (3.42)

where δl = (0, π3 ,−
π
3 ) for l = 0, 1, 2. The minus sign in Eq. (3.41) is pure convention [12].

Finding the band structure is now just a matter of inserting everything in Eq. (3.14), and
diagonalizing. However, we want to include one more effect, namely spin-orbit coupling.

3.2.3 Spin-orbit coupling

To include spin-orbit interactions, the atomic spin-orbit operator [10, sec. 6.3.2],

Hso =
1

2
Vso
∑
l

Ll · S, (3.43)

is added to H. Here S is the spin operator, Ll is the angular momentum operator at the
l’th atomic site, and Vso is the atomic spin-orbit coupling strength. It is found experimen-
tally as the energy difference between two almost identical atomic states, where only one
electron in a p orbital has different spin in the two states [2]. Its value is [34],

Vso = 7.8meV. (3.44)

This form of Hso is just an approximation to the exact spin-orbit operator, so let us briefly
discuss which approximations are used. If there were only a single atom and not a lattice,
the electron would be in some orbital. In this case the atomic spin-orbit operator can
be derived from the electrodynamics of the motion of the electron in the orbital to have
the form Eq. (3.43). In the tight-binding approximation, which is the method used in
this and the previous chapter, the electron is bound in orbitals around all the nuclei. In
this approximation the orbitals are not distorted by neighbouring nuclei, meaning that
an electron in one orbital cannot feel the electric field of nearby nuclei. The spin-orbit
Hamiltonian generated by the motion in the orbital at the l’th atom is therefore 1

2VsoLl ·S.
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Since the electron is in a superposition of the orbitals at all the nuclei, the spin-orbit
operator contains the term given in Eq. (3.43). If the electron could feel the electric field
of neighboring atoms, there would be additional terms in the spin-orbit Hamiltonian, but
since this is not the case in the tight-binding approximation, we use Eq. (3.43).

The dot product Ll · S is rotationally invariant, and the sum over l ensures that Hso

does not break the helical symmetry. Therefore it does not violate the Bloch condition,
Eq. (3.6). However it does break spin degeneracy. Therefore it is necessary to include spin
explicitly in the calculations, thus going from 8 to 16 states in Eq. (3.14). The naive way
of adding spin to the state would be

|jXsk〉 = |jXk〉|s〉, (3.45)

where s is quantized in the t̂ direction. As we will see, this state is not a Bloch state. The
only way a Bloch state can change under a rotation around the tube axis is by getting
multiplied by a phase, as in Eq. (2.23). If a rotation by θ is performed, the spin gets a
phase [13, p. 172], so

R(θ)|s〉 = exp

(
−isθ

2

)
|s〉, (3.46)

where s = 1 for spin up and s = −1 for spin down. This means that

R(θ)(| ↑〉+ | ↓〉) = αθ| ↑〉+ α∗
θ| ↓〉 = αθ(| ↑〉+ α∗

2θ| ↓〉), (3.47)

where αθ = exp(−i θ2). This clearly does not satisfy the Bloch and continuity condition

R(θ)|ψ〉 = einψθ|ψ〉, (3.48)

where nψ is some integer. Therefore a different set of spin states has to be chosen. Let us
construct a state which is invariant under rotation. This can be achieved using local spin
states which point in the t̂ direction,

|sl〉 = R(θl)|s〉 = exp

(
−isθl

2

)
|s〉, (3.49)

so

|jXs̃k〉 = 1√
Ns

∑
l

eiktl+i(µ+
s
2
)θl |φjXl〉|sl〉, (3.50)

|jX − s̃k〉 = 1√
Ns

∑
l

eiktl+i(µ−
s
2
)θl |φjXl〉| − sl〉, (3.51)

where we have renamed the spin state to s̃, to remember that it is not homogeneous in
space, but gets a phase when travelling around the tube. For shortening the notation, this
will be written as

|jXs̃k〉 = 1√
Ns

∑
l

eiktl+iJθl |φjXl〉|sl〉, (3.52)
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where

J = µ+
s

2
. (3.53)

This is finally a Bloch state fullfilling the helical symmetry, since

T (t)R(θ)|jXs̃k〉 = e−ikt−iJθ|jXs̃k〉. (3.54)

This new 16 state basis changes the overlap matrix elements calculated in Section 3.2.2.
The diagonal elements are unchanged, since 〈sl|sl〉 = 1. There is no overlap between spin
up and spin down states on neighboring atoms, since they are quantized in the t̂ direction,
so their direction is unchanged by rotation around the tube. For neighboring atoms with
the same spin direction, a phase is achieved, because

〈sl|sl=0〉 = exp

(
i
sθl
2

)
. (3.55)

Therefore the overlaps are changed from Eqs. (3.12) and (3.13), to

〈jXs̃k|H|j′X ′s̃k〉 =
∑
l

exp

(
i
sθl
2

)
e−iktl−iJθlHXX′

j,j′,l , (3.56)

〈jXs̃k|j′X ′s̃k〉 =
∑
l

exp

(
i
sθl
2

)
e−iktl−iJθlSXX

′
j,j′,l . (3.57)

In addition to this changed overlap matrix, there is also Hso, Eq. (3.43). Let us write it in
this basis. As discussed in the beginning of this section, this form of spin-orbit coupling
does not take neighboring atoms into account. Therefore the spin-orbit operator must be
diagonal in AB-space, so all off-diagonal terms are set to zero. It is thus only necessary
to calculate the local matrix elements. The s-orbital has zero angular momentum, so Hso

on this state gives zero. In the |φc ↑〉, |φt ↑〉, |φπ ↑〉, |φc ↓〉, |φt ↓〉, |φπ ↓〉 basis, a small
calculation following the definitions in [10, sec. 4.3] gives

Hso =
Vso
2



0 −i 0 0 0 1
i 0 0 0 0 −i
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

 . (3.58)

Having now the full Hamiltonian and overlap matrix, it is possible to solve Eq. (3.14)
to find the band structure. This was done numerically by Izumida et al. [12]. As expected,
the curvature and spin-orbit effects are small, so the band structure is very similar to the
original graphene band structure. One major difference is however that curvature and
spin-orbit induced gaps open at the Dirac points. This can be modelled by an effective
π-band Hamiltonian near the Dirac points.
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3.2.4 Effective Hamiltonian

We will now show that the band structure near the Fermi level can be described by
an effective π-band structure modified by coupling to the σ-bands through second order
perturbation theory. We will first explain the method heuristically, and then give the
explicit effective Hamiltonian. The graphene Hamiltonian found in Chapter 2 can be
written as

H
G
=

 H
G

π 0

0 H
G

σ

 . (3.59)

This is just a way of expressing that there is no mixing of the π- and σ-subspaces. The
carbon nanotube Hamiltonian, in the same notation, is

H
CNT

=

 H
CNT

π H
CNT

πσ +Hso,πσ

(H
CNT

πσ +Hso,πσ)
† H

CNT

σ +Hso,σ

 . (3.60)

We will show that

H
CNT

= H
G
+H

′
, (3.61)

where H
′
is of the order (aC−C/R)

2H
G
.

aC−C

R is of the order of 0.1 − 0.3 for small

radius tubes, so treating H
′
as a perturbation is a good approximation. The reason why

there is no Hso,π term is that the spin-orbit Hamiltonian Eq. (3.58) does not have any
diagonal terms, so it does not couple an orbital to itself, and it does not couple neighboring
atoms. The other spin-orbit terms are of the size Vso = 8meV [34], so three orders of
magnitude smaller than the graphene hopping parameters Eqs. (3.15)-(3.21). Therefore

it can be treated perturbatively. The diagonal terms of H
CNT

π and H
CNT

σ are identical to

the diagonal terms of H
G

π and H
G

σ respectively, since the curvature has no local effect on
an individual atom. The off-diagonal terms are given by HXX̄

j,j′,l, which are expressed in

Eqs. (3.23) and (3.32) by the inner products between the orbital vectors n̂Xjl and τ̂l. For
the π-subspace,

HBA
pπ ,pπ ,l = n̂Aπ0 · n̂BπlHπ +

(
n̂Aπ0 · τ̂l

) (
n̂Bπl · τ̂l

)
(Hτ −Hπ) . (3.62)

From the specific form of the geometrical unit vectors Eqs. (3.34)–(3.40), it is seen that

n̂Aπ0 · n̂Bπl ≈ 1− θ2l , (3.63)(
n̂Aπ0 · τ̂l

) (
n̂Bπl · τ̂l

)
≈ θ2l . (3.64)

From Eq. (3.42),

θl ≤
aC−C

R
, (3.65)
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so

H
CNT

π = H
G

π +H
′
π, (3.66)

where H
′
π ∼ (aC−C/R)

2 as required. A similar result can be easily shown for H
CNT

σ . For
the off-diagonal part of Eq. (3.60), also using the result from Eq. (3.23), we find

HBA
pπ ,pτ ,l = n̂Aπ0 · n̂BτlHπ +

(
n̂Aπ0 · τ̂l

) (
n̂Bτl · τ̂l

)
(Hτ −Hπ) , (3.67)

HBA
s,pπ ,l = n̂Aπ0 · τ̂lHsτ , (3.68)

which both are given by

n̂Aπ0 · n̂Bτl ≈ θl, (3.69)

n̂Aπ0 · τ̂l ≈ θl, . (3.70)

Therefore

H
CNT

πσ = 0 +H
′
πσ, (3.71)

where H
′
πσ ∼ aC−C/R. An off-diagonal part that is linear in aC−C/R leads to corrections

to energies of order (aC−C/R)
2, since it enters in second and not in first order perturbation

theory. It is thus seen that Eq. (??) is fullfilled and that H
′
is small. Therefore it can

be seen as a perturbation to the graphene π band Hamiltonian. H
′
π can be included

exactly, which gives a modification of the parameter Hπ proportional to (aC−C/R)
2. The

off-diagonal term H
′
πσ+Hso,πσ has to be included in second order perturbation theory. It

will thus modify the band structure as (H
′
πσ+Hso,πσ)

2, so there will be three kinds of terms,
(aC−C/R)

2, (aC−C/R)Vso, and V 2
so. Since Vso is about two orders of magnitude smaller

than aC−C/R, the term V 2
so will be neglected. One could also argue that (aC−C/R)Vso is

negligible, but since the spin-orbit coupling is the only effect breaking spin degeneracy,
this term contains important qualitative behavior and cannot be neglected.

The graphene Hamiltonian is given by Eq. (3.8). We will be concerned with metallic
tubes, i.e. kc = 0, so

H
G

π = τvFkσ2, (3.72)

where σ2 is the second Pauli matrix in the A,B basis, and τ = +(−)1 corresponds to
being close to K(K ′). Performing second order perturbation theory as mentioned above
gives the effective Hamiltonian

H
eff

π = H
G

π +H
eff

π,soc +H
eff

π,cv, (3.73)

where [12]

H
eff

π,soc = vF

(
ε
(τ)
socs

vF
σ0 −∆ksocsσ1

)
, (3.74)

H
eff

π,cv = −vF
(
∆k(τ)c,cvσ1 +∆k(τ)cv σ2

)
. (3.75)
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Here s = ±1 represents spin up or spin down, and the elements are given as

vF∆ksoc = α1
Vso
2R

, (3.76)

ε(τ)soc = τα2
Vso
2R

cos 3η, (3.77)

vF∆k
(τ)
c,cv = τβ

cos 3η

(2R)2
, (3.78)

∆k(τ)cv = τζ
sin 3η

(2R)2
. (3.79)

For metallic nanotubes the parameters α1, α2, β, ζ were fitted to the numerical calculation
of the full band structure, giving

α1 = 0.048 nm, (3.80)

α2 = −0.045 nm, (3.81)

β = 24meV · nm2, (3.82)

ζ = −0.18 nm. (3.83)

It is easy to show that the generic Hamiltonian

H = E0σ0 + vF cσ1 + vFkσ2 (3.84)

has the eigenvalues

ε±(k) = E0 ± vF
√
c2 + k2. (3.85)

It is thus linear for large k, and gapped at k = 0 with an energy splitting of 2vF c between
the valence and conduction band. Furthermore it is shifted upwards by E0. The band

structure of H
eff

π can be seen in. The leading behaviour of the effective Hamiltonian comes
from Eq. (3.72), where it is seen that the band structure is linear in k with a slope vF .
Eq. (3.79) also has a constant σ2, which shifts the Dirac point along the k direction, with
opposite signs for K and K ′. It thus does not change the local band structure relative

to K and K ′. The second largest term is −vF∆k(τ)c,cvσ1 in Eq. (3.75), which gives rise to
a gap, similar to vF c in Eq. (3.84). There is a small addition to this gap coming from
the −vF∆ksocsσ1 in Eq. (3.74). For τ = 1 and s = 1 the two terms have the same sign,
while for s = −1, they have opposite signs. Spin up electrons thus have a larger band gap
than spin down. It should be kept in mind that the difference between the spin up and

spin down band gap is small, since Vso � aC−C/R. Finally, there is the term ε
(τ)
socsσ0 in

Eq. (3.74). It is negative for s = 1 since α2 is negative, so it shifts the spin up band down
and the spin down band up. This gives effectively a smaller energy difference between spin
up and spin down electrons than between spin up and spin down holes. For τ = −1, the
spin down electrons have a larger gap than spin up, but the sign of σ0 is also flipped, so
that electrons still have a smaller energy difference between spin up and spin down than
holes.
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These results are not in complete agreement with experimental results. In 2008 Kuem-
meth et al. [2] found experimentally that there is indeed a difference between the band
splitting of electrons and holes. However they found a splitting of 0.37meV for electrons
and 0.21meV for holes, in disagreement with Izumida’s larger splitting for holes than for
electrons.
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Chapter 4

Toy model

In Chapter 3 it was shown that the band structure near the Fermi level of a neutral
metallic carbon nanotube could be described by the Hamiltonian Eq. (3.73). It contained
four gapped cones, spin up and spin down combined with K and K ′. Spin up at K is
degenerate with spin down at K ′, and it has a larger band gap than spin down at K, which
is degenerate with spin up at K ′. The K,K ′ symmetry is due to time reversal symmetry.
Furthermore the entire spin up band structure is shifted downwards, while spin down is
shifted upwards at K, so there is a smaller energy difference between spin up and spin
down electrons than between spin up and spin down holes. These are the essential features
of the effective Hamiltonian. To investigate how electron-electron interactions modify this
band structure, we will use a toy model Hamiltonian, which has all these features, and
can be written We will write it

H0 = vF (csσ1 + kσ2)− vFds. (4.1)

Here vFk gives the asymptotic linear band structure, cs induces a gap which depends on
whether s is positive or negative, and ds gives the spin-dependent energy shift. To get the
same features as Eqs. (3.73)–(3.83) at K, we choose d > 0 and c+ > c− > 0. Coulomb
interactions are not expected to break the K, K ′ degeneracy, so the model only includes

two cones. Diagonalising H0 gives the eigenvalues

Ek,s,ζ = ζvF
√
k2 + c2s − vFds, (4.2)

where ζ = ±1, so ζ = 1 means a state in the conduction band, and ζ = −1 is a state in
the valence band. In our model we assume zero temperature and a chemical potential in
the middle of the gap. Therefore all states in the conduction band are empty, while all

states in the valence band are filled. The eigenstates of H0 can be written

ψk,s,ζ =
1√
L
χk,s,ζe

ikx =
1√
L

(
uk,s,ζ
vk,s,ζ

)
eikx. (4.3)

In principle there should also be a spin space spinor. This is suppressed, while we remember
that states with different spins are orthogonal. Therefore states in one cone are orthogonal

31
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to states in the other cone. This is exactly true for spin up and spin down, while there
is a finite scattering amplitude from K to K ′. However, it as been shown that effect of
this scattering is smaller than the spin-orbit splitting [35], so we will neglect it. Let us
determine uk,s,ζ and vk,s,ζ .

H0ψk,s,ζ = Ek,s,ζψk,s,ζ

=
1√
L
vF

(
−ds cs − ik
cs + ik −ds

)(
uk,s,ζ
vk,s,ζ

)
eikx

=
1√
L
vF

(
ζ
√
c2s + k2 − ds

)( uk,s,ζ
vk,s,ζ

)
eikx (4.4)

⇒ (cs + ik)uk,s,ζ − dsvk,s,ζ =
(
ζ
√
c2s + k2 − ds

)
vk,s,ζ (4.5)

⇒ vk,s,ζ = ζ
cs + ik√
c2s + k2

uk,s,ζ , (4.6)

so we may choose

χk,s,ζ =

(
uk,s,ζ
vk,s,ζ

)
=

1√
2

(
1

ζ cs+ik√
c2s+k

2

)
. (4.7)

It is seen that ∣∣∣∣∣ cs + ik√
c2s + k2

∣∣∣∣∣
2

= 1. (4.8)

Therefore

χ†
k,s,ζχk,s,−ζ = 0 (4.9)

for all k, so two states with the same momentum in opposite bands are orthogonal.
In the language of second quantization, the Hamiltonian Eq. (4.1) can be written

H0 =
∑
νi,νj

Tνi,νjc
†
νicνj

=
∑
k,s

c†k,svF (dσ0 + csσ1 + kσ2)ck,s, (4.10)

where c†k,s and ck,s are two dimensional creation and annihilation operators in AB space.
This can be diagonalized in the AB space giving two bands, so

H0 =
∑
νi,νj

Tνi,νjc
†
νicνj

=
∑
k,s

c†k,svF

(
dσ0 +

√
k2 + c2sσ3

)
ck,s

=
∑
k,s,ζ

c†k,s,ζvF

(
d+ ζ

√
k2 + c2s

)
ck,s,ζ . (4.11)
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In the following calculations d will be neglected, since all excitations will happen inside
the same cone, making the d dependence trivial. However, when discussing the physical
predictions for spin-orbit splitting in the end, it will be taken into account. neglecting d
means that the eigenenergies reduce to

Ek,s,ζ = ζξk,s. (4.12)

where we have defined

ξk,s ≡ Ek,s,+. (4.13)

4.1 Coulomb interactions

To include Coulomb interactions, the Hamiltonian is written

H = H0 +Hint, (4.14)

where Hint is the Hamiltonian of Coulomb interactions. It is given by [24, sec. 1.4.4]

Hint =

∫
dx

∫
dx′ : ρ(x)V (x− x′)ρ(x′) : (4.15)

where V (x−x′) is the strength of the Coulomb interaction, ρ is the electron density oper-
ator, and : indicates normal ordering. Normal ordering means that all creation operators
are to the left of all annihilation operators. This Hamiltonian couples each electronic
state to all the others, and solving it in general is not possible. It is therefore necessary
to reduce it to an effective model where inessential terms are neglected. For semiconduct-
ing tubes, the effect of short range Coulomb interactions, i.e. interactions with reciprocal
wave vectors larger than 1/R, has already been investigated [3]. It was shown that these
short range interactions lead to an increased Fermi velocity and reduced Coulomb interac-
tion strength, but otherwise leave the theory invariant. The short range interactions thus
screen the electrons from each other on larger length scales, and the interaction between
these screened quasiparticles has the same form as the original interaction between the
bare electrons. We may therefore ignore all interactions on reciprocal space length scales
larger than 1/R. From Eq. (3.7) it is seen that the distance between neighboring one-
dimensional subbands is just 1/R. All states in other subbands are thus too far away in
reciprocal space to be included, so the one-dimensional toy-model Eq. (4.1), contains all
relevant states. Furthermore only states up to the cut-off qc ≡ 1/R should be included.
We would like to write Hint in the k, s, ζ basis to exploit translational invariance. ρ can
be expressed as

ρ =
∑
s

ρs, (4.16)
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where

ρs(x) =
∑

k,k′,ζ,ζ′

ψ†
k′,s,ζ′(x)c

†
k′,s,ζ′ψk,s,ζ(x)ck,s,ζ

=
1

L

∑
k,k′,ζ,ζ′

(
u∗k′,s,ζ′uk,s,ζ + v∗k′,s,ζ′vk,s,ζ

)
ei(k−k

′)xc†k′,s,ζ′ck,s,ζ . (4.17)

Let us define

wk′,k,s,ζ′ζ = 〈k′, s, ζ ′|k, s, ζ〉
= u∗k′,s,ζ′uk,s,ζ + v∗k′,s,ζ′vk,s,ζ

=
1

2

(
1 + ζζ ′

cs − ik′√
k2 + c2s

cs + ik√
k2 + c2s

)

=
1

2

(
1 + ζζ ′

k′k + c2s + ics(k
′ − k)√

k′2k2 + c4s + c2s(k
2 + k′2)

)
, (4.18)

so

ρ(x) =
1

L

∑
k,k′,s,ζ,ζ′

wk′,k,s,ζ′ζe
i(k−k′)xc†k′,s,ζ′ck,s,ζ

=
1

L

∑
νν′

wνν′e
i(k−k′)xc†ν′cν , (4.19)

where the index ν = {k, s, ζ} has been defined. V (x − x′) is the potential energy due
to Coulomb interactions of an electron at position x when there is another electron at
position x′. In our toy model, it is assumed that electrons in the lowest subband do not
interact with electrons in the higher subband. In the particle-in-a-box picture, the wave
function of the electron in the lowest subband is constant in the circumferential direction.
All interactions on a reciprocal space scale of more than 1/R, i.e. interactions on a real
space scale less than R, are neglected so we do not include interactions between electron
states at the same t coordinate and different θ. Therefore our one-dimensional theory
considers interacting rings of charge. V (x − x′) is thus the potential energy of a ring of
charge at position x in the electrostatic potential of a ring at x′.

We will do the calculation of V (x− x′) in cylindrical coordinates, where the two rings
are at position

r′(θ′) =(R, θ′, 0), (4.20)

r(θ) =(R, θ, z0 = x− x′) (4.21)

respectively. This gives the charge distributions on the two rings

ρ3D,1(r
′) = ρ0δ(r

′ −R)δ(z′), (4.22)

ρ3D,2(r) = ρ0δ(r −R)δ(z − z0), (4.23)
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where ρ0 is the charge density on the ring. Since the ring is a model of a single electron,
the total charge of the ring must be equal to the elementary charge, so

ρ0 =
e

2πR
. (4.24)

From electrostatics [36, p. 93],

V (x− x′) =

∫
ρ3D,2(r)V3D(r)dr

=

∫
ρ0δ(r −R)δ(z − z0)V3D(r)rdrdθdz

=

∫
ρ0RV3D(R, θ, z0)dθ. (4.25)

where

V3D(r) =
1

4πε0

∫
ρ3D,1(r

′)

|r − r′|
r′dr′dθ′dz′ (4.26)

is the electrostatic potential from the first ring. From Eqs. (4.20) and (4.21) follows

|r − r′| =
√
z20 + 2R2(1− cos(θ − θ′)). (4.27)

This gives

V3D(r) =
1

4πε0

∫
ρ0δ(r

′ −R)δ(z′)√
z20 + 2R2(1− cos(θ − θ′))

r′dr′dθ′dz′

=
1

4πε0

ρ0R√
z20 + 2R2

∫ 2π

0

1√
1− 2R2

z20+2R2 cos θ′)
dθ′, (4.28)

where the δ functions have been integrated out and the integration variable has been
changed from θ′ to θ′ − θ. The integral gives∫ 2π

0

1√
1− a cos θ

dθ = 2

(
K( 2a

1−a)√
1− a

+
K( 2a

1+a)√
1 + a

)
, (4.29)

where K is the complete elliptic integral of the first kind [37, formula 17.3.1]. This is
rather complicated to evaluate, but we observe that for a� 1,∫ 2π

0

1√
1− a cos θ

dθ ≈ 2π, (4.30)

so for z0 � R,

V3D(r) ≈
1

4πε0

ρ02πR√
z20 + 2R2

. (4.31)
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Therefore, from Eq. (4.25),

V (x− x′) =
(ρ02πR)

2

4πε0

1√
z20 + 2R2

=
e2

4πε0

1√
(x− x′)2 + 2R2

. (4.32)

It can be written in reciprocal space as

V (x− x′) =
1

L

∑
q

V (q)eiq(x−x
′), (4.33)

where V (q) is the Fourier transform of V (x− x′), i.e.

V (q) =

∫
dxV (x)e−iqx

=

∫
dx

e2

4πε0

1√
x2 + 2R2

e−iqx

=
e2

4πε0
2K0(

√
2Rq), (4.34)

whereK0(t) is the modified Bessel function of the second kind [37, sec. 9.6-9.8]. It diverges
logarithmically as t goes to zero, but is of order of magnitude 1 in most of the range [0, 1].
Since all interactions above 1/R have already been taken into account, we will approximate
it by

V (q) = V0 for |q| < qc

V (q) = 0 for |q| > qc, (4.35)

where

V0 = 5.3
e2

4πε0
, (4.36)

qc =
1

R
. (4.37)

The approximation for V0 is based on the numerical calculations in Section 5.5.
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We may now integrate out the explicit position dependence in Eq. (4.15).

Hint =
1

L3

∫
dx

∫
dx′ :

∑
ν1,ν2
ν3,ν4,q

wν1,ν2e
i(k2−k1)xc†ν1cν2V (q)ei(x−x

′)qwν3,ν4e
i(k4−k3)x′c†ν3cν4 :

=
1

L3

∑
ν1,ν2
ν3,ν4,q

V (q)wν3,ν4wν1,ν2c
†
ν1c

†
ν3cν4cν2

∫
dx

∫
dx′ei(k4−k3)x

′
ei(k2−k1)xei(x−x

′)q

=
1

L3

∑
ν1,ν2
ν3,ν4,q

V (q)wν3,ν4wν1,ν2c
†
ν1c

†
ν3cν4cν2

∫
dx

∫
dx′ei(k4−k3−q)x

′
ei(k2−k1+q)x

=
1

L

∑
ν1,ν2
ν3,ν4,q

V (q)wν3,ν4wν1,ν2c
†
ν1c

†
ν3cν4cν2δk3,k4−qδk1,k2+q

=
1

L

∑
k,k′,q,s,s′

ζ1,ζ2,ζ3,ζ4

V (q)wk+q,k,s,ζ1ζ2wk′−q,k′,s′,ζ3ζ4c
†
k+q,s,ζ1

c†k′−q,s′,ζ3ck′,s′,ζ4ck,s,ζ2 . (4.38)

Here we have used the transformation rule

1

L

∑
k1,k2

f(k1, k2)

∫
dxei(k1−k2)x =

∑
k1,k2

f(k1, k2)2πδ(k1 − k2)

=
∑
k1

∫
dk2
2π

f(k1, k2)2πδ(k1 − k2)

=
∑
k1

f(k1, k1). (4.39)

In the original AB basis where H0 is not orthogonal, Hint is

Hint =
1

L

∑
k,k′,q

s,s′,X,X′

V (q)c†k+q,s,Xc
†
k′−q,s′,X′ck′,s′,X′ck,s,X , (4.40)

where X and X ′ represent A(B) index.
Let us finish the discussion of the toy model by estimating the size of the parameters. It

has been shown [3] that the bare non-interacting graphene Fermi velocity is renormalized
in carbon nanotubes by short range (< R) Coulomb interactions to the value

vF = 1.1 · 106m
s
. (4.41)

Since we have set ~ = 1 in all equations, it is necessary to reinsert it when we want to plug
in numbers. When ~ = 1, energy has units of inverse time, so we can make the conversion

~vF = 6.6 · 10−13meV · s · 1.1 · 106m
s

→ 7.2 · 102meV · nm (4.42)

⇒ nm−1 ↔ 7.2 · 102v−1
F meV. (4.43)
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We would like to estimate the size of all parameters entering the theory. The Coulomb
interaction is given by Eq. (4.36),

V0 = 5.3
e2

4πε0

= 5.3
e2

4π e2

2α2π~c

= 5.3α~c, (4.44)

where c = 3 · 108m/s = 272vF is the speed of light, and α = 1/137 is the fine structure
constant. This gives

V0 = 5.3 · 2vF , (4.45)

gbare ≡
V0

2πvF
= 1.69, (4.46)

where we have defined the bare coupling constant gbare-. The bare interaction is however
screened by short range interactions to [3]

g ≡ gbare
1 + gbareπ/2

= 0.46. (4.47)

In experiments, the nanotube is occasionally placed on a substrate which induces long
range dielectric screening. This changes V0, since the permittivity is changed from ε0 to
ε = ε0εr. Therefore g should be divided by εr in the case of screening. εr lies typically in
the range 1− 10. The other parameters are

R ≈ 1nm (4.48)

⇒ qc =
1

R
≈ 1nm−1 ≈ 1000v−1

F meV. (4.49)

cs is approximately given by Eq. (3.78), so

cs ≈
β

(2R)2vF
≈ 10−2nm−1 ≈ 10v−1

F meV. (4.50)

The difference between cs and c−s is given by Eq. (3.76), so

cs − c−s ≈ 10−4nm−1 ≈ 0.1v−1
F meV. (4.51)

The spin-dependent shift d is, from Eq. (3.77),

d ≈ 10−4nm−1 ≈ 0.1v−1
F meV. (4.52)

The momenta are quantized in steps of the inverse system size 1
L , so

1

L
≈ 10−3nm−1 ≈ v−1

F meV. (4.53)

It is thus seen that the states can still be viewed as continuous in the gapped area, but the
second lowest state in the small gap cone has much higher energy than the lowest state
in the large gap cone. In experiments it is thus possible to choose an energy range where
only the lowest state in each cone is probed.



Chapter 5

First order perturbation theory

In Chapters 2 and 3 the eigenstates of a non-interacting Hamiltonian were found using
single particle quantum mechanics. We will now turn our attention to the interacting
Hamiltonian. To find its eigenvalues, i.e. the energies of the system, many-body quan-
tum theory will be used. We will start by explaining the central concepts, following the
derivations in Bruus and Flensberg [24]. Then we will show how the eigenenergies of the
non-interacting Hamiltonian are modified to first order in the Coulomb interaction.

The full Hamiltonian consists of a non-interacting and an interacting term, H0 and
Hint. The non-interacting Hamiltonian, Eq. (4.10), is given by

H0 =
∑
νi

Eνic
†
νicνi . (5.1)

If a single-particle state |νj〉 is occupied, then

〈νj |H0|νj〉 = Eνj , (5.2)

and if a set of single particle states |µ〉 = {|νj〉} is occupied,

〈µ|H0|µ〉 =
∑
νj

Eνj . (5.3)

For a many-body system described by H0, the energy is just the sum of the energies of
all the particles independent of each other. Therefore H0 is called non-interacting. This
is not the case for Hint, found in Eq. (4.38) as

Hint =
1

L

∑
k,k′,q,s,s′

ζ1,ζ2,ζ3,ζ4

V (q)wk+q,k,s,ζ1ζ2wk′−q,k′,s′,ζ3ζ4c
†
k+q,s,ζ1

c†k′−q,s′,ζ3ck′,s′,ζ4ck,s,ζ2 . (5.4)

It contains two pairs of creation and annihilation operators, so the state of all the other
electrons heavily influences the energy of a single particle. This makes diagonalizing H a
true many-body problem, where every particle interacts with all the others. The eigen-
states of H will not be a sum of single-particle states as for H0, but collective excitations,

39
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called quasiparticles. However, if Hint is much weaker than H0, the quasiparticles will be
similar to the single-particle states, and their energy can be found through perturbation
theory. Approximating the energy of a quasiparticle through perturbation theory is how-
ever not as simple for interacting many-body systems as for single-particle Hamiltonians.
For this we will need the theory of Green’s functions and Feynman diagrams, which will
be introduced in the next section. For further reading, see [24].

5.1 Green’s functions

A Green’s function contains information about how a many-body state propagates from
one state at one time to another state at another time. We will focus on the single-particle
Green’s functions, because they convey information about the energies of the quasiparti-
cles. It is emphasized that by single-particle Green’s function we mean the propagator of
a single particle under the influence of the interactions with the other electrons. Let us
define the greater Green’s function as [24, p. 125]

G>(ν, ν ′, t) = −i〈cν(t)c†ν′(0)〉

= −i〈eiHtcνe−iHtc†ν′〉. (5.5)

Here the average is defined as [24, p. 27]

〈A〉 = Tr[ρA]

Tr[ρ]
, (5.6)

where ρ = exp(−βH). For a system at zero temperature, the operators in the bracket
work on the ground state of the Hamiltonian. The chemical potential is included in the
Hamiltonian. Eq. (5.5) should be read as following. First an electron is created in the
state ν ′, then the state is allowed to propagate for a time t before an electron is annihilated
in the state ν. The state is then propagated back again by a time t, and the inner product
is taken with the ground state. For free electrons with the Hamiltonian Eq. (5.3), this
gives [24, p. 127]

G>0 (ν, ν
′, t) = −i(1− nF (Eν))e

−iEνtδν,ν′ . (5.7)

It is seen that the Green’s function oscillates with a frequency identical to the energy of the
single-particle state ν, if the state is not completely occupied. Since ν is an eigenstate of
H, the electron stays in its initial state throughout the propagation, hence the Kronecker
δ. We may also define the lesser Green’s function as

G<(ν, ν ′, t) = −i〈c†ν′(0)cν(t)〉, (5.8)

which for the free Hamiltonian in Eq. (5.1) gives

G<0 (ν, ν, t) = −inF (Eν)e−iEνt. (5.9)
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It thus oscillates with the energy of the state ν if ν is not completely empty. At zero
temperature, the one-particle states are completely filled if they are below the Fermi
energy and completely empty if they are above the Fermi energy. For non-interacting
electrons, the energies Eν in the Green’s functions Eqs. (5.7) and (5.9) are equal to the
energy of adding an electron to the system in the state ν. It is convenient to introduce
the retarded Green’s function

GR(ν, ν ′, t) = θ(t)(G>(ν, ν ′, t)−G<(ν, ν ′, t)), (5.10)

where θ(t) is the Heaviside step function. In the free case it gives

GR0 (ν, ν, t) = −iθ(t)e−iEνt. (5.11)

It measures the energy of the single-particle state |ν〉 disregarding whether it is empty or
not. For the non-interacting case, Eν can be read off directly from Eq. (5.11). However,
to extract the energy from Eq. (5.10) in the general case, we have to introduce a few more
mathematical concepts. The Fourier transform of the non-interacting retarded Green’s
function is

GR0 (ν, ν, ω) =

∫
dtGR0 (ν, ν, t)e

i(ω+iη)t

= −i
∫
dtθ(t)e−iEνteiωte−ηt

=
1

ω − Eν + iη
. (5.12)

The Fourier transform is here defined slightly differently than conventionally, by using
the complex frequency ω + iη instead of ω. η is here a positive infinitesimal, introduced
to ensure that the Fourier transform converges. It is just a generalization of the Fourier
transform to accomodate for principle value integrals. From here we may define the
spectral function

A(ν, ω) = −2ImGR(ν, ν, ω), (5.13)

so

A0(ν, ω) = −2ImGR0 (ν, ν, ω) (5.14)

= 2πδ(ω − Eν). (5.15)

It is zero for all ω except for ω − Eν , where it has a peak. The spectral function can be
viewed as a function indicating how the energy depends on the quantum number. For a
non-interacting particle it is a δ function in the diagonal basis, so the energy is uniquely
defined when the quantum number is known. For interacting particles, this is not the
case if ν expresses single-particle states. Depending on the strength of Hint, the spectral
function will be modified and more or less broadened. However, if A0(ν, ω) has a sharp
peak, the spectral function is close to a δ function, meaning that the state is close to



42 CHAPTER 5. FIRST ORDER PERTURBATION THEORY

behaving like a non-interacting quasiparticle. The width of the peak is proportional to
the inverse lifetime of the quasiparticle with energy given by the position of the peak.
For a non-interacting particle, Eq. (5.15), the width is zero, meaning that the state has
an infinite lifetime. This is already known, since an eigenstate of the Hamiltonian is
invariant under time evolution. If interactions are weak, we know that the quasiparticle
approximation is good, so the spectral function is sharply peaked. The peak is however
shifted from its non-interacting position to the energy of the quasiparticle. Finding the
energy of the quasiparticle thus amounts to finding the peak of the spectral function. This
will be done using the formalism of Matsubara Green’s functions.

5.1.1 Matsubara Green’s function

We may view the retarded Green’s function Eq. (5.10) as a function of t for some specific
ν, ν ′. Instead of only being defined for real time values t, we may expand it analytically to
be defined in the entire complex plane, such that t→ t− iτ . It turns out that it is much
easier to evaluate the retarded Green’s function on the imaginary axis, i.e. as a function
of τ instead of as a function of t. We call the retarded Green’s function on the imaginary
axis a Matsubara Green’s function, G(ν, ν ′, τ), so

GR(ν, ν ′, t)
t→τ−−→ G(ν, ν ′, τ), (5.16)

Which can be Fourier transformed, and if we call the frequency corresponding to imaginary
time iωn,

GR(ν, ν ′, ω) = G(ν, ν ′, iωn → ω + iη). (5.17)

When Fourier transforming, the imaginary time is not integrated from −∞ to ∞, but from
−β to β. This means that imaginary time frequencies are discrete, hence the subscript n.
Since we work in the zero temperature limit, we will let β → ∞, making iωn continuous.
However, we will sum the Matsubara frequencies as if they were discrete, and take the
zero temperature limit afterwards. The free Matsubara Green’s function is

G0(ν, ν, iωn) =
1

iωn − Eν
, (5.18)

where Eν is the energy of the state ν.
The Green’s function G(ν, ν ′, τ) propagates a single particle in a many-body system

from the state ν ′ to ν in the imaginary time τ . To find the explicit form of it, we will use
the quantum mechanical principle that the Hamiltonian is the generator of translations in
time. Since we have analytically continued our time variable into imaginary time, leaving
everything else unchanged, the Hamiltonian has become the generator of translations in
imaginary time. This propagation will now be explained in the language of Feynman
diagrams.

The particle starts out by propagating according to the non-interacting Green’s func-
tion for an infinitesimal imaginary time step. Then the Hamiltonian works on it, which
either lets it continue unchanged through H0, or lets it interact with another particle
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Σ = + +

+ + +

Figure 5.1: The self-energy consists of the sum of all irreducible diagrams with no external
legs.

through Hint. If it interacts with another particle, momentum is transfered from one
particle to the other. Then it continues for another infinitesimal time step, before the
Hamiltonian works on it again. After having done this for a lot of infinitesimal steps,
an amount τ of imaginary time has passed, and the propagation has finished. All the
other electrons are also transformed by the Hamiltonian after each time step, and interact
with each other. However, if they do not interact with our particular particle, its prop-
agation is not changed by them. This is why we, in Feynman diagram language, only
include connected diagrams. There is the restriction on this propagation that it has to
take the particle from ν ′ to ν. Furthermore it is a single-particle propagator, so after the
propagation, all the other particles should be left undisturbed. All momentum transfered
to them during the first steps of the propagation should thus be taken back before the
propagation has ended. All of these possible propagation paths are summed up, and the
result is expressed in G(ν, ν ′, τ). If Hint is small compared to H0, then the amplitude of
a path decreases exponentially fast with the number of times the particle has interacted
with Hint. Therefore it is typically only necessary to include the paths with the fewest
interactions. This propagation can be modelled using Feynman diagrams, as shown in
Fig. 5.1. Each diagram corresponds to one such propagation path. To get the full Green’s
function, all diagrams should be summed.

We will now describe which Feynman diagrams are allowed, and their interpretation.
The straight lines in the diagrams represent non-interacting Green’s functions, and the
wavy lines represent momentum transfer through the Coulomb interaction. Let us write
ν = {k, µ}, where k is the momentum and µ is the additional quantum numbers. When one
propagator for a state k′, µ′ ends at a vertex where a wavy line leads out the momentum
q, a new one with state kµ can only start from that vertex if µ and µ′ are not orthogonal
and k′ = k+q, so the diagram is multiplied by an amplitude 〈µ|µ′〉δk′,k+q. It can be shown
that the full Green’s function can be expressed using a self-energy Σ(ν, ν ′) [24, p. 236] by
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Dyson’s equation,

G = G0 + G0ΣG

=
(
I − G0Σ

)−1
G0. (5.19)

where the elements of G are 〈νi|G|νj〉 and so on. The self-energy is given as the sum of all
connected diagrams where the two external lines are removed, as shown in Fig. 5.1. From

Eq. (5.7), G0 is diagonal and, if Σ is also diagonal, Eq. (5.19) has the solution

G(ν, iωn) =
G0(ν, iωn)

1− G0(ν, iωn)Σ(ν, iωn)

=
1

iωn − Eν − Σ(ν, iωn)
. (5.20)

When iωn is replaced by ω + iη to get the original retarded Green’s function, comparing
with Eq. (5.12) shows that the energy of the quasiparticle is the frequency for which

G(ν, iωn) has a pole. In our case, however, Σ is not necessarily diagonal. The basis in
which H0 is diagonal is ν = {k, s, ζ}. If an incoming electron at a vertex is in the state
{k, s, ζ}, and a momentum q is removed by an interaction line, it is possible for a particle
in the state {k − q, s, ζ ′} to leave the vertex with an amplitude

〈k, s, ζ|k − q, s, ζ ′〉 = wk,k−q,s,ζζ′ . (5.21)

This is non-zero for ζ = −ζ ′ for all q 6= 0. Since Coulomb interactions conserve both spin
and momentum, and the propagation has to leave the surroundings in the same state as
before propagation, Σ must be diagonal both in spin and momentum space. There is no
conservation law for ζ, so Σ is a 2×2 matrix in ζ space. Inserting this result in Eq. (5.19)
gives

G(k, s, ζ, iωn) =
1

G0(k, s, ζ, iωn)−1 − Σks(ζ, ζ)− Σks(+,−)Σks(−,+)
G0(k,s,−ζ,iωn)−1−Σks(−ζ,−ζ)

. (5.22)

The effective self-energy of the quasiparticle is thus

Σeff
ks(ζ, ζ) = Σks(ζ, ζ) +

Σks(+,−)Σks(−,+)

G0(k, s,−ζ)−1 − Σks(−ζ,−ζ)
, (5.23)

where the Matsubara frequency index in the self-energies has been suppressed. This will
also be done for the propagators, so

G(k, s, ζ) ≡ G(k, s, ζ, iωn). (5.24)

For a state in the conduction band (ζ = 1), the quasiparticle corresponds to adding an
electron. In this case the energy it costs to add an electron is given by the pole of the
full Green’s function Eq. (5.20), using the effective self-energy. For a state in the valence
band, the quasiparticle excitation is a hole, whose energy is given as minus the frequency
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of the pole. Finding the exact self-energy amounts to calculating all connected diagrams,
which is an impossible task. However, if the Coulomb interaction is weak, the diagrams
of low order will have a larger contribution than higher order diagrams. This is the basis
of perturbation theory, and we will therefore start by calculating the diagrams of lowest
order. Let us, before going on to the explicit evaluation of the diagrams, state how a
Feynman diagram is read:

� Straight lines propagate a fermion in a state {ksζ, ikn}, and they give a factor
G0(ksζ, ikn).

� Wavy lines symbolize transfer of momentum q through Coulomb interactions, and
give a factor −V (q).

� Each vertex with an incoming electron in the state {k, s, ζ} and outgoing electron
in {k − q, s, ζ ′} gives a factor wk,k−q,s,ζζ′ .

� At each vertex both momentum and Matsubara frequency should be conserved.

� For each fermion loop, meaning a closed loop of straight lines, the diagram should
be multiplied by −1.

� To include all allowed paths, all ζ and Matsubara frequencies are summed over, and
internal momenta are integrated out. Each momentum integral is normalized by a
factor 1

2π , and each Matsubara sum by 1
β .

It will thus be necessary to perform sums over Matsubara frequencies, which can be done
using contour integration [24, sec. 11.4].

5.2 Fermi and Bose frequencies at zero temperature, and
why we do not care

In the next section we will perform the summation over Matsubara frequencies summation
for both Fermi and Bose frequencies. Fermi frequencies arise from the free propagators,
and Bose frequencies from the wavy interaction lines V (q). The Bose frequencies are given
by [24, chap. 11]

qn =
2nπ

β
, (5.25)

and the Fermi frequencies are

kn =
(2n+ 1)π

β
. (5.26)

When they are summed, they give

1

β

∑
iqn

g0(iqn) = −
∑
j

Res
z=zj

[g0(z)]nB(zj), (5.27)

1

β

∑
ikn

g0(ikn) =
∑
j

Res
z=zj

[g0(z)]nF (zj). (5.28)
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The Bose and Fermi functions are given as

nB(z) =
1

eβz − 1
, (5.29)

nF (z) =
1

eβz + 1
. (5.30)

It can be seen that

nB(z + iqn) = nB(z), (5.31)

nF (z + iqn) = nF (z), (5.32)

nB(z + ikn) = −nF (z), (5.33)

nF (z + ikn) = −nB(z). (5.34)

For zero temperature, i.e. β → ∞,

nF (z) = −nB(z). (5.35)

Therefore Eqs. (5.27) and (5.28) are exactly the same. In addition, from Eqs. (5.31)
and (5.34) it is seen evident that adding a Bose or Fermi frequency to the variable of a
Bose or Fermi function does not change the value of the function.

5.3 Hartree diagram

The Hartree diagram as seen in Fig. 5.2 is the simplest diagram. Since the incoming and
outgoing non-interacting propagator must have the same momentum, the interaction line
transfers zero momentum, so it contributes with a factor −V (0). The propagator in the
loop is G0(p, s

′, ζ). Since the propagator ends at its own beginning in the loop vertex, the
overlap is wp,p,s′,+ = 1. The lower vertex gives

wk,k,s,ζζ′ = (1 + ζζ ′)/2 = δζζ′ (5.36)

The fermion loop gives a factor −1. This means that

ΣHartree
ks (+,−) = ΣHartree

ks (−,+) = 0, (5.37)

ΣHartree
ks (ζ, ζ) =

1

β

∑
ipn

1

2π

∫
dp
∑
s′,ζ

V (0)G0(p, s
′, ζ ′, ipn)

=
1

β

∑
ipn

1

2π

∫
dp
∑
s′,ζ′

V (0)
1

ipn − Ep,s,ζ′
. (5.38)

From Eq. (4.1) it is seen that the energies in the lower band are the same as in the upper
band with opposite sign, so we write

Ep,s,ζ = ζξp,s. (5.39)
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k, s, ζ k, s, ζ

G0(p, s′, ζ ′)

−V (q)

Figure 5.2: The Hartree diagram.

Therefore

ΣHartree
ks (ζ, ζ) =

1

2π

∫
dp
∑
s′,ζ′

V (0)nF (ζ
′ξp,s′). (5.40)

At zero temperature the Fermi function is zero for negative ζ and one for positive ζ, so

ΣHartree
ks (ζ, ζ) =

1

2π

∫
dp
∑
s′

V (0)

=
∑
p,s′

V (0)

=
N

L
V (0). (5.41)

It is seen that it is independent of all three indeces k, s, ζ. This means that all states
are shifted upwards in energy by the same amount N

L V (0). However, it is impossible to
measure such a shift, since energies can only be measured compared to some external
reference system, so only energy differences between states of a system can be measured.
Since the Hartree term as an overall shift in energy thus has no physical significance, we
will neglect it.

5.4 Fock diagram

The Fock or exchange self-energy diagram is shown in figure Fig. 5.3, and is given by

ΣFock
ks (ζi, ζo) =

1

β

∫
dq

2π

∑
ζ,iqn

(−V (q))G0(k + q, s, ζ)wk,k+q,s,ζiζwk+q,k,s,ζζo . (5.42)
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k, s, ζi k, s, ζo
G0(k + q, s, ζi)

wk,k+q,s,ζiζ wk+q,k,s,ζζo

−V (q)

Figure 5.3: The Fock diagram.

The propagator is

G0(k + q, s, ζ) =
1

ikn + iqn − ζξk+q,s
(5.43)

⇒ 1

β

∑
ζ,iqn

G0(k + q, s, ζ) = nF (ζξk+q,s)

= δζ,−1, (5.44)

since all valence band states are filled and all conduction band states are empty. The
vertex overlaps are

wk,k+q,s,ζiζ =
1

2

(
1 + ζiζ

cs − ik√
k2 + c2s

cs + i(k + q)√
(k + q)2 + c2s

)
=

1

2
(1 + ζiζa), (5.45)

wk+q,k,s,ζζo =
1

2

(
1 + ζoζ

cs − i(k + q)√
(k + q)2 + c2s

cs + ik√
k2 + c2s

)
=

1

2
(1 + ζoζa

∗), (5.46)

where

a ≡ cs − ik√
k2 + c2s

cs + i(k + q)√
(k + q)2 + c2s

(5.47)

has been introduced for clarity. Using |a|2 = 1 and ζ = −1 from Eq. (5.44)

wk,k+q,s,−ζiwk+q,k,s,−ζo =
1

4
(1 + ζiζo − (ζia+ ζoa

∗)). (5.48)

It is thus seen that for ζi = ζo,

wk,k+q,s,−ζiwk+q,k,s,−ζi = |wk,k+q,s,−ζi |
2

=
1

2
(1− ζiRe(a))

=
1

2

(
1− ζi

c2s + (k + q)k√
(k + q)2 + c2s

√
k2 + c2s

)
. (5.49)



5.4. FOCK DIAGRAM 49

Inserting this into Eq. (5.42) and using V (q) as defined in Eq. (4.35), yields

ΣFock
ks (ζ, ζ) =− V0

2π

∫ qc

−qc
dq

1

2

(
1− ζ

c2s + (k + q)k√
(k + q)2 + c2s

√
k2 + c2s

)
. (5.50)

As ΣFock
ks (ζ, ζ) is evidently symmetric in k, so we will assume k ≥ 0 in the following. Using

the notation ∫ b

a
dxf(x) +

∫ d

c
dxf(x) =

(∫ b

a
dx+

∫ d

c
dx

)
f(x), (5.51)

we obtain

ΣFock
ks (ζ, ζ) =− gvF

∫ qc+k

−qc+k
dq

1

2

(
1− ζ

c2s + qk√
q2 + c2s

√
k2 + c2s

)
(5.52)

=− gvF
1

2

((
2

∫ qc−k

0
dq +

∫ qc+k

qc−k
dq

)(
1− ζ

c2s√
q2 + c2s

√
k2 + c2s

)

− ζ

∫ qc+k

qc−k
dq

qk√
q2 + c2s

√
k2 + c2s

)
. (5.53)

The integrals are solved using∫
dx

1√
x2 + a2

= ln
(√

x2 + a2 + x
)

(5.54)∫
dx

x√
x2 + a2

=
√
x2 + a2, (5.55)

so

ΣFock
ks (ζ, ζ) =− gvF

1

2

(
2qc −

ζ√
k2 + c2s(

c2s ln
(√

c2s + q2 + q
)(

2|qc−k0 + |qc+kqc−k

)
+ k
√
q2 + c2s|

qc+k
qc−k

))

=− gvF
1

2

(
2qc −

ζ√
k2 + c2s(

c2s ln

(
(
√
c2s + (qc − k)2 + qc − k)(

√
c2s + (qc + k)2 + qc + k)

c2s

)

+ k
(√

(qc + k)2 + c2s −
√

(qc − k)2 + c2s

)))
. (5.56)
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The constant term −gvF qc is independent of k, s, ζ. It therefore just gives a constant shift,
so it will be neglected, as the Hartree term before. For ζi = −ζo,

wk,k+q,s,ζiwk+q,k,s,−ζi = −1

2
iζiIm(a)

= −1

2
iζi

cs√
k2 + c2s

q√
(k2 + q2) + c2s

. (5.57)

Therefore

ΣFock
ks (ζ,−ζ) = g

1

2
iζ

c√
c2s + k2

∫ qc

−qc

q√
(k + q)2 + c2s

= gvF
1

2
iζ

c√
c2s + k2

∫ qc+k

−qc+k

q − k√
q2 + c2s

= gvF
1

2
iζ

c√
c2s + k2

(√
(qc + k)2 + c2s −

√
(qc − k)2 + c2s

−k ln


(√

c2s + (qc − k)2 + qc − k
)(√

c2s + (qc + k)2 + qc + k
)

c2s

 .

(5.58)

It is seen that ΣFock
ks (ζ,−ζ) is zero for k = 0, so the effective self-energy Eq. (5.23) at k = 0

is

Σeff
0s(ζ, ζ) = Σ0,s(ζ, ζ). (5.59)

Σ0,s(ζ, ζ) reduces to

Σ0,s(ζ, ζ) = ζgvF cs ln

(√
c2s + q2c + qc

cs

)

≈ ζgvF cs ln

(
2qc
cs

)
, (5.60)

where the last approximation is valid since qc ≈ 100cs, as can be seen from comparing
Eqs. (4.48) and (4.50). From Eq. (5.60) we see that the self-energy of an electron is
positive, and the self-energy of a hole is negative. This means that the gap gets larger. In
graphene it was found [28] that the Fock diagram gives rise to a self-energy given by

Σgraphene = ζgvF |k| ln
(

Λ

|k|

)
, (5.61)

where Λ is a momentum cut-off of the order 1/a, the length of the lattice vector in
graphene. Our theory shows that exactly the same happens due to long range interactions
in nearly metallic nanotubes. The graphene Fock self-energy has been used to predict
the gap renormalization in semiconducting nanotubes [3]. Using the graphene result is
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equivalent to including only short range interactions, since a nanotube is only similar to
graphene on length scales smaller than 1/R, where curvature effects are negligible. It is
promising that our theory coheres with previous calculations of graphene and semicon-
ducting nanotube gaps. The gap renormalization of nearly metallic nanotubes due to
interactions has also been examined by Levitov and Tsvelik [26]. They started from the
Luttinger liquid theory of interacting metallic tubes, and added the gap as a perturbing
magnetic field. From this approach, which is completely different from ours, they also
found that the gap is enhanced by interactions. However, they found

ΣLevitov ∝ cs

(
qc
cs

)α
, (5.62)

where α in the limit of strong interactions is equal to 4/5. Even though it superficially looks
quite different from our theory, it actually has the same qualitative features. ΣLevitov(cs)
and Σ0,s(cs) both have negative curvature, go to zero for small cs, are almost linear for
large cs, and the derivative diverges for small cs. It would be interesting to examine which
physical assumptions lead to the different predictions of the two theories.

If we insert estimated parameters from the end of Chapter 4,

Σ0,s(ζ, ζ) = 0.46ζvF cs ln

(
2 · 1000

10

)
= 2.44ζvF cs. (5.63)

The gap thus increases by more than a factor of 3 due to the Fock diagram. Let us now
examine how the Fermi velocity renormalizes. For cs � k < qc,

Σks(ζ, ζ) = −gvF
1

2

(
−ζ
k

(
c2s ln

(
2(qc − k) · 2(qc + k)

c2s

)
+ k · (qc + k − (qc − k))

))
= ζgvFk. (5.64)

The off-diagonal term is, using Eq. (5.58),

Σks(ζ,−ζ) =
1

2
iζ
c

k

(
−k ln

(
2(qc − k) · 2(qc + k)

c2s

)
+ 2k

)
. (5.65)

Therefore

Σks(+,−)Σks(−,+)

G0(ks− ζ)−1 − Σks(−ζ,−ζ)
∼ 1

k
, (5.66)

which is negligible for large k. The Fermi velocity thus increases by around a factor 1.5
due to interactions.

The self-energy has now been determined to first order in g. In the next section, we will
compare this analytical result with a numeric evaluation of the Fock diagram, to evaluate
the quality of the approximation Eq. (4.35).
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5.5 Test of approximation of V (q)

In Section 4.1, the Coulomb interaction V (q) was approximated to be constant up to a
high momentum cut-off at qc = 1/R, given by Eq. (4.35). Having now calculated the Fock
diagram, it is possible to check this approximation. A less crude approximation is given
by Eq. (4.34), which is plotted in Fig. 5.4.
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/
(4
π
ε 0
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Interaction dependence on q

V (q) = 2/5.3K0(
√
2q/qc)

Constant approximation V (q) = step function

Figure 5.4: The red curve is the function V (q) = e2

4πε0
2K0(

√
2q/qc), which is the interaction

given by Eq. (4.34). The green curve is the constant potential V (q) = V0 with a cut-off at
q = qc = 1/R, defined in Eq. (4.35).

From the figure it is not convincing that this function can be reasonably approximated
constant function. However, having found the explicit form of the Fock diagram, we may
now numerically calculate how well this approximation holds. For k = 0, the approximated
Fock self-energy is given by Eq. (5.60). Having this result, it is possible to check the validity
of the approximation in Eq. (4.35). If the interaction in the form of Eq. (4.34) is used, we
obtain

Σ0,s(ζ, ζ) = ζ
g

gbare

e2

4πε0
vF cs

∫
dq2K0(

√
2q/qc)

1

vF
√
q2 + c2s

. (5.67)

This integral can be evaluated numerically, and the result is shown in Fig. 5.5. The value
of V0 has been determined such that the Bessel function self-energy is the same as the step
function self-energy for qc = 100cs. Even though the approximation does not fit very well
to the numerical calculation, it still has the same qualitative features, being negatively
curved and with a decreasing curvature as a function of qc. In Fig. 5.4 it is seen that the
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Figure 5.5: The red points are a numerical evaluation of Eq. (5.67). The green curve is
Eq. (5.60).

constant interaction is quite different from the Bessel function interaction. The value of
the constant interaction seems high compared to the Bessel function. This is because the
Fock self-energy is dominated by low momentum terms, so they are weighted higher in
the calculation. Given the discrepancy presented in Figs. 5.4 and 5.5, the precision of the
interaction strength is quite low, so we estimate g = 0.45± 0.15.

5.6 Mean field theory

A way to include higher order perturbation theory is by calculating the diagram shown
in Fig. 5.6. The double line corresponds to the renormalized propagator, so this diagram
is actually a sum of all diagrams with nested Fock diagrams. This is equivalent to using
self-consistent mean field theory in the Hartree-Fock approximation, [24, sec. 4.3]. The
unperturbed Hamiltonian is, from Eq. (4.10),

H0 =
∑
k,s

c†k,svF (csσ1 + kσ2)ck,s

=
∑
k,s

c†k,s,1vF (cs − ik)ck,s,2 + c†k,s,2vF (cs + ik)ck,s,1 (5.68)



54 CHAPTER 5. FIRST ORDER PERTURBATION THEORY

= + +

Figure 5.6: Solving the Fock mean-field equation self-consistently corresponds to calculat-
ing this diagram.

where ck,s is a two-dimensional column vector in AB space with elements ck,s,1 and ck,s,2.
The interaction Hamiltonian is

Hint =
1

L

∑
k1,k2,q,s,X,X′

V (q)c†k1+q,Xc
†
k2−q,X′ck2,X′ck1,X . (5.69)

Here X = 1 represents an A atom and X = −1 represents a B atom. In the mean field
approximation, we define

Hint = HHartree +HFock. (5.70)

When the energies are not found self-consistently, HHartree has the same band structure as
was found by taking only the Hartree diagram into account in the previous section, and
the same for Fock, hence the names. When they are solved self-consistently, the energies
are equivalent to those found by calculating the double-lined diagram seen in Fig. 5.6.

As seen in Section 5.3, the Hartree term shifts the entire band structure, so it will be
neglected. The Fock term is given by

HFock = − 1

2L

∑
k1,k2,q,s,X,X′

V (q)(〈c†k1+q,s,Xck2,s,X′〉c†k2−q,s,X′ck1,s,X+

〈c†k2−q,s,X′ , ck1,s,X〉c
†
k1+q,s,X

ck2,s,X′ − 〈c†k1+q,s,Xck2,s,X′〉〈c†k2−q,s,X′ , ck1,s,X〉). (5.71)

The last term will only shift the band structure in the same way as the Hartree term, so it
is not necessary to solve for it self-consistently. Coulomb interactions conserve momentum,
which put the constraint

〈c†k1+q,s,Xck2,s,X′〉 = δk1+q,k2〈c
†
k1+q,k1+q

〉. (5.72)

Therefore

HFock =− 1

2L

∑
k1,k2,q,s,X,X′

V (q)
(
〈c†k1+q,s,Xck2,s,X′〉c†k2−q,s,X′ck1,s,X (5.73)

+〈c†k2−q,s,X′ , ck1,s,X〉c
†
k1+q,s,X

ck2,s,X′

)
(5.74)

=− 1

2L

∑
k,q,s,X,X′

V (q)
(
〈c†k+q,s,Xck+q,s,X′〉c†k,s,X′ck,s,X (5.75)

+〈c†k−q,s,X′ , ck−q,s,X〉c†k,s,Xck,s,X′

)
, (5.76)
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where k1+q and k2 have been replaced by k, since there was only one momentum variable
in each term. V (q) is symmetric in q, so q can be replaced by −q in the second term, and
X and X ′ are summation indeces which can be interchanged. Therefore

HFock = − 1

L

∑
k,q,s,X,X′

V (q)〈c†k+q,s,Xck+q,s,X′〉c†k,s,X′ck,s,X (5.77)

=
1

L

∑
k,s,X,X′

(
−
∑
q

V (q)〈c†k+q,s,Xck+q,s,X′〉

)
c†k,s,X′ck,s,X (5.78)

=
1

L

∑
k,s,X,X′

Fk,s,X′Xc
†
k,s,X′ck,s,X , (5.79)

where

Fk,s,X′a = − 1

L

∑
q

V (q)〈c†k+q,s,Xck+q,s,X′〉. (5.80)

If Fk,s,X′X is viewed as the (X ′, X)’th element of the matrix F k,s, the full Hamiltonian
can be written

H =
∑
k,s

c†k,s

(
vF csσ1 + vFkσ2 + F k,s

)
ck,s. (5.81)

F k,s depends on the eigenstates of the Hamiltonian. Solving the Hamiltonian self-consistently

means that the eigenstates of the full Hamiltonian are used to determine F k,s. F can be
expanded as

F k,s = Fk,s,0σ0 + Fk,s,1σ1 + Fk,s,2σ2 + Fk,s,3σ3. (5.82)

We will start by calculating F k,s to first order, meaning non-self-consistently. This will
prove that this is indeed equivalent to the self-energy of the Fock diagram, and at the
same time pave the way for the self-consistent calculation.

Since only the lower bands are occupied, the averages are given by

〈c†k+q,s,X′ck+q,s,X〉 = χ∗
k,s,−,X′χk,s,−,X , (5.83)

where χk,s,− is the spinor in AB space quantifying to what extent a state in the lower
band is a superposition of A and B states, as defined in Eq. (4.7).

5.6.1 Shift term, F0

The expression for F0 is

Fk,s,0 =
Fk,s,11 + Fk,s,22

2
= − 1

2L

∑
q

V (q)
(
〈c†k+q,s,1ck+q,s,1〉+ 〈c†k+q,s,2ck+q,s,2〉

)
. (5.84)
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From Eqs. (5.83) and (4.7) follows

〈c†k+q,s,1ck+q,s,1〉+ 〈c†k+q,s,2ck+q,s,2〉 = 1, (5.85)

and thus

Fk,s,0 = − 1

4L

∑
q

V (q)(1 + 1) = − 1

2L

∑
q

V (q) = −V0qc
2π

= −gvF qc. (5.86)

Fk,s,0 is multiplied by σ0 in the Hamiltonian, so it just introduces a momentum and spin
independent constant shift of the band structure. In Eq. (5.56), the same constant shift
was found, so this result is as expected.

5.6.2 Orthogonal term, F3

It is seen that

F3 =
F11 − F22

2
= 0, (5.87)

since the original Hamiltonian is off-diagonal in AB space, so nothing breaks AB symme-
try.

5.6.3 Gap term F1

The σ1 term is given by

Fk,s,1 =
Fk,s,21 + Fk,s,12

2

= − 1

2L

∑
q

V (q)
(
〈c†k+q,s,1ck+q,s,2〉+ 〈c†k+q,s,2ck+q,s,1〉

)
. (5.88)

From Eqs. (4.7) and (5.83) follows that

Fk,s,1 = − 1

2L

∑
q

V (q)
1

2

−(cs + i(k + q))− (cs − i(k + q))√
c2s + (k + q)2

=
1

2L

∑
q

V (q)
cs√

c2s + (k + q)2

=
1

2

V0
2π

∫ qc

−qc
dq

cs√
(k + q)2 + c2s

=
1

2
gvF

∫ qc+k

−qc+k
dq

cs√
q2 + c2s

=
1

2
gvF

(
2

∫ qc−k

0
dq

cs√
q2 + c2s

+

∫ qc+k

qc−k
dq

cs√
q2 + c2s

)
. (5.89)
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The result of this integral is given by Eq. (5.54), so

Fk,s,1 =
1

2
gvF

(
2cs ln

(√
(qc − k)2 + c2s + qc − k

cs

)

+ cs ln

(√
(qc + k)2 + c2s + qc + k√
(qc − k)2 + c2s + qc − k

))

=
1

2
gvF cs ln


(√

(qc − k)2 + c2s + qc − k
)(√

(qc + k)2 + c2s + qc + k
)

c2s

 . (5.90)

For qc � k, qc � cs this reduces to

Fk,s,1 =gvF cs ln

(
2qc
cs

)
, (5.91)

identical to Eq. (5.60).

5.6.4 Velocity term, F2

The last term is

Fk,s,2 =
Fk,s,21 − Fk,s,12

2i

= − 1

2i

1

L

∑
q

V (q)
(
〈c†k+q,s,2ck+q,s,1〉 − 〈c†k+q,s,1ck+q,s,2〉

)
= − 1

2i

1

L

∑
q

V (q)
1

2

(
−(cs + i(k + q)) + (cs − i(k + q))√

c2s + (k + q)2

)

=
1

2

1

L

∑
q

V (q)

(
k + q√

c2s + (k + q)2

)

=
1

2
gvF

∫ qc+k

−qc+k
dq

q√
q2 + c2s

. (5.92)

Using Eq. (5.55), this gives

Fk,s,2 =
1

2
gvF

(√
(qc + k)2 + c2s −

√
(qc − k)2 + c2s

)
. (5.93)

Expanding to linear order in k and cs,

Fk,s,2 = gvFk, (5.94)

as was also found in Eq. (5.64).
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5.7 Self-consistent solution

In the previous section, F k,s was found using H0 from Eq. (5.68). To find a self-consistent

value of F k,s, one should use H given by Eq. (5.81) to calculate the averages. This gives
four integral equations of the four functions Fk,s,0, Fk,s,1, Fk,s,2, Fk,s,3, which do not have
a general solution. However, they can be solved using a few assumptions and approxi-
mations. We notice that the constant shift Fk,s,0 is insignificant, so it will be neglected.
That leaves three equations of three functions, instead of four. It is assumed that the true
self-consistent solution can be found iteratively. This is done by inserting the non-self-
consistent values of Fk,s,1, Fk,s,2, Fk,s,3 from Section 5.6 in H, using this H to find some
new values of Fk,s,1, Fk,s,2, Fk,s,3, reinserting them into H and iterating this process until
convergence. It should be noted that in some physical systems, spontaneous symmetry
breaking [24, sec. 4.4-4.5] occurs, and thus mean field solutions cannot be found itera-
tively. However, this is not expected in this case, where the quasiparticles are continuous
deformations in the interaction strength of free electrons. We are now ready to calculate
the self-consistent mean field value of the parameters. Fk,s,2 in Eq. (5.94) has the same
form as the σ2 term of H0, except that vF is replaced by (1 + g)vF . Fk,s,1 in Eq. (5.91)
is independent of k so it is just a rescaling of the gap, with no qualitative change. Fk,s,3
was found to be zero independently of vF and cs. Since Fk,s,1 and Fk,s,2 do not change
the qualitative behaviour of the Hamiltonian, the iterative process can never generate a
non-zero Fk,s,3 term. Therefore Fk,s,3 is assumed to be zero in the self-consistent solution.
Similarly, Fk,s,2 is independent of the gap, so it can be solved independently of Fk,s,1.
Fk,s,2 changes the Hamiltonian in a way equivalent to renormalizing the Fermi velocity, so
we define ṽF as

vFk + Fk,s,2 = ṽFk. (5.95)

Using the full Hamiltonian Eq. (5.81) to calculate Fk,s,2, we should replace vF by ṽF in
Eq. (5.94). In principle gbare depends on vF , but we assume that long range interactions
do not affect short range behaviour. Therefore

Fk,s,2 =
V0
2π
k. (5.96)

Since it is independent of vF , the first order mean field result is identical to the self-
consistent result, so

ṽF =
vF

1− g
. (5.97)

The renormalized Fermi velocity has to be incorporated in H before we can calculate the
self-consistent value of cs. The Hamiltonian has now become

H =
∑
k,s

c†k,s (vF csσ1 + ṽFkσ2 + Fk,s,1) ck,s. (5.98)
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It is not exactly in the same form as the Eq. (5.81) because the Fermi velocities vF and
ṽF in the two terms differ. If we introduce c′s =

vF
ṽF
cs, we find that

H =
∑
k,s

c†k,s
(
ṽF c

′
sσ1 + ṽFkσ2 + Fk,s,1

)
ck,s. (5.99)

With this definition,

Fk,s,1 =gṽF cs ln

(
2qc
cs

)
. (5.100)

To find the renormalized gap, a self-consistency equation equivalent to Eq. (5.95) is used,

vF cs + gvF c̃s ln

(
2qc
c̃s

)
= vF c̃s. (5.101)

This equation converges for

g ln

(
2qc
c̃s

)
< 1. (5.102)

As g ln
(
2qc
c̃s

)
approaches 1, it diverges, so mean field theory breaks down. First we will

however solve the mean field problem assuming that g ln
(
2qc
c̃s

)
< 1. By renaming

c̃s = (1 + β)cs (5.103)

and assuming small β, Eq. (5.101) reduces to

1 + g(1 + β) ln

(
2qc

(1 + β)cs

)
= 1 + β

⇒ g(1 + β)

(
ln

(
2qc
cs

)
− β

)
= β

⇒ g ln

(
2qc
cs

)
− gβ + gβ ln

(
2qc
cs

)
= β

⇒ β =
g ln

(
2qc
cs

)
1 + g

(
1− ln

(
2qc
cs

)) . (5.104)

The gap is thus changed from vF cs to

vF c̃s = vF cs

1 +
g ln

(
2qc
cs

)
1 + g

(
1− ln

(
2qc
cs

))
 . (5.105)

Since

ln

(
2qc
cs

)
> 1, (5.106)
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the gap grows more than in the non-self-consistent case Eq. (5.91).
In Eq. (5.63) it was shown that for tubes with no dielectric screening, i.e. suspended

tubes, g ln
(
2qc
c′s

)
< 1 is not satisfied, so the mean field calculation breaks down. However,

screening can contribute by as much as a factor 10 for the right substrate, so the regime
where Eq. (5.105) is valid is experimentally realizable. If Eq. (5.102) is not satisfied, mean
field theory is not valid. It is seen that this happens if g is to large, i.e. interactions
are strong. For large g perturbation theory in general breaks down, because higher or-
der diagrams contribute more than lower order diagrams, leading to a divergent sum of
diagrams.



Chapter 6

Higher order Coulomb interactions

In the previous chapter it was shown that mean field calculations break down due to
the large interaction strength. Below we will show that higher order diagrams, especially
those entering the random phase approximation, screen the interaction. This reduces the
interaction strength, such that the perturbation series rapidly converges.

6.1 The pair bubble

As for the Fock diagram, the pair bubble self-energy is a two times two matrix. It is given
by

Σpb
ks (ζi, ζo) =− 1

β2

∫
dq

2π

∫
dp

2π

∑
s′

∑
ζ,iqn,ζ′,ipn,ζ′′

(−V (q))2G0(k + q, s, ζ)

G0(p, s
′, ζ ′)G0(p− q, s′, ζ ′′)wk,k+q,s,ζiζwk+q,k,s,ζζo

∣∣wp−q,p,s′,ζ′ζ′′∣∣2
=−

(
V0
2π

)2 ∫ qc

−qc
dq

∫
dp
∑
s′

∑
ζ,ζ′,ζ′′

wk,k+q,s,ζiζwk+q,k,s,ζζo ∣∣wp−q,p,s′,ζ′ζ′′∣∣2
1

β2

∑
iqn,ipn

G0(k + q, s, ζ)G0(p, s
′, ζ ′)G0(p− q, s′, ζ ′′)

 . (6.1)

It can be seen in diagram form in Fig. 6.1.

We will start by evaluating the Matsubara sums. The sum of the free frequency in the

61
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k, s, ζi k, s, ζo
G0(k + q, s, ζ)

G0(p− q, s′, ζ ′′)

G0(p, s′, ζ ′)

wk,k+q,s,ζiζ wk+q,k,s,ζζo

wp,p−q,s′,ζ′ζ′′ wp−q,p,s′,ζ′′ζ′

−V (q) −V (q)

Figure 6.1: The pair bubble diagram.

bubble is

1

β

∑
ipn

G0(p, s
′, ζ ′)G0(p− q, s′, ζ ′′) =

1

β

∑
ipn

1

ipn − ζ ′ξp,s′

1

ipn − iqn − ζ ′′ξp−q,s′

=
1

β

∑
ipn

1

ipn − ζ ′ξp,s′

1

ipn − iqn − ζ ′′ξp−q,s′

=
nF (ζ

′′ξp−q,s′)

iqn + ζ ′′ξp−q,s′ − ζ ′ξp,s′
+

nF (ζ
′ξp,s′)

ζ ′ξp,s′ − iqn − ζ ′′ξp−q,s′

=
nF (ζ

′′ξp−q,s′)− nF (ζ
′ξp,s′)

iqn + ζ ′′ξp−q,s′ − ζ ′ξp,s′
. (6.2)

The second Matsubara sum can now be evaluated,

1

β2

∑
iqn,ipn

G0(k + q, s, ζ)G0(p, s
′, ζ ′)G0(p− q, s′, ζ ′′)

=
∑
iqn

1

iqn + ikn − ζξq+k,s

nF (ζ
′′ξp−q,s′)− nF (ζ

′ξp,s′)

iqn + ζ ′′ξp−q,s′ − ζ ′ξp, s′

= (nF (ζ
′′ξp−q,s′)− nF (ζ

′ξp,s′))
nF (ζ

′ξp,s′ − ζ ′′ξp−q,s′)− nF (ζξq+k,s)

ζ ′ξp,s′ − ζ ′′ξp−q,s′ − ζξq+k,s + ikn
. (6.3)

As before, nF is one when its argument is negative and zero when it is positive. Therefore
the terms are zero unless ζ ′ = −ζ ′′ and ζ = ζ ′′. This gives

Σpb
ks (ζi, ζo) =−

(
V0
2π

)2 ∫ qc

−qc
dq

∫
dp
∑
s′

∑
ζ,ζ′,ζ′′

wk,k+q,s,ζiζwk+q,k,s,ζζo
∣∣wp−q,p,s′,ζ′ζ′′∣∣2

(nF (ζ
′′ξp−q,s′)− nF (ζ

′ξp,s′))
nF (ζ

′ξp,s′ − ζ ′′ξp−q,s′)− nF (ζξq+k,s)

ζ ′ξp,s′ − ζ ′′ξp−q,s′ − ζξq+k,s + ikn

=

(
V0
2π

)2 ∫ qc

−qc
dq

∫
dp
∑
s′

(∣∣wp−q,p,s′,−∣∣2(
wk,k+q,s,−ζiw

∗
k,k+q,s,−ζo

ξp−q,s′ + ξp,s′ + ξq+k,s + ikn
+

wk,k+q,s,ζiw
∗
k,k+q,s,ζo

−ξp−q,s′ − ξp,s′ − ξq+k,s + ikn

))
. (6.4)
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We rotate back to real frequencies by substituting ikn with ω + iη. The frequency ω
corresponds to the energy of the state, and it is positive for states in the upper band.

Σpb
ks (ζi, ζo) is odd under the transformation ω → −ω, ζi → −ζi, ζo → −ζo, so the

electron and hole state energies are shifted by the same amount in opposite directions.
This means that if the electron energy is decreased, the hole energy is also decreased, so
the gap gets smaller. It is thus not necessary to evaluate Eq. (6.4) for both electrons and
holes. We will now analyze the self-energy for the state k = 0, to examine how the gap is
renormalized. For ζi = −ζo, the overlaps in the numerator are

wq,0,s,+w
∗
q,0,s,− =

1

4

(
1 +

cs − iq√
c2s + q2

)(
1− cs + iq√

c2s + q2

)
=

−2iq√
c2s + q2

. (6.5)

Since the rest of the integrand is an even function of q,

Σpb
0,s(+,−) = Σpb

0,s(−,+) = 0. (6.6)

For Σpb
0,s(+,+), Eq. (6.4) reduces to

Σpb
0,s(+,+) =

(
V0
2π

)2 ∫ qc

−qc
dq

∫
dp
∑
s′

∣∣wp−q,p,s′,−∣∣2(
|wq,0,s,−|2

ξp−q,s′ + ξp,s′ + ξq,s + ṽF c̃s
+

|wq,0,s,+|2

−ξp−q,s′ − ξp,s′ − ξq,s + ṽF c̃s

)
. (6.7)

Using

∣∣wp−q,p,s′,−∣∣2 > 0, (6.8)

|wq,0,s,+|2 > |wq,0,s,−|2 > 0, (6.9)

ξp−q,s′ + ξp,s′ + ξq,s > ṽF c̃s, (6.10)

it is seen that Σpb
0,s(+,+), is negative. This is also what was expected, since second order

perturbation theory is known to lower the ground state of a quantum mechanical system
[10, Eq. (6.15)].
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6.1.1 Approximate evaluation

Eq. (6.4) can not be evaluated analytically, but for k = 0 it is possible to make a reasonable
approximation. Let us start with the pair bubble,

Π0(q, iqn) ≡−
∫

dp

2π

∑
s′

∑
ζ′,ζ′′

∣∣wp−q,p,s′,ζ′ζ′′∣∣2 1

β

∑
ipn

G0(p, s
′, ζ ′)G0(p− q, s′, ζ ′′)

=−
∫

dp

2π

∑
s′

∑
ζ′,ζ′′

∣∣wp−q,p,s′,ζ′ζ′′∣∣2 nF (ζ ′′ξp−q,s′)− nF (ζ
′ξp,s′)

iqn + ζ ′′ξp−q,s′ − ζ ′ξp,s′

=−
∫

dp

2π

∑
s′

∑
ζ′

∣∣wp−q,p,s′,−∣∣2 ζ ′

iqn − ζ ′(ξp−q,s′ + ξp,s′)

=

∫
dp

2π

∑
s′

∣∣wp−q,p,s′,−∣∣2( 1

ξp−q,s′ + ξp,s′ − iqn
+

1

ξp−q,s′ + ξp,s′ + iqn

)
=−

∫
dp

2π

∑
s′

∣∣wp−q,p,s′,−∣∣2 2(ξp−q,s′ + ξp,s′)

(iqn − ξp−q,s′ − ξp,s′)(iqn + ξp−q,s′ + ξp,s′)

=

∫
dp

2π

∑
s′

∣∣wp−q,p,s′,−∣∣2 2(ξp−q,s′ + ξp,s′)

(ξp−q,s′ + ξp,s′)2 − (iqn)2
. (6.11)

From Eqs. (4.50) and (4.51) it is seen that the difference between the gap of spin up and
down electrons is two orders of magnitude smaller than the size of the gap. Therefore, in
the following, we will approximate cs = c−s. In this approximation the sum over spin just
counts the number of cones, Nf , which is equal to 4. In Eq. (6.4) we see that the integrand
is symmetric in q, so it is only necessary to analyze it for positive q. The overlap factor
is, from Eq. (4.18),

|wp−q,p,s′,−|2 =

∣∣∣∣∣∣12
1− cs′ − i(p− q)√

c2s′ + (p− q)2

cs′ + ip√
c2s′ + p2

∣∣∣∣∣∣
2

=
1

2

1−
c2s′ + (p− q)p√

c2s′ + (p− q)2
√
c2s′ + p2

 . (6.12)

Since most of the integration region has momenta much larger than cs, and no divergences
are expected for small momenta, to first order in cs′ the overlap is

|wp−q,p,s′,−|2 ≈
1

2

(
1− (p− q)p

|(p− q)p|

)
≈

{
1 for p ∈ [0, q],

0 otherwise
. (6.13)

Furthermore, for q � cs, we find |wp−q,p,s′,−|2 � 1, so we approximate |wp−q,p,s′,−|2 = 0
for q < cs′ . For large q and p we may approximate the energy denominator of Eq. (6.4)

ξp−q,s′ + ξp,s′ ≈ vF (|p− q|+ |p|) = vF q. (6.14)
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Therefore

Π0(q, iqn) ≈
∫ q

0

dp

2π
Nf

2vF q

v2F q
2 − (iqn)2

=
1

2π
Nf

2vF q
2

v2F q
2 − (iqn)2

. (6.15)

Using this, we find for the self-energy

Σpb
0,s(+,+) =V 2

0

∫ qc

−qc

dq

2π

1

β

∑
iqn

∑
ζ

Π0(q, iqn) |w0,q,s,ζ |2 G0(q, s, ζ)

≈− g2v2F 2

∫ qc

cs

dq
1

β

∑
iqn

∑
ζ

(
Nf

2vF q
2

(iqn + vF q)(iqn − vF q)

|w0,q,s,ζ |2
1

iqn + ikn − ζξq,s

)
=− g2vF

∫ qc

cs

dq4v2F q
2
∑
ζ

Nf |w0,q,s,ζ |2
(

1

−2vF q(−vF q + ikn − ζξq,s)

nF (ζξq,s)

(−ikn + ζξq,s + vF q)(−ikn + ζξq,s − vF q)

)

=− g2vF

∫ qc

cs

dq4v2F q
2Nf

∑
ζ

|w0,q,s,ζ |2

−2vF q(−vF q + ikn − ζξq,s)

|w0,q,s,−|2

(−ikn − ξq,s + vF q)(−ikn − ξq,s − vF q)

 . (6.16)

Approximating the energies according to Eq. (6.14) yields

Σpb
0,s(+,+) ≈− g2vF

∫ qc

cs

dq4v2F q
2Nf(

|w0,q,s,−|2

ikn(ikn + 2vF q)
+

|w0,q,s,+|2

2vF q(2vF q − ikn)
+

|w0,q,s,−|2

−2vF q(ikn)

)
. (6.17)

Analyzing the remaining overlap factors similar Eq. (6.12), we obtain

|w0,q,s,ζ |2 =

∣∣∣∣∣12
(
1 + ζ

cs + iq√
c2s + q2

)∣∣∣∣∣
2

≈1

2

(
1 + ζ

cs
q

)
. (6.18)
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The self-energy thus reduces to

Σpb
0,s(+,+) ≈− g2vF

∫ qc

cs

dqvF qNf(
2vF q

ikn(ikn + 2vF q)
+

1

2vF q − ikn
+

1

−ikn

− 2vF cs
ikn(ikn + 2vF q)

+
cs

q(2vF q − ikn)
+

cs
q(ikn)

)
=− g2vF

∫ qc

cs

dqvF qNf(
− 1

ikn + 2vF q
+

1

2vF q − ikn

cs
q(ikn + 2vF q)

+
cs

q(2vF q − ikn)

)
=− g2vF

∫ qc

cs

dq2vF qNf(
ikn

(2vF q)2 − (ikn)2
+

2vF cs
(2vF q)2 − (ikn)2

)
=− g2(ikn + 2vF cs)

1

2
Nf

∫ 2vF qc

2vF cs

d(2vF q)
2vF q

(2vF q)2 − (ikn)2
. (6.19)

Rotating back to real frequencies ikn → ω and using∫
dq

q

q2 + c2
=

1

2
ln
(
q2 + c2

)
, (6.20)

this becomes

Σpb
0,s(+,+) ≈− 1

4
g2Nf (ω + 2vF cs) ln

(
4v2F q

2
c − ω2

4v2F c
2
s − ω2

)
. (6.21)

The frequency ω should be found self-consistently via

ω =vF cs +ΣFock +Σpb

⇒ ω =
1 + g ln (2qc/cs)− g2Nf ln

(√
(4v2F q

2
c − ω2)/(4v2F c

2
s − ω2)

)
1 + 1/2g2Nf ln

(√
(4v2F q

2
c − ω2)/(4v2F c

2
s − ω2)

) vF cs. (6.22)

We see that for gNf > 1 and sufficiently small cs, ω is negative. This is unphysical, since
at ω = 0, the gap has closed, so our theory breaks down. From Eq. (4.47) gNf = 1.84,
so self-consistent perturbation theory breaks down, as was found in Section 5.7. However,
to check the validity of our approximations, we will assume gNf < 1, and compare this
result to numerical calculations. Using ω = vF cs, we get

Σpb
0,s(+,+) ≈− g2vF cs

3

2
Nf ln

(√
4

3

qc
cs

)
. (6.23)
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Figure 6.2: The red curve is a numerical calculation of Σpb
0,s(+,+)/(gΣFock

0,s (+,+))
using Eq. (6.7). The green line is the analytically calculated value of

Σpb
0,s(+,+)/(gΣFock

0,s (+,+)) = −3
2 using the approximations leading to Eq. (6.23). For

qc/cs = 105, the numerical result is -1.33. Together with the observed trend, this indicates
that the numerical calculation converges logarithmically to the analytical result.
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A numerical evaluation of Σpb
0,s(+,+) is shown in Fig. 6.2. In the limit of large qc/cs, the

exact numerical result is equal to the analytical approximation Eq. (6.23). In the regime we
usually work in, qc/cs ∈ [50, 1000], the approximation is about 25% larger than the exact
result. The numerical result has thus not yet converged to the numerical result. Since the
difference between approximation and exact result is quite small, we will continue to work
with this approximation for the pair bubble.

For the perturbation series to be convergent, the size of the diagrams has to decrease
as the order increases. Comparing Eq. (6.23) and Eq. (5.60), it is seen that the pair bubble
self-energy is approximately a factor gNf larger than the Fock self-energy. Since Nf is
equal to 4 for a nanotube, g has to be less than 1/4 for the pair bubble self-energy to be
less than the first order self-energy. This does not seem to be the case for an unscreened
interaction, see Eq. (4.47). We therefore anticipate that the diagrams do not get smaller
when we go to higher order in perturbation theory. A different approach is therefore
needed. We will see in Section 6.3 that the random phase approximation leads to a
screened interaction, ensuring convergence of the perturbative expansion. First, however,
we will look at the second order exchange diagram.

6.2 The exchange diagram

The exchange diagram, as shown in Fig. 6.3, is given by the analytical expression

ΣExchange
ks (ζi, ζo) =− 1

β2

∫
dq

2π

∫
dp

2π

∑
s′

∑
ζ,iqn,ζ′,iq′n,ζ

′′

(−V (q))(−V (q′))

G0(k + q, s, ζ)G0(k + q′, s, ζ ′)G0(k + q + q′, s, ζ ′′)

wk,k+q,s,ζiζwk+q,k+q+q′,s,ζζ′′wk+q+q′,k+q′,s,ζ′ζ′′wk+q′,k,s,ζ′ζo

=

(
V0
2π

)∫ qc

−qc
dq

∫ qc

−qc
dq′

∑
ζ,ζ′,ζ′′

(

wk,k+q,s,ζiζwk+q,k+q+q′,s,ζζ′′wk+q+q′,k+q′,s,ζ′ζ′′wk+q′,k,s,ζ′ζo

G0(k + q, s, ζ)G0(k + q′, s, ζ ′)G0(k + q + q′, s, ζ ′′)). (6.24)

The first Matsubara sum is evaluated as in Eq. (6.2) with p replaced by k + q′, q by −q
and ikn absorbed into iq′n, which gives

1

β

∑
iq′n

G0(k + q′, s, ζ ′)G0(k + q + q′, s, ζ ′′) =
nF (ζ

′ξk+q′,s)− nF (ζ
′′ξk+q+q′,s)

iqn − ζ ′′ξk+q+q′,s + ζ ′ξk+q′,s
. (6.25)
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k, s, ζi k, s, ζo
G0(k + q, s, ζ)

G0(k + q + q′, s, ζ ′′)

G0(k + q′, s, ζ ′)

wk,k+q,s,ζiζ wk+q′,k,s,ζ′ζo

wk+q+q′,k+q′,s,ζ′ζ′′ wk+q,k+q+q′,s,ζζ′′

−V (q) −V (q′)

Figure 6.3: The exchange diagram.

The second Matsubara sum is evaluated as Eq. (6.3), with opposite signs on ζ ′ and ζ ′′,

1

β2

∑
iqn,iq′n

G0(k + q, s, ζ)G0(k + q′, s, ζ ′)G0(k + q + q′, s, ζ ′′)

= (nF (ζ
′ξk+q′,s)− nF (ζ

′′ξk+q+q′,s))
nF (ζ

′′ξk+q+q′ − ζ ′ξk+q′,s)− nF (ζξk+q,s)

−ζ ′ξk+q′,s + ζ ′′ξk+q+q′ − ζξk+q,s + ikn

= − 1

−ζ ′ξk+q′,s + ζ ′′ξk+q+q′ − ζξk+q,s + ikn
δζζ′δζ,−ζ′′ . (6.26)

Therefore

ΣExchange
ks (ζi, ζo) = −

(
V0
2π

)2 ∫ qc

−qc
dq

∫ qc

−qc
dq′
(
wk+q,k+q+q′,s,−wk+q+q′,k+q′,s,−(

wk,k+q,s,ζiw
∗
k,k+q′,s,ζo

−ξk+q′,s − ξk+q+q′ − ξk+q,s + ikn
+

wk,k+q,s,−ζiw
∗
k,k+q′,s,−ζo

ξk+q′,s + ξk+q+q′ + ξk+q,s + ikn

))
. (6.27)

6.2.1 Approximate evaluation

As for the pair bubble, we will evaluate the exchange diagram approximately for k = 0.
Let us start by approximating the overlaps in the large q, q′ regime, so

wq,q+q′,s,−wq+q′,q′,s,− =
1

4

(
1− cs − iq√

c2s + q2
cs + i(q + q′)√
c2s + (q + q′)2

)
(
1− cs − i(q + q′)√

c2s + (q + q′)2
cs + iq′√
c2s + q′2

)

≈ 1

4

(
1− q

|q|
q + q′

|q + q′|

)(
1− q + q′

|q + q′|
q′

|q′|

)
= 0. (6.28)

The exchange diagram is thus expected to be much smaller than the pair bubble. A
numerical calculation with qc = 100cs gives

ΣExchange
ks (+,+) = 0.011g2vF cs. (6.29)
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It is thus three orders of magnitude smaller than the pair bubble Eq. (6.23), confirming
that it is negligible. It has the opposite sign of the pair bubble as expected.

6.3 Random phase approximation

In Section 6.1 it was shown that the second order diagram is larger than the first order
diagram due to the sum

∑
s = 4. This factor arise because the electron hole pair in the

fermion loop can exist in all four cones. For higher order diagrams, we deduce that if a
diagram has m fermion loops, it has a prefactor Nm

f = 4m. An n’th order diagram with
m loops is thus proportional to gnNm

f . For each n there is one diagram with m = n, and
the rest have m < n. The diagram with m = n must therefore be the most important.
They are shown in Fig. 6.4. The number of diagrams scales rapidly with n. Therefore one
would naively expect the sum of rest of the diagrams to be much larger than the m = n
diagram after the first few values of n. However, since there is no general argument for
the rest of the diagrams to have the same sign, one expect them to have a random phase,
hence the name. On average they thus cancel, and using only the m = n diagrams is a
good approximation. This is also called the 1/Nf expansion. The 1/Nf expansion has
already been applied to graphene [27].

The sum of all diagrams with m = n can be evaluated as a Fock diagram with a
renormalized interaction line, where the renormalized interaction is given by [24, p. 250]

V RPA,tot(q, iqn) =
V (q)

1 + V (q)Π0(q, iqn)
. (6.30)

Inserting Π0(q, iqn) from Eq. (6.15) gives

V RPA,tot(q, iqn) =
V (q)

1 + 1
2πV (q)Nf

2vF q2

v2F q
2−(iqn)2

=V (q)
v2F q

2 − (iqn)
2

v2F q
2 − (iqn)2 + 2gNfv

2
F q

2

=V (q)

(
1−

2gNfv
2
F q

2

v2F q
2 − (iqn)2 + 2gNfv

2
F q

2

)
=V (q)

(
1 +

2gNfv
2
F q

2

(iqn − αvF q)(αvF q + iqn)

)
, (6.31)

where

α =
√

1 + 2gNf . (6.32)

The RPA interaction is thus equal to the original interaction plus an extra negative term,

V RPA,tot(q, iqn) = V (q) + V RPA(q, iqn). (6.33)
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k = 0, s, ζi k = 0, s, ζo
G0(q, s, ζi)

w0,q,s,ζiζ wq,0,s,ζζo

−V RPA,tot(q, iqn)

= + + +

Figure 6.4: The diagrams in the RPA sum.

We will only calculate the RPA self-energy diagram for k = 0 , which gives

ΣRPA,tot
0,s (ζi, ζo) =

1

β

∫
dq

2π

∑
ζ,iqn

(
−V RPA,tot(q, iqn)

)
G0(q, s, ζ)w0,q,s,ζiζwq,0,s,ζζo

=ΣFock
0,s (ζi, ζo) +

1

β

∫
dq

2π

∑
ζ,iqn

(
−V RPA(q, iqn)

)
G0(q, s, ζ)w0,q,s,ζiζwq,0,s,ζζo

=ΣFock
0,s (ζi, ζo) + ΣRPA

0,s (ζi, ζo). (6.34)

Since both G0(q, s, ζ) and V RPA(q, iqn) are even in q, we know from Eq. (6.5) that

ΣRPA
0,s (+,−) = ΣRPA

0,s (−,+) = 0. (6.35)

The integrand in ΣRPA
0,s (ζi, ζi) is even, so it is only necessary to integrate over q. For

positive q we can approximate G0(q, s, ζ) as

G0(q, s, ζ) =
1

iqn + ikn − ζξq

≈ 1

iqn + ikn − ζvF q
, (6.36)

so

ΣRPA
0,s (ζi, ζi) = − 1

β

∫ qc

cs

vFdq
∑
ζ,iqn

(
4g2Nfv

2
F q

2

(iqn − αvF q)(αvF q + iqn)

1

iqn + ikn − ζvF q
|w0,q,s,ζζi |

2

)
. (6.37)



72 CHAPTER 6. HIGHER ORDER COULOMB INTERACTIONS

The lower bound on the integral has been changed from 0 to cs, since neither Eq. (6.36)
nor Eq. (6.15) are valid for q < cs. It was shown in the previous section that this is a good
approximation. It is seen that for α → 1, i.e. the limit of weak interactions, Eq. (6.37) is
identical to Eq. (6.16). This is what we expected, since the pair bubble is the dominant
term in the RPA sum for weak interactions. We will now perform the Matsubara sum for
an arbitrary α > 1.

ΣRPA
0,s (ζi, ζi) =− 4g2NfvF

∫ qc

cs

dqv2F q
2
∑
ζ

|w0,q,s,ζζi |
2

(
nF (ζvF q)

(ζvF q − ikn − αvF q)(ζvF q − ikn + αvF q)

+
1

−2αvF q(−αvF q + ikn − ζvF q)

)
=− 4g2NfvF

∫ qc

cs

dqv2F q
2(

|w0,q,s,−ζi |
2

(−(α+ 1)vF q − ikn)((α− 1)vF q − ikn)

+
|w0,q,s,ζi |

2

−2αvF q(−(α+ 1)vF q + ikn)

+
|w0,q,s,−ζi |

2

−2αvF q(−(α− 1)vF q + ikn)

)

≈− 2g2NfvF

∫ qc

cs

dqv2F q
2(

1− ζics/q

(−(α+ 1)vF q − ikn)((α− 1)vF q − ikn)

+
1 + ζics/q

−2αvF q(−(α+ 1)vF q + ikn)

+
1− ζics/q

−2αvF q(−(α− 1)vF q + ikn)

)
. (6.38)

A short calculation gives

ΣRPA
0,s (ζi, ζi) ≈− 2g2Nf

(
ikn + ζi

α+ 1

α
vF cs

)
vF

∫ qc

cs

dq
vF q

(α+ 1)2v2F q
2 − (ikn)2

=− g2

(α+ 1)2
Nf

(
ikn + ζi

α+ 1

α
vF cs

)
ln

(
(α+ 1)2v2F q

2
c − (ikn)

2

(α+ 1)2v2F c
2
s − (ikn)2

)
=− g

2

(α− 1)

(α+ 1)

(
ikn + ζi

α+ 1

α
vF cs

)
ln

(
(α+ 1)2v2F q

2
c − (ikn)

2

(α+ 1)2v2F c
2
s − (ikn)2

)
. (6.39)
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Setting ikn = ω, we get an equation similar to Eq. (6.22),

ω =vF cs +ΣFock +ΣRPA

=
1 + g

(
ln (2qc/cs)− (α− 1)/α ln

(√
((α+ 1)2v2F q

2
c − ω2)/((α+ 1)2v2F c

2
s − ω2)

))
1 + g(α− 1)/(α+ 1) ln

(√
((α+ 1)2v2F q

2
c − ω2)/((α+ 1)2v2F c

2
s − ω2)

) vF cs.

(6.40)

Expanding in g gives

ω =

(
1 + g ln

(
2qc
cs

))
vF cs +O(g2), (6.41)

which isexactly the Fock term in Eq. (5.60). To evaluate it to second order in g, we observe
that

α− 1

α
=gNf +O(g2) (6.42)

(α− 1)

(α+ 1)
=
1

2
gNf +O(g2). (6.43)

Thus, ω is given, to second order in g, by

ω =
1 + g ln (2qc/cs)− g2Nf ln

(√
((α+ 1)2v2F q

2
c − ω2)/((α+ 1)2v2F c

2
s − ω2)

)
1 + 1/2g2Nf ln

(√
((α+ 1)2v2F q

2
c − ω2)/((α+ 1)2v2F c

2
s − ω2)

) vF cs,

(6.44)

which is the same expression as for the pair bubble Eq. (6.22). The random phase approx-
imation is thus consistent with the first and second order calculations.

We will now show that ω lies in the interval [0, (α + 1)vF cs] for all values of the
parameters g, cs, qc. At g = 0, i.e. the non-interacting limit, ω = vF cs. For ω to be
negative, it thus has to cross 0 as a function of g. For ω → 0, we find

ln

(√
(α+ 1)2v2F q

2
c − ω2

(α+ 1)2v2F c
2
s − ω2

)
ω→0−−−→ ln

(
qc
cs

)
, (6.45)

so the numerator becomes

1 + g

(
ln

(
2qc
cs

)
− α− 1

α
ln

(√
((α+ 1)2v2F q

2
c − ω2)/((α+ 1)2v2F c

2
s − ω2)

))
ω→0−−−→1 + g

(
ln

(
2qc
cs

)
− α− 1

α
ln

(
qc
cs

))
=1 + g

(
ln(2) +

1

α
ln

(
qc
cs

))
, (6.46)
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which is always positive, since we are in the qc � cs limit. Since the denominator in
Eq. (6.40) is also positive, the whole righthand side is positive, so ω is always greater than
zero. Looking at the other limit, we will let ω approach α + 1 from below. This means
that

ln

(√
(α+ 1)2v2F q

2
c − ω2

(α+ 1)2v2F c
2
s − ω2

)
ω→α+1−−−−−→ ∞. (6.47)

The numerator thus goes to −∞, while the denominator goes to +∞. This means that
the righthand side of Eq. (6.40) becomes negative, which is inconsistent with increasing
ω. Therefore ω has the upper bound α+ 1.

Let us now look at the qualitative behaviour in the limits of weak and strong interac-
tions, at finite values of cs and qc. As shown in Eq. (6.41), ω is dominated by the Fock
term for weak interactions. It is thus increasing linearly as a function of g for small g. In
the limit of strong interactions, we have

α− 1

α

g→∞−−−→ 1, (6.48)

α− 1

α+ 1

g→∞−−−→ 1, (6.49)

and ω therefore reduces to

ω
g→∞−−−→

 ln (2qc/cs)

ln
(√

((α+ 1)2v2F q
2
c − ω2)/((α+ 1)2v2F c

2
s − ω2)

) − 1

 vF cs. (6.50)

Using the result Eq. (6.45), we see that

ω <
ln(2)

ln(qc/cs)
vF cs for g → ∞. (6.51)

For large g, ω/(vF cs) is thus decreasing as a function of qc/cs. For small g the Fock
term dominates, so in this limit ω/(vF cs) increases as a function of qc/cs. We will now
examine whether there is a value of g for which ω/(vF cs) is independent of qc/cs. Let us
approximate

ln

(√
(α+ 1)2v2F q

2
c − ω2

(α+ 1)2v2F c
2
s − ω2

)
≈ ln

(√
(α+ 1)2v2F q

2
c

(α+ 1)2v2F c
2
s − ω2

)
. (6.52)

This is a good approximation, since ω < (α+ 1)vF cs, and qc � cs. If we define

b =
ω

(α+ 1)vF cs
, (6.53)

the approximated logarithm can be written as

ln

(√
(α+ 1)2v2F q

2
c

(α+ 1)2v2F c
2
s − ω2

)
= ln

(
qc
cs

)
− ln

(√
1− b2

)
. (6.54)
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Eq. (6.40) can therefore be written as

b(α+ 1) =
1 + g ln (qc/cs) + g ln(2)− g(α− 1)/α

(
ln (qc/cs)− ln

(√
1− b2

))
1 + g(α− 1)/(α+ 1)

(
ln(qc/cs)− ln

(√
1− b2

))
⇒b

(
α+ 1 + g(α− 1)

(
ln

(
qc
cs

)
− ln

(√
1− b2

)))
=1 + g ln

(
qc
cs

)
+ g ln(2)− g

α− 1

α

(
ln

(
qc
cs

)
− ln

(√
1− b2

))
. (6.55)

For ω/(vF cs) to be independent of qc/cs, this equation must be true for all values of
qc/cs. Therefore we can split it into two equations, one for the terms containing a factor
ln (qc/cs), and one for the rest,

bg(α− 1) =g

(
1− α− 1

α

)
, (6.56)

b
(
α+ 1− g(α− 1) ln

(√
1− b2

))
=1 + g ln(2) + g

α− 1

α
ln
(√

1− b2
)
. (6.57)

This set of equations can be solved numerically, giving

gfix = 0.452995 (6.58)

ωfix = 1.27357vF cs. (6.59)

Note that without approximating ω as in Eq. (6.52), it would not be possible to solve
Eq. (6.55) independent of qc/cs. The result is therefore only approximate, but since qc � ω,
it is almost exact. The coupling strength g = 0.46 given in Eq. (4.47) is almost identical
to gfix. This means that the gap continues to depend linearly on cs when interactions are
included. ω/(vF cs) is increased from its non-interacting value which is 1, to

γfix =
ωfix

vF cs
= 1.27. (6.60)

We will now solve Eq. (6.40) numerically. In Fig. 6.5 ω/(vF cs) is plotted as a function
of g for different values of qc/cs. It is seen that the calculated values of gfix and ωfix

fit well to the point where the curves intersect. The relative gap decreases as a function
of cs for interactions weaker than gfix, and it increases as a function of cs above gfix. In
Fig. 6.6 the relative gap is plotted as a function of cs for small gaps. The interaction
strength is chosen as g = 0.105, which is the maximum of the blue curve in Fig. 6.5. It
seems plausible that the gap is smaller than (α + 1)vF cs for any g or cs. In Fig. 6.7, the
gap energy is shown as a function of cs. It is seen that the non-linear behavior is almost
negligible. However, the slope is multiplied by ω/(vfcs), which for g = gfix is γfix = 1.27.

To estimate how the RPA screened interaction affects the other diagrams in the per-
turbation series, we will make a cruder approximation. Setting ikn = ζivF cs, i.e. the
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Figure 6.5: The gap energy ω in units of the non-interacting gap vF cs, from the self-
consistent solution of Eq. (6.40) as a function of the interaction strength g. The radius is
fixed at R = 1nm, and the red, green and blue curves correspond to three different values
of the gap. It is seen that at g = gfix = 0.45, the relative gap increase does not depend on
the particular value of cs.

non-interacting value, we find

ΣRPA
0,s (ζi, ζi) ≈− ζig

(α− 1)

(α+ 1)

2α+ 1

α
vF cs ln

(√
(4v2F q

2
c − v2F c

2
s)/(3v

2
F c

2
s)

)
≈− ζig

(α− 1)

(α+ 1)

2α+ 1

α
vF cs ln

(
2qc
cs

)
. (6.61)

The last approximation leads to ΣRPA
0,s and ΣFock

0,s having the same dependence on qc. It is
justified from the observation that the prefactor in the logarithm depends heavily on the
value of the low momentum cut-off in Eq. (6.39), and the cut-off could just as well have
been chosen a factor 2 smaller or larger without violating any assumptions. Therefore we
may now write

ΣRPA,tot
0,s (ζi, ζi) =ΣFock

0,s (ζi, ζi) + ΣRPA
0,s (ζi, ζi)

=gαvF cs ln

(
2qc
cs

)
, (6.62)

where

gα = g

(
1− (α− 1)

(α+ 1)

2α+ 1

α

)
. (6.63)
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Figure 6.6: The relative gap size for small gaps. The interaction strength is g = 0.105,
which is the position of the maximum of the blue curve in Fig. 6.5. This corresponds to
α+ 1 = 2.38. The tube radius is 1 nm, as before.

We find that the contributions of the RPA diagrams partially cancel the contribution
of the Fock diagram. This agrees with our interpretation of RPA as being effectively a
screening of the interaction. Using Eq. (6.32), the maximal value of gα as a function of g
is

gα,max = 0.08, (6.64)

which is at g = 0.23. The screened coupling constant is thus smaller than 0.08. Using this
screened interaction to calculate all higher order diagrams, we find that their contribution
is negligible. Going to higher order in perturbation theory would not change the self-
energy more than by a correction of the order g2α, so we conclude that higher order terms
are negligible.

For estimating the precision of this approximation, it is plotted together with the self-
consistent solution of Eq. (6.40) and the Fock self-energy from Eq. (5.60) in Fig. 6.8. One
clearly sees that using the screened interaction gives a result that is much closer to the
self-consistent result than the result obtained using the Fock diagram. For large gaps and
weak interactions, it is thus a good approximation. However, from Eq. (6.62) it is seen
that in this approximation, the relative gap diverges for small gaps, which is not the case
for the self-consistent solution. For sufficiently strong interactions it becomes negative,
which is unphysical. Therefore we conclude that the approximation breaks down for small
gaps and strong interactions.
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Figure 6.7: The gap energy as a function of cs. The black line is the non-interacting value
ω = vF cs. The red line represents g = gfix, so is also linear in vF cs, but with an increased
slope. The green and blue lines are curved in opposite directions, since their interaction
strengths are on opposite sides of gfix.
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Figure 6.8: The relative gap as a function of g calculated from the Fock diagram Eq. (5.60),
the approximated RPA Eq. (6.62) and the self-consistent RPA Eq. (6.40). The Fock self-
energy quickly diverges, while the approximated RPA becomes negative for large g. Only
the self-consistent RPA is well-behaved for all values of g. The parameters used are
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Chapter 7

Experimental evidence and
predictions

7.1 Anomalous orbital magnetic moment

When comparing the effective graphene Hamiltonian Eq. (2.66) to the effective nanotube
Hamiltonian Eq. (4.1), it is seen that the gap cs corresponds to a momentum in the
circumferential direction. The circumferential momentum can be measured by applying a
magnetic field parallel to the tube axis. This is due to the Aharanov-Bohm effect, from
which a magnetic field adds a phase to the electron wave function [15], so

k⊥(B) = cs + τ
eRB

2
, (7.1)

where τ = ±1 denotes K or K ′ cones, e is the electron charge and R is the radius of the
tube. From this we define the magnetic field at which the gap vanishes, BDirac, as

BDirac =
2cs
eR

. (7.2)

We may also define an orbital magnetic moment µorb as

dE0,s,+

dB
= τµorb +

1

2
sgsµB (7.3)

where s = ±1 spin up or down, gs ≈ 2 is the electron spin g factor, µB ≈ 5.8 · 10−5eV·T−1

is the Bohr magneton, and E0,s,+ is the energy of the k = 0 state as defined in Eq. (4.2).
The orbital magnetic moment is [1]

µorb =
τeR

2

dE0,s,+

dk⊥
=
eR

2
v⊥, (7.4)

where v⊥ is the Fermi velocity in the perpendicular direction. The self-energy is diagonal
in momentum space, so Coulomb interactions do not change the momentum of a state.
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Thus, a state with a definite k⊥ in the non-interacting theory has the same k⊥ after
interactions have been included. Therefore

k⊥ = cs. (7.5)

Including interactions, E0,s,+ is no longer equal to vF cs, but to ω. From Fig. 6.7 it is seen
that ω is nearly proportional to cs. Therefore we may approximate

v⊥ =
dE0,s,+

dk⊥
≈ ω

cs
, (7.6)

so

µorb =
eR

2

ω

cs
. (7.7)

In [1], the orbital magnetic moment was measured for several nanotubes. For their
“Device 1” the orbital magnetic moment was measured to be

µSteeleorb,exp = 1.6meV/T. (7.8)

For this tube the diameter was also measured using atomic force microscopy to be 3 nm.
Using Eq. (7.4) with the non-interacting Fermi velocity vF from Eq. (4.41) and their
measured radius, this gives an orbital magnetic moment of

µSteeleorb,non-int = 0.82meV/T. (7.9)

The measured orbital magnetic moment is thus larger by a factor of 2 than predicted
by the non-interacting theory. Our interacting theory predicts a higher orbital magnetic
moment than the non-interacting theory, namely

µorb,int = γfixµorb,non-int, (7.10)

using g = gfix. For Steele’s experiment, we predict

µSteeleorb,int = 1.04meV/T. (7.11)

This is not as high as the measured value, so it can not be the full explanation of the
anomalously high magnetic moment.

Some recent experimental results are shown in Table 7.1. When no theoretical value is
given, it is because the radius has not been measured. In most experiments measuring µorb,
the radius is not measured explicitly. However, Jespersen et al. [15] notes that “nanotubes
grown by chemical vapour deposition (...) are expected to have D ≤ 3 nm”, where D = 2R
is the diameter of the tube. We thus do not expect orbital magnetic moments higher than
µorb = 0.82meV/T. This contradicts recent experiments [2, 15, 1], as seen in Table 7.1.
The measurement by Jespersen et al. is close enough for the deviation to be explained by
measurement and diameter limit uncertainty, but only in the case where the diameter is
actually 3 nm. In the non-interacting theory, µKuemmeth

orb correspond to the radius

RKuemmeth
non−int = 2.83 nm, (7.12)
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Author Measured µorb in
meV/T

Non-interacting
theoretically pre-
dicted µorb in
meV/T

On substrate/
Suspended

Steele et al. [1] 1.6 0.82 Suspended

Kuemmeth et al. [2] 1.55

Jespersen et al. [15] 0.87 On substrate

Makarovski et al. [17] 0.41 On substrate

Churchill et al. [18] 0.330 On substrate

Deshpande et al. [19] 0.330 Suspended

Jarillo-herrero et al. [20] 0.85 ± 0.05 1.09 On substrate

Minot et al. [16], 1 0.7 ± 0.1 0.7 Suspended

Minot et al. [16], 2 1.5 ± 0.2 1.4 Suspended

Table 7.1: Experimental measurements of µorb.

which is significantly higher than the maximum value Rmax = 1.5 nm set by Jespersen et
al. Our theory predicts

RKuemmeth
int =

RKuemmeth
non-int

γfix
= 2.23 nm, (7.13)

which is not enough to account for the measured value.

There are also studies who got lower orbital magnetic moments, namely [17, 18, 19]
Finally, there are experiments similar to the one by Steele et al., measuring both the orbital
magnetic moment and the radius directly [20, 16] The experimental data are not conclusive.
A further complication is that there are two kinds of experiments. Either the tube lies
directly on the substrate, or it is suspended between the leads. If a tube is in contact with
the substrate, the long range Coulomb interactions might be screened by the substrate,
reducing the effect of Coulomb interactions. For a suspended tube, this is not the case. The
experiments [1, 16, 19] are suspended, while [15, 20, 17, 18] have tubes lying directly on the
substrate. There is thus no clear link between enhanced magnetic moment and suspended
tubes. However, Steele [1] mentions that “The devices measured here and those measured
by Kuemmeth et al. [2] were made using clean nanotubes grown in the last step of the
fabrication, while [many of] the other measurements were performed on nanotubes which
were grown first and subsequently underwent processing in the cleanroom.” There is thus
a qualitative difference between the experiments with low and high µorb. We will however
not investigate this further in this thesis.

An interesting feature of Fig. 6.5 is that lower interaction strength actually increases
the orbital magnetic moment, since screening from RPA is most pronounced for strong
interactions. This means that if the interaction is screened by a substrate, it might in fact
lead to a higher orbital magnetic moment.
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7.2 Implications on spin-orbit band splitting

As described in Section 3.2.4, Izumida et al. found that spin up and down electrons do not
have the same energy difference as spin up and spin down holes [12]. The energy splitting
for electrons is

∆Izumida
+ = 2vF∆ksoc + 2τε(τ)soc

= 2α1
Vso
2R

+ 2α2
Vso
2R

cos 3η, (7.14)

whereas for holes

∆Izumida
− = 2vF∆ksoc − 2τε(τ)soc

= 2α1
Vso
2R

− 2α2
Vso
2R

cos 3η. (7.15)

The parameters α1 and α2 are given in Eqs. (3.80) and (3.81) as

α1 = 0.048 nm, (7.16)

α2 = −0.045 nm. (7.17)

It is seen in Eqs. (3.73)–(3.81) that α1 is proportional to cs in the effective model Eq. (4.1),
while α2 is proportional to d. α1 is therefore scaled by the Coulomb interactions by a factor

α̃1

α1
=

ω

vF cs
= γfix, (7.18)

while α2 remains unaltered. Since |α2| < |α1|, the difference between hole and electron
splitting is largest for η = 0, i.e. a zig-zag tube. In this case the ratio between the hole
splitting and the electron splitting is

∆Izumida
−

∆Izumida
+

=
α1 − α2

α1 + α2
≈ 31. (7.19)

Our theory however predicts

∆int
−

∆int
+

=
α̃1 − α2

α̃1 + α2
≈ 7. (7.20)

Zig-zag tubes still give the largest ratio, but it is five times smaller than in the non-
interacting theory. An experimental test of this theory would thus be to measure the
splitting ratio for a zig-zag tube.

Steele et al. [1] measured a spin-orbit splitting of

∆Steele
so,exp = 3.4meV (7.21)

for the conduction band. According to the non-interacting theory, their tube should
maximally have a spin-orbit splitting of

∆Steele
so,non-int = 0.260meV. (7.22)
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The spin-orbit interaction is thus 13 times higher than expected. Interactions enhance
the gap regardless of whether it is due to curvature or spin-orbit effects. If the gap is
enhanced by some factor compared to the non-interacting theory, the same happens for
the spin-orbit splitting. Kane et al. [3] have shown that short range interactions enhance
the gap by a factor 1.36. Our theory further enhances the theoretically predicted value by
a factor 1.27. In total, this gives an enhancement of 1.73, yielding

∆Steele
so,int = 0.45meV. (7.23)

There is still a factor 8 in discrepancy between the value predicted by theory and the
experimental result, so long range interactions are not solely responsible for the large
spin-orbit coupling. Furthermore, the splittings

∆Kuemmeth
+ = 0.37meV, (7.24)

∆Kuemmeth
− = 0.22meV (7.25)

have been measured by Kuemmeth et al. [2]. As discussed at the end of Chapter 3, the non-
interacting theory predicts a larger valence band splitting than hole splitting. Our theory
can never make the conduction band splitting larger than the valence band splitting, since
it only changes α1.
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Chapter 8

Concluding remarks

8.1 Summary

A perturbatively stable theory of how long range Coulomb interactions enhance the gap in
nearly metallic carbon nanotubes has been developed in this thesis. In Section 5.4 the first
order correction to the gap self-energy is developed. It is shown that the circumferential
Fermi velocity is enhanced, and even diverges logarithmically for small gaps. This gives
rise to a large gap increase for nearly metallic tubes. The effect is identical to the one
found in graphene [28] and semiconducting nanotubes [3] arising from short range Coulomb
interactions.

In Section 5.7 it was however shown that the Coulomb interaction is so strong that a
self-consistent solution of the first order gap enhancement is divergent. However, similar
to graphene [27], it is possible to do a 1/Nf expansion and sum all the RPA bubbles,
as done in Section 6.3. Due to the high number of cones (Nf = 4), this is assumed
to be a good approximation. The random phase approximation results in a screened
interaction. For gaps larger than 1meV and interactions weaker than g = 0.6, RPA can
be well approximated by first order perturbation theory, where the interaction strength is
reduced from g = 0.46 to gα = 0.1. For smaller gaps or stronger interactions, the RPA
self-energy has to be solved self-consistently. In the self-consistent calculation the gap is
never enhanced by more than a factor 2.38, for any value of the initial gap or interaction
strength. At g = 0.46 the gap is approximately 1.27 times larger than the non-interacting
gap. The enhancement of the gap leads to higher orbital magnetic moment and spin-
orbit splitting. The experiments discussed in Chapter 7 also find values of the orbital
magnetic moment and spin-orbit splitting that are too high to be explained by the non-
interacting theory. However, the enhancement derived in this thesis is not large enough
to quantitatively account for these previously unexplained experimental results.

8.2 Outlook

The relatively weak enhancement of the gap calculated in this thesis is not enough to
explain the large values of orbital magnetic moment and spin-orbit splitting measured
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in recent experiments [2, 1]. Furthermore, Kuemmeth et al. [2] measured a larger spin-
orbit splitting in the conduction band than in the valence band, in contradiction to the
non-interacting theory [12]. Our theory would never be able to invert this asymmetry,
since it is symmetric in conduction and valence band. Other effects should therefore be
considered to understand this phenomenon. In the non-interacting theory [12] as well
as in our interacting theory, the gap is predicted to close for a particular magnetic field
aligned along the nanotube axis, BDirac. However, both Steele et al. [1] and Deshpande et
al. [14] found that the gap has a residual value of ∼ 50meV at BDirac. This is a huge effect
compared to our predicted renormalization. Being still unexplained, the physical effects
giving rise to this phenomenon could potentially change crucial elements of our theory. It
thus seems more important to explain this BDirac gap, than to improve the precision of
our theory.

The first order diagram calculated in Section 5.4 leads to a logarithmically divergent
circumferential Fermi velocity. In the approximated RPA model presented in the end of
Section 6.3, the interaction is screened, but otherwise gives rise to the same logarithmic
divergence. However, our self-consistent RPA shows that the divergence is an artefact of
this approximation. In graphene the same logarithmic divergence has been found [38].
Here the gap is not tuned by a magnetic field, but by changing the chemical potential.
This means that there is no residual gap, so it is possible to examine the behaviour for
much smaller gaps. It would be interesting to use the self-consistent RPA method on
graphene, to investigate whether it suppresses the logarithmic divergence in graphene, as
it does in carbon nanotubes.
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