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Chapter 1

Introduction

In this work we tackle the physical problem of a coalescent binary system of

compact objects, namely black holes (BHs) and neutron stars. This physi-

cal problem has gained a remarkable attention because of its importance to

the testing of theories in gravity, and the predictions of gravitational waves

(GWs), especially since the detection of GWs made by the Advanced LIGO

detectors in 2015, [1]. Because of that, it has been of great importance to

push the frontiers of high precision theoretical computations to help with the

predictions which models the GWs templates.

The binary system evolution comprises three distinguished phases: the in-

spiral phase, when the two objects are inspiralling towards each other and

have non-relativistic velocities, the merger, when the two objects get closer

beyond approximately the innermost stable orbit of a BH and reach relativis-

tic velocities, and the ringdown phase, in which, for BHs through quasinormal

modes of oscillations, the two BH settle down to a rotating Kerr BH. The

phase we will mostly be concerned in this work is the inspiral phase, to which

the post-Newtonian approximation is applied with great success, meanwhile

for the other two phases the PN approximation breaks down since we are
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not dealing with small velocities anymore, and we need to resort to other

methods.

There are different formulations used to study the other phases of the bi-

nary i.e the merger and ringdown phases. For these two phases it is not viable

to use the post-Newtonian approximation, as mentioned before. Therefore

they are currently treated via numerical simulations, and, for the ringdown

phase, we can also use BH perturbation theory and self-force formalism. In

figure 1.1 we show a graph with the relevant methodologies used for the

study of a coalescent binary system depending on the mass ratio of the two

compact objects and the compactness of the system, which is evaluated by
r
M

, with M = m1 +m2 and r being the typical size of the system.

Figure 1.1: The different methods to model GW templates of a coalescent binary according

to the mass ratio and compactness. Credit: A. Le Tiec.

To what concerns the predictions of the inspiral phase using a PN approx-

imation, a good approach was that of the effective field theory (EFT). The

EFT framework is a universal one, which is great for describing systems in
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which we have a distinguishable separation of scales, as it is the case for

our binary system of compact objects. Even though EFT was conceived in

the realms of quantum field theory (QFT), we may use it whether or not

the small perturbative parameter is related to the quantum parameter, ~. In

fact, EFT shares the powerful toolbox of that in QFT, as Feynman diagrams,

renormalization, regularization and such, which will be of great efficacy when

computing the interaction between the two compact objects in the binary.

The EFT approach for the inspiralling binary was formulated in [2], see

also [3], where it did not yet take the spin component of the BH into con-

sideration. The description of spin effects are though of great relevance to

gravity, quantum chromodynamics (QCD) and astrophysics. Following that,

a first attempt to develop a formulation to spinning objects was in [4]. Based

on [5], [6], [7], [8] a formulation for EFTs including spins was successfully

developed in [9], [10], which enabled a significant push in high precision com-

putations with spins to many sectors, as we can see in figure 1.2, which

shows the state-of-the-art PN high precision conservative dynamics for inspi-

rally compact binaries. The EFT approach including the formulation in [9]

was comprehensively reviewed in [10], which presented the big perspective of

the field in a didactic way. Subsequently, a sequence of works done in the

spin conservative sectors were computed; the complete up to NLO and up to

quadratic-in-spin sector was presented in [9], the NNLO spin-orbit and spin-

squared sectors were presented in [11], [12], respectively, and the complete

state-of-the-art with spins at 4PN order was presented in [13].

Following up from [14], that presents the full LO sector for cubic-in-spin

and quartic-in-spin sectors, we computed during this thesis the cubic-in-

spin at NLO interaction, that enters at 4.5PN order, [15]. The section

was computed manually and also by using the code EFTofPNG available

at https://github.com/miche-levi/pncbc-eftofpng, [16].

7

https://github.com/miche-levi/pncbc-eftofpng


Several recently published works were computed after the cubic-in-spin

NLO computation, pushing the frontiers in both PN orders and spin orders.

The NNNLO spin-orbit and spin-squared interactions were presented in [17]

and [18], and the NLO quartic-in-spin interaction sector was presented in [6].

Figure 1.2: The complete state-of-the-art of PN orbital dynamics of generic compact

binaries. The PN corrections enter at the order n + l + Parity(l)/2, with the parity 0

or 1 for even or odd l, respectively. The sectors with the entries in boldface have been

addressed in [15], [17], [18], [12] and [6], and were all derived for the first time based on

the formulation from [9]. The quartic in spin at LO was computed in [14]. The entries in

the table indicate the loop computational scale within our framework. Credit: M. Levi,

[6].

The computation of the Feynman rules and diagrams are made using the

EFT theories of PN gravity, which makes use of the Kaluza-Klein reduction

of spacetime, [19], [20]. All the computations in the theory that will follow

were made within the GR for classical gravity framework.

In the work that follows we will work with the convention of a mostly

negative Minkowski metric η = diagonal(1,−1,−1,−1), the velocity of light

as well as the reduced Planck constant are taken as c = ~ = 1, such that the

Planck mass, mp, and the gravitational constant G are normalized as m2
p ≡

1
32πG

. Normally the Greek indices will refer to general spacetime coordinates,

while Latin indices will refer to locally flat frames.

In a less straightforward sense, the attempt of arriving at a complete the-
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ory of gravity across all scales in order to eventually facilitate us reach a

theory of quantum gravity has been also a motivating factor. QFT has been

an amazing tool for the treatment and predictions of the Standard Model.

Through the years, the matching between experimental data and the theo-

retical results QFT provided us has been a strong motivation to study this

computational tool and develop it even more. The Standard Model is a

theory of fundamental particles and their interactions, to be more specific,

the study of the interaction of particles that obeys the Electro-Weak and

the Strong forces. Each of those has its own theory, respectively, Quantum

Electrodynamics and Quantum Chromodynamics. Unfortunately there is a

missing piece in this theory, the gravitational force. The Standard Model

doesn’t seem to give a good description of gravity and that leaves a hard

task for us, theoretical physicists, that is to find a theory that unifies the

description of all known forces in nature.

It is well known today that the theory of gravity is a non-renormalizable

theory. For a theory to be what is called a renormalizable theory, it means

that it is possible to deal with the divergences that arise in the Lagrangian

in a certain limit of energy, the UV. We can do this by either redefining the

coupling constants in the Lagrangian, or by adding terms to the Lagrangian,

known as the counter terms. If we can handle all the divergences by adding

a finite number of counter terms, the theory is still renormalizable, but if

we need an infinite number of counter terms, the theory is said to be non-

renormalizable, [21], [22], [23]. For the latter case, effective field theories can

be used by means of an ultraviolet cutoff to establish an energy scale where

our theory will work, enabling us to make predictions for our theory with

high accuracy. Exploring this EFT frame could be a possible path to arrive

at a complete theory of gravity and perhaps all fundamental forces.

This thesis is organized as follows. In section 2.1 we start by analyzing
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the construction of a non-spinning point-particle EFT through the bottom-

up approach, where the Wilson coefficients will be introduced as well as the

new operators after the effective action construction procedure is made as

we integrate out the strong modes of the gravitational field gµν = gsµν + ḡµν ,

where gsµν denotes the strong modes. We discuss both minimal and non-

minimal coupling terms of the action, the latter accounts for the finite size

effects of the object and is build with the higher mass-induced multipoles.

In section 2.2 we introduce the spin of the compact object to the problem,

and start by discussing the degrees of freedom (DOFs) and symmetries of

our system. Afterwards we move on to build the minimal and non-minimal

coupling of the spinning case effective action of one single compact object.

In order to do that we also discuss the gauge fixing of the rotational variables

that were introduced.

In section 2.3 we finally arrive to the effective action of the composite

particle, which is composed by the two compact objects. In this section we

are interested in integrating out the orbital modes of the metric, Hµν , where

we decomposed the metric as ḡµν = ηµν +Hµν + h̃µν , and where Hµν denotes

the orbital modes and h̃µν denotes the radiation modes. To do that we must

first disentangle the field DOFs from the particle worldline DOFs, and to

fix all rotational gauges. That is done with a factorization of the worldline

tetrad introduced in section 2.2.

Section 3 refers to the results obtained in the master’s project, which was

the full computation for the NLO cubic-in-spin interaction that enters at the

4.5PN order. There we present the paper which was the essence of this work,

[15], containing all the Feynman diagrams for the interactions of the two

compact objects, the new type of cubic-in-spin couplings that appear at this

order because of dependence in spin in the four-momentum of the objects,

and the total potential of this sector.
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Finally in section 4, we discuss the conclusions of the work, the relevance

of the results and what could come next in terms of research in this field.

1.1 EFT for binary system and hierarchy of

scales

As mentioned before, EFT is a great approach for our gravitational binary

system since we can distinguish three very different scales in the problem.

The difference in scale is characterised by the ratio between scales. The

smaller scale would be the scale of a single object (say a black-hole or a

neutron star by itself), rs. Following next we have the scale of the orbital

separation between the two objects of our binary system, the composite,

denoted by r. And finally we have the scale of the wavelength of radiation

that is emitted by the inspiraling binary, λ. The scaling follows as rs <<<

r << λ. Each compact object will have a characteristic mass, m and a

Schwarzschild radius Gm ∼ rs. Also, according to the Virial theorem, for

non-relativistic velocities v << 1, we have that Gm
r
∼ v2, with r being

the radius of the orbital scale. At the radiation scale, we have that the

binary system emits gravitational radiation for which the frequency is fixed

by the orbital frequency of the binary ω. Apart from that, the radiation

modes consist of on-shell gravitons emitted from the system, meaning that

the momentum satisfies k0 = |~k| ≡ k, and the radiation wavelength λ will

scale as:

λ−1 ∼ k ∼ ω ∼ v

r
(1.1)

Taking all of the discussion above into consideration, we end up with the
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following relation for the characteristic scales of the binary:

rs ∼ rv2 ∼ λv3 (1.2)

such that the mass m will be the only scale of the full theory, and v the

small parameter of the perturbative approach of the EFT.

Given this hierarchy of scales, we are able to construct a tower of EFTs

accordingly, to integrate out each scale in turn.

There are two distinguished approaches for constructing an effective action,

the top-down approach, and the bottom-up approach. We use both of them

for the construction of the final effective field theory for this work.

The top-down approach consists of eliminating the DOFs from the full ac-

tion of the highest energy scale, or smallest scale, by standard QFT pertur-

bative methods. Whereas the bottom-up approach consists of constructing

the action from scratch with an infinite series of operators which will contain

DOFs that should be constrained by the symmetries of the system at the

relevant scale.

To arrive at the effective action, we integrate out the modes of the scale we

want to get rid of, obtained through an expansion of new operators accom-

panied by new coupling constants, the Wilson coefficients, that will encode

the UV information that was suppressed from the effective action.

The two types of approach can be used in parallel, and that is in fact a

way to do the fixing, or matching, of the Wilson coefficients. Otherwise they

can be fixed using experimental data.
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Chapter 2

EFTs of post-Newtonian

Gravity

2.1 One-particle EFT

In this section we will discuss the effective action of the smallest scale of the

binary system, the scale corresponding to that of a single compact object such

as a black-hole or neutron star. We will discuss how to obtain an effective

action for the single object using the bottom-up approach to effective field

theory.

In the realm of GR, the full pure gravitational theory that describes the

full theory is given by Einstein-Hilbert’s action:

S[gµν ] = − 1

16πG

∫
d4x
√
gR[gµν ] (2.1)

where gµν(x) is the gravitational field. In order to remove the scale of the

single object, we will decompose the metric two distinct Fourier modes gµν =

gsµν+ḡµν where gsµν are the strong modes of the theory that we want to remove

in order to remove the rs scale. We will remove the DOFs associated with
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these strong field modes, by introducing new interactions and new coefficients

in our theory, following the bottom-up approach. After removing the strong

field modes, we will describe the theory with the remaining modes of the

gravitational field, ḡµν , plus an infinite series of operators which compensate

for the removal of the strong field modes DOFs. After integrating out the

strong modes, we will have:

S[gµν ] −→ S[ḡµν ] + new interaction terms (2.2)

These new interaction terms will include new DOFs in our theory, namely

new generic worldline DOFs that we will introduce to the theory, correspond-

ing to the position and the rotation of the object (in the case of a spinning

particle). These new interaction terms will all be part of what we will call

the point-particle action, Spp. In more details, we will have a new world-

line parameter σ, on which the new worldline DOFs of position, yµ(σ), and

rotation, eµA(σ) will depend. Then, we will have:

S[ḡµν , y
µ(σ), eµA(σ)] = S[ḡµν ] + Spp[ḡµν , y

µ(σ), eµA(σ)] (2.3)

Following from section 1.1, we have that the new operators in the point-

particle action, Oi(σ), will be accompanied by the Wilson coefficients, Ci(rs).

It follows:

S[ḡµν , y
µ(σ), eµA(σ)] = − 1

16πG

∫
d4x
√
ḡR[ḡµν ] +

∞∑

i=1

Ci(rs)

∫
dσOi(σ)

(2.4)

As we can see from the expression above, the Wilson coefficients will de-

pend on the scale we are removing, rs, and will contain all the UV physics

that was removed. As for the new generic operators, they will depend on

the scale of the effective field theory remaining, which is r, the scale of the

orbital separation.
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2.1.1 Point-particle action: Minimal coupling

For the case of a non-spinning massive particle, we deal with the coupling

of a massive object to the gravitational field. The addition of new DOFs

to the theory will be given by the new DOF worldline, yµ(σ). What we

need to do now is to identify the symmetries of both the spacetime and

the object that we need to incorporate in our new operators, and with that

construct all possible worldline operators which couple the worldline DOFs

to the gravitational field in all possible ways allowed by the symmetries.

The relevant symmetries for our theory will be general coordinate invariance,

worldline reparametrization invariance and internal Lorentz invariance of the

local frame field. The latter corresponds to a gauge freedom in the tetrad

field and it will be approached later.

Say τ is the proper time along the worldline, m is the mass of the object.

The action for the minimal coupling term of the point-particle action will

read:

SMpp = −m
∫
dτ = −m

∫ √
ḡµνdyµdyν =

−m
∫
dσ

√
ḡµν

dyµ

dσ

dyν

dσ
= −m

∫
dσ
√
u2 (2.5)

where uµ ≡ dyµ

dσ
is the four-velocity of the object. In EFT, by point-particle

action we are actually meaning all terms in the action that are induced by

the mass. This takes into account the simplest term, corresponding to the

leading term of 0PN order in the post-Newtonian approximation, the one

above, but also higher multipoles that are mass-induced. We follow then to

the non-minimal couplings of the point-particle action.
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2.1.2 Point-particle action: Non-minimal coupling

The mass-induced higher multipoles terms accounts for the finite size effects

of the object in question, and will be the subleading terms in our point-mass

action. Our goal now is to obtain higher PN order terms for which the mass

contributes to. In order to do that, we start with the most trivial guess

for operators that depend on the Riemann tensor and that has covariant

derivatives. The first one that comes to mind is the Ricci tensor, Rµν . But

since we are dealing with a vacuum spacetime, the Ricci tensor is null, Rµν =

0. We call that a redundant operator, meaning that it can be omitted from

the effective action with no physical effect. Next step is to consider operators

containing the Riemann tensor. For the vacuum solutions we have that the

curvature of spacetime is given by the Weyl tensor. It is straightforward to

see that from the fact that a null Ricci tensor and Ricci scalar makes the Weyl

tensor equivalent to the Riemann tensor, from the Weyl tensor definition:

Cµναβ = Rµναβ −
2

n− 2
(gµ[αRβ]ν − gν[αRβ]µ) +

2

(n− 1)(n− 2)
Rgµ[αgβ]ν

(2.6)

We can decompose the Weyl tensor into two definite parity components

an electric and magnetic component that are defined as:

Eµν = Cµανβu
αuβ Bµν =

1

2
εαβγµC

αβ
δνu

γuδ

Since the Weyl tensor and Riemann tensor are equivalent for vacuum solu-

tions we may write the components as:

Eµν = Rµανβu
αuβ Bµν =

1

2
εαβγµR

αβ
δνu

γuδ

They are of even and odd parity, respectively. The definite parities are

important when taking in consideration that we need our action to be parity
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invariant, facilitating the construction of higher order operators in our action.

Taking this into consideration, and the general coordinate invariance, the

point-particle action up to leading order in the non-minimal coupling will

take the following form:

Spp = −m
∫
dσ
√
u2 + cE

∫
dσ
E2
µν(y

α(σ))

(
√
u2)3

+ cB

∫
dσ
B2
µν(y

α(σ))

(
√
u2)3

(2.7)

Where the coefficients cE and cB are the Wilson coefficients for each of these

operators in the action.

2.2 Spinning particle EFT

In this section we will upgrade the description of our system to the case of

an actual spinning gravitating object, which is the real deal. A first point

to note is that taking the spin into consideration requires the object to be

an extended body, and that is where the complexity of this description lies,

since it enters in conflict with the point-particle perspective.

2.2.1 DOFs and Symmetries

In order to construct the effective field theory, is it essential to note all the

DOFs and symmetries we will be dealing with from now on. The three DOFs

we will have in our theory are:

1. The gravitational field DOFs, gµν . For higher orders of the coupling,

beyond the mass monopole and already considering spins, we will define

a tetrad field, ηabẽµa ẽ
ν
b = gµν(x) which will also represents the field

DOFs.
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2. The particle position worldline DOFs, yµ(σ), where σ is an arbitrary

affine parameter, later on set to be the time coordinate, t.

3. The particle worldline rotating DOFs, we consider at first the worldline

tetrad in an orthonormal frame ηAB êµA(σ)êνB(σ) = gµν , and later we will

disentangle the tetrad field DOFs from the particle worldline DOFs by

doing êµA = Λ̂b
Aẽ

µ
b .

As for the symmetries of the system, they will be as follows:

1. General coordinate invariance, in particular parity invariance. Which

is present in a general way in General Relativity.

2. Worldline reparametrization invariance. Used to construct the minimal

and non-minimal couplings parts of the point-particle action.

3. Internal Lorentz invariance of the local frame field. In general, the local

Lorentz transformations will have 3 + 3 DOFs to fix the gauge of the

tetrad field, which in general has 16 DOFs.

4. SO(3) invariance of the body-fixed spatial triad, eµi . The triad consist of

three spacelike vectors, which comes from the 3 DOFs the particle has in

respect to spatial orientation in the body-fixed frame. The consequence

is that the worldline spin DOF ends up also being a SO(3) tensor in

the body-fixed frame.

5. Spin gauge invariance. There will be a invariance under the choice of

the timelike vector of the worldline tetrad, related to the body-fixed

spatial triad discussed above. We will refer to this as the rotational

gauge in what follows.
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It is also assumed that the compact objects have no intrinsic permanent

multipole moments beyond the mass monopole and the spin dipole. Time-

reversal symmetry is not assumed, but the terms which violate this symmetry

are shown to not contribute, [9].

2.2.2 Minimal-coupling

Now let us construct the minimal-coupling part of the action of the spin-

ning particle. We will make use of the tetrad formalism and consider an

orthonormal frame eµA(σ), that is localized on the particle worldline and con-

nects the body-fixed frame with the general coordinates frame, such that

ηABeµAe
ν
B = gµν , where ηAB is the Minskowski metric, reinforcing that the

upper case Latin letters labels the body-fixed frame, and the Greek letters

labels the general coordinates frame. Given that, the reciprocal tetrad will

be given by eµA ≡ ηABeµB, the projection of any tensor onto the tetrad frame,

and the corresponding inverse projection will be, taking a vector as example,

VA ≡ eµAV
A and Vµ ≡ eAµVA, respectively.

Now, making use of the tetrad and general coordinates frame, we are

able to define an antisymmetric tensor of angular velocity, in a generalized

definition of the flat spacetime definition given by Ωab ≡ Λa
A
DΛAb

Dσ
, [24], [25],

which follows as:

Ωµν ≡ eµA
DeAν

Dσ
(2.8)

where D
Dσ

is the covariant derivative with respect to the worldline parameter

σ. Since we want our Lagrangian to be reparametrization invariant, the La-

grangian is required to be an homogeneous function of degree 1 and linear

in the four-velocity uµ, the angular velocity Ωµν , and dependent of the met-

ric, whose dependence is extended beyond minimal coupling to include the

Riemann tensor and further covariant derivatives, that is Lpp[u
µ,Ωµν , g

µν ].
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Then we can define the spin variable which is conjugate to the antisymmet-

ric angular velocity tensor in the following way:

Sµν = −2
∂L

∂Ωµν
(2.9)

where the minus sign is chosen to give the correct form in the nonrelativistic

limit. We will handle this spin variable as a further worldline degree of free-

dom, seeing the spin dipole moment as a graviton source, analogous to the

mass monopole being a classical source on the worldline from a QFT perspec-

tive. Other than that, we also have that the spin will serve as an independent

variational variable in the Lagrangian, and its equations of motions will be

straightforwardly provided by the variation of the effective action.

As for the linear momentum, it is defined as:

pµ = − ∂L

∂uµ
(2.10)

We note that its dependence on the Lagrangian will contribute for higher

orders corrections in the momentum, satisfying pµ = m uµ√
u2

+O(S2). To the

order we computed in the paper [15], which is presented at the results section

of this thesis, we have the first contribution of these higher order terms from

the linear momentum, as we it will be shown.

With all definitions in hand, we get the minimal-coupling term of the

point-particle action for a spinning object by means of Euler’s theorem:

Lpp = −pµuµ −
1

2
SµνΩ

µν (2.11)

hence, the action of equation 2.4 reads as follows:

Spp =

∫
dσ[−m

√
u2 − 1

2
SµνΩ

µν + LNM [uµ, Sµν , gµν(y
µ)]] (2.12)

where LNM stands for the non-minimal coupling part of the action induced

by the presence of spin.
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2.2.3 Gauge-freedom

In order to have afterwards an effective action free of orbital scale DOFs, it is

necessary to implement the rotational gauge fixing at the level of the point-

particle action. But in order to fix the gauge, we first need to have a generic

point-particle action in which the rotational gauge is not yet fixed. In the

following section, we see that the way to do this is to start from a covariant

gauge and then make a transformation to a generic spin variable. We do this

by applying a covariant boost to the worldline tetrad and considering how the

rotational minimal coupling term, 1
2
SµνΩ

µν and the non-minimal coupling

term will be affected by it. We should also comment that an important

feature of our theory is the SO(3) invariance of the worldline spatial tetrad

rather than the SO(1,3) invariance of the worldline tetrad. Since the only

physical feature we have is the spatial orientation of the object, it means

that the action will be formulated in terms of the spatial components of the

tetrads, eµi , which has SO(3) indices i, and the timelike components of the

tetrad, eµ0 will be related to the gauge choice of the spin variable or SSC,

which stands for ’spin supplementary condition’.

2.2.4 Unfixing the gauge

Following the paper [9], we apply a boost, in its 4-dimensional covariant form,

Lµν (w, q), to the body-fixed tetrad eµA from some gauge eµ0 = qµ to a generic

gauge:

êµ0 = wµ, (2.13)

with the following transformation:

êµA = Lµν (w, q)eνA (2.14)
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A unique covariant gauge that eliminates the unphysical DOFs was provided

by Tulczyjew in [26], which is the covariant gauge:

qµ =
pµ√
p2

(2.15)

which corresponds to the SSC given by:

Sµνp
ν = 0. (2.16)

This gauge was shown to be the unique gauge that ensures the unique ”cen-

ter” of the spinning object.

By applying the boost and looking at the effect on the rotational minimal

coupling term 1
2
SµνΩ

µν , it is possible to identify a generic spin variable, Ŝµν ,

related to Sµν , as:

Ŝµν = Sµν −
Sµρw

ρ

√
p2 + pw

pν +
Sνρw

ρ

√
p2 + pw

pµ, (2.17)

which satisfies the following generic SSC:

Ŝµν(pν +
√
p2ê0ν) = 0. (2.18)

That together with the gauge choice for the time component of the tetrad,

êµ0 = wµ, enables us to get rid of all unphysical redundant DOFs on both the

angular velocity and the spin tensors.

We can also express the generic spin variable in respect to a shift to the

’center’ of the object, δzµ ≡ ẑµ − yµ, as it follows:

Ŝµν = Sµν − δzµpν + δzνpµ (2.19)

for which an identification with equation 2.17 leads us to:

δzµ =
Sµρwρ√
p2 + pw

. (2.20)
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It can be easily seen through the initial SSC, Sµνp
ν = 0, that the shift

from the ’center’ position is also orthogonal to the momentum, δzµpµ = 0,

meaning that it is indeed spacelike. And in addition we see that the ’center’

was shifted from the worldline position, yµ, to a non-covariant gauge of the

rotating DOFs. As for the minimal coupling, we have then, in terms of the

new generic spin variable and the shift of position:

1

2
SµνΩ

µν =
1

2
ŜµνΩ̂

µν − δzµDpµ
Dσ

(2.21)

which shows us that we have introduced a gauge freedom in the rotational

minimal-coupling term of the action 2.12. The second term in the equation

above is only taking into account the finite size on the case of a spinning

particle. It does not however carry any Wilson coefficients, as it does not

encapsulate any UV physics of the object.

By contracting equation 2.17 with the momentum pµ we get that the shift

in position may be written as:

δzµ = − Ŝ
µρpρ
p2

(2.22)

hence, the spin variable can be written in terms of the generic spin variable

as:

Sµν = Ŝµν − Ŝµρpρpν
p2

+
Ŝνρp

ρpµ
p2

(2.23)

We will need this expression to restore the gauge invariance in the non-

minimal coupling term of the action. This expression is a projection of the

generic spin variable onto the spatial hypersurface of the rest frame, and it

removes all the spin gauge dependence from the spin variable, since in the

rest frame all spin gauges agree.
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2.2.5 Non-minimal coupling

As mentioned before, we need to keep our action parity invariant, and it is

trickier to keep track of that when dealing with the non-minimal coupling

terms of the action. With that in mind, it was defined the odd-parity spin

vector variable, Sµ, which is given in terms of the spin tensor as:

Sµ ≡ ∗Sµν
pν√
p2

(2.24)

where

∗Sαβ =
1

2
εαβµνS

µν (2.25)

and we can also define the spin length scalar, S2 as S2 ≡ −SµSµ = 1
2
SµνS

µν .

According to the theorem of Cayley-Hamilton, higher powers of the spin

tensor are expected to be dependent, resulting that the only independent

combinations of spin tensors and spin vectors that we can use to build the

action will be the even parity spin tensor, Sµν , the odd-parity spin vector Sµ

and the even parity contraction of the spin tensor, SµρS
ρ
ν , or vector S

ν
, the

latter when indices are not contracted among themselves [9]. In more detail,

looking at the higher powers of the spins tensors, we have:

SµρS
ρ
ν = −SµSν + S2

(
δµν −

uµuν
u2

)

SµαS
α
βS

β
ν = −S2Sµν (2.26)

From the last equation we can get the minimal polynomial of the spin

matrix Sµν , and find that the determinant of the spin matrix is zero. A

similar analysis can be made for the square of the spin tensor, for more

detailed discussion see section 4.1 of [9].

Another important conclusion we arrive at is that the spin-induced multi-

poles are symmetric, traceless, constant and spatial in the body-fixed frame,
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which is also where they should naturally be considered. That is quite intu-

itive since the spin only makes physical sense in flat spatial components, and

indeed when computing the Feynman rules we will always project the spin

from general coordinates to the locally flat frame. The spin tensors can be

shown to be irreducible representation tensors of the SO(3) group, [27].

Now, recalling the electric and magnetic decomposition of the curvature

operator defined in equation 2.7, we can conclude through the symmetries

of the Riemann tensor, the first Bianchi identity and the leading vacuum

equation that they are both symmetric, traceless and orthogonal to uµ. And,

just as the spin-tensors, they are SO(3) tensors, which only have spatial

components in the body-fixed frame.

We note that we only take linear on the Riemann curvature tensor terms

into account, since we are not interested in the tidal effects of external grav-

itational fields in this work.

Now we are left in a position where we can use either a product of two

spin vectors Sµ, or the square of the spin tensor SµρS
ρ
ν , to build our action

term. But following from equation 2.26 they differ by a trace, S2 and terms

that depend on the four-velocity uµ, which will vanish when contracting to

the traceless and orthogonal to uµ curvature tensor decomposition, so we can

use either one of them.

Then, to build our non-minimal coupling terms for the spinning particle

action, we match the odd and even parity spin vector products with the

curvature components from equation 2.7, Eµν and Bµν , respectively, in order

to obtain a parity invariant action. Our higher order spin-induced terms

will also be coupled to the covariant derivatives that will be added to the

curvature tensors.

Somewhat analogous to a multipole expansion in Electrodynamics, we will

add covariant derivatives preceding the curvature components Eµν and Bµν
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in order to get all possible ways of contractions to obtain the scalars in our

action. The covariant derivatives are also projected to the body-fixed frame,

and, from the differential Bianchi identity, we can deduce that the indices

of the covariant derivatives are symmetric among themselves and also with

respect to the curvature tensor components.

In a further analysis, we can also see that that traces involving the covari-

ant derivatives vanish:

DiEij = DiBij = 0 (2.27)

Therefore we can conclude that the electric and magnetic components

of the curvature tensor together with their covariant derivatives form SO(3)

tensors as well, which will couple to the SO(3) spin-induced higher multipoles

in a way to keep the action parity invariant.

Based on all that was discussed above, we may infer a shape for our non-

minimal coupling Lagrangian for all orders in spin as follows:

LNM =
∞∑

n=1

(−1)n

(2n)!

CES2n

m2n−1
Dµ2n ...Dµ3

Eµ1µ2√
u2

Sµ1Sµ2 ...Sµ2n+

∞∑

n=1

(−1)n

(2n+ 1)!

CBS2n+1

m2n
Dµ2n+1 ...Dµ3

Eµ1µ2√
u2

Sµ1Sµ2 ...Sµ2n+1 (2.28)

Note CES2n and CBSn+1 , our new Wilson coefficients for each operator.

These are formally matched using the full UV theory, but in principle the

numerical factors are set so that they are unit for the Kerr black-hole. The

mass exponent and the numerical factors are all set so that the Wilson co-

efficients are dimensionless, and the factorial in the numerical factor comes

from the symmetry of the spin-induced multipoles. The
√
u2 factor that

comes along with the electric and magnetic components are present so that

we can maintain the action raparametrization invariant, considering the ve-

locities on the definitions of the curvature components.
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We may then write some specific terms of the total non-minimal coupling

Lagrangian, as for example the quadrupole and octupole terms:

LES2 = −CES2

2m

Eµν√
u2
SµSν ,

LBS3 = −CBS2

6m2
Dλ

Bµν√
u2
SµSνSλ (2.29)

During this master’s in which we worked particularly with the cubic-in-spin

interaction that enters at the 4.5PN order, both terms above are required for

the extraction of Feynman rules that were used for this sector.

For a discussion about dissipative DOFs that enters, for instance, at the

single object scale, of dissipative tidal effects I refer to section 3.3 of [10].

2.3 EFT of a composite particle

In this section we consider the effective field theory of the composite binary

system of two compact objects (as mentioned before, either with BHs or neu-

tron stars). Here we want to get rid of the orbital scale r. We will get to the

composite action building on the point-particle action. We get to the EFT

using the top-down approach, which is then matched with the bottom-up

constructed point-particle action. We will make use of the standard pertur-

bative techniques of QFT, which will lead us to an expansion of Feynman

diagrams.

First of all, we decompose the gravitational field, ḡµν , once more. In this

case we decompose it on the asymptotic flat spacetime, as follows:

ḡµν = ηµν +Hµν + h̃µν (2.30)

Where ηµν is the Minkowski’s flat metric, Hµν denotes the orbital modes

and h̃µν denotes the radiation modes. The orbital modes are the ones related
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to the gravitational interaction between the two objects, and the radiation

modes are the ones related to the gravitational waves emitted from the whole

binary system. The scale dependence to the velocity of these two modes are:

∂tHµν ∼
v

r
Hµν , ∂iHµν ∼

1

r
Hµν , ∂µh̃µν ∼

v

r
h̃µν (2.31)

The full composite particle action at this scale will be of the kind:

Spp[ḡµν , y
µ
1 , y

µ
2 , e

µ
1A, e

µ
2A] = S[ḡµν ] +

2∑

a=1

Spp[ḡµν , y
µ
a , e

µ
aA](σa) (2.32)

where the indices 1 and 2 are respective to each single object on the binary,

and Spp[µν , y
µ
a , e

µ
aA](σa) corresponds to the action of a single spinning particle,

discussed in section 2.2. From that we follow to the effective action with

the orbital scale removed by integrating out the orbital modes Hµν , which

according to standard QFT will be given by:

eiSeff [g̃µν ,y
µ
c ,e

µ
cA] ≡

∫
DHµνe

iSeff [ḡµν ,y
µ
1 ,y

µ
2 ,e

µ
1A,e

µ
2A] (2.33)

where g̃µν ≡ ηµν + h̃µν . Here the subscript ’c’ corresponds to the generic

worldline DOFs of the composite object. Along this section and thesis we

focus mainly on the Feynman graphs containing the orbital field modes,

corresponding to the conservative sector of the theory.

To get to the next effective theory in the tower, following the bottom-up

approach, the effective action at the radiation scale is defined as:

Seff [g̃µν , y
µ
c , e

µ
cA] = − 1

16πG

∫
d4x
√
g̃R[g̃µν ] + Spp(rad)[ḡµν , y

µ
c , e

µ
cA](σc)

(2.34)

where Spp(rad) above corresponds to the effective point-particle action at the

radiation scale, with worldline DOFs yµc and eµcA.

This scale we make an expansion of Feynman graphs containing a single

external radiation field mode, that are matched onto the radiative sector of
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the theory, which is not approached in this thesis. For more discussions on

the radiation scale check section 5 of [10].

2.3.1 Integrating out the orbital mode

To proceed to obtain the two-body interaction by integrating out the orbital

modes of the EFT, we need first to disentangle the field DOFs from the

particle DOFs and then fix all the rotational gauges.

We follow then to the disentanglement of the DOFs. The generic gauge

worldline tetrad we defined in equation 2.13, êµA, has both rotational particle

DOFs and field DOFs. For that matter, we do the following factorization:

êµA = Λ̂b
Aẽ

µ
b (2.35)

in order to decompose the worldline tetrad. Here Λ̂b
A are the Lorentz

matrices in the locally flat frames and it is defined by:

ηABΛ̂a
AΛ̂b

B = ηab (2.36)

and the tetrad ẽµb , the tetrad the covers the manifold, is defined by:

ηabẽ
a
µẽ
b
ν = gµν (2.37)

When we do that we make a change in the representation of the field

DOFs, which will be encoded in the new tetrad field ẽaµ, while the rotational

DOFs will be expressed in the Lorentz matrices Λb
A. Then we can express

the rotational minimal coupling of equation 2.21 as:

1

2
ŜµνΩ̂

µν =
1

2
ŜabΩ̂

ab
LF +

1

2
Ŝabω

ab
µ u

µ (2.38)

where Ω̂ab
LF ≡ Λ̂aA dΛ̂bA

dσ
is defined as the locally flat angular velocity, ωabµ are

the Ricci rotation coefficients and Ŝab = ẽµa ẽ
ν
b Ŝµν is the spin projected to the
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locally flat frame. In order to fully disentangle the rotational particle and

field DOFs, we must also look at the generic gauge, specified by equations

2.13 and 2.18. We will have then:

Λ̂b
0 = wa = ẽaµw

µ (2.39)

and

Ŝab
(
pb +

√
p2Λ̂0b

)
= 0. (2.40)

However, the disentanglement is not yet all done since the gauge of the

temporal Lorentz matrix, Λ̂a
0 and the temporal spin component Ŝ0i may

contain further field dependence. As it was put forward in [5] we must fix

the gauge of the rotational variables in order to fully disentangle the field

and particle DOFs at the level of the Feynman rules, and finally be able to

integrate out the orbital modes.

2.3.2 Kaluza-Klein parametrization and Tetrad field

gauge

Before we proceed to the fixing of the rotational gauge and the further Feyn-

man calculus, we will make a Kaluza-Klein reduction on time dimension.

That makes sense since it can be shown that the propagator is actually in-

stantaneous at leading order on the post-Newtonian approximation. We can

see it from the relations k0 ' v
r
, |~k| ' 1

r
and the propagator in momentum

space:
∫

d4k

(2π)4
e−ikx

1

k2
=

∫
d4k

(2π)4
e−ik0t−i

~k·~x 1

k2
0 − ~k2

(2.41)

then the denominator can be expressed in the PN approximation as:

1

k2
0 − ~k2

= − 1

~k2

(
1 +

k2
0

~k2
+ ...

)
= − 1

~k2
(1 +O(v2)) (2.42)

30



and the propagator of the orbital scale can be written as:

−
∫
dk0

2π
e−ik0t

∫
d3~k

(2π)3

ei
~k·~x

~k2
= −δ(t)

∫
d3~k

(2π)3

ei
~k·~x

~k2
. (2.43)

Therefore, in the non-relativistic limit it makes sense to use a KK time re-

duction, as the time component can be regarded as compact in respect to

the other spatial components. Then, we define the metric in terms of the

Kaluza-Klein fields as follows:

ds2 = gµνdx
µdxν ≡ e2φ(dt− Aidxi)2 − e−2φγijdx

idxj (2.44)

Here φ,Ai, γij ≡ δij +σij are the Newtonian scalar, the gravito-magnetic vec-

tor and the tensor fields, respectively. The latter ones also obey to γijγjk ≡ δik

and Ai ≡ γijAj. Using Cartan’s approach 2-form method we are able to com-

pute the full gravitational action in terms of the KK parametrization, and

with further computations the propagators and vertices Feynman rules, as

we will see further ahead.

In order to fix the gauge of the tetrad field, it is convenient to choose

Schwinger’s time gauge [28], which is given by:

ẽ0
i (x) = 0. (2.45)

With that, the tetrad field is expressed in terms of the KK fields as:

ẽaµ(x) =

(
eφ −eφAi
0 e−φ

√
γij

)
. (2.46)

Here
√
γij is the symmetric square root of γij, for which we should solve

to the order we are interested in when doing actual computations.

For the following computations we will choose the worldline parameter to

be the time coordinate y0 = t, such that σ = t, u0 = 1 and ui = dyi

dt
≡ vi.
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Notice that in terms of the KK fields we may express the mass coupling of

the action in the following way:

−m
∫
dt

√
gµν

dxµ

dt

dxν

dt
= −m

∫
dt
[
eφ
√

(1− Aivi)2 − e−4φγijvivj
]

(2.47)

and the modulus of the four-velocity, up to second order on velocity, as:

√
u2 =

√
gµνuµuν =

√
g00 + 2vig0i + vivjgij

=
√
e2φ − 2viAie2φ − vivj(δij + σij)e−2φ + vivjAije2φ) (2.48)

2.3.3 Fixing rotational gauge

Finally, in order to get ready for integrating out the orbital scale and tackle

the Feynman calculus, we will fix the rotational gauge. There are different

choices of gauges we can make, but in the following work we chose the canon-

ical gauge, which is the generalization of the Pryce-Newton-Wigner SSC in

special relativity, [29], [30]. That is:

Λ̂a
0 = δa0 (2.49)

which also fixes the spin gauge, or SSC:

Ŝab
(
pb +

√
p2δ0b

)
= 0 (2.50)

This means that we boosted the Lorentz matrices Λa
A to the locally rest

frame, decoupled from the linear motion DOFs and also the field DOFs. This

is the optimum we can get to start our integration of the orbital modes.

But before doing that, it is going to be useful to express the spin variable

components, which were defined at first in the covariant gauge in section

2.2.4, in the canonical gauge. From the SSC in equation 2.50 we get to:

Ŝa0 =
−Saiui
u0 + u

= − Ŝabu
b

u
. (2.51)
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From equations 2.23 and 2.24 we can expand the definition of the spin

vector in time and spatial components, such that we find:

S0 =
1

2

1√
u2
ε0ijkS

ijvk

Sk =
1

2

1√
u2
ε0ijk(2S

0ivj + Sij) (2.52)

From the equations above we are able to find the spin vectors in the canon-

ical gauge. We do that by using equation 2.50 and equation 2.52:

S0 = Ŝkvk

Sl = Ŝl +
1

2
Ŝnvnvl (2.53)

where we expanded only to second order in velocity, which was the order

required for this work.

Further discussion on the treatment of the spins in the locally flat frame

with the canonical gauge implemented, is found in section 5 of [10].

2.3.4 Feynman rules

With the particle and field DOFs disentangled and all the gauges fixed, we

may proceed to the removal of the orbital scale, which will start with the

Feynman rules for our diagrammatic expansion, and afterwards with the

Feynman diagrams for the interaction of the two objects.

In this work we obtained the new Feynman rules for the cubic-in-spin

interaction up to the next-to-leading order, as it will be shown in section 5.

The other Feynman rules required for the computation of the 4.5PN Feynman

diagrams were previously computed, and can be found in [11], and [12].

Formally, all the computations are made using the KK parametrization

of the metric. For instance, the propagators are obtained following from
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equation 2.43 using the NR fields, and read of as:

< φ(x1) φ(x2) > = 4πGδ(t1 − t2)

∫

~k

ei
~k·(~x1−~x2)

~k2

< Ai(x1) Aj(x2) > = −16πGδ(t1 − t2)

∫

~k

ei
~k·(~x1−~x2)

~k2
δij

< σij(x1) σkl(x2) > = 32πGδ(t1 − t2)

∫

~k

ei
~k·(~x1−~x2)

~k2
Pij,kl (2.54)

where Pij,kl = 1
2
(δikδjl + δilδjk − 2δijδkl) and

∫
~k

is an abbreviation of
∫

d3~k
(2π)3

.

When extracting the Feynman rules of the worldline couplings, we want

to project the spin variables onto the locally flat frame and implement the

canonical gauge. To do that we will make use of the tetrad field, ẽµa following

from equation 2.46. In our work it was required the approximation up to the

first order on the KK fields. The tetrad field to first order approximation on

the KK fields reads as:

ẽa
µ(x) =

(
1− φ 0

Ai (1 + φ)δij

)
(2.55)

That, together with the implementation of the canonical gauge on the spin

vectors expressed in equations 2.52 enable us to expand the non-minimal

coupling of the action, to the order we were concerned in this work which

are given by:

L = LES2 + LBS3 = −CES2

2m

Eµν√
u2
SµSν − CBS3

6m2
Dλ

Bµν√
u2
SµSνSλ (2.56)

up to the order we want in the velocities and gravitons (the KK fields),

so that we get each coupling vertex for each KK field in our set of Feynman

rules.

Encrypted in the curvature tensor components Eµν and Bµν we will have a

Riemann tensor, as we can see from equations 2.7. The Riemann curvature
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tensor and the covariant derivative are given by common GR literature, [31],

as:

Rλµνκ = −1

2

[ ∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ

∂xνd∂xλ

]
+ gησ

[
ΓηνλΓ

σ
µκ − ΓηκλΓ

σ
µν

]

(2.57)

where the minus sign is present because of the different convention for the sign

of the flat metric. And, for a tensor of rank (0, 4), the covariant derivative

is applied as:

DσRαβµν = ∂σ − ΓρσρRρβµν − ΓρσρRαρµν − ΓρσρRαρρν − ΓρσρRαβµρ (2.58)

Those two expressions will be handy when extracting the Feynman rules.

We recall that at this stage the orbital modes Hµν are being integrated out of

the theory, following equation 2.33. Then, in order to make a diagrammatic

expansion of the interactions at the orbital scale, we express the metric as

gµν = ηµν+ hµν , where hµν is the graviton field, which in our computations is

being expanded in terms of the KK fields, and can be read off from equation

2.44, or, in a matrix notation:

gµν =

(
e2φ −e2φAj

−e2φAi −e−2φAjγij + e2φAiAj

)

'
(

1 + 2φ+ 2φ2 −Aj − 2Ajφ

−Ai − 2Aiφ −δij + 2φδij − σij − 2φ2δij + 2φσij + AiAj

)
(2.59)

up to second order on the KK fields.

2.3.5 Feynman diagrams

Taking into account all the ingredients discussed above, we are ready to

move on to the construction and computation of the Feynman diagrams for

a specific PN and spin order.
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The graphs will be constructed using each object worldlines and the gravi-

tons that mediate the interaction between them. A crucial element for the

construction of the graphs is the power counting in the small perturbative

parameter v.

From equation 2.31 we see that each partial time derivative scales as v1,

while the partial spatial derivatives scale as v0. A further discussion of power

counting can be found in [2], [3].

As for the power counting of the spin variables, the spin of an object scales

as:

S ∼ mvrotrs (2.60)

where vrot is taken to be 1 for maximally rotating objects, which is what

we assume for this work. Using the Virial theorem, where Gm
r

= v2, the

Schwarzschild radius of the object obeying rs ∼ Gm and vrot = 1 we get:

S ∼ mrs ∼ mv2r ∼ Lv (2.61)

hence, each spin variable is taken to scale with v1 in the Feynman graphs.

We may also consider the bare graph topologies at each order of the grav-

itational constant, G, when analyzing the power counting of a Feynman di-

agram. Each n-graviton self-interaction vertex will scale with G
n
2
−1, while

each n-graviton worldline coupling scales as G
n
2 . In respect to the PN order

notation and the amount of topologies we will have, for a order of Gn, which

corresponds to the (n − 1)PN order, we encounter (n − 1)-loop topologies,

where the n-PN order is the (v/c)2n order correction in GR to Newtonian

gravity.

In this work we tackled for the first time the 4.5PN order, which accounts

for the Feynman diagrams that scale with v9. There were 49 graphs plus 4
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special graphs in total, where 10 were one-graviton exchange, half of them

including the newly computed spin octupole, 15 of them were two-graviton

exchange diagrams, and 24 three-graviton interaction, or one loop graphs,

which is the cubic self interacting graphs.

It is relevant to note that when we mention ’one-loop’ graphs, it is respec-

tive to the self-interacting graphs in classical gravity due to the nonlinearity

of GR in the gravitational constant, G. But, graviton loops on the other hand

will be neglected, as the expansion in Feynman diagrams will only include

tree level graphs in the field.

To get a better feeling of the computation of the diagrams, let us take an

example of the Newtonian interaction, which can be seen in figure 2.1 below.

Figure 2.1: The Newtonian (0PN) and first post-Newtonian (1PN) interactions. (a0)

represents the Newtonian interaction while (a)-(d) represent the first post-Newtonian in-

teraction. Figure (b) present the first relativistic correction to the propagator and (d) is

the first two-graviton exchange graph at lowest PN order. Credit: M. Levi, [10]
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Here, and in all the diagrams we compute in this theory, the time direction

goes up, differently from the convention in particle physics where it usually

flows from left to right. The vertical lines on both ends of the diagram cor-

responds to the worldlines of each one of the two objects. The diagrammatic

correspondence of each propagator can be seen in [10] or [9]. The black dot

on each worldline is representing the mass coupling, and to first PN order we

compute this graph to be:

Fig.(1) =
(
−m1

∫
dt1φ(x1)

)
×
(
−m2

∫
dt1φ(x2)

)

= 4πGm1m2

∫
dt1dt2δ(t1 − t2)

∫

~k

ei
~k·(~x1(t1)−~x2(t2)) 1

~k2

=

∫
dt
Gm1m2

r
(2.62)

where r ≡ |~r| ≡ |~x1 − ~x2|. As we can see this result corresponds to the

well known action of the Newtonian interaction, which corresponds to the

0PN order. For the computation we performed a Wick contraction using

the propagators defined on equation 2.54, and afterwards we integrated over

time with the delta function. For the Fourier integral we use the following

master integral:

I ≡
∫

dd~k

(2π)d
e
~k·~r

(~k2)α
=

1

(4π)
d
2

Γ(d
2
− α)

Γ(α)

(r2

4

)α− d
2

(2.63)

where dimensional regularization is used, and eventually the limit d → 3 is

taken.

Now, as for time derivative treatment the usual procedure is to use inte-

gration by parts to take the time derivative off of the Dirac delta’s, which are

dependent on time, and drop it on the remaining variables of the respective

worldline. For instance, beginning from a term in a graph computation of

the kind:

S1a S1b S2c v
d
2 ∂t1∂t2δ(t1 − t2) (2.64)
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we would drop the time derivatives as it follows:

(
− ∂t1(S1aS1b)

) (
− ∂t2(S2cv

d
2)
)
δ(t1 − t2). (2.65)

We may also take advantage of the following identity:
∫
dt1dt2 ∂t1δ(t1 − t2)f(t1)g(t2) = −

∫
dt1dt2 ∂t2δ(t1 − t2)f(t1)g(t2) (2.66)

when treating the time derivatives. In general each integral in position space

that comes from the bulk vertices will transform into a delta function con-

serving momenta in the vertex.

For the one-loop graphs, the following master integral was needed:

J ≡
∫

dd~k

(2π)d
1

[~k]α[(~k − ~q)2]β
=

1

(4π)
d
2

Γ(α + β − d/2)

Γ(α)Γ(β)

Γ(d/2− α)Γ(d/2− β)

Γ(d− α− β)
(q2)

d
2
−αβ

(2.67)

and as for further one-loop integrals that were needed to compute the NLO

cubic-in-spin sector I refer to Appendix A of [7].

Another important ingredient of the Feynman diagrams is the symmetry

factor. For each Feynman graph computation we must compute the following

symmetry factor as well, which will account for the factor coming from the

action and also the many different ways we can contract the KK fields.

Let’s take an example to see how the symmetry factor of a graph is com-

puted. Below we show diagram b2 from figure 6 in the paper [12]. This

diagram is computed in the paper to G3 order, or equivalently, 2PN order,

and as we can see it is a two-loop diagram.

Writing the expression for the diagram in a schematic way we will have

the following terms:

S1 A1, S1 A
′
1,m1φ,A A σ, σ′φ′φ′,m2φ2 (2.68)
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Figure 2.2: NNLO spin-squared example at 4PN order. Credit: M. Levi, [12].

Each field A from worldline 1, A1 or A′1 can contract with each of the fields

A in the bulk vertex. Meaning that we have 2 different kinds of contractions

for the gravito-magnetic field. In the same analysis we have that each field

φ′ from the bulk vertex may contract with either φ1 or φ2, given us two more

possibilities of contraction. And finally the tensor can only contract in one

way. Taken all of that into account we have:

2× 2× 1 = 4 (2.69)

identical ways of contracting the graviton fields.

Then, we must also take into account the factors that come in the expan-

sion of the effective action from which we collect the Feynman graphs. That

is, in a schematic way:

eSeff ∼ eSEH+S1pp+S2pp

∼
(
SEH +

(SEH)2

2!
+

(SEH)3

3!
+ ...

)
×
(
S1pp +

(S1pp)
2

2!
+ ...

)
×
(
S2pp +

(S2pp)
2

2!
+ ...

)

(2.70)

where SEH denotes the terms from the bulk vertices, and S1pp and S2pp

denotes the terms for each worldline.

Analyzing the diagram from left to right, we have 3 vertices for the first

worldline, two bulk vertices and 1 term for the second worldline. The contri-
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bution from worldline 1 comes from a term of the kind (mφ+S1A1)3 from the

action expansion, more specifically the one with two gravito-magnetic fields,

A2 and one scalar field φ. According to the expansion (mφ + S1A1)3 =

(mφ)3 + 3(mφ)2S1A1 + 3mφ(S1A1)2 + (S1A1)3, we spot our term to be

3mφ(A)2, and hence the coefficient from the first worldline is 3
3!

.

The same analysis is made to the two bulk vertices, leading us to a prefactor

of 2
2!

, and to the second worldline, which is 1
1!

.

The total factor for this particular analysis above will be:

3

3!
× 2

2!
× 1

1!
=

1

2
(2.71)

and then the total symmetry factor of this diagram will be:

4× 1

2
= 2 (2.72)

The following step after computing all Feynman diagrams is to obtain the

interaction potential for the sector which will contain only physical DOFs.

We note that all diagrams should be included together with their mirror

diagrams. All the present higher-order time derivatives in the potential can

be eliminated if we redefine the position and spin variables already at the

level of the action. The procedure consists remaining the higher order time

derivatives through a substitution of variables in the action, as developed in

[8].
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Chapter 3

Effective action of cubic-in-spin

interaction at NLO

The sector for the cubic-in-spin interaction at 4.5PN order for a coalescent bi-

nary system of BHs or neutron-stars was fully computed during this master’s

project. They were first presented in [15], which was prepared for submis-

sion to JHEP and is under review at the current time. The results for each

Feynman diagram and the total potential were computed manually and au-

tomatically, using the EFTofPNG code, [16]. The paper is presented below.
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Abstract: In this work we derive for the first time the complete gravitational cubic-

in-spin effective action at the next-to-leading order for the interaction of generic compact

binaries via the effective field theory for gravitating spinning objects and its extension to

this sector. This sector, which enters at the fourth and a half post-Newtonian (4.5PN)

order for rapidly rotating compact objects, completes finite size effects up to this order,

and is the first sector completed beyond the current state of the art for generic compact

binary dynamics at the 4PN order. At this order in spins with gravitational nonlinearities

we have to take into account additional terms, which arise from a new type of worldline

couplings, due to the fact that at this order the Tulczyjew gauge for the rotational degrees

of freedom, which involves the linear momentum, can no longer be approximated only in

terms of the four-velocity. One of the main motivations for us to tackle this sector is also to

see what happens when we go to a sector, which corresponds to the gravitational Compton

scattering with quantum spins of three halves, and maybe possibly also get an insight on

the inability to uniquely fix its amplitude from factorization when spins of five halves and

higher are involved. A general observation that we can clearly make already is that even-

parity sectors in the order of the spin are easier to handle than odd ones. In the quantum

context this corresponds to the greater ease of dealing with bosons compared to fermions.
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1 Introduction

Since the first detection of gravitational waves (GWs) from a binary black hole coalescence

was announced in 2016 it has become increasingly pressing to provide high precision the-

oretical predictions for the modeling of GW templates. The latter significantly rely on

implementing analytical results obtained within the post-Newtonian (PN) approximation

of classical Gravity [1] via the Effective-One-Body approach [2]. In particular in recent

years we have made a remarkable progress in pushing the precision frontier for the orbital

dynamics of compact binaries, i.e. whose components are generic compact objects. The

complete state of the art to date for the orbital dynamics of a generic compact binary is

shown in table 1.

As a measure for the loop computational scale we show in table 1 the number of n-

loop graphs that enter at the NnLO in l powers of the spin, i.e. up to the lth spin-induced

multipole moment, in the sectors completed to date. The count is based on computations

carried out with the effective field theory (EFT) of PN Gravity [3], which use the Kaluza-

Klein decomposition of the field from [4], that has considerably facilitated high precision

computations within the EFT approach [4–16]. As can be seen the current complete state

of the art is at the 4PN order, whereas the next-to-leading order (NLO) cubic-in-spin

sector that enters at the 4.5PN order is evaluated in this paper. All of the sectors at

the current state of the art (but the top right entry at the 4PN order for the non-rotating

case) are available in the public “EFTofPNG” code at https://github.com/miche-levi/

pncbc-eftofpng [17].

Let us stress that in order to attain a certain level of PN accuracy, the various sectors

should be tackled across the diagonals of table 1, rather than along the axes, namely
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HHHHHHl

n
(N0)LO N(1)LO N2LO N3LO N4LO

S0 1 0 3 0 25

S1 2 7 32 174

S2 2 2 18 52

S3 4 24

S4 3 5

Table 1. The complete state-of-the-art of PN Gravity theory for the orbital dynamics of generic

compact binaries. Each PN correction enters at the order n+ l+ Parity(l)/2, where the parity is 0

or 1 for even or odd l, respectively. We elaborate on the meaning of the numerical entries and the

gray area in the text below.

progress must be made by going in parallel to higher loops and to higher orders of the

spin. In general, the former involves more challenges of computational loop technology

and tackling associated divergences, whereas the latter necessitates an improvement of the

fundamental understanding of spin in gravity, and tackling finite size effects with spin [18].

These enter first at the 2PN order [19] from the LO spin-induced quadrupole. Within the

EFT approach whose extension to the spinning case was first approached in [20], finite

size effects include as additional parameters the Wilson coefficients, that correspond to the

multipole deformations of the object due to its spin, as in [21] for the quadrupole.

With a considerable time gap from the LO result, the NLO spin-squared interaction

was treated in a series of works [11, 22–25], where the result in [11] was derived within

the formulation of the EFT for gravitating spinning objects introduced there. The LO

cubic- and quartic-in-spin interactions were first tackled in [24, 26] for black holes. In [10],

based on the formulation presented in [11], these were derived for generic compact objects,

where also the quartic-in-spin interaction was completed. Only specific pieces of the latter

results were recovered in [27] via S-matrix combined with EFT techniques, whereas [28]

which treated only cubic-in-spin effects, also provided the LO effects in the energy flux.

The work in [29] then also derived for the case of black holes the LO sectors to all orders in

spin. Finally, the NNLO spin-squared interaction was derived in [13]. Notably the latter

results together with the complete quartic-in-spin results for generic compact objects in

[10], both at the 4PN order, were derived so far exclusively within the EFT formulation of

spinning gravitating objects [11].

Recently, there has also been a surge of interest in harnessing modern advances in

scattering amplitudes to the problem of a coalescence of a compact binary. Notably, a

new implementation for the non-rotating case to the derivation of classical potentials was

carried out in [30, 31]. Further, based on a new quantum formalism introduced in [32] for

massive particles of any spin, new approaches to the computation of spin effects of black

holes in the classical potential were put forward in [33, 34] and then in [35, 36]. In these

approaches classical effects with spin to the lth order correspond to amplitudes involving a

quantum spin of s = l/2. In particular as of the one-loop level the gravitational Compton

– 2 –



Figure 1. The gravitational Compton scattering relevant as of the one-loop level. The gravitational

Compton amplitude involves two massive spinning particles and two gravitons, where factorization

constraints do not uniquely determine the amplitude for s > 2 [32].

amplitude shown in figure 1 is required, where factorization constraints do not uniquely

determine the amplitude for s > 2 [32]. The gray area in table 1 then corresponds in

the quantum context to where the gravitational Compton scattering with a spin s > 1 is

required.

Notably, the gray area in table 1 also corresponds to, as was already pointed out in [11],

where we can no longer take the linear momentum pµ, with which the generic formulation

in [11] was derived, to be its leading approximation given by m uµ√
u2

, as was done in all past

spin sectors tackled, but we have to take into account corrections to the linear momentum

from the non-minimal coupling part of the spinning particle action. Can we then get a

well-defined result? Can we get an insight from examining this new feature at the classical

level on the non-uniqueness of fixing the graviton Compton amplitude with s > 2?

This work builds on the formalism of the EFT for gravitating spinning objects intro-

duced in [11] and the implementation on [10] to compute the cubic-in-spin interaction at

the NLO, that enters at the 4.5PN order for maximally-rotating compact objects, beyond

the current state of the art of PN theory in general and with spins in particular [37], and is

the leading sector in the intriguing gray area of table 1. We compute the complete sector,

taking into account all interactions that include all possible multipoles up to the octupole.

Thus beyond pushing the state of the art in PN theory, there are two conceptual objectives

that we get to address in this work: 1. To learn how the difference from the leading linear

momentum to its correction affects the results; 2. To see whether this difference is related

with the non-uniqueness of the gravitational Compton amplitude of higher spin states, or

to get any possible insight on this non-uniqueness.

The paper is organized as follows. In section 2 we go over the formulation from [11],

and the necessary ingredients to evaluate this sector. In section 3 we present the essential

computation, where the linear momentum assumes its leading approximation in terms of

the four-velocity, as done in all past evaluations of spin sectors. In section 4 we find the new

contributions arising from the correction to the leading linear momentum, which matters

as of this sector, and gives rise to a new type of worldline-graviton coupling. In section 5

we compute the final action of this sector, and finally we conclude in section 6 with some

observations and questions.
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2 The EFT of gravitating spinning objects

Let us consider the ingredients that are required in order to carry out the evaluation of this

sector, that contains spins up to cubic order along with first gravitational nonlinearities.

This evaluation will build on the EFT of gravitating spinning objects formulated in [11], and

its implementation from LO up to the state of the art at the 4PN order in [10–13, 37]. We

will also use here the Kaluza-Klein decomposition of the metric [4, 38] to scalar, vector and

symmetric tensor components, which was adopted in all high order PN computations both

with and without spins for its facilitating virtues [18], and follow conventions consistent

with the abovementioned works. Further, we follow similar gauge choices, notational and

pictorial conventions as presented in [11].

The effective action we start from is that of a two-particle system [18], with each of

the particles described by the one-particle effective action of a spinning particle, that was

provided in [11]. This effective action contains a pure gravitational piece, from which the

propagators and self-interacting vertices are derived. The Feynman rules for the propagator

and the time insertions on the propagators are given e.g. in eqs. (5)-(10) of [9], and for the

cubic gravitational vertices in eqs. (2.10)-(2.13), and (2.15) of [12]. Further, for each of

the two particles the worldline action of a spinning particle is considered from [11], where

its spin-induced non-minimal coupling part was constructed, and then gauge freedom of

the rotational DOFs is incorporated into the action. We recall that this action has the

following form:

Spp(σ) =

∫
dσ

[
−m
√
u2 − 1

2
ŜµνΩ̂µν − Ŝµνpν

p2

Dpµ
Dσ

+ LSI

]
, (2.1)

given in terms of four velocity uµ, the linear momentum pµ and the generic rotational

DOFs, denoted with a hat e.g. Ŝµν , and where the label “SI” stands for the spin-induced

part of the action, which for the sector evaluated here will consist of its two leading terms

given by

LSI =− CES2

2m

Eµν√
u2
SµSν − CBS3

6m2
Dλ

Bµν√
u2
SµSνSλ, (2.2)

where here it is the spin vector Sµ that is used, as described in detail in [11, 18]. We recall

that in eq. (2.1) there is an extra term, which appears in the action from the restoration

of gauge freedom of the rotational DOFs. This term, which is essentially the Thomas

precession as discussed in detail in [11] (and recovered recently as “Hilbert space matching”

in [36, 39]), contributes to all orders in the spin as of the LO spin-orbit sector, and in

particular also to finite size spin effects, though it does not encode any UV physics, but

rather in the context of an effective action just accounts for the fact that a relativistic

gravitating object has an extended measure.

Since we compute here the complete NLO cubic-in-spin sector our graphs will contain

all multipoles in the presence of spin up to the spin-induced octupole, i.e. also including

the mass, spin and spin-induced quadrupole. For this reason we need to use Feynman rules

of worldline-graviton coupling to NLO for all of these multipoles, where in this work we
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need to derive further new rules for the octupole couplings. The Feynman rules required

for the mass couplings are given in eqs. (64), (67), (68), (79), (81), (93), (95) of [7]. Next,

we approach the Feynman rules linear in spin, noting we that we have first kinematic

contributions as noted in eq. (5.28) of [11], that are linear in the spin but have no field

coupling, which we will take into account in section 5.

The Feynman rules required for the linear-in-spin couplings are given in eqs. (5.29)-

(5.31) of [11], and eqs. (2.31)-(2.34) of [12]. For the spin quadrupole couplings the rules are

given in eqs. (2.18)-(2.24) of [13], and for the LO spin octupole couplings they are found in

eqs. (2.19),(2.20) of [10]. As we noted in addition to the abovementioned Feynman rules,

further rules are required here for the spin-induced octupole worldline-graviton coupling.

The two Feynman rules of the scalar and vector components of the KK decomposition,

which appeared already at LO in [10] should be extended to higher PN order, and further

we will have new rules that enter for the one-graviton coupling of the tensor component of

the KK fields, and a couple of two-graviton couplings, involving again the scalar and the

vector components of the KK fields, which appeared at LO.

The extended rules for the one-graviton couplings are then given as follows:

=

∫
dt

[
CBS3

12m2
SiSjεklm

[
Ak,ijl

(
Sm

(
1 +

1

2
v2
)
− 1

2
vmSnv

n
)

+ Sm

(
vlvn

(
Ai,njk −An,ijk

)
+ vl

(
∂tAk,ij + ∂tAi,jk

)
+ vi∂tAk,jl

)]]
,

(2.3)

=

∫
dt

[
CBS3

3m2
SiSjεklmSmv

l
(
φ,ijk

(
1 +

v2

2

)
+ vi∂tφ,jk

)]
, (2.4)

where the rectangular boxes represent the spin-induced octupole.

The new Feynman rules required here are given as follows:

=

∫
dt

[
CBS3

12m2
SiSjεklmSm∂i∂l

((
∂jσkn − ∂nσjk

)
vn − ∂tσjk

)]
, (2.5)

for the one-graviton coupling, whereas for the two-graviton couplings we get:

=

∫
dt

[
CBS3

12m2
SiSjεklmSm

(
6φAk,ijl + 9φ,iAk,jl + 3φ,k∂j

(
Ai,l −Al,i

)

+ 4φ,ijAk,l + 4φ,jk
(
Ai,l −Al,i

)
+ δijφ,nAl,kn

)]
, (2.6)

=

∫
dt

[
CBS3

3m2
SiSjεklmSm

[
vl
(

2φ,ijkφ+ 3φ,ijφ,k + 5φ,iφ,jk − δijφ,nφ,kn
)

+ viφ,ljφ,k

]]
.

(2.7)
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We note that in these rules the spin is already fixed to the canonical gauge and all indices

are Euclidean. Notice the complexity of these couplings with respect to the other worldline

couplings at the NLO level, and notice also the dominant role that the gravitomagnetic

vector plays in the coupling to the odd-parity octupole, similar to the situation in the

coupling to the spin dipole. Note that this is the first sector which necessitates to take the

curved Levi-Civita tensor into account.

For this sector there is no need to extend the non-minimal coupling part of the spinning

particle action and add higher dimensional operators beyond what was provided in [11],

but we need to pay special attention to the new feature that differentiates this specific

sector from all the spin sectors which were tackled in the past. In this sector it is no

longer sufficient to use the leading approximation for the linear momentum pµ in terms

of the four-velocity uν all throughout, rather one has to take into account the subleading

term in the linear momentum, which is linear in Riemann and quadratic in the spin and

becomes relevant exactly once we get to the level that is non-linear in gravity and cubic

in the spins, i.e. at this sector, as was already explicitly noted in [11]. We will address in

detail the particular contributions coming from this new feature in section 4 below after

we have done the essential computation, which requires only the leading approximation to

the linear momentum, similar to what was considered in all past PN computations with

spin, in the following section.

3 The essential computation

In this section we carry out the perturbative expansion of the effective action in terms of

Feynman graphs, and provide the value of each diagram, under the leading approximation

of the linear momentum. At the NLO level, i.e. up to the G2 order, with spins all of the

three relevant topologies are realized even when the beneficial KK decomposition of the

field is used, as discussed in [6, 7, 11, 18]. As shown in figures 2-4 below (drawn using

Jaxodraw [40, 41] based on [42]) there is a total of 49 = 10 + 15 + 24 graphs making up

the sector, distributed among the relevant topologies of one- and two-graviton exchanges

and cubic self-interaction, respectively. As shown in table 1 about half of the total graphs

require a one-loop evaluation (the highest loop in this sector). We note that as we go into

the nonlinear regime of the sector, the options for the make up of the interaction become

more intricate.

At the one-graviton exchange level we only have two kinds of interaction contributing,

similar to the LO in [10], namely either an octupole-monopole or a quadrupole-dipole

interaction. As noted in [10] there are nice analogies among these interactions according

to the parity of the multipole moments involved. Following these analogies the relevant

graphs of one-graviton exchange are easily constructed. Yet, once we proceed to the level

nonlinear in the gravitons further types of interactions emerge. In particular, there are also

interactions involving the various multipoles on two different points of the same worldline,

which add up to interactions that are cubic in the spin, such as a spin and a spin-induced

– 6 –



(a9) (a10)(a8)(a7)

(a4) (a5) (a6)(a1) (a2) (a3)

Figure 2. The one-graviton exchange Feynman graphs, which contribute to the NLO cubic-in-spin

interaction at the 4.5PN order for maximally rotating compact objects. These graphs should be

included together with their mirror images, i.e. with the worldline labels 1↔ 2 exchanged. At the

one-graviton exchange level we only have two kinds of interactions contributing, similar to the LO

in [10], namely either a quadrupole-dipole or an octupole-monopole one. As noted in [10] there are

nice analogies among these interactions according to the parity of the multipole moments involved.

Following these analogies the relevant graphs here are easily constructed. Notice that we have here

the four graphs that appeared at the LO with the quadratic time insertions on the propagators at

graphs (a7)-(a10), and a new octupole coupling involving the tensor component of the KK fields at

graph (a3).

quadrupole, or two spin dipoles on the same worldline, as can already be seen as of the

NLO spin-squared sector [11, 13].

We note that all the graphs in this sector should be included together with their mirror

images, i.e. with the worldline labels 1 ↔ 2 exchanged. For more specific details on the

generation of the Feynman graphs, and their evaluation, including the conventions and

notations used here, we refer the reader to [18] and references therein.

3.1 One-graviton exchange

As can be seen in figure 2 we have 10 graphs of one-graviton exchange in this sector, the

majority of which already involve time derivatives to be applied. Consistent with former

works by one of the authors we keep all of the higher order time derivative terms that

emerge in the evaluations of the graphs, and they will be treated properly via redefinitions

of the position and the rotational variables as shown in [43]). Notice that we have here the

4 graphs that appeared at the LO with the quadratic time insertions on the propagators

at graphs 1(a7)-(a10), and a new octupole coupling involving the tensor component of the

KK fields at graph 1(a3).

The graphs in figure 2 are evaluated as follows:

Fig. 2(a1) = −C1(BS3)
G

r4

m2

m2
1

[
~S1 · ~v1 × ~v2

(
2~S1 · ~v2

~S1 · ~n+ ~v2 · ~n
(
S2

1 − 5
(
S1 · ~n

)2)− ~S1 · ~v1
~S1 · ~n

)
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+ ~S1 · ~v1 × ~n
((
S2

1 − 5
(
~S1 · ~n

)2)
~v1 · ~v2 + ~S1 · ~v2

(
~S1 · ~v2 − 5~S1 · ~n ~v2 · ~n

)

− ~S1 · ~v2

(
~S1 · ~v1 − 5~S1 · ~n ~v1 · ~n

))
+ ~S1 · ~v2 × ~n

(1

2
S2

1

(
v2

1 + v2
2

)

− ~S1 · ~v1

(
~S1 · ~v2 − 5~S1 · ~n ~v2 · ~n

)
− 5

2

(
~S1 · ~n

)2(
v2

1 + v2
2

))

− 1

2
~v1 · ~v2 × ~n ~S1 · ~v1

(
S2

1 − 5
(
~S1 · ~n

)2)]

− 1

3
C1(BS3)

G

r3

m2

m2
1

[
~S1 · ~v1 × ~a2

(
S2

1 − 3
(
~S1 · ~n

)2)− 3~S1 · ~v1 × ~n~S1 · ~a2
~S1 · ~n

(3.1)

+ 3~S1 · ~a2 × ~n~S1 · ~v1
~S1 · ~n

]
, (3.2)

Fig. 2(a2) =
1

2
C1(BS3)

G

r4

m2

m2
1

[
~S1 · ~v1 × ~n

(
S2

1

(
v2

1 + 3v2
2

)
− 2~S1 · ~n

(
~S1 · ~v2 − 5 ~S1 · ~n ~v2 · ~n

)

− 5(~S1 · ~n)2
(
v2

1 + 3v2
2

))
− 2~S1 · ~v1 × ~v2

~S1 · ~v1
~S1 · ~n

]
, (3.3)

Fig. 2(a3) = −C1(BS3)
G

r4

m2

m2
1

[(
~S1 · ~v1 × ~n v2

2 − ~S1 · ~v2 × ~n ~v1 · ~v2

)(
S2

1 − 5(~S1 · ~n)2
)]

+ C1(BS3)
G

r3

m2

m2
1

[
~S1 · ~v2 × ~n

(
~S1 · ~v2

~̇S1 · ~n+ ~̇S1 · ~v2
~S1 · ~n

)

+ ~̇S1 · ~v2 × ~n ~S1 · ~v2
~S1 · ~n

]
, (3.4)

Fig. 2(a4) =
3

2
C1(ES2)

G

r4

1

m1

[
2~S1 · ~S2 × ~v2

(
~S1 · ~v1 ~v1 · ~n− ~S1 · ~n

(
3v2

1 + v2
2

) )

+ 2~S2 · ~v1 × ~v2

(
2S2

1 ~v1 · ~n− ~S1 · ~v1
~S1 · ~n

)

− ~S2 · ~v2 × ~n
(
S2

1

(
5v2

1 + v2
2 − 10

(
~v1 · ~n

)2)− 2~S1 · ~v1

(
~S1 · ~v1 − 5~S1 · ~n ~v1 · ~n

)

− 5
(
~S1 · ~n

)2(
3v2

1 + v2
2

))]

+ C1(ES2)
G

r3

1

m1

[
2 ~S1 · ~S2 × ~v2

(
~S1 · ~a1 + ~̇S1 · ~v1

)
+ 2 ~̇S1 · ~S2 × ~v2

~S1 · ~v1

+ 4~S2 · ~v1 × ~v2
~̇S1 · ~S1 + 2~S2 · ~v2 × ~a1 S

2
1 + ~S2 · ~v2 × ~a2

(
S2

1 − 3
(
~S1 · ~n

)2)

− 6~S2 · ~v2 × ~n
(
S2

1 ~a1 · ~n− 2 ~̇S1 · ~S1 ~v1 · ~n+ ~S1 · ~v1
~̇S1 · ~n+ ~̇S1 · ~v1

~S1 · ~n

+ ~S1 · ~a1
~S1 · ~n

)]

− 4C1(ES2)
G

r2

1

m1

~S2 · ~v2 × ~n
(
Ṡ2

1 + ~̈S1 · ~S1

)
, (3.5)

Fig. 2(a5) = −3

2
C1(ES2)

G

r4

1

m1

[
2~S1 · ~S2 × ~v1

(
~S1 · ~v1 ~v1 · ~n− ~S1 · ~n v2

1

)

− 6~S1 · ~S2 × ~v2
~S1 · ~n ~v1 · ~v2 + ~S2 · ~v1 × ~v2

(
S2

1~v2 · ~n+ 2~S1 · ~v2
~S1 · ~n

− 5
(
~S1 · ~n

)2
~v2 · ~n

)
− ~S2 · ~v1 × ~n

(
S2

1

(
3v2

1 − 10
(
~v1 · ~n

)2)− 2
(
~S1 · ~v1

)2

+ 10~S1 · ~v1
~S1 · ~n ~v1 · ~n− 5

(
~S1 · ~n

)2
~v2

1

)

– 8 –



− 3~S2 · ~v2 × ~n
(
S2

1 − 5
(
~S1 · ~n

)2)
~v1 · ~v2

]

− 3C1(ES2)
G

r3

1

m1

[
~S1 · ~S2 × ~n ~̇S1 · ~n+ ~̇S1 · ~S2 × ~n ~S1 · ~n

]

− 1

2
C1(ES2)

G

r3

1

m1

[
~S1 · ~S2 × ~v2

(
4 ~̇S1 · ~v2 − 3 ~̇S1 · ~n ~v2 · ~n

)

+ ~̇S1 · ~S2 × ~v2

(
4 ~S1 · ~v2 − 3~S1 · ~n ~v2 · ~n

)
− 3~S1 · ~S2 × ~n

(
~S1 · ~v1 ~a1 · ~n

+ ~̇S1 · ~v1 ~v1 · ~n+ ~S1 · ~a1 ~v1 · ~n− 2~S1 · ~n ~v1 · ~a1 − ~̇S1 · ~n v2
1

)

− 3 ~̇S1 · ~S2 × ~n
(
~S1 · ~v1 ~v1 · ~n− ~S1 · ~n v2

1

)

+ 4
(
~S2 · ~v1 × ~a2 + ~̇S2 · ~v1 × ~v2

)(
S2

1 − 3
(
~S1 · ~n

)2)

− 3~S2 · ~v1 × ~n
(

2S2
1 ~a1 · ~n+ 4 ~̇S1 · ~S1 ~v1 · ~n− ~S1 · ~v1

~̇S1 · ~n− ~̇S1 · ~v1
~S1 · ~n

− ~S1 · ~a1
~S1 · ~n

)
− 3~S2 · ~a1 × ~n

(
2S2

1 ~v1 · ~n− ~S1 · ~v1
~S1 · ~n

)

+ 3~S2 · ~v2 × ~n
(
8 ~̇S1 · ~S1 ~v2 · ~n− 3~S1 · ~v2

~̇S1 · ~n− 3 ~̇S1 · ~v2
~S1 · ~n

)]

+ 2C1(ES2)
G

r2

1

m1

[(
~S1 · ~S2 × ~a2 + ~S1 · ~̇S2 × ~v2

)
~̇S1 · ~n

+
(
~̇S1 · ~̇S2 × ~v2 + ~̇S1 · ~S2 × ~a2

)
~S1 · ~n− 2

(
~̇S2 · ~v2 × ~n+ ~S2 · ~a2 × ~n

)
~̇S1 · ~S1

]
,

(3.6)

Fig. 2(a6) = −3C1(ES2)
G

r4

1

m1

[
2~S1 · ~S2 × ~v1

~S1 · ~n ~v1 · ~v2 − 2~S1 · ~S2 × ~v2
~S1 · ~n v2

1

+
(
~S2 · ~v1 × ~n ~v1 · ~v2 − ~S2 · ~v2 × ~n v2

1

)(
S2

1 − 5
(
~S1 · ~n

)2)]

+ C1(ES2)
G

m1r3

[
~S1 · ~S2 × ~v1

~̇S1 · ~v2 + ~̇S1 · ~S2 × ~v1
~S1 · ~v2 + 2~S1 · ~S2 × ~a1

~S1 · ~v2

− 2~S1 · ~S2 × ~v2

(
~̇S1 · ~v1 + ~S1 · ~a1

)
− 2 ~̇S1 · ~S2 × ~v2

~S1 · ~v1

+ 3~S1 · ~S2 × ~n
(
~S1 · ~n ~a1 · ~v2 − ~S1 · ~v2 ~a1 · ~n+ ~̇S1 · ~n ~v1 · ~v2

)
+ 3 ~̇S1 · ~S2 × ~n ~S1 · ~n ~v1 · ~v2

− 6~S2 · ~v1 × ~v2
~̇S1 · ~S1 + 2~S2 · ~v2 × ~a1S

2
1 + 3~S2 · ~v1 × ~n

(
2 ~̇S1 · ~S1 ~v2 · ~n

− ~S1 · ~v2
~̇S1 · ~n− ~̇S1 · ~v2

~S1 · ~n
)
− 3~S2 · ~v2 × ~n

(
S2

1 ~a1 · ~n+ 4 ~̇S1 · ~S1 ~v1 · ~n

− 2~S1 · ~v1
~̇S1 · ~n− 2 ~̇S1 · ~v1

~S1 · ~n− 2~S1 · ~n ~S1 · ~a1

)

+ 3~S2 · ~a1 × ~n
(
S2

1~v2 · ~n− ~S1 · ~v2
~S1 · ~n

)]

− C1(ES2)
G

r2

1

m1

[
~S1 · ~S2 × ~n ~̈S1 · ~v2 + 2 ~̇S1 · ~S2 × ~n ~̇S1 · ~v2 + ~̈S1 · ~S2 × ~n ~S1 · ~v2

− 2~S2 · ~v2 × ~n
(
Ṡ2

1 + ~̈S1 · ~S1

)]
, (3.7)

Fig. 2(a7) =
1

2
C1(BS3)

G

r4

m2

m2
1

[
~S1 · ~v1 × ~v2

(
S2

1~v2 · ~n+ 2~S1 · ~v2
~S1 · ~n− 5

(
~S1 · ~n

)2
~v2 · ~n

)

− ~S1 · ~v2 × ~n
(
S2

1

(
~v1 · ~v2 − 5~v1 · ~n ~v2 · ~n

)
+ 2~S1 · ~v1

~S1 · ~v2

– 9 –



− 10~S1 · ~v1
~S1 · ~n ~v2 · ~n− 10~S1 · ~v2

~S1 · ~n ~v1 · ~n
− 5
(
~S1 · ~n

)2(
~v1 · ~v2 − 7~v1 · ~n ~v2 · ~n

))]

+
1

6
C1(BS3)

G

r3

m2

m2
1

[
~S1 · ~v1 × ~a2

(
S2

1 − 3
(
~S1 · ~n

)2)

− 6~S1 · ~v2 × ~n
(
~̇S1 · ~S1~v2 · ~n+ ~̇S1 · ~v2

~S1 · ~n+ ~S1 · ~v2
~̇S1 · ~n− 5 ~̇S1 · ~n ~S1 · ~n ~v2 · ~n

)

+ 3~S1 · ~a2 × ~n
(
S2

1~v1 · ~n+ 2~S1 · ~v1
~S1 · ~n− 5

(
~S1 · ~n

)2
~v1 · ~n

)

− 3 ~̇S1 · ~v2 × ~n
(
S2

1~v2 · ~n+ 2~S1 · ~v2
~S1 · ~n− 5

(
~S1 · ~n

)2
~v2 · ~n

)]

− 1

6
C1(BS3)

G

r2

m2

m2
1

[
2~S1 · ~a2 × ~n

(
~̇S1 · ~S1 − 3 ~̇S1 · ~n ~S1 · ~n

)

+ ~̇S1 · ~a2 × ~n
(
S2

1 − 3(~S1 · ~n)2
)]
, (3.8)

Fig. 2(a8) =
1

2
C1(BS3)

G

r4

m2

m2
1

[
~S1 · ~v1 × ~v2

(
S2

1~v1 · ~n+ 2~S1 · ~v1
~S1 · ~n − 5(~S1 · ~n)2~v1 · ~n

)

+ ~S1 · ~v1 × ~n
(
S2

1

(
~v1 · ~v2 − 5 ~v1 · ~n ~v2 · ~n

)
+ 2~S1 · ~v1

~S1 · ~v2

− 10~S1 · ~v1
~S1 · ~n ~v2 · ~n− 10~S1 · ~v2

~S1 · ~n ~v1 · ~n
− 5(~S1 · ~n)2

(
~v1 · ~v2 − 7~v1 · ~n ~v2 · ~n

))]

− 1

6
C1(BS3)

G

r3

m2

m2
1

[
2~S1 · ~v1 × ~v2

(
~̇S1 · ~S1 − 3 ~̇S1 · ~n ~S1 · ~n

)

−
(
~S1 · ~v2 × ~a1 − ~̇S1 · ~v1 × ~v2

)(
S2

1 − 3
(
~S1 · ~n

)2)− 6~S1 · ~v1 × ~n
(
~̇S1 · ~S1 ~v2 · ~n

+ ~̇S1 · ~v2
~S1 · ~n+ ~S1 · ~v2

~̇S1 · ~n− 5 ~̇S1 · ~n ~S1 · ~n ~v2 · ~n
)

− 3
(
~S1 · ~a1 × ~n+ ~̇S1 · ~v1 × ~n

)(
S2

1 ~v2 · ~n+ 2~S1 · ~v2
~S1 · ~n− 5(~S1 · ~n)2~v2 · ~n

)]
,

(3.9)

Fig. 2(a9) = −3

2
C1(ES2)

G

r4

1

m1

[
2~S1 · ~S2 × ~v2

(
~S1 · ~v1 ~v2 · ~n + ~S1 · ~v2 ~v1 · ~n

+ ~S1 · ~n ~v1 · ~v2 − 5~S1 · ~n ~v1 · ~n ~v2 · ~n
)
− ~S2 · ~v1 × ~v2

(
S2

1~v2 · ~n+ 2~S1 · ~v2
~S1 · ~n

− 5
(
~S1 · ~n

)2
~v2 · ~n

)
− ~S2 · ~v2 × ~n

(
S2

1

(
~v1 · ~v2 − 5 ~v1 · ~n ~v2 · ~n

)
− 2~S1 · ~v1

~S1 · ~v2

+ 10~S1 · ~v1
~S1 · ~n ~v2 · ~n+ 10~S1 · ~v2

~S1 · ~n ~v1 · ~n
)

+ 5
(
~S1 · ~n

)2(
~v1 · ~v2 − 7 ~v1 · ~n ~v2 · ~n

))]

+
1

2
C1(ES2)

G

r3

1

m1

[
2~S1 · ~S2 × ~v2

(
~̇S1 · ~v2 − 3 ~̇S1 · ~n ~v2 · ~n

)

− 2
(
~S1 · ~S2 × ~a2 + ~S1 · ~̇S2 × ~v2

)(
~S1 · ~v1 − 3 ~S1 · ~n ~v1 · ~n

)

+ 2 ~̇S1 · ~S2 × ~v2

(
~S1 · ~v2 − 3~S1 · ~n ~v2 · ~n

)

−
(
~S2 · ~v1 × ~a2 + ~̇S2 · ~v1 × ~v2

)(
S2

1 + 3
(
~S1 · ~n

)2)
+ 6~S2 · ~v2 × ~n

(
~̇S1 · ~S1 ~v2 · ~n

− ~̇S1 · ~v2
~S1 · ~n− ~S1 · ~v2

~̇S1 · ~n+ 5 ~̇S1 · ~n ~S1 · ~n ~v2 · ~n
)
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− 3
(
~̇S2 · ~v2 × ~n+ ~S2 · ~a2 × ~n

)(
S2

1 ~v1 · ~n− 2~S1 · ~v1
~S1 · ~n+ 5

(
~S1 · ~n

)2
~v1 · ~n

)]

− C1(ES2)
G

r2

1

m1

[
~S1 · ~S2 × ~a2

~̇S1 · ~n+ ~S1 · ~̇S2 × ~v2
~̇S1 · ~n+ ~̇S1 · ~S2 × ~a2

~S1 · ~n

+ ~̇S1 · ~̇S2 × ~v2
~S1 · ~n−

(
~̇S2 · ~v2 × ~n+ ~S2 · ~a2 × ~n

)(
~̇S1 · ~S1 + 3 ~̇S1 · ~n ~S1 · ~n

)]
,

(3.10)

Fig. 2(a10) =
3

2
C1(ES2)

G

r4

1

m1

[
2~S1 · ~S2 × ~v1

(
~S1 · ~v1 ~v2 · ~n+ ~S1 · ~v2 ~v1 · ~n+ ~S1 · ~n~v1 · ~v2

− 5~S1 · ~n ~v1 · ~n ~v2 · ~n
)
− ~S2 · ~v1 × ~v2

(
S2

1~v1 · ~n− 2~S1 · ~v1
~S1 · ~n

+ 5
(
~S1 · ~n

)2
~v1 · ~n

)
− ~S2 · ~v1 × ~n

(
S2

1

(
~v1 · ~v2 − 5 ~v1 · ~n ~v2 · ~n

)

− 2~S1 · ~v1
~S1 · ~v2 + 10~S1 · ~v1

~S1 · ~n~v2 · ~n+ 10~S1 · ~v2
~S1 · ~n~v1 · ~n

+ 5
(
~S1 · ~n

)2(
~v1 · ~v2 − 7~v1 · ~n ~v2 · ~n

))]

− 1

2
C1(ES2)

G

r3

1

m1

[
~S1 · ~S2 × ~v1

(
~̇S1 · ~v2 − 3 ~̇S1 · ~n ~v2 · ~n

)

+ 2~S1 · ~S2 × ~a1

(
~S1 · ~v2 − 3~S1 · ~n ~v2 · ~n

)
+ ~̇S1 · ~S2 × ~v1

(
~S1 · ~v2 − 3~S1 · ~n ~v2 · ~n

)

− 2~S1 · ~̇S2 × ~v1

(
~S1 · ~v1 − 3~S1 · ~n ~v1 · ~n

)
− ~S1 · ~S2 × ~v2

(
~̇S1 · ~v1 − 3 ~̇S1 · ~n ~v1 · ~n

)

− ~̇S1 · ~S2 × ~v2

(
~S1 · ~v1 − 3~S1 · ~n ~v1 · ~n

)
+ 3~S1 · ~S2 × ~n

(
~̇S1 · ~v1 ~v2 · ~n

+ ~̇S1 · ~v2 ~v1 · ~n+ ~̇S1 · ~n ~v1 · ~v2 − 5 ~̇S1 · ~n ~v1 · ~n ~v2 · ~n
)

+ 3 ~̇S1 · ~S2 × ~n
(
~S1 · ~v1 ~v2 · ~n+ ~S1 · ~v2 ~v1 · ~n+ ~S1 · ~n ~v1 · ~v2

− 5~S1 · ~n ~v1 · ~n ~v2 · ~n
)
− 2~S2 · ~v1 × ~v2

(
~̇S1 · ~S1 + 3 ~̇S1 · ~n ~S1 · ~n

)

− ~S2 · ~a1 × ~v2

(
S2

1 + 3
(
~S1 · ~n

)2)
+ 6~S2 · ~v1 × ~n

(
~̇S1 · ~S1 ~v2 · ~n− ~S1 · ~v2

~̇S1 · ~n

− ~̇S1 · ~v2
~S1 · ~n+ 5 ~̇S1 · ~n ~S1 · ~n ~v2 · ~n

)
+ 3~S2 · ~a1 × ~n

(
S2

1~v2 · ~n− 2~S1 · ~v2
~S1 · ~n

+ 5
(
~S1 · ~n

)2
~v2 · ~n

)
− 3 ~̇S2 · ~v1 × ~n

(
S2

1 ~v1 · ~n− 2~S1 · ~v1
~S1 · ~n+ 5(~S1 · ~n)2~v1 · ~n

)]

+
1

2
C1(ES2)

G

r2

1

m1

[
~S1 · ~̇S2 × ~v1

~̇S1 · ~n+ ~̇S1 · ~̇S2 × ~v1
~S1 · ~n

+ ~S1 · ~S2 × ~v2
~̈S1 · ~n+ 2 ~̇S1 · ~S2 × ~v2

~̇S1 · ~n+ ~̈S1 · ~S2 × ~v2
~S1 · ~n

+ ~S1 · ~S2 × ~n
(
~̈S1 · ~v2 − 3 ~̈S1 · ~n ~v2 · ~n

)
− ~S1 · ~̇S2 × ~n

(
~̇S1 · ~v1 − 3 ~̇S1 · ~n ~v1 · ~n

)

+ 2 ~̇S1 · ~S2 × ~n
(
~̇S1 · ~v2 − 3 ~̇S1 · ~n ~v2 · ~n

)
− ~̇S1 · ~̇S2 × ~n

(
~S1 · ~v1 − 3~S1 · ~n ~v1 · ~n

)

+ ~̈S1 · ~S2 × ~n
(
~S1 · ~v2 − 3~S1 · ~n ~v2 · ~n

)
+ 2~S1 · ~̇S2 × ~a1

~S1 · ~n

− 2 ~̇S2 · ~v1 × ~n
(
~̇S1 · ~S1 + 3 ~̇S1 · ~n ~S1 · ~n

)
− ~̇S2 · ~a1 × ~n

(
S2

1 + 3
(
~S1 · ~n

)2)]

− 1

2
C1(ES2)

G

r

1

m1

[
~S1 · ~̇S2 × ~n ~̈S1 · ~n+ 2 ~̇S1 · ~̇S2 × ~n ~̇S1 · ~n+ ~̈S1 · ~̇S2 × ~n ~S1 · ~n

]
.

(3.11)
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(b3) (b4) (b5) (b6) (b7) (b8)

(b9) (b10)

(b1) (b2)

(b11) (b12) (b13) (b14) (b15)

Figure 3. The two-graviton exchange Feynman graphs, which contribute to the NLO cubic-in-spin

interaction at the 4.5PN order for maximally rotating compact objects. These graphs should be

included together with their mirror images, i.e. with the worldline labels 1 ↔ 2 exchanged. These

graphs include all relevant interactions among the spin-induced quadrupole, octupole, and the mass

and spin, in particular here at the nonlinear level there are also interactions involving the various

multipoles on two different points of the same worldline, which add up to interactions that are cubic

in the spin, such as a spin dipole and a spin-induced quadrupole or two spin dipoles on the same

worldline as can already be seen as of the NLO spin-squared sector [11, 13]. Consequently notice

that there are nonlinearities originating from gravitons sourced strictly from minimal coupling to

the worldline as shown in graphs (b13)-(b15). We also have here two new two-graviton–octupole

couplings in graphs (b1), (b2).

Note that almost all these graphs contain higher order time derivatives terms, notably

second order time derivatives, where graph 1(a10) even contains third order ones.

Further notice that the value of graph 1(a5) is unique in that it also contains time

derivatives of the spin, which appeared already in graph 2(a) of the LO in [10], but even-

tually did not contribute at the LO. At this order, as we will see here in section 5 these

terms actually contribute.

3.2 Two-graviton exchange

As can be seen in figure 3 we have 15 graphs of two-graviton exchange in this sector.

Here the majority of the graphs do not involve time derivatives. We have here two new

two-graviton–octupole couplings in graphs 1(b1), 1(b2), and on the other hand we have

here nonlinearities originating from gravitons sourced strictly from minimal coupling to the

worldline as in graphs 1(b13)-1(b15).

The graphs in figure 3 are evaluated as follows:

Fig. 3(b1) = C1(BS3)
G2

r5

m2
2

m2
1

~S1 · ~v2 × ~n
[
9S2

1 − 50(~S1 · ~n)2
]
, (3.12)

Fig. 3(b2) = −1

3
C1(BS3)

G2

r5

m2
2

m2
1

~S1 · ~v1 × ~n
[
11S2

1 − 54(~S1 · ~n)2
]
, (3.13)

Fig. 3(b3) = C1(BS3)
G2

r5

m2

m1

~S1 · ~v2 × ~n
[
S2

1 − 5(~S1 · ~n)2
]
, (3.14)
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Fig. 3(b4) = −C1(BS3)
G2

r5

m2

m1

~S1 · ~v1 × ~n
[
S2

1 − 5(~S1 · ~n)2
]
, (3.15)

Fig. 3(b5) = 8C1(ES2)
G2

r5

m2

m1

[
3 ~S1 · ~S2 × ~v2

~S1 · ~n+ ~S2 · ~v2 × ~n
[
2S2

1 − 9(~S1 · ~n)2
]]
,

(3.16)

Fig. 3(b6) = C1(ES2)
G2

r5

m2

m1

[
−23~S1 · ~S2 × ~v1

~S1 · ~n+ 13~S1 · ~S2 × ~v2
~S1 · ~n

− ~S2 · ~v1 × ~n
(
31S2

1 − 66
(
~S1 · ~n

)2)− ~S1 · ~S2 × ~n
(

10~S1 · ~v1 − 51~S1 · ~n~v1 · ~n
)

+ ~S1 · ~S2 × ~n
(

11~S1 · ~v2 − 54~S1 · ~n~v2 · ~n
)]

− 13C1(ES2)
G2

r4

m2

m1

[
~S1 · ~̇S2 × ~n ~S1 · ~n

]
, (3.17)

Fig. 3(b7) = 2C1(ES2)
G2

r5

m2

m1

[
2 ~S1 · ~S2 × ~v2

~S1 · ~n+ ~S1 · ~S2 × ~n
(
~S1 · ~v2 − 3~S1 · ~n~v2 · ~n

)

+ ~S2 · ~v2 × ~n
(

2S2
1 − 3(~S1 · ~n)2

)]
, (3.18)

Fig. 3(b8) = −C1(ES2)
G2

r5

m2

m1

[
2 ~S1 · ~S2 × ~v2

~S1 · ~n+ 3~S1 · ~S2 × ~n
(
~S1 · ~v2 − 2~S1 · ~n~v2 · ~n

)

+ ~S2 · ~v2 × ~n
(

5S2
1 − 12(~S1 · ~n)2

)]
, (3.19)

Fig. 3(b9) = −C1(ES2)
G2

r5

m2

m1

~S1 · ~v1 × ~n
[
S2

1 − 3(~S1 · ~n)2
]
, (3.20)

Fig. 3(b10) = C1(ES2)
G2

r5

m2

m1

~S1 · ~v2 × ~n
[
S2

1 − 3(~S1 · ~n)2
]
, (3.21)

Fig. 3(b11) = −4C1(ES2)
G2

r5
~S2 · ~v1 × ~n

[
S2

1 − 3(~S1 · ~n)2
]
, (3.22)

Fig. 3(b12) = −12C1(ES2)
G2

r5

[
2 ~S1 · ~S2 × ~v1

~S1 · ~n+ ~S2 · ~v1 × ~n
(
S2

1 − 5(~S1 · ~n)2
)]

+ 12C1(ES2)
G2

r4

[
~S1 · ~S2 × ~n ~̇S1 · ~n+ ~̇S1 · ~S2 × ~n ~S1 · ~n

]
, (3.23)

Fig. 3(b13) = 2
G2

r5

[
~S1 · ~v2 × ~n

(
~S1 · ~S2 − 3~S1 · ~n~S2 · ~n

)
− ~S1 · ~S2

~S1 · ~v1 × ~n
]

+ 2
G2

r4

[
~̇S1 · ~n ~S1 · ~S2 × ~n− ~S1 · ~n ~̇S1 · ~S2 × ~n− ~̇S1 · ~S1 × ~S2

]
, (3.24)

Fig. 3(b14) = −8
G2

r5
~S1 · ~v1 × ~n

[
~S1 · ~S2 − 3~S1 · ~n~S2 · ~n

]
, (3.25)

Fig. 3(b15) = −G
2

r5

[
2 ~S1 · ~S2 × ~n ~S1 · ~v1 − ~S1 · ~v1 × ~n

(
5 ~S1 · ~S2 − 9~S1 · ~n ~S2 · ~n

)

+3 ~S2 · ~v1 × ~n
(
S2

1 − (~S1 · ~n)2
)]
. (3.26)

3.3 Cubic self-interaction

As can be seen in figure 4 we have 24 graphs of cubic self-interaction in this sector, 6 of

which contain time-dependent self-interaction, similar to what we have in the odd parity

spin-orbit sector [7, 11, 12]. Similar to the nonlinear graphs of two-graviton exchange, these

– 13 –



(c3) (c4) (c5)

(a7)(a4) (a5)

(b4) (b5) (b9)(b7) (b8)

(c1) (c6) (c7) (c8)

(a1) (a2) (a3) (a6)

(b1) (b2) (b3) (b6)

(c2)

Figure 4. The Feynman graphs at one-loop level, i.e. with cubic self-gravitational interaction,

which contribute to the NLO cubic-in-spin interaction at the 4.5PN order for maximally rotating

compact objects. These graphs should be included together with their mirror images, i.e. with the

worldline labels 1↔ 2 exchanged. Similar to the nonlinear graphs of two-graviton exchange, these

graphs include all relevant interactions among the spin-induced quadrupole, octupole, and the mass

and spin, and we have here nonlinearities originating from gravitons sourced strictly from minimal

coupling to the worldline as shown in graphs (c4)-(c8). We also have here cubic vertices containing

time derivatives, similar to what we have in the NLO odd parity spin-orbit sector [7, 11, 12].

graphs include all relevant interactions among the spin-induced quadrupole, octupole, and

the mass and spin, and we have here nonlinearities originating from gravitons sourced

strictly from minimal coupling to the worldline as shown in graphs (c4)-(c8). This sector

required using tensor one-loop integrals of up to order 5.

The graphs in figure 4 are evaluated as follows:

Fig. 4(a1) = −16

3
C1(BS3)

G2

r5

m2
2

m2
1

~S1 · ~v2 × ~n
[
S2

1 − 6(~S1 · ~n)2
]
, (3.27)

Fig. 4(a2) = −3

2
C1(BS3)

G2

r5

m2

m1

~S1 · ~v2 × ~n
[
S2

1 − 5(~S1 · ~n)2
]
, (3.28)

Fig. 4(a3) =
3

2
C1(BS3)

G2

r5

m2

m1

~S1 · ~v1 × ~n
[
S2

1 − 5(~S1 · ~n)2
]
, (3.29)

Fig. 4(a4) = −1

3
C1(BS3)

G2

r5

m2
2

m2
1

~S1 · ~v1 × ~n
[
S2

1 − 6(~S1 · ~n)2
]
, (3.30)

Fig. 4(a5) = −1

8
C1(BS3)

G2

r5

m2

m1

~S1 · ~v1 × ~n
[
S2

1 − 5(~S1 · ~n)2
)]
, (3.31)

Fig. 4(a6) =
1

3
C1(BS3)

G2

r5

m2
2

m2
1

~S1 · ~v2 × ~n
[
S2

1 − 6(~S1 · ~n)2
]
, (3.32)

Fig. 4(a7) =
1

8
C1(BS3)

G2

r5

m2

m1

~S1 · ~v1 × ~n
[
S2

1 − 5(~S1 · ~n)2
]
, (3.33)

Fig. 4(b1) = −1

2
C1(ES2)

G2

r5

m2

m1

~S1 · ~v2 × ~n
[
S2

1 + 3(~S1 · ~n)2
]
, (3.34)
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Fig. 4(b2) = −8C1(ES2)
G2

r5

m2

m1

[
~S1 · ~S2 × ~v2

~S1 · ~n+ ~S2 · ~v2 × ~n
(
S2

1 − 3(~S1 · ~n)2
)]
,

(3.35)

Fig. 4(b3) = 4C1(ES2)
G2

r5

[
4 ~S1 · ~S2 × ~v1

~S1 · ~n+ ~S1 · ~S2 × ~n
(
~S1 · ~v1 − 6~S1 · ~n ~v1 · ~n

)

+ ~S2 · ~v1 × ~n
(
2S2

1 − 9(~S1 · ~n)2
)]
, (3.36)

Fig. 4(b4) =
1

2
C1(ES2)

G2

r5

m2

m1

~S1 · ~v1 × ~n
[
S2

1 + 3(~S1 · ~n)2
]

− 2C1(ES2)
G2

r4

m2

m1

~̇S1 · ~S1 × ~n ~S1 · ~n, (3.37)

Fig. 4(b5) = 8C1(ES2)
G2

r5

m2

m1

[
~S1 · ~S2 × ~v1

~S1 · ~n+ ~S2 · ~v1 × ~n
(
S2

1 − 3(~S1 · ~n)2
)]

− 4C1(ES2)
G2

r4

m2

m1

[
~S1 · ~S2 × ~n ~̇S1 · ~n+ ~̇S1 · ~S2 × ~n ~S1 · ~n

]
, (3.38)

Fig. 4(b6) = 4C1(ES2)
G2

r5

[
2~S1 · ~S2 × ~v1

~S1 · ~n− ~S1 · ~S2 × ~n
(
~S1 · ~v1 − 6~S1 · ~n ~v1 · ~n

)

+ ~S2 · ~v1 × ~n
(
2S2

1 − 9(~S1 · ~n)2
)]

− 12C1(ES2)
G2

r4

[
~S1 · ~S2 × ~n ~̇S1 · ~n+ ~̇S1 · ~S2 × ~n ~S1 · ~n

]
, (3.39)

Fig. 4(b7) = −3

8
C1(ES2)

G2

r5

m2

m1

~S1 · ~v1 × ~n
[
S2

1 − 5(~S1 · ~n)2
]
, (3.40)

Fig. 4(b8) = 2C1(ES2)
G2

r5

m2

m1

[
~S1 · ~S2 × ~v2

~S1 · ~n+ ~S2 · ~v2 × ~n
(
S2

1 − 3(~S1 · ~n)2
)]
, (3.41)

Fig. 4(b9) =
1

4
C1(ES2)

G2

r5

[
4~S1 · ~S2 × ~v2

~S1 · ~n− 2~S1 · ~S2 × ~n
(
~S1 · ~v2 − 3~S1 · ~n ~v2 · ~n

)

+ 3~S2 · ~v2 × ~n
(
S2

1 − 5(~S1 · ~n)2
)]
, (3.42)

Fig. 4(c1) =
3

8
C1(ES2)

G2

r5

m2

m1

[
~S1 · ~v1 × ~n

(
S2

1 − 5(~S1 · ~n)2
)]

− C1(ES2)
G2

r4

m2

m1

[
~̇S1 · ~S1 × ~n ~S1 · ~n

]
, (3.43)

Fig. 4(c2) = −2C1(ES2)
G2

r5

m2

m1

[
~S1 · ~S2 × ~v2

~S1 · ~n+ ~S2 · ~v2 × ~n
(
S2

1 − 3(~S1 · ~n)2
)]
,

(3.44)

Fig. 4(c3) = −1

4
C1(ES2)

G2

r5

[
4~S1 · ~S2 × ~v1

~S1 · ~n− 2~S1 · ~S2 × ~n
(
~S1 · ~v1 − 3~S1 · ~n~v1 · ~n

)

+ 3 ~S2 · ~v1 × ~n
(
S2

1 − 5(~S1 · ~n)2
)]

+ C1(ES2)
G2

r4

[
~S1 · ~S2 × ~n ~̇S1 · ~n+ ~̇S1 · ~S2 × ~n ~S1 · ~n

]
, (3.45)

Fig. 4(c4) = 4
G2

r5

[
~S1 · ~S2 × ~v2

~S1 · ~n− 3~S2 · ~v2 × ~n (~S1 · ~n)2
]
, (3.46)

Fig. 4(c5) = 4
G2

r5

[
~S1 · ~S2 × ~v1

~S1 · ~n+ ~S1 · ~v1 × ~n ~S1 · ~S2

]
, (3.47)
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Fig. 4(c6) = −1

2

G2

r5

[
15~S1 · ~S2 × ~n

(
~S1 · ~v2 − ~S1 · ~n ~v2 · ~n

)

− ~S1 · ~v2 × ~n
(
14~S1 · ~S2 − 12~S1 · ~n ~S2 · ~n

)
+

1

2
~S2 · ~v2 × ~n

(
29S2

1 − 33(~S1 · ~n)2
)]
,

(3.48)

Fig. 4(c7) = −G
2

r5

[
4~S1 · ~S2 × ~v1

~S1 · ~n+ 3~S1 · ~S2 × ~n
(
~S1 · ~v1 − 4~S1 · ~n ~v1 · ~n

)

+ ~S2 · ~v1 × ~n
(
S2

1 − 6(~S1 · ~n)2
)]
, (3.49)

Fig. 4(c8) =
1

4

G2

r5

[
4 ~S1 · ~S2 × ~v1

~S1 · ~n+ 8 ~S1 · ~S2 × ~v2
~S1 · ~n

+ 6~S1 · ~S2 × ~n
(
~S1 · ~v1 − 5~S1 · ~n ~v1 · ~n

)
+ 8~S1 · ~S2 × ~n

(
~S1 · ~v2 − 6~S1 · ~n ~v2 · ~n

)

+ 8~S1 · ~v1 × ~n
(
~S1 · ~S2 − 3~S1 · ~n ~S2 · ~n

)
+ ~S2 · ~v1 × ~n

(
5S2

1 − 9(~S1 · ~n)2
)]

+
G2

r4

[
~S1 · ~S2 × ~n ~̇S1 · ~n− 2~S1 · ~̇S2 × ~n ~S1 · ~n+ ~̇S1 · ~S2 × ~n ~S1 · ~n

]
. (3.50)

4 New features from gauge of rotational DOFs

The formulation of the EFT of a spinning gravitating particle in [11] consisted of an ac-

tion initially taken in the covariant gauge as formulated by Tulczyjew in [44]. The latter

presented the spin supplementary condition (SSC) given by Sµνp
ν = 0, which as noted in

[11], corresponds to the choice eµ0 = pµ/
√
p2 for the timelike component of the worldline

tetrad. This gauge is distinguished among possible covariant gauges as the only gauge of

rotational DOFs for which the existence and uniqueness of a corresponding “center” for

the spinning particle were proven rigorously in General Relativity [45, 46].

For this reason the formulation in [11] was made in terms of the linear momentum pµ

rather than the four-velocity uµ for example, as in general the former is given by

pµ = − ∂L

∂uµ
= m

uµ√
u

2 +O(RS2). (4.1)

Therefore the difference between using pµ and uµ would show up, as was pointed out in

[11], as of the NLO of the sector cubic in the spins, namely the sector that we are studying

in this work.

Let us then find how these new feature transpires in this sector. Since we are working

to cubic order in the spin in this sector, we should take into account in the linear momentum

beyond the leading term, which was the only one required for lower order spin sectors thus

far, only the first correction, that is we now consider also

∆pκ ≡ pκ − p̄κ '
CES2

2m
SµSν

(
2

u
Rµανκu

α − 1

u3
Rµανβu

αuβuκ

)
, (4.2)

where we have denoted the leading approximation to the linear momentum as p̄κ ≡ m
u uκ.

Let us also note that due to eq. (4.8) of [11] at this order the spin vectors and the spin

vectors can be used interchangeably.
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Hence, the part that is linear in the spin in the action of the spinning particle actually

gives rise to a new type of worldline-graviton couplings that are cubic in the spin, due to

its dependence in the linear momentum. We recall that the relevant part of the Lagrangian

is given as follows [11]:

LS = −1

2
ŜabΩ̂

ab
flat −

1

2
Ŝabω

ab
µ u

µ − Ŝabp
b

p2

Dpa

Dλ
, (4.3)

where the hatted DOFs represent the generic rotational DOFs. Therefore the new contri-

butions arise from substituting in the gauge, which we choose here as the canonical gauge

formulated in [11] as

Λ̂ a
[0] = δa0 , Ŝab (pb + pδ0b) = 0, (4.4)

into the linear-in-spin couplings, as well as from the extra term that enters from minimal

coupling, appearing last in eq. (4.3), which was found in [11] to be related with the gauge

of the rotational DOFs, and stands for the Thomas precession as was noted in section 2.

Let us stress again that the subtlety here is not about switching from the covariant gauge,

but rather about advancing from using in the gauge uν to pν as the basic covariant gauge,

which is necessary as of this nonlinear order in gravity and cubic order in spins.

Working out explicitly this part of the action in terms of the local spin variable in the

canonical gauge similarly to the derivations in [11], and keeping only terms that lead to

new cubic-in-spin couplings, we obtain here the following contribution:

LS→S3 = ωijµ u
µ Ŝikp

kpj
p (p+ p0)

− ω0i
µ u

µ Ŝijp
j

p
+

Ŝijp
iṗj

p (p+ p0)
. (4.5)

where in principle all the indices here are in the locally flat frame. In order to obtain

the new cubic-in-spin couplings we only need to substitute in the correction to the linear

momentum from eq. (4.2) to linear order, keeping in mind that all the contributions at the

zeroth order are taken into account in section 3 above, and section 5 below.

At this point it becomes clear that the first two terms in eq. (4.5) give rise to new

two-graviton couplings, and that the last term gives rise to new one-graviton couplings

containing higher order time derivatives.

The resulting new Feynman rules for the one-graviton couplings are then:

=

∫
dt

[
CES2

4m2
SiSjεklm

[(
2Sma

k + Ṡmv
k
)(
Al,ij −Aj,il

)]]
, (4.6)

=

∫
dt

[
− CES2

2m2
SiSjεklm

[
2Sma

k
(

2
(
φ,ijv

l − φ,ilvj
)

+ δij (∂tφ,l + φ,lnv
n)
)

− Ṡmvk
(

2φ,ilv
j − δij (∂tφ,l + φ,lnv

n) + δil (∂tφ,j + φ,jnv
n)
)]]

,

(4.7)

– 17 –



(a1) (a2) (b1) (b2)

Figure 5. The extra one- and two-graviton exchange Feynman graphs, which appear at the NLO

cubic-in-spin interaction at the 4.5PN order for maximally rotating compact objects. These graphs

should be included together with their mirror images, i.e. with the worldline labels 1↔ 2 exchanged.

These graphs contain a new type of worldline-graviton couplings, which we dub as the “composite”

octupole ones, and obviously yield similar graphs to the corresponding graphs with the “elementary”

spin-induced octupole in figure 2 (a1),(a2) and in figure 3 (b1),(b2).

where a black square mounted on an oval blob represents this new type of “composite”

cubic-in-spin worldline couplings. Notice that all these rules contain accelerations and even

time derivatives of spins similar to the acceleration terms that appear first in the rules for

the spin-orbit sector [11].

For the new two-graviton couplings we get the following rules:

=

∫
dt
[CES2

2m2
SiSjεklmSmφ,k (Al,ij −Aj,il)

]
, (4.8)

=

∫
dt

[
−CES2

m2
SiSjεklmSmφ,k

(
2
(
φ,ijv

l − φ,ilvj
)

+ δij (∂tφ,l + φ,lnv
n)
)]
. (4.9)

Note that the mass ratio together with the Wilson coefficients in these rules for the new

cubic-in-spin couplings indicate that these are truly new couplings that cannot be absorbed

in the existing “elementary” octupole operator.

These new couplings give rise to four additional graphs shown in figure 5, similar to

those in figure 2 (a1), (a2), and in figure 3 (b1), (b2). The graphs in figure 5 are evaluated

as follows:

Fig. 5(a1) = −C1(ES2)
G

r3

m2

m2
1

[
2~S1 · ~v2 × ~a1

(
S2

1 − 3
(
~S1 · ~n

)2
)
− 6~S1 · ~a1 × ~n~S1 · ~v2

~S1 · ~n

− ~̇S1 · ~S1 × ~v1
~S1 · ~v2 − ~̇S1 · ~v1 × ~v2

(
S2

1 − 3
(
~S1 · ~n

)2
)

− 3 ~̇S1 · ~v1 × ~n~S1 · ~v2
~S1 · ~n

]
, (4.10)

Fig. 5(a2) =
1

2
C1(ES2)

G

r3

m2

m2
1

[
6~S1 · ~v1 × ~a1

(
S2

1 − 2
(
~S1 · ~n

)2
)
− 2~S1 · ~v2 × ~a1S

2
1

+ 6~S1 · ~a1 × ~n
(
S2

1

(
~v1 · ~n− ~v2 · ~n

)
− 2~S1 · ~v1

~S1 · ~n
)
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− ~̇S1 · ~S1 × ~v1

(
3~S1 · ~v1 − ~S1 · ~v2 − 3~S1 · ~n (~v1 · ~n− ~v2 · ~n)

)

+ ~̇S1 · ~v1 × ~v2 S
2
1 + 3 ~̇S1 · ~v1 × ~n

(
S2

1 (~v1 · ~n− ~v2 · ~n)− 2~S1 · ~v1
~S1 · ~n

)]
,

(4.11)

Fig. 5(b1) = −2C1(ES2)
G2

r5

m2
2

m2
1

~S1 · ~v2 × ~n
[
S2

1 − 3(~S1 · ~n)2
]
, (4.12)

Fig. 5(b2) = C1(ES2)
G2

r5

m2
2

m2
1

[
3~S1 · ~v1 × ~n

(
S2

1 − 2(~S1 · ~n)2
)
− ~S1 · ~v2 × ~nS2

1

]
. (4.13)

5 The cubic-in-spin action at the next-to-leading order

Let us then put together all the results from sections 3 and 4 to get the final effective action

for this sector. This summation includes the values presented above plus similar results

under the exchange of particle labels 1↔ 2, where ~n→ −~n. Next, we apply the 4 vectors

identity for 3 dimensions presented in eq. (3.14) of [10], to further simplify and compress

the results. As was already noted these results contain higher order time derivatives of

both the velocity and the spin, which would be treated rigorously at the level of the action,

following the procedure shown in [43], by making variable redefinitions which will remove

the higher order terms (in complete analogy to the removal of redundant/on-shell operators

by field redefinitions in effective theories as was pointed out by one of the authors in [43]).

The final result of these steps is then given as follows:

LNLO
S3 = LNLO

S2
1S2

+ LNLO
S3
1

+ (1↔ 2), (5.1)

where we have:

LNLO
S2
1S2

= +
G2

r5
L(1) + C1(ES2)

G

r4

1

m1
L(2) + C1(ES2)

G2

r5
L(3) + C1(ES2)

G2m2

r5m1
L(4)

+
G2

r4
L(5) + C1(ES2)

G

r3

1

m1
L(6) + C1(ES2)

G2

r4
L(7) + C1(ES2)

G2m2

r4m1
L(8)

+ C1(ES2)
G

r2

1

m1
L(9) + C1(ES2)

G

r

1

m1
L(10), (5.2)

with the following pieces:

L(1) = + ~S1 · ~S2 × ~n
(
− 5~S1 · ~v1 + ~S1 · ~v2 +

9

2
~S1 · ~n ~v1 · ~n−

9

2
~S1 · ~n ~v2 · ~n

)

+ ~S1 · ~v1 × ~n
(5

2
~S1 · ~S2 + 9 ~S1 · ~n ~S2 · ~n

)
− 3

4
~S2 · ~v2 × ~n

(
S2

1 + 5
(
~S1 · ~n

)2)

+ ~S1 · ~v2 × ~n
(5

2
~S1 · ~S2 − 12 ~S1 · ~n ~S2 · ~n

)
− 1

4
~S2 · ~v1 × ~n

(
17 S2

1 − 27
(
~S1 · ~n

)2)

+
1

2

(
5~S1 · ~S2 × ~v1 − ~S1 · ~S2 × ~v2

)
~S1 · ~n, (5.3)

L(2) = + 3~S1 · ~S2 × ~v1

(
~S1 · ~v1

(
− ~v1 · ~n+ ~v2 · ~n

)
+ ~S1 · ~v2

(
~v1 · ~n− ~v2 · ~n

))
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+ 3~S1 · ~S2 × ~v2

(
~S1 · ~v1 ~v1 · ~n− ~S1 · ~v2 ~v1 · ~n

)
+

3

2
~S2 · ~v1 × ~v2 ~v1 · ~n

(
3S2

1 − 5
(
~S1 · ~n

)2)

− 3~S1 · ~v1 × ~v2
~S1 · ~S2 + ~S2 · ~v1 × ~n

(15

2
S2

1

(
v2

1 − ~v1 · ~v2 − 2(~v1 · ~n)2 − ~v1 · ~n ~v2 · ~n
)

+ 3~S1 · ~v1

(
− ~S1 · ~v1 + ~S1 · ~v2 + 5 ~S1 · ~n ~v1 · ~n− 5 ~S1 · ~n ~v2 · ~n

)
− 15~S1 · ~v2

~S1 · ~n ~v1 · ~n

+
15

2

(
~S1 · ~n

)2 (− ~v2
1 + ~v1 · ~v2 + 7 ~v1 · ~n ~v2 · ~n

))

+ ~S2 · ~v2 × ~n
(3

2
S2

1

(
− 5v2

1 + 8~v1 · ~v2 − 3v2
2 + 10(~v1 · ~n)2 + 5 ~v1 · ~n ~v2 · ~n

)

+ 3~S1 · ~v1

(
~S1 · ~v1 − ~S1 · ~v2 − 5~S1 · ~n ~v1 · ~n+ 5~S1 · ~n ~v2 · ~n

)
+ 15~S1 · ~v2

~S1 · ~n ~v1 · ~n

+
15

2

(
~S1 · ~n

)2(
v2

1 − 2~v1 · ~v2 + v2
2 − 7~v1 · ~n ~v2 · ~n

)

+ 3~S1 · ~S2 × ~n
(
~S1 · ~v1

(
v2

1 − ~v1 · ~v2 − 5~v1 · ~n ~v2 · ~n
)

+ ~S1 · ~v2

(
− v2

1 − v2
2 + 2~v1 · ~v2 + 5~v1 · ~n ~v2 · ~n

))
− 3~S1 · ~v1 × ~n ~S1 · ~S2

(
v2

1 − ~v1 · ~v2

− 5~v1 · ~n ~v2 · ~n
)

+ 3~S1 · ~v2 × ~n ~S1 · ~S2

(
v2

1 − 2~v1 · ~v2 + v2
2 − 5~v1 · ~n ~v2 · ~n

)
, (5.4)

L(3) = +
1

2
~S1 · ~S2 × ~v1

~S1 · ~n−
1

2
~S1 · ~S2 × ~v2

~S1 · ~n+
3

2
~S1 · ~S2

(
~S1 · ~v1 × ~n− ~S1 · ~v2 × ~n

)

+ ~S1 · ~S2 × ~n
(
− ~S1 · ~v1 + ~S1 · ~v2 −

3

2
~S1 · ~n ~v1 · ~n+

3

2
~S1 · ~n ~v2 · ~n

)

− 3

4

(
~S2 · ~v1 × ~n− ~S2 · ~v2 × ~n

)(
3S2

1 − 5(~S1 · ~n)2
)
, (5.5)

L(4) =− 10~S1 · ~n
(
~S1 · ~S2 × ~v1 − ~S1 · ~S2 × ~v2

)
+ 21~S1 · ~S2

(
~S1 · ~v1 × ~n− ~S1 · ~v2 × ~n

)

− 2
(
~S2 · ~v1 × ~n− ~S2 · ~v2 × ~n

)(
14 S2

1 − 21
(
~S1 · ~n

)2)

+ ~S1 · ~S2 × ~n
(
− 31~S1 · ~v1 + 31~S1 · ~v2 + 63 ~S1 · ~n ~v1 · ~n− 66 ~S1 · ~n ~v2 · ~n

)
, (5.6)

L(5) = + 3~S1 · ~S2 × ~n ~̇S1 · ~n− ~̇S1 · ~S2 × ~n ~S1 · ~n− 2 ~S1 · ~̇S2 × ~n ~S1 · ~n+ 2~S1 · ~̇S1 × ~S2,

(5.7)

L(6) = +
1

2
~S1 · ~S2 × ~v1

(
~̇S1 · ~v2 − 2~S1 · ~a2 + 3~S1 · ~n ~a1 · ~n+ 3 ~̇S1 · ~n ~v1 · ~n− 3 ~̇S1 · ~n ~v2 · ~n

)

+
1

2
~S1 · ~S2 × ~v2

(
~̇S1 · ~v1 + 2~S1 · ~a1 − 2 ~̇S1 · ~v2 − 3 ~̇S1 · ~n ~v1 · ~n− 6 ~S1 · ~n ~a1 · ~n

)

+
3

2
~S1 · ~S2 × ~a1

~S1 · ~n ~v1 · ~n+
1

2
~̇S1 · ~S2 × ~v1

(
~S1 · ~v2 + 3~S1 · ~n ~v1 · ~n− 3 ~S1 · ~n ~v2 · ~n

)

+ ~S1 · ~̇S2 × ~v1

(
~S1 · ~v1 − ~S1 · ~v2

)

+
1

2
~̇S1 · ~S2 × ~v2

(
~S1 · ~v1 − 3 ~S1 · ~n ~v1 · ~n− 2 ~S1 · ~v2

)

− ~S1 · ~v1 × ~v2
~S1 · ~̇S2 − ~S2 · ~v1 × ~v2

(
~̇S1 · ~S1 − 3 ~̇S1 · ~n ~S1 · ~n

)

+
(
~S1 · ~v2 × ~a1 − ~S1 · ~v1 × ~a2

)
~S1 · ~S2 +

(
~S2 · ~v2 × ~a2 +

1

2
~S2 · ~v2 × ~a1

)(
S2

1 − 3(~S1 · ~n)2
)
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− 3

2

(
~S2 · ~v1 × ~a2 + ~̇S2 · ~v1 × ~v2

)(
S2

1 − 3(~S1 · ~n)2
)

+
3

2
~S1 · ~S2 × ~n

(
2 ~S1 · ~n ~a1 · ~v2 + ~̇S1 · ~n ~v1 · ~v2 − ~̇S1 · ~v2 ~v2 · ~n

− ~̇S1 · ~v2 ~v1 · ~n+ 2~S1 · ~a1 ~v2 · ~n+ ~̇S1 · ~v1 ~v2 · ~n

+ 2~S1 · ~a2 ~v1 · ~n− 2~S1 · ~n ~v1 · ~a1 − ~̇S1 · ~n v2
1 + 5 ~̇S1 · ~n ~v1 · ~n ~v2 · ~n

)

+
3

2
~̇S1 · ~S2 × ~n

(
~S1 · ~v1 ~v2 · ~n− ~S1 · ~v2 ~v2 · ~n− ~S1 · ~v2 ~v1 · ~n− ~S1 · ~n v2

1

+ ~S1 · ~n ~v1 · ~v2 + 5 ~S1 · ~n ~v1 · ~n ~v2 · ~n
)

− 3~S1 · ~̇S2 × ~n
(
~S1 · ~v1 − ~S1 · ~v2

)
~v1 · ~n

+
3

2
~S2 · ~v1 × ~n

(
S2

1 ~a1 · ~n+ ~̇S1 · ~S1 (2~v1 · ~n+ 6~v2 · ~n)− ~S1 · ~v1
~̇S1 · ~n− ~̇S1 · ~v1

~S1 · ~n

− ~S1 · ~a1
~S1 · ~n− 10 ~̇S1 · ~n ~S1 · ~n ~v2 · ~n

)

+
3

2
~S2 · ~a1 × ~n

(
S2

1 ~v1 · ~n− ~S1 · ~v1
~S1 · ~n+ 3S2

1 ~v2 · ~n− 5 ( ~S1 · ~n)2~v2 · ~n
)

+
3

2
~S1 · ~v1 × ~n

(
2~S1 · ~S2 ~a1 · ~n+ 2~S1 · ~̇S2 ~v1 · ~n+ ~̇S1 · ~S2 ~v1 · ~n− 2 ~̇S1 · ~S2 ~v2 · ~n

)

− 3

2
~S1 · ~v2 × ~n

(
2~S1 · ~S2 ~a1 · ~n+ 2~S1 · ~̇S2 ~v1 · ~n− ~̇S1 · ~S2 ~v2 · ~n

)

+ ~S2 · ~v2 × ~n
(3

2
( ~̇S1 · ~v2

~S1 · ~n+ ~S1 · ~v2
~̇S1 · ~n)− 3~v2 · ~n

(
4 ~̇S1 · ~S1 − 5 ~̇S1 · ~n ~S1 · ~n

))

− 3

2
~̇S2 · ~v1 × ~n

(
S2

1~v1 · ~n+ 2 ~S1 · ~v1
~S1 · ~n− 5(~S1 · ~n)2~v1 · ~n

)

+
(
~̇S1 · ~v1 × ~n+ ~S1 · ~a1 × ~n

)(3

2
~v1 · ~n− 3~v2 · ~n

)
~S1 · ~S2

+
3

2
~̇S1 · ~v2 × ~n ~v2 · ~n ~S1 · ~S2 − 3~S1 · ~a2 × ~n ~v1 · ~n ~S1 · ~S2

+
3

2

(
~S2 · ~a2 × ~n+ ~̇S2 · ~v2 × ~n

)(
S2

1 ~v1 · ~n+ 2 ~S1 · ~v1
~S1 · ~n− 5(~S1 · ~n)2~v1 · ~n

)
, (5.8)

L(7) = + ~S1 · ~S2 × ~n ~̇S1 · ~n+ ~̇S1 · ~S2 × ~n ~S1 · ~n, (5.9)

L(8) = − 4~S1 · ~S2 × ~n ~̇S1 · ~n− 13~S1 · ~̇S2 × ~n ~S1 · ~n− 4 ~̇S1 · ~S2 × ~n ~S1 · ~n, (5.10)

L(9) =− 1

2
~S1 · ~̇S2 × ~v1

~̇S1 · ~n−
1

2
~̇S1 · ~̇S2 × ~v1

~S1 · ~n−
1

2
~̈S1 · ~S2 × ~v2

~S1 · ~n

− ~̇S1 · ~S2 × ~v2
~̇S1 · ~n−

1

2
~S1 · ~S2 × ~v2

~̈S1 · ~n− ~S1 · ~v2 × ~n ~̈S1 · ~S2

−
(
~̇S1 · ~v1 × ~n+ ~S1 · ~a1 × ~n

)
~S1 · ~̇S2

−
(
~̈S1 · ~v2 × ~n+ ~̇S1 · ~a2 × ~n

)
~S1 · ~S2 − ~̇S1 · ~v2 × ~n

(
2 ~̇S1 · ~S2 + ~S1 · ~̇S2

)

−
(
~S1 · ~v1 × ~n+ ~S2 · ~v2 × ~n

)
~̇S1 · ~̇S2 − ~S1 · ~a2 × ~n ~̇S1 · ~S2
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−
(
~S2 · ~a2 × ~n+ ~̇S2 · ~v2 × ~n− ~̇S2 · ~v1 × ~n

)(
~̇S1 · ~S1 − 3 ~̇S1 · ~n ~S1 · ~n

)

+ ~S1 · ~S2 × ~n
(
~̇S1 · ~a1 +

1

2
~̈S1 · ~v2 −

3

2
~̈S1 · ~n ~v2 · ~n

)

+ ~S1 · ~̇S2 × ~n
(1

2
~̇S1 · ~v1 + ~S1 · ~a1 + ~̇S1 · ~v2 +

3

2
~̇S1 · ~n ~v1 · ~n

)

+ ~̇S1 · ~S2 × ~n
(
~S1 · ~a2 + ~̇S1 · ~v2 − 3 ~̇S1 · ~n ~v2 · ~n

)

+
1

2
~̈S1 · ~S2 × ~n

(
~S1 · ~v2 − 3~S1 · ~n ~v2 · ~n

)

+ ~̇S1 · ~̇S2 × ~n
(1

2
~S1 · ~v1 + ~S1 · ~v2 +

3

2
~S1 · ~n ~v1 · ~n

)
, (5.11)

L(10) = − 1

2
~S1 · ~̇S2 × ~n ~̈S1 · ~n− ~̇S1 · ~̇S2 × ~n ~̇S1 · ~n−

1

2
~̈S1 · ~̇S2 × ~n ~S1 · ~n, (5.12)

and also:

LNLO
S3
1

= C1(ES2)
G2m2

r5m1
L[1] + C1(ES2)

G2m2
2

r5m2
1

L[2] + C1(BS3)
Gm2

r4m2
1

L[3]

+ C1(BS3)
G2m2

r5m1
L[4] + C1(BS3)

G2m2
2

r5m2
1

L[5] + C1(ES2)
Gm2

r3m2
1

L[6]

+ C1(ES2)
G2m2

r4m1
L[7] + C1(BS3)

Gm2

r3m2
1

L[8] + C1(BS3)
Gm2

r2m2
1

L[9], (5.13)

with the pieces:

L[1] =
1

2
(−~S1 · ~v1 × ~n+ ~S1 · ~v2 × ~n)

(
S2

1 − 9
(
~S1 · ~n

)2)
, (5.14)

L[2] = + ~S1 · ~v2 × ~n
(

5S2
1 − 6(~S1 · ~n)2

)
, (5.15)

L[3] = + ~S1 · ~v1 × ~v2

(
− 3~S1 · ~v1

~S1 · ~n+ ~S1 · ~v2
~S1 · ~n−

1

2

(
~v1 · ~n− ~v2 · ~n

)(
S2

1 − 5
(
~S1 · ~n

)2))

+ ~S1 · ~v1 × ~n
( 1

2
S2

1

(
v2

1 − ~v1 · ~v2 + v2
2 − 5 ~v1 · ~n ~v2 · ~n

)

+ ~S1 · ~v1

(
− ~S1 · ~v1 +

1

2
~S1 · ~v2 + 5 ~S1 · ~n

(
~v1 · ~n−

1

2
~v2 · ~n

))
− 5~S1 · ~v2

~S1 · ~n ~v1 · ~n

− 5

2
(~S1 · ~n)2

(
v2

1 − ~v1 · ~v2 + v2
2 − 7 ~v1 · ~n ~v2 · ~n

))

+ ~S1 · ~v2 × ~n
(
− 1

2
S2

1

(
v2

1 − ~v1 · ~v2 + v2
2 − 5 ~v1 · ~n ~v2 · ~n

)

+ ~S1 · ~v1

(3

2
~S1 · ~v1 − ~S1 · ~v2 − 5~S1 · ~n

(
3

2
~v1 · ~n− ~v2 · ~n

))
+ 5~S1 · ~v2

~S1 · ~n ~v1 · ~n

+
5

2
(~S1 · ~n)2

(
v2

1 − ~v1 · ~v2 + v2
2 − 7 ~v1 · ~n ~v2 · ~n

))
,

(5.16)
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L[4] = +
1

2

(
~S1 · ~v1 × ~n− ~S1 · ~v2 × ~n

)(
S2

1 − 5
(
~S1 · ~n

)2)
, (5.17)

L[5] =− 4
(
~S1 · ~v1 × ~n− ~S1 · ~v2 × ~n

)(
S2

1 − 5
(
~S1 · ~n

)2)
, (5.18)

L[6] = + 2~S1 · ~v1 × ~a1

(
S2

1 − 3
(
~S1 · ~n

)2
)
− 6~S1 · ~v2 × ~a1

(
S2

1 − 2
(
~S1 · ~n

)2
)

− 6~S1 · ~a1 × ~n
(
S2

1~v2 · ~n+ ~S1 · ~v1
~S1 · ~n− 2~S1 · ~v2

~S1 · ~n
)

− ~̇S1 · ~S1 × ~v1

(
2~S1 · ~v1 − 3~S1 · ~v2 − 3~S1 · ~n (~v1 · ~n− ~v2 · ~n)

)

+ 3 ~̇S1 · ~v1 × ~v2

(
S2

1 − 2
(
~S1 · ~n

)2
)

− 3 ~̇S1 · ~v1 × ~n
(
S2

1~v2 · ~n− ~S1 · ~v1
~S1 · ~n− 2~S1 · ~v2

~S1 · ~n
)
, (5.19)

L[7] = − 3 ~̇S1 · ~S1 × ~n ~S1 · ~n, (5.20)

L[8] =
1

6

(
2 ~S1 · ~v1 × ~v2

(
~̇S1 · ~S1 − 3 ~̇S1 · ~n ~S1 · ~n

)
+ ~̇S1 · ~v1 × ~v2

(
S2

1 − 3(~S1 · ~n)2
)

+ ~S1 · ~a1 × ~v2

(
S2

1 − 3(~S1 · ~n)2
)

+ ~S1 · ~v1 × ~a2

(
S2

1 − 3(~S1 · ~n)2
)

− 6 ~S1 · ~v1 × ~n
(
~S1 · ~v1

~̇S1 · ~n+ ~̇S1 · ~v1
~S1 · ~n+ ~S1 · ~a1

~S1 · ~n− ~v2 · ~n
(
~̇S1 · ~S1 − 5 ~̇S1 · ~n ~S1 · ~n

))

− 3 ~̇S1 · ~v1 × ~n
(

2~S1 · ~v1
~S1 · ~n− ~v2 · ~n

(
S2

1 − 5(~S1 · ~n)2
))

− 3 ~S1 · ~a1 × ~n
(

2~S1 · ~v1
~S1 · ~n− ~v2 · ~n

(
S2

1 − 5(~S1 · ~n)2
))

+ 6 ~S1 · ~v2 × ~n
(
~S1 · ~v1

~̇S1 · ~n+ ~̇S1 · ~v1
~S1 · ~n+ ~S1 · ~a1

~S1 · ~n− ~v2 · ~n
(
~̇S1 · ~S1 − 5 ~̇S1 · ~n ~S1 · ~n

))

+ 3 ~̇S1 · ~v2 × ~n
(

2~S1 · ~v1
~S1 · ~n− ~v2 · ~n

(
S2

1 − 5(~S1 · ~n)2
))

+ 3 ~S1 · ~a2 × ~n
(

2~S1 · ~v1
~S1 · ~n+ ~v1 · ~n

(
S2

1 − 5(~S1 · ~n)2
)))

, (5.21)

L[9] =− 1

3
~S1 · ~a2 × ~n

(
~̇S1 · ~S1 − 3 ~̇S1 · ~n ~S1 · ~n

)
− 1

6
~̇S1 · ~a2 × ~n

(
S2

1 − 3
(
~S1 · ~n

)2)
. (5.22)

As can be seen in the result above we have grouped together terms according to their

mass ratios and Wilson coefficients, and the total number/order of their higher order time

derivatives. At this stage this result is rather bulky, but it is easy to see that after the

reduction of the action to an ordinary action by the removal of higher order time derivative

terms, we will only be left with such pieces as the first 4 ones in LNLO
S2
1S2

and the first 5 ones

in LNLO
S3
1

, which becomes significantly more compact.

However, before we will proceed to handle via redefinitions the higher order time

derivatives appearing in the cubic-in-spin sector at this order, we need to also take into

account all the contributions to the action in this sector at this order, which originate from
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lower order redefinitions of the variables made at lower order sectors in order to remove

higher order time derivatives there, as was shown in detail in section 6 of [11]. First, for

example we recall that we have kinematic contributions as noted in eq. (5.28) of [11], that

are linear in the spin but have no field coupling. Those are required here to NLO as follows:

Lkin = −~S · ~Ω− 1

2

(
1 +

3

4
v2

)
εijkSkv

jai, (5.23)

where Sij = εijkSk, and Ωij = εijkΩk. At LO, e.g., we define the following shift of the

positions, ∆~yI , according to

~y1 → ~y1 +
1

2m1

~S1 × ~v1, (5.24)

and similarly for particle 2 with 1↔ 2 to remove the leading accelerations.

Note that as of the NLO linear-in-spin level higher order time derivatives of spin also

appear, where it was shown how to generically treat these in section 5 of [43]. Yet, since the

leading spin redefinition is of higher PN order, terms quadratic in the leading redefinition

contribute only at the next-to-NNLO (NNNLO) level. Therefore, here it is sufficient to

consider the redefinition of the spins to linear order.

To recap, let us list the additional contributions coming from lower order variable

redefinitions that we will have. From position shifts in lower order sectors we will have:

1. The LO (1.5PN) position shift in eq. (5.24) implemented to linear order on the NLO

quadratic-in-spin (spin1-spin2 + spin-squared) sectors.

2. The above LO position shift implemented to quadratic order on the Newtonian and

LO spin-orbit sectors.

3. The above LO position shift to cubic order implemented on the Newtonian sector.

4. The NLO position shift at 2.5PN order in eq. (6.20) of [11] implemented to linear

order on the LO quadratic-in-spin sectors.

5. The NLO position shifts at 3PN order in eqs. (6.30), (6.43) of [11] implemented to

linear order on the shifted LO spin-orbit sector.

The leading redefinition of spin (of 2PN order) in eq. (6.21) of [11] will not contribute to

our sector. From spin redefinitions, i.e. rotations of the spin, we will have then:

1. The spin redefinitions at 2.5PN order in eqs. (6.31), (6.44) of [11] implemented to

linear order on the LO quadratic-in-spin sectors.

2. The spin redefinitions at 3PN order, which were required at the LO cubic-in-spin

sector [10], implemented to linear order on the LO spin-orbit sector.

In a forthcoming publication we will present the full details of these redefinitions and

the contributions which add up to get the reduced effective action.
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6 Conclusions

In this work we derived for the first time the complete NLO cubic-in-spin PN effective action

for the interaction of generic compact binaries via the EFT formulation for gravitating

spinning objects in [11] and its extension to the leading sector, where gravitational non-

linearities are considered at an order in the spins that is beyond quadratic. This sector,

which enters at the 4.5PN order for rapidly rotating compact objects, completes finite size

effects up to this order, and is the first sector completed beyond the current state of the art

for generic compact binary dynamics at the 4PN order. Once again we see that the EFT

of gravitating spinning objects has enabled pushing the state of the art in PN Gravity. Yet

the analysis in this work indicates that going beyond this sector into the intriguing gray

area of table 1 may become impossibly intricate.

We have seen that at this order in spins with nonlinearities in gravity we have to take

into account additional terms, which arise from a new type of worldline couplings, due to

the fact that at this order the Tulczyjew gauge, which involves the linear momentum, can

no longer be approximated only in terms of the four-velocity, as the latter approximation

differs from the linear momentum by an order O(RS2). The correction gives rise to new

“composite” couplings from the gauge of rotational DOFs. It is interesting to consider

whether these new couplings have an insightful physical interpretation.

As we noted in section 1 one of the main motivations for us to tackle this sector was

also to see what happens when we go to a sector at order higher than quadratic in the

spins and nonlinear in gravity, which corresponds to a gravitational Compton scattering

with quantum spins of s ≥ 3/2, and to possibly also get an insight on the non-uniqueness

of fixing its amplitude from factorization when spins of s ≥ 5/2 are involved [32]. From

[11] and the analysis in section 4 we can see that going to an order quintic in spins, or

in the quantum case to s = 5/2, exactly corresponds to where the correction to pµ in

eq. (4.2) has to be taken into account at quadratic order. We will discuss this interesting

connection between the classical and the quantum levels at a forthcoming publication. A

general observation that we can clearly make already is that even-parity sectors in l, see

table 1, are easier to handle than odd ones. In the quantum context this corresponds to

the greater ease of dealing with bosons compared to fermions.

Unless all the additional terms from section 4 conspire to cancel out eventually, we

obtain an effective action that differs from that with the gauge used in lower spin sectors,

involving only the four-velocity. Yet, it could be that when computing the consequent

observable quantities, such as the binding energy, or the EOMs, one finds that this differ-

ence does not show up, and the two gauges are physically equivalent. In a forthcoming

publication we will present the resulting Hamiltonian, EOMs, and finally gauge invariant

quantities, such as the binding energy, and get an answer for this question.

At the moment it is not clear whether computations carried out within an amplitudes

framework can capture all the classical effects derived in this paper. The generic results in

this work can serve to streamline such a framework, as that which was initiated in [35, 36],

or provide a crosscheck for the conjectured result for the scattering angle at one-loop level

in the restricted case of black holes with aligned spins in [39].
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Chapter 4

Conclusions

In this thesis we reviewed of the EFT formulation to compute the interac-

tions in a coalescent binary system of compact objects, which has gained

special attention through the years, as a way to test theories of gravity, and

especially after the first gravitational waves were detected at 2015 by the Ad-

vanced LIGO detector, [1], and presented new high precision computations

in classical gravity, [15], which was the cubic-in-spin interaction that enters

at the 4.5PN order. This sector revealed a group of 49 Feynman diagrams at

the leading term of the four-momentum, plus 4 graphs that arise from a new

type of worldline coupling. The latter appear because of the dependence in

the spin variable of the four-momentum that enters at the 4.5 PN order, as

can be seen in the equation below and is thoroughly computed in [15]:

pµ = − ∂L

∂uµ
= m

uµ√
u2

+O(S2) (4.1)

At this order we see that the linear momentum can no longer be approxi-

mated as the four-velocity uµ, as it was usually done in the previously com-

puted spin sectors. This contribution will reveal a new type of ”composite”

coupling to the worldline and therefore new graphs that contribute in the
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interaction, [15]. These new coupling terms have not yet been fully under-

stood in their meaning in terms of physical interpretation and leaves open

interesting research topic to follow.

An alternative expansion that is being used to compute scattering am-

plitudes and classical gravitational quantities of a coalescent binary is the

post-Minkowskian (PM) approximation, in which the gravitational field is

still taken to be weak, but the velocities are not the small parameters any-

more, and can in fact be completely relativistic, [32]. The work in [32]

also uses an effective field theory formulation, in which the operators are

expanded in powers of the transfer momentum divided by the mass of the

matter field, and enables one to extract classical contributions for the loop

amplitudes of large mass scalar and fermions weakly coupled to gravity in

the PM approximation.

In general, a parallel construction of classical and quantum formulations to

the interaction of classical gravitational objects has been gaining more and

more attention and it is a promising research topic, bringing the discussion

of the two-body problem to a scattering amplitudes framework.

For instance, an interesting outcome of the computations from the work

developed in this thesis is the connection to a quantum formalism, to compute

the scattering amplitudes that was first approached in [33], based on new

spinor-helicity formalism for massive spins introduced in [34]. In this work,

the classical spin effects with the spin to the lth order corresponds to the

amplitudes with a quantum spin of s = l
2
. This means that, as of the one-

loop sector and larger than quadratic classical spin order i.e the gray area

in the table in figure 1.2, the Compton scattering amplitude, which is the

scattering amplitude involving two massive scalar and two massless gravitons,

with a quantum spin s > 3
2

is already required in the quantum formalism

to capture the binary system interactions. However, there is a related issue
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that a Compton scattering amplitude with s > 5
2

cannot be uniquely fixed

due to the difficulty in formulating a perturbative UV completion of gravity

with higher spins, [34]. Curiously, the gray section in the table in figure 1.2

also corresponds to where the four-momentum is no longer independent of

the spin. This could suggest some kind of connection between the classical

and quantum formulations i.e the gray area in the table in figure 1.2 and

higher order spins in the Compton scattering, to be better understood in

the future. Could these classical computations within an effective particle

perspective bring us some insight into the non-uniqueness of the Compton

scattering for spins s > 2?

Other follow ups of the work done through this thesis are, straightfor-

wardly, the extension of the high precision computation through the diagonal

of the table in figure 1.2 i.e pushing to higher loop orders and spin orders.

Some recent work pushing the frontier has already been done in [17] and [18],

as well as in [6]. One can also seek to obtain the Hamiltonian, the equations

of motion and possibly binding energies starting from the results of the com-

putations accomplished during this thesis. That would be a possible good

way to get an answer on whether the different gauges applied at this sector

and at lower orders of the spin sectors, that included only the leading term in

the four-momentum i.e the four-velocity term, will turn out to be equivalent

or not, at the level of gauge invariant quantities.
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