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Abstract

This thesis reviews and expands on the usage of scattering amplitude techniques
to model gravitational collision events between rotating objects. In this formal-
ism, classical angular momentum is encoded in an expansion in terms of the
spin quantum number of the particles. By making use of the color-kinematics
duality and the properties of Heavy-mass Effective Field Theories, we construct
a fully covariant and spurious pole free form for the four- and five-point Comp-
ton amplitudes for a scattering process involving one massive spinning particle
interacting with a number of massless gluons or gravitons. Using a bootstrap
method where only gauge invariance and a correct factorization behavior are
imposed, the solution is uniquely fixed when choosing a natural basis of func-
tions to generate the ansatz. We also generalize this procedure to arbitrary
number of particles. Lastly, we compare with several results in the literature
and make appropriate contact term corrections to match the specific behavior
for Kerr black hole collisions up to quartic order in spin.

i



High Spin Scattering Amplitudes Marcos Skowronek Santos

Contents

1 Introduction 1

2 Aspects of scattering amplitudes 3
2.1 Color-kinematics duality and double copy 3
2.2 Kinematics and notation 7
2.3 Gravity loop integrals and classical observables 8

3 KLT numerators and HEFT 9
3.1 KLT basis for BCJ numerators 9
3.2 Heavy Mass Effective Field Theory 13
3.3 Decomposition of the gravity amplitude in the heavy-mass limit 20
3.4 Factorization of the HEFT gravity amplitudes 24

4 High spin amplitudes 26

5 SHEFT Compton Amplitudes 32
5.1 Heavy-mass scaling 34
5.2 Four point amplitude 35
5.3 Finite mass four point amplitude 42
5.4 Five point amplitude 47
5.5 Generalization to arbitrary number of points 52

6 Comparison with the literature up to quadratic order in spin 56

7 Cubic order and beyond 57

8 Conclusions and future research 61

Acknowledgements 63

A Appendix: Introduction to Spinor-Helicity 63

B Appendix: Properties of the G functions 65

References 74

ii



High Spin Scattering Amplitudes Marcos Skowronek Santos

1 Introduction

The need to understand gravitational physics has increased significantly in the last
years after the first detection of gravitational waves caused by inspiraling astrophys-
ical binary systems. These signals can provide new information about objects like
black holes and neutron stars, and serve as a testing ground for Einstein’s classical
theory of gravity. Thus, numerous approaches have been developed in order to pro-
vide theoretical templates for these gravitational waveforms with the precision and
scope required by present and future experiments. Remarkably, an avenue that has
provided a great deal of novel results takes advantage of the modern techniques that
have been developed over the last decades for the computation of perturbative scat-
tering amplitudes involving elementary particles, prompted by a need to model colli-
sion processes in particle accelerators. In this formalism, super-heavy black holes are
considered as point particles and their interaction is described by scattering ampli-
tudes in Einstein’s theory of gravity, where the perturbative expansion is performed
in terms of Newton’s constant GN . This is known as the post-Minkowskian (PM)
framework.
The fact that classical results emerge at all orders of the perturbative expansion was
already observed long ago [1, 2]. Since then, several works [3–21] have contributed
to extending the calculations for increasing orders in Newton’s constant GN , both
in the elastic case and including radiation. In particular, fourth post-Minkowskian
order (three-loop) computations have been pioneered by [22–24].
Since gravity is non-renormalizable, it has to be treated as an effective field theory
(EFT), extracting non-local effects from the low energy regime and separating them
from the ultraviolet contributions. This is of course not a problem, since we are
mostly interested in so-called classical effects, which take place at large distances
and correspond to the leading term of the amplitude when taking the limit ℏ → 0.
In this way, we can compute observables such as bending angles and waveforms,
which are then compared to experimental data or alternative theoretical approaches
such as the effective one-body formulation [25–28] or the worldline formalism [29–34].
Another avenue of interest is the addition of spin effects, as signals from interac-
tions of Kerr black holes can present a higher intensity when compared to their
Schwarzschild counterparts [35]. However, in contrast to the spinless case, significant
complications arise even at low orders in the perturbative expansion. In particular,
considering classically spinning bodies in the scattering amplitudes framework en-
tails having to describe particles with arbitrarily high spin quantum number. As
explained in [36], theories involving a massive particle with s > 2 coupled to grav-
ity violate the unitarity principle at energies below the Planck scale. Thus, it is
necessary to impose certain physical conditions in order to constrain the form of
the amplitudes. In [37], the three-point amplitudes for a massive particle of spin
s interacting with massless fields with s = 1, 2 were constructed in spinor-helicity
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formalism by requiring minimal coupling, i.e. a high energy behaviour consistent
with the dominant helicity configuration when m → 0. It was later shown [38] that
these amplitudes precisely described scattering processes corresponding to Kerr black
holes, which seems to agree with the no hair theorem. In the original work, these
three point amplitudes were extended to higher points via the Britto-Cachazo-Feng-
Witten (BCFW) on-shell recursion. However, it was observed that for s > 2 there
are spurious poles that obstruct the high energy behaviour, which was interpreted
as the well known fact that massive higher spin particles cannot be elementary.
In subsequent works [39–45], the expression for the four point Compton amplitude
was reworked to manifestly remove the spurious poles and obey additional physical
constrains in order to be utilized in one-loop 2PM computations of classical observ-
ables. This is done by performing an additional expansion in terms of the ratio
between the spin and the angular momentum, which explicitly represents the dif-
ferent induced multipoles in the amplitude. In particular, the expansion variable
is usually chosen to be the rescaled intrinsic angular momentum expectation value
a = S/m. In this framework, it was shown in [46] that the three and four-point
amplitudes exponentiate for the precise helicity configuration that contributes to
the classical limit. While this exponential still contains spurious poles, they can be
cancelled by adding appropriate contact terms at each order in the spin expansion.
Using this approach, a well behaved expression for the four point amplitude has been
calculated and compared to General Relativity results up to fourth order in spin.
In spite of this, a closed formula for the high spin Compton amplitude is still to be
obtained. Moreover, in most instances in the literature the amplitude is expressed in
certain helicity configurations. Although it is true that for classical observable calcu-
lations only the opposite helicity piece contributes to the loop integral, a manifestly
gauge invariant form of the amplitude is still desirable as to shed more light into the
theories involving arbitrary spin fields. Lastly, in order to carry out computations at
higher order in the PM expansion, higher point tree amplitudes are needed. Thus,
the main goal is to devise a systematic procedure to obtain a well-behaved expression
for these amplitudes.
In this work, we propose a bootstrap approach with which we are able to calculate
the four and five-point tree amplitude for a massive spinning line interacting with two
and three gravitons in a manifestly covariant, spurious pole free and gauge invariant
form. Our framework is based on the Heavy-Mass Effective Field Theory (HEFT),
which was greatly developed in [47–49] and used for gravitational computations in
[21, 50, 51]. In this formulation, the massive momenta are parameterized as k = mv,
and the amplitude is expanded in terms of the inverse mass 1/m. As we will show
here, this is completely equivalent to the soft graviton expansion (q → 0) and, thus,
the classical expansion ℏ → 0.
Another feature which we make ample use of is the color-kinematics duality or, equiv-
alently, the double copy. In [52–54], it was observed that the kinematic numerators
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of gauge tree amplitudes could be chosen to obey the same Jacobi-like relations as
the corresponding color factors (BCJ numerators). By substituting the latter for the
former, one could obtain gravitational amplitudes as a double copy of gauge ampli-
tudes, in a much simpler manner than using the Feynman rules for Einstein’s theory.
By combining this with the heavy-mass regime, remarkably compact expressions for
the amplitudes are produced, which are also manifestly gauge invariant.
The procedure followed in this work is fairly simple: we firstly use the color-kinematics
duality to determine the general structure that the amplitude involving a pair of
massive spinning particles interacting with a number of massless fields must present.
From this, we consider all the possible building blocks that this amplitude can be
made of, ensuring that the expressions are manifestly gauge invariant and present
the correct singularity structure. The final form for the amplitude is then fixed by
imposing a consistent factorization behaviour into the Kerr three point amplitude
presented in [37].
The thesis is organized as follows: in Section 2, we give a brief review of the color-
kinematics duality, the double copy and the principles of generalized unitarity that
are used to construct tree and loop gravity amplitudes. In Section 3, we clarify
on the difference between the various representations of the BCJ numerators and
introduce the HEFT amplitudes and their properties. In Section 4, we give a review
of the current state and recent developments of high spin amplitudes. In Section
5, we construct the four and five-point Compton amplitude with massive spinning
particles and propose a systematic procedure for an arbitrary number of points.
In Section 6 and Section 7, we compare our results with those from the literature
and add potential contact terms in order to match the Kerr black hole behaviour.
Finally, in Section 8 we give some final remarks and discuss possible applications and
questions for the future.

2 Aspects of scattering amplitudes

2.1 Color-kinematics duality and double copy
Although it can seem unexpected, a starting point in the construction of gravity
amplitudes are non-abelian gauge theories such as Yang-Mills, where the interactions
are controlled by a set of color tensors C like the structure constants fabc. In most
cases, these are not completely independent, but obey certain Jacobi relations:

fdaef ebc − fdbef eac = fabef ecd. (2.1)

In the case of pure Y-M, the Lagrangian is given by:

LYM = −1

4
F a
µνF

aµν , F a
µν = δµA

a
ν − δνA

a
µ + gfabcAb

µA
cν, (2.2)
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where Aa
µ are gauge vector fields which transform under the group SU(N) (N = 3

for the standard theory of Yang-Mills), g is the coupling constant and F a
µν is the non-

abelian field strength tensor. Using a Feynman diagram approach, we can express
an n-point tree amplitude in this theory as:

Atree
m = −ign−2

(2n−5)!!∑
i=1

ciNi

Di

. (2.3)

Here, the sum runs over all the possible cubic diagrams with n external legs. The ci
are the color factors, built as products of the structure constants associated to each
vertex, and the Di are propagator products corresponding to the diagram edges.
Finally, the Ni contain all the remaining numerator information for each graph.
While it is true that there can be graphs with four-gluon vertices, we can always
incorporate their contribution into the cubic diagrams by multiplying and dividing
by the missing propagator.
Since the structure constants obey (2.1), the color factors ci are also going to be
related to each other by Jacobi identities. Specifically, it can be shown that only
(n − 2)! of them are independent, which means that we can construct a basis with
which to express the remaining ones. To illustrate this, let’s consider an arbitrary
cubic diagram G like:

1 n

2 3

4

5

6 7

n-1

· · ·

(2.4)

The corresponding color factor is:

c(G) = f̃a1bcf̃ ba2a3 f̃ ca4df̃degf̃ ea5hf̃ha6a7 ...f̃ zan−1an , (2.5)

where we have rescaled the structure constants as f̃abc ≡ i
√
2fabc to match the

standard conventions (see e.g. [55]). By using a rank-2 tensor notation (f̃a)bc ≡ f̃ bac

and the Lie algebra relation:

f̃abcf̃ c = [f̃a, f̃ b], (2.6)

we can express c(G) as:

c(G) = ([f̃a2 , f̃a3 ]f̃a4 [f̃a5 , [f̃a6 , f̃a7 ]]...f̃an−1)a1an . (2.7)
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Following this, it is clear that any color factor can be written in terms of products
of structure constants with legs 1 and m fixed:

ci =
∑

σ∈Sn−2

biσ(f̃
aσ(2) f̃aσ(3) ...f̃aσ(n−1))a1an , bi = {0,±1}, (2.8)

which, in turn, means that any gauge tree amplitude can be expanded into this basis:

Atree
n =

∑
σ∈Sn−2

Atree
n (1, σ(2), ..., σ(n− 1), n)(f̃aσ(2) f̃aσ(3) ...f̃aσ(n−1))a1an . (2.9)

The coefficients Atree
n (1, σ(2), ..., σ(n− 1), n) are called partial tree amplitudes. Only

planar graphs with the corresponding ordering contribute to each Atree
m , and they

obey several useful relations [54]:

U(1) decoupling:
n∑

i=2

Atree
n (2, 3, ..., i, 1, ..., n) = 0,

KK relations: Atree
n (1, α, n, β) = (−1)|β|

∑
σ∈α�βT

Atree
n (1, σ, n),

BCJ relations:
n−1∑
a=2

(
a∑

b=2

p1 · pb

)
Atree

n (2, ..., a− 1, 1, a, ..., n− 1, n),

(2.10)

where α�βT indicates the set of all shuffles of α and the transpose of β (i.e. respecting
the ordering within each subset). These identities reduce the number of independent
partial amplitudes to (n− 3)!, which means that (2.9) is still a redundant basis.
We now turn to study the color-kinematics duality for gauge amplitudes. In a general
manner, it is defined as the fact that, for many gauge theories, it is possible to
establish a one-to-one map between the Jacobi-like identities obeyed by the color
factors of the different cubic diagrams and the relations of the kinematic numerators
corresponding to those graphs. In other words, the kinematics numerators can be
chosen so that they satisfy the same identities as the color factors. In this specific
case, they are denoted as BCJ numerators.
This statement entails various interesting consequences. Firstly, by using (2.8), the
partial amplitudes take the form:

Atree
n (1, α(2), ..., α(n− 1), n) = −i

∑
i∈planar

biα
Ni

Di

. (2.11)

Now, if the kinematic numerators obey the same Jacobi identities as the color factors,
then it is possible to reorganize the partial amplitude into an (n− 2)! KK basis:

Atree
n (1, α, n) =

∑
β∈Sn−2

m(1αn|1 β n)N(1, β, n), (2.12)
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where m(α|β) is the so-called propagator matrix. Due to their convenience for gen-
erating gauge and gravity amplitudes, the systematic construction of expressions for
the BCJ numerators N(1, β, n) has been greatly developed over the last years. For
example, in [56–60], various graphical algorithms for calculating the numerators were
formulated from the so-called CHY formalism [61–63]. In this framework, field the-
ory scattering amplitudes are written as integrals over the moduli space of punctured
Riemann spheres constrained by a set of relations know as the scattering equations.
If one tries to solve equation (2.12) for the numerators N(1, β, n), it turns out that
it is not possible, since the propagator matrix is singular. This is to be expected: we
saw before that the partial amplitudes obey a set of relations that leave only (n−3)! of
them as independent objects, so any system of equations involving (n−2)! amplitudes
is bound to be degenerate. In other words, we can only solve for (n−3)! numerators,
while the rest contribute only as unfixed parameters manifesting a gauge freedom.
We could for example make the following choice:

N(1, σ, n− 1, n) ̸= 0,

N(1, σ, n) = 0 if σ(n− 1) ̸= n− 1.
(2.13)

We denote this as the KLT basis. In the next section, we will explore the properties
of these numerators more thoroughly and establish a procedure to go from the KK
to the KLT basis.
Another consequence of the color-kinematics duality is the fact that we can substitute
the color factors of a gauge amplitude with another set of kinematic BCJ numerators,
obtaining gravity amplitudes. This procedure is know as double copy, and it is
a surprising feature, since there is no apparent connection between the different
theories. Moreover, the expressions obtained from standard Lagrangian methods in
gravity are, on the surface, significantly more complex than just a product of two
gauge amplitudes, which hints at the fact that there is probably a much more efficient
way of arranging the gravitational perturbative expansion.
In particular, it can be shown that the double copy of Yang-Mills theory corresponds
to Einstein’s theory of gravity coupled to an antisymmetric B-field and a scalar
dilaton field ϕ, which can both be truncated into Einstein gravity by an adequate
choice of symmetric traceless polarization tensors. By utilizing the different relations
that the BCJ numerators inherit from the color-kinematics duality, we can express
double copy gravitational amplitudes in several different ways:

M tree
n =

∑
i∈graphs

−i
(κ
2

)n−2 NiÑi

Di

(2.14)

= −i
(κ
2

)n−2 ∑
σ∈Sn−2

N(1, σ, n)Atree
n (1, σ, n) (2.15)

= −i
(κ
2

)n−2 ∑
α,β∈Sn−3

A(1, α, n− 1, n)S[α|β]A(1, β, n, n− 1). (2.16)
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The expression in the last line is known as the KLT relation, which were first en-
countered in string theory [64]. The KLT kernel S[α|β] is given by:

S[α|β] =
n−2∏
a=2

(
2p1 · pαa +

a∑
b=2

2pαa · pαb
θ(αb, αa)β

)
, (2.17)

where θ(αb, αa)β = 1 if αb is before αa with respect to β, and zero otherwise.
These double copy relations are remarkably convenient to obtain gravity amplitudes,
since we only need to compute their much simpler gauge theory versions and then use
the color-kinematics duality to square them. Then, once the gravity tree amplitude
is generated, the next step is to perform loop calculations and extract the relevant
classical observables.

2.2 Kinematics and notation
Moving forward, we will mainly analyze amplitudes pertaining to gravitational elastic
scattering processes. Thus, we consider two incoming and two outgoing massive
external particles, with momenta denoted by:

kn kn−1

k′n k′n−1

(2.18)

where k2
n = k2

n−1 = m1 and k′2
n = k′2

n−1 = m2. We have chosen this notation to
reflect the fact that, most of the time, we are going to be working with the n-point
tree amplitudes that are sewn together via generalized unitarity. We also define the
transfer momentum as q = kn − kn−1 = k′

n−1 − k′
n and the invariant Lorentz factor

as:
y =

knk
′
n

m1m2

. (2.19)

The on-shell conditions imply that:

kn · q = −k′
n · q =

q2

2
. (2.20)

As we will see, these scattering processes are described by gravity loop amplitudes
which, by the principle of generalized unitarity, can be constructed out of products
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of tree amplitudes where one massive line interacts with a number of gravitons:

kn kn−1

· · ·p1 p2 pn−2

(2.21)

In the cases where we consider tree amplitudes on their own, we will use two slightly
different notations. For an n-point amplitude, the massless momenta of the gravitons
are going to be represented by either li or pi (i = 1, ..., n− 2), depending on whether
we want to make the connection to loop integrals explicit or not.

2.3 Gravity loop integrals and classical observables
A key aspect of calculating loop gravity amplitudes is generalized unitarity, by which
the non-analytic part of the amplitude can be expressed as a product of tree ampli-
tudes integrated over the cut momenta [53]. This is especially convenient for long
distance gravity scattering processes, since the exchanged gravitons can be taken
on-shell and all the analytical pieces are discarded. Thus, the bulk of the important
contributions are given by the multi-graviton cuts [65]:

iMcut
L+1 = ℏ3L+1

∫
(2π)Dδ(q + l1 + l2 + ...+ ln−2)

n−2∏
i=1

i

l2D

dDli
(2πℏ)D

1

(n− 2)!

∑
hi=±2

M tree
L (lh2

1 , ..., l
hn−2

n−2 ,−kn−1, kn)M
tree
R (k2,−lh2

1 , ...,−l
hn−2

n−2 ,−k′
n−1, k

′
n)

†,

(2.22)
where the loop order is L = n − 3. Starting from 3PM (two loops), additional self-
energy and vertex correction diagrams have to be added, which can be interpreted
as radiation-reaction terms (although we won’t concern ourselves with them in this
work). Now, as we mentioned before, we are only interested in the classical contri-
bution to the amplitude. This can be extracted by fixing the wavenumber of the
gravitons q̄ = q/ℏ and performing an expansion in terms of ℏ, keeping only the 1/ℏ
term [15]. However, as we will see, expanding the tree amplitudes in the heavy-mass
regime is turns out to be more convenient, since one does not have to subtract the
hyperclassical terms that "feed down" from lower loop orders.
Classical observables are then computed by Fourier transforming the loop amplitude
into impact parameter space (IPS):

M̃(b) =
1

4m1m2

√
y2 − 1

∫
dD−2q

(2π)D−2
e−iq·bM(q), (2.23)
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which, as shown in [20, 21], gives rise to an exponentiated expression for the S-matrix:

S = 1 + M̃ = eiδ. (2.24)

The eikonal phase δ can be expanded perturbatively to a certain loop order. In
the HEFT, hyperclassical contributions factorize in IPS, and thus can be straight-
forwardly discarded (see Section 3.3). Finally, the scattering angle is given by the
derivative of the real part of the eikonal phase with respect total angular momentum
J :

χ = −∂(Reδ)
∂J

. (2.25)

Having reviewed the fundamental aspects of the scattering amplitude methods in
gravity, we now dedicate the next section to studying the HEFT and the construction
of tree amplitudes and numerators in more detail.

3 KLT numerators and HEFT

3.1 KLT basis for BCJ numerators
Like we mentioned in previous sections, the colour-ordered tree-level amplitude for a
massive line interacting with (n−2) massless vector particles (gluons) can be written
in terms of the so-called BCJ numerators in the (n− 2)!-dimensional KK basis:

A(α, n− 1, n) =
∑

β∈Sn−2

m(αn− 1n|β n− 1n)N(α, n− 1, n), (3.1)

where particles n− 1, n represent the massive line. The matrix m(αn− 1n|β n− 1n)

is known as the propagator matrix, and it is defined as:

m(αn− 1n|β n− 1n) =
∑

i∈cubic graphs

Ci,αCi,β

Di

, (3.2)

where Ci,α is the coefficient relating the cubic graph color factor i to the color-factor
of the half-ladder diagram associated with the permutation α, and Di is the product
of propagators of i. With this definition, it is easy to see that m(αn− 1n|β n− 1n)

corresponds to the amplitude for (n− 2) massless double-colored scalars interacting
with a massive scalar line [63].
Now, although it appears that there are (n−2)!×(n−2)! independent components in
the propagator matrix, this is actually not the case due to momentum conservation.
One easy way to prove this is to use the CHY formalism, from which can deduce
that only (n − 3)! × (n − 3)! of these double-colored amplitudes are independent.
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This is because there are only (n−3)! solutions for the scattering equations, and the
amplitudes depend exclusively on the Riemann sphere punctures σa.
From this, it is clear that m(αn− 1n|β n− 1n) must have a (n− 3)(n− 3)! dimen-
sional null space. To find this null space, we rewrite the fundamental BCJ relations
for Y-M amplitudes using momentum conservation [66]:

0 =
n−1∑
a=2

(
n−1∑
b=a

2p1 · pb

)
A(2, ..., a− 1, 1, a, ..., n− 1, n). (3.3)

To this, one has to add all possible permutations of {2, ..., n − 2}, and we can also
freely choose the particle that we move around. Considering this, the number of
independent equations is precisely (n− 3)(n− 3)!

It is also clear that the BCJ equations can be expressed more generally as

0 =
∑

α∈Sn−2

di(α, n− 1, n)A(α, n− 1, n), (3.4)

where we will call di(α, n− 1, n) the BCJ coefficients, and 1 ≤ i ≤ (n− 3)(n− 3)!. If
we now expand the color-ordered amplitudes in terms of the numerators, the relations
become:

0 =
∑

α,β∈Sn−2

di(α, n− 1, n)m(αn− 1n|β n− 1n)N(β, n− 1, n). (3.5)

Now, if we view the BCJ coefficients as an (n− 2)!× (n− 3)(n− 3)! matrix (where
the coefficients of each equation form a vector column), this can be written as:

dT ×m×N = 0 (3.6)

where N represents a (n− 2)! dimensional vector with the BCJ numerators as com-
ponents. However, the BCJ numerators in the KK basis are, in general, linearly
independent with respect to the matrix product dT × m, which automatically im-
plies:

dT ×m = 0 ⇒ m× d = 0. (3.7)

Here, we have used the fact that the propagator matrix is symmetric, as seen in
definition (3.2). In other words, the matrix of BCJ coefficients precisely spans the
null space for m(αn− 1n|β n− 1n).
Taking this into account, it is clear that any two sets of BCJ numerators in the KK
basis are equivalent if they differ by a linear combination of vectors in the null space
of the propagator matrix:

N ′(α, n− 1, n) = N(α, n− 1, n) +
∑
i

yidi(α, n− 1, n), yi ∈ R, (3.8)
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since, using equation (3.1), they will result in the same amplitude. Obviously, this
means that we can choose a set of numerators where N(α, n− 1, n) = 0 if α(1) ̸= 1,
i.e. only the numerators of the form N (1, σ, n− 1, n) with σ ∈ Sn−3 are non-zero.
We call this specific set the KLT basis for the BCJ numerators, and denote them
with a curly N to distinguish them from a general set. Of course, this saturates
the linear dependence we exposed, and thus they have to be uniquely determined.
In addition, these numerators must also be independently gauge invariant, i.e. they
must vanish under a transformation εi → pi, with i ∈ {1, ..., n− 2}. The reason for
this is very simple: since, in terms of the KLT basis, the amplitude can be expressed
as:

A(1, α, n− 1, n) =
∑

β∈Sn−3

m(1αn− 1n|1 β n− 1, n)N (1, β, n− 1, n), (3.9)

and the matrix m(1αn− 1n|1 β n− 1, n) no longer has a non-trivial null space, one
can invert it to express a particular numerator as a linear combination of color-
ordered amplitudes:

N (1, β, n− 1, n) =
∑

α∈Sn−3

m−1(1 β n− 1n|1αn− 1, n)A(1, β, n− 1, n). (3.10)

Since the amplitudes A(1, β, n− 1, n) have to be gauge invariant, it follows that the
minimal basis numerators N (1, β, n− 1, n) also satisfy this condition. One interest-
ing thing to note is that the inverse of the (n − 3)! × (n − 3)! propagator matrix
can be shown to be equal to the KLT kernel S[β|α] that relates gauge and gravity
amplitudes via the double copy [63].
Expressing the KLT numerator in a minimal basis also implies that they are going
to contain singularities in physical or unphysical poles (when considering color or-
dering). Indeed, if we insert (3.10) in the standard KLT relations [53], we see that
amplitudes where a massive line is interacting with (n−2) gravitons can be expressed
as:

M(1, 2, ..., n− 1, n) =
∑

α,β∈Sn−3

A(1, α, n− 1, n)S[α|β]A(1, β, n, n− 1)

=
∑

α∈Sn−3

A(1, α, n− 1, n)N (1, α, n− 1, n), (3.11)

where the elements of the KLT kernel are defined as in [67] to account for the per-
mutation of legs n− 1, n in the second color-ordered amplitude. Now, gravity am-
plitudes are not ordered with respect to the massless particles, so they are going to
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contain terms with a non-zero residue in poles such as p1 ·kn−1 = 0, p12 ·kn−1 = 0, and
so on. However, these terms are not present in any of the color-ordered Yang-Mills
amplitudes A(1, α, n− 1, n), and thus they must be present in the BCJ numerators
N . For example, at four points the numerator reads [68]:

N (1, 2, 3, 4) =
k3 · F1 · F2 · k3
(p1 + k3)2 −m2

, (3.12)

where F µν = pµεν − εµpν is the abelian strength tensor.
This example illustrates both the manifest gauge invariance in the massless legs and
the presence of poles which don’t respect the color ordering of the numerator.
Following the reasoning explained before, it is easy to derive with a systematic pro-
cedure to obtain the KLT numerators from any set of numerators in the KK basis.
Like before, for the minimal basis we fix particles {1, n− 1, n}. In that case, the
first step would be to solve the matrix equation:

∑
i

di(α, n− 1, n)yi = −N(α, n− 1, n), α ∈ Sn−2 such that α(1) ̸= 1. (3.13)

Having obtained the vector y, the KLT numerators can be written as:

N (1, σ, n− 1, n) = N(1, σ, n− 1, n) +
∑
i

di(1, σ, n− 1, n)yi. (3.14)

Let’s try to check this with the four point case. According to [60], a possible expres-
sion for the numerator in the KK basis is:

N(1, 2, 3, 4) = (ϵ1 · k4)(ϵ2 · (p1 + k4))−
1

2
(ϵ1 · ϵ2)(p1 · k4)

= (ϵ1 · (p2 + k3))(ϵ2 · k3)−
1

2
(ϵ1 · ϵ2)(p1 · (p2 + k3)),

N(2, 1, 3, 4) = (ϵ2 · k4)(ϵ1 · (p2 + k4))−
1

2
(ϵ1 · ϵ2)(p2 · k4)

= (ϵ2 · (p1 + k3)))(ϵ1 · k3)−
1

2
(ϵ1 · ϵ2)(p2 · (p1 + k3)), (3.15)

where we have used conservation of momentum and the on-shell conditions for the
gluons p21 = p22 = 0. Next, we look at the only fundamental BCJ relation for 4
particles:

(p2 · k3)A(1, 2, 3, 4)− (p1 · k3)A(2, 1, 3, 4) = 0 ⇒
d(1, 2, 3, 4) = (p2 · k3), d(2, 1, 3, 4) = −(p1 · k3).

(3.16)

12



High Spin Scattering Amplitudes Marcos Skowronek Santos

The equation (3.13) would be given by:

d(2, 1, 3, 4)y = −(p1 · k3)y = −N(2, 1, 3, 4) ⇒ y =
N(2, 1, 3, 4)

(p1 · k3)
. (3.17)

Finally, we can obtain our KLT numerator:

N (1, 2, 3, 4) = N(1, 2, 3, 4) +
(p2 · k3)
(p1 · k3)

N(2, 1, 3, 4)

= 2
(p1 · k3)

[
(ϵ1 · (p2 + k3)))(ϵ2 · k3)− 1

2
(ϵ1 · ϵ2)(p1 · (p2 + k3))

]
(p1 + k3)2 −m2

(3.18)

+ 2
(p2 · k3)

[
(ϵ2 · (p1 + k3)))(ϵ1 · k3)− 1

2
(ϵ1 · ϵ2)(p2 · (p1 + k3))

]
(p1 + k3)2 −m2

.

After using conservation of momentum and on-shell conditions and rearranging the
terms, we get:

N (1, 2, 3, 4) = 2
(k3 · p1)(ϵ1 · p2)(ϵ2 · k3)− (k3 · ϵ1)(p1 · p2)(ϵ2 · k3)

(p1 + k3)2 −m2
(3.19)

− 2
(k3 · p1)(ϵ1 · ϵ2)(p2 · k3) + (k3 · ϵ1)(p1 · ϵ2)(p2 · k3)

(p1 + k3)2 −m2
= 2

k3 · F1 · F2 · k3
(p1 + k3)2 −m2

,

which is indeed proportional to the minimal BCJ numerator (3.12). Also, when
constructing the Y-M amplitude A(1, 2, 3, 4), the pole in the numerator is cancelled
by the propagator matrix:

A(1, 2, 3, 4) = 2m(1234|1234)N (1, 2, 3, 4) (3.20)

=

(
1

p212
+

1

(p2 + k3)2 −m2

)
N (1, 2, 3, 4) = −2

k3 · F1 · F2 · k3
p212((p2 + k3)2 −m2)

,

correctly reflecting the color ordering in the amplitude.

3.2 Heavy Mass Effective Field Theory
When computing amplitudes for gravitational scattering processes, in most of the
cases we are not interested in the full expression. Rather, we seek to extract the
classical part of the amplitude, i.e. the leading contribution when ℏ → 0. Since
we normally work in natural units where ℏ = c = 1, we have to restore Planck’s
constant in the amplitude in order to reliably identify the classical contributions. As
explained in [3, 50], this is done in the coupling constant (both QCD and gravity) by
a factor of ℏ−1/2 and the massless momenta as q → ℏq. After that, one naively could
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take the leading term in the 1/ℏ expansion to obtain the classical piece. However, it
turns out that loop level amplitudes contain terms that scale as a higher power in 1/ℏ
than the tree level amplitude. For the amplitude to have a sensible classical limit,
those terms have to cancel when computing physical observables (e.g. the boxed and
crossed box contributions at one loop cancel when computing the classical potential
[4]). Conventionally, one sets the ℏ scaling so that the classical part of the amplitude
behaves as ℏ−1 [65].
From the discussion above, it follows that taking the classical limit corresponds to
the massless particles (gravitons) being soft. In fact, it is possible to systematically
extract the classical part of the amplitude by considering the multi-soft scaling of
the graviton legs. In [69], the authors reorganize the amplitude so that it factorizes
into pieces with definite scaling. In the following, we will review their derivation.
If we have a n − 2 graviton amplitude M(l1, l2, ..., kn−1, kn) (we slightly change the
notation so that we can indicate sums of momenta within the expression for the
amplitude), we can eliminate one of the li by using momentum conservation. Let’s
choose

l̂n−2 = −
n−3∑
i=1

li + q, (3.21)

where q = kn−1 − kn is the transfer momentum and we have denoted the massless
momenta by li to indicate that we are working with loop amplitudes. Now, ln−2 is
going to appear in a subset of the denominators in the amplitude, which means we
can use the following relation:

1

(kn + l̂n−2 + li1 + ...)−m2 + iε
=

1

(kn − lj1 − ...− ljk + q)2 −m2 + iε
=

δ̂((kn − lj1 − ...− ljk + q)2 −m2) +
1

(kn − lj1 − ...− ljk + q)2 −m2 − iε
,

(3.22)

where δ̂(x) = −2πiδ(x) and we have used that:

δ̂(x) = lim
x→0+

1

x+ iε
− 1

x− iε
. (3.23)

These delta functions allow us to factorize parts of the amplitude:

ResM(l1, l2, ..., kn−1, kn)
∣∣∣
(kn+l̂n−2+li1+...)−m2=0

→ (3.24)

→ M(li1 , ..., l̂n−2, kn,−kn − li1 − ...− l̂n−2)×M(lj1 , ..., ljk ,−kn−1, kn + li1 + l̂n−2 + ...).
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If we perform this decomposition on all the propagators that contain the hatted leg,
one can see that we will eventually obtain the following expansion for the amplitude:

M(l1, ..., l̂n−2, kn−1, kn) =
n−3∑
r=0

∑
{li}

(
r∏

a=1

δ̂((kn + l̂n−2 + li1 + ...+ liba )
2 −m2

)
×M (+)(li1 , ..., lib1 , l̂n−2,−kn − li1 − ...− lib1 − l̂n−2, kn)

×M (+)(..., lib2 ,−kn − li1 − ...− lib1 − ...− lib2 − l̂n−2, kn + li1 + ...+ lib1 + l̂n−2)

×...×M (+)(lj1 , ..., ljm , kn−1, kn + li1 + ...+ lib1 + ...+ libr ), (3.25)

where ka ≥ a− 1, and the (+) amplitudes are obtained by flipping the regulator in
the propagators with the hatted leg:

(kn + l̂n−2 + li1 + ...)2 −m2 + iε = −
(
2kn · (lj1 + ...+ ljk − q)− (lj1 + ...+ ljk − q)2 − iε

)
→ −

(
2kn · (lj1 + ...+ ljk − q)− (lj1 + ...+ ljk − q)2 + iε

)
. (3.26)

The decomposition in (5.16) is useful because it allows for a uniform scaling when
performing the multi-soft graviton limit. Indeed, the authors mention that one can
observe that the (+) amplitudes scale as O(|q⃗|0). Since each delta function behaves
as O(|q⃗|−1), we infer that the full amplitude have dominant terms starting from order
O(|q⃗|−(n−3)). These terms appear solely because of the presence of the regulators +iε,
and are crucial to extract the classical part of the loop amplitudes. However, the
fact that the M (+) scale uniformly in the soft limit is only an empirical observation.
For example, at four points, the amplitude can be expressed as a sum of graphs with
squared KK numerators:

M(l1, l2, k3, k4) =
N(l1, l2, k3, k4)

2

(k4 + l1)2 −m2 + iε
+

N(l2, l1, k3, k4)
2

(k4 + l2)2 −m2 + iε
+

N([l1, l2], k3, k4)
2

(l1 + l2)2 + iε
,

(3.27)
where N([l1, l2], k3, k4)

2 ≡ N(l1, l2, k3, k4) − N(l2, l1, k3, k4). In the multi-soft limit
li → |q⃗|l̃i, the only part of the numerator that scales as O(|q⃗|0) reads (see Appendix
B of [19]):

N(l1, l2, k3, k4) = 2(ϵ1 · k4)(ϵ2 · k4) +O(|q⃗|). (3.28)

Thus, the leading term of the amplitude in the soft limit is:

M(l1, l2, k3, k4) = 2
(ϵ1 · k4)2(ϵ2 · k4)2

|q⃗|

(
1

k4 · l̃1 + iε
+

1

k4 · l̃2 + iε

)
+O(|q⃗|0). (3.29)
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If we use conservation of momentum and take only the leading term in the second
propagator:

1

k4 · l2 + iε
=

1

−k4 · (l1 + q) + iε
=

−1

|q⃗|(k4 · l̃1 − iε)
+O(|q⃗|0), (3.30)

which means:

M(l1, l2, k3, k4) = 2
(ϵ1 · k4)2(ϵ2 · k4)2

|q⃗|
δ̂(k4 · l̃1) +O(|q⃗|0). (3.31)

This agrees with our previous discussion. However, if we consider M (+), which flips
the regulator sign in e.g. the second propagator, we see that:

M (+)(l1, l2, k3, k4) = 2
(ϵ1 · k4)2(ϵ2 · k4)2

|q⃗|

(
1

k4 · l̃1 + iε
− 1

k4 · l̃1 + iε

)
+O(|q⃗|0) = O(|q⃗|0).

(3.32)
For the sake of completeness, here we will present an indirect proof for this scaling.
For this, we firstly note that the M (+) amplitudes are computationally identical to
tree amplitudes, i.e. we can treat them the same as if the regulator ±iε wasn’t there.
This is because the only instance in which the presence of the regulator can lead
to extra contributions is when two terms with the same pole structure are summed
together. However, to get terms with the same denominator, momentum conservation
has to be used in one of them, which flips the sign of its regulator. Flipping it back
again (which is what we do when we consider M (+) amplitudes) results in two terms
with the same regulator, which then can be ignored. Therefore, we can focus on
proving the uniform scaling in tree amplitudes.
However, instead of performing the proof for the multi-soft limit of the amplitude,
we are first going to show that this limit is completely equivalent to the so-called
heavy mass approximation, and then prove our claim in this regime. The reason
to do this (apart from the fact that it is easier to do) is that we will adopt the
heavy mass limit for our results regarding amplitudes that involve massive classically
spinning particles, which draws inspiration from previous work [21, 49, 68] using this
approximation.
Heavy-mass Effective Field Theory (HEFT) is a regime in which the mass of the
particle is taken to infinity, resulting in the leading term being the only one that
contributes to the final amplitude. To quantify this, we redefine the massive momenta
by

kµ
n−1 = −mvµ − qµ, kµ

n = mvµ, (3.33)

where v is the four-velocity of the heavy particle, satisfying v2 = 1, and q is again
the transfer momentum q = p1 + ... + pn−2. The heavy mass limit is then realized
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by taking m → ∞ and keeping only the leading term in the 1/m expansion. Note
that this effectively takes out one of the degrees of freedom in the kinematics, since
the velocities of the both massive particles are the same up to a subdominant term.
This limit also provides a useful relation:

v · q = v · p12...n−2 = O(m−1), p12...n−2 := p1 + p2 + ...+ pn−2, (3.34)

which can be easily verified by using that:

k2
n−1 = k2

n = m2 ⇒ mv · q = mv · p12...n−2 = −q2. (3.35)

As we will see later, this significantly simplifies the computations of amplitudes and
BCJ numerators.
For example, the four point amplitude (3.20) takes the following form in HEFT:

A(1, 2, 3, 4) = −2
k3 · F1 · F2 · k3

p212((p2 + k3)2 −m2
→ A(1, 2, v) = − m

p212

v · F1 · F2 · v
v · p1

(3.36)

In [47], the authors use an approach based on a Hopf algebra to construct the min-
imal basis BCJ numerators. With this, they propose that the gauge and gravity
amplitudes can be written as a sum over all the possible nested commutators of the
massless legs:

A(1, 2, ..., n− 2, v) =
∑
Γ∈ρ

N (Γ, v)

DΓ

,

M(1, 2, ..., n− 2, v) =
∑
Γ∈ρ̃

(N (Γ, v))2

DΓ

,

(3.37)

where ρ (ρ̃) is the set of all possible (un)ordered nested commutators of particles
{1, 2, ..., n− 2}. For example, at five points:

ρ =
{
[[1, 2], 3] := (123)− (213)− (312) + (321),

[1, [2, 3]] := (123)− (132)− (231) + (321)
}
,

ρ̃ =
{
[[1, 2], 3], [1, [2, 3]], [[1, 3], 2]

}
(3.38)

Meanwhile, DΓ is defined as the products of propagators arising from the nested
commutator Γ. Again, some examples at five points are:

Γ = [[1, 2], 3] → DΓ = p212p
2
123 (3.39)

17



High Spin Scattering Amplitudes Marcos Skowronek Santos

Now, the expression for the gravity amplitudes in the HEFT as written in (3.37)
is not completely evident, since in principle it is not necessary that double copy
translates directly in the heavy mass limit. However, one can show [49] that starting
from the KLT relations (3.11) and taking m → ∞, HEFT gravity amplitudes take
the form shown before after using the color-kinematics duality and the definition of
the propagator matrix in double-colored scalar amplitudes.
Lastly, it is easy to see that the Yang-Mills-scalar amplitudes A(1, 2, ..., n − 2, v)

are of order O(m1) independently of the number of particles (we will show that in
the following), and thus gravity amplitudes M(1, 2, ..., n− 2, v) are going to behave
universally as m2. Note also that all the mass scaling is contained in the minimal
BCJ numerators N (1, 2, ..., n− 2, v), since the propagators in the amplitudes (3.37)
are purely massless.
Before continuing to explore the properties of the amplitude in the heavy mass limit,
we will prove the equivalence of this regime to the multi-soft graviton limit discussed
before. For this, we will start by looking at Y-M amplitudes with two massive scalars.
Luckily, it is remarkably easy to see the equivalence between taking the multi-soft
limit pi → |q⃗|p̃i, |q⃗| → 0 and the heavy mass limit kn−1 = −mv, m → ∞. Indeed,
it is manifest at the level of Feynman diagrams. Using KK relations, we can reduce
the number of independent BCJ numerators to those corresponding to the (n − 2)!

set of DDM half-ladder diagrams:

kn kn−1

p1 p2 · · · pn−2

(3.40)

Now, these diagrams include only vertices where a scalar line is coupled to a gluon.
The first vertex of the diagram:

V1 = (ϵ1 · kn) (3.41)

is just order O(m) in the HEFT and O(|q⃗|0) in the soft gluon limit. Meanwhile, we
can group the rest of the terms in products of a massive propagator and a vertex,
each of them giving:

(ϵi · (kn + p1 + ...+ pi−1))

2(kn · (p1 + ...+ pi−1))
. (3.42)

In the heavy mass limit, this expands as:

(ϵi · v)
2(v · (p1 + ..+ pi−1))

+
1

m

(ϵi · (p1 + ...+ pi−1))

2(v · (p1 + ..+ pi−1))
. (3.43)
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This can be seen to be identical to the soft limit:

1

|q⃗|
(ϵi · kn)

2(kn · (p̃1 + ..+ p̃i−1))
+

(ϵi · (p̃1 + ...+ p̃i−1))

2(kn · (p̃1 + ..+ p̃i−1))
. (3.44)

Something that we have to note is that these ladder diagrams have implicit "hidden"
vertices where a scalar line connects to two gluons:

k

pi pi+1

(3.45)

Here, k = kn + p1 + ...+ pi−1. Using the Feynman rules, we get:

1
2
(kn · (p1 + ...+ pi−1 + pi))

2(kn · (p1 + ...+ pi−1))
(ϵi · ϵi+1), (3.46)

where the factor in the numerators comes from the fact that we are dividing all the
terms by the same propagator, so we have to cancel it for the two gluon vertex.
Again, it is trivial to see that this scales in the same way for both limits.
Lastly, if we had a diagram with a massless line, like

k

pi pi+1

(3.47)

we could factorize that part and use Jacobi identities on the numerators to express
them as a combination of half-ladder diagrams. After some reduction, this would
give:

(ϵi · k)(ϵi+1 · pi)− (ϵi+1 · k)(ϵi · pi+1) +
1
2
(ϵi · ϵi+1)(kn · (pi − pi+1))

(pi + pi+1)2(2kn · (p1 + ...+ pi−1))
(3.48)

One can check that this again scales in the same way in the HEFT and the soft limit
(it can be confusing that now the leading soft term is of order O(1/|q⃗|2), but this is
because the order in 1/|q⃗| increases with the number of propagators, and now we are
considering two of them in this section of the diagram). In summary, one can see that
the correspondence rule in an arbitrary Feynman diagram is O(mn) ∼ O(|q⃗|2−g−n),
where g is the number of external gluons (here n is an arbitrary integer). Moreover,
it is straightforward to see that the leading term in the amplitudes that we consider
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is of mass order m1, regardless of the number or particles (it’s really only the first
vertex that contributes to the mass scaling, since in any other structure that we have
analyzed, the vertex mass cancels with the massive propagator).
This means we have proven the equivalence for the Y-M amplitudes as a whole.
Notice also that there aren’t going to be cancellations between the diagrams, because
these amplitudes are color-ordered.
Extending the correspondence to gravity is trivial, we only need the double copy.
We know that gravity amplitudes can be expressed in the following form as a sum
over all Feynman diagrams:

M(1, 2, ..., n− 2, n− 1, n) =
∑

i∈cubic graphs

N2
i

Di

, (3.49)

where the numerators NΓ are borrowed from Yang Mills theory (i denotes an arbitrary
Feynman diagram, not to be confused with the nested commutators Γ). Since we have
proven the equivalent scaling of these quantities, it will hold for gravity amplitudes,
too.
That being said, we have only showed that the amplitudes take the same form in the
HEFT and the soft limit, but not how they scale exactly. Particularly, it has been
observed that tree amplitudes suffer from cancellations in the first (n − 3) orders
when taking the heavy or soft limits, and the first non-zero term always scales as
O(m2) or O(|q⃗|0). To show that this is indeed the case for all amplitudes, we refer
back to the fact that M(1, 2, ..., n− 2, v) can be written as:

M(12...n− 2, v) =
∑
Γ∈ρ̃

(N (Γ, v))2

DΓ

, (3.50)

i.e. the HEFT equivalence of the double copy. Now, all the propagators are massless,
and Y-M amplitudes behave as m, which means that the HEFT numerators also scale
as O(m), which means that the leading order in the amplitude will be O(m2). Since,
just accounting for the numerators, the correspondence is O(mn+g) ∼ O(|q⃗|−n), the
soft equivalent would be O(|q⃗|0) when considering also the massless propagators.

3.3 Decomposition of the gravity amplitude in the heavy-
mass limit

Before continuing on to compute the amplitudes for spinning massive particles, let’s
recall that, when taking the limit m → ∞ (or, equivalently, the multisoft limit
|q⃗| → 0), the gravity n-point amplitude can be decomposed into a sum with prod-
ucts of s lower point amplitudes and delta functions imposing velocity cuts, which
scale as O(ms+1) (O(|q⃗|1−s)) and a n-point tree amplitude that scales as O(m2)

(O(|q⃗|0)). Although we already justified it in the soft limit, let us quickly repeat
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the argument from the perspective of HEFT. For this, we will closely follow the
reasonings presented in section 4 of [21].
We start by noting that, since gravity amplitudes are not ordered, we have to sum
over diagrams including all possible permutations of gravitons for a given set of
massive and massless vertices. This means that we will encounter sums of diagrams
such as:

kn H H kn−1

· · ·pa1 pai · · ·pb1 pbj

+

kn H H kn−1

· · ·pb1 pbj · · ·pa1 pai

(3.51)

where the grey blobs indicate a complete tree level amplitude. Now, both diagrams
are identical except for the massive propagator separating the sets {a1, ..., ai} and
{b1, ..., bj} of gravitons. Thus, the sum will be proportional to

1

(kn + pa1 + ...+ pai)
2 −m2 + iε

+
1

(kn + pb1 + ...+ pbj)
2 −m2 + iε

=
1

(kn + Pa)2 −m2 + iε
+

1

(kn + Pb)2 −m2 + iε
, (3.52)

were we have defined Pa = pa1 + ...+ pai and Pb = pb1 + ...+ pbj . In order to evaluate
this sum, we can use that Pb = q−Pa, with q being the transfer momentum. However,
since kn · q = −q2/2, vector products like kn · Pb won’t have a uniform scaling in the
transfer momentum (and thus, ℏ) when using momentum conservation. Therefore,
we introduce the following variables:

k̄n = kn +
1

2
q, k̄n−1 = kn−1 −

1

2
q. (3.53)

This allows us to write a heavy-mass expansion like:

1

(kn + P )2 −m2 + iε
=

1

2kn · P + P 2 + iε
(3.54)

=
1

2k̄n · P + P 2 − q · P + iε
≈ 1

2k̄n · P + iε

(
1− P 2 − q · P

2k̄n · P
+ ...

)
,

where k̄n = m̄v̄. Since now k̄n · q = 0, we can express the sum of the leading terms
of the two propagators as:

1

2k̄n · Pa + iε
+

1

2k̄n · Pb + iε
=

1

2k̄n · Pa + iε
+

1

−2k̄n · Pa + iε
= δ̂(k̄n · Pa), (3.55)
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where again we have used (3.23). By recursively repeating this procedure, the HEFT
amplitude can be written as:

n−3∑
r=0

∑
{Pa}∈P(r+1)

(
r∏

a=1

δ̂(m̄v̄ · Pa)

)
M(P1, v̄) · · ·M(Pr+1, v̄), (3.56)

where P(r+ 1) are all the possible partitions of the (n− 2) gravitons into r+ 1 non
empty sets.
To illustrate this, consider the four point amplitude in gravity, which has an exact
expression:

M(1, 2, 3̄, 4̄) = −(k4 · F1 · F2 · k4)(k3 · F1 · F2 · k3)
p212k4 · p1k4 · p2

, (3.57)

which can be obtained by direct use of the KLT relations on (3.20). We first rewrite:

1

k4 · p1k4 · p2
= − 2

p212

(
1

k4 · p1 + iε
+

1

k4 · p2 + iε

)
, (3.58)

where we have used momentum conservation and reinstated the regulators +iε.
Changing to the barred massive momenta:

k4 = k̄4 +
q

2
= m̄v̄ − q

2
, (3.59)

leads to:

1

k4 · p1k4 · p2
= − 2

p212m̄

(
1

v̄ · lp1 − q·p1
2m̄

+ iε
+

1

v̄ · p2 − q·p2
2m̄

+ iε

)
. (3.60)

Using that v̄ · p2 = −v̄ · p1 and expanding around 1
m̄

:

1

k4 · p1k4 · p2
= − 2

p212m̄

(
1

v̄ · p1 + iε
− 1

v̄ · l1 − iε

+
q · p1
2m̄

1

(v̄ · p1)2 + iε
+

q · p2
2m̄

1

(v̄ · p1)2 − iε
+O

(
1

m̄2

))
. (3.61)

Here, we have rescaled the leading order in ε to get it out of the square. We can now
see that the first two terms give a delta function and the two last, a principal value:

1

k4 · p1k4 · p2
= − 2

p212m̄

(
−2iπδ(v̄ · p2) +

p212
2m̄

PV
(

1

(v̄ · p1)2

)
+O

(
1

m̄2

))
= −4iπδ(v̄ · p1)

p212m̄
+

1

m̄2
PV
(

1

(v̄ · p1)2

)
+O

(
1

m̄3

)
. (3.62)
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This brings us to the following expression for the amplitude:

M(1, 2, 3̄, 4̄) =− 4iπδ(v̄ · p2)(k4 · F1 · F2 · k4)(k3 · F1 · F2 · k3)
(p212)

2m̄

+
1

m̄2

(k4 · F1 · F2 · k4)(k3 · F1 · F2 · k3)
p212(v̄ · p1)2

+O (m̄) . (3.63)

Now,

k3 · F1 · F2 · k3 =m̄2
(
v̄ · F1 · F2 · v̄ −

1

2m̄
q · F1 · F2 · v̄

− 1

2m̄
v̄ · F1 · F2 · q +

1

4m̄2
q · F1 · F2 · q

)
. (3.64)

One can see that, on the support of the delta function constrain, the second and
third term vanish, while last one is going to contribute to at most order O(m̄) in the
amplitude when squared. Thus, the leading and subleading terms for the amplitude
are:

M(1, 2, 3̄, 4̄) = −iπm̄3(v̄ ·p1)2(v̄ ·p2)2δ(v̄ ·p1)+
m̄2

p212

(
v̄ · F1 · F2 · v̄

v̄ · p1

)2

+O(m̄). (3.65)

We see that this indeed corresponds to a product of two three point amplitudes on
the support of a velocity cut delta function, of order O(m̄3), and a four point HEFT
tree amplitude, which scales as O(m̄2).
Until now, we have been working in the HEFT formalism while using non-barred
variables m and v. In contrast, it seems that our previous reasoning forces us to
use m̄ and v̄ instead. However, although these redefined variables allow us to easily
separate the amplitude in powers of the mass, each of the terms is not going to have
a defined classical scaling, since:

m̄2 = m2 − q2

4
. (3.66)

This can be seen as problematic, because it could be possible that hyperclassical
terms "spill down" and contribute to the classical part of the amplitude. Neverthe-
less, it can be shown (see section 4.5 of [21]) that using the barred variables m̄ and v̄,
hyperclassical diagrams (which are associated with two particle reducible diagrams)
are convolutions integrals, which factorize into products of classical and quantum
irreducible diagrams when Fourier transforming into impact parameter space. For
example, the hyperclassical box diagram at one-loop is simply a product of two tree
level amplitudes in IPS:
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v1

v2

IPS−−→

v1

v2

×

v1

v2

(3.67)

Because of the factorization of these diagrams, it is possible to express the S matrix
in impact parameter space to some order in the coupling as a truncated exponential
of the sum of the two particle irreducible diagrams to that particular order. For
example, at two loops:

S̃ = exp
(
iM̃ (0) + iM̃

(1)
2MPI + iM̃

(1,qu)
2MPI + iM̃

(2)
2MPI

)
= exp

(
δ
(0)
HEFT + δ

(1)
HEFT + δ

(2)
HEFT

)
.

(3.68)
Thus, the phase δHEFT contains only classical and quantum pieces. Since we don’t
care about the latter, the quantum contributions from m̄ in the classical diagrams
can be ignored, which means that we can just substitute the barred variables by the
unbarred ones. We expect that this holds at every loop order and for the spinning
case too, which is why we will exclusively use m and v from now on.

3.4 Factorization of the HEFT gravity amplitudes
One last subtlety we have to address with respect to the amplitudes in the heavy-
mass limit is the fact that certain factorization channels get mixed with each other
in gravitational amplitudes, giving rise to double poles which have to be taken into
account when trying to evaluate the different cuts.
If we analyze the four point case one more time, we see that in color-ordered Yang-
Mills theory the correspondence between the finite mass theory and the HEFT is
given by:

A(123̄4̄) = −k3 · F1 · F2 · k3
p212(k4 · p1)

m→∞−−−−→ A(12, v) = −v · F1 · F2 · v
p212(v · p1)

(3.69)

As we can see, there is a one-to-one correspondence between the poles in the complete
theory and the ones in the heavy-mass limit. That this extends to arbitrary points
is also straightforward: the main reason is that the pole structure of the amplitude
respects its color ordering, i.e. the only singularities present are of the form kn ·p12...r,
which don’t get mixed when taking the limit m → ∞. Even in the numerator
structures, where there can be poles that don’t correspond to physical factorization
channels, they are never products of propagators that get mapped to the same object
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in HEFT. This is because, due to the Hopf algebra rules [68], they always follow the
structure kn−1 · p1τ , where τ ∈ {2, 3, ..., n − 2}, and thus are never identical in the
heavy-mass limit.
In gravity, however, the amplitudes are not ordered. Instead, one has to sum over
all the possible permutations of massless particles when evaluating them using a
Feynman diagram approach. As we saw before, this leads to the amplitude presenting
terms where a velocity cut is imposed as a result of (3.23). On the other hand, the
subleading contributions appear as a principal value of a squared propagator or, in
other words, a double pole. This can also be seen by using the KLT formula (3.11),
where the different orderings of the gauge amplitudes in the product is completely
irrelevant in HEFT, leading to the same pole structure. Explicitly, at four points we
see:

M(1, 2, 3̄, 4̄) = −(k4 · F1 · F2 · k4)(k3 · F1 · F2 · k3)
p212k4 · p1k4 · p2

m→∞−−−−→ M(12, v) =
(v · F1 · F2 · v)2

p212(v · p1)2
. (3.70)

The problem is evident: the two distinct massive poles k4 · p1 and k4 · p2 have
been combined into the same HEFT pole v · p1. Thus, it is not clear what the
interpretation of the factorization channels is anymore. This will become even more
problematic when we analyze amplitudes involving spinning particles. As we will see,
the Yang-Mills version of the amplitude presents a piece that doesn’t contribute in
the massive cut, i.e. it only contains the 1/p212 propagator. However, after performing
the standard double copy with a scalar gauge amplitude, this term is going to acquire
a v ·p1 pole. We then have a term containing a double propagator (v ·p1)2 and another
with a single copy. Obviously, the latter cannot contribute naively to the massive
cut. This is because, if we trace back to the finite mass amplitude, it would mean
that this piece has a residue in the k4 ·p2 pole, but not in the k4 ·p1 pole, breaking the
symmetry under exchange of gravitons. Thus, we have to conclude that one cannot
interpret massive HEFT poles as simple factorization channels. When we calculate
the finite mass amplitude, we will see that this symmetry is indeed respected and that
the simple pole piece is really a result of the spin flipping effect on the propagator
that one has to take into account when considering the full theory.
In summary, factorization channels are not clearly defined in HEFT gravity ampli-
tudes. If we want to compute any cut on an amplitude, we need to evaluate it first
without taking the heavy-mass limit, and then collect the leading term when m → ∞
of the resulting product of lower point amplitudes.
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4 High spin amplitudes

In the previous sections, we have reviewed how the quantum scattering amplitudes
approach is successfully used to compute classical observables in gravitational pro-
cesses like black hole mergers. However, we have limited ourselves to the cases where
the massive particles are scalar, which in the classical framework corresponds to hav-
ing vanishing angular momentum (it is true that one can extend these methods to
account for the massive particles having fundamental spin s = 1

2
, 1, 2, but that limits

our analysis to quantum processes). If we wish to study scattering amplitudes where
at least one of the massive objects has classical angular momentum, new complica-
tions arise due to the fact that we have to perform a power series expansion in the
spin variable to describe all the possible values that the spin quantum number s can
take. That this expansion indeed corresponds to a sum over fundamental spins can
be seen by considering the amplitude in terms of the angular momentum operator J
that is going to act on the spin states of the massive object. Generally, an amplitude
Ah,s

n describing a process where a massive spin s particle emits n − 2 massless par-
ticles with helicity h (we will mostly be concerned with gluons and gravitons) can
be written as a sum over operators transforming in the irreducible representations of
the SO(D − 1) group up to dimension 2s+ 1:

Ah,s
n = Hn ×

s∑
r=0

r∑
q=−r

ωq,r Q
(r)
q , (4.1)

where Hn encodes all the scattering information of the process except for the spin
state transition. In principle, the ωq,r can be arbitrary coefficients of the operators
Q, which act on the massive spinning states space (one has to interpret (4.1) as
⟨εn|Ah,s

n |εn−1⟩, where the |ε⟩ transform in the spin s irreducible representation of
the SO(D − 1) group). Now, by the Wigner-Eckart theorem, the matrix elements
of the operators can be expressed as a product of a Clebsch-Gordan coefficient and
a reduced matrix element that depends only on the spin r. Moreover, using the
Cayley-Hamilton theorem we see that we can extend the sum to r = ∞, since for
r > s, the fact that the largest space of states we are acting on corresponds to spin
s implies that Q(r) can be written as a linear combination of lower representation
operators. In other words, the sum effectively truncates at r = s. Incorporating the
Clebsch-Gordan coefficients (and additional overall factors) into ωq,r, we are able to
write:

Ah,s
n = Hn ×

∞∑
r=0

ωrQ
(r), (4.2)

where we note again that we are really reducing the matrix elements, not the oper-
ators themselves.
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It is possible to translate this expression in terms of the generators of the SO(D−1, 1)

group Jµν [42]:

Ah,s
n = Hn ×

∞∑
j=0

ω(2j)
µ1···µ2j

Jµ1µ2 · · · Jµ2j−1µ2j . (4.3)

Of course, since we are using tensor products of generators, which are generally
not irreducible, each term in the multipole expansion is going to have lower spin
contributions. Also, we can work only with the symmetric part of the operator
products, since any commutator of the angular momentum operators can be reduced
to lower powers of J via the so(D − 1, 1) Lie algebra relations.
There is a certain ambiguity when promoting the multipoles to the SO(D − 1, 1)

group, since the massive spinning states on which the operators Jµν are acting can
transform in any of the representations

(
s− n

2
, n
2

)
with 0 ≤ n ≤ 2s. However, as it

was shown in Appendix A of [70], a minimally coupled amplitude possesses repre-
sentation independence, i.e. the massive spin states ε1,2 can transform under any of
the valid spin s representations of the SO(D − 1, 1) group. As in [37], minimal cou-
pling is defined as the interactions for which the high energy limit of the amplitudes
is dominated by the opposite helicity configuration of the particles (thus matching
with the massless case).
Moreover, we want to define a covariant spin vector associated with the SO(D − 1)

Wigner rotations which, combined with a certain boost, add up to the set of Lorentz
transformations that transform kn−1 → kn. Since these rotations are characterized
by the time-like direction that they leave invariant, forming thus irreps of SO(D−1)

acting on the transverse space, we have to pick a certain reference direction. A
possible choice [42] is to pick the average momentum of the incoming and outgoing
massive particles u = k/m = (kn−1 + kn)/2m. With this, boosts are realized as
Kν = uµJµν , and the generators of Wigner rotations are given by Sµν = Jµν −
2u[µKν]. This automatically results in the so-called Spin Supplementary Condition
(SSC) uµSµν = 0. Another common choice is to define the spin operator as the
mass-rescaled Pauli-Lubanski pseudo-vector of the incoming particle [44, 70]:

Sµ(p1) = − 1

2m
ϵµνρσknνJρσ. (4.4)

It can be shown that any symmetrized product of Lorentz generators acting on the
massive spinning states just results in:

⟨εn|(Jµν)
⊙

n|εn−1⟩ = (Sµν)n⟨εn|εn−1⟩, (4.5)

where the spin tensor is simply defined as:

Sµν = − 1

m
ϵµνρσkρSσ. (4.6)

27



High Spin Scattering Amplitudes Marcos Skowronek Santos

Lastly, since we are going to use it later, we also define the finite spin variable as:

aµ =
Sµ

m
(4.7)

In other words, we have shown how the amplitude describing a scattering process
between a massive spinning line interacting with n − 2 massless particles can be
expressed as a power expansion in the spin variable Sµ (aµ), which represents the
action of Wigner rotations on the irreps for the massive particles.
Before continuing to review known results for high spin scattering, we will briefly
discuss the parameters that we have to expand over in order to extract the classical
limit of the amplitudes, since we ultimately are only interested in that contribution.
As explained in [44, 70], we are working with three length scales, those being the
Compton wavelength of the spinning body λC ∼ m−1 (equivalently we could use
the de Broglie wavelength λdB ∼ k−1, since we are working in the regime where the
velocity is of order v ∼ O(1)), the ring radius |⃗a| ∼ |S⃗|m−1 and the impact parameter
of the scattering process |⃗b| ∼ |q⃗|−1. These scales obey the following hierarchy:

λC ≪ |⃗a| ≪ |⃗b|, (4.8)

which obviously corresponds to the heavy-mass, finite size, large-distance regime.
This gives us two main expansion parameters (dropping the 3-d vector notation):

λC

a
∼ ℏ

ma
,

a

b
∼ ℏ(q · a), (4.9)

where we also have to take into account the ℏ scaling from the coupling constant
G → ℏG and the soft graviton momenta l → ℏl̃. However, since we already saw that
the m → ∞ limit is completely equivalent to the multi-soft limit l → 0 and recovers
the classical part of the amplitude, we can keep taking the leading term in the HEFT
expansion if we are considering a finite ring radius. In the case where the object size
is suppressed with respect to the impact parameter (i.e. low spinning objects), we
can also take the spin expansion over q · a.
Moreover, note that the first scale relation in (4.9) can also be written as:

λC

a
∼ ℏ

S
∼ s−1, (4.10)

where s is the fundamental spin of the particle. In other words, we expect classical
spinning bodies to correspond to arbitrarily high spin fundamental particles.
One of the first advancements in the computation of arbitrary spin scattering ampli-
tudes was made in [37], where the authors used massive spinor-helicity formalism to
construct the minimal coupling three-point amplitude for a massive line (represented
in the following by a field ϕs) with arbitrary spin interacting with a massless particle
of helicity h = ±1,±2.
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In the case of gluons, it was given by:

A(1g+, 2ϕs, 3ϕ̄s) = mx
⟨23⟩2s

m2s
, A(1g−, 2ϕs, 3ϕ̄s) =

m

x

[23]2s

m2s
, (4.11)

where ⟨23⟩ and [23] are massive spinor products (see Appendix A for a brief intro-
duction of massive spinor-helicity formalism), and x is defined in terms of the scalar
amplitude:

A(1g±, 2ϕ, 3ϕ̄) =
i√
2
(k2 − k3) · ε±1 := mx±1. (4.12)

For the case of gravitons, the amplitude is written as:

M(1h+, 2ϕs, 3ϕ̄s) = im2x2 ⟨23⟩2s

m2s
, M(1h−, 2ϕs, 3ϕ̄s) = i

m2

x2

[23]2s

m2s
, (4.13)

which, as pointed out in [36], is just the realization of the double copy using two
amplitudes involving gluons with total massive spin s:

M(1h±, 2ϕs, 3ϕ̄s) = iA(1g±, 2ϕsL , 3ϕ̄sL)A(1g±, 2ϕsR , 3ϕ̄sR), (4.14)

where sL + sR = s.
Despite this amplitude having a very compact form and being consistent with the
massless helicity configurations in the high energy limit, we haven’t argued why
we should treat it as special compared to other possible amplitudes. However, it
turns out that the minimally coupled expression is precisely the one that reproduces
scattering processes involving Kerr black holes. In [38], the authors compared the
impulse that a light particle experiments when moving through the electromagnetic
or gravitational field sourced by a heavy spinning particle and the corresponding
results obtained by using (4.11) and (4.13). Both types of background field are also
related by a double copy [71]:

gµν = ηµν + kµkνϕ(r⃗), Aaµ = cakµϕ(r⃗), (4.15)

where k is a null vector depending on (r, θ) and ϕ(r⃗) is a certain field common to both
theories. Moreover, one can obtain obtain the Kerr metric (and its electromagnetic
single copy, called

√
Kerr) by performing a shift in the coordinates z → z + ia [72].

Using this, it was shown that the impulse that a light particle experiences from a
background field sourced by a heavy spinning particle matches the QFT result when
using the minimally coupled amplitudes presented earlier. In other words, it seems
like this minimal coupling does represent scattering processes involving Kerr black
holes, which can also be seen as an agreement with the no hair theorem. This is going
to be very important when we try to compute higher point arbitrary spin amplitudes
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since, by imposing unitarity conditions, we can guarantee that they factorize into the
three point Kerr solution and thus behave as such when evaluating the cut kinematic
configurations.
The authors of [37] also try to extend their general spin amplitudes to four points by
using factorization behaviour consistency, i.e. imposing that the amplitude factorizes
into the corresponding three point expressions when taking the residue in the various
channels. The result in the case of spin 1 massless particles coupled to arbitrary spin
massive particles is:

A(1g+, 2g−, 3ϕs, 4ϕ̄s) =
⟨2|k4|1]2

(p214 −m2)(p224 −m2)

(
⟨32⟩[41] + ⟨42⟩[31]

⟨2|k4|1]

)2S

. (4.16)

Similarly, for the case of gravitons:

M(1h+, 2h−, 3ϕs, 4ϕ̄s) =
⟨2|k4|1]4

(p214 −m2)(p224 −m2)p212M
2
Pl

(
⟨32⟩[41] + ⟨42⟩[31]

⟨2|k4|1]

)2S

.

(4.17)
Upon superficial observation, we notice that these amplitudes have spurious poles for
S > 1 and S > 2, respectively. This seems to indicate that there are some problems
associated with particles of higher spin. Indeed, one can show that both (4.16) and
(4.17) can be rewritten in a local form, but it contains inverse powers of m which
obviously have are ill behaved in the high energy limit. Thus, one could interpret
this as the fact that higher spin elementary particles cannot exist (clearly, composite
particles with high spin can and do exist), except when considering the possibility
of an infinite tower of internal particles with increasing spins, like the case of string
theory.
As we explained before, these arbitrary spin amplitudes written in the spinor-helicity
formalism must be equivalent to an expression of the form (4.3) in terms of the
angular momentum operators Jµν . Indeed, it was shown in [39] that writing the
angular momentum as a differential operator acting on spinor variables results in the
following expression for the three point scattering amplitude between on massive line
of spin s and one graviton:

M3(1h
+, 2ϕs, ϕ̄s) =

1

m2s
[3|2sM̂+

3 |2]2s, M3(1h
−, 2ϕs, ϕ̄s) =

1

m2s
⟨3|2sM̂+

3 |2⟩2s, (4.18)

where the hatted amplitudes are given in terms of operators acting on the spin s

massive states:

M̂3(1h
+, 2ϕs, ϕ̄s) = M

(0)
3 exp

(
i
p1µε

+
ν J

µν

k · ε+

)
,
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M̂3(1h
−, 2ϕs, ϕ̄s) = M

(0)
3 exp

(
i
p1µε

−
ν J

µν

k · ε−

)
. (4.19)

Here, k refers to either the massive momentum k2 or k3 depending on which spinor
state the exponential operator is acting on. Meanwhile, the notation e.g. |2⟩2s simply
reflects the fact that we can express a spin s state as a symmetrized tensor product
of 2s spinor states.
This three point result was extended to four point (i.e. gravitational Compton am-
plitude) by generalizing the gravitational soft theorem to all orders in spin:

M̂4(1h
+, 2h−, 3ϕs, 4ϕ̄s) = M

(0)
4 exp

(
i
pµενJ

µν

k · ε

)
, (4.20)

where again k depends on the massive state the operator acts on and the massless
momentum and polarization can be associated to either graviton by:

[4|2s exp
(
i
p1µε

+
1νJ

µν

k1 · ε+1

)
|3]2s = ⟨4|2s exp

(
i
p2µε

−
2νJ

µν

k2 · ε−2

)
|3⟩2s. (4.21)

The identical helicity case can also be obtained with this methods, but since it
doesn’t contribute to the classical limit when calculating loop amplitudes [73], we
won’t focus on it for the time being. Now, one can write the action of the angular
momentum operator in terms of the spin variable with the map Jµν → Sµν at three
point (here, the spin tensor obeys the SSC uµS

µν = 0). This allowed the authors
in [39] to compute the scattering angle at 2PM (one loop) and check that it agreed
with classical results in General Relativity up to third order in spin. Thus, we can
use the amplitude (4.20) to check our results up to O(a3).
Following this result, several advancements [40, 41, 44, 45, 70, 74, 75] have been made
in the last couple of years to write the Compton amplitude in a more convenient
form for classical computations (e.g. by trying to eliminate the spurious pole in the
exponential) and perform loop calculations to extract observables describing spinning
black hole scattering processes. In particular, in [74] a spurious pole free form of the
Compton amplitude is achieved by adding contact terms to (4.20) while imposing
a manifestly local amplitude and the so-called black hole spin structure assumption.
The latter consists in expecting that the 2PM scattering amplitude depends on the
quantity (q ·ai)(q ·aj)− q2(ai ·aj) (j = 1, 2), a fact that has been observed to hold at
order O(G2). Using this, a unique form of the amplitude was obtained up to order
O(a4), which agreed with previous results (and so is also useful for us to compare
our result).
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5 SHEFT Compton Amplitudes

The objective of this project is to construct expressions for the amplitudes involving
massive spinning particles that are manifestly covariant and gauge invariant and
that contain only the classical information for the corresponding scattering process.
Thus, we will extend the framework of the HEFT reviewed in previous sections to the
case of spinning particles, generating only the leading term of the amplitude when
expanding over 1/m. We shall call this approach Spinning Heavy Mass Effective
Field Theory (SHEFT).
In particular, we will focus first on calculating the amplitudes describing the inter-
action of one infinite mass and spin (where the ring radius a = S/m remains finite)
massive line interacting with n− 2 massless gluons. This can be depicted as:

kn = mv S kn−1 = −mv − q

p1 · · · pn−2

(5.1)

where, as we mentioned before, the four-velocity of the massive particle is normalized
as v · v = 1 and the heavy-mass limit provides the condition v · p12...n−2 = v · q = 0

to leading order in the mass. The corresponding gravity amplitude can then be
calculated in a straightforward manner by use of the HEFT double copy [49].
In turn, the color-ordered gauge amplitude will be generated in terms of the minimal
BCJ numerators N (1, 2, ..., n− 2, v) as:

Aa(1, 2, ..., n− 2, v) =
∑
Γ∈ρ

Na(Γ, v)

dΓ
, (5.2)

where the Γ are ordered nested commutators of the massless particles. Here, the
subscript a indicates that the massive particle has classical spin, described by this
vector.
Let’s start looking at the three point amplitude, for which we can just apply the
heavy-mass limit to the known result in minimal coupling:

Aa(1, v) = Na(1, v) = m(v · ε1) exp
(
−i

p1 · S · ε1
m(v · ε1)

)
. (5.3)

This expression still has a spurious pole in the exponent, but it actually is pretty
straightforward to remove it in this covariant form. In order to do that, we first
expand the exponential as a power series, separating the even and the odd terms:
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exp

(
−i

p1 · S · ε1
m(v · ε1)

)
=

∞∑
n=0

1

n!

(
i
p1 · S · ε1
m(v · ε1)

)n

(5.4)

=
∞∑
n=0

(−1)n

(2n)!

(
p1 · S · ε1
m(v · ε1)

)2n

− i
∞∑
n=0

(−1)n

(2n+ 1)!

(
p1 · S · ε1
m(v · ε1)

)2n+1

.

Next, we will transform every pair of dot products involving the Sµν tensors into an
expression with the spin variables a by using the fundamental identity:

ϵµνρσϵαβγδ = −δµνρσαβγδ , (5.5)

where the generalized Kronecker delta is given by:

δµ1µ2...µr
ν1ν2...νr

=
∑
σ∈Sr

π(σ)δ
µσ(1)
ν1 δ

µσ(2)
ν2 ...δ

µσ(r)
νr . (5.6)

In particular, we have:

(p1 · S · ε1)2 = −m2(v · ε1)2(p1 · a)2, (5.7)

where we have used that p21 = 0, p1 · ε1 = 0, ε21 = 0 and the three point on-shell
condition v ·p1 = 0. Thus, it is easy to see that the pole is going to cancel completely
once the spin tensors are expanded in pairs, resulting in the following:

exp

(
−i

p1 · S · ε1
m(v · ε1)

)
=

∞∑
n=0

1

(2n)!
(p1 · a)2n − i

(
p1 · S · ε1
m(v · ε1)

) ∞∑
n=0

1

(2n+ 1)!
(p1 · a)2n

= cosh(p1 · a)− i

(
p1 · S · ε1
m(v · ε1)

)
sinh(p1 · a)
(p1 · a)

(5.8)
Of course, even if there seems to be a pole in p1 · a in the second term, the limit of
the function sinh(x)/x when x → 0 is well defined, so we don’t need to worry about
it. In order to avoid confusion and because it will be useful later, we will define the
analytic function G1(x) as:

G1(x) :=
sinh(x)

x
∀x ̸= 0, G1(0) = lim

x→0

sinh(x)

x
= 1. (5.9)

Note: From now on, when the variables xi appear as arguments of the G functions
in the context of an amplitude, they will correspond to the kinematic objects pi ·
a. Inserting this result into the three point amplitude yields a spurious pole free,
manifestly gauge invariant expression:

Aa(1, v) = m(v · ε1) cosh(x1)− i(p1 · S · ε1)G1(x1). (5.10)
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This can be simplified even further by introducing the following vector:

wµ
1 = m cosh(x1)v

µ − iG1(x1)(p1 · S)µ, (5.11)

which results in:

Aa(1, v) = w1 · ε1. (5.12)

Note that, written in this way, the amplitude is manifestly gauge invariant, since
using both the on-shell condition v ·p1 = 0 and the fact that p1 ·S ·p1 = 0 because of
the antisymmetry of the spin tensor, we clearly see that Aa(ε1 → p1) = w1 · p1 = 0.
The gravitational version of the amplitude can be easily obtain from its Yang-Mills
counterpart by using the heavy-mass double copy. However, one thing to keep in mind
is that we now have a freedom to choose the spin degree of the amplitudes we are
using to perform the double copy. Indeed, if we consider a truncation of the series to
order s, then every possible product of copies of order sL and sR will give the correct
power counting as long as sL + sR = s. At three points, the resulting amplitude is
independent on the values of sL,R, which is straightforward to check when using the
exponential form of the amplitude. However, as we will see, this doesn’t necessarily
hold at higher points. For the time being, we will follow the standard convention
and use the double copy with a scalar and a spinning amplitude. Thus:

Ma(1, v) = Aa(1, v)A0(1, v) = m(v · ε1)(w1 · ε1). (5.13)

5.1 Heavy-mass scaling
Before moving on to higher points, it is necessary to make the distinction of which
part of the amplitude we are actually computing. As mentioned in previous sections,
the HEFT amplitude in gravity can be decomposed into a sum of terms with definite
scaling in the mass of the heavy particle. Discarding the quantum corrections, at n

points there are n − 3 superdominant contributions that scale as O(mr) (3 ≤ r ≤
n − 1) and a classical contribution of order O(m2). However, the former can be
recursively expressed as products of lower point classical pieces on the support of
a velocity cut delta function. Thus, the only new part of the amplitude is really
the O(m2), which we will designate as the HEFT tree amplitude. We expect the
same to hold for arbitrary spin amplitudes. For example, at four points the complete
amplitude (neglecting quantum corrections) is given by the sum of two diagrams:

4̄ 3̄

1 2

m→∞−−−→
4

1 2

3

+

4̄ H 3̄

1 2

, (5.14)
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where the first one is of order O(m3) and the second, of order O(m2). In theory, we
would need to calculate both of them to obtain the full gravity amplitude, but in
practice, the first contribution is just:

δ̂(v · p1)Ma(1, v)Ma(2, v). (5.15)

Since we already know the expression for the three point amplitude, the only thing
we need to calculate is the four point HEFT tree amplitude. Thus, when we talk
about the four point amplitude in the next sections, we really are referring to just
this specific piece. Later, we will explicitly show this decomposition starting from
the finite mass amplitude and taking m → ∞.
The same reasoning holds at five points. Now the amplitude is divided into three
different scalings:

5̄ 4̄

21 3

m→∞−−−→
5

1 2 3

4

+

5 H

1 2 3

4

(5.16)

+

5 H

2 1 3

4

+

5 H

3 1 2

4

+

5̄ H 4̄

21 3

Again, at this point the only unknown object is the five point HEFT amplitude (last
term), which will be what we compute in the following.

5.2 Four point amplitude
Having made clear that we only need to calculate the tree part of the heavy-mass
amplitudes, we proceed to construct the next simplest case, the four point. Using a
minimal KLT basis, this means we can write:

Aa(12, v) =
Na([1, 2], v)

p212
=

Na(12, v)−Na(21, v)

p212
. (5.17)

Here, the numerator N (12, v) contains a piece that contributes to the massive pole
v · p1 = 0. We can try to fix that part first by considering the cut condition:

Na(12, v)
∣∣∣
v·p1=0

→ 1

2v · p1
(p1 · p2)Na(1, v)Na(2, v), (5.18)

which induces the correct factorization behaviour for the amplitude. If we express
the numerator as:

Na(12, v) =
N (v)

a (12, v)

2mv · p1
+N ′

a(12, v), (5.19)

35



High Spin Scattering Amplitudes Marcos Skowronek Santos

where N ′
a contains no poles (i.e. we separate the analytical piece from the one that

contributes to the massive cut), then we have the condition [49]:

N (v)
a (12, v)

∣∣∣
v·p1=0

→ (p1 · p2)Na(1, v)Na(2, v) = (p1 · p2)(w1 · ε1)(w2 · ε2). (5.20)

Now, we want the BCJ numerator to be manifestly gauge invariant, which means we
can express it in terms of the field strength tensors F µν . With this in mind, there is
a straightforward guess for the singular part of Na(12, v):

N (v)
a (12, v) = −w1 · F1 · F2 · w2. (5.21)

For the sake of clarity, let’s illustrate that this indeed factorizes correctly. Expanding
the strength tensors:

N (v)
a (12, v) = −(w1 · p1)(ε1 · p2)(ε2 · w2) + (w1 · ε1)(p1 · p2)(ε2 · w2)

+(w1 · p1)(ε1 · ε2)(p2 · w2)− (w1 · ε1)(p1 · ε2)(p2 · w2).
(5.22)

If we now take the cut v · p1 = 0, we see that w1 · p1 = w2 · p2 = 0 because of the
HEFT on-shell condition v · p12 = 0. Thus, only the second term remains and we get
the result (5.20). In other words, our numerator can be written as:

Na(1, v) = −w1 · F1 · F2 · w2

2mv · p1
+

1

2
N ′

a(12, v). (5.23)

We now turn to determine the analytical part of the numerator using the other cut
condition on the massless pole p212 = 0:

Na(12, v)
∣∣∣
p212=0

→
∑
λi

NYM(12, i)×Na(i, v), (5.24)

where i indicates the internal massless particle that is being cut, and whose polariza-
tion states we have to sum over. Meanwhile, the three point Yang-Mills numerator
can be written as:

NYM(12, i) = −εi · F1 · F2 · εi
εi · p1

, (5.25)

as shown in [48]. In expanded form:

NYM(12, i) = (εi · p2)(ε1 · ε2)− (εi · ε2)(ε1 · p2) + (εi · ε1)(ε2 · p1), (5.26)

where we have used the three point on-shell conditions and the transversality of the
polarization vectors. Using now the form of the three point SHEFT amplitude and
the completeness relation: ∑

λi

εµi ε
ν∗
i = −ηµν , (5.27)
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we get:

Na(12, v)
∣∣∣
p212=0

→ (ε1 · p2)(w12 · ε2)− (ε2 · p1)(w12 · ε1)− (ε1 · ε2)(w1 · p2). (5.28)

In contrast with the case with the massive pole, there is no clear way to propose
an expression for the analytical part of the numerator N ′

a(12, v). Not only does the
cut condition show significantly less patterns to follow, but we also have to take into
account the contribution from N (v)

a (12, v) to the massless pole, since not all of the
terms vanish when imposing p212 = 0 (however, one can check that the pole v · p1
does disappear when expanding the strength tensors and taking the residue of the
massless pole, as it should). Thus, we refrain from trying to guess how the rest of the
numerator should look like, and instead take a bootstrap approach. In other words,
we will make an ansatz with all the possible terms that N ′

a could contain that satisfy
our locality and gauge invariance conditions, and we will try to fix their coefficients
by imposing the cut condition (5.28). Initially, the ansatz was constructed order
by order in the spin variable expansion, but it quickly became clear that there was
a structure that would allow for a closed form of the analytical piece of the BCJ
numerator. In other words, it is possible to write N ′

a(12, v) in terms of fundamental
functions depending on the massless momenta and the spin variable a, as we will see.
First, it is necessary to determine all the possible terms that could appear in the
numerator. The expression (5.10) for the three point amplitude suggests that we
should separate the even and odd part in the spin variable. Also, since the hyperbolic
functions only depend on dot products of the massless momenta pi and a, we assume
that this is also the case at four points. Finally, every time there is a product of two
spin tensors Sµν , we can use the identity (5.5) to express them in terms of a, which
means that S will only appear once in each term of the odd part of the numerator. In
other words, the ansatz will be composed a prefactor of monomials with dot products
of massless momenta pi, the velocity v, the field strength tensor Fi, the spin variable
a and, at most, one instance of the spin tensor S. These monomials are multiplied
by one or two hyperbolic functions depending on pi ·a. Now, the monomials that can
appear in the numerator are also constrained by the scaling of the amplitude. To
start with, since we are dealing with the dominant contribution in the heavy-mass
limit, the Yang-Mills numerator has to scale as O(m1). We are considering terms
with no massive pole v · p1, so there is one factor of v for each terms in the ansatz.
For the odd part, this v is going to be hidden in the spin tensor S. Next, there has
to be one factor of each field strength tensor F1 and F2 that contain the polarization
information. Also, the spin scaling of the three point amplitude has to be preserved.
This means that for each denominator containing a product pi ·a that appears in the
hyperbolic part of the ansatz terms, there must be one power of the spin variable a

(or the spin tensor S) in the monomials of the prefactor. We can state this condition
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in a more precise manner by introducing the concept of the degree of an object,
which we define as its inverse scaling in λ when setting a → λa and λ → (i∞).
Effectively, this measures the number of factors of 1/a that a certain object presents.
For example, we would have:

deg(p1 · a) = −1, deg(p2 · S · F1 · a) = −2, deg(cosh(x1)) = 0,

deg(G1(x1)) = 1, deg(G1(x1)G1(x2)) = 2.
(5.29)

Our condition then translates to the fact that the total degree of each term in the
ansatz has to be zero. Finally, the number of massless momenta pi appearing in
the prefactor monomials is determined by the energy scaling. Since the four point
amplitude has dimensions of energy0, and taking into account that:

[pµi ] = energy1, [vµ] = energy1, [F µν
i ] = energy1,

[aµ] = energy−1, [Sµν ] = energy0,
(5.30)

we infer that N ′
a(12, v) has to contain one less factor of pi than factors of a and S

combined (the argument is slightly different for the even and the odd part, but it
leads to the same conclusion).
Regarding the hyperbolic functions that can appear, we would expect the following
combinations:{

cosh(x1) cosh(x2), cosh(x1)G1(x2), G1(x1) cosh(x2),

G1(x1)G1(x2), cosh(x12), G1(x12), cosh(x1 − x2), G1(x1 − x2)
}
.

(5.31)

Now, we can discard the last two options because they don’t appear in any of the cuts
that we impose. Also, there is another special possibility that isn’t being considered.
It can be interpreted as an extension of the G1 function to four points:

G2(x1;x2) :=
1

x2

(G1(x12)−G1(x1) cosh(x2))

=
1

p2 · a

(
sinh(p12 · a)

p12 · a
− sinh(p1 · a) cosh(p2 · a)

p1 · a

)
. (5.32)

Although it may seems that this G2 function contains some poles, it can easily be
shown that this is not the case. Indeed, we know that the G1 function is analytical
in the whole complex plane, so the terms in parentheses are well-behaved. On the
other hand, these terms vanish when we take x2 → 0, which means that it is going
to be proportional to x2 when expanding as a power series. This factor can then
cancel with the denominator 1/x2, resulting in a fully polynomial expansion. In
other words, G2 is analytical in C2 1.

1To be completely rigorous, we should have defined G(x1, 0) as the limit when x2 → 0, in the
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It is important to consider this as a separate function, because the presence of the de-
nominator allows us to incorporate additional factors of a to the monomials in front
of the hyperbolic functions. In fact, it turns out that the G functions are natural
building blocks for the analytical piece of the numerator. This is due to the fact that,
when considering all the possible combinations of monomials and hyperbolic func-
tions as explained above, the solution that fits the factorization conditions depends
on a large number of free parameters, i.e. the form of the numerator isn’t fixed only
by gauge invariance and unitarity. However, if the set of terms is restricted to the one
spanned by the functions G1 and G2, then the solution is uniquely determined once
the factorization conditions are imposed. In order to show this, let’s consider first
which terms the ansatz is going to be made of. Taking into account the previously
presented reasoning, we see that the only options are:

even : (v ·X · a)(p · Y · a)G1(x1)G1(x2), (v ·X · p)(a · Y · a)G1(x1)G1(x2),

odd : tr(S ·X)G1(x12), (p ·X · S · Y · a)G2(x1;x2), (5.33)

where X, Y are arbitrary products of the field strength tensors F1,2. Here, we have
also used the fact that G1 (G2) is even (odd) under a transformation a → −a of the
spin variable, which means that, for example, it is not possible to have terms like
(v ·X · a)(p · Y · a)G2(x1;x2) in the even part of the numerator, because this object
is odd under reflections on a.
One could argue that there are some missing terms that could be included in the
ansatz. For instance, upon further inspection of the function G2(x1;x2), we see that
its Taylor expansion is still proportional to (x1−x2). In other words, it is possible to
divide G2 by this factor and consider prefactor monomials that contain three powers
of the spin variable. However, we will see that the building blocks presented in (5.33)
are enough to obtain a solution that satisfies the factorization conditions. Of course,
the difference with any other solution has to be a pure contact term, since it needs to
vanish when evaluating it on the cuts. This reflects the fact that we can start adding
contact terms at cubic order in the spin expansion, making the solution no longer
fully unique. The same conclusion can be reached when looking at the conditions
for the terms in the ansatz : when considering a polynomial piece (contact) in the
amplitude, we see that it needs to contain two less factors of pi or v than factors
of a to satisfy dimensionality constrains while maintaining a gauge invariant form.
But, since it also needs to scale as v in order to be a leading term in the HEFT,
we conclude that there need to be at least three power of the spin variable, i.e. the
contact terms must start appearing at cubic order.
In order to fix the coefficients of the ansatz, a simple Mathematica program was used.

same way as we did for G1
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Generating all the possible terms with the conditions that we have stated before, we
get the following expression for the proposal for N ′

a:

N ′
a(12, v) = G1 (x12)

[
c
(1)
1 tr (F1 · F2 · S) + c

(1)
2 tr (F1 · S · F2) + c

(1)
3 tr (F2 · S · F1)

]
+G2 (x1, x2)

[
c
(2)
1 (a · F1 · F2 · S · p1) + c

(2)
2 (a · F1 · S · F2 · p1) + c

(2)
3 (a · F2 · F1 · S · p1)

+ c
(2)
4 (a · F1 · F2 · S · p2) + c

(2)
5 (a · F2 · F1 · S · p2) + c

(2)
6 (a · F2 · S · F1 · p2)

]
+mG1 (x1)G1 (x2)

[
c
(3)
1 (a · v)(a · F1 · F2 · p1) + c

(3)
2 (a · F1 · p2)(a · F2 · v)

+ c
(3)
3 (a · v)(a · F2 · F1 · p2) + c

(3)
4 (a · F2 · p1)(a · F1 · v) + c

(3)
5 (a · p1)(a · F1 · F2 · v)

+ c
(3)
6 (a · p1)(a · F2 · F1 · v) + c

(3)
7 (a · p2)(a · F1 · F2 · v) + c

(3)
8 (a · p2)(a · F2 · F1 · v)

]
.

(5.34)

Adding that to the singular part of the numerator N (v)
a and imposing the factorization

condition (5.28), we obtain a system of 10 equations with 17 variables. We solve this
by expanding out the field strength tensors and substituting each independent vector
product by a numerical value repeatedly until there are enough independent linear
equations to completely solve for the coefficients. Once this is done, the solution
takes the form:

N ′
a(12, v) = G1 (x12)

[
c
(1)
1 tr (S · F1 · F2) c

(1)
1 tr (S · F2 · F1) + i tr (S · F2 · F1)

]
+ iG2 (x1;x2)

[
(a · F1 · F2 · S · p2) + (a · F2 · F1 · S · p1)

]
+mG1 (x1)G1 (x2)

[
c
(3)
4 (a · F1 · p2)(a · F2 · v) + c

(3)
4 (a · F2 · p1)(a · F1 · v)

− c
(3)
4 (a · p2)(a · F1 · F2 · v)− c

(3)
4 (a · p1)(a · F2 · F1 · v)− (a · F1 · p2)(a · F2 · v)

− (a · p1)(a · F2 · F1 · v)
]

(5.35)

Now, it might seem like there is still some freedom left in the solution that we have
obtained, since not all of the coefficients are fixed. However, this is just because
some of the building blocks in the ansatz are not independent of each other. Indeed,
it is easy to see that, because of the antisymmetry of the spin and field strength
tensors, the traces that appear in the ansatz are odd under inversion, which means
that tr (S · F1 · F2) = tr (S · F2 · F1), making the c(1, 1) contribution cancel. On the
other hand, we see that when expanding F1 and F2, the term multiplying c(3, 4) also
vanishes. As a result, the form of the numerator is completely fixed:
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N ′
a(12, v) = m

[
(a · p1)(a · F2 · F1 · v)− (a · F1 · p2)(a · F2 · v)

]
G1 (x1)G1 (x2)

+i
[
(a · F1 · F2 · S · p2 + a · F2 · F1 · S · p1)G2(x1;x2) + tr (S · F2 · F1)G1 (x12)

]
(5.36)

In other words, we have shown that, after choosing a particular set of terms for the
ansatz, which are spanned by the G1 and G2 functions, the factorization conditions
together with gauge invariance provide a unique solution for the four point BCJ nu-
merator involving a massive spinning line and two massless spin 1 particles. One can
also see that the numerator is indeed antisymmetric under exchange of the massless
particles, which is expected since we are working in the minimal KLT basis, i.e. there
should only be one independent BCJ numerator. This property is not completely
manifest in the expression for Na(12, v), but can be checked by use of the relation:

(a · F1 · p2) (a · F2 · v) + (a · F2 · p1) (a · F1 · v)
−(a · p2) (a · F1 · F2 · v)− (a · p1) (a · F2 · F1 · v) = 0. (5.37)

Finally, we can obtain an expression for the amplitude in the theory of gravity by
performing the standard double copy in the SHEFT:

4̄ H 3̄

1 2

= Ma(12, v) =
N0([1, 2], v)Na([1, 2], v)

p212
. (5.38)

Now, one has to remember that this result only represents the factorizable part of the
amplitude. In theory, we could add any set of contact terms as long as they satisfy
gauge invariance and dimensionality/scaling constrains. Physically, this would just
correspond to different types of spinning massive objects being scattered. In princi-
ple, we are interested in describing scattering processes involving Kerr black holes.
Thus, we need to check that the amplitude that has been calculated indeed produces
the correct expressions for the observables corresponding to such objects and, if not,
modify it accordingly. This can be done by either comparing different forms of the
amplitude (tree level Compton amplitude, one loop at 2PM, etc.) directly with the
literature or by computing the observables themselves and contrast them with the
ones obtained using classical General Relativity calculations. We will do that in later
sections.
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5.3 Finite mass four point amplitude
Before moving on to calculate the five point arbitrary spin amplitude, we will firstly
take a look at four points in the case where the heavy-mass limit is not imposed. The
regime is highly non trivial in comparison with the previous considerations, since we
would have to take into account the spin flipping effects of the propagator. In short,
since we are talking about high spin massive particles, which in general are going
to be composite, we would expect that interacting with a spin 1 (gluon) or spin 2
(graviton) particle could change the intrinsic angular momentum quantum number
(i.e. the eigenvalue of S⃗2) by up to 1 or 2, respectively. Thus, the expression for the
Feynman rules for the high spin propagators would need to include all the possible
altered spin states. {s− 1, s, s+1} for the case of Yang-Mills and {s− 2, s− 1, s, s+

1, s + 2} in the case of gravity. The reason for not having considered them before
is that, as explained in [40], we expect these effects to be subleading in the heavy-
mass expansion. Therefore, in principle we can naively assume that the four point
amplitude factorizes directly into two three point high spin amplitudes when taking
the cut in the massive factorization channel (see equation (5.18)).
Calculating the complete amplitude in the finite mass regime is out of the scope of this
project, but we can compute the part that is going to have a non-zero contribution
in the HEFT. This may not provide new physical insight to high spin scattering,
but it will make the properties of the heavy-mass amplitude clearer, such as the
factorization in the massive pole or its decomposition into definite scaling pieces.
As we mentioned in the beginning of this section, the three point amplitude in
minimal coupling is well known to be:

Aa(1, 2̄, 3̄) = Na(1, 2̄, 3̄) = w
(3)
1 · ε1

∣∣∣
2s
, (5.39)

where now:

(w
(3)
1 )µ := cosh(x1)k

µ
3 − iG1(x1)(p1 · S(3))µ, S(3)

µν = ϵµνρσk
ρ
3a

σ, (5.40)

and the 2s subscript indicates we are truncating the expansion in the spin variable
at finite order 2s. This is a consequence of no longer considering the regime where
m → ∞, which means that in order to keep a = S/m finite, the expansion must stop
at some finite order. Intuitively, one could justify this by arguing that a finite mass
composite particle could not have arbitrarily high spin, since it would be made of
a finite number of particles. However, since it won’t affect our calculations, we will
omit the subscript from now on.
At four points, we can write the expression for the exact amplitude as:

Aa(1, 2, 3̄, 4̄) = A(m)
a (1, 2, 3̄, 4̄) +O(m), (5.41)

where A
(m)
a (1, 2, 3̄, 4̄) is the part of the amplitude contribution to the HEFT at order
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O(m2) or higher, and the rest are subleading terms that aren’t going to appear when
we take the limit m → ∞. The next step is to assume that the color-kinematics
duality still holds in an arbitrary spin theory, at least at the level of Yang-Mills.
This allows us to use the minimal KLT basis to write the amplitude in terms of
(n− 3)! = 1 BCJ numerators:

Aa(1, 2, 3̄, 4̄) =
Na([1, 2], 3̄, 4̄)

p212
. (5.42)

In order to construct the numerator Na(1, 2, 3̄, 4̄), we need to impose that the factor-
ization condition (5.18) holds in the heavy-mass limit. With this in mind, a plausible
expression would be:

Na(1, 2, 3̄, 4̄) = −w
(4)
1 · F1 · F2 · w(4)

2

2k4 · p1
+

C

2k4 · p1
N ′

1(1, 2, 3̄, 4̄) +
1

2
N ′

2(1, 2, 3̄, 4̄). (5.43)

Indeed, we can easily see that the first term is going to simply factorize into a product
of two three point numerators when we take the dominant part of the heavy-mass
limit:

−w
(4)
1 · F1 · F2 · w(4)

2 =− (w
(4)
1 · p1)(ε1 · p2)(ε2 · w(4)

2 ) + (w
(4)
1 · ε1)(p1 · p2)(ε2 · w(4)

2 )

+ (w
(4)
1 · p1)(ε1 · ε2)(p2 · w(4)

2 )− (w
(4)
1 · ε1)(p1 · ε2)(p2 · w(4)

2 )

−−−−−→
k4·p1→0
m→∞

(p1 · p2)(w(4)
1 · ε1)(ε2 · w(4)

2 ) = (p1 · p2)Aa(1, 3̄, 4̄)Aa(2, 3̄, 4̄). (5.44)

Thus, in order for the numerator (5.43) to be well behaved in the HEFT, the second
term needs to become polynomial in that regime. In other words, the pole k4 · p1
needs to cancel with the factor CN ′

1(1, 2, 3̄, 4̄). From this, we infer that the only
choice is that C = k4 · p2, since this is the only object that will be proportional to
the pole when we take m → ∞ due to the on-shell condition v · p12 = 0.
In other words, we have:

Na(1, 2, 3̄, 4̄) = −w
(4)
1 · F1 · F2 · w(4)

2

k4 · p1
+

k4 · p2
2k4 · p1

N ′
1(1, 2, 3̄, 4̄) +

1

2
N ′

2(1, 2, 3̄, 4̄). (5.45)

In analogy with what we did in the HEFT, we can now fix the form for the rest
of the numerator by imposing the correct factorization behaviour in the massless
cut p212 = 0. However, before this, we will also ensure that the amplitude satisfies
the color-kinematics duality. This can be realized by making the Jacobi relations
between numerators hold.
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Using that k4 · p2 = −k4 · p1 − p1 · p2, we can write the amplitude as:

Aa(1, 2, 3̄, 4̄) = −w
(4)
1 · F1 · F2 · w(4)

2

p212(k4 · p1)
+

N ′
2(1, 2, 3̄, 4̄)−N ′

1(1, 2, 3̄, 4̄)

p212
− N ′

1(1, 2, 3̄, 4̄)

2k4 · k4
.

(5.46)
We will ignore the first term, since it can be shown that it satisfies the Jacobi relations
on its own. Now, since a color-ordered amplitude can always be expressed as:

A(1, 2, 3̄, 4̄) =
N(1, 2, 3̄, 4̄)

2k4 · p1
+

N([1, 2], 3̄, 4̄)

p212
, (5.47)

which means that our numerators must satisfy:

N ′
1(2, 1, 3̄, 4̄)−N ′

1(1, 2, 3̄, 4̄) = N ′
2(1, 2, 3̄, 4̄)−N ′

1(1, 2, 3̄, 4̄)

⇒ N ′
2(1, 2, 3̄, 4̄) = N ′

1(2, 1, 3̄, 4̄). (5.48)

Repeating the argument for the amplitude Aa(2, 1, 3̄, 4̄), we obtain N ′
1(1, 2, 3̄, 4̄) =

N ′
2(2, 1, 3̄, 4̄). It is straightforward to see that these conditions can be realized by:

N ′
1(1, 2, 3̄, 4̄) = −N ′

2(1, 2, 3̄, 4̄) :=
1

2
N ′

a(1, 2, 3̄, 4̄). (5.49)

We are now ready to impose the massless cut condition on the amplitude:

Na(1, 2, 3̄, 4̄)
∣∣∣
p212=0

→
∑
λi

NYM(1, 2, i)×Na(i, 3̄, 4̄)

= (ε1 · p2)(w(4)
12 · ε2)− (ε2 · p1)(w(4)

12 · ε1)− (ε1 · ε2)(w(4)
12 · p2). (5.50)

Expanding the term that contributes to the massive cut in the numerator, this trans-
lates explicitly to:

−N ′
a(1, 2, 3̄, 4̄)

∣∣∣
p1·p2→0

→ (ε1 · p2)(w(4)
12 · ε2)− (ε2 · p1)(w(4)

12 · ε1)− (ε1 · ε2)

+
[
(w

(4)
1 · ε1)(p1 · ε2) cosh(x2)−

(
(ε1 · p2)(ε2 · w(4)

2 )− (ε1 · ε2)(p2 · w(4)
2 )
)
cosh(x1)

]
=
[
(a · p2)(a · p1)(ε1 · F2 · k4)− (a · p2)(a · p1)(p1 · ε2)(ε1 · k4)

]
G1(x1)G1(x2)

+ i
[
− (ε1 · F2 · S(4) · p1) + (p1 · ε2)(ε1 · S(4) · p2)

]
G1(x12) (5.51)

+ i
[
(a · p1)(ε1 · F2 · S(4) · p2) + (p1 · ε2)(a · p2)(ε1 · S(4) · p1)

]
G2(x1;x2).

We can now make an appropriate ansatz for N ′
a(1, 2, 3̄, 4̄), just like we did in the

heavy-mass limit, and solve for the cut condition. Choosing the same amount of
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building blocks as before, the solution is shown be unique, and it is given by:

N ′
a(1, 2, 3̄, 4̄) =

=
[k4 · p2 − k4 · p1

2
(a·F1·F2·a)+(a·F1·p2) (a·F2·k4)−(a·F2·p1)(a·F1·k4)

]
G1(x1)G1(x2)

+ i
[
(a ·F1 ·F2 ·S(4) ·p2)+(a ·F2 ·F1 ·S(4) ·p1)

]
G2(x1;x2)+ i tr(F1 ·F2 ·S(4))G1(x12).

(5.52)

The full numerator is written as:

Na(1, 2, 3̄, 4̄) = −w
(4)
1 · F1 · F2 · w(4)

2

2k4 · p1
+

k4 · p1 − k4 · p2
2k4 · p1

N ′
a(1, 2, 3̄, 4̄). (5.53)

Having obtained the piece of the amplitude in the finite mass regime that gives
a non-zero contribution when taking the limit m → ∞, let’s check now that the
corresponding gravity amplitude presents the correct factorization behaviour and
decomposition into terms with definite mass scaling. Using the standard double
copy:

Ma(1, 2, 3̄, 4̄) = −Na(1, 2, 3̄, 4̄)N0(1, 2, 3̄, 4̄)

p212
(5.54)

=
k4 · F1 · F2 · k4

(k4 · p1)(k4 · p2)(p1 · p2)

(
w

(4)
1 · F1 · F2 · w(4)

2 +
k4 · p1 − k4 · p2

2
N ′

a(1, 2, 3̄, 4̄)
)
.

If we take the massive cut k4 · p1 = 0 and use momentum conservation:

Ma(1, 2, 3̄, 4̄)
∣∣∣
k4·p1=0

→ 1

k4 · p1
(ε1 · k4)(p1 · p2)(ε2 · k4) + (ε1 · k4)(p1 · p2)(ε2 · p1)

(p1 · p2)2

×
[
(w

(4)
1 · ε1)(p1 · p2)(ε2 · w(4)

2 ) + (w
(4)
1 · ε1)(p1 · p2)(ε2 · p1) cosh(x2)

−p1 · p2
2

N ′
a(1, 2, 3̄, 4̄)

∣∣∣
k4·p1=0

]
(5.55)

As we mentioned before, the last term involving N ′
a(1, 2, 3̄, 4̄) is a new contribution

to the massive cut that results from the spin flipping effect of the propagator. Never-
theless, it can be seen to scale as O(m) when taking k4 = mv, and thus is subleading
in the 1/m expansion. This means that, in the heavy-mass limit, the amplitude
correctly factorizes into a product of two three point HEFT amplitudes:

Ma(1, 2, 3̄, 4̄)
∣∣∣
k4·p1=0
m→∞

→ m3

v · p1
(v · ε1)(w(4)

1 · ε1)(v · ε2)(w(4)
2 · ε2). (5.56)
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Lastly, we will decompose the amplitude into a series of terms with definite mass
scaling and check that it is consistent with the previous results we obtained. Similarly
to the scalar case, we write the propagator product in the denominator as:

1

(k4 · p1 + iϵ)(k4 · p2 + iϵ)(p1 · p2)
= − 1

(p1 · p2)2

(
1

k4 · p1 + iϵ
+

1

k4 · p2 + iϵ

)
→ δ̂(v · p1)

m(p1 · p2)2
− 1

m2(p1 · p2)
PV
(

1

(v · p1)2

)
.

(5.57)

On the support of the delta function, the scalar numerator and the first terms of
the spinning numerator simply factorize into two three point pieces. Meanwhile, the
second term vanishes, since it is proportional to:

k4 · p1 − k4 · p2
2

= v · p1 → 0. (5.58)

Meanwhile, by just changing to HEFT variables (without imposing any delta function
velocity cut), we see that:

N ′
a(1, 2, 3̄, 4̄) → N ′

a(12, v) = m
[
− (v · p1)(a · F1 · F2 · a)

+ (a · F1 · p2) (a · F2 · v)− (a · F2 · p1)(a · F1 · v)
]
G1(x1)G1(x2) (5.59)

+ i
[(

(a · F1 · F2 · S · p2) + (a · F2 · F1 · S · p1)
)
G2(x1;x2) + tr (S · F2 · F1)G1(x12)

]
,

which exactly matches the entire part of the numerator (5.36) that we found in the
previous section. As a result, we have:

Ma(1, 2, 3̄, 4̄) → m3(v · ε1)(w1 · ε1)(v · ε2)(w2 · ε2)

−m2v · F1 · F2 · v
v · p1

(
w1 · F1 · F2 · w2

v · p1
+N ′

a(12, v)

)
+O(m) (5.60)

= m3Ma(1, v)Ma(2, v) +m2Ma(12, v),

which correctly reflects the decomposition that we argued before, described by (5.16).
However, we have to keep in mind that here we are really using the barred variables
m̄ and v̄ implicitly, since we cannot write v · p12 = 0 otherwise. If one follows the
calculations carefully, it is clear that we are neglecting some terms by use of this
identity. For example, the numerator piece N ′

a(1, 2, 3̄, 4̄) on the support of the delta
function would contribute to the O(m2) piece of the amplitude, since the quantity
k4 · (p1 − p2) doesn’t really vanish, but has a remainder q2/2. Nevertheless, since
this would be a contribution from the hyperclassical part of the amplitude in the
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classical part, we can safely neglect it due to the factorization of the amplitude in
impact parameter space, as we argued previously. In other words, the expected
heavy-mass decomposition in gravity still holds in the spinning case after taking into
account all these considerations.

5.4 Five point amplitude
The next step will be to extend the result obtained previously to the five point
case. Although the expressions get significantly more complex, the fundamental
process remains the same: write the amplitude in terms of BCJ numerators using
the minimal KLT basis and the HEFT, generate an ansatz by considering a sensible
subset of building blocks that satisfy certain properties, and fix the coefficients by
imposing gauge invariance and the correct factorization behaviour.
Using (3.37), the amplitude can be expressed in the (n−3)! basis of BCJ numerators
as a sum over nested commutators:

Aa(123, v) =
Na([[1, 2], 3], v)

p212p
2
123

+
Na([1, [2, 3]], v)

p223p
2
123

. (5.61)

At five points, the HEFT on-shell condition becomes v · p123 = 0, so there are three
independent massive poles. The factorization behaviour at each of them is given by:

Na(123, v)
∣∣∣
v·p12=0

→ 2

3mv · p12
(p12 · p3)Na(12, v)Na(3, v),

Na(123, v)
∣∣∣
v·p13=0

→ 2

3mv · p13
(p1 · p2)Na(13, v)Na(2, v), (5.62)

Na(123, v)
∣∣∣
v·p1=0

→ 2

3mv · p1
(p1 · p2)Na(1, v)Na(23, v).

One might think that the cut v · p13 = 0 is not to be taken here, since it isn’t
ordered in the context of the amplitude Aa(123, v). However, since Na(123, v) is
a prenumerator, it doesn’t have a particular ordering, and it is going to act as a
building block for amplitudes involving other permutations of the massless particles,
which is why this cut can be imposed.
Similarly to the four point case, the massive factorization conditions can be fixed by
recasting the numerator as a sum with singular terms and an entire contribution:

Na(123, v) = −(w1 · F1 · F2 · w2) (p12 · F3 · w3)

3m2 (v · p1) (v · p12)
− (w1 · F1 · F3 · w3) (p1 · F2 · w2)

3m2 (v · p1) (v · p13)

+
(w1 · F1 · F2 · F3 · w3) cosh(p2 · a)

3m (v · p1)
+

N ′
a(12, v) (p12 · F3 · w3)

3mv · p12
(5.63)

+
N ′

a(13, v) (p1 · F2 · w2)

3mv · p13
− (w1 · F1 · p2)N ′

a(23, v)

3mv · p1
+

1

3
N ′

a(123, v).
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The logic behind the first three terms is that the arbitrary spin three point amplitude
is identical to the scalar case but with the replacement v → wi. Thus, using the
five point expression for the scalar amplitude obtained in [48] with this substitution
should give an expression that factorizes correctly into at least part of the lower point
numerators. However, at four points we saw that there is an entire part N ′

a(ij, v)

that appears when fixing the massless factorization condition, so we have to include
it in the five point numerator. This is realized in the next three terms, which only
have one pole. Lastly, the fully polynomial contribution in the numerator is given
by Na(123, v).
Let’s check that this indeed gives the correct massive factorization behaviour. On
the v · p12 = −v · p3 = 0 pole, there are two contributions:

Na(123, v)
∣∣∣
v·p12=0

=
p12 · p3

3mv · p12

[
− w1 · F1 · F2 · w2

mv · p1
+N ′

a(12, v)

]
(ε3 · w3)

=
2

3mv · p12
(p12 · p3)Na(12, v)Na(3, v), (5.64)

just as expected. The v · p13 = 0 case is completely analogous, which leaves us with
v · p1 = v · p23 = 0:

Na(123, v)
∣∣∣
v·p1=0

= (5.65)

=
w1 · ε1
3mv · p1

[
(p1 · F2 · w2)(p2 · F3 · w3)

v · p2
− (p1 · F2 · F3 · w3) cosh(x2) + (p1 · p2)N ′

a(23, v)

]
.

If we now use the fact that (v · p2) cosh(x2) = w2 · p2 and we decompose the field
strength tensors, the first two terms give the following:

(p1 · F2 · w2)(p2 · F3 · w3)

v · p2
− (p1 · F2 · F3 · w3) cosh(x2)

=
1

v · p2
[
(p1 · F2 · w2)(p2 · F3 · w3)− (w2 · p2)(p1 · F2 · F3 · w3)

]
= −p1 · p2

v · p2
[
(w2 · p2)(ε2 · p3)(ε3·3)− (w2 · ε2)(p2 · p3)(ε3 · w3) (5.66)

− (w2 · p2)(ε2 · ε3)(p3 · w3) + (w2 · ε2)(p2 · ε3)(p3 · w3)
]
= −(p1 · p2)

w2 · F2 · F3 · w3

v · p2

Thus, we finally obtain:

Na(123, v)
∣∣∣
v·p1=0

=
p1 · p2

3mv · p1

(
− w2 · F2 · F3 · w3

v · p2
+N ′

a(23, v)

)
(w1 · ε1)

=
2

3mv · p1
(p1 · p2)Na(1, v)Na(23, v). (5.67)
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Having checked that the numerator factorizes correctly on the massive poles, the
only thing left is to fix the entire piece N ′

a(123, v) using the massless factorization
conditions. These are given by:

Aa(123, v)
∣∣∣
p2123=0

→ 1

p2123

∑
λi

AYM(123, i)× Aa(i, v),

Na([[1, 2], 3], v)
∣∣∣
p212=0

→
∑
λi

NYM([1, 2], i)Na([i, 3], v),

Na([1, [2, 3]], v)
∣∣∣
p223=0

→
∑
λi

Na([1, i], v)NYM([2, 3], i).

(5.68)

Note that we need to impose the second and third condition regardless of the mas-
sive factorization behaviour (5.62) since, although the cut e.g. p212 = 0 is already
encapsulated by N (12, v), it is not realized in the context of the five point numera-
tor/amplitude. In other words, it is only fixing the double cut v · p12 = 0, p212 = 0,
but not the massless pole in its entirety. Moreover, it is clear that we need to use
the numerators involving nested commutators, since the massless cuts are imposed
at the level of the amplitude. Nevertheless, this is not a problem, since the prenu-
merator Na(123, v) is crossing symmetric in the gluon legs, and thus other orderings
like Na(213, v) are simply obtained via the exchange 1 ↔ 2 in the expression for
Na(123, v).
In analogy to what we did at four points, we now set up an ansatz for N ′

a(123, v) by
considering all the possible terms that could appear in the entire part of the numer-
ator. Again, we separate the even and odd parts in the spin expansion, where the
former only contains dot products of pi, v, a with the field strength tensors F1, F2, F3

(for which there is one factor of each), while the latter also contains one spin tensor
S. Since the amplitude has to scale as O(m), there can only appear one factor of v
in the even part, and none in the odd part (it is included in S). Moreover, the five
point amplitude has dimensions of energy−1, so by taking into account the scaling
of the objects v, Fi, a, S, we deduce that N ′

a(123, v) has to contain one less power of
the massless momenta pi than factors of a and S.
Another important constrain for the ansatz is that each of the terms has to have
total spin degree zero (recall the definition of degree from the previous section). At
five points there are three massless particles, so we have a larger number of possible
combinations for the hyperbolic functions. As in the four point case, we discard
any terms depending on differences of the variables xi, such as G1(x1 − x2 + x3),
because they don’t appear in the lower point numerators when taking cuts. In
addition, we restrict ourselves to products of G functions. Since now there is one
more massless particle, we can extend their definition to include a new function with
three arguments:
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G3(x1;x2, x3) :=
1

x2x3

(
G2(x13;x2)−G2(x1;x2) cosh(x3)

)
=

1

(p2 · a)(p3 · a)

(
sinh(p123 · a)

p123 · a
− sinh(p12 · a) cosh(p3 · a)

p12 · a
(5.69)

− sinh(p13 · a) cosh(p1 · a)
p12 · a

+
sinh(p1 · a) cosh(p2 · a) cosh(p3 · a)

p1 · a

)
.

Similarly to G2(x1;x2), one can show that G3(x1;x2, x3) is indeed polynomial, i.e.
the overall factor 1/(x2x3) cancels out once we expand the numerator as a power
series. We will save the proof for the general case when we extend the definition to
an arbitrary number of arguments. Note also that G3 is invariant under exchange
of the last two arguments and odd under the transformation a → −a, and that
deg(G3) = 3. With this in mind, the possible hyperbolic functions that can appear
in the ansatz are:

{
G1(x1)G1(x2)G1(x3), G1(x12)G1(x3), G1(x13)G1(x2), G1(x1)G1(x23),

G1(x123), G2(x1;x2)G1(x3),G2(x1;x3)G1(x2), G2(x2;x3)G1(x1), (5.70)

G2(x12;x3), G2(x13;x2), G2(x23;x1),G3(x1;x2, x3), G3(x2;x1, x3), G3(x3;x1, x2)
}

Considering all the restrictions presented above, we are now ready to determine the
terms that can be included in N ′

a(123, v):

even : (v ·X · a) (p · Y · a)G1(xi)G1(xjk),

(v ·X · a) (p · Y · a) (p · Z · a)G1(xi)G2(xj;xk),

odd : tr(S ·X)G1(x123), (p ·X · S · Y · a)G2(xij;xk), (5.71)

(p ·X · S · Y · a) (p · Z · a)G3(xi;xj, xk),

(p ·X · S · Y · a) (p · Z · a)G1(x1)G1(x2)G1(x3),

where X, Y, Z are just vector products of field strength tensors. We stress again
that this doesn’t exhaust all the possibilities for the ansatz. For example, as we
mentioned before, G2(x1;x2)G1(x3) is still divisible by (x1 − x2) while remaining a
polynomial function, so we could consider monomial prefactors containing four spin
variables. The same happens with the linear combination:

G3(x1;x2, x3)−G3(x2;x1, x3) = (5.72)

=
1

630
(x1 − x2)

(
5x1x

2
3 + 5x2x

2
3 + 9x1x2x3 − 126x3 + 42x1 + 42x2 +O(x3)

)
.
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The prefactor present when we take this linear combination means that we could
include terms like:

(p ·X · a)(p · Y · a)(a · Z · a)G3(xi;xj, xk)−G3(xj;xi, xk)

xi − xj

,

(p ·X · p)(a · Y · a)(a · Z · a)G3(xi;xj, xk)−G3(xj;xi, xk)

xi − xj

,

· · ·

(5.73)

However, as we will see, these would only add unnecessary freedom to the expression
for N ′

a(123, v). By considering just the terms depicted in (5.71), we obtain a unique
solution for the numerator after imposing the massless factorization conditions.
The ansatz generated with these criteria is composed of 1548 terms. When solving
the equations given by (5.68), the solution still has a fair amount of freedom (there
are 621 free parameters left). However, upon expanding the field strength tensors and
the hyperbolic functions, one can see that the terms corresponding to free parameters
are really linear combinations of fixed terms. In other words, there is no real freedom
in the solution, it is completely unique.
If we write the expression for the entire piece of the numerator as:

N ′
a(123, v) = N ′(even)

a (123, v) +N ′(odd)
a , (5.74)

then the even and odd parts are given by:

N ′(even)
a = m

[
−
(
(a · F1 · p3) (a · F2 · p1) (a · F3 · v)

)
G1(x3)G2(x1;x2)

+
(
(a · F1 · F2 · p3) (a · F3 · v)−(p12 · a)(a · F3 · F1 · F2 · v)

)
G1(x3)G1(x12)

−
(
(p1 · p2) (a · F1 · v) (a · F3 · F2 · a)+(p23 · a)(a · F1 · p2)(a · F3 · F2 · v)

)
G1(x1)G2(x2;x3)

+(a · F2 · p1)(a · F3 · F1 · v)G1(x1)G1(x2) cosh(x3)− (1↔2)
]

(5.75)

+m ((a · F1 · p2)(a · F2 · F3 · v)−(p1 · a)(a · F2 · F1 · F3 · v))G1(x1)G1(x2) cosh(x3) ,

N ′(odd)
a = i

[
tr(S · F3 · F2 · F1)G1(x123)+G3(x1;x2,x3)

(
(a · F2 · p1)(a · F3 · F1 · S · p1)

+(a · F2 · p1)(a · F1 · F3 · S · p3)−(p1 · F2 · S · p2) (a · F3 · F1 · a)
)

−(a · F3 · F2 · [S, F1] · p12)G2(x12;x3)+(a · F2 · F1 · [S,F3] · p1)G2(x13;x2)−(1↔2)
]

+ i
[
−(p1 · a)(a · F2 · F1 · F3 · S · p3)G3(x1;x2,x3)−(a · F1 · F2 · F3 · S · p3)G2(x12;x3)

−(a · F2 · F1 · F3 · S · p3)G2(x13;x2)+(a · F1 · p2) (a · F2 · F3 · S · p3)G1(x1)G1(x2)G1(x3)
]
.

(5.76)
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The appearance of functions like cosh(x3) in the solution is nothing out of the ordi-
nary: we have simply used the relation (5.32) to expand some of the G2 functions,
since doing that resulted in a more compact expression. In order to write N ′

a(123, v)

only in terms of the G functions, we would just have to revert this identity. More-
over, during the process of checking the dependence of the different terms, we came
across the following interesting relation:

G3(x1;x2, x3) +G3(x2;x1, x3) +G3(x3;x1, x2) = −G1(x1)G1(x2)G1(x3), (5.77)

which means that one of the functions G3(xi;xj, xk) is not really independent, but
can be expressed as a combination of the other G3 and G1 functions. This identity
can actually be generalized to arbitrary number of points (see next section).
Finally, the five point gravity amplitude can be obtained by simple use of the standard
double copy:

5̄ H 4̄

21 3

= Ma(123, v) =
N0([[1, 2], 3], v)Na([[1, 2], 3], v)

p212 p
2
123

+
N0([1, [2, 3]], v)Na([1, [2, 3]], v)

p223 p
2
123

+
N0([[1, 3], 2], v)Na([[1, 3], 2], v)

p213 p
2
123

, (5.78)

As discussed in the four point case, it is possible that this amplitude doesn’t describe
processes involving Kerr black holes in particular. In order to make sure, one would
have to perform 3PM (two loop) computations and compare with results obtained
from classical calculations in GR. If there was a mismatch, the amplitude would have
to be corrected by inserting additional contact terms. At five points, this is beyond
the scope of this project, so we will leave it for future work.

5.5 Generalization to arbitrary number of points
The four and five point cases outline a clear methodology to construct an arbitrary
point amplitude involving a massive spinning particle up to any order in spin in
the heavy-mass limit. Firstly, we express it in terms of the BCJ numerators in the
minimal (n− 3)! basis:

Aa(12...n− 2, v) =
∑
Γ∈ρ

Na(Γ, v)

dΓ
, (5.79)

where Γ ∈ ρ denotes the same set of nested ordered commutators as in (3.37) and dΓ
are the corresponding set of massless poles. As mentioned before, the prenumerator
Na is crossing symmetric, so we only need to compute one of them, e.g.
Na(12...n− 2, v).
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To do this, we firstly fix the massive factorization conditions:

Na(12...n− 2, v)
∣∣∣
v·p1τ=0

→ |τ ||ω|
n− 2

p1τ̃ · pω1

mv · p1τ
Na(1τ, v)Na(ω, v), (5.80)

where τ and ω are two ordered disjoint subsets such that τ ∪ω = {1, 2, ..., n−2} and
τ̃ ⊂ τ is the subset of massless particles in τ which appear before the first element
of ω in canonical ordering.
These factorization conditions can be satisfied by constructing a numerator piece
N (v)

a (12...n − 2, v) with massive poles that accounts for all the possible products of
lower point numerators that can be obtained on the different cuts. Although we don’t
have a completely streamlined process for the moment, the general procedure would
consist in taking the scalar version of the numerator and making the replacements
v ·Fi → wi ·Fi while inserting factors of cosh(xj) for every Fj that isn’t dotted directly
with a v. The result of this would satisfy the factorization conditions involving the
terms that don’t contain any lower point entire pieces N ′

a(ω, v). This can be seen
inductively by noting that v · pi = 0 ⇒ wi · pi = 0 and that v · pi = wi · pi. As a
consequence, a multilinear combination obtained by the replacement
v → v cosh(xi) + (pi · S)G1(xi) would have the same behaviour as the original, and
thus would obey the same factorization behaviour. One should also add all the terms
corresponding to the possible single or multiple cuts that contain entire lower point
numerators pieces N ′

a. Again, a systematic way of doing this has still to be developed.
For example, at six points the scalar numerator takes the form:

N0(1234, v) =
(v · F1 · F2 · v)(p12 · F3 · F4 · v)

(v · p1)(v · p12)

− (v · F1 · F2 · v)(p12 · F3 · v)(p123 · F4 · v)
(v · p1(v · p12)(v · p123)

− (v · F1 · F2 · v)(p12 · F3 · v)(p12 · F4 · v)
(v · p1)(v · p12)(v · p124)

+
(v · F1 · F4 · v)(p1 · F2 · F3 · v)

(v · p1)(v · p14)
+

(v · F1 · F3 · v)(p1 · F2 · F4 · v)
(v · p1)(v · p13)

+
(v · F1 · F2 · F3 · v)(p123 · F4 · v)

(v · p1)(v · p123)
+

(v · F1 · F2 · F4 · v)(p12 · F3 · v)
(v · p1)(v · p124)

(5.81)

+
(v · F1 · F3 · F4 · v)(p1 · F2 · v)

(v · p1)(v · p134)
− (v · F1 · F3 · v)(p1 · F2 · v)(p132 · F4 · v)

(v · p1)(v · p13)(v · p132)

− (v · F1 · F3 · v)(p1 · F2 · v)(p13 · F4 · v)
(v · p1)(v · p13)(v · p134)

− (v · F1 · F4 · v)(p1 · F2 · v)(p12 · F3 · v)
(v · p1)(v · p14)(v · p142)

− (v · F1 · F4 · v)(p1 · F2 · v)(p1 · F3 · v)
(v · p1)(v · p14)(v · p143)

− v · F1 · F2 · F3 · F4 · v
v · p1

.
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Thus, the singular piece of the spinning version of this numerator would be:

N̄a(1234, v) = N0(1234, v)
∣∣∣
repl

+
N ′

a(234, v)(p2 · F1 · w1)

mv · p1

+
N ′

a(34, v)(p3 · F2 · w2)(p2 · F1 · w1)

m2(v · p1)(v · p12)
+

N ′
a(24, v)(p2 · F3 · w3)(p2 · F1 · w1)

m2(v · p1)(v · p13)

+
N ′

a(23, v)(p23 · F4 · w4)(p2 · F1 · w1)

m2(v · p1)(v · p14)
+ (permutations) (5.82)

+
(p12 · p3)N ′

a(12, v)N ′
a(34, v)

mv · p12
+

(w3 · F3 · F4 · w4)Na(12, v)

m2(v · p12)(v · p124)

+
(w1 · F1 · F2 · w2)Na(34, v)

m2(v · p12)(v · p1)
+

(p12 · p3)N ′
a(12, v)N ′

a(34, v)

mv · p12
+ (permutations),

where N0(1234, v)
∣∣∣
repl

denotes the scalar version of the numerator with the replace-

ments mentioned above.
The second step consists in computing the polynomial piece of the numerator
N ′

a(12...n − 2, v), by imposing the massless factorization conditions on an ansatz
containing a certain set of terms. From the results at four and five points, we expect
that constructing an ansatz using only the G functions as building blocks is going
to lead to a valid and potentially unique expression after solving the factorization
equations.
For arbitrary number of points, we define the functions:

Gr(x1;x2, ..., xr) :=
1

xr

(
Gr−1(x1+xr;x2, . . . , xr−1)−Gr−1(x1;x2, . . . , xr−1) cosh(xr)

)
,

(5.83)
with G1(x1) given by (5.9). In appendix B, we will show that they can also be
expressed as:

Gr(x1;x2, ..., xr) =
1

x2...xr

(
G1(x1...r)−

r∑
i=2

G1(x1...(i−1)(i+1)...r cosh(xi)

+
r∑

i<j=2

G1(x1...(i−1)(i+1)...(j−1)(j+1)...r) cosh(xi) cosh(xj) (5.84)

+ ...+ (−1)n−2

r∑
k=2

G1(x1k) cosh(x2)... cosh(xk−1) cosh(xk+1)... cosh(xr)

+ (−1)n−1G1(x1) cosh(x2)... cosh(xr)
)
,
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or, in a more compact form:

G2(x1;x2, ...xr) =
1

x2 · · ·xr

×

[ ∑
ρa∪ρb={2,...,r}

ρa∩ρb=0

G1

(
x1ρa)

∏
i∈ρb

(− cosh(xi)
)]

. (5.85)

From their definitions, it is clear that deg(Gr) = r. It can also be proven that these
specific functions are polynomial, i.e. they don’t present any singularities when
expanded as a Laurent series. Moreover, the following identity holds:

n∑
i=1

Gn(xi;x1, . . . , xi−1, xi+1, . . . , xn) =

{
0 n even

(−1)
n−1
2 G1(x1) . . . G1(xn) n odd.

(5.86)

In an n-point amplitude, we need the terms in N ′
a(12...n−2, v) to contain hyperbolic

functions depending on all the n − 2 arguments xi, since they will appear in lower
point amplitudes when taking the cuts. Next, we need to take into consideration
the different dimensionality conditions. In order to preserve gauge invariance and
heavy-mass scaling, there needs to be one factor of each field strength tensor and
one factor of v (included in the spin tensor S in the odd part of the numerator).
Moreover, since the amplitude has dimensions of (energy)4−n and N ′

a(12...n − 2, v)

is divided by n − 3 massless propagators, the number of factors of pi has to be one
less than the number of factors of a and S combined.
With all of this in mind, we see that the ansatz has to be composed of the following
building blocks:

even:
{
(v ·X · a)F(pr−1, ar−1), (v ·X · p)F(pr−2, ar)

}
×
∏
τ

Gdτ (xτ ),

odd:
{
(p ·X · S · Y · p)F(pr−3, ar−1), (p ·X · S · Y · a)F(pr−2, ar−2), (5.87)

(a ·X · S · Y · a)F(pr−1, ar−3), tr(X · S)F(pr−1, ar−1)
}
×
∏
τ

Gdτ (xτ ),

where X, Y are arbitrary vector products of field strength tensors, F are products
of Fi with the number of factors of p and a indicated in the arguments (which can
include traces), and τ are the elements of a certain partition of the massless particles
{1, 2, ..., n− 2} with

∑
τ dτ = r and such that the complete building blocks have the

correct parity under a → −a. We stress again that we are missing several possible
terms involving e.g. linear combinations of the G functions, which would be divisible
by some function of the variables xi. However, the results at four and five points
suggest that such an ansatz will lead to a unique solution or N ′

a(12...n − 2, v) once
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we impose the massless factorization conditions:

YM

· · ·

S

YM

· · ·· · ·

(5.88)

Moreover, although the expression for the entire piece of the numerator does not
have a clear structure yet and has to be bootstrapped using an ansatz, we expect to
eventually construct a set of rules to compute the expression for the arbitrary spin
amplitude, potentially based on the Hopf algebra formalism developed in [48, 49, 68]
for the scalar case. We leave this for future work.

6 Comparison with the literature up to quadratic
order in spin

Although we have computed a manifestly gauge invariant form of the high spin am-
plitude to all orders in the angular momentum, this is not the first time that the
four point amplitude has been calculated. There are multiple works in the liter-
ature [39, 41, 44, 74, 76] that provide an expression for the Compton amplitude
to a particular order in spin. In most cases, they are obtained using the spinor-
helicity formalism, since the most interesting part of the amplitude corresponds to
the massless particles being of opposite helicity. This is because the same helicity
contribution is actually subleading in the classical limit [74], so it can be neglected for
Post-Minkowskian computations in gravity. This makes the process of obtaining the
amplitude slightly simpler, due to the fact that many terms that would contribute
in the covariant form vanish in spinor-helicity by adequately choosing the reference
momenta for polarization vectors.
In recent years, the gravity spinning Compton amplitude has been calculated and
compared with classical results in General Relativity up to fourth order in spin,
mainly geodesic computations using the Mathisson-Papapetrou-Dixon equations [77–
79] and black hole perturbation theory (BHPT) results via the Teukolsky equations[80].
For the first case, it is necessary to perform a 2PM loop integral and from this com-
pute the corresponding observables that are being compared. In our case, we will
firstly check our amplitude up to quadratic order in spin using the covariant expres-
sion provided in Appendix E of [41]. After a relabelling of the particles’ momenta
and a rescaling of the coupling constants to fit our conventions, it reads:

Ma(1, 2, 3̄, 4̄) =
⟨ω(0)⟩

8p212(k4 · p1)2
[
⟨ω(0)⟩+ i⟨ω(1)µν⟩ϵµνρσkρ

4a
σ + ⟨ω(2)

αβ ⟩a
αaβ
]
, (6.1)
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where the classical limit of the multipole coefficients are given by:

⟨ω(0)⟩ = 2k4 · F1 · F2 · k4, (6.2)

⟨ω(1)µν⟩ = k4 · F1 · p2F µν
2 + k4 · F2 · p1F µν

1 +
k4 · (p1 − p2)

2
[F µ

1,ρF
ρν
2 − F µ

2,ρF
ρν
1 ],

⟨ω(2)αβ⟩ =
[
k4 · F1 · F2 · k4qµqνPµναβ − 2p1 · p2m2

(
Pµναβ +

ηµνηαβ

2

)
F

(µ|δ
1 F

γ|ν)
2 ηγδ

]
,

Pµναβ =
ηµαηνβ + ηµβηνα

2
− ηµνηαβ.

Taking the heavy-mass limit k4 = mv and grouping everything together, we get the
following:

Ma(12, v) = m2v · F1 · F2 · v
4p212(v · p1)2

[
2(v · F1 · F2 · v) + i

(
(v · F1 · p2)tr(F2 · S)

+ (v · F2 · p1)tr(F1 · S) + 2(v · p1)tr(F1 · F2 · S)
)

(6.3)

+ (v · F1 · F2 · v)
(
(p12 · a)2 − p212a

2)
)
− a2

2
tr(F1 · F2)

]
.

Now, if we were to expand our four point gravity amplitude (5.38) to second order in
spin, we would obtain something somewhat different to this last equation. However,
as we saw when determining the form of the entire part of the BCJ numerator,
this is just because of the ambiguity that exists when writing in a manifestly gauge
invariant form, i.e. in terms of field strength tensors. After expanding using F µν

i =

pµi ε
ν
i − εµi p

ν
i and (5.5), the two expression are shown to be identical. Since the latter

has been compared against classical results and corresponds to scattering processes
of Kerr black holes, we can confidently say that our amplitude describes the intended
phenomena up to second order in spin. However, as we will see, checking the O(a3)

and O(a4) is not as straightforward, since no covariant form is presented in the
literature, and it turns out that our proposed amplitude is missing some contact
terms in order to match the appropriate Kerr behaviour.

7 Cubic order and beyond

When trying to analyze the validity of our expression for the Compton amplitude
at order O(a3) and higher, there is no reference in the literature that provides an
explicit formula in a covariant formalism. Rather, it is generally calculated using
an helicity-dependent framework where the kinematic information of the massless
particles is presented in the form of Weyl spinors (sometimes also the massive ones).
This is known as spinor-helicity formalism. Here, we only focus on the results that
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concern the arbitrary spin Compton amplitude, but in Appendix A we provide a
brief introduction of this specific formulation for scattering amplitudes, in case the
reader is not familiar with it.
For the purpose of checking our gravitational Compton amplitude, we will use the
expression found in [74], where the authors start from the opposite helicity amplitude
introduced in [37] and add a set of contact terms order by order in the spin variable
with the intent of eliminating the spurious poles that appear as result of the ill-
behaved high energy regime and satisfying the spin structure assumption mentioned
in section 4. However, as it turns out, such contact terms are not needed until
fifth order in spin and higher; since these contributions have not been contrasted
with classical computations in General Relativity, we will not concern ourselves with
them. Up to O(a4), the gravitational Compton amplitude for the (−+) helicity
configuration is given by:

M−+
lit (1, 2, 3̄, 4̄) = − 4y4

p212(p4 · p2)(p4 · p1)
exp

(
(p2−p1)·a+(w·a)(p4 · p1)− (p4 · p2)

y

)∣∣∣∣∣
a4

,

(7.1)
where y = [2|p4|1⟩, wµ = [2|σµ|1⟩/2 and the subscript in the exponential indicates
that it is to be truncated at fourth order in the spin variable. Since the classical limit
has already been taken in this formula, we can safely write the massive momenta in
terms of the velocity v and apply the HEFT on-shell condition (3.34). This yields:

M−+
lit (12, v) = 4m2 y4

p212(v · p1)2
exp

(
(p2 − p1) · a+ 2(w · a)(v · p1)

y

)∣∣∣∣∣
a4

, (7.2)

where now y = [2|v|1⟩. The next step is to convert our expression for the gravitational
amplitude to spinor-helicity formalism, using ε1 = ε−1 , ε2 = ε+2 . This is relatively
straightforward, we only have to use:

ε−1µ = − [2|γµ|1⟩√
2[21]

, ε+2µ =
⟨1|γµ|2]√
2⟨12⟩

, p1µ = [1|γµ|1⟩, p2µ = [2|γµ|1⟩, (7.3)

which leads to the following relations:

ε−1 · p2 = ε+2 · p1 = 0, ε−1 · ε+2 = 0, p212 = ⟨12⟩[21],

ε−1 · v = − y√
2[21]

, ε+2 · v =
y√
2⟨12⟩

, ε−1 · S · ε+2 = 0,

p1 · S · ε+2 = −⟨12⟩
[21]

p1 · S · ε−1 , p2 · S · ε−1 = − [21]

⟨12⟩
p2 · S · ε+2 .

(7.4)
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In addition, we also have to substitute the product p · S · ε by its helicity dependent
form, which is [39]:

p · S · ε± = (±)i
[
(v · p)(ε± · a)− (v · ε±)(p · a)

]
. (7.5)

This allows us to find the last undetermined product p1 ·S ·p2 by expanding the rank
two tensor S in a Gram basis (e.g. {v, a, p1, ε1}) and using the previous expressions.
After expanding the field strength tensors, performing a Taylor series on the spin
variable up to fourth order and substituting the covariant vector products by the
helicity dependent expressions, our amplitude takes the following form:

M−+
a (12, v) = −y3 (a · p1) 3(w · a)

3p212(v · p1)
+

y3 (a · p2) 3(w · a)
3p212(v · p1)

− y3 (a · p1) 2(w · a)
p212(v · p1)

− y3(a · p1) (a · p2) 2(w · a)
3p212(v · p1)

− y3 (a · p2) 2(w · a)
p212(v · p1)

− 2y3(a · p1)(w · a)
p212(v · p1)

+
y3 (a · p1) 2(a · p2)(w · a)

3p212(v · p1)
+

2y3(a · p1)(a · p2)(w · a)
3p212(v · p1)

+
2y3(a · p2)(w · a)

p212p1 · v1
− 2y3(w · a)

p212(v · p1)

+
y4 (a · p1) 4

24p212 (v · p1) 2
+

y4 (a · p2) 4

24p212 (v · p1) 2
+

y4 (a · p1) 3

6p212 (v · p1) 2
− y4(a · p1) (a · p2) 3

6p212 (v · p1) 2

− y4 (a · p2) 3

6p212 (v · p1) 2
+

y4 (a · p1) 2

2p212 (v · p1) 2
+

y4 (a · p1) 2 (a · p2) 2

4p212 (p1 · v1) 2
+

y4(a · p1) (a · p2) 2

2p212 (v · p1) 2

+
y4 (a · p2) 2

2p212 (v · p1) 2
+

y4(a · p1)
p212 (p1 · v1) 2

− y4 (a · p1) 3(a · p2)
6p212 (v · p1) 2

− y4 (a · p1) 2(a · p2)
2p212 (v · p1) 2

− y4(a · p1)(a · p2)
p212 (v · p1) 2

− y4(a · p2)
p212 (p1 · v1) 2

+
y2 (a · p1) 2(w · a)2

3p212
+

y2 (a · p2) 2(w · a)2

3p212
+

2y2(a · p1)(w · a)2

3p212
− 2y2(a · p2)(w · a)2

3p212
+

2y2(w · a)2

p212
+

y4

p212 (p1 · v1) 2
(7.6)

Grouping everything together, we find:

M−+
a (12, v) = M−+

lit (12, v)− 4y2(a · p1)(w · a)2

3p212
+

4y2(a · p2)(w · a)2

3p212

+
4y(w · a)3v · p1

3p212
− 2(w · a)4 (v · p1) 2

3p212
− 4y3(a · p1)(a · p2)w · a

3p212(v · p1)
− 2y2 (a · p1) 2(w · a)2

3p212

− 2y3 (a · p1) 2(a · p2)w · a
3p212(v · p1)

+
4y(a · p1)(w · a)3v · p1

3p212
− 4y(a · p2)(w · a)3v · p1

3p212

+
2y2(a · p1)(a · p2)(w · a)2

p212
− 2y2 (a · p2) 2(w · a)2

3p212
+

2y3(a · p1) (a · p2) 2w · a
3p212(v · p1)

. (7.7)

In other words, the expression for our amplitude doesn’t completely agree with the
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results obtained by comparing to the classical computations for Kerr black holes.
However, we can see that our previous claims remain consistent: the difference be-
tween both Compton amplitudes starts at cubic order in the spin variable, which
means that Ma(12, v) correctly describes Kerr black hole scattering up to quadratic
order. Moreover, none of the terms that constitute the difference presents a massive
double pole (v · p1)2 in the denominator. This can be interpreted as the fact that the
disagreement doesn’t stem from QCD theory, but rather from a subleading effect in
the HEFT expansion that manifests itself in the gravity amplitude after summing
over all the possible graviton orderings. Indeed, despite the fact that the remainder
contains massless poles 1/p212, they are only a byproduct of the spinor-helicity objects
y and w, and would disappear once transformed back into a covariant expression in
terms of the polarization vectors ε. This means that all the terms in the difference
would contain at most one single massive pole 1/(v · p1), and thus cannot originate
from the double copy of the gluon amplitudes. We conclude that these terms must
represent some kind of subleading spin flipping effect in the complete high spin the-
ory, altering the factorization behaviour in the massive poles. In order to determine
them from first principles, we would have to devise an expression for the massive
propagator to all orders in spin, something that is beyond the scope of this project
and will be left for future research.
However, we are still able to add a finite number of pseudo-contact terms (which
contain a single massive propagator) to correct the Compton amplitude order by
order. This can be done by just considering all the possible gauge invariant objects
with a single massive propagator that are cubic or quartic in the spin variable,
and then imposing the total amplitude to be equal to M−+

lit (resp. M+−
lit ) after

particularizing to this helicity configuration.
This procedure yields the following fixing terms:

M cont
a (12, v) = −2i(a · F2 · v)(a · F1 · S · F1 · F2 · v)

3(v · p1)

+
(a · p2)(a · F1 · v)(a · F2 · v)(a · F1 · F2 · v)

3(v · p1)
− (a · p1)(a · F1 · v)(a · F2 · v)(a · F1 · F2 · v)

3(v · p1)

+
1

3
(a · F1 · F2 · a)(a · F1 · v)(a · F2 · v). (7.8)

In other words, the amplitude can be deformed to match the Kerr black hole be-
haviour with just one additional term at cubic order in the spin variable and three
additional terms at quartic order. We note that this doesn’t provide a complete
picture, because only one helicity configuration has been considered when comparing
the amplitudes, but it is enough to reflect the behavior obtained in classical scatter-
ing computations. This approach could be repeated ad infinitum for every order in
the spin variable using General Relativity calculations. However, as we mentioned
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before, there should be a way to establish a complete theory for massive spinning
particles by accounting for the spin flipping effects at every order. We expect this
theory to describe Kerr black hole scattering processes when taking the classical limit
in the amplitudes, reflecting the correspondence between these objects and minimally
coupled theories at an arbitrary number of points.

8 Conclusions and future research

In this work, we have reviewed and build upon the current research on gravita-
tional scattering amplitudes involving massive spinning particles that correspond to
classical objects with non-zero angular momentum such as Kerr black holes. This
amplitudes framework could both help to create accurate templates for gravitational
wave signals generated by collision processes of astrophysical binaries and to further
our understanding of quantum field theories describing particles with arbitrary spin
quantum number. In this endeavour, tools such as the color-kinematics duality, the
double copy or the Heavy Mass Effective Field Theory are remarkably helpful to
simplify the computation of said amplitudes, and reflect deeper relations between
seemingly disconnected field theories that have yet to be unveiled.
In particular, we have shown that the HEFT framework is completely equivalent
to the soft graviton expansion of the amplitude, which makes it a convenient way
to extract its classical contributions due to the straightforward decomposition into
definite mass scaling pieces when taking m → ∞. However, one important downside
is that the factorization behavior of the gravity amplitudes is no longer apparent,
since the poles corresponding to two mirrored sets of gravitons get mapped into the
same object in the heavy-mass limit. Thus, one has to be careful when taking massive
cuts directly on the gravitational amplitudes.
Next, we have constructed the four- and five-point tree level amplitude for a process
involving one massive particle with arbitrary spin in both Yang-Mills theory and
Einstein gravity. Starting from the three point amplitude presented in [37], which
was shown to describe Kerr black hole scattering in the classical limit, we have boos-
trapped the higher point expression by simply imposing gauge invariance, locality
and a correct factorization behavior. Although this didn’t completely restrict the so-
lution, we observed that a particular family of functions arose naturally when fixing
the factorization in the massless poles. By limiting the quantities appearing in the
amplitude to these special functions, we were able to uniquely determine its form
to all orders in spin in a manifestly covariant and gauge invariant way. We also
presented an algorithm that generalizes the procedure of obtaining the amplitude for
an arbitrary number of points.
The four point gravitational Compton amplitude obtained in this work was compared
to other results obtained in the literature and shown to be identical up to quadratic
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order in the spin variable, which means that it exactly describes scattering processes
involving Kerr black holes up to O(a2). At cubic and higher orders, finite differences
were detected with respect to other expressions in the kinematic configuration where
the gravitons have opposite helicities, which could nevertheless be fixed by adding
a small number of contact terms to the amplitude. In addition, these discrepancies
could also be fixed by considering an alternative double copy to the standard proce-
dure, where the two gauge amplitudes correspond to a spinning and a scalar copy,
respectively. By using a suitable linear combination of spin order truncations for
each copy of the Yang-Mills amplitudes, it is possible that the result can be matched
to the literature at all orders in spin without needing to add any counterterms.
In addition to this, there are several directions in which one could continue the
research in this topic. For instance, the tree amplitudes obtained in this work can be
then used to calculate loop integrals and extract classical observables to all orders in
spin up to 3PM for scattering processes involving spinning black holes. This would
have a set of additional complications with respect to the non-rotating case due to
the appearance of higher and higher powers of graviton momenta, which could make
the integral badly divergent in the high energy regime. Thus, one would have to use
integration by regions or equivalent techniques in order to obtain a sensible result.
Another open question is how to generalize this framework to the finite mass regime,
i.e. obtain a covariant and well behaved form of the amplitude that accounts for all
the spin flipping effects that occur for subleading orders in the classical expansion.
Although the expressions in [37] are valid at any energy scale, they are still helicity
dependent and present unwanted spurious poles for s ≥ 2. Moreover, it doesn’t
consider the case where the spin quantum number of the particles change as a result
of their interaction, which is entirely possible both in an elementary particle picture
and in the case with composite particles where the angular momenta can be added
into a direct sum of representations with different spin. Computing a well behaved
expression for the finite mass case could aid in the development of a complete theory
for high spin particles. In order to do this, one would need to fully understand the
factorization behavior of the amplitudes and draw a correspondence between funda-
mental particle representations and the expansion into spin multipoles. Eventually, it
could be possible to establish a well understood Lagrangian formalism that describes
these processes. We leave all these exciting questions for future research.
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A Appendix: Introduction to Spinor-Helicity

Here, we will provide a brief review of the spinor-helicity formalism and its applica-
tions to scattering amplitudes. For a more thorough analysis, see e.g. [55].
In order to eliminate the redundancy that comes with using bi-fundamental objects
such as polarization tensors in amplitudes, it is convenient to replace all the kinematic
information for quantities that transform under the lowest possible representation of
the Lorentz group, the spinor representation. In order to do that, one writes a
massless momentum p as:

pαα̇ = σµ
αα̇pµ = λαλ̃α̇, (A.1)

where we are able to express the momentum as a product of two Weyl spinors
λ, λ̃ because the determinant of the matrix vanishes due to the massless condition,
det pαα̇ = 0, and thus it is of rank 1. For real momenta, we have λ̃α̇ = (λα)

∗. Aside
from manifestly satisfying the massless on-shell condition while being completely un-
constrained, the 2-d spinors also transform straightforwardly under both the Lorentz
and the little group (in contrast to other quantities like Lorentz vectors). For mass-
less particles, the little group is just U(1), and it is reflected in the spinors as the
fact that the momentum pαα̇ is invariant under the transformation:

λ → wλ, λ̃ → w−1λ̃, (A.2)

where w is just a complex number in the case of general complex momenta. It is also
common to express the spinors in terms of the angle and bracket notation:

|i⟩ ≡ λα
i , |i] ≡ λ̃iα̇, (A.3)

such that spinor products are written as:

⟨ij⟩ ≡ ϵαβλ
α
i λ

β
j , [ij] ≡ ϵα̇β̇λ̃

α̇
i λ̃

β̇
j , (A.4)

where ϵαβ (ϵα̇β̇) is the two-dimensional (anti-)fundamental Levi-Civita symbol, which
makes these spinor products Lorentz invariant.
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With these conventions, we can express vector products between massless momenta
as:

sij = 2pi · pj = ⟨ij⟩[ji]. (A.5)

Although less apparent, polarization vectors can also be written in a direct manner
in terms of spinors:

εµ+i =
⟨q|γµ|i]√
2⟨qi⟩

, εµ−i = − [q|γµ|i⟩√
2⟨qi⟩

, (A.6)

where q ̸= pi is a reference momentum that can be chosen arbitrarily, and which
reflects the gauge invariance of ϵi under transformations of the form ϵµ → ϵµ +

xpµ. Although the final amplitudes won’t be dependent on the reference momenta,
this freedom is actually very convenient to simplify the computations if one chooses
an adequate set of q vectors such that certain products automatically vanish. For
example, if the massless spin-one particles 1, 2 have helicity h1 = +1, h2 = −1, then
we can choose q1 = p2, q2 = p1 so that:

ε+1 · p2 = ε−2 · p1 = ε+1 ε
−
2 = 0. (A.7)

Thus, as seen in Section ??, the amplitudes take a very simple form once we partic-
ularize to each helicity configuration. Of course, this entails giving up on a gauge
invariant form of the amplitude and dealing with some other problems like the ap-
pearance of spurious poles and a non-trivial factorization behaviour, but it is un-
deniable that the expression for the amplitudes greatly simplifies when using the
spinor-helicity formalism.
In [37], the authors also introduce a straightforward generalization of the framework
to massive particles. Since now the matrix pαα̇ has rank 2, we need to sum over two
rank 1 matrices, which means that we need to introduce two sets of Weyl spinors:

pαα̇ = λI
αλ̃α̇I , I = 1, 2. (A.8)

This new index I also reflects the transformation properties under the little group,
which in the massive case is SU(2). More generally, for complex momenta we have:

λI → W I
Jλ

J , λ̃I → (W−1)IJ λ̃
J , (A.9)

where W ∈ SL(2,C). In order to not overcrowd the expressions, the little group
indices of massive particles are hidden inside bold spinors:

|iJ⟩ → |i⟩, |iJ ] → |i]. (A.10)

Aside from taking these indices into account, the way of operating with these spinors
remains the same as in the massless case.
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B Appendix: Properties of the G functions

We will now present the proof that the functions:

Gn(x1; ..., xn) =
1

xn

(
Gn−1(x1 + xn;x2, ..., xn−1)−Gn−1(x1;x2, ..., xn−1) cosh(xn)

)
,

G1(x1) :=
sinh(x1)

x1

, (B.1)

are free of divergences at the origin, i.e. when expanding around x1 = x2 = ... =

xn = 0, the result is a polynomial. We will do so by induction. At n = 1, the
function expands as:

G1(x1) = 1− 1

6
x2
1 +

1

120
x4
1 +O(x6

1), (B.2)

which is clearly non-singular. For n = 2:

G2(x1;x2) =
1

x2

(
G1(x1 + x2)−G1(x1) cosh(x2)

)
. (B.3)

Because G1 is an analytical function, the term in parenthesis also is. Moreover, since
it vanishes when x2 = 0, it means that its Taylor series must be proportional to x2.
In other words, when expanding around the origin, the denominator 1/x2 is going to
be cancelled by this overall factor, making G2 also analytical.
If we now assume that the statement is true for n− 1, and we look at the recursive
definition (B.1), we see that the term in parenthesis in Gn is analytical and it vanishes
when xn = 0. Thus, it is proportional to xn, cancelling the denominator when
expanding as a power series and ensuring that Gn as a whole is analytical.
Next, we will prove that the explicit expression for the G functions is given by:

Gn(x1; ..., xn) =
1

x2...xn

(
G1(x1 + ...+ xn)

−
n∑

i=2

G1(x1 + ...+ xi−1 + xi+1 + ...+ xn) cosh(xi)

+
n∑

i<j=2

G1(x1 + ...+ xi−1 + xi+1 + ...+ xj−1 + xj+1 + ...+ xn) cosh(xi) cosh(xj)

+ ...+ (−1)n−1G1(x1) cosh(x2)... cosh(xn)
)
. (B.4)
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The case n = 2 is trivial. Let’s assume it holds for n − 1. First, let’s rewrite the
previous expression as:

Gn(x1;x2, ..., xn) =
1

x2...xn

n−1∑
r=0

(−1)r
n∑

i1<i2<...<ir=2

G1

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik)

(B.5)
Using the recursive definition, we see that:

Gn(x1;x2, ..., xn) =
1

xn

(
Gn−1(x1 + xn;x2, ..., xn−1)−Gn−1(x1;x2, ..., xn−1) cosh(xn)

)
=

1

x2...xn

[
G1

(
n∑

j=1

xj

)
+

n−2∑
r=1

(−1)r
n−1∑

i1<i2<...<ir=2

G1

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik)

−
n−3∑
r=0

(−1)r
n−1∑

i1<i2<...<ir=2

G1

(
n∑

j=1

xj −
r∑

k=1

xik

)
cosh(xn)

r∏
k=1

cosh(xik)

− (−1)n−2G1(x1) cosh(x2)... cosh(xn)

]
. (B.6)

Now, by a change of the summation variable r → r − 1, the term in the third line
becomes:

n−2∑
r=1

(−1)r
n∑

i1<i2<...<ir−1=2
ir=n

G1

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik), (B.7)

which means that, if we sum the terms in the second and third line, we obtain:

Gn(x1;x2, ..., xn) =
1

xn

(
Gn−1(x1 + xn;x2, ..., xn−1)−Gn−1(x1;x2, ..., xn−1) cosh(xn)

)
=

1

x2...xn

[
G1

(
n∑

j=1

xj

)
+

n−2∑
r=1

(−1)r
n∑

i1<i2<...<ir=2

G1

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik)

− (−1)n−2G1(x1) cosh(x2)... cosh(xn)

]
=

=
1

x2...xn

n−1∑
r=0

(−1)r
n∑

i1<i2<...<ir=2

G1

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik), (B.8)

just as we wanted to prove.
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Another interesting property that these functions obey is:

n∑
l=1

Gn(xl;x1, ..., xn) =

{
0 n even

(−1)
n−1
2 G1(x1)..G1(xn) n odd.

(B.9)

To prove this relation, we will firstly define a similar kind of function:

Fn(x1;x2, ..., xn) = sinh(x1 + ...+ xn)−
n∑

i=2

sinh(x1 + ...+ xi−1 + xi+1 + ...+ xn) cosh(xi)

+
n∑

i<j=2

sinh(x1 + ...+ xi−1 + xi+1 + ...+ xj−1 + xj+1 + ...+ xn) cosh(xi) cosh(xj)

+ ...+ (−1)n−1 sinh(x1) cosh(x2)... cosh(xn) =

=
n−1∑
r=0

(−1)r
n∑

i1<i2<...<ir=2

sinh

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik), (B.10)

and we will prove the following:

Fn(x1;x2, ..., xn) =

{
(−1)

n
2
−1 cosh(x1) sinh(x2)... sinh(xn) n even

(−1)
n−1
2 sinh(x1)... sinh(xn) n odd.

(B.11)

This can be done again by induction. For example, if n = 2:

F2(x1;x2) = sinh(x1 + x2)− sinh(x1) cosh(x2) = cosh(x2) sinh(x1). (B.12)

Now, assume that n is even. Then, if the statement is true for n− 1, we have:

Fn−1(x1 + xn;x2, ..., xn−1) =
n−2∑
r=0

(−1)r
n−1∑

i1<i2<...<ir=2

sinh

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik)

=(−1)
n
2
−1 sinh(x1 + xn) sinh(x2)... sinh(xn−1) (B.13)

The remaining terms are:

Fn(x1, ..., xn)− Fn−1(x1 + xn, ..., xn−1) =

=
n−1∑
r=1

(−1)r
n∑

i1<i2<...<ir−1=2
ir=n

sinh

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik)

= − cosh(xn)
n−2∑
r=0

(−1)r
n−1∑

i1<i2<...<ir=2

G1

(
n∑

j=1

xj −
r∑

k=1

xik

)
r∏

k=1

cosh(xik) (B.14)

= −Fn−1(x1, ..., xn−1) cosh(xn) = −(−1)
n
2
−1 sinh(x1) sinh(x2)... sinh(xn−1) cosh(xn).
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Summing both contributions, one indeed obtains the correct expression for Fn. The
exact same reasoning can be followed for the case where n is odd.
Now, we return to the Gn functions. Define:

G̃n(x1;x2, ..., xn) = (x2...xn)×Gn(x1;x2, ..., xn). (B.15)

It is straightforward to show that:

n∑
l=1

xlG̃n(xl;x1, ..., xn) = sinh(x1 + ...+ xn)

−
n∑

j=1

sinh(x1 + ...+ xj−1 + xj+1 + ...+ xn) cosh(xj)

+
n∑

k<j=1

sinh(x1 + ...+ xj−1 + xj+1 + ...+ xk−1 + xk+1 + ...+ xn) cosh(xj) cosh(xk)

+ ...+ (−1)n−1

n∑
i=1

sinh(xi) cosh(x1)... cosh(xn). (B.16)

Extracting from this expression the terms that contain cosh(xn) and separating them
from the rest:

n∑
i=1

xiG̃n(xi;x1, ..., xn) = − sinh(x1 + ...+ xn−1) cosh(xn)

+
n−1∑
j=1

sinh(x1 + ...+ xj−1 + xj+1 + ...+ xn−1) cosh(xj) cosh(xn)

+ ...+ (−1)n−1

n−1∑
i=1

sinh(xi) cosh(x1)... cosh(xn−1) cosh(xn)

+ sinh(xn + x1 + ...+ xn−1)−
n∑

j=1

sinh(xn + x1 + ...+ xj−1 + xj+1 + ...+ xn−1) cosh(xj)

+
n−1∑

k<j=1

sinh(xn + x1 + ...+ xj−1 + xj+1 + ...+ xk−1 + xk+1 + ...+ xn−1) cosh(xj) cosh(xk)

+ ...+ (−1)n−1 sinh(xn) cosh(x1)... cosh(xn−1). (B.17)
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The first two lines of this expression are just the n − 1 version of the sum over the
G functions, while the rest form the previously defined F function. In other words:

n∑
i=1

xiG̃n(xi;x1, ..., xn) = − cosh(xn)
n−1∑
i=1

xiG̃n−1(xi;x1, ...xn−1) + Fn(xn;x1, ..., xn−1).

(B.18)
This gives us the perfect setup to apply induction again. For n even, if (B.9) is true
for n− 1, then:

n∑
i=1

xiG̃n(xi;x1, ..., xn) =− (−1)
n
2
−1 cosh(xn) sinh(x1)... sinh(xn−1)

+ (−1)
n
2
−1 cosh(xn) sinh(x1)... sinh(xn−1) = 0. (B.19)

Meanwhile, for n odd:

n∑
i=1

xiG̃n(xi;x1, ..., xn) = Fn(xn;x1, ..., xn−1) = (−1)
n−1
2 sinh(xn) sinh(x1)... sinh(xn−1).

(B.20)
The only thing left to do is to prove the first step of induction, n = 2:

x1G̃2(x1;x2) + x2G̃2(x2;x1)

= x1G1(x1 + x2)− x1G1(x1) cosh(x2) + x2G1(x1 + x2)− x2G1(x2) cosh(x1)

= sinh(x1 + x2)− sinh(x1) cosh(x2)− cosh(x2) sinh(x1) = 0. (B.21)

And with this, we have proven equation (B.9) in its totality.
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