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Summary (English)

Theoretical study and brief review of La2CuO4+y (LCO+O), La2−xSrxCuO4

(LSCO) and La2−xSrxCuO4+y (LSCO+O). In these types of cuprates there
have expermentelly been observed stripe order.
The occurrence of high temperature superconductivity in cuprates is due
to the CuO2 planes. In LCO the Cu atoms form strongly hybridized bonds
with oxygen, this can approximately be explained by assuming there is one
hole in the d-bond per Cu atom. The Cu sites can interact via the oxygen
atoms through the super exchange mechanism and thereby forming a AFM-
insulator (Mott insulator) best described by the one band Hubbard model.
The excess oxygen will be described by a Thomas Fermi screening added to
the one-band Hubbard Hamiltonian. By self consistent calculations, we have
stabilized stripe order in a 2D and 3D model. The calculations show that
the spin settles in periodicity of 8 in the layers and anti-parallel between
the layers.
This type of calculation does not seem to work for compaund with inter-
mediate oxygen with modulations in the c-axis since the system stabilize
homogeneously.
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Summary (Danish)

Teoretisk studie og kort gennemgang af La 2 CuO4+y (LCO + O), La 2−x
Sr x CuO 4 (LSCO) og La 2−x Sr xCuO4+y (LSCO + O). I disse typer af
cuprater er der expermentielt blevet observeret stribe orden.
Forekomsten af høj temperatur superledning i cuprater skyldes CuO2 pla-
nerne. Cu atomer vil forme stærke hybridiserede bindinger med ilt, som
tilnærmelsesvis kan forklares ved at antage, at der er et hul i d-binding pr
Cu atom. Cu atomet kan interagere via oxygenatomer gennem ”super me-
kanismen”for udveksling og derved danne en AFM-isolator (Mott isolator)
bedst beskrevet ved en et-b̊ands Hubbard model. Den overskydende ilt vil
blive beskrevet ved en Thomas Fermi screening der tilføjes til et-b̊ands Hub-
bard Hamiltonen. Ved selv konsistente beregninger, vi har stabiliseret stribe
orden i en 2D-og 3D-model. Beregningerne viser, at spin har en perode p̊a
8 i lagene og de ligger sig anti-parallel mellem lagene.
Denne type beregning ser ikke ud til at virke for systemer med mellemliggen-
de ilt der har modulationer i c-aksen, da systemet stabilisere sig homogent
.
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Chapter 1

Introduction

Superconductivity was first discovered in 1911 by the Dutch physicist Heike
Kamerlingh Onnes. He showed that by cooling metal’s, such as mercury
and lead with liquid helium to a finite critical temperature Tc, the metals
resistivity drops to zero, thereby creating a new state: superconductivity.
Ever since 1911 superconductivity has been studied worldwide leading to the
discovery of high-temperature superconductors with a critical temperature
as high as 130 K. This new generation of superconductors first seen in the
eighties aroused great interest among many physicists. Suddenly the idea
of room temperature superconductors seemed obtainable.
Among the high-temperature superconductors were the cuprates a copper-
based compound. The cuprates were first discovered in 1986 where they
showed many new and exciting properties. They form a new class of d-
wave superconductors with high critical temperatures not seen elsewhere.
Cuprates are still a mystery and possibly hold the key to understanding and
exploiting high-temperature superconductors. Cuprates are very sensitive
to disorder due to their d-wave nature (breaking time reversal symmetries
when probed) which furthers the interest in studying them.
The case of La2CuO4+y (LCO+O) and La2−xSrxCuO4 (LSCO) have been
studied since 1986 and many interesting things have been discovered such
as stripe order and spin glass phases [27].
The simple lattice structure of cuprates and more particularly LSCO, makes
them suitable for studying both from an experimental and theoretical point
of view. Newer studies of La2−xSrxCuO4+y (LSCO+O), which is the cuprate
I will focus on, shows interesting results. It has the same lattice structure
as LSCO with the one exception of excess oxygen in between the Cu layers.
Interestingly, the critical temperature of LSCO+O is the same of an optimal
doped LSCO crystal. Another interesting property of LSCO+O is that the
the critical temperature is independent of strontium doping as long as the
crystals are super-oxygenated. Furthermore the crystal shows, independent
of strontium content, the stripe behavior of an optimal doped LSCO.



2 Introduction

The superoxygenated crystal shows almost all of the behavior of an optimal
doped LSCO, which poses a lot of questions. Another interesting feature of
the cuprate is that we see that the superconducting transition temperature,
Tc, coincides with the magnetic ordering temperature, TN , Tc = TN . Some
questions to be answered are: Do we believe that the excess oxygen take
over the characteristics of the strontium? Are the stripes generated by the
excess oxygen?

From a theoretical point of view there are no calculations (to the best of my
knowledge) involving LSCO+O. It is interesting to investigate some of the
effects of this excess oxygen in a different doped crystal. Do we see if stripes
appear and stabilizes no matter the strontium content? Another interesting
calculation could be to see if the Tc = TN naturally appears from this excess
oxygen.

In this Thesis I will give a review of the experimental study of LSCO+O
until the present day. I will also try to explain some of the theoretical tools
used to make calculations on superconductors in the crystal structure. And
finally try to theoretically reproduce some of the experimental data and
answer some of the questions raised from newly experiments.



Chapter 2

Superconductivity

In 1911 Heike Kamerlingh Ones won the Nobel Prize [35] for his discovery of
superconductivity. He cooled mercury down to less than 4.2 K whereupon
he discovered that it lost its electrical resistance: superconductivity. In the
following years scientists found that many other materials became super-
conducting at a low temperature named the critical temperature Tc. This
critical temperature was around a few Kelvin. Later on it was discovered
that those certain elements also exhibit superconducting properties under
high pressure see 2.1. We now know that around half of all elements have
a superconducting phase under the right circumstances. In this chapter we
will review the theory necessary for the for understanding the calculations
in chapter 5.

2.1 Introduction to Superconductivity

In this section there will be a brief description of the basic theoretical prin-
ciples behind the phenomenon of superconductivity and an introduction to
the first microscopic theory of superconductivity called BCS theory.

2.1.1 Meissner-Oschenfeld effect

The Meissner-Ochsenfeld effect is the expulsion of a magnetic field from
a superconductor during its phase-transition to the superconducting state.
Below the transition temperature, Tc, superconductors expel all interier
magnetic fields. This is possible because there is a relation between the
magnetic flux and a superconductor allowing the magnetic flux to be con-
served by the superconductor see fig. 2.2.



4 Superconductivity

Figure 2.1: Periodic table with all known superconducting elements. The
blue marked elements are for ambient pressure, the green are
for high pressure. [41]
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Figure 2.2: Diagram of the Meissner-Ochsenfeld effect. Magnetic field
lines, represented as arrows, in the normal state (left) and
the superconducting state, are expelled from the sample when
it is below its critical temperature Tc (right).

One of the many properties that follows from having zero resistance and
therefore being in a perfect conductor, the current can only be finite when
the electric field in the conductor is zero:

E = 0, (2.1)

From Maxwell’s equations we furthermore have:

∇× E = −∂B

∂t
, (2.2)

In other words, the internal magnetic field is constant in time. From the
equation above, we know that if you had a magnetic field in the supercon-
ductor at T > Tc and then cools down the magnetic field will have the same
value for T < Tc, when ∂B

∂t
= 0.

The magnetic induction inside a superconductor is zero, and there for the
magnetic field cannot penetrate the superconductor. This is also true when
the superconductor is placed in a weak external magnetic field.



6 Superconductivity

When a superconductor is in the superconducting state, the moving surface
charge, surface current, will induce a field that will exactly cancel out the
applied field, so that the magnetic field inside the sample can maintain
the value of zero. If however the external field becomes too strong, it will
destroy the superconducting phase and the sample will return to its normal
state. That the magnetic field inside is zero means that the magnetization
is equal with opposite sign to the external feald M = −H. We see this
easily [7]:

B = µ0(H + M) = 0. (2.3)

Note that In the specific case of B = 0 we have a perfect diamagnet. These
properties were first observed in 1933 by W. Meissner and R. Oschenfeld[40]
of which the name Meissner-Oschenfeld effect comes.

2.1.2 Two types of superconductors

The transition from a normal phase to a superconducting phase during an
applied magnetic field can happen in two ways. We characterize these two
ways with two classes of superconductors: type-I and type-II[3].

For the first type of superconductor, type-I, that the transition from super-
conducting state to normal state depends on the applied fields temperature-
dependent critical value Hc(T ). Inside the entire sample the field B is zero
until the critical value Hc(T ) is reached where the sample transitions to a
normal state. In other words, the sample exhibits the Meissner effect below
the critical value Hc(T ) see fig. 2.3 left.

In a type-II superconductor, the magnetic field is not completely expelled
from the sample at one certain critical value Hc(T )[22]. In this type of
superconductor there is instead two critical values for the applied field, an
upper value Hc2(T ) and a lower value Hc1(T ) see fig. 2.3. At the lower
critical value the applied magnetic field will gradually penetrate the sample
until it is completely penetrated which is achieved at the upper critical
value. Thus, the sample exhibits the Meissner effect below the lower critical
value Hc1(T ). When the applied field is between the two critical values for
this field, the sample becomes inhomogeneous containing both normal and
superconducting states, in what is called a mixed state see fig. 2.4. In this
mixed state cylinder shaped fluxs lines can pass through the sample creating
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Figure 2.3: Illustration of the phases of temperature as a function of ap-
plied field for type-I(left) and type-II (right) superconductor.
From [22]

regions where the superconductivity is suppressed. The current around the
cylinders screens the flux lines so that the regions in between the normal
state cylinders is superconducting. These cylinders are called vortices and
the mix state is also referred to as the vortex stete.

2.1.3 BCS Theory

BCS theory is a microscopic theory for superconductivity, proposed by John
Bardeen, Leon Cooper, and John Robert Schrieffer in 1957[24],[25]. In 1972
they received the Nobel prize in physics for this theory.

With a microscopic theory for superconductivity, two important predic-
tions were made: Namely the isotopic effect TcM

−α, which tells us that
the transition temperature changes with the mass of the crystal lattice ions
M . The BCS theory predicts the isotopic exponential to be α = 1/2.
The second main prediction is the existence of the energy gap 2∆, due to
electron-phonon coupling, at the Fermi level, separating the occupied and
unoccupied states. The BCS theory is built upon three major insights:
1: The effective forces between electrons can sometimes be attractive in
a solid, due to coupling between electrons and phonons in the underlying
crystal lattice.
2: For a simple system of just two electrons outside an occupied Fermi
surface, the electrons form a stable pair bound state also called a “Cooper
pair”.
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Figure 2.4: Schematic illustration of the temperature dependence of the
flux lines of a type-II superconductor.

3: There must exist a many-particle wave function for which all the electrons
near to the Fermi surface are paired up. This has the form of a coherent
state wave function.
We will discuss the three insights in the following.

2.1.3.1 The electron-phonon interaction

It seems counter intuitive that that there must exist an attractive force,
since electrons usual repel each other due to the Coulomb repulsion:

V (r − r) =
e2

4πε0|r − r′|
. (2.4)

The Coulomb repulsion is always true for bare electrons, however for elec-
trons in a metal we should think of the them as quasiparticles. Where quasi-
particles should be interpreted as a perturbation, in a solid, that behaves
as a electron (with different mass) and that may conveniently be regarded
as one. When an electron moves another must move out of the way due to
both the Pauli Principle , and because they prefer to minimize the repulsive
Coulomb energy V (r − r

′
). It turns out that between quasiparticles the

effective Coulomb force is substantially reduced by screening.

The Thomas Fermi model (screening method) predicts an effective electron-
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electron interaction of the form [3]:

VTF (r − r′) =
e2

4πε0 |r − r′|
e
−
∣∣∣r−r′ ∣∣∣/rTF , (2.5)

where rTF is the Thomas Fermi screening length. This will be discussed
later in this chapter. The effect of the screening is to reduce the Coulomb
repulsion, and the effective repulsion force is then short range in space. i.e.
it vanishes for |r − r′| > rTF . The electrons interact with each other via
their interaction with the phonons of the crystal lattice.

So how does an electron-phonon interaction arise? Consider a phonon of
wave vector q in a solid. The effective Hamiltonian for the phonon in the
solid will just be a set of quantum harmonic oscillators, one for each wave
vector q and phonon mode[3]:

Ĥ =
∑
q,λ

hωq,λ(a
†
q,λaq,λ +

1

2
), (2.6)

where a†q,λ and aq,λ create or annihilates a phonon mode λ. The are 3Na

phonon modes in a crystal with Na atoms per unit cell, where Na is a natural
number. For simplicity let us assume that there is only one atom per unit
cell. In other words there are just three phonon modes.

Remembering the expression for the ladder operator the wave function with
n phonons is:

Ψn(x) =
1

n!1/2
(â†)nΨ0(x). (2.7)

The atoms located at Ri will be displaced by:

δRi =
∑
qλ

eqλ

(
~

2Mωqλ

)
(a†qλ + a−qλ)e

iqR, (2.8)

where eq,λ is the interaction in the direction of the atomic displacement for
the mode qλ. The displacement δRi of the crystal lattice will produce a
modulation of the electron charge density and the effective potential for the
electron in the solid vf (r). We define the deformation potential by:

Vi(r) =
∑
i

∂vi(r)

∂Ri

∂Ri. (2.9)
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Figure 2.5: Feynman diagram for an electron-phonon interaction. The
electron is scattered from K to K + q resulting in an annihi-
lation of a phonon of wave vector −q.

This is a periodic modulation of the potential with wavelength 2π/q. An
electron moving through the crystal lattice will experience this periodic
potential and undergo scattering so if it is initially in a Block state Ψn,k(r) =
eikru(r) it can be diffracted into a new Bloch state Ψn′,k−q(r

′). The net effect
The net effect is that the diffraction is that an electron has been scattered
from a state with crystal momentum k to one with momentum q − k. We
see that the ”extra momentum” has been provided by the phonon. In this
formalism we do not distinguish between creating a phonon of momentum
q or annihilating a phonon of momentum −q. In other words, the electron-
phonon interaction arises because an electron moving through a crystal
lattice will experience a periodic potential and undergo diffraction. So if
the electron is initially in a periodic and repeating state (Bloch state) k, it
can be scattered to another Bloch state k′. The net effect of this is that an
electron has been scattered from a state with crystal momentum k to one
with momentum k− q, where the extra momentum q has been provided by
the phonon. The electron emits a phonon which propagates for a while and
is then absorbed by another electron. So electrons can transfer momentum
to one another implying an effective interaction between them. This is in
the literature normally illustrated by a electron-phonon interaction, vertex
gq,λ, in a Feynman diagram fig. 2.5 and 2.6

We wish to simplify the interaction between the electron and phonon, and do
so by replacing the vertex gq,λ by a constant geff. We then get the following
expression for the interaction

Veff(q, ω) = |geff|
1

ω2 − ω2
D

(2.10)
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Figure 2.6: Feynman diagram for an electron-electron interaction. The
electron with spins σ1 and σ2 are scattered from K1 to K1 + q
and K2 to K2 + q via the phonon with wave vector −q. The
vertex is for an electron-phonon interaction.

where ωD is the Debye frequency. We note that for ω < ωD the interaction
is attractive, and for ω > ωD the interaction is repulsive. We are only
interested in electrons which lie within ±kBT of the Fermi energy. The
temperature of interest to SC is ~ωD � kbT . With this in consideration we
can assume the simple form:

Veff = − |geff|2 , (2.11)

Where kBT � ~ωD. The corresponding effective Hamiltonian for the effec-
tive electron-electron interaction is then given by

Ĥ1 = −|geff|2
∑

k1σ1k2,σ2q

c†k1+qσ1
c†k2−qσ1ck1σ1ck2σ2 (2.12)

We have the restriction that the energy of the electron must be in the range
of ±hωD of the Fermi surface, i.e. |εki − εF | < hωD. So we have interacting
electrons near the Fermi surface, but the Bloch state for inside and outside
the Fermi surface are unaffected 2.7.

2.1.3.2 Cooper pairs

In the previous section we have established that the effective interaction
between electrons can be attractive, but only near the Fermi surface. This
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Figure 2.7: Schematic illustration of the Fermi surface. There is an at-
traction between electrons near the Fermi surface. The elec-
trons are scatted to ±q if they lie within εf ± ~ωD.

naturally raises the question, what is the effect of the attraction for only a
single pair of electrons? Surprisingly, they form a bound state.
The independent Bloch electrons are unstable to even the weakest attrac-
tive interaction between the particles. Therefore, the full BCS state is a
configuration where every electron at the Fermi surface is part of a pair.
With this in mind we model the phenomenon as following:

We assume a spherical Fermi surface at zero temperature, where all the
states with k < kF are occupied. Then place two extra electrons outside
of the Fermi surface which interact by the electron -phonon interaction see
fig. 2.8.

The two particle wave function of the extra electrons is given by [3]:

Ψ(r1, ω1, r2, ω2) = eikcmRcmϕ(r1−r2)ψspinω1,ω2
, (2.13)

where kcm is the total pair momentum and Rcm is the center of mass (r1 +
r2/2). Note that the minimum energy corresponds to the center of mass
where in the ground state kcm = 0. We will from now on always assume
that the particles are in the ground state i.e kcm = 0. The spin wave function
ψspinω1,ω2

can either be a spin singlet or spin triplet. For a spin singlet we have
that the total spin is zero, S = 0. For a spin triplet we on the other hand
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Figure 2.8: Schematic illustration of the Fermi spherical surface at zero
temperature. All the states are within k < kF are occupied.
Two electrons are placed outside the Fermi surface and inter-
act via electron-phonon interaction.

have that the total spin must be one, S = 1. So for a singlet we have:

ψspinω1,ω2
=

1√
2

(| ↑↓〉 − | ↓↑〉), (2.14)

and for triplet we have:

ψspinω1,ω2
=


| ↑↑〉

1√
2
(| ↑↓〉+ | ↓↑)

| ↓↓〉

 . (2.15)

Let us from now on assume that Cooper pairs are singlets [3]. We remember
the fermion antisymmetry which indicates:

Ψ(r1, ω1, r2, ω2) = −Ψ(r2, ω2, r1, ω1). (2.16)

Since ψspinω1,ω2
is odd, the wave function ϕ must be even. We now expand

ψ(r1− r2) in terms of the Bloch waves (free electron plane wave). Note first
that a single Block state is Ψk(r) = eikru(r), where u(r) = u(r + R). We
get the following expression:

ψ(r1 − r2) =
∑
k

ψke
ik(r1−r2), (2.17)
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were ψk are the expansion coefficients. Thus we have (due to Fermion
antisymmetry) that ψk = ψ−k. The full pair wave function is:

Ψ(r1, ω1, r2, ω2) =
∑
k

ψk

(
Ψk↑(r1) Ψk↓(r2)

Ψ−k↑(r1) Ψ−k↓(r2)

)
, (2.18)

where we only sum over k that satisfy k > kF . The above equation is just
a sum of Slater determinants, and each Slater determinant product has a
spin up ↑ and a spin down ↓ and a positive momentum k and negative
momentum −k. If we now substitute the slater determinant wave function
Ψ(r1, ω1, r2, ω2) into the Schrödinger equation we can get an expression for
the total energy for the two particle system. First we remember the relation
|Ψ〉 =

∑
k ψk |Ψk〉 where

|Ψk〉 =

(
Ψk↑(r1) Ψk↓(r2)

Ψ−k↑(r1) Ψ−k↓(r2)

)
, (2.19)

which obey the two body Schrödinger equation Ĥ |Ψk〉 = E |Ψk〉.
If we then multiply the equation |Ψ〉 from the left with 〈Ψk| we can take
out the terms for a given k.
The Hamiltonian consist of the two energies of Bloch states εk and the
effective interaction −|geff|2. The effective interaction takes the momentum
q = k

′−k from one of the electrons and transfer it to the other electron. In
other words, a pair of electrons k,−k becomes k

′
,−k′ with a matrix element

−|geff|2. k is limited to a thin shell between kF and kF + ωD/v, where v is
the group velocity at the Fermi surface.

The energy E can be found by a self-consistent argument, where we end up
with [3]:

− E = 2~ωDe−1/λ. (2.20)

Where λ is the electron-phonon coupling parameter given by:

λ = |geff|2g(εf ). (2.21)

We know that λ� 1. So a bound state does exist and furthermore we see
that it energy ist exponentially small when λ is small. The BCS energy
scale for a superconductor is set by the Debye energy, but multiplied by a
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very small exponentially factor. This is why the transition temperatures Tc
are so small compared with other energy scales in solids. It is worth noting
that it is not always that an attractive interaction in three dimensions leads
to a bound state.

The presence of the filled Fermi sea is a key aspect of the BCS theory. So,
the whole Fermi surface would be unstable to the creation of such pairs. As
soon as there is an effective attractive interaction essentially every electron
at the Fermi surface will become bound into a Cooper par.

2.1.3.3 The BCS wave function

In this section we will construct a many particle wave function in which
every electron is paired. We will write down a coherent state of Cooper pairs.
We do so, by assuming it is possible to construct operators which annihilate
and create electron pairs at position R, φ̂†(R) and φ̂(R). Note that these
operators do not obey normal Bose commutation laws, and cannot create
or annihilate boson particles.

We need to find a uniform translationally invariant solution, and it turns
out that it is more convenient to work in k-space.

Let us define a pair-creation operator by [3]:

p̂†k = c†k↑c
†
−k↓. (2.22)

The equation above creates a pair of electrons of zero crystal momentum,
and opposite spins. In terms of these operators we have the following co-
herent state of many-body wave functions:

|ψBCS〉 = c exp

(∑
k

αkp̂
†
k

)
|0〉, (2.23)

where c is some constant, αk is a complex number that can be adjusted to
minimize the total energy and |0〉 is the vacuum state. The new operators do
not obey the Bose commutation relation [p̂†k, p̂k] 6= 1, but they do commute

with each other [p̂†k, p̂
†
k′ ] = 0 for k 6= k′.



16 Superconductivity

Let us examine whether they also commute for k = k′. We have that the
product of p̂†kp̂

†
k contains four electron creations for some k point:

p̂†kp̂
†
k = (p̂†k)

2 = ĉ†k↑ĉ
†
−k↓ĉ

†
k↑ĉ
†
−k↓ = ĉ†k↑ĉ

†
k↑ĉ
†
−k↓ĉ

†
−k↓ = 0 · 0 = 0. (2.24)

Knowing that the operators commute we rewrite the coherent state as a
product of exponentials:

|ψBCS〉 = c exp

(∑
k

αkp̂
†
k

)
|0〉

= cΠk exp(αkp̂
†
k)|0〉.

(2.25)

Expanding the exponential, all terms of quadratic order or higher are zero
as seen in equation (2.24):

|ψBCS〉 = cΠk(1 + αkp̂
†
k)|0〉. (2.26)

Let us find the normalization constant c:

1 = 〈0|(1 + α∗kp̂
†
k)(1 + αkp̂

†
k)|0〉

=< 0|(1 + p̂†kp̂
†
k + α

′

kp̂
†
k + αkp̂

†
k + αkp̂

†
kα
∗
k)|0〉

=< 0|(1 + α∗kp̂
†
k + αkp̂

†
k)|0〉

= 1|αk|2 = c

(2.27)

And we get:
|ψBCS〉 = Πk(u

∗
k + v∗k)p̂

†
0|0〉. (2.28)

Where u∗k = 1/(1+ |αk|2) and v∗k = αk/(1+ |αk|2), furthermore we have that
|u∗k|2 + |v∗k|2 = 1.

Now we have the parameters uk and vk which minimizes the energy. For
the electron- electron interaction we then get:

Ĥe = −|geff|2
∑

c†k1+qσ1
c†k2−qσ2ck1σ1ck2σ2 . (2.29)

And we get the relevant Hamiltonian for the many-body wave function:

Ĥ =
∑
kσ

c†kσckσ − |geff|2
∑

c†k1+qσ1
c†k2−qσ2ck1σ1ck2σ2 . (2.30)
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To get the full microscopic theory we still need a mean-field approach to the
Hamiltonian and a unitary transformation that will assure that it is diagonal
in the operators c†kσ and ckσ. We will do so later on for a Hamiltonian which
is more appropriate for calculations in Chapter 5.

2.2 Hamiltonian and mathematical methods

In this section I will introduce the Hamiltonian and the mathematical meth-
ods and techniques that are required for calculating densities in a cuprate
system.

2.2.1 Screening of the Coulomb interactions

A necessary element of the Hamiltonian is the description of the extra
oxygen in the super oxygenated cuprate LaxSr2−xCuO4+y. We do this
by introducing a mean-field potential given by some Coulomb interaction
with screening. By not includeing any type of screening of the long range
Coulomb interaction, the spectrum of excitations near the Fermi surface
gets an unphysical logarithmic singularity. However, by including screening
in the approximation we achieve a more realistic description of the particle
interactions.

We are particularly interested in the electrostatic potential W (r) around a
small probe charge Q, where we assume no time dependence. The potential
without screening is given by:

W (r) =
Q

r
. (2.31)

Screening is a consequence of a redistribution of the electronic density due
to the potential. The potential will also undergo a change due to the elec-
tronic density, and they will affect each other back and forth. Therefore the
potential and the density distribution must be calculated self-consistently.
The screening itself will be a static linear-response.

The response of the density due to the potential is given in momentum
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space by:
δn(q) = ξ(q)eW (r)− ν0, (2.32)

where ξ(q) is change due to electronic density and e is the elementary charge.
ν0 is treated like constant( it comes from the change in electron density
due to the potential). The reaction of the density modulation due to the
potential is given by the Gauss equation [6]:

− 1

4π
∇2W (x) = Qδ(x) + eδn(x). (2.33)

In the momentum representation the above takes the form:

q2

4π
W (q) = Q+ eδn(q) (2.34)

Now, putting equation (2.32) and equation (2.34) together we get:

W (q) =
Q

q2

4π
e2ξ(q)

. (2.35)

The Fourier transform of the above gives the screened interaction potential
W (r) in real space. The simplest approximation, known as the Thomas-
Fermi screening, is under the assumption that all coordinate dependences
are slow and that the response due to the potential is in a static approxi-
mation. We then get the density of states at the Fermi level:

δn(q) = ξ(q)eW (r)− ν0 = ξ(q = o), (2.36)

We now rewrite the potential W (q):

W (q) =
Q

q2

4π
+ e2ν0

=
4πQ

q2 + 4πe2ν0

=
4πQ

q2 + κ2
, (2.37)

where κ2 = 4πe2ν0.

The Fourier transform of this potential gives:

W (r) =
Q

r
exp(−κr), (2.38)
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where κ−1 should be interpred as the screening length.

In the case of multiple charges Qn located at Rn the screening potential
becomes:

W (r)n =
Q

r −Rn

exp(−κ(r −Rn)). (2.39)

The above equation is the screening of the Coulomb interactions which we
will use to describe the intermediate oxygen y in LaxSr2−xCuO4+y. In the
specific case, were the charge comes from intermediate oxygen we will refer
to the potential as WRo(ri).

2.2.2 The Hamiltonian

The Hamiltonian we use in calculations in this thesis is given by[20]:

Ĥ =−
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
iσ

(WRo(ri)− µ)n̂iσ

+ U
∑
i

n̂i↑n̂i↓ − V
∑
〈ij〉

n̂i↑n̂j↓.
(2.40)

Here, 〈ij〉 means summation of nearest neighbors. The first term in the
Hamiltonian includes the tight-binding approximation. In the tight-binding
approximation, the electrons are assumed to occupy the standard orbitals of
their principal atoms. They can then ’hop’ between atoms through orbitals
which result in conduction. The second term is the potential impurity field,
where µ is the chemical potential, amd WRo(ri) is the mean field potential
of oxygen which is situated between the sites, see section 2.2.1. The third
term includes the onsite repulsion, which comes from the Coulomb repulsion
between electrons at the same atomic orbitals. We assume that U > 0. The
last term represents the attraction between electrons in the superconducting
state. We assume that V > 0. There is a nearest neighbor attraction in
order to represent the superconducting pairing in cuprates, a d-wave pairing.

2.2.3 The mean-field Hamiltonian

It is too complicated to look at all the interacting particles, so instead
we look at the correlation on the average which means that the effect of
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the other particles is included as a mean density. Thus we have an effective
single particle problem. This is the idea behind mean-field approximation[6].
First note âi↑ = 〈âi↑〉+ (âi↑ − 〈âi↑〉). Secondly we have:

âiσâjσ′ = (〈âiσ〉+ (âiσ − 〈âiσ〉))(〈âjσ′〉+ (âjσ′ − 〈âiσ〉))
= 〈âiσ〉〈âjσ′〉+ (âiσ − 〈âiσ〉)〈âjσ′〉+ 〈âiσ〉(âjσ′ − 〈âiσ〉)
+ (âiσ − 〈âiσ〉)(âjσ′ − 〈âiσ〉)
≈ 〈âiσ〉〈âjσ′〉 − 2〈âiσ〉〈âjσ′〉+ 〈âiσ〉âjσ′ + âiσ〈âiσ〉
= 〈âiσ〉âjσ′ + âiσ〈âjσ′〉 − c,

(2.41)

where c = 〈âiσ〉〈âjσ′〉 is a constant. This is also true for i = j and σ = σ′.
In the third and fourth term of the Hamiltonian we get:

U
∑
i

n̂i↑n̂i↓ ≈ U
∑
i

(〈n̂i↑〉n̂i↓ + n̂i↑〈n̂i↑〉 − c) . (2.42)

We define the electron density as

ni = 〈n̂i↑ + n̂i↓〉 (2.43)

and the magnetization as

mi = 〈n̂i↑ − n̂i↓〉 (2.44)

We then get:

U
∑
i

n̂i↑n̂i↓ ≈ U
∑
i

((
ni +mi

2
)〈n̂i↓〉+ (

ni −mi

2
)〈n̂i↑〉)− c1

= U
∑
i

((ni +mi)〈n̂i↓〉+ (ni −mi)〈n̂i↑〉)− 2c1.
(2.45)

For the fourth term of the Hamiltonian we get:

−V
∑
〈ij〉

n̂i↑n̂j↓ = −V
∑
〈ij〉

ĉ†i↑ĉi↑ĉ
†
j↓ĉj↓

= −V
∑
〈ij〉

ĉi↑ĉj↓ĉ
†
j↓ĉ
†
i↑

≈ −V
∑
〈ij〉

(〈ĉi↑ĉj↓〉ĉ†j↓ĉ
†
i↑ + ĉi↑ĉj↓〈ĉ†j↓ĉ

†
i↑〉)− c.

(2.46)
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We define the following potential ∆ij = −V 〈ĉi↑ĉj↓〉 = −V 〈ĉi↑ĉj↓〉∗ and get:

− V
∑
〈ij〉

n̂i↑n̂j↓ =
∑
〈ij〉

(∆ij ĉ
†
j↓ĉ
†
i↑ + ĉi↑ĉj↓∆

∗
ij)− c2. (2.47)

We will in the following calculations absorb the constants in µ. The mean-
field Hamiltonian is then:

Ĥ =−
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
iσ

(WRo(ri)− µ)n̂iσ

+ U
∑
iσ

(ni − σmi)n̂iσ

+
∑
〈ij〉

(∆ij ĉ
†
i↑ĉ
†
jδ↓ +H.c),

(2.48)

where H.c means hermitian conjugate.

2.2.4 The Bogoliubov transformation

The Bogoliubov transformation is a unitary transformation i.e. a uni-
tary representation into another unitary representation. Furthermore the
transformation is restricted to obey the canonical commutation and anti-
commutation relations. We will focus on the anti-commutation since we are
interested in the fermionic creation and annihilation operators:{

γ̂†n, γ̂n
}

= 1 (2.49)

and

{γ̂n, γ̂n} = 0. (2.50)

This of course applies regardless of the spin orientation of γ̂n and γ̂†n. We
define a new set of operators to include both spin and the gammas[3]:

âi,σ = uiσγ̂σ + v∗iσγ̂
†
σ′ (2.51)

and

â†i,σ = u∗iσγ̂
†
σ + viσγ̂σ′ . (2.52)
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The fermionic anticommutation relations should still apply, let us verify
that it is so. Note however the spin dependence of the new operators:

{âi,σ, âj,σ′} = (uiσv
∗
jσ′

{
γ̂σ, γ̂

†
σ

}
+ v∗iσujσ′

{
γ̂†σ, γ̂σ

}
)

= uiσv
∗
jσ′ · 1 + v∗iσujσ′ · 1

= uiσv
∗
jσ′ + v∗iσujσ′

= 0.

(2.53)

For the case of σ = σ′ we have:{
â†i,σ, âj,σ

}
= (u∗iσvjσ

{
γ̂†σ, γ̂σ

}
+ viσu

∗
jσ

{
γ̂σ, γ̂

†
σ

}
)

= u∗iσvjσ · 1 + viσu
∗
jσ · 1

= uiσv
∗
jσ′ + v∗iσujσ′

= δij,

(2.54)

and for different spins:{
â†i,σ, âj,σ′

}
= (u∗iσvjσ′

{
γ̂†σ, γ̂

†
σ′

}
+ viσu

∗
jσ(γ̂σ, γ̂σ′))

= u∗iσvjσ · 0 + viσu
∗
jσ · 0

= 0

(2.55)

so finally we see that canonical anticommutation holds:{
â†i,σ, âj,σ′

}
= δijδσσ′ , (2.56)

{âi,σ, âj,σ′} = 0, (2.57){
â†i,σ, â

†
j,σ′

}
= 0. (2.58)

If we expand the transformations to include more states n we finally arrive
at the Bogoliubov transformation:

ĉi↑ =
∑
n

(un,i↑γ̂n↑ + vn,i↑ ∗ γ̂†n↓), (2.59)

ĉ†i↑ =
∑
n

(un,i↑ ∗ γ̂†n↑ + vn,i↑γ̂n↓), (2.60)

ĉi↓ =
∑
n

(un,i↓γ̂n↓ + vn,i↓ ∗ γ̂†n↑), (2.61)

ĉ†i↓ =
∑
n

(un,i↓ ∗ γ̂†n↓ + vn,i↓γ̂n↑). (2.62)
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The sums are over all positive energies. γ̂nσ and γ̂†nσ is the annihilation and
creation operator for non-interacting fermionic quasiparticles.

2.2.5 The Bogoliubov-de Gennes Equations

We will derive the Bogoliubov-de Gennes equations by the standard method
[14].
We will first examine the commutator of the Hamiltonian and the operators
ĉi↓ and ĉi↑. The mean-field Hamiltonian is given by:

Ĥ =−
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
iσ

(εiσ − µ)n̂iσ

+
∑
iσ

W (ri)n̂iσ + U
∑
iσ

(ni − σmi)̂niσ

+
∑
〈ij〉

(∆ij ĉ
†
i↑ĉ
†
jδ↓ + h.c).

(2.63)

For any constant A we have the following relation:

[Aĉ†iσ ĉjσ, ĉiσ] = A[ĉ†iσ ĉjσ, ĉiσ]

= A(ĉ†iσ ĉjσ, ĉiσ − ĉ
†
iσ ĉiσ, ĉjσ)

= A(−
{
ĉ†iσ ĉiσ

}
, ĉjσ)

= −Aĉjσ,

(2.64)

and

[Aĉ†iσ ĉ
†
jσ, ĉiσ] = A[ĉ†iσ ĉ

†
jσ, ĉiσ]

= A(ĉ†iσ ĉ
†
jσ, ĉiσ − ĉ

†
iσ ĉiσ, ĉjσ)

= A(−
{
ĉ†iσ ĉiσ

}
, ĉjσ)

= −Aĉjσ

(2.65)
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and finally

[Aĉ†iσ ĉiσ, ĉiσ] = A[ĉ†iσ ĉjσ, ĉiσ]

= A(ĉ†iσ ĉiσ, ĉiσ − ĉiσ ĉ
†
iσ ĉiσ)

= A(−ĉiσ ĉ†iσ ĉiσ)

= −Aĉiσ.

(2.66)

So, for the Hamiltonian we get:

[H, ĉiσ] =
∑
jσ

tij ĉjσ − (εiσ − µ)ĉiσ

+W (ri)ĉiσ − U(ni − σmi)ĉiσ

−
∑
〈ij〉

∆ij ĉ
†
jσ,

(2.67)

where σ is 1 for ĉi↑ and -1 for ĉi↓.

Furthermore we have that:

[Ĥ, ĉiσ] =
∑
n

(−εnunσγ̂nσ + εnσ′v
∗
nσγ̂

†
nσ′), (2.68)

where −εn is the negative energy corresponding to the commutation with
the annihilation operator γ̂nσ and εn is the positive energy corresponding
to the creation operator γ̂†nσ. For un,iσ and v∗n,iσ we have the following
equations:

−εn↑un,i↑ =
∑
j

tijun,j↑

− (−µ+W (ri)− U(ni −mi))un,i↑

−
∑
ij

∆ijvn,j↓,

(2.69)

and for un↓ we find

−εn↓un,i↓ =
∑
j

tijun,j↓

− (−µ+W (ri)− U(ni −mi))un,i↓

−
∑
ij

∆ijvn,j↑,

(2.70)
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for vn↑ we have

−εn↑v∗n,i↑ =
∑
j

tijv
∗
n,j↑

− (−µ+W (ri)− U(ni −mi))v
∗
n,i↑

−
∑
ij

∆ijvn,j↓

(2.71)

and finally for vn↓

−εn↓v∗n,i↓ =
∑
j

tijv
∗
n,j↓

− (−µ+W (ri)− U(ni −mi))v
∗
n,i↓

−
∑
ij

∆ijvn,j↑.

(2.72)

It is easy to see that we can write the four equations in matrix form as
follows: (

ξ̂↑ ∆̂

∆̂∗ ξ̂↓

)(
un↑
vn↓

)
= εn

(
un↑
vn↓

)
(2.73)

for eigenvalus εn↑ and(
ξ̂↓ −∆̂

−∆̂∗ −ξ̂↑

)(
u∗n↓
v∗n↑

)
= εn

(
u∗n↓
v∗n↑

)
(2.74)

for eigenvalues εn↓. The matrix operators are defined as:

ξ̂σui = −
∑
j

tijuj + (εiσ−µ +WiσU(ni −mi))ui (2.75)

∆̂ui =
∑
〈ij〉

∆ijuj (2.76)

and likewise for v∗iσ. The Hamiltonian is now in a diagonal form which is
necessary for self-consistent calculations.
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Chapter 3

Cuprates

In this chapter we review the class of superconducting compounds called
cuprates. First a general introduction and then an introduction to the
specific cuprates LSCO, LCO+O and LSCO+O that are the subject of this
thesis..

3.1 Cuprates, properties and structure

Among high temperature superconductors is a large class called cuprates.
Common to these superconductors is that they contain copper oxide layers.
Copper oxide lie in planes between other planes of rare elements (such as
La, Mg and Y etc.). It is in these copper oxide planes the superconduct-
ing properties lies. The planes of other elements provide the charge carri-
ers to the copper oxide planes. Many experimental investigations (such as
NMR, µR and neutron scattering) also suggest the existence of precise com-
plementary relationships between superconductivity and antiferromagnetic
ordering , which is commonly observed in LSCO, LBCO and YBCO.

3.1.1 Introduction to Cuprates

The breakthrough to a new era in higher superconductivity transition tem-
perature came in 1986 [28] by the discovery of superconductivity in the
La2−x(Ba,Sr)xCuO4 compounds with an onset of superconductivity at about
30 K. This was well above previous records. Shortly after a new important
development occurred when the Houston group showed that external pres-
sure could increase Tc noticeably (above 40 k) under 13 kbar pressure. An
equivalent effect can be achieved by replacing some of the ions with ones
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Figure 3.1: Crystal structure of
LSCO. The Copper is
yellow, oxygen is pink
and Lanthanum/stron-
tium is red.

Figure 3.2: Crystal structure of
YBCO. The Copper is
orange, oxygen is red
and Barium is dark blue
and the Yttrium is blue.

that have different valence but the same chemical properties. In other words
by replacing Ba with the smaller ion with lower valence Sr you could achieve
a higher Tc. This has attracted the interest of many researchers and this
mechanism has to this day not been fully understood.

A significant property in high Temperature superconductor cuprates is their
quasi two-dimensional character. Similar among Cuprates is the layered
structure, where some structures are more complex than others. Some ex-
amples are seen in fig. 3.1 and 3.2.

What we see is that the CuO2 layers alternate with LaO and BaO,Y in
LSCO and YBCO respectively. A similar structure is seen in all cuprates.
Interestingly, the critical temperature increases with increasing number of
CuO2-layers per unit cell. This, among many other things, has contributed
to the understanding that the most important structural element of all
cuprates are the CuO2 layers.
There is a very strong covalence between Cu2+ ions and O− ions in the
layers, which allows an electron on the copper to easily interact through
the neighboring oxygen. It is believed that this structure is what drives su-
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perconductivity. The layers (strontium, barium etc.) in between the CuO2

layers are assumed to contribute as a charge reservoir. In this scheme, it is
sufficient to model cuprates as a two-dimensional system.

3.1.2 Doping in Cuprates

We know from experiments that the electronic properties of cuprates de-
pend strongly on the doping concentration. Doping is a technique used to
change the chemical properties of a given crystal by substituting atoms in
crystals with other atoms which have lower electron number like we do in
La2−xSrxCuO4. In this technique, we substitute some of the intermediate
atoms (like La) that lie in between the CuO layer. Another way to dope a
crystal is to add extra oxygen which has higher valence than the interme-
diate atom like we do in like we do in LCO+O. Both methods can be used
simultaneously for the same crystal as e.g. in La2−xSrxCuO4+y (LSCO+O).
1

When the number of oxygen ions is changed, the number of holes in CuO2

layers is also changed. These changes can also occur when the nature of some
of the other atoms are changed. The number of additional holes is what we
call doping. Whatever type of cuprates we are dealing with, the properties
we observe when we change the doping are almost identical and seem to be
rather universal. Without the doping in the cuprates they are just quasi
two-dimensional antiferromagnetic Mott insulators with Néel temperature
TN of order 300 K. One can dope with a compound of lower valence than
the original compound to create a hole. An example being La2CuO4, if you
dope by Ba2+ or Sr2+ instead of La3+ an additional hole will go directly
into the CuO layer. The doping/temperature phase diagram for cuprates is
given in fig. 3.3.

1Even in a normal metal, electrons are exposed to numerous interactions; this can be
interactions with the other electrons or the atoms of the system. A theoretical treatment
shows that when an electron is exposed to these interactions, it behaves just like a
virtual electron subjected to no interaction. The mass of the electron has changed. The
interactions can in some cases, be so dominant that the electric charge of this virtual
electron can switch (from negative to positive). We call the result of such a switch a
hole. This concept of hole and electron with a variable mass is a powerful theoretical
tool because it permits us to describe the electric properties of matter considering only
interactions in matter.
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Figure 3.3: Schematic phase diagramof hole-doped cuprates. The differ-
ent phases of hole-doped cuprates are plotted as a function of
temperature and hole-doping [37].
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The parent compound is an antiferromagnet, and for small dopings the
material remains an antiferromagnet with a rapidly decreasing Néel tem-
perature. For the hole concentration around x = 0.05 we see the so called
pseudo gap, this phase is not fully understood. Subsequently we see the
superconducting phase, symmetrically located around a hole concentration
of x = 0.16, where the maximum critical temperature Tc lies. The su-
perconducting phase goes on until x = 0.27 where a phase transition take
place and the compound becomes metallic. In literature and in this thesis,
p means the total doping in a given crystal.

3.1.3 The superconducting order parameter

What separates cuprates from other superconductors is the superconduct-
ing order parameter is a d-wave, given by dx2−y2 . This parameter is sup-
ported by a variety of experiments such as NMR[44], phase-sensitive mea-
surements [11, 30, 9, 8], ARPES[19] and polarization dependent scattering
[33, 12, 42, 13]. The symmetry of the superconducting order parameter is
unconventional, since usually superconductors have s-wave symmetry. For
an order parameter of dx2−y2 we have a gap function given by

∆k =
∆0

2
(cos kx − sin ky), (3.1)

where ∆0 is the maximum value of the superconducting gap, kx and ky are
the wave vectors. It is worth noting that in the point separated by the
vector Q = (π, π) the gap has the same values but with different signs.
Furthermore at kx = ky the gap function ∆k is zero, which gives us node
lines.

3.1.4 Electronic structure in the normal state

It is essential to understand the electronic structure of the cuprates since it
is the foundation we use to study the electron density. We assume that it is
sufficient to use a one band model for understanding the electronic structure
that drives the cuprates. We also believe that the electronic interaction in
the layers (in the plane, or x and y direction) is the dominating interaction
while the interaction between layers is weak, and so we simplify to a 2D
interaction. The electronic structure for CuO2-plane is shown in fig. 3.4.
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Figure 3.4: Scematic illustation of the electron structure of Cu-O planes.

To understand how the electrons interact in the crystal field it is necessary
to understand the shapes of the orbitals. The orbitals shows the angular
dependence of the electron density n i.e the angular part of a wave function
see fig. 3.5.

In this simplification for cuprates we have two orbitals that contribute to
the interaction, the px or py that originates from the oxygen atom and the
dx2−y2 orbital located at the copper site. The highest occupied orbital of
the Cu2+-ions are the 3d-orbitals and the highest occupied orbitals of the
O2+-ions are the 2p-orbitals(see fig. 3.5).

If we start by looking at 3d-orbitals we see that there are nine electron per
one hole, where the 2d-orbitals are fully occupied, leaving us (for an under-
doped cuprate) with one hole per copper site (3d9). We see that the field
induced by the crystal removes the degeneracy of the copper 3d-orbitals,
giving us a configuration where the 3dx2−y2-orbital is the highest possible
energy and only occupy a single hole. It appears that that the remain-
ing 3d-orbitals have a lower energy and are completely occupied and we
therefore neglect them in the model and in the calculations. We remember
that there is a strong Coulombs repulsion between holes in the cuprates
(see section 2.2.1) which shows its importance in 3d-transition metal oxide.
The Coulomb repulsion splits the 3dx2−y2-bands into two, a so called upper
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Figure 3.5: Angular distribution of the orbitals s, d and p. [7]. The or-
bitals show the angular part of a wave function.
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Hubbard band and the occupied lower Hubbard band. The lower band lies
in lower energies than the 2p-states of oxygen, forcing the chemical poten-
tial (in the under-doped cuprate) to lie between the 2p-oxygen state and the
upper Hubbard band. When we start hole-doping the crystal the 2p-oxygen
states will start to be filled, with means that the holes are mainly doped
into the four 2p-oxygen states surrounding the copper sites symmetrically.
We have that the holes on the copper site and the surrounding neighbor
oxygen sites form a so-called Zhang-Rice singlet [46].

We can therefore map the original three band Hamiltonian into the low
energy one-band Hamiltonian. The existing model that best describes the
physics of the cuprates is the one band Hubbard Hamiltonian( described in
the previous chapter):

Ĥ = −
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
iσ

(εiσ − µ)n̂iσ + U
∑
〈ij〉

n̂i↑n̂i↓ + ..., (3.2)

where ĉ†iσ and ĉjσ are the creation and annihilation operators, respectively.
〈ij〉 indicate the summation over nearest-neighbor pairs, we denote the
nearest-neighbor hopping term with t, which deterines the amplitude for
the hopping in beween sites. The next nearest-neighbor hopping term we
denote t′. U is the Coulomb interaction between the quasi-particles at the
same site, and finally niσ = c†iσciω is the density. The above equation is es-
sential for understanding the insulating, undoped, antiferromagnetic phases
which almost all cuprates show.

Let us now write the metallic part of the Hamiltonian in k-space where we
sum over kx and ky in the first Brillouin zone −π ≤ kx ≤ π and −π ≤ ky ≤
π:

Hmetal =
∑
k

εkc
†
kσckσ, (3.3)

where εk =
∑

n tne
ikrn . Here tn include hopping to nearest neighbor and

next nearest neighbor, and get the following:

εk = −2t(cos(kxa) + cos(kya))− 4t′ cos(kxa) cos(kya)− µ, (3.4)

where µ is the chemical potential as usual and a is the lattice constant
normally set to unity. Note that we assume a cubic 2D lattice.
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3.1.5 Interlayer hopping

We have already shown that the essential physics is contained in the two
dimensional one-band Hubbard model for CuO2 planes. And we will now
look at the effect the three dimensional model brings. Anderson argues that
the energy scale that determines the parameters of the 2D Hubbard is not
the same energy scale that determines the parameters for Tc and the spin
gap [2]. This might seem very obvious, what is not so obvious however is
that what is supposed to set the scale for these parameters is the hopping
interaction between the planes (layers) which is then an important term we
have left out of the 2D Hubbart model.

3.2 Experimental results on LSCO, LCO+O

and LSCO+O

I will in this section provide a summary of experimental results on LSCO,
LCO+O and LSCO+O so far and point out the areas that have relevance
to the calculations in chapter 5.

Because of the conflicting results of LSCO+O it is necessary to study both
the sister compounds LSCO and LCO+O. Besides superconductivity the
hole-doped crystals show many other interesting properties such as mag-
netism and a metal-insulator transition. The holes in the crystals occurs
when an element is replaced by another of lower valence and thereby pro-
viding a ”hole” where the missing electron should be. For example in LSCO
the holes come from replacing Lanthanum La by Strontium Sr. The amount
you replace gives rise to different hole-concentration. For a doping concen-
tration x = 0.15 the critical temperature is found to be Tc = 37.5 K[34].

3.2.1 LSCO

There has been much confusion concerning the space group of LSCO and
LSCO + O, this is partly because there is no universal consensus regarding
the lattice parameters a, b and c. You are so to speak, free to choose the axes
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as you wish. We will from now on assume the following lattice parameters
a < b < c.

At room temperature La2−xSrxCuO4−y belongs to a space group of tetrago-
nal form, whereas we have to be above 500 K for La2CuO4−y to belong to the
tetragonal space group. For temperatures lower than 500 K La2CuO4−y will
be orthorhombic. Under cooling La2−xSrxCuO4−y will become orthorhom-
bic at temperature around 250 K for a doping around x = 15. The space
group for the LSCO compound is Bmab.

Twinning will always occur in LSCO, LCO+O and LSCO+O because of the
phase transformation from tetragonal to orthorhombic that occurs around
500 K for La2CuO4+y, La2−xSrxCuO4 and La2−xSrxCuO4+y. The CuO2

layers are built from corner sharing square planar CuO4 units that can
be bonded to another O-atom. This creates a square pyramidal environ-
ment or two additional O-atom resulting in an axially elongated octahedral
surrounding[39]. The reason that a and b are different is that the octahedra
tilt differently. The presence of twins will cause the exchange of a and b
axes across twin boundaries[38].

The copper ions in the undoped LCO has spin 1/2 which schematically result
in it being a conductor with one hole in the d-band per Cu site. However
the cost in energy required to add another electron is too high due to the
Coulomb repulsion between the added electron and the electrons in the d-
shell which result in that there is a weakly bound electron in almost every
Cu site. So under these conditions the LCO is actually a poor conductor.

An important matter needed to build a model is the orientation of the spins
in the crystal. As pointed out earlier the physics lie in the CuO2 planes,
where the spins are orientated in the (a, b)-plane in an antiferromagnetic
order below TN ≈ 300, over distance greater than 200 Å2. Hence LCO is
both an antiferromagnetic and a Mott insulator [37].

Recall the generic phase diagram for high-temperature cuprates in fig 3.3.
In the specific case of LSCO, we see that when LCO is doped with strontium

2For an antiferromagnetic measured Bragg peak, with a given resolution, we have the
correlation length is about 2π/Γ, where Γ is the width of the top. The width of their
solution is equal to 200 Å, where the peaks have not been broader than the solution,
therefore, one can say that the correlations larger than 200 Å.
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Figure 3.6: phase diagram of the cuprate LSCO. The different phases of
hole-doping are plotted as a function of temperature and hole-
doping x.

(Sr) more holes are created since we replace La+3 ions with Sr+2 ions result-
ing in creation of Cu+3 ions. The holes in the compound will be placed at
the strontium (Sr) sites since Sr has a fewer electrons that La. The holes will
then attract the loosely bound electron from the copper site, so the copper
sites are in a state where they are able to lead electrons, and hence the com-
pound becomes a conductor. For a specific range of doping 0.2 < x < 0.5
and temperature Tc < 40 K the compound becomes superconducting. See
fig. 3.6

3.2.2 Superoxygenated LCO+O

The superoxygenation of LCO+O is done by electrochemical oxidation [21],
[36]. In this procedure the oxygen is highly electron-negative and will then
oxidize the electron-positive copper. The electrons are transferred from
the copper ion to the oxygen, resulting in reduced oxygen ions, and hence
creating the Cu+3-ions. The excess oxygen atoms will occupy interstitial
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Figure 3.7: Proposed phase diagram of LCO + O. [5]. The oxygen places
itself in different layers called staging.

sites in the crystal see fig. 3.10.

Although the superconducting properties of LSCO and LCO+O are both
generated by hole doping, their phase diagrams are very different see fig.
3.7.

What differs is, among other things, that in LCO+O the oxygen is free to
move around in between the layers down to a temperature of 200 K. This
temperature is much lower than the temperature needed for the antiferro-
magnetic exchange coupling between nearest neighbor spins in the Cu site
which is 1500 K. Furthermore it is also lower then what is needed for elec-
tronic bandwidth (ω = 2 J)[5]. The oxygen is then allowed to rearrange in
such a way as to minimize the free energy. As one can see in the phase dia-
gram fig. 3.7 the mobility of the oxygen creates a different phase in which
the most conspicuous is the different layers of excess oxygen, staging see fig.
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Figure 3.8: Illustration of the staging in LCO+O. Left we see the tilt in
the CuO6 octahedron for undoped LCO. Right we se scematic
illustration of stage 6 tilt structure in the CuO6 octahedron in
LCO+O. The different shadings represent different antiphase
tilt domains. [5]
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3.8

For a doping level op to y < 0.1 we get an antiferromagnetic region with a
Néel temperature TN at ca 300 K at y = 0 and 250 K for y = 0.01. We see
at the phase diagram fig. 3.7 that the space group depends on temperature
and doping. For temperatures below 300 K the crystal is orthorhombic. We
also see that the the added oxygen only place themselves in certain areas
of the phase diagram, this is what we call staging. In the phase diagram
there are certain dopants which are not possible in the LCO+O,this is called
miscibility gap.

Synchrotron X-ray and neutron powder diffraction on crystals prepared
by high oxygen pressure method[10], shows that the orthorhombic Bmab
La2CuO4+y undergoes a phase separation at low temperature (around 300 K)
into two phases with different oxygen content: The oxygen-poor phase
is stoichiometric non-superconducting La2CuO4 with orthorhombic Bmab
symmetry[10]. Some experiments show that the oxygen-rich is a supercon-
ducting phase assigned to the orthorhombic Fmmm space group. Experi-
ments using neutrons indicated that perhaps the phase separation occurs at
290 K and that the superconducting phase is indeed a Bmab space group
just like the oxygen-poor non-superconducting phase.

There is evidence of a miscibility gap for 0.010 < y < 0.055 [10]. Within this
gap the samples decompose into an oxygen-rich Fmmm phase and a stoichio-
metric La2CuO4 Bmab phase. Besides, La2CuO4−y with 0.055 < y < 0.100
are single phases with Fmmm symmetry and show no phase separation down
to 10 K. Similar for all y the materials transform into single-phase samples
with tetragonal symmetry (f4/mmm) above their transition temperatures.
In the case of LCO+O we see the formation of superstructure, this could
very well be the case for LSCO+O as well. This theory where the oxygen
is over stoichiometry and well defined is supported/or could be related to
the special arrangement of interstitial oxygen [10].

3.2.3 Superoxygenated LSCO+O

The relationship between superconducting and magnetic phases are still
unclear to scientists, however some new experiments on La2−xSrxCuO4+y

show a superconducting onset critical temperature at 40 K with a coex-
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isting magnetic spin-density wave that also orders near 40 K for various
strontium doping and excess oxygen[23]. This raises the question, is this
new compound the key to understanding the interplay between magnetism
and superconductivity?

A new view is that magnetism and superconductivity are coupled with a
continuous transition between the phases. This would allow coexistence in
the domains of the short range ordered magnetism and superconductivity.
There is still not enough experimental or theoretical evidence to fully sup-
port it, however the data from Mohottala et al [23] suggest new evidence for
the segregation of a cuprate material into separate magnetic and supercon-
ducting phases, where the magnetic state is not the undoped Néel phase,
but a spin-density wave connected to the behavior of an optimally doped
cuprate.

LSCO (and other optimally hole doped cuprates) show a surprising sup-
pression of the superconducting state with a concomitant appearance of a
static spin-density wave. In LCO+O we see a different behavior, where the
system has a robust superconducting state with a transition temperature
Tc > 40 K. This transition temperature is higher than for optimally doped
LSCO with a maximum transition value of Tc = 38 K. LCO+O also have
static magnetism with an ordering temperature TN very close to Tc [18],[1]

The super oxygenated La2−xSrxCuO4+y seems to have a higher Tc than only
strontium doped La2−xSrxCuO4, namely a Tc around 40 K. The Tc seems
to be independent of the strontium content.

Just like in LCO+O, LSCO+O also seems to have a miscibility gap, however
for LSCO+O this gap occurs in more hole-rich regions of the phase diagram.
Experiments show that the superconducting phases for different strontium
content are identical after oxidation. This was verified by measuring the
Meissner fraction near 40 K 3 [23].

A series of experiments have been performed on LSCO for different stron-
tium content, where none of them showed magnetic ordering for tempera-
tures higher than 10 K [17] where the mother compound La2CuO4 is antifer-
romagnetic op to 325 K. Structural characterization by X-ray and neutron
scattering shows that the superoxygenated La2−xSrxCuO4+y is orthorhom-
bic at low temperatures, just like LSCO and LCO+O.

3Meissner fraction is the superconducting volume fraction.
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A relationship between the excess oxygen content and the staging number
has been observed. The compounds with most oxygen will also have the
lowest staging (meaning less distance between oxygen layers) number. So
lower oxygen levels lead to higher staging number, and for sufficient low
excess oxygen there will be no staging at all. The amount of interstitial
excess oxygen seems to vary with the strontium content, in such a way that
they always have roughly the same hole-concentration.

The characteristic parameters of the superconducting and magnetic phases
are virtually the same for all the superoxygenated samples. Only the relative
volume fraction seems to change [32], [23]. In conclusion a suggestion for a
phase diagram is shown in the fig. 3.9

The light and dark arc regions are the superconducting and magnetic line
phases, respectively. The cross-hatched regions indicate miscibility gaps.
A large area of the phase diagram remains blank as it is still unexplored.
There are experiments that suggest that it is the electronic interaction of
the doped holes that is the primary driver of the phase separation rather
than, the specific chemistry of the excess oxygen and the strontium in the
compound. Furthermore it is also suggested that the mobility of the excess
intercalated oxygen dopant is the key element that allows phase separation
over length and timescales long enough to measure easily. For other com-
pounds with the same phase separation it may also be the case, but only
over smaller times and length scale. It may be that the presence of highly
mobile oxygen dopant can provide the information needed to understand
the inherent physics of holes in a copper oxide plane.

Hamed et al. [45] also argue that at room temperature the electronic system
of holes induced by excess oxygen is similar to that induced by doping with
strontium over a considerable range of doping levels. The transport ability,
at very low doping levels is quite similar for oxygen induced holes and
strontium induced holes.

There exists a critical hole concentration (pc = 0.06) and this is not seen in
the excess oxygen vs charge transfer process. This indicates that the change
in doping efficiency is of an electronic origin. It should be emphasized
that the critical concentration pc is at the hole concentration where the
conductivity versus temperature behavior of all high Tc layered cuprates
becomes metallic around room temperature and superconducting at low
temperature. It is believed that the doping efficiency is controlled by the
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Figure 3.9: Scematic phase diagram of superoxygenated LSO+O. The light
area represent the superconducting phase, and dark arc regions
are magnetic line phases. The cross-hatched regions indicate
miscibility gaps. A large area of the phase diagram remains
blank as it is an unexplored area. The figure is taken from
Mohottala et al.[23]
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Figure 3.10: Crystal structure og superoxygenated LSCO+O. Pink repre-
sent copper, white represent lanthenum and strontium, and
blue is the added oxygen. The design of the structure is based
on [26]
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intrinsic characteristics of the electronic system of LCO+O (perhaps also
LSCO+O). Two holes are created in the Cu-O plane for each excess oxygen
atom(O2) in the insulating region and 1.3 holes per additional excess oxygen
atom (O1.3) in the metallic region. The Gas effusion spectra experiments
indicate that both O1.3 and O2 co-exist in the compound.

3.2.3.1 Stripes in superoxygenated LSCO+O

Stripes are the word we use to describe a certain systematic electron spin
configuration in a solid. The electrons organize themselves into an inho-
mogeneous nano-scale structure whitch give rise to a new state of matter.
For exemple an antiferromagnetic order where spin switches between up
and down is a scheme called stripes. There are many different ways for the
spins to systemize also including the holes, the lattice point not occupied
by an electron and therefore no spin see fig. 3.11. The stripes in LSCO
have periodicity 8 with an anti-ferromagnetic order, except in the empty
sites. The evidence of stripes is strongly supported by neutron and X-ray
scattering among many other techniques [4],[31]. .

It is still not clear from a theoretical point of view why exactly the stripes
formation occur. It is believed that they originate from a competition be-
tween the magnetic and kinetic energy. Theoretically, the idea of stripes has
been around since 1989. They were first found by studying a 2D mean-field
two band Hubbard model. Not long after, there there was also evidence of
stripes in a one band model, which is what I will use in my dissertation. The
studies of these stripes in one band models narrate to the fact that when
excess carriers are introduced to the system the spatially modulated spins
are more energetically beneficial than uniform phases. These discoveries
give rise to some changes in the phase diagram of the mean field Hubbard
model.

Tranquada et al.[29] has, based an experiment on La2NiO4, La1.6−xNd0.4SrxCuO4

and La2−xSrxCuO4, suggested a stripe pattern of period eight with some
antiferromagnetic order like behavior (see fig.3.11). This is strongly sup-
ported by Udby et al[32]. The experimental work done suggests that all the
La2−xSrxCuO4+y samples have the same stripe order. Namely the one for
optimal doped La2−xSrxCuO4 given in fig. 3.11.
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Figure 3.11: Hypothesized stripe model for the CuO2-planes in LSCO for
x = 0.125. The arrows indicate spin on a copper site. The
filled circles represent holes. The figure is based on [29]

3.2.3.2 Determination of excess oxygen concentration and the
plcament

For the type of calculations that is presented in chapter 5, it is essential
that we know where the added oxygen is, and how much oxygen there is
in the system. It is easy to measure the oxygen content with relatively
high precision, but quite difficult to determine where the excess oxygen is
located.

There are three ways to determine the amount of interstitial oxygen. One
way is by thermogravimetric analysis and the other is by iodomemetric titra-
tion [16]. When doing thermogravimetric analysis one first has to pulverize
the crystal and then slowly heat it up in a hydrogen reducing atmosphere.
This way the interstitial oxygen will evaporate from the sample leaving only
La2O3, Sr and Cu. The loss in mass is then measured as a function of time
and the concentration of the oxygen can be deduced.

The second method, iodometric titration, one takes a sample and dissolved
in a liquid (preferable an acid) and titrate. a sample is dissolved in a liquid
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and then titrated. The concentration of yxygen can then be determined by
measuring the oxidation state of copper.[16].

Rial et al[10] argue an exact value of y. For a given sample y is determined
by taking a disc of the sample with diameter and thickness 0.6 cm and
0.6 cm, respectively, and mass of around 80 mg. Then the disc is wrapped
in Au foil (of mass 20 mg) and heated op to a 110◦ C for one hour to check if
the sample has been thoroughly dried in vacuum. This showed of weight loss
within the resolution of delta W = ±2µg. After ensuring that the sample
is carefully dried the sample with Au foil is heated up to 550◦ C in flowing
nitrogen gas for 6 hours and then furnace quenched. The final weight loss
was then measured and the corresponding value of y was calculated and
found to be less than 0.0005.

However another value for y was found. Based on the experiments of heating
the different samples to measure weight loss the results indicate that a single
uniform overall electrochemical oxidation is operational up to y = 0.11 and
that no electrochemical side reaction was involved even when samples were
oxidized at 70◦C. Furthermore Hamed et al. [45] argue that the maximum
oxidation state of LCO+O by doping is limited by optimal hole doping
concentration p = 0.16. This is also consistent with the previous reports
that maximum effective hole doping p = 16 is always observed independent
of the material (LSCO+O and LCO+O), oxidation time and techniques
used for oxidation. This is also in agreement what Mohottala et al.[23].
The exact value of y will prove important in the calculations in chapter 5

The location of the interstitial oxygen is determined by neutron diffraction.
Neutron diffraction experiments can determine the atomic and magnetic
structure of various kinds of compound such as crystalline solids, gasses,
liquids or amorphous materials. Neutron diffraction is elastic neutron scat-
tering. The neutrons leaving the experiment sample have around the same
energy as the incoming neutrons. The technique is similar to X-ray diffrac-
tion but the different type of radiation gives complementary information.
The sample is placed in a beam of thermal or cold neutrons, and the inten-
sity of scattered neutrons as function of scattering angle is measured. This
gives information about the structure of the material.

By analyzing the scattering pattern the space group of the crystal can be
determined. The intensity of the scattering depends on which atoms are
scattered. Oxygen does not scatter very much, and is therefore difficult to
see in experiments. This is the primary reason why it is difficult to locate
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the position of the oxygen in crystals.

Rial et al. [10] believes that the extra oxygen sits on site 8e in the Cmce
space-group 64, with is an orthorhombic space-group with b > c > a. In this
case ”8” means, that there are eight symmetry equivalent positions where
the oxygen can be. Note they are not necessarily all occupied. We use
the standard notation Bmab instead of Cmce used in [10]. In the standard
notation we have that c > b > a. In this notation, the symmetry equivalent
positions of the site 8e, according to international tables of crystallography,
are given in table 3.1

x (1/4,-1/4,z) = (1/4,3/4,z)
x (3/4,-3/4,-z+1/2) = (3/4,1/4,-z+1/2)
x (3/4,-3/4,-z) = (3/4, 1/4,1-z)
x (1/4,-1/4,z+1/2) = (1/4,3/4,z+1/2)
x (3/4,-1/4,z+1/2) = (3/4,3/4,z+1/2)
x (1/4,-3/4,-z) =(1/4,1/4,1-z)
x (1/4,-3/4,-z+1/2) = (1/4,1/4,-z+1/2)
x (3/4,-1/4,z) = (3/4,3/4,z)

Table 3.1: Allowable symmetry positions in Bmab notation for site 8e.

It is always allowed to add by one or subtract by one in any coordinates.
This simply correspond to translating into the next unit cell. I have done
this in the right column of table 3.1 to have positive coordinate values. In
this notation z is a free parameter, z can be whatsoever from a symmetry
point of view, but for a specific system, like the one we are looking at, z
has a specific value. In our case z = 0.21[10] or 0.25[45].

Regarding the occupation on each site, i.e., how many percent of the eight
authorized positions there on average are for oxygen. This will be counted
based on the table entry labeled ’Occ’ divided by 2 (as occupation would
be if all 8e sites were fully occupied). It also directly links to the amount of
oxygen one managed to put in the sample. in our case somewhere between
0.08 and 0.12 for a fully oxygenated sample is probably a good estimate, so
let’s say for example/for simplicity Occ 0.1. Thereby we get something
along the line of 0.1

2
= 0.05 i.e. 5 ”%” of the allowed symmetry positions

are occupied[10].



Chapter 4

Mathematical Model

In this chapter we will elaborate on the mathematics and computing tech-
niques needed to do the self- consistent calculations of electron densities.
We will start with the 2D system, then the 3D system. Afterwards we will
put in the excess oxygen as a mean field potential.

4.1 Mathematical Methods for a 2D model

As mentioned earlier in the section on cuprates a lot of essential physics can
be explained by a one band Hubbard model for one plane in the cuprate
crystal. We use the tight-binding approximation to describe the electron
interaction via a Cu-O-Cu bond. In this approximation the free electrons
are restricted to move via oxygen to discrete positions corresponding to
copper sites on a crystal lattice. We simplify our crystal to have a quadratic
structure with a = b.

The Hamiltonian (see section 2.2.2) is written in second quantization, and
in this setup it is given by:

Ĥ =−
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
iσ

(εiσ − µ)n̂iσ

+ U
∑
〈ij〉

n̂i↑n̂i↓ − V
∑
〈ij〉

n̂i↑n̂i↓,
(4.1)

where ĉ†iσ and ĉjσ are the creation and annihilation operators, respectively.
〈ij〉 indicates the summation over nearest-neighbor pairs; we denote the
nearest-neighbor hopping term with t, and the next nearest-neighbor hop-
ping term with t′. εiσ is the impurity potential at site i, and µ is the chemical
potential.
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Figure 4.1: Schematic illustration of the Cu-O-Cu bond. Yellow represents
copper and pink represents oxygen. Right: Crystal structure
of LSCO. The colored represent the important CuO2 layer in
the tight-binding model. Left: Simplified diagram of the CuO2

planes in the tight-binding model. The copper 3dx2−y2 orbital
hybridize with the oxygen 2px,y orbital allowing the electrons to
hop from one copper site to the neighboring copper site trough
interstitial Cu-O-Cu bond.
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We make a mean-field approximation of the Hamiltonian get the following
expression:

Ĥ =−
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
iσ

(εiσ − µ)n̂iσ

+ U
∑
iσ

(ni − σmi)n̂iσ +
∑
〈ij〉

(∆ij ĉi↑ † ĉ†j↓ +H.c).
(4.2)

Here σ is +1 for spin up and −1 for spin down and H.c represents the Hermi-
tian conjugate. The chemical potential is a free parameter we use to adjust
the electron filling. The parameter is adjusted by self-consistency until the
desired density is achieved. The nearest neighbor hopping interaction is set
as a unit of the energy of the system, so that all the other parameters are
given in terms of t. The mean field quantities, which we in this method
guess as the initial value, and then self-consistently solve, are the following:

ni = 〈n̂i↑ + n̂i↓〉, (4.3)

mi = 〈n̂i↑ − n̂i↓〉, (4.4)

∆δi = V 〈ĉi↑ĉi+δ↓〉. (4.5)

It is crucial that we can diagonolize the Hamiltonian in order to continue
with computer calculations, the term needs to be quadratic in the creation
and annihiliation operators. To diagonalize this Hamiltonian we use the
standard diagonalization method called Bogoliubov transformation. The
spin-generalized Bogoliubov equation are given by [3]:

ĉi↑ =
∑
n

(un,i↑γ̂n↑ + v∗n,i↑γ̂
†
n↓), (4.6)

ĉ†i↑ =
∑
n

(u∗n,i↑γ̂
†
n↑ + vn,i↑γ̂n↓), (4.7)

ĉi↓ =
∑
n

(un,i↓γ̂n↓ + v∗n,i↓γ̂
†
n↑), (4.8)

ĉ†i↓ =
∑
n

(u∗n,i↓γ̂
†
n↓ + vn,i↓γ̂n↑). (4.9)

where u and v are eigenvectors. The sum is over all positive energies. The
transformation express the electron creation and annihilation as a linear



52 Mathematical Model

combination of the creation operators γ̂†iσ and the annihilation operators
γ̂iσ for non-interacting Fermionic quasiparticles with positive eigenvalues.
After more mathematical manipulations (see section 2.2.4) we arrive at the
Bogoliubov-de Gennes equations:(

ξ̂↑ ∆̂

∆̂∗ ξ̂↓

)(
un↑
vn↓

)
= ε↑

(
un↑
vn↓

)
(4.10)

for positive egenvalus ε↑ and(
ξ̂↓ −∆̂

−∆̂∗ −ξ̂↑

)(
u∗n↓
v∗n↑

)
= ε↓

(
un↓∗
vn↑∗

)
(4.11)

for eigenvalues ε↓. The operators are defined as follow:

ξ̂σui =
∑
j

tijuj + (εiσ − µ+ U(ni − σmi))ui (4.12)

and

∆̂ui =
∑
δ

∆δiui+δui. (4.13)

There are some symmetries between the equations that can be exploited.
First we have that 〈ĉi↑ĉi+δ↓〉 = 〈ĉi+δ↑ĉi↓〉. In addition, we have that if

(
u
v

)
is the eigenvector to the negative eigenvalues −ε then

(
u∗
v∗

)
must be the

eigenvector for the positive eigenvalues ε. As a consequence, we can simply
look at the matrix with positive eigenvalues:

(
ξ̂↑ ∆̂

∆̂∗ −ξ̂∗↓

)(
un
vn

)
= εn

(
un
vn.

)
(4.14)

The mean field terms n,m, and ∆, depend upon their own eigenvalues and
eigenvectors. They are self-consistent quantities and must be found interac-
tively by guessing an initial value for the parameters, and then diagonolizing
the matrix. The parameter is then computed from the new eigenvalues and
eigenvectors. The process is repeated until the change in the parameter in
each iteration is less than an acceptable tolerance. It would therefore at this
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point be wise to express the quantities n,m, δ in terms of the eigenvalues
and eigenvectors u and v. We begin with the densities n:

ni = 〈n̂i↑ + n̂i↓〉
= 〈ĉ†i↑ĉi↑ + ĉ†i↓ĉi↓〉
= 〈ĉ†i↑ĉi↑〉+ 〈ĉ†i↓ĉi↓〉

(4.15)

and magnetization m:

mi = 〈n̂i↑ − n̂i↓〉
= 〈ĉ†i↑ĉi↑ − ĉ

†
i↓ĉi↓〉

= 〈ĉ†i↑ĉi↑〉 − 〈ĉ
†
i↓ĉi↓〉.

(4.16)

so to get an expresion for both the density n and the magnetization m, we
need to evaluate the term:

〈ĉ†iσ ĉiσ〉 =
∑
n

((un,iσγ̂nσ + v∗n,iσγ̂
†
nσ′)(u

∗
n,iσγ̂

†
nσ + vn,i↑γ̂nσ′))

=
∑
n

(|unσ|2〈γ̂†nσγ̂nσ〉+ |vnσ|2〈γ̂†nσ̄γ̂nσ̄〉)

=
∑
n

(|unσ|2fnσ + |vnσ|2(1− fnσ̄)),

(4.17)

where σ represent the spin ↑ or ↓ and σ′ represent the same spin, but of
different orientation than σ. And

fnσ =
1

e(ε−µ)/kT + 1
(4.18)

is the Fermi-Dirac distribution for particles with eigenvalues given by εnσ.

The superconducting term it:

∆δi = 〈ĉiσ ĉi+δσ′〉

= V
∑
n

(un,ıσvn,i+δσ′〈γ̂nσγ̂†nσ〉+ vn,iσ ∗ un,i+δσ′〈γ̂nσ′ γ̂†nσ′〉)

= V
∑
n

(un,ıσvn,i+δσ′(1− fnσ) + vn,iσ ∗ un,i+δσ′fnσ′).

(4.19)
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The expressions can be further reduced, but I find it to be easier to just
work with them as they are. The reduced terms are given by [43]:

ni = 1− 1

2

∑
n

(|un,i|2 − |vn,i|2) tanh

(
εn

2kbT

)
, (4.20)

mi =
1

2

∑
n

(|un,i|2 − |vn,i|2) tanh

(
εn

2kbT

)
, (4.21)

∆ij =
v

4

∑
n

(un,ivn,j + un,i+jv
∗
n,i) tanh

(
εn

2kbT

)
, (4.22)

where the sums are over all energies.

4.1.1 Guessing parameters

In many cuprates we see different stripe orders, and this can not necessarily
be stabilized self-consistent in the calculations. The tricks one should use
to stabilise stipes is to guess on someting with same periocity. In LSCO we
have stripe with periocity 8, so a good initial guess would be:

nguess ±mguess = 0.5± 0.05 (cos(0.750πx+ 0.375π)) (−1)y. (4.23)

If one wants to stabilize for example, an antiferromagnet one should have an
initial guess that supports this. We do this because a self-consistent solution
usually takes a minimum close to the value one have given as input. If one
gives a bad initial guess, a mimimum value can take a very long time to
achieve and in some cases a minimum is not found at all.

4.1.2 2D Model matrix

The size of the system we calculate is severely limited by computing power.
This means that the lattice size also depends on the type of calculation one
wants calculated. Density calculation in 2D a lattice size of 20× 20 takes a
reasonable amount of time and is large enough to reflect reality. In order to
make a more real life model we use periodic boundary conditions, since in
real life you will not find so small systems. This means that the last lattice
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point in the row will interact with the first lattice point in the row. The
same goes for the columns. In the matrix below the nearest neighbor with
periodic boundary conditions to a1,1 (in blue) are marked with red.

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a2,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n

 (4.24)

The periodic boundary conditions for next-nearest neighbor are:
a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a1,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n.

 (4.25)

We compute the mean field values self consistently by representing the
Hamiltonian in a matrix and then diagonalizing it. m, n and ∆ are cal-
culated, and the new Hamiltonian with these values is diagonalized. This
process is repeated until it converges. To do so, we need to construct our

matrix according to the BdG equation
( ξ̂↑ ∆̂

∆̂ ξ̂↓

)
. Let us first look at the diag-

onal ξ̂, for a lattice of size Nx ×Ny we will have NxNy lattice points. This
will be represented by a matrix of size N2

x ×N2
y for both spin up and spin

down. For this matrix the diagonal represents the lattice points (in this case
the Cu atoms) from 1 to NxNy. If one wishes to have a square matrix one
must make sure that Nx = Ny. A square matrix will be symmetrical about
the diagonal, this is because, in this model, if a lattice point (n,m) can
interact with another lattice point (n′,m′) then (n′,m′) can also interact
with (n,m). Note however, the spins are named from 1 to Nx × Ny, and
the entry number (n,m) denotes the interaction between the spin number
n and m. The matrix then becomes:

ξ̂σ =


Cu1σ tCu1,Cu2 tCu1,Cu3 · · · tCu1,CuNxNy

tCu2,Cu1 Cu2σ tCu2,Cu3 · · · tCu2,CuNxNy

tCu3,Cu1 tCu3,Cu2 Cu3σ · · · tCu3,CuNxNy

...
...

...
. . .

...
tCuNy ,Cu1 tCuNy ,Cu2 · · · · · · CuNxNyσ

 (4.26)
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Again σ represent the spins ↑, ↓. All interactions will be zero except the
nearest and next-nearest neighbor. The location of the nearest neigh-
bor interaction tij in the matrix ξ̂ for the lattice cite CuNx+n where n ∈
0, · · · , N2

xN
2
y is given in the matrix by eq. 4.27

Where tCuNx+n,CuNx+n−1
reprecent the interaction from CuNx+n to CuNx+n−1

and so on. The location the next-nearest nighbor interaction in the matrix
ξ̂ is given by eq. 4.28.

Where tCuNx+n,CuNx+n−Nx−1
represent the interaction from

CuNx+n to CuNx+n−Nx−1. You can in principle make any of the lattice point
interact, and not necessarily in a symmetrical manner, if you felt the need
to. The superconducting order parameter has a dx2−y2 symmetry which
means that the sign of the interaction will be different between the x and
the y directions. When we include the superconductivity parameter in the
matrix describing H, which also has the nearest neighbor interaction (as
shown in the matrix above) the full matrix becomes the following eq. 4.29

Where all interactions will be zero except for the t corresponding to nearest
and next nearest neighbor and the ∆ corresponding to nearest neighbor. Be-
cause of the symmetry between the eigenvalues we do not need to construct
the matrix corresponding to the negative eigenvalues.

4.2 Mathematical Methods for 3D Model

The treatment of the 3D model follows the same outline as the 2D model.
The interaction is still between the Cu-O-Cu bonds but now they can also
interact in the c direction. In reality LSCO,LCO+O and LSCO+O get
a more complicated structure because the layers are not symmetric but
have at orthorhombic/tetragonal space group. We compensate for this by
regulating the hopping term between the layers. In our case this means that
it is smaller than the hopping in the layers. We simplify our crystal to have
this structure fig. 4.2
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Figure 4.2: Schematic illustration of the Cu-O-Cu bond in 3D. Yellow
represents copper and pink represents oxygen. Right: Crys-
tal structure of LSCO. The colored represent the important
CuO2 layer in the tight-binding model. Left: Simplified di-
agram of the CuO2 planes in the tight-binding model. The
copper 3dx2−y2 orbital hybridize with the oxygen 2px,y orbital
allowing the electrons to hop from one copper site to the neigh-
boring copper site trough interstitial Cu-O-Cu bond.
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The Hamiltonian for this model is given by:

Ĥ =−
∑
ijσ

tij ĉ
†
ikσ ĉjσ +

∑
iσ

(εiσ − µ)n̂iσ

+ U
∑
i

n̂i↑n̂i↓ − V
∑
〈ij〉

n̂i↑n̂i↓
(4.30)

Where tij stand for nearest neighbor t next-nearest neighbor t′ and near-
est interlayer neighbor t⊥. Exactly as in the case of a single layer, the
three-dimensional Hamilton must be quadratic in creation and annihilation
operators. By using the mean field theory, we get the following:

Ĥ =−
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
iσ

(εiσ − µ)n̂iσ

+ U
∑
iσ

(ni − σmi)n̂iσ +
∑
ij

(∆ij ĉ
†
i↑ĉ
†
j↓ +H.c)

(4.31)

The Hamiltonian can be diagonalized as in the section for the 2D case.

4.2.1 The 3D matrix

The model is built up of several layers to represent a 3 dimensional crystal,
wher all the layers of the model are built in the same way.

There are periodic boundary interaction between the layers, so that the first
layer interacts with the last layer. The rest of the interactions are as in the
2D case. The full 3D matrix becomes:

H3D
k =



H1 C1 0 · · · 0 0

C1 H2 C2
. . . 0 0

0 C2 H3
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . . . . Ck

0 0 0 · · · Ck Hk


(4.32)
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The elements in the matrix are given by the matrices:

Hl =

(
ξ̂l↑ ∆̂l

∆̂l∗ ξ̂l↓

)
, (4.33)

where l ∈ 1, · · · , k, and k is the number af layers in the 3D Hamiltonian-
Matrix H3D

k . Hl is equal to the matrix H from the 2D case.

Cl =

(
ĉl↑ 0
0 ĉl↓

)
(4.34)

Cl is the coupling matrix, that couples the layers in the 3D model. Again
l ∈ 1, · · · , k, and k is the number of layers in the 3D Hamiltonian-Matrix
H3D
k . The element ĉlσ is also a matrix given by:

ĉl↑ =


t⊥1,1 0 · · · 0

0 t⊥2,2 · · · 0
...

...
. . .

...
0 0 · · · t⊥n

 (4.35)

and

ĉl↓ =


−t⊥1,1 0 · · · 0

0 −t⊥2,2 · · · 0
...

...
. . .

...
0 0 · · · −t⊥n.

 (4.36)

Where n = NxNy and ĉl↑ and ĉl↓ describes the coupling between the layers
of spin up and down, respectively. Cl describes the coupling between layers
in the B-dG formalism. The last element 0 is the null-matrix, where all
elements are zero.

0 =

(
0̂ 0̂

0̂ 0̂

)
(4.37)

Note The dimensionality of the matrices: We have that Dim[0] = Dim[Hl] =
Dim[Cl] and Dim[0̂] = Dim[ĉlσ] = Dim[ξ̂lσ] = Dim[∆̂l]. Furthermore, we
have that the matrix must satisfy U∗HU = D, where D is a diaginal
matrix.
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4.3 The excess oxygen

We cannot put the oxygen in directly, since it exists between the lattice sites,
but we can however make up for it by adding a potential, corresponding to
the effect of the oxygen, to every site. We do this by imagining a coordinate-
system at the bottom of our 3D lattice. In this coordinate system we define
the position of the extra oxygen Ro = Xo, Yo, Zo, where we can freely change
the position and occupancy of the oxygen. The potential as a function of
the position of the lattice is then given by (see section 2.2.1) :

Ŵ (r) = α
exp(κ(r −Ro))

|r −Ro|
). (4.38)

This is the Coulomb interaction with screening. The position Ro and the
occupancy of the oxygen is chosen according to experiments and literature.
The parameters α (referred to section 2.2.1 in as Q) and κ are are adjustable
parameters, meaning that you can play around with them. There is to the
best of my knowledge still no good estimates of these parameters in the
literature. The Hamiltonian is given by (2.75) and (2.76) in section 2.2.5.

In the calculation, the oxygen mean-field potential will be represented by
the same site in the matrices as the chemical potential µ. The presence
of the oxygen in the staging will induce a potential that will effectively
repel all electrons from the sites, and we will see a suppression of the d-
wave order. So we should choose the sign so that they are opposite of
the hopping-parameter for nearest-neighbor and has the same sign as the
hopping- parameter for next nearest neighbor.

We know that there are tight-binding effect between the extra oxygen and
the Cu sites in the crystal, but we do not take it into account in this model.

If we now for example look at a lattice, containing 10 unit-cells1 in one
direction, 4 in the second direction and 2 in the third direction, we will
have 10 × 4 × 2 × 8 = 640 symmetry allowed positions. The oxygen can
sit in 1 − 5% of 640 allowed positions, so for 5 percent there will be 32
interstitial oxygen atoms in such a unit cell. We may place them as we
wish, as long as they sit on one of the allowable coordinates in a unit cell,
and provides the correct periodicity of 10 along a (= 5.38 Å), 4 along the

1Note, there is 8 lattice points in one unit cell
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b (= 5.40 Å) and 2 along the c (= 13.20 Å). One can choose the positions
one think support the stripes in the system.



Chapter 5

Numerical Results

In this chapter we present the results and calculations. The chapter is
structured such that we first look at a one layer system then a two layer
system and finally a multi-layer system. Within these three sections we will
examine the stripe order and further the effetct the intermediate oxygen
has on this order

5.1 2D model

If we are to have any hope of calculating and understanding the conse-
quences of a multilayer system with superconductivity, intermediate oxygen
and stripe order, we must first make ourselves familiar with a one layer sys-
tem. In this section we will look at numerical calculations for a one CuO2

layer for both a homogeneous and striped system. We will also include
calculations with the oxygen mean-field potential. All parameters in this
chapter are normalized to hopping terms t.

5.1.1 Homogeneous system

We will first look at the homogeneous case without superconductivity ∆ =
0 and no excess oxygen y = 0, with a doping of both x = 0.125 and
x = 0.0. The next nearest neighbor hopping terms we put to t

′
= −0.2t

and the Coulomb term to U = 0t. We investigate these cases because they
can be indicators and provide guidelines for future guesses of normalized
parameters such as U, V, and the parameters from the intermediate oxygen
potential α and κ. In both cases of x = 0.0 and x = 0.125 we get a density
which is identical for all sites in spin up and spin down. All the densities
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Figure 5.1: DOS for a homogeneous system with no doping x = 0.0, the
Coulomb term is U = 0 and different hopping terms t

′
. Blue

represent t
′

= 0.0t, black represent t
′

= 0.1t, yellow represent
t
′

= 0.2t and red represent t
′

= 0.3t. The Computed for a
16× 16 system.

from each site satisfies the following ni↑ + ni↓ = 1 − x and ni↑ = ni↓. In
the case without doping x = 0.0, we get an electron density of niσ = 0.5t
for both spin up and down, corresponding to a half-filled system. In the
case of doping x = 0.125, we get niσ = 0.448t. In the following calculations
we will always (unless otherwise stated) have doping x = 0.125 as it is well
established that this particular doping supports stripes and for comparison
we keep it even in the homogeneous cases. We will also keep the temperature
at TkB = 0.01t unless otherwise stated. We have plotted the density of state
for the two homogeneous cases for future comparison. The density of states
for both cases are given in fig. 5.2 and fig. 5.1. The density og states (DOS)
is defined as:

DOS =
1

2

∑
inσ

(
|un,iσ|2δ(E − εnσ) + |vn,iσ|2δ(E + εnσ)

)
, (5.1)

where δ(x) is the Dirac-Delta function.

If we adjust the next nearest neighbor term to t
′
= −0.0t,−0.1t,−0.2t,−0.3t

in a system of size 16× 16 (see fig. 5.1), we see a Van Hove peak in E = 0
∼eV in the Dos plot fig. 5.1 for t

′
= 0.0t(blue) corresponding to critical a

points in the Brillouin zone. The smaller peaks that occur in all the cases
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Figure 5.2: DOS for a homogeneous system with a doping at x = 0.125,
the Coulomb term at U = 0 and the hopping term t

′
= 0.2t.

Computed for a 16× 16 system.

of t
′

are the peak corresponding to the distance Ut/16× 16. In the follow-
ing calculations we will stick to t

′
= 0.2 (unless otherwise specified) as it

supports stripes and is consistent with previous calculations on the subject.

The homogeneous system will serve as the backbone of the model from where
we expand by including superconductivity, intermediate oxygen potential
WRo(r), z-axis and stripe order.

5.1.2 Striped system

We now want to extend our system to include stripes, this is done by
guessing on a striped density. The guess used in this thesis is nguess =
0.5 ± 0.05 (cos(0.750πx+ 0.375π)) (−1)y where the minus sign correspond
to spin up and the plus sign correspond to spin down. When the obtained
striped densities are calculated self-consistently, we interpret them as fol-
lows: The spin lengths are given by the difference of the densities niσ, and
the orientations are given by the sign of the difference where positive cor-
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responds to spin up ↑ and negative corresponds to spin down ↓:

ms
i = ni↑ − ni↓. (5.2)

The arrow-heads represent the one minus the sum of the densities 1− (ni↑+
ni↓) for spin up ↑ and down ↓:

nsi = 1− (ni↑ + ni↓). (5.3)

The reason we subtract by 1 is that the overall average of density for the
system is 1 and we want to find the holes of the system. The length and
size of the strips should be interpreted relative to one another.

In the case of a striped system without the superconducting term ∆ and no
excess oxygen y = 0 with a doping x = 0.125 and the Coulomb term at U =
4t we get the following striped system (see fig. 5.5). We see that the stripes
have a periodicity of 8 and that they lie antiferromagnetic which is in line
with [29]. The system also stabilizes for U = 3.4t to U = 8t. Presumably
also higher, but this has not been tested in this system. The electron
densities are plotted as a square matrix with lengths that correspond to the
system size of 16 × 16 in 5.3. Dos in the case of U = 4t and t

′
= 0.2t is

given in fig. 5.4. The first 16 sites of fig. 5.3 are plotted as a cartoon plot
in fig.5.5.

In the density plots we see an obvious stripe pattern corresponding to rel-
atively high and low densities ni. In the right plot of the figure we see
the magnetization mi for the striped system. The magnetization has a
checkered-like pattern corresponding to the changing sign.

The plots of the striped cases will be used later, for a comparison on a more
complex system

5.1.3 Striped superconducting system

We now expand the system to include the superconducting phase ∆ as
explained in Chapter 4. We will omit the results for the homogeneous case
as it has been done many times before and we do not intend to use it for
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Figure 5.3: Density and magnetization for a striped system with a doping
at x = 0.125 and the Coulomb term at U = 4t.Left corre-
sponds to the density and right corresponds to the magnetiza-
tion. Computed for a 16× 16 system.
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Figure 5.4: DOS for a striped system with a doping at x = 0.125 and the
Coulomb term at U = 4t. The energy scale corresponds to the
Fermi level. Computed for a 16× 16 system.

Figure 5.5: The stripe order for a system with doping x = 0.125 and the
Coulomb term at U = 4t. The figure shows the stripe order
for the first 16 sites Computed for a 16× 16 system.
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Figure 5.6: DOS for a system with doping x = 0.125 and the Coulomb
term at U = 4t, ∆x = 0.243485t, ∆y = −0.243485t and V =
1t. t

′
= 0.0 Computed for a 16× 16 system.

comparison with the other results in this chapter. However, we will look at
the parameters needed to stabilize the stripes order.

To stabilize a stripe order in a superconducting phase it will prove necessary
to guess a small value for ∆ in the order of ∼0.01t. In self-consistent calcu-
lations, the homogeneous order usually wins if it becomes too dominant in
magnitude. We will see this in some of the calculations below. If we guess
a homogeneous ∆ in the order of ∼0.2t with striped 8 period density n we
get a homogeneous system. For comparison with the homogeneous system
from above fig. 5.2,fig. 5.1 and the striped system fig. 5.4, DOS for a su-
perconducting system where ∆ is homogeneous of the order ∼0.2t. is given
in 5.6 and 5.7. We see that the system looks more like the homogeneous
case than the striped case because the high value of ∆ has destroyed the
stripes.

5.1.4 Striped system with excess oxygen

To include the potential from the intermediate oxygen Wro(r), we will furter
expand the system as explained in Chapter 4. The first step in this calcu-
lation is to find the appropriate values for the parameters of the potential.
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Figure 5.7: DOS for a system with doping x = 0.125 and the Coulomb
term at U = 4t, ∆x = 0.243485t, ∆y = −0.243485t and V =
1t. t

′
= 0.2t. Computed for a 16× 16 system.

To my knowledge there is no documented normalized value for the mean-
field potential from the intermediate oxygen, so we will have to make an
educated guess. n this subsection, we will calculate two general scenarios,
one with a relatively low potential (first case) and one with a relatively high
potential (second case).

Let us start with the first case, a relatively low potential. In this model, all
parameters are normalized to hopping between nearest neighbor parameter
t. Furthermore, we have have calculated that a uniform system without
doping will stabilize a density of both spin up and spin down to niσ = 0.5
equal to half filled system. We have also calculated that in a striped system
the densities vary from ≈ 0.2t−0.7t. So we do not want our potential values
to exceed WRo(r) > 0.3t since that would result in an over-filled. But at
the same time the potential should not be too low since we want to obtain
a homogeneous system with appropriate doping and excess oxygen to vary
in density as a stripes system. How quickly the potential decreases as a
function of the distance to the excess oxygen is still a matter of guessing.
We guess κ = 0.4t and α = 0.1t for potential given by:

WRo(r) = α
exp(κ(Ro − r))
|Ro − r|

, (5.4)
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Figure 5.8: Contour plot of the effect of the mean field potential WRo(r)
in the xy- plane from one oxygen placed between site 1 and 2
in both the x, y, z direction in a lattice of size 8×8. Dark pur-
ple/blue corresponds to a value of 0.01 and white correspond
to a value of size 0.18

where Ro is the position of the oxygen. For these guessed parameters we
get the right order of magnitude ∼0.2t. For illustration, a plot of the effect
in the xy- plane of the potential WRo(r) from one oxygen placed between
site 1 and 2 in both the x, y, z direction of an 8 × 8 and a 16 × 16 lattice
are given in fig. 5.8 and fig. 5.9. The figures illustrate, a matrix plot of a
square lattice where the first site (1, 1) starts in the left corner.

The first step on the agenda is to examine whether the added potential
WRo(r) can stabilize stripes on its own. If we guess a homogeneous density
where the only non-homogeneous element is the mean-field potential from
the intermediate oxygen WRo(r) and try to solve the system self-consistently
we neither get a homogeneous densities or striped densities. We have learned
after many various attempts that the system has difficulty stabilizing under
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Figure 5.9: Contour plot of the effect of the mean field potential WRo(r) in
the xy- plane from one oxygen placed between site 1 and 2 in
both the x, y, z direction in a lattice of size 16×16. Dark pur-
ple/blue corresponds to a value of 0.01 and white correspond
to a value of size 0.18
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Figure 5.10: Striped system with a mean field potential from one oxygen
placed between site 1 and 2 in both the x, y, z direction. Cal-
culated for a system of size 8× 8. The figure shows the first
16 sites in the case of additional oxygen.

Figure 5.11: Striped system with a mean field potential from one oxygen
placed between site 1 and 2 in both the x, y, z direction. Cal-
culated for a system of size 16 × 16. The figure shows the
first 32 sites in the case of additional oxygen.

these conditions. If, on the other hand, we do as we have done before and
guess a striped system , we can stabilize neat 8 period stripes 5.10 and 5.11.
The figures show how the stripes stabilize in the case of a 8× 8 matrix and
a 16 × 16 matrix. In both cases we see that the spins settles antiparallel
from row to row and that the oxygen does not destroy the strips. The DOS
of the 16 × 16 system is given in 5.12. If we compare the DOS and with
that from the striped system, we see that they are very similar.

In the case of two additional oxygen in a 16×16 system located respectively
between (x, y) = (1, 4) , (x, y) = (2, 5) and (x, y) = (10, 4) , (x, y) = (11, 5)
the effect of the potential WRo(r) projected to the xy plan is given in 5.13.
The stabilized 8 period stripes are given in 5.15. They stabilize, with the
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Figure 5.12: DOS for a striped system without a superconducting phase
with a mean field potential from one oxygen placed between
site 1 and 2 in both the x, y, z. Calculated for a system of
size 16× 16.

same pattern as in the case of one and no intermediate oxygen. The DOS
5.16 is similar to a striped system without a mean field potential from an
intermediate oxygen.

We see that in the first case the potential supports the stripes, and we
experience that we can easily stabilize a stripe order in the densities. By
comparing fig. 5.14 and fig. 5.3 we see nevertheless a breakage in the
structure from the case without the potential WRo(r) = 0 to the case of
with the potential WRo(r). In the case with the potential WRo(r) we see
circle areas within the stripes that have higher value than the rest of the
strip-band. These areas, however, seem to be homogeneously distributed.
We also see a difference in the magnetization pattern however there is still
a structure in this pattern.

In the second case, a relatively high potential, we want a maximum potential
value corresponding to an overfilled system. In other words, will want the
highest value from the potential WRo(r) exceeding 1t. I order to compare
the two cases, we keep the parameter κ = 0.4t identical and guess on an
α = 0.7t see fig. 5.17.

In this case the stripes are less visible and the overall pattern of the densities
are not systematic as in the previous cases. A density plot i shown in fig.
5.18 and a cartoon plot of the first and last 16 sites are given in fig. 5.19.
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Figure 5.13: Contour plot of the effect of the mean field potential from two
oxygen, one placed between site 1 and 2 in both the x, y, z
direction and the other placed between site 1 and 2 in the x
z direction, and 4 and 5 in the y direction. The lattice is of
size 16× 16. Dark purple/blue corresponds to a value of 0.0
and white correspond to a value of size 0.2
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Figure 5.14: Density and magnetization for a striped system with a dop-
ing at x = 0.125 ,the Coulomb term at U = 4t mean field
potential from two oxygen, one placed between site 1 and 2
in both the x, y, z direction and the other placed between site
1 and 2 in the x z direction, and 4 and 5 in the y direction
.Left corresponds to the density and right corresponds to the
magnetization. Computed for a 16× 16 system.

Figure 5.15: Striped system with mean field potential from two oxygen,
one placed between site 1 and 2 in both the x, y, z direction
and the other placed between site 1 and 2 in the x z direction,
and 4 and 5 in the y direction. The lattice is of size 16× 16.
The figure shows the first 32 sites in the case of additional
oxygen without a superconducting phase.
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Figure 5.16: DOS for a striped system without a superconducting phase
mean field potential from two oxygen, one placed between site
1 and 2 in both the x, y, z direction and the other placed
between site 1 and 2 in the x z direction, and 4 and 5 in the
y direction. The lattice is of size 16× 16.

The system seems to have much more difficulty stabilizing. The attempt to
stabilize a stripe and a metallic area within the plane has not been proven
possible in this scenario. It cannot be excluded that it is possible under
other assumptions. However, we do see the effect of the potential pushing
the electrons away. The area in the plot with low densities (left corner)
correspond to the location of the potential from the oxygen fig. 5.17.

5.2 Two layers

In this section we will make a non physical system consisting of two layers.
The purpose is to examine how the layers can affect each other in the 3D
model. This is relevant because in a system of intermediate oxygen in
modulated positions, the mean-field potential affects the layers different.
We will also examine whether we see stripe modulations in the c-direction
with only two layers.
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Figure 5.17: Contour plot of the effect of the mean field potential from two
oxygen, one placed between site 1 and 2 in both the x, y, z
direction and the other placed between site 1 and 2 in the x
z direction, and 4 and 5 in the y direction. The lattice is of
size 16× 16. Dark purple/blue corresponds to a value of 0.0
and white correspond to a value of size 1.2
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Figure 5.18: Density and magnetization for a striped system with a dop-
ing at x = 0.125 ,the Coulomb term at U = 4t mean field
potential from two oxygen, one placed between site 1 and 2
in both the x, y, z direction and the other placed between site
1 and 2 in the x z direction, and 4 and 5 in the y direction
.Left corresponds to the density and right corresponds to the
magnetization. Computed for a 16× 16 system.

Figure 5.19: Striped system with mean field potential from two oxygen,
one placed between site 1 and 2 in both the x, y, z direction
and the other placed between site 1 and 2 in the x z direction,
and 4 and 5 in the y direction. The lattice is of size 16× 16.
The figure shows the first and last 16 sites in the case of
additional oxygen without a superconducting phase.
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Figure 5.20: DOS for a two layer system. The first layer (red) is a
striped system with Coulomb term U = 4t and doping x =
0.125. The second layer (blue) is a homogeneous system with
Coulomb term U = 0, and doping x = 0.125. The calcula-
tions are for a system of 16 × 16 and with the next nearest
neighbor term t

′
= −0.2t and t⊥ = −0.1t. The two-layer

system stabilizes to two homogeneous layers but with the dif-
ferent densities.

5.2.1 Mirroring

An interesting question is whether the layers mirror each other, and if so,
for which parameter value? The important parameters in mirrorring calcu-
lations are the hopping interaction parameter in between layers t⊥ and the
Coulomb term U . We will test the mirroring of the two layered system for
different parameters.

In the case of U1 = 4t and a striped density corresponding to the first
layer, and U2 = 0 and a homogeneous density corresponding to the second
layer and a hopping between the layers t⊥ = 0.1t we se that the stripes are
destroyed and the two layered system becomes homogeneous (see fig 5.20).
The same happens for U1 = 5t, U1 = 6t and U1 = 7t. For U1 = 8t the
two layered system does not want too stabilize, where for the same layers
but uncoupled they stabilize easily. DOS is shown for the case U1 = 5t
in 5.21, but not for the case U1 = 6t and U1 = 7t as the illustrations
are almost identical. The magnitude of the densities in this case are as in
the homogeneous case with the same doping, however the DOS shows a
superconducting gap at E = 0eV .
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Figure 5.21: DOS for a two layer system. The first layer (red) is a
striped system with Coulomb term U = 5t and doping x =
0.125. The second layer (blue) is a homogeneous system with
Coulomb term U = 0, and doping x = 0.125. The calcula-
tions are for a system of 16 × 16 and with the next nearest
neighbor term t

′
= −0.2t and t⊥ = −0.1t. The two-layer

system stabilizes to two homogeneous layers but with the dif-
ferent densities.
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It is not a good sign that we are not able to find parameters for which it
is possible to couple a metallic system with a striped system and keep the
stripes. However it does not mean that it is not possible with at mean field
potential to pine the stripes in one layer. We will examine this later in this
chapter.

5.2.2 Modulation of stripes in the z-direction

We have just established from the calculations above, that a metallic system
coupled to a striped system kills the stripes and provides two metallic layers.
We want then to investigate the effect of two coupled striped systems. Will
they be identical copies of each other, or can they lie anti-parallel?

In fig. 5.22 we see stable stripes in a two layer system. In addition to be
antiparallel from row to row, we also see the the spins are antiparallel from
one layer to the other. The z-axis does not destroy the stripes but ensure
that the planes are mirrored. The density plot of the two-layered system
is as in the case of the one layed system fig. 5.3. In the two layered case
we see an identical DOS for the two layers (see fig. 5.23), which also is very
similar to the one layer case (see fig. 5.4). We see that a coupled two-layer
system does not change much from a one-layer system, however the most
interesting aspect of this calculation is that the layers can ”figure out” how
to lie antiparallel. This is illustrated in cartoon plot fig. 5.22.

5.2.3 Stripes with intermediate oxygen

We will now expand the two-layer system to include the oxygen potential.
We want to examine whether the potential can help keep the modulations
in z-direction. To do so, we look at the case of two layers with a mean-field
potential from the intermediate oxygen that affects the layers differently (see
fig. 5.24). In this particular case, where the parameters for the potential are
given by κ = 0.4t and α = 0.1t, we see mirroring of the layers. The two-layer
system maintains the order of the stripes but the magnetude is the same for
the two layers. In figure 5.24, we see how the potential of the intermediate
oxygen affects the two layers. The stripes (illustrated in cartoon plot) in a
coupled and uncoupled system are shown in the figures 5.25 and 5.26. All



5.2 Two layers 85

Figure 5.22: The stripe order for a two layered system with doping at x =
0.125 and the Coulomb term at U = 4t. The length and size
of the stripes should be understood relative to each other.
Computed for a 16× 16 system.

Figure 5.23: The DOS for a striped two layered system with doping at
x = 0.125 and the Coulomb term at U = 4t. The first layer
is red the second layer is blue. Computed for a 16×16 system.
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Figure 5.24: Contour plot of the effect of the mean field potential from
intermediate oxygen placed with a periodicity of 4 in the y
direction. Left correspond to the first layer and right side
corresponds to the second layer. The lattices are of size 16×
16. Dark purple/blue corresponds to a value of 0.01 and white
correspond to a value of size 0.18

calculations in the section is for Coulomb term U = 5t, and doping x = 0.125
and with the next nearest neighbor term t

′
= −0.2t and t⊥ = −0.1t.

We see a big difference from the coupled to the uncoupled system. As soon
as we link the layers they mirror each other. Unfortunately, this shows
that this model is unlikely to find modulations in the z-direction. We have,
however, not tried all possible combinations for the positions of the oxygen
or possibilities for the parameters in the potential WRo(r), so we can not
completely exclude the possibility that we can pin stripes in one layer while
having another metallic layer. The specific difference in magnitude is given
in table 5.1. The pattern of the spin orientation is the same through the
sites, but the size of nsi and ms

i changes slightly.
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Figure 5.25: The stripe order for a two layered coupled system with doping
at x = 0.125 , the Coulomb term at U = 4 and a mean field
potential from intermediate oxygen placed with a periodicity
of 4 in the y direction. The first 16 sites from above corre-
sponds to the first layer and the next 16 sites correspond to
the second layer. The length and size of the stripes should be
understood relative to each other. Computed for a 16 × 16
system.

Figure 5.26: The stripe order for a two non-coupled layers with doping at
x = 0.125 , the Coulomb term at U = 4 and a mean field
potential from intermediate oxygen placed with a periodicity
of 4 in the y direction. The first 8 sites from above corre-
sponds to the first layer and the next 8 sites correspond to
the second layer. The length and size of the stripes should be
understood relative to each other. Computed for a 16 × 16
system.
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5.3 3D model

In this section, we will look at a three-dimensional system where the inter-
action between electrons are strong in the xy - plane weak in the z-direction.
We will examine the case where the chemical potential µ can be different
from layer to layer and examine how the stripes behave in a multi- layered
system. Finally, we will examine the case with a mean-field potential from
the intermediate oxygen. The multi-layer system is constructed as described
in Chapter 4.

5.3.1 Different µ

In this subsection, we will examine a multi-layer system with different chem-
ical potential µ from layer to layer. This is done by letting each layer (which
is coupled to each other) be solved self-consistently under the premise that
the overall average density per layer should be (1 − x). Under these as-
sumptions, µ can stabilize for each layer without necessarily having the
same value. This could have been interesting in regard to deMello [15].

However, the results from this experiment are quite tedious. If we guess
on the same µ in a simple system where the layers do not vary we silply
stabilize a µ with the same value for every layer. In case of a more complex
system (different layers or too many layers) we see a different µ assigned to
each layer, but the system does not want to stabilize.

5.3.2 Stripes

When we include the z-axis in the calculations the stripes are less visible.
The stripes of the multiple layer system are in an anti-ferromagnetic order,
and has no period of 8 as in the single layer system. The multi-layer system
is more difficult to stabilize than the single layer system. Only with a
coulomb term U = 5t could the system stabilize. For comparison, the
stripes in a single layer system stabilizes at U = 3.2t.

In the following table 5.2 nsi and ms
i are noted for respectively one layer,

two layers and five layers. The table shows the magnitude of nsi and ms
i for
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Figure 5.27: The stripe order for a multiple-layered system with doping
at x = 0.125 and the Coulomb term at U = 5t and hopping
between layers are t⊥ = 0.05t. The length and size of the
stripes should be understood relative to each other. Computed
for a 8× 8 system.

a striped system where the Coulomb term is U = 5 and the hopping terms
are t′ = 0.2t and t⊥ = 0.05t.

5.3.3 The ecsess oxygen

It does n ot appear that we can stabilize stripes in a three dimensional sys-
tem with intermediate oxygen. By putting a mean-field potential that is dif-
ferent from layer to layer, it seems that solving the system self-consistently
results in a homogeneous configuration. I have not tried all permitted com-
binations for the position of the intermediate oxygen.
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Figure 5.28: DOS for the first layer of a striped multiple layered system
with doping at x = 0.125 and the Coulomb term at U = 5t.
All DOS for the different layers are identical. Computed for
a 8× 8 system.



Chapter 6

Conclusion

In general, in the model I find that the homogeneous order usually wins.
This means that if there is a dominant homogeneous element such as ∆ or
ni, the system will stabilize homogeneously. Furthermore we also experience
that the system is very sensitive in z- direction, which means that if there
are modulations both in the plane and along the z axis they are of low
magnitude compared with a 2D computations. For a two layered system
with different Hamiltonian we experience mirroring. Take, for example, a
coupled system with one homogeneous layer with a Coulomb term at U1 = 0
and another striped layer with U2 = 4t coupled with intermediate hopping
term t⊥ = 0.05− 0.1. In this case, among many others, we see that the two
layers become homogeneous. The stripes are thus destroyed if we couple it
to a homogeneous system whereas both layers with no intermediate hopping
term stabilizes rapidly. The homogeneous layer stabilizes to a homogeneous
system with an electron density that adapts the doping and the striped
layers stabilize with period 8. The same homogeneous behavior happens
for U = 5, U = 6 and U = 7. For U = 8 the system do not stabilized
within a reasonable amount of iterations. This of course can cause problems
for a system of intermediate oxygen that has modulations in z-axis. The
intermediate oxygen is presumably in every other unit cell which in this
model means on every fourth layer.

For a two layered striped system we see 8 period stripes that settles antipar-
allel in the layers. As expected, the layers have the same DOS. This model
appears to work well with similar layers through the z-axis, but however
the stripes are more difficult to see the more layers there are.

For a one layered system without a superconducting phase with intermediate
oxygen the system do not stabilise within a reasonable number of iteration.
This has not been tested for all possible values of κ and α and the position
of the oxygen Ro. However the intermediate oxygen supports the stripes
in the calculation for various positions and amounts. We did not succeed
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in stabilization of a mixed plane with both striped and metallic areas by
using the potential from excess oxygen. We do not want to exclude the
possibility of this under different assumptions. For a two layered system
with intermediate oxygen we see that the potential from the oxygen support
the stripes, however the layers become mirror images of each other as we so
in the other cases.

In the case of a multi layered system with intermediate oxygen the system
becomes homogeneous or simply do not want to stabilize. There are many
things that can go wrong in this calculation. First, researchers do not
agree on the location of the oxygen. Even if one of the groups were correct
location, there are still too many symmetry allowed positions. Second, the
amount of oxygen is not something researchers can agree on either. Thirdly,
we have not incorporated the tight-binding between the added intermediate
oxygen and Cu atoms. The parameters that control the mean field potential
are guessed. How they are to be normalized to the system is not fully known.
Fifthly see the system does not seem to cope with major changes in the
different layers. To me knowledge there is no experimental evidence of the
universality of the excess oxygen in LCO+O and LSCO+O. The doping with
oxygen is not controlled in the same way as Sr doping since it is done with
electrolyze. We have no way of knowing if the amount of oxygen is specific
to given sample, with probability is the case. The question is then how much
does it differ from sample to sample? The same problem occurs regarding
the position of the oxygen. Assuming that different samples prepared the
same way shows the same permitted positions in the compound, do we really
know if they will places themselves in the exact same positions. It would
be relevant to know if the variation in the samples will result in different
results in the theoretical results.

I do not think that the method used in this thesis can be used to evaluate
whether or not the guessed oxygen position are correct since there are too
many unknown parameters. So even if the guessed position where to be
right ones, the other parameters as the amount or the potential could be
the reason for non-stable or homogeneous solution.

I suggest a brute force approach like reverse Monte Carlo for finding a local
stabile minimum and use that solution for regulating the potential. With
less unknowns the method in this theses could perhaps be used to stabilize
stripes.

Regarding the case of Tc = TN , which is a consequence of the intermediate
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oxygen, the method used in the theses do not seem to be able to reproduce
the same result. We cannot calculate the ordering temperature dependence
directly but we can look at the quantities ∆ amd M and see if they order
similarly. However considering the models tendency to mirror along the z
axis the physics in 3 dimensional case might not be that interesting. Perhaps
some interesting result can appear from studying the 2 dimensional case this
is unfortunately a future project.
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Appendix A

Appendix

A.1 Mathematica code

Examples of the mathematica code.

A.1.1 Multiple layers



Nx = 16;

Ny = 16;

t = -1.0;

tt = 0.2;

tperp = 0.05;

x = 0.0;

U1 = 0.0;

U2 = U1;

U3 = U1;

U4 = U1;

U5 = 4;

mu = 1.0;

mu1 = mu;

mu2 = mu;

mu3 = mu;

mu4 = mu;

mu5 = mu;

kT = 0.01;

null = Flatten@Table@0.0, 8Nx * Ny<DD;

fermi@Ω_D := 1.0 � H1.0 + Exp@HΩL � kTDL;

eta = 0.10;

wsteps = 512;

dwdos = 0.05;

dw = 5.0 � wsteps;

spectral@x_D := eta � Pi � Hx^2 + eta^2L;

H*the spectral funktion, the Im part of the Greens'

s function.For the homogeneous part of Hamilton *L
H*delta=0.5;*L
nup1 = Flatten@Table@0.5, 8iy, 1, Ny<, 8ix, 1, Nx<DD;H*Flatten@

Table@0.5-0.05*Cos@0.750*Pi*ix+0.375*PiD*H-1L^HiyL,8iy,1,Ny<,8ix,1,Nx<DD;*L
nup2 = Flatten@Table@0.5, 8iy, 1, Ny<, 8ix, 1, Nx<DD;H*Flatten@

Table@0.5-0.05*Cos@0.750*Pi*ix+0.375*PiD*H-1L^HiyL,8iy,1,Ny<,8ix,1,Nx<DD;*L
nup3 = Flatten@Table@0.5, 8iy, 1, Ny<, 8ix, 1, Nx<DD;H*Flatten@

Table@0.5-0.05*Cos@0.750*Pi*ix+0.375*PiD*H-1L^HiyL,8iy,1,Ny<,8ix,1,Nx<DD;*L
nup4 = Flatten@Table@0.5, 8iy, 1, Ny<, 8ix, 1, Nx<DD;H*Flatten@

Table@0.5-0.05*Cos@0.750*Pi*ix+0.375*PiD*H-1L^HiyL,8iy,1,Ny<,8ix,1,Nx<DD;*L
nup5 = Flatten@Table@0.5 - 0.05 * Cos@0.750 * Pi * ix + 0.375 * PiD * H-1L^HiyL,

8iy, 1, Ny<, 8ix, 1, Nx<DD;



ndown1 = Flatten@Table@0.5, 8iy, 1, Ny<, 8ix, 1, Nx<DD;H*Flatten@
Table@0.5+0.05*Cos@0.750*Pi*ix+0.375*PiD*H-1L^HiyL,8iy,1,Ny<,8ix,1,Nx<DD;*L

ndown2 = Flatten@Table@0.5, 8iy, 1, Ny<, 8ix, 1, Nx<DD;H*Flatten@
Table@0.5+0.05*Cos@0.750*Pi*ix+0.375*PiD*H-1L^HiyL,8iy,1,Ny<,8ix,1,Nx<DD;*L

ndown3 = Flatten@Table@0.5, 8iy, 1, Ny<, 8ix, 1, Nx<DD;H*Flatten@
Table@0.5+0.05*Cos@0.750*Pi*ix+0.375*PiD*H-1L^HiyL,8iy,1,Ny<,8ix,1,Nx<DD;*L

ndown4 = Flatten@Table@0.5, 8iy, 1, Ny<, 8ix, 1, Nx<DD;H*Flatten@
Table@0.5+0.05*Cos@0.750*Pi*ix+0.375*PiD*H-1L^HiyL,8iy,1,Ny<,8ix,1,Nx<DD;*L

ndown5 = Flatten@Table@0.5 + 0.05 * Cos@0.750 * Pi * ix + 0.375 * PiD * H-1L^HiyL,

8iy, 1, Ny<, 8ix, 1, Nx<DD;

H*fermi@Ω_D:=1.0�H1.0+Exp@HΩL�kTDL;*L
NNeighbors@i_D := Module@8ix, iy, n1, n2, n3, n4, n1x, n2x, n3y, n4y<,

If@Mod@i, NxD � 0, ix = Nx, ix = Mod@i, NxDD; iy = Hi - ixL � Nx + 1;

If@ix + 1 > Nx, n1x = 1, n1x = ix + 1D; n1 = 8n1x, iy<;

If@ix - 1 < 1, n2x = Nx, n2x = ix - 1D; n2 = 8n2x, iy<;

If@iy + 1 > Ny, n3y = 1, n3y = iy + 1D; n3 = 8ix, n3y<;

If@iy - 1 < 1, n4y = Ny, n4y = iy - 1D; n4 = 8ix, n4y<;

8n1x + Hiy - 1L * Nx, n2x + Hiy - 1L * Nx, ix + Hn3y - 1L * Nx, ix + Hn4y - 1L * Nx<D;

NNNeighbors@i_D :=

Module@8ix, iy, n1, n2, n3, n4, n1x, n1y, n2x, n2y, n3x, n3y, n4x, n4y<,

If@Mod@i, NxD � 0, ix = Nx, ix = Mod@i, NxDD; iy = Hi - ixL � Nx + 1;

If@ix + 1 > Nx, n1x = 1, n1x = ix + 1D; If@iy + 1 > Ny, n1y = 1, n1y = iy + 1D;

n1 = 8n1x, n1y<; If@ix - 1 < 1, n2x = Nx, n2x = ix - 1D;

If@iy - 1 < 1, n2y = Ny, n2y = iy - 1D; n2 = 8n2x, n2y<;

If@ix + 1 > Nx, n3x = 1, n3x = ix + 1D; If@iy - 1 < 1, n3y = Ny, n3y = iy - 1D;

n3 = 8n3x, n3y<; If@ix - 1 < 1, n4x = Nx, n4x = ix - 1D;

If@iy + 1 > Ny, n4y = 1, n4y = iy + 1D; n4 = 8n4x, n4y<;

8n1x + Hn1y - 1L * Nx, n2x + Hn2y - 1L * Nx, n3x + Hn3y - 1L * Nx, n4x + Hn4y - 1L * Nx<D;

zero = Table@0.0, 8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D;

Hup1 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U1 * ndown1@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.0, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown1 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U1 * nup1@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.0, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

H*Hkup1= ArrayFlatten@88Hup1,zero<,8zero,Hdown1<<D;*L
H*Hkdown1= ArrayFlatten@88Hdown1,zero<,8zero,-Hup1<<D;*L
Hup2 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U2 * ndown2@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.1, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;
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Hdown2 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U2 * nup2@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.1, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hup3 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U3 * ndown3@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.2, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown3 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U3 * nup3@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.2, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hup4 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U4 * ndown4@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.3, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown4 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U4 * nup4@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.3, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hup5 = Module@8tab, i, j, ix, iy<, tab = Table@If@i � j, -mu + U5 * ndown5@@iDD,

If@MemberQ@NNeighbors@iD, jD, t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown5 = Module@8tab, i, j, ix, iy<, tab = Table@If@i � j, -mu + U5 * nup5@@iDD,

If@MemberQ@NNeighbors@iD, jD, t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

couplingup = Module@8tab, i, j<,

tab = Table@If@i � j, tperp, If@MemberQ@NNeighbors@iD, jD, 0.0, If@MemberQ@
NNNeighbors@iD, jD, 0.0, 0.0DDD, 8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

couplingdown = Module@8tab, i, j<,

tab = Table@If@i � j, -tperp, If@MemberQ@NNeighbors@iD, jD, 0.0, If@MemberQ@
NNNeighbors@iD, jD, 0.0, 0.0DDD, 8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hup = ArrayFlatten@88Hup1, couplingup, zero, zero, zero<,

8couplingup, Hup2, couplingup, zero, zero<, 8zero, couplingup, Hup3,

couplingup, zero<, 8zero, zero, couplingup, Hup4, couplingup<,

8zero, zero, zero, couplingup, Hup5<<D;H*bytter om på 1 og 2 UPPP*L
Hdown = ArrayFlatten@88Hdown1, couplingup, zero, zero, zero<,

8couplingup, Hdown2, couplingup, zero, zero<,

8zero, couplingup, Hdown3, couplingup, zero<, 8zero, zero, couplingup,

Hdown4, couplingup<, 8zero, zero, zero, couplingup, Hdown5<<D;

8valueup, vectorup< = Eigensystem@HupD;

8valuedown, vectordown< = Eigensystem@HdownD;

vectorup1 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1, Nx * Ny<D;

vectorup2 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + Nx * Ny, 2 * Nx * Ny<D;
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vectorup3 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + 2 * Nx * Ny, 3 * Nx * Ny<D;

vectorup4 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + 3 * Nx * Ny, 4 * Nx * Ny<D;

vectorup5 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + 4 * Nx * Ny, 5 * Nx * Ny<D;

vectordown1 = Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1, Nx * Ny<D;

vectordown2 =

Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + Nx * Ny, 2 * Nx * Ny<D;

vectordown3 =

Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + 2 * Nx * Ny, 3 * Nx * Ny<D;

vectordown4 =

Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + 3 * Nx * Ny, 4 * Nx * Ny<D;

vectordown5 =

Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + 4 * Nx * Ny, 5 * Nx * Ny<D;

EgsysUp1 = 8Eup1, EVup1< = Eigensystem@Hup1D;

Egsysdown1 = 8Edown1, EVdown1< = Eigensystem@Hdown1D;
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For@n = 100, n < 1, n++,

densupcalc = Table@
Total@Table@Hfermi@Eup1@@nDDDL * Abs@EVup1@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D ;

densdowncalc = Table@Total@Table@
fermi@Edown1@@nDDD * Abs@EVdown1@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup1 = densupcalc;

densdown1 = densdowncalc;

dens1 = HTotal@densup1D + Total@densdown1DL � HNx * NyL;

munew = mu + 0.1 * H1.0 - 0.125 - dens1L;

nup1 = 0.5 * nup1 + 0.5 * densup1;

ndown1 = 0.5 * ndown1 + 0.5 * densdown1;

mag1 = 0.5 * Hnup1 - ndown1L;

Hup1 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -munew + U1 * ndown1@@iDD,

If@MemberQ@NNeighbors@iD, jD, t,

If@MemberQ@NNNeighbors@iD, jD, 0.0, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown1 = Module@8tab, i, j, ix, iy<, tab = Table@If@i � j,

-munew + U1 * nup1@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.0, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

EgsysUp1 = 8Eup1, EVup1< = Eigensystem@Hup1D;

Egsysdown1 = 8Edown1, EVdown1< = Eigensystem@Hdown1D;

mu = munew;

H * Print@densdown1D;

Print@densup1D;

Print@muD; *L
D
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DOS1 := Module@8n, i, w, en, dos, spectralup, spectraldown,

normalizationup, normalizationdown, absEVup, absEVdown<,

dos = Table@0.0, 8en, 1, wsteps<D; w = Table@0.0, 8en, 1, wsteps<D;

For@n = 1, n < Nx * Ny + 1, n++, For@en = 1, en < wsteps + 1, en++,

normalizationup = Hen - 1 - wsteps � 2L * dwdos - Eup1@@nDD;

normalizationdown = Hen - 1 - wsteps � 2L * dwdos - Edown1@@nDD;

w@@enDD = Hen - 1 - wsteps � 2L * dwdos; i = 1;

If@Abs@normalizationupD < 20.0 * eta ÈÈ
Abs@normalizationdownD < 20.0 * eta, absEVup =

Abs@EVup1@@n, iDDD^2; absEVdown = Abs@EVdown1@@n, iDDD^2;

spectralup = spectral@normalizationupD;

spectraldown = spectral@normalizationdownD; dos@@enDD =

dos@@enDD + absEVup * spectralup + absEVdown * spectraldown,

dos@@enDD = dos@@enDDDDD; Chop@dosDD
ListLinePlot@DOS1, PlotRange ® AllD
EgsysUp2 = 8Eup2, EVup2< = Eigensystem@Hup2D;

Egsysdown2 = 8Edown2, EVdown2< = Eigensystem@Hdown2D;
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For@n = 1, n < 1, n++,

densupcalc = Table@
Total@Table@Hfermi@Eup2@@nDDDL * Abs@EVup2@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D ;

densdowncalc = Table@Total@Table@
fermi@Edown2@@nDDD * Abs@EVdown2@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup2 = densupcalc;

densdown2 = densdowncalc;

dens2 = HTotal@densup2D + Total@densdown2DL � HNx * NyL;

munew = mu + 0.1 * H1.0 - 0.0 - dens2L;

nup2 = 0.5 * nup2 + 0.5 * densup2;

ndown2 = 0.5 * ndown2 + 0.5 * densdown2;

mag2 = 0.5 * Hnup2 - ndown2L;

Hup2 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -munew + U2 * ndown2@@iDD,

If@MemberQ@NNeighbors@iD, jD, t,

If@MemberQ@NNNeighbors@iD, jD, 0.1, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown2 = Module@8tab, i, j, ix, iy<, tab = Table@If@i � j,

-munew + U2 * nup2@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.1, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

EgsysUp2 = 8Eup2, EVup2< = Eigensystem@Hup2D;

Egsysdown2 = 8Edown2, EVdown2< = Eigensystem@Hdown2D;

mu = munew;

H * Print@densdown2D;

Print@densup2D;

Print@muD; *L
D
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DOS2 := Module@8n, i, w, en, dos, spectralup, spectraldown,

normalizationup, normalizationdown, absEVup, absEVdown<,

dos = Table@0.0, 8en, 1, wsteps<D; w = Table@0.0, 8en, 1, wsteps<D;

For@n = 1, n < Nx * Ny + 1, n++, For@en = 1, en < wsteps + 1, en++,

normalizationup = Hen - 1 - wsteps � 2L * dwdos - Eup2@@nDD;

normalizationdown = Hen - 1 - wsteps � 2L * dwdos - Edown2@@nDD;

w@@enDD = Hen - 1 - wsteps � 2L * dwdos; i = 1;

If@Abs@normalizationupD < 20.0 * eta ÈÈ
Abs@normalizationdownD < 20.0 * eta, absEVup =

Abs@EVup2@@n, iDDD^2; absEVdown = Abs@EVdown2@@n, iDDD^2;

spectralup = spectral@normalizationupD;

spectraldown = spectral@normalizationdownD; dos@@enDD =

dos@@enDD + absEVup * spectralup + absEVdown * spectraldown,

dos@@enDD = dos@@enDDDDD; Chop@dosDD
ListLinePlot@DOS2, PlotRange ® AllD
EgsysUp3 = 8Eup3, EVup3< = Eigensystem@Hup3D;

Egsysdown3 = 8Edown3, EVdown3< = Eigensystem@Hdown3D;
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For@n = 100, n < 1, n++,

densupcalc = Table@
Total@Table@Hfermi@Eup3@@nDDDL * Abs@EVup3@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D ;

densdowncalc = Table@Total@Table@
fermi@Edown3@@nDDD * Abs@EVdown3@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup3 = densupcalc;

densdown3 = densdowncalc;

dens3 = HTotal@densup3D + Total@densdown3DL � HNx * NyL;

munew = mu + 0.1 * H1.0 - 0.0 - dens3L;

nup3 = 0.5 * nup3 + 0.5 * densup3;

ndown3 = 0.5 * ndown3 + 0.5 * densdown3;

mag3 = 0.5 * Hnup3 - ndown3L;

Hup3 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -munew + U3 * ndown3@@iDD,

If@MemberQ@NNeighbors@iD, jD, t,

If@MemberQ@NNNeighbors@iD, jD, 0.2, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown3 = Module@8tab, i, j, ix, iy<, tab = Table@If@i � j,

-munew + U3 * nup3@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.2, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

EgsysUp3 = 8Eup3, EVup3< = Eigensystem@Hup3D;

Egsysdown3 = 8Edown3, EVdown3< = Eigensystem@Hdown3D;

mu = munew;

H * Print@densdown3D;

Print@densup3D;

Print@muD; *L
D
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DOS3 := Module@8n, i, w, en, dos, spectralup, spectraldown,

normalizationup, normalizationdown, absEVup, absEVdown<,

dos = Table@0.0, 8en, 1, wsteps<D; w = Table@0.0, 8en, 1, wsteps<D;

For@n = 1, n < Nx * Ny + 1, n++, For@en = 1, en < wsteps + 1, en++,

normalizationup = Hen - 1 - wsteps � 2L * dwdos - Eup3@@nDD;

normalizationdown = Hen - 1 - wsteps � 2L * dwdos - Edown3@@nDD;

w@@enDD = Hen - 1 - wsteps � 2L * dwdos; i = 1;

If@Abs@normalizationupD < 20.0 * eta ÈÈ
Abs@normalizationdownD < 20.0 * eta, absEVup =

Abs@EVup3@@n, iDDD^2; absEVdown = Abs@EVdown3@@n, iDDD^2;

spectralup = spectral@normalizationupD;

spectraldown = spectral@normalizationdownD; dos@@enDD =

dos@@enDD + absEVup * spectralup + absEVdown * spectraldown,

dos@@enDD = dos@@enDDDDD; Chop@dosDD
ListLinePlot@DOS3, PlotRange ® AllD
EgsysUp4 = 8Eup4, EVup4< = Eigensystem@Hup4D;

Egsysdown4 = 8Edown4, EVdown4< = Eigensystem@Hdown4D;
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For@n = 1, n < 100, n++,

densupcalc = Table@
Total@Table@Hfermi@Eup4@@nDDDL * Abs@EVup4@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D ;

densdowncalc = Table@Total@Table@
fermi@Edown4@@nDDD * Abs@EVdown4@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup4 = densupcalc;

densdown4 = densdowncalc;

dens4 = HTotal@densup4D + Total@densdown4DL � HNx * NyL;

munew = mu + 0.1 * H1.0 - 0.0 - dens4L;

nup4 = 0.5 * nup4 + 0.5 * densup4;

ndown4 = 0.5 * ndown4 + 0.5 * densdown4;

mag4 = 0.5 * Hnup4 - ndown4L;

Hup4 = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -munew + U4 * ndown4@@iDD,

If@MemberQ@NNeighbors@iD, jD, t,

If@MemberQ@NNNeighbors@iD, jD, 0.3, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown4 = Module@8tab, i, j, ix, iy<, tab = Table@If@i � j,

-munew + U4 * nup4@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, 0.3, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

EgsysUp4 = 8Eup4, EVup4< = Eigensystem@Hup4D;

Egsysdown4 = 8Edown4, EVdown4< = Eigensystem@Hdown4D;

mu = munew;

H * Print@densdown4D;

Print@densup4D;

Print@muD; *L
D
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DOS4 := Module@8n, i, w, en, dos, spectralup, spectraldown,

normalizationup, normalizationdown, absEVup, absEVdown<,

dos = Table@0.0, 8en, 1, wsteps<D; w = Table@0.0, 8en, 1, wsteps<D;

For@n = 1, n < Nx * Ny + 1, n++, For@en = 1, en < wsteps + 1, en++,

normalizationup = Hen - 1 - wsteps � 2L * dwdos - Eup4@@nDD;

normalizationdown = Hen - 1 - wsteps � 2L * dwdos - Edown4@@nDD;

w@@enDD = Hen - 1 - wsteps � 2L * dwdos; i = 1;

If@Abs@normalizationupD < 20.0 * eta ÈÈ
Abs@normalizationdownD < 20.0 * eta, absEVup =

Abs@EVup4@@n, iDDD^2; absEVdown = Abs@EVdown4@@n, iDDD^2;

spectralup = spectral@normalizationupD;

spectraldown = spectral@normalizationdownD; dos@@enDD =

dos@@enDD + absEVup * spectralup + absEVdown * spectraldown,

dos@@enDD = dos@@enDDDDD; Chop@dosDD
ListLinePlot@DOS4, PlotRange ® AllD
ShowAListLinePlot@DOS4, PlotRange ® All, PlotStyle ® 8Red<D,

ListLinePlot@DOS3, PlotRange ® All, PlotStyle ® 8Yellow<D,

ListLinePlot@DOS2, PlotRange ® All, PlotStyle ® 8Black<D,

ListLinePlot@DOS1, PlotRange ® AllDE
EgsysUp5 = 8Eup5, EVup5< = Eigensystem@Hup5D;

Egsysdown5 = 8Edown5, EVdown5< = Eigensystem@Hdown5D;

For@n = 1, n < 100, n++,

densupcalc = Table@
Total@Table@Hfermi@Eup5@@nDDDL * Abs@EVup5@@n, iDDD^2, 8n, 1, Nx * Ny<DD,

8i, 1, Nx * Ny<D ;

densdowncalc = Table@Total@Table@fermi@Edown5@@nDDD * Abs@EVdown5@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup5 = densupcalc;

densdown5 = densdowncalc;

dens5 = HTotal@densup5D + Total@densdown5DL � HNx * NyL;

munew = mu + 0.1 * H1.0 - 0.125 - dens5L;

nup5 = 0.5 * nup5 + 0.5 * densup5;

ndown5 = 0.5 * ndown5 + 0.5 * densdown5;

mag5 = 0.5 * Hnup5 - ndown5L;

Hup5 =

Module@8tab, i, j, ix, iy<, tab = Table@If@i � j, -munew + U5 * ndown5@@iDD, If@
MemberQ@NNeighbors@iD, jD, t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown5 = Module@8tab, i, j, ix, iy<, tab =

Table@If@i � j, -munew + U5 * nup5@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

EgsysUp5 = 8Eup5, EVup5< = Eigensystem@Hup5D;

Egsysdown5 = 8Edown5, EVdown5< = Eigensystem@Hdown5D;

mu = munew;

H*Print@densdown5D;

Print@densup5D;

Print@muD;*L
D
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densdown5

H*For@n=1,n<300, n++,

H*densupcalc=

Table@Total@Table@Hfermi@valueup@@nDDDL*Abs@vectorup5@@n,iDDD^2,

8n,1,5*Nx*Ny<DD,8i,1,Nx*Ny<D ;

densdowncalc= Table@Total@Table@fermi@valuedown@@nDDD*

Abs@vectordown5@@n,iDDD^2,8n,1,5*Nx*Ny<DD,8i,1,Nx*Ny<D;

densup5=densupcalc;

densdown5=densdowncalc;

dens5=HTotal@densup5D+Total@densdown5DL�HNx*NyL;

munew5=mu5+0.5*H1.0-x-dens5L;

nup5=0.5*nup5+0.5*densup5;

ndown5=0.5*ndown5+0.5*densdown5;

Hup5=Module@8tab,i,j,ix,iy<,

tab=Table@If@i�j,-munew5+U5*ndown5@@iDD,If@MemberQ@NNeighbors@iD,jD,t,If@
MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

Hdown5=Module@8tab,i,j,ix,iy<,tab=Table@If@i�j,-munew5+U5*nup5@@iDD,

If@MemberQ@NNeighbors@iD,jD,t,If@MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,

8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;*L
H*------------------------------------------------------------------------

-----------------------------------*L
densupcalc1=Table@Total@Table@fermi@valueup@@nDDD*Abs@vectorup1@@n,iDDD^2,

8n,1,5*Nx*Ny<DD,8i, 1, Nx*Ny<D;

densdowncalc1=Table@Total@Table@Hfermi@valuedown@@nDDDL*

Abs@vectordown1@@n, iDDD^2, 8n, 1, 5*Nx*Ny<DD, 8i, 1, Nx*Ny<D;

densup1=densupcalc1;

densdown1=densdowncalc1;

dens1=HTotal@densup1D+Total@densdown1DL�HNx*NyL;

munew1=mu1+0.5*H1.0-x-dens1L;

nup1=0.5*nup1+0.5*densup1;

ndown1=0.5*ndown1+0.5*densup1;

Hup1=Module@8tab,i,j<,

tab=Table@If@i�j,-munew1+U1*ndown1@@iDD,If@MemberQ@NNeighbors@iD,jD,t,If@
MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

Hdown1=Module@8tab,i,j<,tab=Table@If@i�j,-munew1+U1*nup1@@iDD,

If@MemberQ@NNeighbors@iD,jD,t,If@MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,

8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

H*------------------------------------------------------------------------

------------------------------------*L
densupcalc2=Table@Total@Table@fermi@valueup@@nDDD*Abs@vectorup2@@n,iDDD^2,

8n,1,5*Nx*Ny<DD,8i, 1, Nx*Ny<D;

densdowncalc2=Table@Total@Table@Hfermi@valuedown@@nDDDL*

Abs@vectordown2@@n, iDDD^2, 8n, 1, 5*Nx*Ny<DD, 8i, 1, Nx*Ny<D;

densup2=densupcalc2;

densdown2=densdowncalc2;

dens2=HTotal@densup2D+Total@densdown2DL�HNx*NyL;

munew2=mu2+0.5*H1.0-x-dens2L;

nup2=0.5*nup2+0.5*densup2;

ndown2=0.5*ndown2+0.5*densup2;

Hup2=Module@8tab,i,j<,

tab=Table@If@i�j,-munew2+U2*ndown2@@iDD,If@MemberQ@NNeighbors@iD,jD,t,If@
DDD, , D;tabD;
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MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

Hdown2=Module@8tab,i,j<,tab=Table@If@i�j,-munew2+U2*nup2@@iDD,

If@MemberQ@NNeighbors@iD,jD,t,If@MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,

8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

H*------------------------------------------------------------------------

---------------------------------*L
densupcalc3=Table@Total@Table@fermi@valueup@@nDDD*Abs@vectorup3@@n,iDDD^2,

8n,1,5*Nx*Ny<DD,8i, 1, Nx*Ny<D;

densdowncalc3=Table@Total@Table@Hfermi@valuedown@@nDDDL*

Abs@vectordown3@@n, iDDD^2, 8n, 1, 5*Nx*Ny<DD, 8i, 1, Nx*Ny<D;

densup3=densupcalc3;

densdown3=densdowncalc3;

dens3=HTotal@densup3D+Total@densdown3DL�HNx*NyL;

munew3=mu3+0.5*H1.0-x-dens3L;

nup3=0.5*nup3+0.5*densup3;

ndown3=0.5*ndown3+0.5*densup3;

Hup3=Module@8tab,i,j<,

tab=Table@If@i�j,-munew3+U3*ndown3@@iDD,If@MemberQ@NNeighbors@iD,jD,t,If@
MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

Hdown3=Module@8tab,i,j<,tab=Table@If@i�j,-munew3+U3*nup3@@iDD,

If@MemberQ@NNeighbors@iD,jD,t,If@MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,

8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

H*------------------------------------------------------------------------

--------------------------------------

----*L
densupcalc4=Table@

Total@Table@fermi@valueup@@nDDD*Abs@vectorup4@@n,iDDD^2,8n,1,5*Nx*Ny<DD,

8i, 1, Nx*Ny<D;

densdowncalc4=Table@Total@Table@Hfermi@valuedown@@nDDDL*

Abs@vectordown4@@n, iDDD^2, 8n, 1, 5*Nx*Ny<DD, 8i, 1, Nx*Ny<D;

densup4=densupcalc4;

densdown4=densdowncalc4;

dens4=HTotal@densup4D+Total@densdown4DL�HNx*NyL;

munew4=mu4+0.5*H1.0-x-dens4L;

nup4=0.5*nup4+0.5*densup4;

ndown4=0.5*ndown4+0.5*densup4;

Hup4=Module@8tab,i,j<,

tab=Table@If@i�j,-munew4+U4*ndown4@@iDD,If@MemberQ@NNeighbors@iD,jD,t,If@
MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

Hdown4=Module@8tab,i,j<,tab=Table@If@i�j,-munew4+U4*nup4@@iDD,

If@MemberQ@NNeighbors@iD,jD,t,If@MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,

8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

H*------------------------------------------------------------------------

--------------------------------------

------------------*L
densupcalc5=Table@

Total@Table@fermi@valueup@@nDDD*Abs@vectorup5@@n,iDDD^2,8n,1,5*Nx*Ny<DD,

8i, 1, Nx*Ny<D;

densdowncalc5=Table@Total@Table@Hfermi@valuedown@@nDDDL*

Abs@vectordown5@@n, iDDD^2, 8n, 1, 5*Nx*Ny<DD, 8i, 1, Nx*Ny<D;

densup5=densupcalc5;

densdown5=densdowncalc5;

dens5=HTotal@densup5D+Total@densdown5DL�HNx*NyL;

;
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munew5=mu5+0.5*H1.0-x-dens5L;

nup5=0.5*nup5+0.5*densup5;

ndown5=0.5*ndown5+0.5*densup5;

Hup5=Module@8tab,i,j<,

tab=Table@If@i�j,-munew5+U5*ndown5@@iDD,If@MemberQ@NNeighbors@iD,jD,t,If@
MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

Hdown5=Module@8tab,i,j<,tab=Table@If@i�j,-munew5+U5*nup5@@iDD,

If@MemberQ@NNeighbors@iD,jD,t,If@MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,

8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

H*densupcalc5=Table@
Total@Table@fermi@valueup@@nDDD*Abs@vectorup5@@n,iDDD^2,8n,1,5*Nx*Ny<DD,

8i, 1, Nx*Ny<D;

densdowncalc5=Table@Total@Table@Hfermi@valuedown@@nDDDL*

Abs@vectordown5@@n, iDDD^2, 8n, 1, 5*Nx*Ny<DD, 8i, 1, Nx*Ny<D;

densup5=densupcalc5;

densdown5=densdowncalc5;

dens5=HTotal@densup5D+Total@densdown5DL�HNx*NyL;

munew5=mu5+0.5*H1.0-x-dens5L;

nup5=0.5*nup5+0.5*densup5;

ndown5=0.1*ndown5+0.5*densup5;

Hup5=Module@8tab,i,j<,

tab=Table@If@i�j,-munew5+U5*ndown5@@iDD,If@MemberQ@NNeighbors@iD,jD,t,If@
MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

Hdown5=Module@8tab,i,j<,tab=Table@If@i�j,-munew5+U5*nup5@@iDD,

If@MemberQ@NNeighbors@iD,jD,t,If@MemberQ@NNNeighbors@iD,jD,tt,0.0DDD,

8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;*L
H*------------------------------------------------------------------------

--------------------------------*L
Hup=ArrayFlatten@88Hup1,couplingup,zero,zero,zero<,8couplingup,Hup2,

couplingup,zero,zero<,8zero,couplingup,Hup3,couplingup,zero<,8zero,

zero,couplingup,Hup4,couplingup<,8zero,zero,zero,couplingup,Hup5<<D;

Hdown=ArrayFlatten@88Hdown1,couplingup,zero,zero,zero<,

8couplingup,Hdown2,couplingup,zero,zero<,

8zero,couplingup,Hdown3,couplingup,zero<,8zero,zero,couplingup,

Hdown4,couplingup<,8zero,zero,zero,couplingup,Hdown5<<D;

8valueup,vectorup<=Eigensystem@HupD;

8valuedown,vectordown<=Eigensystem@HdownD;

vectorup1=Table@vectorup@@n,iDD,8n,1,5*Nx*Ny<,8i,1,Nx*Ny<D;

vectorup2=Table@vectorup@@n,iDD,8n,1,5*Nx*Ny<,8i,1+Nx*Ny,2*Nx*Ny<D;

vectorup3=Table@vectorup@@n,iDD,8n,1,5*Nx*Ny<,8i,1+2*Nx*Ny,3*Nx*Ny<D;

vectorup4=Table@vectorup@@n,iDD,8n,1,5*Nx*Ny<,8i,1+3*Nx*Ny,4*Nx*Ny<D;

vectorup5=Table@vectorup@@n,iDD,8n,1,5*Nx*Ny<,8i,1+4*Nx*Ny,5*Nx*Ny<D;

vectordown1=Table@vectordown@@n,iDD,8n,1,5*Nx*Ny<,8i,1,Nx*Ny<D;

vectordown2=Table@vectordown@@n,iDD,8n,1,5*Nx*Ny<,8i,1+Nx*Ny,2*Nx*Ny<D;

vectordown3=Table@vectordown@@n,iDD,8n,1,5*Nx*Ny<,8i,1+2*Nx*Ny,3*Nx*Ny<D;

vectordown4=Table@vectordown@@n,iDD,8n,1,5*Nx*Ny<,8i,1+3*Nx*Ny,4*Nx*Ny<D;

vectordown5=Table@vectordown@@n,iDD,8n,1,5*Nx*Ny<,8i,1+4*Nx*Ny,5*Nx*Ny<D;

mu1=munew1;

mu2=munew2;

mu3=munew3;

;
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mu4=munew4;

mu5=munew5;

H*----------------------------------------------------------------------*L
Print@mu1D;

Print@mu2D;

Print@mu3D;

Print@mu4D;

Print@mu5D;

H*Print@densup1D;

Print@densdown1D;

Print@densup2D;

Print@densdown2D;

Print@densup3D;

Print@densdown3D;

Print@densup4D;

Print@densdown4D;

Print@densup5D;

Print@densdown5D;*L
D*L
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densupcalc1 = Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup1@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc1 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown1@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup1 = densupcalc1;

densdown1 = densdowncalc1;

dens1 = HTotal@densup1D + Total@densdown1DL � HNx * NyL;

densupcalc2 = Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup2@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc2 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown2@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup2 = densupcalc2;

densdown2 = densdowncalc2;

dens2 = HTotal@densup2D + Total@densdown2DL � HNx * NyL;

densupcalc3 = Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup3@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc3 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown3@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup3 = densupcalc3;

densdown3 = densdowncalc3;

dens3 = HTotal@densup3D + Total@densdown3DL � HNx * NyL;

densupcalc4 = Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup4@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc4 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown4@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup4 = densupcalc4;

densdown4 = densdowncalc4;

dens4 = HTotal@densup4D + Total@densdown4DL � HNx * NyL;

densupcalc5 = Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup5@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc5 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown5@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup5 = densupcalc5;

densdown5 = densdowncalc5;

dens5 = HTotal@densup5D + Total@densdown5DL � HNx * NyL;

H*----------------------------------------------------------------------------

-------------------------------*L
dens = Hdens1 + dens2 + dens3 + dens4 + dens5L � 5;

munew = mu + 0.5 * H1.0 - x - densL;

For@n = 1, n < 1, n++,

densupcalc1 =

Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup1@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc1 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown1@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup1 = densupcalc1;

densdown1 = densdowncalc1;

dens1 = HTotal@densup1D + Total@densdown1DL � HNx * NyL;

densupcalc2 =

Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup2@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc2 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

, DD, D;
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Abs@vectordown2@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup2 = densupcalc2;

densdown2 = densdowncalc2;

dens2 = HTotal@densup2D + Total@densdown2DL � HNx * NyL;

densupcalc3 =

Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup3@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc3 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown3@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup3 = densupcalc3;

densdown3 = densdowncalc3;

dens3 = HTotal@densup3D + Total@densdown3DL � HNx * NyL;

densupcalc4 =

Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup4@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc4 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown4@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup4 = densupcalc4;

densdown4 = densdowncalc4;

dens4 = HTotal@densup4D + Total@densdown4DL � HNx * NyL;

densupcalc5 =

Table@Total@Table@fermi@valueup@@nDDD * Abs@vectorup5@@n, iDDD^2,

8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densdowncalc5 = Table@Total@Table@Hfermi@valuedown@@nDDDL *

Abs@vectordown5@@n, iDDD^2, 8n, 1, 5 * Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup5 = densupcalc5;

densdown5 = densdowncalc5;

dens5 = HTotal@densup5D + Total@densdown5DL � HNx * NyL;

H*------------------------------------------------------------------------

-----------------------------------*L
dens = Hdens1 + dens2 + dens3 + dens4 + dens5L � 5;

munew = mu + 0.2 * H1.0 - x - densL;

H*------------------------------------------------------------------------

----*L
nup1 = 0.6 * nup1 + 0.4 * densup1;

ndown1 = 0.6 * ndown1 + 0.4 * densup1;

Hup1 = Module@8tab, i, j<,

tab = Table@If@i � j, -munew + U1 * ndown1@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown1 = Module@8tab, i, j<, tab = Table@If@i � j, -munew + U1 * nup1@@iDD, If@
MemberQ@NNeighbors@iD, jD, t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

H*------------------------------------------------------------------------

------------------------------------*L

H*munew2=mu1+0.5*H1.0-x-dens2L;*L
nup2 = 0.6 * nup2 + 0.4 * densup2;

ndown2 = 0.6 * ndown2 + 0.4 * densup2;

Hup2 = Module@8tab, i, j<,

tab = Table@If@i � j, -munew + U2 * ndown2@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, DD,

18     Code1.nb



t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown2 = Module@8tab, i, j<, tab = Table@If@i � j, -munew + U2 * nup2@@iDD, If@
MemberQ@NNeighbors@iD, jD, t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

H*------------------------------------------------------------------------

---------------------------------*L
H*munew3=mu1+0.5*H1.0-x-dens3L;*L
nup3 = 0.6 * nup3 + 0.4 * densup3;

ndown3 = 0.6 * ndown3 + 0.4 * densup3;

Hup3 = Module@8tab, i, j<,

tab = Table@If@i � j, -munew + U3 * ndown3@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown3 = Module@8tab, i, j<, tab = Table@If@i � j, -munew + U3 * nup3@@iDD, If@
MemberQ@NNeighbors@iD, jD, t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

H*------------------------------------------------------------------------

--------------------------------------

----*L
H*munew4=mu1+0.5*H1.0-x-dens4L;*L
nup4 = 0.6 * nup4 + 0.4 * densup4;

ndown4 = 0.6 * ndown4 + 0.4 * densup4;

Hup4 = Module@8tab, i, j<,

tab = Table@If@i � j, -munew + U4 * ndown4@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown4 = Module@8tab, i, j<, tab = Table@If@i � j, -munew + U4 * nup4@@iDD, If@
MemberQ@NNeighbors@iD, jD, t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

H*------------------------------------------------------------------------

--------------------------------------

------------------*L
H*munew5=mu1+0.5*H1.0-x-dens5L;*L
nup5 = 0.6 * nup5 + 0.4 * densup5;

ndown5 = 0.6 * ndown5 + 0.4 * densup5;

Hup5 = Module@8tab, i, j<,

tab = Table@If@i � j, -munew + U5 * ndown5@@iDD, If@MemberQ@NNeighbors@iD, jD,

t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown5 = Module@8tab, i, j<, tab = Table@If@i � j, -munew + U5 * nup5@@iDD, If@
MemberQ@NNeighbors@iD, jD, t, If@MemberQ@NNNeighbors@iD, jD, tt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

H*------------------------------------------------------------------------

--------------------------------*L
Hup = ArrayFlatten@88Hup1, couplingup, zero, zero, zero<, 8couplingup,

Hup2, couplingup, zero, zero<, 8zero, couplingup, Hup3, couplingup, zero<,

8zero, zero, couplingup, Hup4, couplingup<,

8zero, zero, zero, couplingup, Hup5<<D;
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Hdown = ArrayFlatten@88Hdown1, couplingup, zero, zero, zero<,

8couplingup, Hdown2, couplingup, zero, zero<,

8zero, couplingup, Hdown3, couplingup, zero<, 8zero, zero, couplingup,

Hdown4, couplingup<, 8zero, zero, zero, couplingup, Hdown5<<D;

8valueup, vectorup< = Eigensystem@HupD;

8valuedown, vectordown< = Eigensystem@HdownD;

vectorup1 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1, Nx * Ny<D;

vectorup2 =

Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + Nx * Ny, 2 * Nx * Ny<D;

vectorup3 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<,

8i, 1 + 2 * Nx * Ny, 3 * Nx * Ny<D;

vectorup4 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<,

8i, 1 + 3 * Nx * Ny, 4 * Nx * Ny<D;

vectorup5 = Table@vectorup@@n, iDD, 8n, 1, 5 * Nx * Ny<,

8i, 1 + 4 * Nx * Ny, 5 * Nx * Ny<D;

vectordown1 = Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1, Nx * Ny<D;

vectordown2 =

Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<, 8i, 1 + Nx * Ny, 2 * Nx * Ny<D;

vectordown3 = Table@vectordown@@n, iDD,

8n, 1, 5 * Nx * Ny<, 8i, 1 + 2 * Nx * Ny, 3 * Nx * Ny<D;

vectordown4 = Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<,

8i, 1 + 3 * Nx * Ny, 4 * Nx * Ny<D;

vectordown5 = Table@vectordown@@n, iDD, 8n, 1, 5 * Nx * Ny<,

8i, 1 + 4 * Nx * Ny, 5 * Nx * Ny<D;

mu = munew;

H*mu2=munew2;

mu3=munew3;

mu4=munew4;

mu5=munew5;*L
H*----------------------------------------------------------------------*L
Print@muD;

H*Print@mu2D;

Print@mu3D;

Print@mu4D;

Print@mu5D;*L
H*Print@densup1D;

Print@densdown1D;

Print@densup2D;

Print@densdown2D;

Print@densup3D;

Print@densdown3D;

Print@densup4D;

Print@densdown4D;

Print@densup5D;

Print@densdown5D;*L
D
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DOS1 := Module@8n, i, w, en, dos, spectralup, spectraldown,

normalizationup, normalizationdown, absEVup, absEVdown<,

dos = Table@0.0, 8en, 1, wsteps<D;

w = Table@0.0, 8en, 1, wsteps<D;

For@n = 1, n < Nx * Ny + 1, n++, For@en = 1, en < wsteps + 1, en++,

normalizationup = Hen - 1 - wsteps � 2L * dwdos - valueup@@nDD;

normalizationdown = Hen - 1 - wsteps � 2L * dwdos -

valuedown@@nDD; w@@enDD = Hen - 1 - wsteps � 2L * dwdos;

i = 1; If@Abs@normalizationupD < 20.0 * eta ÈÈ
Abs@normalizationdownD < 20.0 * eta,

absEVup = Abs@vectorup1@@n, iDDD^2;

absEVdown = Abs@vectordown2@@n, iDDD^2;

spectralup = spectral@normalizationupD;

spectraldown = spectral@normalizationdownD; dos@@enDD =

dos@@enDD + absEVup * spectralup + absEVdown * spectraldown,

dos@@enDD = dos@@enDDDDD; Chop@dosDD;H**L
ListLinePlot@DOS1, PlotRange ® AllD
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A.1 Mathematica code 119

A.1.2 Potential



 Model of super oxygenated 

LSCO

Initial settings for the ststem

The size of the lattice :

Nx = 16;

Ny = 16;

The size of the lattice in 3D:

Nz = 0;

The periodicity of the oxygen in given in x, y, z coordinates

In the x-direction

xperiodicity = 10;

In the y-direction

yperiodicity = 4;

In the z-direction

zperiodicity = 0;

The position of the oxygen between the lattice

xpos = 1.5;

ypos = 1.5;

zpos = 1.5;

Other settings for the oxygen induced potential

a = 1H*5.38*L;H*Convert to term in tt???*L
b = a;

c = aH*2.48*a*L;

No = 1;

Statinpoint = 1;

Alpha = 0.7;



Kapa = 0.4;

Ro = 8Xo, Yo, Zo< = 8Table@xpos * a + xperiodicity * i, 8i, Statinpoint, No<D,

Table@ypos * a + yperiodicity * i, 8i, Statinpoint, No<D,

Table@zpos * a + zperiodicity * i, 8i, Statinpoint, No<D<
H*Position of oxygen the length of the lattice is set to a*L

8811.5<, 85.5<, 81.5<<

POx@x_, y_, z_, Xo_, Yo_, Zo_D := alpha * Exp@
-kapa * HHx - XoL + Hy - YoL + Hz - ZoLL � Sqrt@Hx - XoL^2 + Hy - YoL^2 + Hz - ZoL^2DD;

H*PotVal=Flatten@Table@Chop@Total@Table@POx@xval,yval,zval,XoVal,YoVal,ZoValD,

8XoVal, Ro@@1DD<,8YoVal,Ro@@2DD<,8ZoVal,Ro@@3DD<D,3DD,

8xval, 1, Nx*Ny<,8yval,1,Nx*Ny<,8zval,1,Nx*Ny<DD;*L
PotVal = Flatten@Table@Chop@

Total@Table@Alpha * Exp@-Kapa * HHxval - XoValL + Hyval - YoValL + Hzval - ZoValLL �
Sqrt@Hxval - XoValL^2 + Hyval - YoValL^2 + Hzval - ZoValL^2DD,

8XoVal, Ro@@1DD<, 8YoVal, Ro@@2DD<, 8ZoVal, Ro@@3DD<D, 3DD,

8xval, 1, Nx<, 8yval, 1, Ny<, 8zval, 0, Nz<DD
81.2413, 1.21948, 1.19192, 1.15885, 1.12098, 1.07954, 1.03604, 0.992069, 0.949077,

0.908194, 0.870174, 0.835417, 0.804036, 0.775944, 0.750928, 0.728714, 1.2551,

1.23371, 1.2053, 1.16998, 1.12859, 1.08267, 1.03429, 0.985575, 0.938422,

0.894208, 0.85376, 0.817412, 0.785146, 0.756717, 0.731768, 0.709902, 1.2702,

1.24994, 1.22109, 1.18341, 1.13781, 1.08637, 1.03192, 0.977433, 0.925405,

0.877514, 0.834599, 0.796836, 0.763974, 0.735543, 0.710993, 0.689775, 1.28639,

1.26841, 1.23984, 1.19984, 1.14923, 1.0908, 1.02863, 0.966994, 0.909262,

0.857411, 0.812153, 0.773331, 0.740327, 0.712351, 0.688615, 0.668404, 1.30303,

1.28911, 1.26224, 1.22029, 1.16367, 1.09613, 1.02387, 0.953272, 0.888932,

0.833025, 0.785832, 0.746578, 0.714088, 0.687162, 0.664738, 0.645932,

1.31874, 1.3115, 1.28888, 1.24619, 1.1824, 1.10258, 1.01667, 0.934713,

0.862955, 0.80333, 0.75508, 0.716382, 0.685296, 0.660143, 0.639586, 0.6226,

1.33068, 1.33369, 1.31973, 1.27934, 1.20736, 1.11023, 1.00515, 0.908851,

0.829413, 0.767276, 0.719544, 0.682816, 0.654236, 0.631657, 0.613533, 0.598756,

1.33369, 1.35081, 1.35244, 1.32129, 1.2413, 1.11852, 0.985506, 0.871843,

0.786104, 0.724157, 0.679382, 0.64641, 0.621535, 0.602308, 0.587108, 0.57485,

1.31973, 1.35244, 1.37755, 1.36933, 1.28639, 1.12368, 0.949635, 0.818364,

0.731419, 0.674371, 0.635679, 0.608324, 0.588218, 0.572934, 0.560984,

0.551415, 1.27934, 1.32129, 1.36933, 1.39954, 1.33068, 1.10756, 0.881849,

0.744029, 0.666615, 0.620469, 0.590779, 0.570392, 0.555651, 0.54455, 0.535914,

0.529019, 1.20736, 1.2413, 1.28639, 1.33068, 1.27934, 1.00515, 0.767276,

0.654236, 0.598756, 0.567604, 0.548092, 0.534859, 0.525345, 0.518198,

0.512641, 0.508203, 1.11023, 1.11852, 1.12368, 1.10756, 1.00515, 0.789725,

0.638623, 0.571488, 0.539532, 0.521944, 0.511091, 0.503815, 0.498633, 0.494769,

0.491785, 0.489415, 1.00515, 0.985506, 0.949635, 0.881849, 0.767276, 0.638623,

0.555651, 0.515988, 0.497207, 0.487489, 0.481968, 0.478578, 0.476363,

0.474843, 0.473757, 0.472956, 0.908851, 0.871843, 0.818364, 0.744029,

0.654236, 0.571488, 0.515988, 0.486167, 0.471505, 0.464415, 0.461004,

0.459419, 0.45877, 0.458612, 0.458716, 0.458956, 0.829413, 0.786104, 0.731419,

0.666615, 0.598756, 0.539532, 0.497207, 0.471505, 0.457472, 0.450349,

0.447027, 0.445746, 0.445549, 0.445922, 0.446586, 0.447385, 0.767276,

0.724157, 0.674371, 0.620469, 0.567604, 0.521944, 0.487489, 0.464415,

0.450349, 0.442415, 0.43832, 0.436522, 0.436066, 0.436378, 0.437116, 0.438079<
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Dimensions@PotValD
8256<

864<
864<

wsteps = 400;H*to be verified*L
dwdos = 0.05; H*to be verified*L
dw = 5.0 � wsteps; H*to be verified*L
tt = -1.0;

H*nearest neighbor interaction8-1.0-for AF put to zero*L
ttlayer = 00;

NotSC = 0.0;H*to make nulmatrice,to be replaced by superconductivity*L
NOTSC = Table@NotSC, 8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D;

H*to make nulmatrice,to be replaced by superconductivity*L
U = 4.0;

alpha = 0.5;

mu = 1.0; H*the chemical potential,

the exact value is to be verified-stating guess *L
nt = 0.2; H*to do with nest nearest neighbor-to be verified*L
kT = 0.01; H*the boltzmann konstan k and the temperatur T,

the exat value is to be verified*L
ndownguess = 0.5;

nupguess = 0.5;

H*nup=Table@
densup@If@Mod@i,NxD�0,ix=Nx,ix=Mod@i,NxDD,Hi-ixL�Nx+1D,8i,1,Nx*Ny<D;*L

nup = Flatten@Table@0.5 - 0.05 * Cos@0.750 * Pi * ix + 0.375 * PiD * H-1L^HiyL,

8iy, 1, Ny<, 8ix, 1, Nx<DD;

Dimensions@nupD
8256<

H*ndown=Table@
densdown@If@Mod@i,NxD�0,ix=Nx,ix=Mod@i,NxDD,Hi-ixL�Nx+1D,8i,1,Nx*Ny<D;*L

ndown = Flatten@Table@0.5 + 0.05 * Cos@0.750 * Pi * ix + 0.375 * PiD * H-1L^HiyL,

8iy, 1, Ny<, 8ix, 1, Nx<DD;

null = Flatten@Table@0.0, 8Nx * Ny<DD;

Dimensions@nullD
8256<
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eta = 0.1;

V = 1;

deltadens = 0.10;

delta = deltadens;H*Maximum value of the SC gab-

not valid value only for testing*L
spectral@x_D := eta � Pi � Hx^2 + eta^2L;

H*the spectral funktion, the Im part of the Greens'

s function.For the homogeneous part of Hamilton *L
H*deltak@kx_,ky_D:=2.0*delta*HCos@kxD-Cos@kyDL*L
H*d-wave symetry in 2d*L
fermi@Ω_D := 1.0 � H1.0 + Exp@HΩL � kTDL;

H*The Fermi-Dirac probability distribution function,

used to find the probability that a fermion

occupies a specific quantum state in a system at

thermal equilibrium. mu included in Hamiltonian*L
NNeighbors@i_D :=

Module@8ix, iy, n1, n2, n3, n4, n1x, n2x, n3y, n4y<,

If@Mod@i, NxD � 0, ix = Nx, ix = Mod@i, NxDD;

iy = Hi - ixL � Nx + 1; If@ix + 1 > Nx, n1x = 1, n1x = ix + 1D;

n1 = 8n1x, iy<; If@ix - 1 < 1, n2x = Nx, n2x = ix - 1D;

n2 = 8n2x, iy<; If@iy + 1 > Ny, n3y = 1, n3y = iy + 1D;

n3 = 8ix, n3y<; If@iy - 1 < 1, n4y = Ny, n4y = iy - 1D;

n4 = 8ix, n4y<; 8n1x + Hiy - 1L * Nx, n2x + Hiy - 1L * Nx,

ix + Hn3y - 1L * Nx, ix + Hn4y - 1L * Nx<D;

H*Define the periodic boundary conditions for

the nearest neighbor for

the homogenius Hamiltonian*L
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NNNeighbors@i_D := Module@
8ix, iy, n1, n2, n3, n4, n1x, n1y, n2x, n2y, n3x, n3y, n4x, n4y<,

If@Mod@i, NxD � 0, ix = Nx, ix = Mod@i, NxDD;

iy = Hi - ixL � Nx + 1; If@ix + 1 > Nx, n1x = 1, n1x = ix + 1D;

If@iy + 1 > Ny, n1y = 1, n1y = iy + 1D;

n1 = 8n1x, n1y<; If@ix - 1 < 1, n2x = Nx, n2x = ix - 1D;

If@iy - 1 < 1, n2y = Ny, n2y = iy - 1D;

n2 = 8n2x, n2y<; If@ix + 1 > Nx, n3x = 1, n3x = ix + 1D;

If@iy - 1 < 1, n3y = Ny, n3y = iy - 1D;

n3 = 8n3x, n3y<; If@ix - 1 < 1, n4x = Nx, n4x = ix - 1D;

If@iy + 1 > Ny, n4y = 1, n4y = iy + 1D; n4 = 8n4x, n4y<;

8n1x + Hn1y - 1L * Nx, n2x + Hn2y - 1L * Nx,

n3x + Hn3y - 1L * Nx, n4x + Hn4y - 1L * Nx<D;

H*Define the periodic boundary conditions for

the nest nearest neighbor

in the Hamiltonian*L
SCxNNeighbors@i_D := Module@8ix, iy, n1, n2, n3, n4, n1x, n2x, n3y, n4y<,

If@Mod@i, NxD � 0, ix = Nx, ix = Mod@i, NxDD; iy = Hi - ixL � Nx + 1;

If@ix + 1 > Nx, n1x = 1, n1x = ix + 1D; n1 = 8n1x, iy<;

If@ix - 1 < 1, n2x = Nx, n2x = ix - 1D; 8n1x + Hiy - 1L * Nx, n2x + Hiy - 1L * Nx<D;H**L
SCyNNeighbors@i_D := Module@8ix, iy, n1, n2, n3, n4, n1x, n2x, n3y, n4y<,

If@Mod@i, NxD � 0, ix = Nx, ix = Mod@i, NxDD; iy = Hi - ixL � Nx + 1;

n2 = 8n2x, iy<; If@iy + 1 > Ny, n3y = 1, n3y = iy + 1D;

n3 = 8ix, n3y<; If@iy - 1 < 1, n4y = Ny, n4y = iy - 1D;

n4 = 8ix, n4y<; 8ix + Hn3y - 1L * Nx, ix + Hn4y - 1L * Nx<D;H**L
Hup = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U * ndown@@iDD + PotVal@@iDD,

If@MemberQ@NNeighbors@iD, jD, tt,

If@MemberQ@NNNeighbors@iD, jD, nt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

H*Hamiltonian for spin up with

periodic

boundary

conditions

and

interaction

with nearest

and nest nearest

neighbor*L
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Hdown = Module@8tab, i, j, ix, iy<,

tab = Table@If@i � j, -mu + U * nup@@iDD + PotVal@@iDD, If@
MemberQ@NNeighbors@iD, jD, tt, If@MemberQ@NNNeighbors@iD, jD, nt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

H*SC=

Module@8tab,i,j<,tab=Table@If@MemberQ@SCxNNeighbors@iD,jD,delta,If@MemberQ@
SCyNNeighbors@iD,jD,-delta,0.0DD,8i,1,Nx*Ny<,8j,1,Nx*Ny<DD;*LH**L

H*SCC=Conjugate@SCD;*L
H*Homo= ArrayFlatten@88Hup,NOTSC<,8NOTSC,Hdown<<D;*L

H*Eigenvalues@HomoD*L
H*Hscup= ArrayFlatten@88Hup,SC<,8SC,-Hdown<<D;*L
H*Hscdown=ArrayFlatten@88Hdown,-SC<,8-SC,-Hup<<D;*L

8Eup, EVup< = Eigensystem@HupD;

8Edown, EVdown< = Eigensystem@HdownD;

For@n = 1, n < 250, n++,

densupcalc =

Table@Total@Table@Hfermi@Eup@@nDDDL * Abs@EVup@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D ;

densdowncalc = Table@Total@Table@
fermi@Edown@@nDDD * Abs@EVdown@@n, iDDD^2,

8n, 1, Nx * Ny<DD, 8i, 1, Nx * Ny<D;

densup = densupcalc;

densdown = densdowncalc;

dens = HTotal@densupD + Total@densdownDL � HNx * NyL;

munew = mu + 0.1 * H1.0 - 0.125 - densL;

nup = 0.5 * nup + 0.5 * densup;

ndown = 0.5 * ndown + 0.5 * densdown;

mag = 0.5 * Hnup - ndownL;

Hup = Module@8tab, i, j<,

tab = Table@If@i � j, -munew + U * ndown@@iDD + PotVal@@iDD,
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If@MemberQ@NNeighbors@iD, jD, tt,

If@MemberQ@NNNeighbors@iD, jD, nt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

Hdown = Module@8tab, i, j<, tab =

Table@If@i � j, -munew + U * nup@@iDD + PotVal@@iDD,

If@MemberQ@NNeighbors@iD, jD, tt,

If@MemberQ@NNNeighbors@iD, jD, nt, 0.0DDD,

8i, 1, Nx * Ny<, 8j, 1, Nx * Ny<D; tabD;

EgsysUp = 8Eup, EVup< = Eigensystem@HupD;

Egsysdown = 8Edown, EVdown< = Eigensystem@HdownD;

mu = munew;

Print@densdownD;

Print@densupD;

Print@muD;

D

ListContourPlot@magoxplot1D
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ListContourPlot@densoxplot1D
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H*densxpos=

Flatten@Table@Total@Table@Abs@EVHscup@@n,Xpositive@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*

Table@Total@Table@Abs@EVHscup@@n,iDDD^2,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Chop@Table@fermi@EHscup@@nDDD,8n,1,Nx*Ny<DD+

Table@Total@Table@Abs@EVHscdown@@n,Xpositive@jDDDD,8n,1,Nx*Ny*2<DD,

8j,Nx*Ny+1,Nx*Ny*2<D *Flatten@
Table@Total@Table@Abs@EVHscdown@@n,iDDD,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<DD*

Chop@Table@fermi@EHscdown@@nDDD,8n,1,Nx*Ny<DD*L
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H*densypos=

Flatten@Table@Total@Table@Abs@EVHscup@@n,Ypositive@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*

Table@Total@Table@Abs@EVHscup@@n,iDDD,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Chop@Table@fermi@EHscup@@nDDD,8n,1,Nx*Ny<DD+

Table@Total@Table@Abs@EVHscdown@@n,iDDD,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Flatten@Table@Total@Table@Abs@EVHscdown@@n,Ypositive@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*Chop@Table@fermi@EHscdown@@nDDD,8n,1,Nx*Ny<DD*L
H*densxneg=

Flatten@Table@Total@Table@Abs@EVHscup@@m,Xnegative@jDDDD,8m,Nx*Ny+1,

Nx*Ny*2<DD,8j,Nx*Ny+1,Nx*Ny*2<DD*

Table@Total@Table@Abs@EVHscup@@n,iDDD^2,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Chop@Table@fermi@EHscup@@nDDD,8n,1,Nx*Ny<DD+Table@
Total@Table@Abs@EVHscdown@@m,iDDD^2,8m,Nx*Ny+1,Nx*Ny*2<DD,8i,1,Nx*Ny<D *

Flatten@Table@Total@Table@Abs@EVHscdown@@n,Xnegative@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*

Chop@Table@fermi@EHscdown@@mDDD,8m,Nx*Ny+1,2*Nx*Ny<DD;*L
H*densyneg=

Flatten@Table@Total@Table@Abs@EVHscup@@n,Ynegative@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*

Table@Total@Table@Abs@EVHscup@@n,iDDD,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Chop@Table@fermi@EHscup@@nDDD,8n,1,Nx*Ny<DD+

Table@Total@Table@Abs@EVHscdown@@n,iDDD,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Flatten@Table@Total@Table@Abs@EVHscdown@@n,Ynegative@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*Chop@Table@fermi@EHscdown@@nDDD,8n,1,Nx*Ny<DD*L
H*For@n=1,n<200, n++,

deltadensx=0.5*V*Hdensxpos+densyposL;

deltadensy=0.5*V*H-densxneg-densynegL;

densupcalc=Table@Total@
Table@Hfermi@Eup@@nDDDL*Abs@EVup@@n,iDDD^2,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D ;

densdowncalc= Table@Total@Table@fermi@Edown@@nDDD*Abs@EVdown@@n,iDDD^2,

8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D;

densup=densupcalc;

densdown=densdowncalc;

dens=HTotal@densupD+Total@densdownDL�HNx*NyL;

munew=mu+0.1*H1.0-deltaelectron-densL;

nup=0.5*nup+0.5*densup;

ndown=0.5*ndown+0.5*densdown;

mag=0.5*Hnup-ndownL;

Hup=Module@8tab,i,j<,

tab=Table@If@i�j,-munew+U*ndown@@iDD,If@MemberQ@NNeighbors@iD,jD,tt,If@
MemberQ@NNNeighbors@iD,jD,nt,0.0DDD,8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

Hdown=Module@8tab,i,j<,tab=Table@If@i�j,-munew+U*nup@@iDD,

If@MemberQ@NNeighbors@iD,jD,tt,If@MemberQ@NNNeighbors@iD,jD,nt,0.0DDD,

8i,1,Nx*Ny<,8j,1,Nx*Ny<D;tabD;

8Eup,EVup<=Eigensystem@HupD;

8Edown,EVdown<=Eigensystem@HdownD;

SC=Module@8tab,i,j<,

tab=Table@If@MemberQ@SCxNNeighbors@iD,jD,deltadensx,If@MemberQ@
SCyNNeighbors@iD,jD,deltadensy,0.0DD,8i,1,Nx*Ny<,8j,1,Nx*Ny<DD;

;
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SCC=Conjugate@SCD;

Hscup= ArrayFlatten@88Hup,SC<,8SCC,-Hdown<<D;

EigensystemHscup=8EHscup,EVHscup<=Eigensystem@HscupD;

Hscdown= ArrayFlatten@88Hdown,-SC<,8-SCC,-Hup<<D;

EigensystemHscdown=8EHscdown,EVHscdown<=Eigensystem@HscdownD;

densxpos=

Flatten@Table@Total@Table@Abs@EVHscup@@m,Xpositive@jDDDD,8m,Nx*Ny+1,

Nx*Ny*2<DD,8j,Nx*Ny+1,Nx*Ny*2<DD*

Table@Total@Table@Abs@EVHscup@@n,iDDD^2,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Chop@Table@fermi@EHscup@@nDDD,8n,1,Nx*Ny<DD+

Table@Total@Table@Abs@EVHscdown@@m,iDDD^2,8m,Nx*Ny+1,Nx*Ny*2<DD,

8i,1,Nx*Ny<D *Flatten@
Table@Total@Table@Abs@EVHscdown@@n,Xpositive@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*

Chop@Table@fermi@EHscdown@@mDDD,8m,Nx*Ny+1,2*Nx*Ny<DD;

densypos=Flatten@Table@Total@Table@Abs@EVHscup@@m,Ypositive@jDDDD,

8m,Nx*Ny+1,Nx*Ny*2<DD,8j,Nx*Ny+1,Nx*Ny*2<DD*

Table@Total@Table@Abs@EVHscup@@n,iDDD^2,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Chop@Table@fermi@EHscup@@nDDD,8n,1,Nx*Ny<DD+

Table@Total@Table@Abs@EVHscdown@@m,iDDD^2,8m,Nx*Ny+1,Nx*Ny*2<DD,

8i,1,Nx*Ny<D *Flatten@
Table@Total@Table@Abs@EVHscdown@@n,Ypositive@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*

Chop@Table@fermi@EHscdown@@mDDD,8m,Nx*Ny+1,2*Nx*Ny<DD;

densxneg=Flatten@Table@Total@Table@Abs@EVHscup@@m,Xnegative@jDDDD,

8m,Nx*Ny+1,Nx*Ny*2<DD,8j,Nx*Ny+1,Nx*Ny*2<DD*

Table@Total@Table@Abs@EVHscup@@n,iDDD^2,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Chop@Table@fermi@EHscup@@nDDD,8n,1,Nx*Ny<DD+

Table@Total@Table@Abs@EVHscdown@@m,iDDD^2,8m,Nx*Ny+1,Nx*Ny*2<DD,

8i,1,Nx*Ny<D *Flatten@
Table@Total@Table@Abs@EVHscdown@@n,Xnegative@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*

Chop@Table@fermi@EHscdown@@mDDD,8m,Nx*Ny+1,2*Nx*Ny<DD;

densyneg=Flatten@Table@Total@Table@Abs@EVHscup@@m,Ynegative@jDDDD,

8m,Nx*Ny+1,Nx*Ny*2<DD,8j,Nx*Ny+1,Nx*Ny*2<DD*

Table@Total@Table@Abs@EVHscup@@n,iDDD^2,8n,1,Nx*Ny<DD,8i,1,Nx*Ny<D *

Chop@Table@fermi@EHscup@@nDDD,8n,1,Nx*Ny<DD+

Table@Total@Table@Abs@EVHscdown@@m,iDDD^2,8m,Nx*Ny+1,Nx*Ny*2<DD,

8i,1,Nx*Ny<D *Flatten@
Table@Total@Table@Abs@EVHscdown@@n,Ynegative@jDDDD,8n,1,Nx*Ny<DD,

8j,Nx*Ny+1,Nx*Ny*2<DD*

Chop@Table@fermi@EHscdown@@mDDD,8m,Nx*Ny+1,2*Nx*Ny<DD;

munew=mu;

Print@muD;

Print@deltadensxD;

Print@deltadensyD;

Print@nupD;

Print@ndownD;

D*L
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(*DOS without superconductivity*)

DOS := Module@8n, i, w, en, dos, spectralup, spectraldown,

normalizationup, normalizationdown, absEVup, absEVdown<,

dos = Table@0.0, 8en, 1, wsteps<D;

w = Table@0.0, 8en, 1, wsteps<D;

For@n = 1, n < Nx * Ny + 1, n++, For@en = 1, en < wsteps + 1, en++,

normalizationup = Hen - 1 - wsteps � 2L * dwdos - Eup@@nDD;

normalizationdown = Hen - 1 - wsteps � 2L * dwdos - Edown@@nDD;

w@@enDD = Hen - 1 - wsteps � 2L * dwdos; i = 1;

If@Abs@normalizationupD < 20.0 * eta ÈÈ
Abs@normalizationdownD < 20.0 * eta, absEVup =

Abs@EVup@@n, iDDD^2; absEVdown = Abs@EVdown@@n, iDDD^2;

spectralup = spectral@normalizationupD;

spectraldown = spectral@normalizationdownD; dos@@enDD =

dos@@enDD + absEVup * spectralup + absEVdown * spectraldown,

dos@@enDD = dos@@enDDDDD; Chop@dosDDH**L
ListLinePlot@DOS, PlotRange ® AllD

100 200 300 400

0.2

0.4

0.6

PotVal

Dimensions@plottestD
816, 16<

ListContourPlot@plottestD
densup

LSCOonelayerox.nb    11



ListContourPlot@magoxplotD
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ListContourPlot@potplotD
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