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Abstract

Gas disks around binaries are ubiquitous in the universe, naturally arising

during the formation of binary stars and playing an important role in the

mergers of black holes. The interaction of these circumbinary disks with the

binary still holds many open questions that are important for understanding

how populations of binaries are sculpted and also the observable signatures of

these systems. Recent numerical simulations of these systems have discovered

a number of surprising features in the response of the gas disk to the binary’s

gravitational potential, including the growth of eccentric modes in the gas disk.

These eccentric features have important consequences for binary evolution

and observability, yet the physical means for their generation is still poorly

understood.

This thesis provides an overview of the differential equations governing eccen-

tricity growth in a circumbinary gas disk. Equations governing the eccentricity

evolution of adiabatic and isothermal disks, 2d and 3d disks, circumprimary

and circumbinary disks are presented. The eccentricity equation is solved for

a locally isothermal circumbinary disk. The number of modes such a disk

can support in terms of the disk thickness and the binary mass ratio is found.

Properties of elementary and higher order modes are explained. The effect of

the disk density distribution on the disk eccentricity is discussed.
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Part I

Introduction

In this thesis, we explore gas disks in binary systems. Specifically, we describe

the evolution of such a disk through the evolution of its eccentricity.



Binary-disk systems

We first explain the importance of binary systems and disks and what part the

eccentricity of the disk plays in the evolution of such systems.

A binary is a system of two objects that are gravitationally bound. Since all

astrophysical objects interact gravitationally, binaries can range from asteroid

binaries to supermassive black hole binaries. Some of them are well observed,

such as star-planet binaries. Another example is stellar binaries; Tian et al.
(2018) estimate that up to 80% of 0.15 million observed dwarf stars form a

binary system. The existence of solar mass black hole binaries was confirmed

by their merger; LIGO ( Laser Interferometer Gravitational-Wave Observatory)

detected gravitational waves radiated by such mergers (The LIGO Scientific

Collaboration et al., 2021). The existence of supermassive black hole binaries

is not yet confirmed but will be tested by upcoming low-frequency GW experi-

ments such as LISA (Laser Interferometer Space Antenna)(e.g., Amaro-Seoane

et al., 2022) and PTA (Pulsar Time Arrays) (e.g., Arzoumanian et al., 2020;

Lommen, 2012).

Stars and planets are formed out of gas in gas rich environments, so we expect

gas to be present around them and to influence the dynamics of the system.

One example is a planet embedded in a disk around a star; the planet can

grow in mass (because it accretes gas from the disk), and can migrate inwards

(because of angular momentum lost to friction between the planet and the

disk) (Duffell et al., 2020a). In general, an accreting disk can change binary

parameters, such as binary eccentricity, binary mass ratio, or binary separation

(Bogdanovic et al., 2021). Since observational properties of the binary depend

on its orbital properties, the detectability of a binary is influenced by the

disk. The binary can also change the eccentricity and precession frequency of

the accretion disk (D’Orazio et al., 2016). Since the eccentricity evolution of

the disk depends on binary parameters, observations of the disk can provide

information on the binary. In addition, black holes can be observed in the EM

spectrum only if they are accreting gas, and the EM signal properties depend

on the disk orbital parameters (D’Orazio et al., 2013).

Disks around massive black hole binaries (MBHBs) are interesting because they

could provide a way for a MBHB merger to be detected in two different ways.
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First, a space based gravitational wave detector LISA (Laser Interferometer

Space Antenna) should be able to detect gravitational waves with frequencies

in range of MBHB merges (10−4 − 10−6 Hz) ((w.g., Amaro-Seoane et al., 2017;

Klein et al., 2016). Furthermore, those mergers could be observed in the

electromagnetic spectrum as well (Bogdanovic et al., 2021). However, the

possibility of those mergers is under question and is known as the final parsec

problem. Gravitation radiation can cause MBHB merger on timescales shorter

than the Hubble time, but only if the black holes are separated by less than

roughly one-tenth of a parsec. Dynamical friction between the MBH and the

stars surrounding them can only explain how the binary separation gets down

to a few parsecs (Begelman et al., 1980). A process that might make it possible

for the binary separation to go from a few parsecs down to less than a parsec is

an angular momentum transfer involving a circumbinary disk and circumsingle

disks around each black hole (e.g., MacFadyen and Milosavljević, 2008; Cuadra

et al., 2009). Another problem is the value of the Hubble constant; there is

a disagreement between the values of the Hubble constant obtained in two

different indirect ways (Perivolaropoulos and Skara, 2022). The detection

of electromagnetic waves and gravitational waves from the same source is a

direct way of calculating the Hubble constant (Bogdanovic et al., 2021). As we

mentioned, a good candidate for an accreting MBHB.

Ways to approach the problem.

In this thesis, we use hydrodynamic equations to derive an equation that

determines the evolution of the disk eccentricity, and we use analytical and

semi-analytical methods to solve that equation. We now briefly explain the

motivation for choosing this approach.

There are two main categories of approaches one can choose to use to further

the understanding of a binary-disk system; numerical simulations and analyt-

ical formulations of the problem. For example, works such as D’Orazio et al.
(2016) and D’Orazio and Duffell (2021) use numerical simulations to show

that the disk influences the evolution of the binary and vice versa.

The main motivation is to understand binary-disk systems intuitively. Simula-

tions provide results on how a disk will behave in given conditions, but they do
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not provide us with an explanation as to why the disk behaves that way. There-

fore, to gain physical insight, we turn to an analytic approach. The basis for an

analytical approach to the eccentricity problem was laid out by Goodchild and

Ogilvie (2006) and expanded by, among many others, Teyssandier and Ogilvie

(2016). They formulated eccentricity equations for accretion disks, showing

the physical processes behind the disk’s evolution. This formulation of the disk

eccentricity problem is used because it applies to a wide range of binary disk

systems; both adiabatic (Goodchild and Ogilvie, 2006) and locally isothermal

disks (Muñoz and Lithwick, 2020); on both circumsingle (Goodchild and

Ogilvie, 2006) and circumbinary disks (Teyssandier and Ogilvie, 2016); on

both steady disks (Muñoz and Lithwick, 2020) and disks that did not yet reach

a steady state (Goodchild and Ogilvie, 2006); on both both 2d and 3d disks

(Teyssandier and Ogilvie, 2016).

Another motivating factor is our wish to compare the behavior of disks with

a great variety of different settings so we need to solve multiple different

eccentricity problem settings efficiently. Currently, the usage of numerical sim-

ulations of accretion disks is limited because the method is time-consuming,

making it hard to explore many different subsets of possible physical parame-

ters. In comparison, using a trustworthy analytical approach makes it possible

to quickly consider a virtually arbitrarily large subset of any parameter or even

all of them.

There is another limit imposed on numerical simulations we wish to find a

way around; the span of physical parameters. So far, only relatively thick disks

have been explored utilizing numerical simulations. Simulations of thin disks

require higher resolution and can result in loss of stability in employed the

numerical methods (Tiede et al., 2020).

To summarize, if we can describe the physics of accretion disks for disk settings

used in numerical simulations and results from both approaches are consistent,

then we are in a position to apply the same analytical approach to disks in

ranges that numerical simulations did not tackle yet.

6



Layout of the thesis.

First, in chapter (1), we show how the orbit of a precessing body can be

described using eccentricity. In chapter (2), we derive in detail the eccentricity

equation for a 2d adiabatic disk. Next, in chapter (3), we show how to use

a straightforward procedure and results for adiabatic 2d disk to derive the

eccentricity equation for a 2d locally isothermal disk. We also write results

for 3d disks. Then, in chapter (4), we explain how to adapt the eccentricity

equation for disks in different locations; Within and outside the orbit of the

binary. After that, in chapter (5), we list some of the known mechanisms that

cause damping or excitation of the eccentricity and explain how to include

these effects in the eccentricity equation. In chapter (6), we derive boundary

conditions for eccentricity equations. Finally, in chapter (7.1), we define a

stationary eccentricity solutions and show how to write a stationary eccentricity

solution in the form of a Schrödinger equation.

In essence, part II provides a cookbook for writing the eccentricity equation for

any combination of the disk type, forcing effects, and the disk’s location. Once

this is done, we are ready to choose a disk setting and solve the eccentricity

equation.

In part III, we focus on stationary eccentricity solutions for a locally isothermal

circumbinary disk.

In chapter (8), we analyze the work done by Muñoz and Lithwick (2020) for

several reasons. First, we use it as an example of how the prescription form

part II is used to formulate the eccentricity problem. In part II, we show how

to write the eccentricity problem, but we do not show any methods for solving

it. Therefore, we use Muñoz and Lithwick (2020) analysis to learn a numerical

method of solving the boundary value problem and to learn a semi-analytical

method of finding solutions to Schrödinger equation. We then reproduce

solutions from Muñoz and Lithwick (2020) to verify that our understanding of

the methods is correct, and to gain an insight of what the solutions mean.

To analyze a locally isothermal circumbinary disk in more detail, we focus our

attention to areas unexplored by that paper (Muñoz and Lithwick, 2020). In

chapter (9), we look for eccentricity solution for thinner disks and for disks

7



around binaries whose components have vastly different masses. In chapter

(10), we look for the number of possible solutions of the eccentricity problem,

and find how that number depends on the parameters of the disk and the

binary. In chapter (11), we show how solutions of the eccentricity problem

depend on the density distribution within the disk.
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Part II

Eccentricity equations





1Eccentricity as a way of
describing the orbit

1.1 Binary orbit

We are interested in systems consisting of a binary and a disk. A binary is a

system of two gravitationally bound objects. The more massive binary object

is called the primary, its mass is Mp, and its position is r⃗p. The less massive

binary object is called the secondary, its mass is Ms, and its position is r⃗s. In

the absence of outer forces acting on the binary, the binary motion is co-planar

(the motion of both bodies is in the same plane at all times), and we can

describe it with a 2d coordinate system. We choose the polar coordinate

system (Appendix A). We put the binary center of mass in the origin so that:

Mpr⃗p +Msr⃗s = 0⃗. (1.1)

From equation (1.1), it follows that the angle between the position of the

primary and the secondary is always π:

∠(r⃗p, r⃗s) = π. (1.2)

In general, both the primary and the secondary move in ellipses of eccentricity

e. We choose the reference direction (for which ϕ = 0) as the direction of the

maximum distance of the primary from the origin. If the semi-major axis of

the primary is ap, its orbit is:

rp(ϕ) = ap (1 − e2)
1 − e cosϕ. (1.3)

If the semi-major axis of the secondary is as, its orbit is:

rs(ϕ) = as (1 − e2)
1 − e cos (ϕ+ π) . (1.4)
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We define the binary mass ratio as:

q ≡ Ms

Mp
, (1.5)

which is always in range:

0 ≤ q ≤ 1. (1.6)

Equations (1.1) and (1.5) allow us to write the ratio of primary and secondary

semi-major axis as:
ap

as
= Ms

Mp
= q. (1.7)

We define binary separation as a:

a ≡ ap + as, (1.8)

which is the mean value of the maximum and minimum separation of the

primary and the secondary. Total mass of the binary is:

M ≡ Mp +Ms. (1.9)

The orbital frequency of both the primary and the secondary around the origin

(binary orbital frequency) is:

Ωb = GM

a3 . (1.10)

Binary orbit for q = 0.5 and e = 0.75 is illustrated in figure (1.1).
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M2

M1

r1

r2

(0, 0)

ϕ
ϕ+ π

2a2

2a1

Figure 1.1.: Orbits of the primary (pink) and the secondary (blue) binary component.
The center of mass is fixed in the origin. The primary and the secondary
revolve the center of mass in similar ellipses of eccentricity e = 0.75. The
binary mass ratio is q = 0.5, so the semi-major axis of the secondary is
twice the size of the semi-major axis of the primary (equation (1.7)).
The angle between the position of the primary and the secondary is
always 180◦, so the elliptical orbit of the secondary is rotated by 180◦

with respect to the orbit of the primary.

1.2 A disk around a binary

A gaseous disk can interact with the binary. Depending on the location of

such a disk, we can distinguish between two types of disks; circumbinary

disks and circumsingle disks. A circumbinary disk orbits both the primary and

the secondary object. A circumsingle disk is a disk orbiting only one of the

binary objects. If the circumsingle disk orbits the primary object, it is called

a circumprimary disk. If the circumsingle disk orbits the secondary object,

it is called a circumsecondary disk. A binary-disk system can contain any

combination of these three disks. We assume that the midplane of the disk

lies in the same plane as the binary at all times and we can use the coordinate

system as illustrated in figure (1.1) to model the binary-disk system. A simple

1.2 A disk around a binary 13



visualisation of a system with a binary and all three disks types is drawn in

figure 1.2.

the primary

the secondary

a circumprimary disk

a circumsecondary disk

a circumbinary disk

Figure 1.2.: Three types of disks based on their location; a circumprimary disk is cen-
tered at the location of the primary; a circumsecondary disk is centered
at the location of the secondary; a circumbinary disk is centered at the
binary center of mass.

The pressure of the disk is p(r, ϕ, t), its density is Σ(r, ϕ, t). The gravitational

potential is Φ(r, ϕ, t). The radial velocity of a disk fluid element is u(r, ϕ, t), its

angular velocity is v(r, ϕ, t), so the total velocity vector of a disk fluid element

is:

V⃗ = ur̂ + vϕ̂. (1.11)

1.3 Disk evolution as a function of
eccentricity

The orbit of each fluid element of a gaseous disk can be written in a way similar

to equations (1.3) and (1.4). Meaning, its orbit rD(ϕ, t) could be expressed

in terms of semi-major axis aD, eccentricity eD, and the angle of the orbit

pericenter αD:

rD(ϕ) = aD (1 − e2
D)

1 − eD cos (ϕ− αD) . (1.12)

However, unlike a point mass primary/secondary, the disk is spread out over

a range of radii. Moreover, the disk is influenced by forces other than the

central gravity force, such as non-central gravity or viscous and pressure forces.
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This means that, in general, all orbit parameters such as eccentricity eD vary

within the disk. Therefore, the disk can be divided into ellipses of infinitesimal

width, each of which has a different eccentricity, orientation, and angular

frequency. In this part, we derive an equation that describes the radial and

time dependence of the eccentricity within the disk. From now on, we call

that equation the eccentricity equation.

In chapter (2), we derive the eccentricity equation for a 2d adiabatic disk whose

behavior is governed by only two forces; the force caused by the pressure

gradient within the disk and the force caused by the gravitation potential of

the binary. We ignore self-gravity, viscosity, and any other possible mechanisms

of eccentricity damping and eccentricity forcing. Then, in chapter (3), we

show how to modify the eccentricty equation for a 2d isothermal disk and

3d disks. Next, in chapter (4), we discuss the gravitational potential of the

binary and how this affects the eccentricity equations for a circumbinary and

a circumsingle disk. After that, in chapter (5), we list eccentricity damping

and eccentricity forcing possibilities and explain how to add those terms to the

eccentricity equation. Finally, in chapter (6), we derive boundary conditions

for the eccentricity equation.
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2Unforced eccentricity
equation for a 2d adiabatic
disk

In order to find the unforced eccentricity equation for 2d adiabatic disks, we

use the procedure described in Goodchild and Ogilvie (2006). We can sum up

the procedure as:

• In section (2.1), we use the mass continuity equation, Newton’s second

law of motion, and the adiabatic gas equation of state to find a system of

four equations that describe the disk.

• Next, in section (2.2), we define an unperturbed state. We find what

equations from section (2.1) look like for the unperturbed state.

• In section (2.3), we define a new order parameter ϵ < 1, and use it to

expand the unperturbed state in a power series:

Xunp =
∑

k

ϵkXunp,k.

We then find what the two lowest expansion terms’ equations from

section (2.2) look like.

• In section (2.4), we introduce perturbations in such way that the total

value of each quantity X can be written as:

X = Xunp +Xperturbation.

The form of those perturbations is:

Xperturbation = X ′e−iϕ.
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We then find what the perturbed state’s equations from section (2.1) look

like.

• In section (2.5) we expand the perturbed state in terms of ϵ, just like we

did with the unperturbed state:

X ′ =
∑

k

ϵkX ′
k.

This allows us to define the eccentricity function in terms of perturbed

quantities. Finally, we solve this chapter’s full set of equations to find an

eccentricity equation that depends only on the disk’s unperturbed state

values.
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2.1 Disk governing equations

2.1.1 The continuity equation

The continuity equation shows how a quantity y and its flux Y⃗ are influenced

by the generation of that quantity σy:

∂y

∂t
+ ∇⃗ · Y⃗ = σy. (2.1)

We can use the continuity equation for density:

y = ρ, (2.2)

with a density flux:

Y⃗ = ρv⃗. (2.3)

Since the total mass is conserved, the density generation function is:

σρ = 0, (2.4)

so the density continuity equation is:

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0. (2.5)

We rewrite equation(2.5) using the product rule:

∂ρ

∂t
+ v⃗ · (∇⃗ρ) + ρ(∇⃗ · v⃗) = 0. (2.6)

Now we use equations (1.11), (A.9) and (A.10) to write equation (2.6) as:

∂ρ

∂t
+
[
ur̂ + vϕ̂

] [∂ρ
∂r
r̂ + 1

r

∂ρ

∂ϕ
ϕ̂

]
+ ρ

[
1
r

∂

∂r
(ru) + 1

r

∂v

∂ϕ

]
= 0. (2.7)

We now use equation (A.8) to write:

∂ρ

∂t
+ u

∂ρ

∂r
+ v

r

∂ρ

∂ϕ
= −ρ

r

[
∂

∂r
(ru) + ∂v

∂ϕ

]
, (2.8)

which is a mass conservation equation in polar coordinates.
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2.1.2 Equations of motion

Newton’s second law of motion shows how the momentum of a body of mass

m changes when it is influenced by force F⃗ :

m
dv⃗

dt
= F⃗ . (2.9)

We write mass in terms of volume V and density ρ:

m = V ρ, (2.10)

and define force volume density as:

f⃗ ≡ F⃗

V
, (2.11)

to write equation (2.9) as:

ρ
dv⃗

dt
= f⃗ . (2.12)

We consider two forces; gravity and the force caused by the pressure gradient

in the disk:

f⃗ = −∇⃗p− ρ∇⃗Φ. (2.13)

If we write the Lagrangian time derivative as:

d

dt
= ∂

∂t
+ (v⃗ · ∇⃗), (2.14)

the motion equation in vector form becomes:

ρ

[
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

]
= −∇⃗p− ρ∇⃗ϕ. (2.15)

Equation (2.15) is the momentum vector continuity equation, its radial com-

ponent is:
∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂ϕ
− v2

r
= −1

ρ

∂p

∂r
− ∂Φ
∂r
, (2.16)

and its azimuthal component is:

∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂ϕ
+ uv

r
= − 1

ρr

∂p

∂ϕ
− 1
r

∂Φ
∂ϕ

. (2.17)
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Equation (2.16) is the radial momentum continuity equation. If there were no

radial forces, the total radial momentum of a fluid element would be conserved.

Similarly, equation (2.17) is the angular momentum continuity equation. If

there were no radial forces, the total angular momentum of a fluid element

would be conserved.

2.1.3 Adiabatic equation of state

A thermodynamic equation of state says that thermodynamic parameters of

a fluid (pressure p, volume V , and temperature T ) are not all mutually

independent: Its general form is:

f(p, V, T, n) = 0. (2.18)

The general equation of state for an ideal gas is:

pV − nRT = 0. (2.19)

For an ideal gas undergoing an adiabatic or isothermal process, the equation

of state is barotropic, meaning the pressure is a function of density only:

p = p(ρ). (2.20)

The equation of state for an ideal adiabatic gas is:

p = Kργ. (2.21)

Constant γ is called the adiabatic index, its value depends mostly on the gas

composition, but it also a function of temperature. Here, we assume that there

is no temperature dependence and that γ is a function of disk composition

only. K is a constant throughout the process, and its value depends on the

system in question. It can be determined if at any point in time, we know the

pressure, density and the adiabatic constant. We do not know the value of K,

but we can use a trick to write a gas equation that does not include K. First,

we use equation (2.14) to write:

dρ

dt
= −ρ(∇⃗ · v⃗). (2.22)
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Next, we use equations (2.21) and (2.22) to write the time derivative of

pressure as:

dp

dt
= dp

dρ

dρ

dt
= Kργ−1γ(−ρ)(∇⃗ · v⃗) = −γp∇⃗ · v⃗ = −γp

r

[
∂(ru)
∂r

+ ∂v

∂ϕ

]
. (2.23)

We then use 2.14 to write the time derivative of pressure in another form:

dp

dt
= ∂p

∂t
+ (v⃗ · ∇⃗)p = ∂p

∂t
+ u

∂p

∂r
+ v

r

∂p

∂ϕ
. (2.24)

Finally, we compare equations (2.23) and (2.24), to write:

∂p

∂t
+ u

∂p

∂r
+ v

r

∂p

∂ϕ
= −γp

r

[
∂(ru)
∂r

+ ∂v

∂ϕ

]
. (2.25)

Equation (2.25) is a continuity equation for pressure in polar coordinates and

shows how the velocity of a fluid can generate pressure.

2.1.4 Disk equations

To sum this section up, we found four equations for the density, radial velocity,

angular velocity, and the pressure of a disk fluid element.

Four equations in polar coordinates that determine the behaviour of a

2d adiabatic disk

∂ρ

∂t
+ u

∂ρ

∂r
+ v

r

∂ρ

∂ϕ
= −ρ

r

[
∂

∂r
(ru) + ∂v

∂ϕ

]
(2.26a)

∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂ϕ
− v2

r
= −1

ρ

∂p

∂r
− ∂Φ
∂r

(2.26b)

∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂ϕ
+ uv

r
= − 1

ρr

∂p

∂ϕ
− 1
r

∂Φ
∂ϕ

(2.26c)

∂p

∂t
+ u

∂p

∂r
+ v

r

∂p

∂ϕ
= −γp

r

[
∂(ru)
∂r

+ ∂v

∂ϕ

]
(2.26d)

Because an ellipse is a perturbed circle, we want to write the orbit of the disk

in terms of a perfectly circular orbit (unperturbed state) and a perturbation to

that orbit.
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2.2 Unperturbed state of the disk

Since we want an unperturbed state to describe a circular orbit, we define it

as the state of a disk that satisfies five conditions. The first condition says that

the Eulerian time derivative is zero:

∂

∂t
= 0. (2.27)

Solutions that do not explicitly depend on time are called steady state solutions,

and equation (2.27) is called the steady-state condition. The second condition

is axial symmetry:
∂

∂ϕ
= 0, (2.28)

the third condition is the lack of radial motion:

u = 0. (2.29)

and the fourth condition is that there is no vertical motion. For a non-self

gravitating disk, this leads to (Appendix F):

punp ∝ ρunp(H/r)2, (2.30)

where H is the disk’s characteristic thickness.

We now apply steady basic state conditions on equations (2.26). The only

non-trivial equation is equation (2.26b) and it reduces to:

−
v2

unp

r
= − 1

ρunp

∂punp

∂r
− ∂Φunp

∂r
. (2.31)

To sum up, in this section we learned that the unperturbed state of the disk

can be described with a single equation.

Unperturbed state of a 2d adiabatic disk.

−
v2

unp

r
= − 1

ρunp

∂punp

∂r
− ∂Φunp

∂r
(2.32)

Equation (2.32) simply states that if there are two radial forces acting on a

fluid element, and if the fluid element is in a steady state, then the sum of

those two forces has to be balanced out by the centripetal force.
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2.3 Series expansion of the unperturbed
state

Functions u(r, ϕ, t), v(r, ϕ, t), ρ(r, ϕ, t), Φ(r, ϕ, t), and p(r, ϕ, t) are unknown

functions of radius. We expand those functions in a series and approximate

them with their lowest two non-zero terms. Before we can do that, we need

to choose an appropriate order parameter ϵ. Since we already found that

p ∝ ρ(H/r)2, and for a thin disk we have H/r < 1, a good choice is:

ϵ ≡ H/r. (2.33)

For X = u, v, ρ, p,Φ, p, we write:

Xunp =
∑
k≥0

ϵkXunp,k. (2.34)

There is no a priori reason for the disk to be asymmetric with respect to z = 0,

so we write:

X(−H) = X(H). (2.35)

For equation (2.35) to be true, in expansion (2.34) all odd powers of ϵ have to

be zero so:

Xunp =
∑

k≥0,even

ϵkXunp,k. (2.36)

In Appendix C we find lowest two nonvanishing terms of expansion for all

quantities. Those are:

vunp = v0 + v2ϵ
2

ρunp = ρ0 + ρ2ϵ
2

Φunp = Φ0 + Φ2ϵ
2

punp = p2ϵ
2 + p4ϵ

4.

(2.37)

Now we put (Appendix C) equations (2.37) in the unperturbed state equation

that we have obtained (equation (2.32)):

−v2
0 + 2v0v2ϵ

2

r
= −1

ρ0

∂p2ϵ
2

∂r
+ ∂(Φ0 + ϵ2Φ2)

∂r
. (2.38)
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We can define two new functions as:

Ω0 ≡ v0

r
, (2.39)

and

Ω2 ≡ v2

r
. (2.40)

This allows us to write the lowest order (ϵ0) of equation (8.10) as:

rΩ2
0 = ∂Φ0

∂r
, (2.41)

and the next order (ϵ2) of equation (8.10) as:

2rΩ0Ω2 = ∂Φ2

∂r
+ 1
ρ0

∂p2

∂r
. (2.42)

Two lowest order equation for the unperturbed state of a 2d adiabatic

disk

rΩ2
0 = ∂Φ0

∂r
(2.43a)

2rΩ0Ω2 = ∂Φ2

∂r
+ 1
ρ0

∂p2

∂r
(2.43b)

Equation (2.43a) says that in lowest approximation, the motion of the fluid is

the motion of a particle in a gravitational field of point mass. Equation (2.43b)

says that a non point binary mass distribution and the pressure of the disk

change the angular velocity of the fluid element. In any case, the total motion

of the disk fluid particle is angular, and higher orders of the unperturbed state

expansion just change the magnitude of the angular velocity.

The definition of angular velocity

We should keep in mind that with Ω0 defined as (2.39), and Ω2 defined as

(2.40):

Ωunp ̸= Ω0 + ϵ2Ω2 = v2
0
r

+ ϵ2v
2
2
r
. (2.44)
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To see this, we write:

Ωunp = v2

r
= (v0 + ϵ2v2)2

r
= v2

0 + 2ϵ2v0v2 + ϵ4v2
2

r

= rΩ0 + 2rΩ0Ω2ϵ
2.

(2.45)

However, if we were to define Ω00 as:

Ω00 ≡ v2
0
r
, (2.46)

and Ω22 as:

Ω22 ≡ 2v0v2

r
, (2.47)

we could write:

rΩ2
00 = ∂Φ0

∂r
, (2.48)

rΩ22 = ∂Φ2

∂r
+ 1
ρ0

∂p2

∂r
, (2.49)

and:

Ωunp = Ω00 + ϵ2Ω22. (2.50)

2.4 Disk in a perturbed state

We introduce perturbations to the unperturbed state. In analogy to the binary

eccentric orbit, we allow disk perturbations to have both radial and angular

dependency. The perturbation need to satisfy:

Xperturbation(r, ϕ = 0) = Xperturbation(r, ϕ = 2π), (2.51)

so we can write it as a fourier series of a function that is periodic in ϕ with a

period P = 2π:

Xperturbation =
∑

fn(r)einϕ (2.52)

Term n = 0 results in a radially symmetic movement. Term n = 1 results in

a motion with two angular turning points. Temrs n ≥ 2 result in n angular

turning points. Since we are looking for a solution that is simillar to an ellipse,

the only term we can work with is n = 1. We rename the radial part as:

f1(r) = X ′(r), (2.53)
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to write the perturbation as:

Xperturbation = X ′(r)e−iϕ. (2.54)

The total state of every quantity X is then:

X = Xunp +Xperturbation = Xunp +X ′e−iϕ. (2.55)

So, the total velocity, pressure and density can be written as:

u = uunp + u′e−iϕ = 0 + u′e−iϕ = u′e−iϕ, (2.56)

v = vunp + v′e−iϕ, (2.57)

p = punp + p′e−iϕ, (2.58)

and

ρ = ρunp + ρ′e−iϕ (2.59)

where unperturbed values are given in the previous section. We use equations

(2.56), (2.57), (2.58), (2.59), and equations 2.26 to get equations for per-

turbed values. We keep ( Appendix D) only the lowest two orders of those

expressions:

Equations for perturbed quantities of a 2d adiabatic disk

∂u′

∂t
− iu′Ωunp + 2Ωunpv

′ = − 1
ρunp

∂p′

∂r
+ ρ′

ρ2
unp

∂punp

∂r
(2.60a)

∂v′

∂t
− iv′Ωunp + u′

r

∂

∂r
(r2Ωunp) = ip′

rρunp
(2.60b)

∂ρ′

∂t
− iρ′Ωunp + u′∂ρunp

∂r
= −ρunp

r

∂(ru′)
∂r

− iv′

 (2.60c)

∂p′

∂t
− ip′Ωunp + u′∂punp

∂r
= −γpunp

r

[
∂(ru′)
∂r

− iv′
]

(2.60d)
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2.5 Series expansion of the perturbed
state

A result that will be useful in further derivations is:

∂

∂r

(
r2Ω0

)
= ∂

∂r

(
r2

√
GMr−3/2

) 1
2

√
GMr−1/2 = 1

2rΩ0. (2.61)

We expand every perturbation X ′ in a series just like we did with the unper-

turbed state:

X ′ = X ′
0 +X ′

2ϵ
2. (2.62)

Now we find lowest two orders of equations (2.60a)-(2.60d). To do that, we

need an estimate of the magnitude of ∂/∂t. We take it to be of the order ϵ2.

Lowest (ϵ0) order of equation (2.60a) is:

−iv0u
′
0

r
− 2v0v

′
0

r
= 0 (2.63)

Lowest (ϵ0) order of equation (2.60b) is:

−iv0v
′
0

r
− 1

2
v0u

′
0

r
= 0 (2.64)

Both of these equations lead to a proportionality of radial and angular velocity

perturbations:

u′
0 = i

1
2v

′
0. (2.65)

The radial velocity of a fluid element is:

u ≈ uunp + Re(u′
0e

−iϕ) = Re(u′
0e

−iϕ). (2.66)

The angular velocity of a fluid element is:

v ≈ vunp + Re(v′
0e

−iϕ) = Ω0r + 1
2Ω0

[
∂Φ2

∂r
+ 1
ρ0

∂p2

∂r

]
− Re(2iu′

0e
−iϕ)

= Ω0r

[
1 + 1

2Ω0

[
∂Φ2

∂r
+ 1
ρ0

∂p2

∂r

]
+ Re(2iu′

0
Ω0r

e−iϕ)
]
,

(2.67)

so the ratio of the two is:

u

v
= Re(u′

0e
−iϕ)

Ω0r
[
1 + 1

2Ω0

[
∂Φ2
∂r

+ 1
ρ0

∂p2
∂r

]
+ Re(2iu′

0
Ω0r

e−iϕ)
] . (2.68)
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For an ellipse:

rD(ϕ) = aD (1 − e2
D)

1 − eD cos (ϕ− αD) , (2.69)

we can write:
dr

dt
= dr

dϕ

dϕ

dt
, (2.70)

so:

u

v
= dr

dϕ
= aD (1 − e2

D)
(1 − eD cos (ϕ− αD))2 sin (ϕ− αD)

≈ dr

dϕ
= aD sin (ϕ− αD)

1 − 2eD cos (ϕ− αD) .
(2.71)

Comparing equations (2.68) and (2.71), we can see that we can define the

eccentricity of a fluid element as:

eD ≡ −iu′
0

Ω0r
. (2.72)

We call a function that describes the disk eccentricity at any location and at

any time the eccentricity equation E(r, t). To find that function, we use all

perturbed and unperturbed equations, and eliminate all perturbed quantities

except for perturbed velocity. Then we replace velocity with eccentricity

(equation (2.72)) (Appendix D). Finally, we get an eccentricity equation:

Unforced eccentricity equation for a 2d adiabatic disk

2rΩ∂E
∂t

= −iE

r

∂

∂r

(
r2∂Φ2

∂r

)
+ iE

ρ

∂p

∂r
+ i

r2ρ

∂

∂r

[
γpr3∂E

∂r

]
, (2.73)

where all unsubscribed values are the lowest order unperturbed values, mean-

ing

Ω = Ω0,

p = p2

ρ = ρ0.

(2.74)
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3Unforced eccentricity
equations for other disks

3.1 A locally isothermal 2D disk

The procedure of deriving the eccentricity equation for a locally isothermal disk

is identical to that of an adiabatic disk. So instead of carefully calculating every

step, we just show what adjustments have to be made to relevant equations

from Part II, Chapter 2. We then use those modified equations to derive the

eccentricity equation. The isothermal equation of state is:

p = ρc2
s , (3.1)

where cs is sound speed.

Since, unlike with adiabatic equation, there is no unknown constant that we

need to find a way to get rid of, we just plug equation (3.1) into equations

(2.26a),(2.26b) and (2.26c):

Three equations that determine the behaviour of a locally isothermal

disk

∂ρ

∂t
+ u

∂ρ

∂r
+ v

r

∂ρ

∂ϕ
= −ρ

r

[
∂

∂r
(ru) + ∂v

∂ϕ

]
(3.2a)

∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂ϕ
− v2

r
= −1

ρ

∂ (ρc2
s )

∂r
− ∂Φ
∂r

(3.2b)

∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂ϕ
+ uv

r
= − 1

ρr

∂ (ρc2
s )

∂ϕ
− 1
r

∂Φ
∂ϕ

(3.2c)

Unperturbed state conditions (equations (2.27)) reduce the above set of

equation to a single one:

31



Unperturbed state of a 2d locally isothermal disk

−
v2

unp

r
= − 1

ρunp

∂ (ρunpc
2
s )

∂r
− ∂Φunp

∂r
(3.3)

We know (vertical hydrostatic equilibrium) that:

p = c2
sρ, (3.4)

and that c2
s ∝ H/r so the only part of the pressure that we can perturb is the

density:

p′ = c2
sρ

′. (3.5)

Using the same procedure we used for for the adiabatic disk, we get:

Equations for the perturbed state of a 2d locally isothermal disk

∂u′

∂t
− iu′Ω + 2Ωv′ = − 1

ρunp

∂ (c2
sρ

′)
∂r

+ ρ′

ρ2
unp

∂ (c2
sρunp)
∂r

= −c2
s
∂

∂r

(
ρ′

ρ

) (3.6a)

∂v′

∂t
− iv′Ω + u′

r

∂

∂r
(r2Ω) = ic2

sρ
′

rρunp
(3.6b)

∂ρ′

∂t
− iρ′Ω + u′∂ρunp

∂r
= −ρunp

r

∂(ru′)
∂r

− iv′

 (3.6c)

Just like for a 2d adiabatic disk, the lowest order of equations for perturbed

quantities ((ϵ0) order of equation (3.6a) and (3.6b)) gives:

u′
0 = 2iv′

0. (3.7)

We define eccentricity E(r, ϕ, t) of a 2d isothermal disk in the same way we

did for the adiabatic one:

u′
0 = irΩ0E,

v′
0 = 1

2rΩ0E.
(3.8)

Applying a procedure similar top the one for the adiabatic disk (Appendix E),

we get the eccentricity equation for a 2d isothermal disk:
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Unforced eccentricity equation for a 2d locally isothermal disk

2r2ρ0Ω0
∂E

∂t
= −iρE ∂

∂r

[
r2∂Φ2

∂r

]
+ i

r

∂

∂r

(
ρc2

sr
3∂E

∂r

)
+ irE

∂(ρ0c
2
s )

∂r

− i

r

∂

∂r

(
ρ0Er

3∂c
2
s

∂r

)
.

(3.9)

3.2 Comparison of eccentricity equations
for 2d adiabatic and 2d isothermal
disks

In this section, we point out the differences between eccentrcity equations for

adiabatic and isothermal disks. First, we compare gas equations of state. The

equation of state for adiabatic gas is:

p = Kργ, (3.10)

and the equation of state for isothermal gas is:

p = c2
sρ. (3.11)

From this we see that we can use adiabatic equation of state to get isothermal

equation of state by making a change K → c2
s , and γ → 1. We can see that the

two eccentricity equations ((2.73) and (3.1)) are similar. Here, we show that

it is not possible to use any of the two equations to get the other by simply

interchanging c2
sρ ↔ p.

If we were to use adiabatic equation and set γ = 1 and K = c2
s , we would be

missing a term − i
r

∂
∂r

(
ρEr3 ∂c2

s
∂r

)
. The reason for this is that in the derivation of

the adiabatic equation, from the start we assumed that K is a constant and

the information on it’s radial derivative is lost.

If, on the other hand, we tried to use isothermal equation and use (c2
sρ →

p) along with (c2
s (r) → K) ⇒ (∂c2

s/∂r → 0), we would not get adiabatic

eccentricity equation either. Specifically, the first pressure term would be
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reduced by a factor of γ; i.e. i
r

∂
∂r

(
pr3 ∂E

∂r

)
instead of i

r
∂
∂r

(
γpr3 ∂E

∂r

)
. The reason

for this is that the γp factor appears as a result of calculating dp
dρ
ρ (as seen in

equation (2.23)), which in the case of an isothermal disk is:

dp

dρ
ρ = d(c2

sρ)
dρ

ρ = c2
sρ = p, (3.12)

whereas for adiabatic disk, the result is:

dp

dρ
ρ = d(Kργ)

dρ
ρ = γp. (3.13)

3.3 3D disks

The method of deriving elementary eccentricity equations for 3d disks (Teyssandier

and Ogilvie, 2016) is identical to the one used for 2d cases. Here, we just list

final eccentricty equations.

Unforced eccentricity equation for a 3d adiabatic disk

2rΩ∂E
∂t

= i

r

∂

∂r

[(
2 − 1

γ

)
pr3∂E

∂r

]

+ i

(
4 − 3

γ

)
r
dp

dr
E + 3ipE

(
1 + 1

γ

) (3.14)

Unforced eccentricity equation for a 3d locally isothermal disk

2r2ρΩ∂E
∂t

= −iρE ∂

∂r

[
r2∂Φ2

∂r

]
+ i

r

∂

∂r

(
ρc2

sr
3∂E

∂r

)

+ irE
∂(ρc2

s )
∂r

− i

r

∂

∂r

(
ρEr3∂c

2
s

∂r

)
+ 3iρE

r

(
c2

sr
2
) (3.15)

The eccentricity equation for a 3d adiabatic disk, compared to the 2d adiabatic

disk equation, has one additional term and different coefficients connected to

the adiabatic index. Likewise, the eccentricity equation for a 3d isothermal

disk has one extra term compared to the 2d equation. Those are the result of

allowing vertical variations of quantities.
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Works such as Ogilvie (2008) and Teyssandier and Ogilvie (2016) discuss

3d disks. These show that 2d and 3d approximations can lead to different

results. However, the exact importance of this choice is not clear. Results from

Teyssandier and Ogilvie (2016) show that the eccentricity profile differs for

2d and 3d disks. This difference is significant for adiabatic disks but not as

large for isothermal disks. Another result shows that in both adiabatic and

isothermal disks, the choice of the dimension can make a difference between

prograde and retrograde modes. Nevertheless, even that possibility depends

on many parameters, including the mode order. From the examples discussed

there, it is clear that there are many contributing factors in determining how

significant the difference between 2d and 3d disks will be. Works such as

Ogilvie (2008) even show that sometimes only a 3d disk can trap modes.

However, that analysis was done for a disk around a single star. It is unclear if

we can apply any of those solutions to our systems.
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4Gravitational potential

Now that we have derived the eccentricity equation for adiabatic and locally

isothermal disks, we can see that both equations include a second-order

contribution to gravitational potential Φ2. The contribution of higher order

gravitational potential to total disk eccentricity can be described as:

2r2ρΩ∂E
∂t

∣∣∣∣∣∣
grav

= −iρE ∂

∂r

[
r2∂Φ2

∂r

]
. (4.1)

In this section, we derive a form of equation (4.1) that is easier to use. To do

so, we first remind ourselves of the assumptions we have made before that

allow us to restrict how we model second-order gravitational potential in two

ways. We wrote unperturbed gravitational potential as:

Φ = Φ0 + ϵ2Φ2, (4.2)

and one of the unperturbed state requirements was:

∂Φ
∂ϕ

= ∂Φ0

∂ϕ
= ϵ2∂Φ2

∂ϕ
= 0. (4.3)

To be consistent, our potential model must not depend on the angular coordi-

nate.

4.1 Circular binary.

A circular binary is a binary whose both components (the primary and the

secondary) move in circles. We use equations (1.3) and (1.4), and e = 0 to

find the radius of their orbit around their center of mass:

rp = ap = const, (4.4)
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and:

rs = as = const. (4.5)

Their separation is constant:

|r⃗s − r⃗p| = ap + as = a. (4.6)

We use equation (1.7) and (1.8) to write:

ap = aMs

Mp +Ms
, (4.7)

and:

as = aMp

Mp +Ms
. (4.8)

In figure (4.1), we illustrate the binary orbit. A fluid element at position

(r, ϕ) will feel a gravitational potential that depends on the distance form the

primary dp, and the distance from the secondary ds:

Φ(r, ϕ) = −GMp

dp
+ −GMs

ds
. (4.9)

We can use the law of cosines to write:

d2
p,s = a2

p,s + r2 − 2rap,s cos (ϕ− ϕp,s), (4.10)

and:

Φ(r, ϕ) = −GMp√
a2

p + r2 − 2rap cos (ϕ− ϕp)
+ −GMs√

a2
s + r2 − 2ras cos (ϕs − ϕ)

.

(4.11)

In figure (4.2), we illustrate the relative positions of the primary, the secondary

and the disk fluid element. Equation (4.11) shows that the potential depends

on the angular coordinate, which is at odds with equation (4.3). To find the

potential independent on ϕ, we find the mean value of the potential (4.11) at

distance r:

Φ(r) ≡ 1
2π

∫ 2π

0

 −GMp√
a2

p + r2 − 2rap cos (ϕ− ϕp)
+ −GMs√

a2
s + r2 − 2ras cos (ϕs − ϕ)

 dϕ
(4.12)
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Ms

Mp

a p

r s

(r, ϕ)

ϕ

(0, 0)

ϕpϕs

Figure 4.1.: Orbit of a circular binary with a binary mass ratio q = 0.5.

The initial angles of the primary and the secondary are irrelevant for integra-

tion over the entire range ϕ ∈ [0, 2π]:

Φ(r) ≡ 1
2π

∫ 2π

0

 − −GMp√
a2

p + r2 − 2rap cos (ϕ)
+ GMs√

a2
s + r2 − 2ras cos (ϕ)

 dϕ.
(4.13)

We use Lagandre expansion to write the subintegral function as:

1√
a2

p,s + r2 − 2rap,s cos (ϕ)
≈ 1
r>,p,s

[
1 + cosϕr<,p,s

r>,p,s
+ 1

2
r2

<,p,s

r2
>,p,s

(
3 cos2 ϕ− 1

)]
,

(4.14)

where:

r>,p = max[r, ap], (4.15)
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Ms

Mp

a p

r s

(r, ϕ)

ϕ

(0, 0)

ϕpϕp + π

d
p

d s

Figure 4.2.: Location of a point (r, ϕ) relative to the primary and the secondary binary
object.

r>,s = max[r, as], (4.16)

r<,p = min[r, ap], (4.17)

and

r<,s = min[r, as]. (4.18)

We use: ∫ 2π

0
dτ = 2π,∫ 2π

0
cos τdτ = 0,∫ 2π

0
cos2 τdτ = π,

(4.19)
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to write:

Averaged gravitational potential of a circular secondary

Φs(r) = −GMs

2π
1
r>,s

[
2π + 1

2
r2

<,s

r2
>,s

(3π − 2π)
]

= −GMs
1
r>,s

[
1 + 1

4
r2

<,s

r2
>,s

]
,

(4.20)

and:

Average gravitational potential of a circular primary

Φp(r) = −GMs

2π
1
r>,p

[
2π + 1

2
r2

<,p

r2
>,p

(3π − 2π)
]

= −GMp
1
r>,p

[
1 + 1

4
r2

<,p

r2
>,p

]
.

(4.21)

4.1.1 A circumprimary disk and a small binary mass
ratio

If q ≪ 1, the center of mass is approximately the same as the center of mass of

the primary so the primary is fixed in the origin, and the secondary revolves

around it with a radius a:

ap

as
= q ≪ 1 → ap ≈ 0

ap + as = a → as ≈ a.
(4.22)

Φs(r) = −GMs

a

[
1 + 1

4
r2

a2

]
, (4.23)

and:

Φp(r) = −GMp

r

[
1 + 1

4
a2

p

r2

]
≈ −GMp

r
, (4.24)

so the total potential is:

Φ(r) = −GMs

a

[
1 + 1

4
r2

a2

]
− GMp

r
= −GMp

r
− GMs

a
− 1

4
GMsr

2

a2 , (4.25)
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Ms

Mp

a

Figure 4.3.: An illustration of a disk (orange) around the primary (pink) centered in
the origin. The secondary (blue) moves in a circle of radius a.

and we can identify the second order potential as:

Φ2(r) = −1
4
GMsr

2

a2 . (4.26)

The eccentricity contribution of Φ2 is then:

2r2ρΩ∂E
∂t

∣∣∣∣∣∣
grav

= −iρE ∂

∂r

[
r2∂Φ2

∂r

]
= −iρE ∂

∂r

[
r2 2

4
GMsr

a3

]
= −iρE 3

2
GMsr

2

a3 .

(4.27)

We find:

GMs = GMs
Mpr

3

Mpr3 = Ms

Mp

GMp

r3 r3 = qΩ0r
−3, (4.28)

so that we can write equation (4.27) in terms of binary parameters:
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The effect of second order gravitational potential on eccentricity of a

circumprimary disk around a circular binary.

∂E

∂t

∣∣∣∣∣∣
grav

= iΩ0E
3qr3

4(1 + q)2a3 . (4.29)

4.1.2 A circumbinary disk

A circumbinary disk surrounds both the primary and the secondary so we can

write:

r>,p = r,

r>,s = r,

r<,p = ap,

r<,s = as.

(4.30)

We write equation (4.20) as:

Φs(r) = −GMs
1
r

[
1 + 1

4
a2

s
r2

]
, (4.31)

and equation (4.21) as:

Φp(r) = −GMp
1
r

[
1 + 1

4
a2

p

r2

]
. (4.32)

The total gravitational potential is then:

Φ(r) = −GMp
1
r

[
1 + 1

4
a2

p

r2

]
−GMs

1
r

[
1 + 1

4
a2

s
r2

]

= −G

r

[
Mp +Mp

1
4
a2

p

r2 +M2 +M2
1
4
a2

s
r2

]

= −G(Mp +Ms)
r

− G

4r3

[
Mpa

2
p +Msa

2
s

]
.

(4.33)
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We use equations (4.7) and (4.8) to write the gravitational potential as:

Φ(r) = −G(Mp +Ms)
r

− G

4r3

[
Mp

a2M2
s

(Mp +Ms)2 +M2
a2M2

p

(Mp +Ms)2

]

= −G(Mp +Ms)
r

− G

4r3

[
Mp

a2M2
2/M

2
p

(1 + q)2r3 +M2
a2

(1 + q)2

]

= −G(Mp +Ms)
r

− Ga2

4(1 + q)2r3

[
M2

s
Mp

+M2
Mp

Mp

]

= −G(Mp +Ms)
r

− Ga2

4(1 + q)2 [Msq +Mpq]

= −G(Mp +Ms)
r

− Ga2q(Mp +Ms)
4(1 + q)2r3

= −GM

r
− Ga2qM

4(1 + q)2r3 .

(4.34)

Comparing equations (4.2) and (4.34), we see that we can write the first order

gravitational potential as:

Φ0(r) = −GM

r
, (4.35)

and the second order potential as:

Φ2(r) = − Ga2qM

4(1 + q)2r3 . (4.36)

The lowest order orbital frequency is then:

Ω0 = 1
r

∂Φ0(r)
∂r

= GM

r3 , (4.37)

and the eccentricty contribution of the second order gravitational potential is:

2r2ρΩ∂E
∂t

∣∣∣∣∣∣
grav

= −iρE ∂

∂r

[
r2∂Φ2

∂r

]
= −iρE ∂

∂r

[
r2 GM3qa2

4(1 + q)2r4

]

= 2iρE GM3qa2

4(1 + q)2r3 = 2iρEΩ2 3qa2

4(1 + q)2 ,

(4.38)

or:
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The effect of second order gravitational potential on eccentricity of a

circumbinary disk around a circular binary.

∂E

∂t

∣∣∣∣∣∣
grav

= iΩE 3qa2

4(1 + q)2r2 . (4.39)

4.2 Gravitational potential in a thin ring
approximation

The approach usually used to get the gravitational potential is to approximate

the gravitational potential of a binary object with the gravitational potential of

a thin uniform ring. This approximation is valid because a fluid element in the

disk precesses with a frequency much smaller than the precession frequency of

the binary element and the fluid element ’sees’ the binary object as a ring of

smeared mass. We show that this approach yields the same potential equation

and write the gravitation potential in terms of Laplace coefficients. This setup

is illustrated in figure (4.4). The gravitational potential at point (r, ϕ) caused

by any mass distribution with total mass M2 can be expressed as:

Φp,s(r, ϕ) =
∫ Mp,s

0

G

l
dm. (4.40)

In the case of a thin ring of uniform mass distribution, we can write the mass

differential as:

dm = λdC, (4.41)

where C is the circumference of the ring and we can write it as:

dC = adϕp,s. (4.42)

We can use the law of cosines to write:

l2 = a2
p,s + r2 − 2rap,s cos(ϕ− ϕp,s). (4.43)
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ϕ
p
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ϕ

dm

Figure 4.4.: Tidal potential of a uniform ring

Next, we can use equations (4.40), (4.41), (4.42) and (4.43) to write the

gravitational potential of the secondary object as:

Φp,s(r, ϕ) = −
∫ 2π

0

GMp,s

2π
√
a2

p,s + r2 − 2rap,s cos(ϕ− ϕp,s)
dϕp,s

= −
∫ 2π

0

GMp,s

2π
√
a2

p,s + r2 − 2rap,s cos(ϕ)
dϕ.

(4.44)

We now see that potential (4.44) is identical to what we found for a potential of

a fixed points mass, averaged over all angles of the disk. Instead of expanding

it to a series in terms of radius, this potential is often written in terms of

Laplace coefficients that are defined as:

b
(j)
s/2(α) = 1

π

∫ 2π

0

cos(jΨ)
(1 + α2 − 2α cos Ψ)s/2dΨ, (4.45)

for 0 ≤ α ≤ 1. Comparing equations (4.44) and (4.45), we see that we need a

Laplace coefficient with j = 0, s = 0.5.
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A circumprimary disk

If the disk is located inside the orbit of the binary object, the appropriate

choice for α is:

α = r

a
, (4.46)

so the Laplace coefficient is:

b
(0)
1/2(

r

ap,s
) = 1

π

∫ 2π

0

1
(1 + ( r

ap,s
)2 − 2 r

ap,s
cos Ψ)1/2dΨ. (4.47)

We use equation (4.47) to write equation (4.44) as:

Φp,s(r, ϕ) = −GMp,s

2ap,s
b

(0)
1/2

(
r

ap,s

)
. (4.48)

The resulting eccentricity is:

2r2ρΩ∂E
∂t

∣∣∣∣∣∣
grav

= −iρE ∂

∂r

[
r2∂Φ2

∂r

]
= −ρiE ∂

∂r

(
r2 −GM2

2a
∂

∂r
[b(0)

1/2]
)

= iEGM2ρ

2a

2r
∂b

(0)
1/2(α)
∂r

+ r2∂
2b

(0)
1/2(α)
∂r2


= iEGM2ρ

2a

2α
∂b

(0)
1/2(α)
∂α

+ α2∂
2b

(0)
1/2(α)
∂α2

.
(4.49)

We use a Laplace coefficient identity:

2α
∂b

(0)
1/2(α)
∂α

+ α2∂
2b

(0)
1/2(α)
∂α2 = αb

(1)
3/2(α), (4.50)

to write equation (4.49) as:

Gravity induced eccentricity for a circumprimary disk in terms of

Laplace coefficients

2r2ρΩ∂E
∂t

∣∣∣∣∣∣
grav,p,s

= iGMp,sρEr

2a2
p,s

[
b

(1)
3/2

(
r

ap,s

)]
. (4.51)
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A circumbinary disk

If the disk is located outside the orbit of the binary object, the appropriate

choice for α is:

α = a

r
≤ 1, (4.52)

so the Laplace coefficient is:

b
(0)
1/2(

ap,s

r
) = 1

π

∫ 2π

0

1
(1 + (ap,s

r
)2 − 2ap,s

r
cos Ψ)1/2dΨ, (4.53)

and the potential is:

Φp,s(r, ϕ) = −GMp,s

2r b
(0)
1/2(

p,s

r
). (4.54)

For:

α ≡ ap,s

r
, (4.55)

we write:
∂

∂α
= ∂

∂(ap,s/r)
= − r2

ap,s

∂

∂r
. (4.56)

We preform a calculation similar to one we did for circumsingle discs:

2r2ρΩ∂E
∂t

∣∣∣∣∣∣
grav

= −iρE−a
r2

∂

∂α

[
r2 −a
r2

∂Φ2

∂α

]

= −iρE a

r2
∂

∂α

[
a
∂

∂α

(
−GM2

2r b
(0)
1/2(

a

r
)
)]

= −iρEaGM2

2r2
∂

∂α

[
∂

∂α

(
a

r
b

(0)
1/2(α)

)]

= −iρEaGM2

2r2
∂

∂α

[
∂

∂α

(
αb

(0)
1/2(α)

)]

= −iρEaGM2

2r2
∂

∂α

∂b(0)
1/2(α)
∂α

α + b
(0)
1/2(α)


= −iρEaGM2

2r2

∂2b
(0)
1/2(α)
∂α2 α +

∂b
(0)
1/2(α)
∂α

+
∂b

(0)
1/2(α)
∂α

 .

(4.57)

We apply the Laplace coefficient identity (equation (4.50)) to write:
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Gravity induced eccentricity for a circumbinary disk in terms of Laplace

coefficients

2r2ρΩ∂E
∂t

∣∣∣∣∣∣
grav,p,s

= iGMp,sρEap,s

2r2

[
b

(1)
3/2

(
ap,s

r

)]
. (4.58)

Equations (4.51) and (4.58) are a compact way to write gravitational eccen-

tricity effects. However, using this form is impractical because the eccentricity

equation (2.73), (3.9), (3.14), and (3.15) require us to be able to distinct two

lowest orders of the gravitational potential.
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5Forcing effects

5.1 Eccentricity generation

We define an eccentricity generating function as:

ξ = ∂E

∂t

1
E
. (5.1)

Eccentricity can be generated by orbital resonances. An orbit of a disk el-

lipse with orbital frequency Ω and apsidial precession Ωaps will experience a

resonance if there are two two positive integers of k and j for which:

k (Ω − Ωaps) = j (Ω − Ωb) . (5.2)

The axis of a closed (periodic) orbit does not change direction (does not

precess) so for period motion, we write:

Ωaps = 0. (5.3)

We can define a new qquantity m ≡ j − k, and write equation (5.2) in another

form:

Ωj,k = Ωb
j

j − k
Ωbm, (5.4)

to see that the resonance occurs if the frequency of the disk ellipse is a multiple

of the binary frequency. These resonances are called j : m Lindblad resonances.

Location of these resonances is given by:

rres = a(1 + q)−1/3
(
j − k

j

)2/3

, (5.5)

so the eccentricity forcing due to ξj,k will be:

(
∂E

∂t

) ∣∣∣∣∣∣
Lin

= Eξj,kδ(r − rres). (5.6)
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A resonance for k = 1 is called co-rotational resonance because it is a resonance

at a place where the disk ellipse has the same angular frequency as the binary:

Ωj,0 = Ωb. (5.7)

5.2 Eccentricity damping

We discuss viscosity as a way of causing forcing effects. Shear viscosity does

not result in eccentricity forcing, as shown by Ogilvie (2001), but the bulk

viscosity does. We quickly show how. The force on a fluid element caused by

the bulk viscosity is:

fb,ν = ∇⃗T, (5.8)

where the function T is defined as:

T = αbp

rΩ

∂(ru)
∂r

+ ∂v

∂ϕ

. (5.9)

The change of eccentricity function caused by the bulk viscosity is:

(
∂E

∂t

) ∣∣∣∣∣∣
b,ν

= 1
2r3Ω0ρ0

∂

∂r

(
αpr3∂E

∂r

)
. (5.10)
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6Boundary conditions

A general boundary condition states that the Lagrangian pressure perturbation

is zero at both disk boundaries (Muñoz and Lithwick, 2020; Lee et al., 2019):

dP = 0. (6.1)

In Appendix (G), we show that equation (6.1) is satisfied for a adiabatic disk

if:

Boundary condition for a locally isothermal disk

∂E

∂r
= 0, (6.2)

and for a locally isothermal disk if:

Boundary condition for a locally isothermal disk

d

dr

E

c2
s

= 0. (6.3)

53





7Stationary eccentricity and
Schrödinger equation

Stationary eccentricity

A stationary eccentricity solution is a solution E(r, t) whose absolute value

does not change in time:
∂|E(r, t)|

∂t
= 0, (7.1)

Since E(r, t) is in general a complex function, we write:

∂E∗(r, t)E(r, t)
∂t

= 0. (7.2)

For this to be satisfied, we need:

E(r, t) = Er(r)eiω(r)t, (7.3)

where ω(r) is a real function. To see why it needs to be real, we check a

general case of a complex ω(r):

ω(r) = iωIm(r) + ωRe(r), (7.4)

and:

ω∗(r) = −iωIm(r) + ωRe(r). (7.5)

In this case:

eiω(r)teiω∗(r)t = e−2ωIm(r)t, (7.6)

and:
∂E∗(r, t)E(r, t)

∂t
= |E(r)|2e−2ωIm(r)t ̸= 0. (7.7)

We use equation (7.3) to write:

∂E(r, t)
∂t

= iω(r)Er(r)eiω(r)t = iω(r)E(r, t). (7.8)
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If we use equation (7.8) in any of the eccentricity equations, we see that

imaginary parts of the solution are due to ∂E/∂t, pressure and gravitational

potential. Real parts of the eccentricity equation are forcing effects. In a

stationary eccentricity state, the total sum of all forcing effects has to be zero.

In other words, stationary eccentricity is a solution for an unforced eccentricity

equation.

We can write any steady eccentricity equation as:

f1(r)E = f2(r)E ′′ + f3(r)E, (7.9)

or as:

E + P (r)E ′′ +Q(r)E = 0. (7.10)

7.1 Schrödinger form

Every equation of the form:

E ′′ + P (r)E ′ +Q(r)E = 0 (7.11)

can be transformed to a Schrödinger form:

y′′ + k2(r)y = 0 (7.12)

by using a substitution:

lnE = ln y − 1
2

∫
P (r)dr. (7.13)

Function q(r) is then:

k2(r) = Q(r) − 1
2P

′(r) − 1
4P

2(r). (7.14)

Since every unforced eccentricity equation can be written in this form, we can

use equations (7.13) and (7.14) to write the eccentricity equation in the form

of a Schrödinger equation.

We now illustrate how the Schrodinger form of the eccentricity equation can

be used to visualise eccentricity solutions on an example of a potential ωpot
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whose value is a constant Ωpot,1 for r < r1, and another constant Ωpot,2 for

r > r2, and whose maximum value is reached at r = rmax:

ωpot(r) =


Ωpot,1, for r < r1

Ωmax, for r = rmax

Ωpot,2, for r > r2

. (7.15)

In figure (7.1), we plot an example of such potential. We choose three radial

points such that r1 < rmax < r2, and three values of potential such that

Ωpot,1 < Ωpot,2 < Ωpot,max.

r1 r2ra rb

Ωpot,1

Ωpot,2

Ωmax

ω

ωpot

r

Figure 7.1.: An example of a potential that can trap modes in area between r1 and
r2.

A trapped mode is possible only for Ωpot,2 ≤ ω ≤ Ωpot,max. Turning points of

the mode are radial points where ωpot = ω (k = 0). Function y(r) oscillates

in range ra ≤ r ≤ rb, and decline from r = ra to r = 0, and from r = rb to

r = ∞.

In figure (7.1), we plot one ω value that corresponds to a trapped along with

both turning points ra and rb.
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We can find three properties of the solution to the eccentricity equation by

plotting the potential. We will illustrate them using the above example:

• A trapped mode is impossible if the potential does not have a maximum

in that range. For a potential in figure (7.1), a trapped mode is not

possible in area 2r2 < r < 10r2.

• Next, we can find upper and lower limits on ω. Frequency can not be

larger than the maximum value of the potential and can not be lower

than values of potential for both r < R1 and r > R2. For a potential in

figure (7.1), the frequency has to be in range Ω2 ≤ ω ≤ Ωmax.

• Finally, the mode is trapped in the area between turning points. Until we

calculate ω, we can not know the exact value of turning points. However,

we can put limits on those values. For a potential in figure (7.1), we can

see that [ra, rb] ∈ [r1, r2].

58 Chapter 7 Stationary eccentricity and Schrödinger equation



Part III

Locally isothermal circumbinary disk
in a stationary state

In chapter (8), we reproduce results from Muñoz and Lithwick (2020).

We then explore locally isothermal circumbinary disks around binaries in more

detail. In chapter (9), we look for the lowest eccentricity mode. We first find

its frequencies. We then discuss the location and width of those modes. We

end by summarizing the most important findings.

In chapter (10), we look for higher order (n > 0) modes. We find the number

of modes that a disk can support. After that, we illustrate the properties of

higher order modes on an example of a disk that supports them. We end by

summarizing the most important findings.

In chapter (8), we focus on the disk density profile. We vary the disk density

parameters (torque, cavity size, and cavity slope) to show what effect that has

on eccentricity solutions. After that, we focus on the choice of the density cutoff

function itself to show that it dominates the eccentricity results and explain

why that happens. We end by summarizing the most important findings.





8Eccentricity equation and
solutions

In this chapter, we reproduce results for the eccentricity frequency and radial

eccentricity distribution obtained by Muñoz and Lithwick (2020).

8.1 The equation

We use the eccentricity equation for a 2d locally isothermal disk (equation

(3.9)), the gravitational eccentricity effects for a circumbinary disk (equation

(4.39)), and the definition of the stationary eccentricity (equation (7.8)), to

write:

Eccentricity equation for a circumbinary locally isothermal disk.

2Σr2Ω0ωE(r) = 1
r

∂

∂r

[
Σc2

sr
3∂E(r)
∂r

]
+ r

d

dr
(Σc2

s )E(r)

− 1
r

∂

∂r

[
Σdc

2
s

dr
r3E(r)

]
+ ΣΩ2

0E(r) 3q
2(1 + q)2a

2.

(8.1)

According to equation (6.3), boundary conditions for a 2d locally isothermal

disk with an inner radius rin and an outer radius rout are:

Boundary conditions for the eccentricty equation.

d

dR

(
E

c2
s

) ∣∣∣∣∣∣
rin

= d

dR

(
E

c2
s

) ∣∣∣∣∣∣
rout

= 0. (8.2)

Differential equation (8.1), together with boundary conditions (8.2) defines

a boundary value problem for eccentricity. The solutions of this problem is

defined by a radial eccentricity profile of the disk E(r), and the frequency
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profile ω(r) it precesses with. We are interested in eccentricity modes, solutions

for an eccentricity profile that precesses uniformly (ω ̸= ω(r)).

Ω0 is the lowest order unperturbed orbital frequency (Keplerian frequency):

Ω0 =
√
GM

r3 . (8.3)

We want to express all eccentricity solutions in terms of binary parameters so

we use:

Ωb =
√
GM

a3 , (8.4)

to write Ω0 as a function of the binary orbital frequency Ωb, binary separation

a and radius r:

Ω0(r) = Ωb
a3/2

r3/2 . (8.5)

The disk height is:

H(r) = Ω0

cs
, (8.6)

and we assume that the disk aspect ratio h:

h = H

r
(8.7)

is a constant to write:

c2
s (r) = h2r2Ω2

0(r) = h2Ω2
b

a3

r
. (8.8)

The positive direction of precession is the direction of the secondary around

the primary. If the eccentricity precesses in the same direction as the binary, the

mode is called a prograde mode. If the eccentricity precesses in the opposite

direction, the mode is called a prograde mode.

8.2 Pressure and binary quadrupole
effects

We make a short analysis of the eccentricity equation for two extreme cases;

one where the motion of the disk is governed solely by pressure and one when

the disk is affected only by the gravitational potential of the binary.
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8.2.1 Binary quadrupole effects

We set the pressure to zero:

cs = 0, (8.9)

to write the eccentricity equation (equation (8.1)) as:

2Σr2ΩωE(r) = ΣΩ2E(r) 3q
2(1 + q2)a

2. (8.10)

Equation (8.10) can only be satisfied if the frequency is dependent on radius:

ω(r) = Ω 3q
4(1 + q)2

(
a

r

)2
= Ωb

3q
4(1 + q)2

(
r

a

)−7/2
. (8.11)

This frequency is called quadrupole precession frequency. We can see that

binary quadrupole effects always cause prograde motion (Ωb > 0). The

frequency is largest at r = a, and decreases with r. Radial dependence tells us

that if only binary quadrupole effect is present, the eccentricity profile will not

precess with a uniform frequency.

We define the cavity quadrupole frequency ωQ as the quadrupole induced

frequency ( equation (8.11)) at r = Rcav:

ωQ ≡ Ωb
3q

4(1 + q)2

(
a

Rcav

)7/2
. (8.12)

8.2.2 Pressure effects

We set quadrupole effects to zero:

q = 0, (8.13)

to write the eccentricity equation (equation (8.1)) as:

2Σr2ΩωE(r) = 1
r

∂

∂r

[
Σc2

sr
3∂E(r)
∂r

]
+ r

[
d

dr
(Σc2

s )
]
E(r)

− 1
r

∂

∂r

[
Σdc

2
s

dr
r3E(r)

]
.

(8.14)
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This frequency depends on the density profile. Instead of finding an exact

solution for the frequency in this case, we preform a dimensional analysis of

equation (8.14) to find an expression that we can use for any density profile:

2Σr2ΩωE(r) = K1
1
r

1
r

(
Σc2

sr
3E

r

)
+K2r

1
r

Σc2
sE +K3

1
r

1
r

Σc
2
s
r
r3E, (8.15)

where K1, K2 and K3 are unknown constants. All right hand side terms are

proportional to the same combination of functions:

2Σr2ΩωE(r) ∝ c2
sΣE = h2Ω2

b

a3

r
ΣE. (8.16)

This frequency is also dependent on the radius:

ω ∝
h2Ω2

b
a3

r

r2Ω =
h2Ω2

b
a3

r

r2Ωb(r/a)−3/2 = h2Ωb

(
r

a

)−3/2
. (8.17)

We see that the pressure effect scales with h2. Compared to the binary

quadrupole effect, the pressure effect drops off less steeply.

We define the cavity pressure frequency ωP as the pressure induced frequency

(equation (8.17)) at r = Rcav:

ωP ≡ h2Ωb

(
a

Rcav

)3/2
. (8.18)

8.3 Schrödinger equation for eccentricity

We write the eccentricity equation in the form of equation (7.11):

E ′′ + E ′
[
3r−1 − Σ′

Σ

]
+ E

[
2Σ′

Σ r−1 + 3q
2a6h2(1 + q)2 r

−4 − 2ω
Ωba9/2h2 r

−1/2
]

= 0,

(8.19)

so that we can use equation (7.13) to find:

E = y(Σr3)−1/2, (8.20)
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and equation (7.14) to find:

k2(r) = 2Ω
c2

s
[ωpot(r) − ω] , (8.21)

where the eccentricity potential is:

Eccentricity potential for the eccentricity Schrödinger equation.

ωpot(r) = ωQ

 r

Rcav

−7/2

+ ωP

2

(
r

Rcav

)−3/2
rΣ′

2Σ +
rΣ′

2Σ

2

− r2Σ′′

2Σ − 3
4

.
(8.22)

We can now write the eccentricity equation in a Schrodinger form:

d2y

dr2 + k2y = 0. (8.23)

We divide the potential into two parts:

ωpot(r) = ωpot,Q(r) + ωpot,P(r), (8.24)

where ωpot,Q is the quadrupole eccentricity potential:

ωpot,Q(r) ≡ ωQ

 r

Rcav

−7/2

, (8.25)

and ωpot,P is the pressure eccentricity potential:

ωpot,P(r) = ωP

2

(
r

Rcav

)−3/2
rΣ′

2Σ +
rΣ′

2Σ

2

− r2Σ′′

2Σ − 3
4

. (8.26)

8.4 The density profile

We formulate a density profile by requiring that the density distribution satisfies

three requirements (Muñoz and Lithwick, 2020).
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First, we require that there is no net torque on the outer area of the disk. For

viscosity ν ∝ r−1/2, the zero net torque condition is:

Σ ∝ r−1/2. (8.27)

Next, we require the density function to produce a net torque L at the binary

separation radius so we modify the density as:

Σ → Σ
(

1 − L

aΩ2
b

√
a

r

)
. (8.28)

Finally, we want to describe a disk with a central cavity of radius Rcav. One

way to impose this condition is:

Σ → Σe−(Rcav/r)Z

. (8.29)

We set Rcav = 2.5a and L = 0.7aΩ2
b. The resulting density profile is:

Σ(r) = Σ0

(
r

a

)−1/2
1 − 0.7

√
a

r

e−(2.5a/r)12
. (8.30)

In figure (8.1), we plot the density profile (8.30).

Figure 8.1.: The density profile for a disk with a central cavity.

The scaling constant Σ0 is irrelevant for eccentricity solutions; eccentricity

equation (8.1) is linear in Σ, and the Schrodinger form (equation (8.22))

depends only on ratios Σ′/Σ and Σ′′/Σ.
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In figure (8.2), we plot the pressure eccentricity potential (equation 8.26) for

h = 0.2, the quadrupole eccentricity potential (equation (8.25)) for q = 1 and

the total eccentricty potential (equation (8.22)).

Figure 8.2.: Potentials in units of the binary precession frequency as a function of
radius in unites of binary separation. Quadrupole eccentricity potential
(orange) for q = 1. Pressure eccentricity potential (cyan) for h = 0.2).
Eccentricity potential for q = 1 and h = 0.2 (dotted black).

Only a prograde modes with a frequency in range 0 < ω ≤ 1
3Ωb are possible.

8.5 The quantization condition

The first method we use for finding the frequency is the quantization condition.

In general, a quantization condition restricts the eigenvalue through physical

reasoning. Since we are assuming a steady-state, the wave phase ωt at each

radius r has to be the same at all times t. Nevertheless, a wave reflects off

each barrier, and that reflection causes a phase change. Therefore, in a steady

state, the total sum of all phase changes has to be a multiple of 2π. There is

no exact formula for a quantization condition for a potential of arbitrary form.

However, approximate quantization conditions exist. One of them is the WKB

quantization condition, derived assuming that:∣∣∣∣∣∣ 1
k(r)

dk(r)
dr

≪ k(r)

∣∣∣∣∣∣. (8.31)
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For a potential with two turning points ra and rb, the WKB condition is:

∫ rb

ra
k(ωn, r)dr = 2n+Ns +Nh

2 π, (8.32)

where n ∈ N0 is the order of the mode. Ns is the number of turning points

for a potential with finite value at the turning point. This type of scattering

of a wave is called smooth scattering. Nh is the number of turning points for

a potential with infinite value at the turning point. This type of potential is

called a hard wall. From figure (8.2), we can see that Ns = 2 and Nh = 0, so

we can write: ∫ rb

ra
k(ωn, r)dr = 2n+ 1

2 π (8.33)

If there is a trapped mode inside this potential, its frequency ω has to satisfy the

equation (8.33). It is important to stress that this condition can not be satisfied

for every n. In other words, different potentials allow different numbers of

modes. We can borrow other results from QM to analyze solutions. The lowest

(0-th) mode corresponds to the highest frequency (ω0). Every higher mode has

a frequency lower than all the lower modes. In range ra < r < rb, n-th mode

has n nods (radial points where y(r) = 0).

We will apply this formula on two examples.

WKB frequnecies and disperison relation maps

We find frequncies that satisfy the WKB qunatization condition for two binary-

disk settings: [q, h] = [0.9, 0.1], and [q, h] = [0.9, 0.03]. For [q, h] = [0.9, 0.1], the

WKB quantization condition can be satisfied for only one frequency (only n = 0
mode is possible). For [q, h] = [0.9, 0.03], the WKB quantization condition can

be satisfied for two frequencies (n = 0 and n = 1 modes are possible).

In left panels of figure (8.3), we plot eccentricity potentials and allowed

frequencies for [q, h] = [0.9, 0.1], and [q, h] = [0.9, 0.03]. In right panels of

figure (8.3), we plot dispersion relation maps (DRMs) for allowed modes and

for several frequencies that do not correspond to allowed modes. In a DRM,

frequencies that correspond to trapped states are closed lines, and frequencies

that correspond to free states are open lines. A state can be trapped, but not

steady, in which case, it is presented as a closed line on a DRM, but does not

satisfy the quantization condition.
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Negative frequencies (light brown lines) correspond to waves approaching

for r ≫ 1, reflecting on r ≈ 2.2a (the only barrier for a wave of negative

frequencies), and go back to r ≫ 1. These states are not trapped.

Positive frequencies (dark brown lines) that do not satisfy the quantization

condition correspond to closed lines. These states are trapped but are not

steady.

Figure 8.3.: Eccentricity potentials and allowed frequencies (left) and dispersion
relation maps (right) for [q, h] = [0.9, 0.1] (upper panels) and [q, h] =
[0.9, 0.03] (lower panels).
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8.6 Numerical results for the eccentricity
boundary value problem

Differential equation (8.1), along with the boundary condition (6.3)) defines

a boundary value problem. To find E(r) and E ′(r), we need to integrate

equation (8.1). Values of those two function at the boundaries need to satisfy

equation (6.3)). The only unknown in the eccentricity equation is ω. Once we

know ω, integrating the eccentricity equation is easy: an ordinary differential

equation such as (8.1) can be integrated from the inner boundary outwards,

and this is known as the initial value problem.

To find ω, we integrate equation (8.1) as an initial value problem for a wide

range of guesses for ω. Then we see which of those guessed values results in

E(r) and E ′(r) that satisfy the boundary conditions. This method is called the

shooting method.

In figure (8.4), we plot frequencies of the lowest mode (ω0) for five different

values of disk’s thickness h ∈ 0.01, 0.02, 0.05, 0.1, 0.2 and for the binary mass

ratio in range 0.01 ≤ q ≤ 1. We obtain these values by implementing a

numerical shooting method. We refer to solutions obtained by numerically

solving the boundary value problem as numerical BVP solutions.

Figure 8.4.: Lowest mode frequencies ω0 in units of the binary orbital frequency Ωb,
as a function of the binary mass ratio q for h = [0.01, 0.02, 0.05, 0.1, 0.2].

We find values of ω0 using both the WKB and the shooting method for three

different values of the cavity size Rcav ∈ [2.5a, 3.5a, 5a] and 0.01 ≤ h ≤ 0.2,
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0.03 ≤ q ≤ 1. Result in figure (8.5). From figure (8.5), we see that the WKB

Figure 8.5.: WKB and numerical BVP frequencies of the lowest mode in units of
the cavity quadrupole frequency as a function of the ratio of the cavity
pressure and the cavity quadrupole frequency.

quantization condition gives correct solutions only for ωP/ωQ ⪅ 0.1. We also

see that solutions collapse into a single line, indicating that the ratio ωP/ωQ is

the determining factor in solutions for ω0. We also see that the cavity size does

not affect results.

We use the shooting method to confirm that the frequency solution for [q, h] =
[1, 0.03] found using the WKB method are correct and, in figure (8.6), we plot

eccentricity profiles E(r) for the two allowed modes. From it, we see that the

n = 1 mode is spread further pout than the n = 0 mode.

Figure 8.6.: Eccentricity profiles E(r) for [q, h] = [0.9, 0.03].
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In figure (8.7), we plot eccentricity profiles E(r) and scaled eccentricity profiles

y(r) for ωP/ωQ = 0.05 and for ωP/ωQ = 50. From it, we see that eccentricity

profile spreads further out in the disk for larger ωP/ωQ.

Figure 8.7.: Eccentricity profiles (left) and scaled eccentricity profiles (right) for
ωP/ωQ = 0.05 (upper panels) and ωP/ωQ = 50 (lower panels). The
radius is scaled with the size of the cavity, and the eccentricity is scaled
to E = 1 at the inner disk boundary.
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9
The lowest mode

In this chapter, we allow the disk to be thinner, so we set 10−4 ≤ h ≤ 0.2, as

opposed to 10−4 ≤ h ≤ 0.2 used in chapter (8). We also allow the the binary

mass ratio to be smaller, so we set 10−6 ≤ q ≤ 1, instead of 0.03 ≤ q ≤ 1 used

in chapter (8).

In figure (8.5), we saw that ω0 solutions for independent values of h and q

collapse into a single line if we plot them in a ω/ωQ − ωP/ωQ plot, where:

ωP = h2R−3/2
cav , (9.1)

is the cavity pressure frequency, and:

ωQ = 3q
4(1 + q)2R

−7/2
cav , (9.2)

is the cavity quadrupole frequency. We call the ratio ωP/ωQ the cavity frequency

ratio (CFR). To show why ω0/ωQ solutions depend only on the CFR, we write

the eccentricity equation again:

2Σr2ΩωE(r) = 1
r

∂

∂r

[
Σc2

sr
3∂E(r)
∂r

]
+ r

d(Σc2
s )

dr
E(r)

− 1
r

∂

∂r

[
Σdc

2
s

dr
r3E(r)

]
+ ΣΩ2E(r) 3q

2(1 + q)2 .

(9.3)

We use c2
s = h2/r, and equations (9.1) and (9.2) to write (9.3) as:

2Σr2Ω ω

ωQ
E(r) = ωP

ωQ

1
r

∂

∂r

[
Σr2∂E(r)

∂r

]
R3/2

cav + ωP

ωQ
r
d(Σr−1)
dr

E(r)R3/2
cav

+ ωP

ωQ

1
r

∂

∂r
[ΣrE(r)]R3/2

cav + 2ΣΩ2E(r)R7/2
cav .

(9.4)
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Equation (9.4) depends on ω, q and h only in terms of ω/ωQ and ωP/ωQ. In

addition to equation (9.4), solutions also depend on boundary conditions, so

we write a general frequency solution as:

ω

ωQ
= f

(
rin, rout,Σ, Rcav,

ωP

ωQ

)
. (9.5)

For a fixed density profile (Σ, Rcav), and a fixed disk size (rin, rout), we write:

ω

ωQ
= f

(
ωP

ωQ

)
. (9.6)

We use equation (9.6) as a standard representation of frequency results; we

present results as functions of the CFR throughout this part. New ranges of

h and q set the CFR range as 10−6 ⪅ ωP/ωQ ⪅ 106. In figure (9.1), we show

values of h and q that correspond to CFR = [10−6, 10−4, 10−2, 100, 102, 104]. In

pink, we mark the area of h− q that we explored in part 8.

Figure 9.1.: CFR as a function of h and q.

In this chapter we look for the lowest n = 0 mode. In section (9.1), we use

the WKB quantization condition to find the frequency of the lowest mode.

We do it for two reasons. First, to see if the agreement between WKB and

numerical BVP frequency values is true for even thinner disks (lower CFRs).

Second, unlike numerical BVP solutions, the WKB approximation can be used

to gain intuitive understanding of solutions. In section (9.2), we find numerical

solutions for the eccentricity boundary value problem. In section (9.3), we

discuss the location of the mode.
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9.1 WKB frequency

We use the WKB quantization condition (equation (8.33)) to find ω0. In the left

panel of figure (9.2), we plot solutions ω0/ωQ as a function of ωP/ωQ. In it, we

see that the function ω0/ωQ = f(ωP/ωQ) has a minimum at ωP/ωQ ≈ 0.1. This

suggest that something interesting might be happening with the eccentricity

potential. To examine this further, in the right panel of figure (9.2), we plot the

eccentricity potential (ωpot) in same units (ωQ). We do this for ωP/ωQ ≈ 0.1,

which is the value that we approximate as the critical CFR, and for four values

below and above the critical CFR. We see that ωpot/ωQ also has a minimum at

ωP/ωQ ≈ 0.1. We use this fact to divide the CFR range into 2 parts; the low

CFR range (0 < ωP/ωQ ≲ 0.1) and the high CFR range (0.1 ≲ ωP/ωQ < ∞).

We discuss each part separately.

Figure 9.2.: Left: The frequency of the lowest mode (ω0) in units of the cavity
quadrupole frequency (ωQ), as a function of the cavity frequency ratio
(ωP/ωQ) Right: eccentricity potential (ωpot/ωQ) in units of the cavity
quadrupole frequency ((omegaQ)) as a function of radius in units of
the binary separation (a). Eccentricity potentials corresponding to CFRs
larger than the critical one are in blue, and those corresponding to CFRs
lower than the critical one are in red. The critical CFR is in grey. Lowest
mode frequencies (ω0/ωQ) are in thin dashed lines in the same colors as
the corresponding eccentricity potentials.
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9.1.1 Low CFR range

We discuss the frequency value. From the right panel of figure (9.2), we see

that in the low CFR range, ω0 is near the maximum of the eccentricity potential.

The frequency ω0 is higher for binaries with larger mass ratio and for thinner

disks. In the left panel of figure (9.2), we see that for ωP/ωQ ⪅ 10−3, the

solution is:
ω0

ωQ
> 1, (9.7)

meaning that the lowest mode frequency can grow above the cavity quadrupole

frequency ωQ. We expect that a lower pressure influence causes a lower

frequency because the total potential is lower (equation 4.40). Therefore, it

seems counter intuitive that lowering ωP increases ω0 past ωQ.

We now explain how lowering the pressure eccentricity potential can increase

the frequency. First, we see that a binary mass ratio of q = 1 results in a low

range CFR for h ⪅ 0.1 :

[q, h] = [1, 10−4] → ωP

ωQ
≈ 10−7,

[q, h] = [1, 0.1] → ωP

ωQ
≈ 10−1.

(9.8)

We change the CFR in a way that we fix the binary mass ratio to q = 1 and

change the value of the disk’s thickness h. In the left panel of figure (9.3), we

plot the eccentricity potential ωpot(r) for q = 1 and

h = [0.0001, 0.0005, 0.001, 0.005, 0.01]. In the right panel of figure (9.3), we

plot pressure eccentricity potential ωpot,P(r) for

h = [0.0001, 0.0005, 0.001, 0.005, 0.01]. In both figures we plot quadrupole

eccentricity potential ωpot,Q(r) for q = 1.

From the left panel of figure (9.3), we see that even though ω0 grows above

the cavity quadrupole frequency (black dot), it does not grow above the

maximum quadrupole frequency (black dotted line).From the right panel of

figure (9.3), we see that the pressure eccentricity potential in the low range

CFR is effectively:

ωpot,P(r) ≈

−∞, if r < aP

0, otherwise,
(9.9)
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where the value of aP depend on h. In other words, in low range CFR, the

pressure will simply cut off the quadrupole eccentricity potential, creating a

potential well. Lowering h moves the location of the cutoff to the left (inwards

in the disk), where the quadrupole frequency is larger.

Figure 9.3.: Eccentricity potentials and potential contributions for an equal mass
binary (q = 1) and five different values of the disks thickness h. All plot
in units of binary precession frequency (Ωb), and as a function of radius
in units of the binary separation (r/a). Left: quadrupole eccentricity
potential to eccentricity potential in dotted black, total eccentricity po-
tential in solid lines. Right:quadrupole eccentricity potential in dotted
black, pressure eccentricity potential in solid lines. In both plots, the
cavity quadrupole frequency ωQ is in a black dotted line for reference.

9.1.2 High CFR range

Now we turn to the high CFR range represented by the blue curves with

ωP/ωQ > 0.1 in the right panel of figure (9.2).
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A short WKB analysis

From figure (9.2), we see that the lowest mode is trapped far from the potential

maximum, and that the lowest mode will be located in the same place and

have the same width for all high CFRs. We use this fact to preform a short

analysis of the WKB quantization condition. We use c2
s ∝ h2/2 ∝ ωP/r and

Ω ∝ r−3/2 to write equation (8.21) as:

k2
0(ω0, r) = K1r

−1/2

ωP
[ωpot(r,Σ) − ω0]

= K1r
−1/2

ωP

[
K2r

−7/2ωQ + r−3/2f(r,Σ)ωP − ω0
]

= K1r
−1/2

[
K2r

−7/2ωQ

ωP
+ f(r,Σ)r−3/2 − ω0

ωP

]
,

(9.10)

where K1 and K2 are some constants, and f is a function of the radius and the

density profile. In the high CFR range (ωQ/ωP ≪ 1), we can approximate the

WKB quantization condition as:

∫ rb

ra
k0(ω0, r)dr =

∫ rb

ra
K1r

−1
√
f(r,Σ) − ω0

ωP
dr = 1

2π. (9.11)

The turning points (ra and rb) are fixed in this regime. The density profile does

not depend on the CFR either. Therefore, when we change the CFR, the only

part of equation (9.11) that changes is ω0/ωP. So, equation (9.11) is satisfied

when we change the CFR only if:

ω0

ωP
= C, (9.12)

where C is an undetermined constant. Equation (9.12) tells us that in this

range, the frequency of the lowest mode is not dependent on the cavity

quadrupole frequency. To explain how this relates to results from figure (9.2),

we write equation (9.12) in another form:

ω0

ωQ
= C

ωP

ωQ
. (9.13)

Equation (9.13) shows that even if the value of the lowest mode frequency ω0

is a small finite value, the ratio ω0/ωQ will be large if ωQ is small enough. In

other words, the apparent infinite growth of ω0 in the left panel of figure (9.2)

is a consequence of scaling ω0 with ωQ.
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Another way to represent eccentricity results

If we multiply equation (9.4) by ωQ/ωP, we can write it as:

2Σr2Ω ω

ωP
E(r) = 1

r

∂

∂r

[
Σr2∂E(r)

∂r

]
R3/2

cav + r
d

dr
(Σr−1)E(r)R3/2

cav

+ 1
r

∂

∂r
[ΣrE(r)]R3/2

cav + 2ΣΩ2E(r)R7/2
cav

(
ωP

ωQ

)−1

,

(9.14)

which shows that we can write the eccentricity frequency solution as:

ω0

ωP
= f

(
ωP

ωQ

)
. (9.15)

We now show that equation (9.15)is a more suitable way to examine the high

CFR range. In figure (9.4), we plot solutions from figure (9.2) in units of ωP,

instead of ωQ. From it, we see that in the high CFR range, the frequency and

the eccentricity potential settle on constant values. Just like ω0, the eccentricity

potential seemed to infinitely grow in figure (9.2) because it was scaled with

ωQ.

Figure 9.4.: Left: the lowest mode frequency in units of the cavity pressure frequency,
as a function of the CFR. Right: eccentricity potential in units of the
cavity pressure frequency, as a function of radius in units of binary
separation.

From the left panel, we see that that (as predicted by equation (9.12)) ω0/ωP

settles on a constant value:

lim
ωP/ωQ≫1

ω0

ωP
= 0.1. (9.16)
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We show why ω0 comes to be independent on ωQ in the high CFR range. First,

we see that a thick disk will be in the high CFR range for q ∈ [0.1, 1]:

[q, h] = [10−4, 0.2] → ωP

ωQ
≈ 107,

[q, h] = [0.1, 0.2] → ωP

ωQ
≈ 100

(9.17)

We fix h = 0.2 and change the CFR by changing q. In figure (9.5), we plot a high

CFR equivalent of figure (9.3). From it, we see that the quadrupole eccentricity

potential is negligible compared to the pressure eccentricity potential:

ωpot,Q ≈ 0. (9.18)

In the low CFR range, even though the pressure was low, it still affected the

eccentricity potential by causing a cutoff. But here, a low quadrupole value

causes no change in the eccentricity potential. Since the eccentricity potential

in units of ωP does not change with the CFR, neither do eccentricity solutions:

ωpot

ωP
̸= f

(
ωP

ωQ

)
→ ω0

ωP
̸= f

(
ωP

ωQ

)
(9.19)

Figure 9.5.: Eccentricity potentials in units of the binary precession frequency as
a function of radius scaled with the binary separation (r/a) for h = 2
and q = [10−6, 10−4, 10−2]. Left: pressure eccentricity potential (dotted
black line) and total eccentricity potentials ( solid lines). Right: pressure
eccentricity potential (dotted black line) and quadrupole eccentricity
potentials (solid lines).
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9.1.3 The entire CFR range

We saw that we can write eccentricity frequencies scaled with cavity quadrupole

frequency (ω/ωQ) as a function of the CFR, and we saw that this representation

is more suitable for the low CFR range. Then, in section (9.1.2) we saw that

we can write eccentricity frequencies scaled with cavity pressure frequency

(ω/ωP) as a function of the CFR, and that this representation is more suitable

for the high CFR range.

Now, we want to represent the lowest mode frequency solutions for the entire

CFR range. From equation (9.4), we see that it is not possible to write ω0 (or

ω/Ωb) as a function of the CFR only. This means that we can not represent

solutions with a single line. Therefore, in figure (9.6), we plot frequency

solutions in another way. We plot ω/Ωb as a function of q (10−6 ≤ q ≤ 1) for

each h in h ∈ [0.2, 0.1, 0.01, 0.001, 0.0001].

Figure 9.6.: ω0 in units of Ωb as a function of q for five different values of h (solid
lines). Cavity quadrupole frequency (dotted black line).

We use figure (9.6) to point out the results that we found in this section. First,

ω0 of a thick disk is less sensitive to changes in the binary mass ratio. We see

how the constant we found before (equation (9.16)) presents itself in this plot;

for h ≫ q, ω0/ωP = 0.1, and Rcav = 2.5, we write:

ω0

Ωb
≈ 1

40h
2. (9.20)

For h = 0.2, ω0/Ωb ≈ 10−3, just like we see in figure (9.6) for q ⪅ 0.01.
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9.2 Numerical BVP frequency

We use numerical methods to solve the boundary value problem defined by

the differential equation (8.1) and the boundary condition (8.2). Again, we

search for frequency solutions in terms or the CFR.

9.2.1 Low CFR range

We lower the thickness of the disk to 10−4 ≤ h ≤ 0.2, and keep the binary mass

ratio in range 0.001 ≤ q ≤ 1. This puts the CFR in range 10−6 ⪅ ωP/ωQ ⪅ 102.

In figure (9.7), we plot ω0/ωQ (left panel) and ω0/ωP (right panel) solutions

as functions of ωP/ωQ. In both panels, we plot WKB solutions for comparison.

From both panels of figure (9.4), we see that the agreement between the two

method is excellent for ωP/ωQ ⪅ 0.1.

Figure 9.7.: Comparison of WKB and BVP frequencies as a function of CFR. Left:
lowest mode frequency in units of the cavity quadrupole frequency.
Right: lowest mode frequency in units of the cavity pressure frequency.
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9.2.2 High CFR range

We use figure (9.7) to point out the main difference between the WKB and

the numerical BVP solutions for higher values of the CFR. Numerical BVP

solutions show that, for ωP/ωQ ⪆ 10, ω0 are not dependent on ωP (depends

only on ωQ). This is why in units of ωQ, numerical BVP solutions converge to a

constant value of ω0 ≈ 0.18ωQ. The WKB solutions state the exact opposite; for

ωP/ωQ ⪆ 10, ω0 is not dependent on ωQ (depends only on ωP). This is why in

units of ωP, the WKB solutions converge to a constant value of ω0 ≈ 0.1ωP.

While discussing the WKB solutions, we showed two important properties of

the high CFR range. First, the pressure eccentricity potential alone leads to a

potential with a local maximum, which is a necessary condition for trapping

modes (right panel of figure (9.3)). Second, WKB frequencies do not grow

infinitely like figure (9.2) suggests. Instead, they settle on a constant value

that is proportional to h and not dependent on q (left panel of figure (9.4)

and figure (9.6)). Knowing this, even if we do not expect WKB frequencies

to be exact, we do expect their general behaviour to be true. Meaning, we

expect that in the limit of small binary mass ratio, the mode frequency will be

a function of the disk’s thickness, and independent of the binary mass ratio:

lim
q→0

ω0 = f(h) ̸= f(q). (9.21)

First, we find numerical BVP solutions for a limit of infinite CFR. Then, we

gradually increase the CFR to see if we reach the same limit.
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The limit of an infinite CFR

We find numerical BVP frequencies for a nonexistent quadrupole potential:

q = 0 → ωP

ωQ
→ ∞, (9.22)

and plot an equivalent to figure (9.7). In the left panel of figure (9.8), we plot

frequency solutions ω0/ωb as a function of h. In the right panel of figure (9.8),

we plot frequency solutions ω0/ωP as a function of h.

Figure 9.8.: Numerical BVP ω0 frequencies for q = 0 and 0.001 ≤ h ≤ 0.2. Disk
boundaries are rin = 1.875a and rout = 105a. Left: ω0 in units of the
binary precession frequency, as a function of the disk’s thickness.Right:
ω0 in units of the cavity pressure frequency, as a function of the disk’s
thickness.

From it, we see that ω0 is some function of h, which is in agreement with

equation (9.21). In the right panel, we plot frequencies in units of ωP. In these

units, the frequency is a constant:

ω0

ωP
(q = 0) = 5.2 · 10−6. (9.23)

Equation (9.23) is the equation we predicted in the short quantization con-

dition analysis (equation (9.12)), and tells us the value of the undetermined

constant: C = 5.2 · 10−6. This is also the behaviour that the WKB method

predicted (equation (9.16)), but with a different value fo the constant C.
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Since the numerical BVP solutions (figure (8.5)) predicted that:

ω0

ωQ
= 0.18 → ω0

ωP
= 0.18ωP

ωP
, (9.24)

if we set q = 0, we get:
ω0

ωP
= 0. (9.25)

This is at odds with what we found for q = 0 (equation (9.23)). This indicates

that maybe the CFR of 102 is not high enough to properly observe the pressure

dominant range. Another possible explanation is the dependence on the disk

radius. To examine this further, we find numerical BVP solutions for large

CFRs, and for several values of the disk outer radius.

High, but finite CFR and the dependence on the
outer disk radius

The WKB quantization condition is not a function of the boundary conditions,

so WKB solutions do not depend on them. In general, BVP solutions depend

on the boundary location. Since numerical BVP and WKB solutions are in

agreement for low CFR, and WKB solutions are not dependent on the boundary

conditions, we expect that BVP solutions for low CFRs are not dependent on

the boundary conditions either.

In figure (9.9), we plot numerical BVP solutions for ω0/ωQ (upper panel), and

for ω0/ωP (lower panel). We do it for 8 different values of the outer disk radius

rout = [10a, 20a, 30a, 40a, 50a, 100a, 500a, 1000a], and for 10−1ωP/ωQ < 106. As

expected, the change of the disk outer radius affects solutions in CFR ranges

where the WKB method is completely invalid (ωP/ωQ > 10). We see that

ω0/ωQ solutions get lower with larger rout. However, they do not settle on

a constant value like in figure (8.5). Instead, they reach ω0/ωQ = 0.18 at

ωP/ωQ ≈ 10, but they start growing again at ωP/ωQ ≈ 103. In it, we see a

behaviour similar to WKB solutions (figures (9.2), (9.4)). We also plot the

numerical BVP frequencies that we found for q = 0 and we see that this

frequency is exactly the limiting frequency that we found here.
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Figure 9.9.: Frequnecy dependence as a function of ωP/ωQ for eight values of the
outer disk radius. Upper panel: frequencies in units of the quadrupole
cavity frequency. For larger outer radii, frequencies are smaller, but
they diverge to a cyan line for rout > 500a. We see that ω0/ωQ = 0.18
behaviour stops for suffienetly large CFR. Lower panel: frequencies
in units of the pressure cavity frequency. We plot the numerical BVP
solution for q = 0 (equation 9.23) in a dashed black line. We see that this
value is in agreement with numerical BVP solutions for ωQ/ωP > 105.

We can use figure (9.9) to explain why the outer radius dependence was not

noticed before (Muñoz and Lithwick, 2020); for ωQ/ωP ⪅ 102, the solutions

are not dependent on outer radius, as long as rout ⪆ 100a.
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9.2.3 The entire CFR range

Just like in section (9.1.3), we want to visualise the frequency value without

scaling it with pressure or quadrupole effects.

In figure (9.10), we set rout = 450a for two reasons. First, so that we can

compare it directly to figure (8.4). Second, the solutions converge (figure 9.9)

at approximately this value of the outer disk radius so this shows the limiting

(large outer disk radius) behaviour as well.

In it, we see that the converging behaviour of ω0 to ω0 = 0.18ωQ for all h

predicted by Muñoz and Lithwick (2020) lasts only up to q ≈ 10−4. For

q < 10−4, the frequency solutions diverge.

Figure 9.10.: Numerical BVP lowest mode frequency in units of the binary precession
frequency, as a function of the binary mass ratio.
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9.3 Mode location and width

A mode is trapped in area where ω ≤ ωpot, i.e. in between the two radial points

where k(r) = 0. Therefore, a standard dispersion relation map (kr − r plot)

can be used to read the location and the width of a mode. In figure (9.11), we

plot the dispersion map for WKB solutions for ω0.

Figure 9.11.: Dispersion relation maps.

In figure (9.12), we plot the dispersion map for numerical BVP solutions for

ω0. .

Figure 9.12.: Dispersion relation maps.
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As expected, kr − r lines for low CFR range frequencies are identical.

For high CFR range frequencies, where the BVP and the WKB solution are not

in agreement, kr − r lines still barely differ. To explain this, we turn to the

right panel of figure (9.2). From it, we see that WKB frequencies are such

that the potential below them (as low as ωpot = 10−2ωQ) is basically a vertical

line. Because of this, lower frequencies are still localised in the same area.

Since BVP solutions are always lower then WKB solutions, they correspond to

a mode with same turning points as the WKB frequencies.

We can show that in the high CFR range, a mode has to be trapped somewhere

in area between r ≈ 2.2a and r ≈ 3.8a. From the left panel of figure (9.5), we

see that the eccentricity potential is positive at .2a ⪅ r ⪅ 3.8a, and negative

elsewhere. Therefore, if a mode exists, it has to be located within this area.

From figures (9.11) and (9.12), we see that increasing the CFR pushes the

n = 0 mode to larger radius and increases its width. We also see that for

higher CFRs, the 0-th mode location and width get more and more insensitive

to changes in the CFR. No n = 0 mode is wider than 2a, or located at r > 4a.

The width of area where the eccentricity has non-zero value is harder to

estimate. In general, the eccentricity radial profile decays for r > rb, where

r > rb is the right turning point, that we can read from (9.12). But, figure

(9.11) we can not say how fast it decays.
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9.4 Summary

With respect to the mode location and width, we can divide the CFR range

in two areas. For ωP/ωQ < 0.1, the location and the width of a mode depend

on the CFR. For ωP/ωQ > 0.1, the location and the width of a mode are not

dependent on the CFR. The modes are located in the area between r ≈ 2.2a
and r ≈ 3.8a.

WKB approximation is invalid for ωP/ωQ > 0.1. Numerical BVP solutions

depend on the outer disk radius for ωP/ωQ > 10, but converge for a large

outer radius (rout ⪆ 500a).

With respect to what effect the change of pressure and quadrupole influence

has on eccentricity results, we can divide the CFR range of a large disk (rout ⪆

102a) into three areas.

The CFR range ωP/ωQ < 10 is the area where frequency solutions sensitively

depend on both h and q; we can not write ω0 ∝ ωQ nor ω0 ∝ ωP.

The CFR range 10 < ωP/ωQ < 105 is the area of quadrupole dominance

and frequency solutions depend only on q: ω0 ≈ 0.2ωQ. The CFR range

ωP/ωQ > 105 is the area of pressure dominance and frequency solutions

depend only on h: ω0 ≈ 105ωP.
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10Higher order modes

In the two examples we discussed in part (8) (figure (8.3)), we saw that one

disk (h = 0.1, q = 0.9) supported just one mode, and the other one (h = 0.03,

q = 0.9) supported two modes. In those two cases, we changed only the

thickness of the disk. Muñoz and Lithwick (2020) state that a quantization

condition can be satisfied by more than one frequency for a thin disk with

h ⪅ 0.05.

In this chapter, we explore the number of possible modes in more detail. We

want to know exactly how many modes a disk can support, and see more

precisely how the disk thickness affects that number. Furthermore, we want to

see if the number of modes can also be changed by changing the binary mass

ratio q.

We are interested in higher modes because their existence means that disks

in identical binary-disk systems can evolve in different ways. They can have

different eccentricity profiles, and those profiles can be localized in different

areas of the disk. In addition, the eccentricity profiles can precess with different

frequencies. Therefore, if we want to find the full set of solutions for the

eccentricity equation, we need to discuss higher order modes as well.

First, in section (10.1), we find the maximum number of possible modes as

a function of h and q. Then, in section (10.2), we do an analysis of higher

order mode frequencies and eccentricity profiles. Finally, in section (10.3), we

summarize the main findings.

91



10.1 The number of modes

To find the maximum number of modes in terms of h and q, we use the WKB

quantization condition.

There are two reasons for choosing the WKB quantization condition instead

of numerically solving the BVP. First, the shooting method tends to give the

lowest mode frequency. If we carefully choose several different initial guesses,

we can obtain several different frequencies (if higher order modes are possible).

However, this requires making an estimate of the frequency values for every

combination of h and q. In addition to that, even if the shooting method

provides us with different frequencies, we can not that those frequencies are

all possible frequencies. For example, if we get 5 different frequency values

using the shooting method, we can not know if those five are in order (ω0,

ω1, ω2, ω3, and ω4). If the frequency levels are dense, the shooting method

can find some of the frequencies ( for example ω0, ω1, ω2, ω10, and ω11), in

which case the ones in between get ’lost’. Unless we plot eccentricity profiles

E(r) for each ω, we can not know the order of the mode with that frequency.

Again, this problem can in theory be solved by choosing a wide variety of

initial guesses, but the method would still be impractical and unreliable.

On the other hand, using the WKB approximation condition (equation (8.33))

requires a choice of the mode order, so we always know which mode order we

are working with. The second reason for choosing the WKB quantization is

the fact that, in this section, we are only looking for the number of possible

modes, and not their frequencies. In other words, the difference in the BVP

and WKB solutions is irrelevant at the moment because we are not searching

for values of ω, but only for the number of all possible ω-s.

We also want to see what h − q areas are areas of the WKB approximation

validity (CFR<0.1). We use:

ωP

ωQ
= h2Ωcav

3q
4(1+q)2 (Rcav/a)2 Ωcav

= h2

3q
4(1+q)2 (Rcav/a)2 (10.1)
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to write ωP/ωQ = 0.1 as:

h =

√√√√0.1 3q
4(1 + q)2

(
Rcav

a

)2
. (10.2)

Equation (10.2) depends on the cavity size Rcav because we defined ωP and

ωQ as the pressure and quadruple frequencies at the cavity radius. Since the

quadrupole and pressure influence are different power laws, their ratio is

dependent on the cavity size. Like in most of this work, we set Rcav = 2.5a.

In figure (10.1), we plot the maximum number of allowed modes for 10−6 ≤
q ≤ 1 and 10−4 ≤ h ≤ 0.2. We highlight q − h areas that support a maximum

of 5, 10, 20, 40, or 80 modes. We plot the ωP/ωQ = 0.1 line; the area above it

is the area where the WKB approximation breaks down, the area below it is

the area where the WKB frequencies are exact.

Figure 10.1.: The highest possible mode order as a function of the binary mass
ratio and the thickness of the disk (colored lines). Lines nmax =
[5, 10, 20, 40, 80] is solid black lines for reference. The area where the
WKB approximation gives correct ω0 values is below the dotted black
line. The cavity size of the disk is taken to be Rcav = 2.5a

In figure (10.2), we plot the same results as in figure (figure (10.1)), but in

linear h and q scales.
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Figure 10.2.: Maximum number of possible modes as a function of binary mass ratio
and the thickness of the disk for a disk with a cavity size Rcav = 2.5a
Same as figure (10.1), but in a linear scale.

We quickly check that these solutions are consistent with the ones from part

8. From figure (10.2), we see that for h = 0.1 and q = 0.9, nmax = 0, which is

agreement with what we see in figure (8.3). Similarly, we see that for h = 0.03
and q = 0.9, nmax = 1, which is agreement with what we see in figure (8.3).

We now use figures (10.1) and (10.2) to shows important properties.

From figure (10.2), we see that roughly 4/5 of explored q − h area supports

only a single mode. We also see that higher order modes are impossible for

h ⪆ 0.05. However, this is only partly in agreement with a statement that

higher modes are possible for h ⪅ 0.05 (Muñoz and Lithwick, 2020). Instead,

from figure (10.1), we see that for h ⪅ 0.05, the possibility of a higher order

mode depends on the binary mass ratio. We use figure (10.2) to show why the

dependence on q is not visible in the h− q range used in part 8. We see that

for thick disks and near equal mass binaries, nmax areas are almost horizontal

lines and nmax is a function of h only.

From figure (10.1), we see that every higher mode is supported by a smaller

q − h area. For nmax ⪆ 10, areas of constant nmax become thin lines. This

allows us to comment the stability of nmax on changes of h and q. For example,

for h = 0.1, we see that nmax = 0 for every q ∈ [10−6, 1]. On the other hand,
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for h = 10−3, nmax depends on q and can be 0 < nmax < 100. We conclude that

the number of possible modes depend on q more for smaller h. Similarly, the

number of possible modes depend on h more for higher q.

To observe how nmax grows with h, we focus on q = 1 part of the figure

(10.1). We see that the maximum number of possible modes doubles in

equal spacing of h (in a log-log graph). If this behaviour continues, nmax

would grow indefinitely. This indicates that the frequency spectrum becomes

quasi-continuous. We show one example of this behaviour in section (10.2).

Stability of the disk radial eccentricity profile and
frequency

We make an estimate of how an increased number of possible modes affects

the stability of eccentricity solutions. A thick (h = 0.1) disk around an equal

mass binary q = 1 can support only one mode. If the eccentricity profile or

frequency are perturbed, it can reach a steady state again only by going back

to that one mode. A thinner (h = 0.04) disk around an equal mass binary q = 1
can support two modes. If that disk is perturbed, it can reach a steady state by

going to any of the two modes or to any of linear combinations of those two

modes. A thin mode (h = 0.0001) around an equal mass binary (q = 1) can

support modes of virtually continuous frequency spectrum ω ∈ [0,max(ωpot)]
(figure (10.3)). A minor perturbation of such a disk in a steady state is most

likely still a steady state, and the disk will stay in that state.
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10.2 Higher mode frequencies, eccentricity
profiles and the location of higher
order modes

We saw in figure (10.1) that the entire q − h space that supports higher order

modes is located in the area where the WKB quantization condition gives the

correct lowest mode frequency (ω0). Now, we convince ourselves that it gives

correct higher mode frequencies (ωn) as well. To do so, we turn to quantum

mechanics results by Ma and Xu (2005). They show how an exact quantization

condition for a function Ψ(r) that is a solution of a Schrodinger equation:

d2Ψ
dr2 = k(r)2Ψ (10.3)

can be written as: ∫ rb

ra
k(ωn, r)dr = (n+ 1)π +Q, (10.4)

where Q is called the quantum correction and has the same value for all n. In

the WKB quantization condition, the correction is taken to be:

QWKB = −π

2 . (10.5)

Since we saw that for ωP/ωQ ≤ 0.1, the WKB quantization condition gives

correct values of ω0, we conclude that the WKB quantum correction is exact for

n = 0. This, combined with the upper discussion, tells us that this correction is

then exact for all n ≥ 0. Therefore, we expect the WKB frequencies to be exact

for all order modes as long as ωP/ωQ ≤ 0.1.
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A thin disk around an equal mass binary.

We set q = 1 and h = 0.001, and use it as an example to visualise higher

order modes. We are interested in the mode frequency, location, width and

the eccentricity profile. We use the WKB quantization condition to find all

possible modes. In left panel in figure (10.5), we plot the eccentricity potential

and frequencies of all possible modes. Next, we choose five different modes

n ∈ [0, 1, 10, 20, 90] that we will discuss in more detail and plot them in the

right panel of figure (10.5).

Figure 10.3.: Left panel: eccentricity potential (black) as a function of radius scaled
with binary separation in units of the quadrupole frequency at the
cavity radius. Frequencies of all possible modes ωn (purple). Right
panel: same as left, with five highlighted modes (n ∈ [0, 1, 10, 20, 90]).

We first use these 5 modes to verify the accuracy of WKB results. We use two

numerical methods of solving the BVP: the shooting method and a python BVP

solver. Both of these are sensitive to initial guesses so we use several values

close to the WKB results as initial guesses. All three methods give same results:

ω0 = 2.04ωQ = 0.0155Ωb

ω1 = 1.95ωQ = 0.0148Ωb

ω10 = 1.29ωQ = 0.00979Ωb

ω20 = 0.811ωQ = 0.00615Ωb

ω90 = 0.00192ωQ = 0.0000146Ωb.

(10.6)
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All eccentricity profiles presses with a frequency much smaller than the binary

precession frequency: ωn ⪅ 10−2Ωb. The frequencies can differ by several

orders of magnitude (ω90/ω0 = 10−3).

From figure (10.3), we see that the left turning point of every order mode is at

the approximately same location. We also see that the right turning point of

every n = m mode is further out than all n < m modes. So we expect every

higher order mode to be less localised. In figure (10.4), we plot the frequency

dispersion map.

Figure 10.4.: Frequency dispersion maps for 0-th (purple), 1 − st (orange), 10-th
(red), 20-th (cyan), and 90-th (green) mode in a disk of thickness
h = 0.001 around an equal mass binary (q = 1).

In figure (10.5), we plot eccentricity profilesE(r) for modes n = [0, 1, 10, 20, 90].
These profiles allow us to do a consistency check. The n-th mode should have

n nodes within area where ω ≤ ωpot, and decay for ω > ωpot. Comparing

figures (10.3) and (10.5), we see that this is true.
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Figure 10.5.: Absolute values of eccentricity profiles as functions of radius in units
of the binary separation (a) for five modes in a thin disk (h = 10−3)
around an equal mass binary (q = 1). All five eccentricity profiles are
scaled to E = 1 at the inner boundary. Upper left: eccentricity profiles
of the 0-th mode (purple) and the 1-st mode (orange). Upper right:
eccentricity profiles of the 10-th mode (red) and the 20-th mode (cyan).
Lower panel: eccentricity profiles of the 90-th mode (green).
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10.3 Summary

Higher order modes are possible only in the range where the WKB approxima-

tion gives exact solutions. This fact can simplify finding eccentricity solutions,

because for higher and/or densely spaced modes, numerical BVP methods are

impractical.

The number of possible modes depends on both the disk thickness h and the

binary mass ratio q. We can write three general rules concerning nmax. One,

thinner disks around binaries of a more equal mass can support higher modes.

Two, the number of possible modes in a disk is more sensitive to changes of q if

the disk is thin. Three, the number of possible modes in a disk around a binary

is more sensitive to changes of h if the binary components are near-equal

mass.

Possible precession frequencies of an eccentric circumbinary disk with CFR≪ 1
are almost continuous and can take any positive value of the eccentricity

potential.

Every m-th mode is less localized than every n < m mode. In areas of the disk

further away from the binary, the eccentricity will be non-zero only if the disk

is in a higher order mode.

Since the eccentricity of a disk can be any linear combination of possible

modes, the time evolution of a thin disk can be far more complicated then the

evolution of a thick (h > 0.05) disk.
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11Eccentricity solutions as a
function of density

Up to now, we used the density profile:

Σ = Σ0
(
r−0.5 − Lr−1

)
e−(Rcav/r)Z

, (11.1)

with L = 0.7, Rcav = 2.5a, and Z = 12.

In this chapter we wish to see hot much this density profile affects eccentricity

results and in what way. In section (11.1), we keep Rcav = 2.5a and Z = 12,

and we change L. In section (11.2), we keep L = 0.7 and Z = 12, and we

change the value of Rcav. In section (11.3), we keep L = 0.7 and Rcav = 2.5a,

and we change the value of Z.
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11.1 The torque exerted on the binary by
the disk

In part 8, we found eccentricity solutions for one value of the torque exerted

on the binary by the disk (L). Now we see how L affects ω/ωQ solutions.

Duffell et al. (2020b) showed that the value of L depends on the binary mass

ratio. Since only the pressure eccentricity contributions depend on the density,

we expect L to make a difference only for higher CFRs, and in that range,

(Duffell et al., 2020b), 0 ⪅ L ⪅ 1. We can not draw a parallel between that

binary-disk set up and ours, but we use L = [0, 0.5, 0.7, 0.9, 1] as a very rough

idea of what the value of L might be. In figure (11.1), we plot density profiles

(equation (11.1)) for Rcav = 2.5a and L = 0.7.

Figure 11.1.: Radial density profiles of a disk with a cavity of size Rcav = 2.5a and
cavity slope Z = 12 for L = [0, 0.5, 0.7, 0.9, 1].

For a fixed disk size, cavity size, and the cavity slope, we can write (equation

(11.3)):
ω

ωQ
= f

(
L,
ωQ

ωQ

)
. (11.2)

In figure (11.2), we plot frequency solutions represented by equation (11.2).

From it, we see that the change of L does not change solutions for ωP/ωQ ⪅ 0.1.

For ωP/ωQ ⪆ 0.1, the frequency is larger for smaller L.
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Figure 11.2.: The lowest mode frequency in units of the cavity quadrupole frequency
as a function of the CFR for L = [0, 0.5, 0.7, 0.9, 1].

11.1 The torque exerted on the binary by the disk 103



11.2 The size of the disk cavity

In figure (8.5), we saw that the cavity size in range 2.5a ≤ Rcav ≤ 5a does

not change solutions. However, in section (11.1), we saw that a change in L

can cause a slight change for large CFRs. In Appendix I, we show that, for

the density profile (11.1), frequency solutions depend on Rcav and L only as a

product LR−1/2
cav . Therefore, we write:

ω

ωQ
= f

(
LR−1/2

cav , Z,
ωP

ωQ

)
. (11.3)

Since solutions depend on the product LR−1/2
cav , we expect that a wider range of

cavity sizes can make the difference in eccentriocty solutions visible. Therefore,

we widen the cavity size range to Rcav = [1.5a, 4a, 6a, 10a]. In figure (11.3),

we plot density profiles (equation (11.1)) for L = 0.7 and Z = 12.

Figure 11.3.: Radial density profiles of a disk with Z = 12 and L = 0.7 for cavity
sizes Rcav = [1.5a, 4a, 6a, 10a].

In figure (11.4), we plot. From it, we see that the cavity size can change

solutions only for ωP/ωQ ⪆ 0.1.
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Figure 11.4.: The lowest mode frequency in units of the cavity quadrupole frequency,
as a function of the CFR. L = 0.7 and rout = 450a. The disk cavity
size is Rcav = [1.5a, 4a, 6a, 10a], and the inner disk radius is taken to be
rout = 0.8rcav.

Here, we discuss the choice of the density cutoff function. First, in section

(11.4), we show that the cutoff function we used to create a cavity greatly

influences all eccentricity solutions. Next, in section (11.5), we explain why

the cutoff function dominates eccentricity results. Then, in section (11.3), we

change the cutoff exponent and see how that changes solutions for lowest

mode frequencies. Finally, in section (11.6), we use the findings of this chapter

to write the eccentricity equation in a simplified form and to explain some of

the results from earlier chapters.
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11.3 The cutoff exponent

Now we want to see how the change of the cutoff exponent Z influences

eccentricity results. In figure (11.6), we plot density profiles (equation (11.1))

for Rcav = 2.5a, L = 0.7, and Z = [4, 6, 12, 18].

Figure 11.5.: Radial density profiles of a disk with Rcav = 2.5a and L = 0.7 for
Z = [4, 6, 12, 18].

In figure (11.6), we plot numerical BVP solutions for ω0.

Figure 11.6.: Caption

The change of the cutoff exponent significantly changes frequencies in.the low

CFR range. It does not change results in the high CFR range. Because we a
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change in solutions, we explore the change of the cutoff exponent a bit more.

In figure (11.7), we plot numerical BVP and WKB solutions for each Z

Figure 11.7.: Comparison of WKB and numerical BVP frequencies ω0 for each Z.

From figure (11.7), we see that the agreement between WKB and numerical

BVP solutions is better for lower Z.
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11.4 Illustration of the importance of the
cutoff function.

We saw that the only density parameter that caused eccentricity solutions

to change was the cutoff exponent, and it influenced solutions greatly. That

motivates us to see just how much eccentricity solutions are determined by

the cutoff function.

To illustrate this, we solve the eccentricity equation in same ways as in part (8).

This time, we do it for a density profile described by just the cutoff function:

Σ = e−(2.5/r)12
. (11.4)

We plot these results, along with results for the density profile:

Σ = Σ0
(
r−0.5 − Lr−1

)
e−(Rcav/r)Z

, (11.5)

that we found in part 8.

We start by comparing frequency results. In figure (11.8), we plot ω0 WKB and

numerical BVP solutions. The agreement between solutions for both density

profiles is worse for higher CFRs, but is not significant.

Figure 11.8.: Frequency solutions ω0/ωQ as a function od the CFR. Comparison of
results obtained using just the cutoff function (solid lines) and results
obtained using the full density profile (dashed lines).
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Now that we know that the frequency solutions are determined by the cutoff

function, we see if the same is tru for the eccentricity profile. In figure (11.9),

we plot eccentricity profiles for h = 0.1 and q = [0.1, 0.2, 0.4, 0.6, 1].

Figure 11.9.: Radial eccentricity profiles for h = 1 and q = [0.1, 0.2, 0.4, 0.6, 1]. Com-
parison of results obtained using just the cutoff function (solid lines)
and results obtained using the full density profile (dashed lines).

Next, we compare scaled eccentricity solutions. In figure (11.10), we plot; ec-

centricity profiles E(r) and scaled eccentricity profilesy(r) profiles for ωP/ωQ =
0.05 and ωP/ωQ = 50. From it, we can see that the agreement is worse for

larger CFRs, but even then, the agreement is great.
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Figure 11.10.: Scaled eccentricity profiles (left panels) and eccentricty profiles (right
panels) for ωP/ωQ = 0.05 (upper panels) and ωP/ωQ = 50 (lower
panels). Comparison of results obtained using just the cutoff function
(solid lines) and results obtained using the full density profile (dashed
lines).
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11.5 Explanation of the dominance of the
density cutoff function on all
eccentricity results

We saw in figures (11.9), (11.10), and (11.8) that results from part (8) can

be reproduced by taking the density profile to be equal to just the cutoff

function. To explain why the cutoff function dominates results, we discuss

the differences between a cut disk (11.4), a combined disk (11.5), and an the

extended disk:

Σ = Σ0

((
r

a

)−0.5
− 0.7

(
r

a

)−1
)
. (11.6)

In figure (11.11), we plot all three density profiles.

Figure 11.11.: Density profiles of cut, extended and combined disks.

From figure (11.11), we see that for r < 3a, the agreement between the cut

and the combined density profile is excellent. For r > 3a, the agreement

between the extended and the combined density profile is excellent.

In figure (11.12), we plot the pressure eccentricity potential. We see that the

the general shape of the potential well is determined by the cutoff function.

In addition, the well is entirely located at r < 4a, which is the area where

(figure (11.11))) the combined density shows no dependence on the extended

density. In other words, when we model a cavity in an extended disk with

an exponential cutoff function, a potential well is created entirely in the area

where the information on the original density is lost.
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Since modes are trapped inside the well, we conclude that all eccentricity

results will be determined by the cutoff function.

Figure 11.12.: Pressure eccentricity potentials for a cut, extended, and a combined
disk.

We write the pressure potential eccentricity potential as:

ωpot,P(r)
h2Ωb

= r−1/2Σ′

4Σ + r1/2Σ′2

8Σ2 − r1/2Σ′′

4Σ − 3r−3/2

4 . (11.7)

In figure (11.13), we plot all terms of equation (11.7) for desnity profiles of a

cut, extended and a combined disk.
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Figure 11.13.: Total pressure eccentricity potential in pink. Each of the four terms
contributing to this potential (equation (11.7)) in blue.

In the eccentricity potential (equation (11.7)), the density appears only in

ratios Σ, ∂Σ/∂r, and ∂2Σ/∂r2, so for a combined disk, the exponential function

gets canceled out. We explain why the exponential cutoff dominates eccen-

trocty solutions anyway. A first derivative of a function f(r) that is a product

of two other functions h(r) and g(r):

f(r) = h(r)g(r), (11.8)
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is:
f ′

f
= h′g + hg′

fg
= h′

h
+ g′

g
, (11.9)

and its second derivative is:

f ′′

f
= h′′g + h′g′ + h′g′ + hg′′

fg
= h′′

h
+ g′′

g
+ 2h

′

h

g′

g
. (11.10)

We conclude that if the derivative of one function (h or g) is a lot larger then

the derivative of the other function (h or g), then the derivative of the product

of those two functions (f) will be approximately equal to just the derivative of

that one function.

The combined density profile density profile (11.5) is a product of two func-

tions (11.6) and (11.4), so we set:

h(r) = r−1/2 − Lr−1, (11.11)

and:

g(r) = e−(Rcav/r)Z

. (11.12)

We find derivatives as:

h′

h
=

−1
2r

−3/2 + Lr−2

r−1/2 − Lr−1 ∝ r−1, (11.13)

and:
h′′

h
=

3
4r

−5/2 − 2Lr−3

r−1/2 − Lr−1 ∝ r−2, (11.14)

g′

g
=
Zr−1

(
Rcav

r

)Z
e−(Rcav/r)Z

e−(Rcav/r)Z = Zr−1
(
Rcav

r

)Z

∝ r−Z−1, (11.15)

and:

g′′

g
= Zr−2

(
Rcav

r

)2Z

+ (Z2 − Z)r−2
(
Rcav

r

)Z

∝ r−2Z−2. (11.16)

Ratios Σ′/Σ and Σ′′/Σ are power laws for both h and g. But, the former power

law is so much greater than the latter one that the total density derivatives can

be approximated with the derivative values of g.
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11.6 Summary

Eccentricity results do not depend on L and Rcav for low CFRs. Eccentricity

results weakly depend on L and Rcav for high CFRs.

Eccentricity results are very dependant on the steepness of the cavity slope for

low CFRs. Eccentricity results are independents on the steepness of the cavity

slope for higher CFRs.

Results from part 8 can be entirely reproduced by taking the density profile:

Σ = Σ0e
−(Rcav/r)Z

, (11.17)

instead of:

Σ = Σ0
(
r−0.5 − Lr−1

)
e−(Rcav/r)Z

. (11.18)

The cutoff function not only allows for modes to exist, but also completely

determines the eccentricity results.

The findings of this chapter can be used to simplify the eccentricity problem

for all CFRs; we can use the cutoff density profile to write the eccentricity

differential equation as:

Simplified eccentricity equation for a locally isothermal circumbinary

disk

E ′′(r) = E ′(r)
[
−Z

(
Rcav

r

)Z

r−1 − 3r−1
]

+ E(r)
[
−2Z

(
Rcav

r

)Z

r−2 + 2
h2

ω

Ωb
r−1/2 − 1

h2
3q

2(1 + q)2 r
−4
]
,

(11.19)

or, in terms of R ≡ r/Rcav, as:
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Simplified eccentricity equation for a locally isothermal circumbinary

disk as a function of a scaled radius R

d2E

dR2 = dE

dR

[
−ZR−Z−1 − 3R−1

]
+ E

[
−2ZR−Z−2 + 2 ω

ωP
R−1/2 − ωQ

ωP
R−4

]
.

(11.20)

We can use equation (11.20) to find eccentricity solutions for any density pro-

file (11.18), and still obtain results that are highly accurate or exact regardless

of L and Rcav. Solving the simplified eccentricity equation numerically is faster

compared to solving it for a profile (11.18).

To conclude, to solve the eccentricity equation for a general density profile

(11.18), all we need is the cavity slope Z. For larger CFRs, we do not even

need to know the exact slope, and any value of the slope (at least in the range

4 ≤ Z ≤ 16 that we explored) will give correct results.
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12Summary and conclusion

In chapter 8, we showed how to use the recipes from part II on a locally

isothermal disk in a stationary state. We then found known solutions (Muñoz

and Lithwick, 2020) for a disk of a relatively high thickness (h ≥ 0.01) around

binaries with a higher mass ratio (q ≥ 0.03). We reproduced most results from

Muñoz and Lithwick (2020) to verify that our understanding of methods for

solving the eccentricity equation is correct. Those results showed that the fre-

quency of the lowest mode is in range 0.2ωQ ≤ ω0 ≤ ωQ, and that quadrupole

effects always dominate the eccentricity. Solutions were independent of the

outer disk radius and pointed out a possibility of at least two disk eccentricty

modes, with the number of modes being determined by the disk thickness. In

addition, modes were located at r > 2a.

In chapters (III), (10.1), and (11), we turned to thinner disks (10−4 ≤ h ≤ 0.2),

and disks around binaries of a more unequal mass ratio (10−6 ≤ q ≤ 1). We

presented results as functions of the CFR.

In the low CFR range, the mode frequency can grow above ω0 = ωQ. The

location and width of the 0-th mode depend on the CFR’s exact value. The

number of modes can grow up to at least a hundred. Different modes have

different widths and can spread over significant portions of the disk. Solutions

are not dependent on the outer disk radius, and the WKB and numerical BVP

results are in perfect agreement. Solutions do not depend on L or Rcav and

depend significantly on Z.

In the high CFR range, the location and the width of the lowest mode are

not dependent on the CFR. There can only be one mode, and its location and

width are fixed. Solutions depend on the outer disk radius, and the WKB

approximation is invalid. Solutions weakly depend on L and Rcav, and are not

dependent on Z.
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We found that we can divide the CFR spectrum into two regions, each depen-

dent on one set of parameters (density profile away from the cavity, the exact

value of the CFR) and not on the other set of parameters (cavity slope, outer

disk radius). Interestingly, disks from part 8 fall between those two regions.

Our results for thin disks are especially important as they make predictions

for the disk behavior in a regime that we expect to be relevant astrophysical,

and which has yet to be simulated. Accretion disks, such as disks in AGN

(Bellovary et al., 2016), are as thin as 10−4 ⪅ h. However, these disks are hard

to simulate, so simulations are only available for thicker disks. We showed

that eccentricity results found by either solving the eccentricity equation or by

simulating a thick disk should not be used to estimate the eccentricity solution

for a thin disk.

Future prospects

We found that higher modes are possible, but we do not know how each of

them is excited, nor the amplitude of different modes. To understand how

different modes are excited and if the disk is more likely to settle on specific

modes and not the others, we need to look at the time-dependent eccentricity

equation. In other words, we need to set a forcing effect, such as resonance

(chapter (5)), and solve the time-dependent equation.

It could also prove interesting to examine disks with cavities that are not

described with exponential functions. A cutoff function describing a more

gradual decay into the cavity might influence the solutions in a way that the

information on the density profile away from the cavity is preserved (11.5).

A 3d treatment (section (3.3)) could be a better choice for finding eccentricity

solutions for thick disks around binaries with q ≪ 1. It could explain or counter

the results found by treating it as a 2d disk.

118 Chapter 12 Summary and conclusion



Part IV

Appendix





APolar coordinate system

In a polar coordinate system, each point in a plane can be decribed with

2 coorinates: distance from the origin r, and an angle from the referenece

direction ϕ. To compare it to (x, y) coorinadte system, we put the orogin of

both systems in the same place, and choose x direction as a reference direction

for the polar system. We can the define the angle ϕ as:

tanϕ = y

x
, (A.1)

and radial distance r as:

r2 = x2 + y2. (A.2)

This is illustrated in figure (A.1).

x

y

ϕ

r

r̂ϕ̂

(0, 0)

Figure A.1.: Polar coordinate system.

Unit vectors are orthogonal:

r̂ · r̂ = ϕ̂ · ϕ̂ = 1, (A.3)
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r̂ · ϕ̂ = 0. (A.4)

. Unit vectors do not explicitly depend on time:

∂r̂

∂t
= ∂ϕ̂

∂t
= 0. (A.5)

Radial motion does not change either unit vectors:

∂ϕ̂

∂r
= ∂r̂

∂r
= 0, (A.6)

but asimuthal motion changes both:

∂ϕ̂

∂ϕ
= −r̂, (A.7)

∂r̂

∂ϕ
= ϕ̂. (A.8)

In polar coordinates, the gradient of a function g(r, ϕ) is:

∇⃗g = ∂g

∂r
r̂ + 1

r

∂g

∂ϕ
ϕ̂. (A.9)

In polar coordinates is, the divergence of a vector field A⃗ = Ar(r, ϕ)r̂+Aϕ(r, ϕ)ϕ̂
is:

∇⃗ · A⃗ = ∇⃗ · (Arr̂ + Aϕϕ̂) = 1
r

∂(rAr)
∂r

+ 1
r

∂Aϕ

∂ϕ
. (A.10)
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B

B.1 Equations of motion

We use equations (1.11) and (A.4) to write equation (2.15) in polar coordinates

as:
∂(ur̂ + vϕ̂)

∂t
+
(
u
∂

∂r
+ v

r

∂

∂ϕ

)
(ur̂ + vϕ̂) = −1

ρ
∇⃗p− ∇⃗Φ. (B.1)

We write it out as:

∂(ur̂ + vϕ̂)
∂t

+
(
u
∂

∂r
+ v

r

∂

∂ϕ

)
(ur̂)+

(
u
∂

∂r
+ v

r

∂

∂ϕ

)
(vϕ̂) = −1

ρ
∇⃗p−∇⃗Φ, (B.2)

∂u

∂t
r̂+u∂r̂

∂t
+ ∂v

∂t
ϕ̂+ v

∂ϕ̂

∂t
+ur̂∂u

∂r
+ u2∂r̂

∂r
+ uv

r

∂r̂

∂ϕ
+ vr̂

r

∂u

∂ϕ

+uϕ̂∂v
∂r

+ uv
∂ϕ̂

∂r
+ v2

r

∂ϕ̂

∂ϕ
+ vϕ̂

r

∂v

∂ϕ
= −1

ρ

∂p

∂r
r̂ − 1

ρr

∂p

∂ϕ
ϕ̂−∂Φ

∂r
r̂ − 1

r

∂Φ
∂ϕ

ϕ̂.

(B.3)

and use equations (A.6), (A.7) and (A.8) to write:

∂u

∂t
r̂+∂v

∂t
ϕ̂+ur̂∂u

∂r
+ uv

r
ϕ̂+ vr̂

r

∂u

∂ϕ

+uϕ̂∂v
∂r

+ v2

r
(−r̂) + vϕ̂

r

∂v

∂ϕ
= −1

ρ

∂p

∂r
r̂ − 1

ρr

∂p

∂ϕ
ϕ̂−∂Φ

∂r
r̂ − 1

r

∂Φ
∂ϕ

ϕ̂.

(B.4)

We can now find two independent equations by taking a dot product of

equation (B.4) and r̂:

∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂ϕ
− v2

r
= −1

ρ

∂p

∂r
− ∂Φ
∂r
, (B.5)

and by taking a dot product of equation (B.4) and ϕ̂:

∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂ϕ
+ uv

r
= − 1

ρr

∂p

∂ϕ
− 1
r

∂Φ
∂ϕ

. (B.6)
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CCoefficients of expansion
of the disk’s unperturbed
state

We want to expand these quantities up to the lowest two terms. However, we

do not know the ratio of magnitudes of all quantities. This means that we do

not know if all quantities can be described with terms with same orders of ϵ.

We will do a short analysis to see how this should be done. First, we know that

radial velocity is zero (equation (2.29)), so we do not need to expand it:

u = 0. (C.1)

Next, we preform a dimensional analysis on equation (2.32):

v2

r
∝ 1
ρ

p

r
+ Φ
r
. (C.2)

We write these values as expansion of unknown orders. We call lowest terms

of every expansion X0 and X2.

v = v0 + v2ϵ
2 + v4ϵ

4 + v6ϵ
6 + ...

Φ = Φ0 + Φ2ϵ
2 + Φ4ϵ

4 + Φ6ϵ
6

p = p0 + p2ϵ
2 + p4ϵ

4 + p6ϵ
6

ρ = ρ0 + ρ2ϵ
2 + ρ4ϵ

4 + +ρ6ϵ
6

(C.3)

In equation (2.32), pressure and density appear only as ratio p/rho can choose

the lowest non vanishing term of density series to be ϵ0:

ρ = ρ0 + ρ2ϵ
2, (C.4)

and we know that the ratio needs to be of order ϵ2 so we write:

p = p4ϵ
4 + p6ϵ

6. (C.5)
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Now we can write equation (C.2) as:

v2 ∝ p

ρ
+ Φ

(
v0 + v2ϵ

2 + v4ϵ
4 + v6ϵ

6
)2

∝ p4ϵ
4 + p6ϵ

6

ρ0 + ρ2ϵ2 + Φ0 + Φ2ϵ
2 + Φ4ϵ

4 + Φ6ϵ
6

v2
0 + 2v0v2ϵ

2 + 2v0v4ϵ
4 + 2v0v6ϵ

6 + v2x
4 + 2v2v4ϵ

6 + 2v2v6ϵ
8 + v4ϵ

8

+2v4v6ϵ
10 + v6ϵ

12 ∝ p2

ρ0
ϵ2 + ρ0p4 − ρ2p2

ρ2
0

ϵ4 + Φ0 + Φ2ϵ
2 + Φ4ϵ

4 + Φ6ϵ
6

(C.6)

Equation (C.6) can be satisfied for two different orders of ϵ only if the lowest

non vanishing terms of density and gravitational potential are v0, v2, Φ0, and

Φ2. So, quantities expanded up to lowest two non vanishing terms are:

v = v0 + v2ϵ
2

ρ = ρ0 + ρ2ϵ
2

Φ = Φ0 + Φ2ϵ
2

p = p2ϵ
2 + p4ϵ

4.

(C.7)

Now we put equations (2.37) in the steady state equation that we have

obtained (equation (2.32)):

−(v0 + ϵ2v2)2

r
= − 1

ρ0 + ϵ2ρ2

∂ (p2ϵ
2 + p4ϵ

4)
∂r

+ ∂(Φ0 + ϵ2Φ2)
∂r

(C.8)

−v2
0 + 2v0v2ϵ

2 + v2
2ϵ

4

r
= − 1

ρ0

1
1 + ϵ2ρ2

ρ0

∂ [p2ϵ
2 + p4ϵ

4)]
∂r

+ ∂(Φ0 + ϵ2Φ2)
∂r

= −1
ρ0

[
1 − ϵ2ρ2

ρ0

]
∂ [p2ϵ

2 + p4ϵ
4]

∂r
+ ∂(Φ0 + ϵ2Φ2)

∂r

(C.9)

Equation (C.9) up to ϵ2 is:

−v2
0 + 2v0v2ϵ

2

r
= −1

ρ0

∂p2ϵ
2

∂r
+ ∂(Φ0 + ϵ2Φ2)

∂r
. (C.10)
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DDerivation of perturbed
equation

In practice, this means that for every two perturbations a′ and b′:

a′b′ = a′∂b
′

∂t
= a′∂b

′

∂r
= a′∂b

′

∂ϕ
= 0. (D.1)

Equations E.25 and E.33 of order ϵ2 are:

∂u′
0

∂t
− iΩunp,2u

′
0 − iΩunp,0u

′
2 − 2Ωunp,2v

′
0 − 2Ωunp,0v

′
2

= − 1
ρunp,0

∂p′
0

∂r
+ ρ′

0
ρ2

unp,0

∂punp,2

∂r

(D.2)

∂v′
0

∂t
− iΩunp,2v

′
0 − iΩunp,0v

′
2 + u′

0
r

∂

∂r
(r2Ωunp,2)+ u′

2
r

∂

∂r
(r2Ωunp,0) = ip′

0
rρunp,0

(D.3)

Equation E.38 in 0th order:

∂ρ′
0

∂t
− iΩunp,0ρ

′
0 + u′

0
∂ρunp,0

∂r
= −ρunp,0

r

[
∂(ru′

0)
∂r

− iv′
0

]
(D.4)

Equation E.44 in order ϵ2 (there are no 0th order factors) is:

∂p′
0

∂t
− iΩunp,0p

′
0 + u′

0
∂punp,2

∂r
= −γpunp,2

r

[
∂(ru′

0)
∂r

− iv′
0

]
(D.5)

Multiplying D.3 by 2i and adding it to D.2, we get:
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∂(u′
0 + 2iv′

0)
∂t

− iΩunp,0(u′
0 + 2iv′

0) − 2Ωunp,2v
′
0 + 2iu

′
0
r

∂

∂r
(r2Ωunp,2)

= − 1
ρunp,0

∂p′
0

∂r
+ ρ′

0
ρ2

unp,0

∂punp,2

∂r
+ 2i ip′

0
rρunp,0

(D.6)

∂

∂t

[
u′

0 + 2iv′
0

]
︸ ︷︷ ︸

A

−iΩ2u
′
0 + 2iu

′
0
r

∂

∂r
(r2Ω2)︸ ︷︷ ︸

B

= −1
ρ0

∂p′
0

∂r︸ ︷︷ ︸
C

+ ρ′
0
ρ2

0

∂p0

∂r︸ ︷︷ ︸
D

−2p′
0

rρ0︸ ︷︷ ︸
F

(D.7)

A = ∂

∂t

[
u′

0 + 2iv′
0

]
= ∂

∂t

[
irΩ0E + 2i12rΩ0E

]
= ∂

∂t

[
i2rΩ0E

]
= i2rΩ0

∂E

∂t

(D.8)

B = i

[
− Ω2u

′
0 + 2u

′
0
r

∂

∂r
(r2Ω2)

]

= i

[
− 1

2rΩ0

[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]
irΩ0E + 2

r
irΩ0E

∂

∂r

[ 1
2rΩ0

r2
(
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

)]]

= E

2

[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]
− 2Ω0E

[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]
∂

∂r

(
r

2Ω0

)
− 2Ω0

Er

2Ω0

∂

∂r

[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]

= E

2

[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]
− 5

2
Ω0E

Ω0

[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]
− Er

∂

∂r

[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]

= −2E
[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]
− Er

∂

∂r

[
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

]

= −E

r

∂

∂r

[
r2
(
∂Φ2

∂r
+ 1
ρ0

∂p0

∂r

)]

= −E

r

∂

∂r

[
r2∂Φ2

∂r

]
− E

r

∂

∂r

[
r2

ρ0

∂p0

∂r

]

= −E

r

∂

∂r

[
r2∂Φ2

∂r

]
− 2E 1

ρ0

∂p0

∂r
− Er

ρ0

∂2p0

∂r2 + Er
∂p0

∂r

1
ρ2

0

∂ρ0

∂r

(D.9)
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∂

∂r

[
ru′

0

]
− iv0 = ∂

∂r

[
rirΩ0E

]
− i

1
2rΩ0E = ∂

∂r

[
ir2Ω0E

]
− i

rΩ0E

2

= i

[
E
∂

∂r
(r2Ω0) + r2Ω0

∂E

∂r
− rΩ0E

2

]
= ir2Ω0

∂E

∂r

(D.10)

−iΩ0ρ
′
0 + u′

0
∂ρ0

∂r
= −ρ0

r
ir2Ω0

∂E

∂r

−iΩ0ρ
′
0 + irΩ0E

∂ρ0

∂r
= −iρ0rΩ0

∂E

∂r

−ρ′
0 + rE

∂ρ0

∂r
= −ρ0r

∂E

∂r

ρ′
0 = rE

∂ρ0

∂r
+ ρ0r

∂E

∂r

(D.11)

−iΩ0p
′
0 + u′

0
∂p0

∂r
= −γp0

r
ir2Ω0

∂E

∂r

−iΩ0p
′
0 + irΩ0E

∂p0

∂r
= −iγp0rΩ0

∂E

∂r

p′
0 = rE

∂p0

∂r
+ γp0r

∂E

∂r

(D.12)

C = − 1
ρ0

∂p′
0

∂r
= − 1

ρ0

∂

∂r

[
rE

∂p0

∂r
+ γp0r

∂E

∂r

]
(D.13)

D = ∂p0

∂r

1
ρ2

0
ρ′

0 = ∂p0

∂r

1
ρ2

0

[
rE

∂ρ0

∂r
+ ρ0r

∂E

∂r

]
(D.14)

F = − 2
rρ0

p′
0 = − 2

rρ0

[
rE

∂p0

∂r
+ γp0r

∂E

∂r

]
(D.15)
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A+B = C +D + F

i2rΩ0
∂E

∂t
− E

r

∂

∂r

(
r2∂Φ2

∂r

)
− 2E

ρ0

∂p0

∂r
− Er

ρ0

∂2p0

∂r2 + Er

ρ2
0

∂p0

∂r

∂ρ0

∂r

= − 1
ρ0
E
∂p0

∂r
− r

ρ0

∂E

∂r

∂p0

∂r
− rE

ρ0

∂2p0

∂r2 − 1
ρ0

∂

∂r

[
γp0r

∂E

∂r

]

+ ∂p0

∂r

∂ρ0

∂r

rE

ρ2
0

+ ∂p0

∂r

r

ρ0

∂E

∂r
− 2rE

rρ0

∂p0

∂r
− 2γp0

ρ0

∂E

∂r

i2rΩ0
∂E

∂t
− E

r

∂

∂r

(
r2∂Φ2

∂r

)
= −E

ρ0

∂p0

∂r
− 1
ρ0

∂

∂r

[
γp0r

3∂E

∂r

]
(D.16)

− 1
r2ρ0

∂

∂r

[
γp0r

3∂E

∂r

]
= − 1

r2ρ0

∂

∂r

[
r2γp0r

∂E

∂r

]
= − 1

ρ0

∂

∂r

[
γp0r

∂E

∂r

]
− 2
rρ0

γp0r
∂E

∂r
(D.17)

2rΩ0
∂E

∂t
= −iE

r

∂

∂r

(
r2∂Φ2

∂r

)
+ iE

ρ

∂p0

∂r
+ i

r2ρ0

∂

∂r

[
γp0r

3∂E

∂r

]
(D.18)
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EEccentricity equation
derivation for a locally
isothermal disk

The lowest order (ϵ0) of equation (3.6) is:

−iρ′
0Ω0 + u′

0
∂ρ0

∂r
= −ρ0

r

[
∂(ru′

0)
∂r

− iv′
0

]
(E.1)

Now we use equation(3.8) to write is as:

−iρ′
0Ω0 + irΩ0E

∂ρunp

∂r
= −ρunp

r

[
∂(ir2Ω0E(r, t))

∂r
− i

1
2rΩ0E

]
(E.2)

−iρ′
0Ω0 = −irΩ0E

∂ρ0

∂r
− i

ρ0

r
r2Ω0

∂E

∂r
− i

ρ0

r
E
∂(r2Ω0)
∂r

+ i
ρ0

r

1
2rΩ0E (E.3)

Using equation (2.61), and dividing upper equation by −iΩ0, we get;

ρ′
0 = rE

∂ρ0

∂r
+ ρ0

r
r2∂E

∂r
= r

∂(Eρ0)
∂r

. (E.4)

Just like for adiabatic disc, we find what the next (ϵ2) order of equations (3.6a)

and (3.6b) looks like:

∂u′
0

∂t
− iΩ2u

′
0 − iΩ0u

′
2 − 2Ω2v

′
0 − 2Ω0v

′
2 = −c2

s
∂

∂r

(
ρ′

0
ρ0

)
(E.5)

∂v′
0

∂t
− iΩ2v

′
0 − iΩ0v

′
2 + u′

0
r

∂

∂r
(r2Ω2) + u′

2
r

∂

∂r
(r2Ω0) = ic2

sρ
′
0

rρ0
(E.6)

By multiplying equation (E.6) by 2i, adding it to equation (E.5), and using

equation 2.61 we get:

∂(u′
0 + 2iv′

0)
∂t

− 2Ω2v
′
0 + 2iu

′
0
r

∂

∂r
(r2Ω2) = −c2

s
∂

∂r

(
ρ′

0
ρ0

)
− 2c

2
sρ

′
0

rρ0
(E.7)
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Now we can use equation (E.4):

∂(u′
0 + 2iv′

0)
∂t︸ ︷︷ ︸
A

−2Ω2v
′
0 + 2iu

′
0
r

∂

∂r
(r2Ω2)︸ ︷︷ ︸

B

= −c2
s
∂

∂r

(
r

ρ0

∂(Eρ0)
∂r

)
︸ ︷︷ ︸

C

−2c2
s

rρ0
r
∂(ρ0E)
∂r︸ ︷︷ ︸

D

(E.8)

In previous section, A was found to be:

A = i2rΩ∂E
∂t

(E.9)

In the last section, we showed that B can be written as:

B = −E

r

∂

∂r

[
r2∂Φ2

∂r

]
− E

r

∂

∂r

[
r2

ρ

∂(c2
sρ)
∂r

]
. (E.10)

We will expand this as:

B = −E

r

∂

∂r

[
r2∂Φ2

∂r

]
− E

r

∂

∂r

(
r2∂c

2
s

∂r
+ r2c2

s

ρ

∂ρ

∂r

)

= −E

r

∂

∂r

[
r2∂Φ2

∂r

]
− 2E∂c

2
s

∂r
− Er

∂2c2
s

∂r2 − 2Ec
2
s

ρ

∂ρ

∂r

− Er

ρ

∂c2
s

∂r

∂ρ

∂r
+ Erc2

s

ρ2

(
∂ρ

∂r

)2

− Erc2
s

ρ

∂2ρ

∂r2

(E.11)

C = −c2
s
∂

∂r

(
r

ρ

∂(Eρ)
∂r

)
= −c2

s
∂

∂r

(
r
∂E

∂r
+ rE

ρ

∂ρ

∂r

)

= −c2
sr
∂2E

∂r2 − c2
s
∂E

∂r
− c2

s
rE

ρ

∂2ρ

∂r2 − c2
s
r

ρ

∂ρ

∂r

∂E

∂r
+ c2

s
rE

ρ2

(
∂ρ

∂r

)2

− c2
s
E

ρ

∂ρ

∂r

(E.12)

D = −2c2
s

ρ0

∂(ρ0E)
∂r

= −2c2
sE

ρ0

∂ρ0

∂r
− 2c2

s
∂E

∂r
(E.13)

Finally:

A + B = C + D (E.14)
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i2rΩ∂E
∂t

− E

r

∂

∂r

[
r2∂Φ2

∂r

]
− 2E∂c

2
s

∂r
− Er

∂2c2
s

∂r2 − Er

ρ

∂c2
s

∂r

∂ρ

∂r

= −c2
sr
∂2E

∂r2 − 3c2
s
∂E

∂r
− c2

s
r

ρ

∂ρ

∂r

∂E

∂r
− c2

s
E

ρ

∂ρ

∂r

(E.15)

We will multiply it by −irρ and rearrange it a bit:

2r2ρΩ∂E
∂t

+ iρE
∂

∂r

[
r2∂Φ2

∂r

]
= −2iErρ∂c

2
s

∂r
− iEr2ρ

∂2c2
s

∂r2 −iEr2∂c
2
s

∂r

∂ρ

∂r
+ic2

sr
2ρ
∂2E

∂r2

+3irρc2
s
∂E

∂r
+ic2

sr
2∂ρ

∂r

∂E

∂r
+irc2

sE
∂ρ

∂r
(E.16)

Now we will show that the right hand side equation (E.16) can be written as:

RHS = i

r

∂

∂r

(
ρc2

sr
3∂E

∂r

)
+ irE

∂(ρc2
s )

∂r
− i

r

∂

∂r

(
ρEr3∂c

2
s

∂r

)

= ic2
sr

2∂ρ

∂r

∂E

∂r
+ iρr2

r

∂c2
s

∂r

∂E

∂r
+ 3irρc2

s
∂E

∂r
+ i

r
ρc2

sr
3∂

2E

∂r2 + irEρ
∂c2

s

∂r

+ irEc2
s
∂ρ

∂r
− ir2E

∂ρ

∂r

∂c2
s

∂r
− iρr2∂E

∂r

∂c2
s

∂r
− i3rρE∂r∂c

2
s

∂r
− iρEr2∂

2c2
s

∂r2

= ic2
sr

2∂ρ

∂r

∂E

∂r
+3irρc2

s
∂E

∂r
+ i

r
ρc2

sr
3∂

2E

∂r2 +irEρ∂c
2
s

∂r

+irEc2
s
∂ρ

∂r
−ir2E

∂ρ

∂r

∂c2
s

∂r
−i3rρE∂c

2
s

∂r
−iρEr2∂

2c2
s

∂r2 .

(E.17)

in order to write it as:

2r2ρΩ∂E
∂t

+iρE ∂

∂r

[
r2∂Φ2

∂r

]
= i

r

∂

∂r

(
ρc2

sr
3∂E

∂r

)
+irE∂(ρc2

s )
∂r

− i

r

∂

∂r

(
ρEr3∂c

2
s

∂r

)
(E.18)

E.0.1 Radial equation of motion

The first equation we will use is equation 2.26b:

∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂ϕ
− v2

r︸ ︷︷ ︸
LHS1

= −1
ρ

∂p

∂r
− ∂Φ
∂r︸ ︷︷ ︸

RHS1

.
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LHS1 = ∂(u′e−iϕ)
∂t

+ (u′e−iϕ)∂(u′e−iϕ)
∂r

+ vunp + v′e−iϕ

r

∂(u′e−iϕ)
∂ϕ

− (vunp + v′e−iϕ)2

r

= ∂u′

∂t
e−iϕ + u′e−iϕ∂u

′

∂r
e−iϕ + vunp + v′e−iϕ

r
(−iu′e−iϕ)

−
v2

unp + 2vunpv
′e−iϕ + (v′e−iϕ)2

r

= ∂u′

∂t
e−iϕ + u′∂u

′

∂r
e−2iϕ − iu′vunp

r
e−iϕ − u′v′e−i2ϕ

r

+
v2

unp

r
+ 2vunpv

′e−iϕ

r
+ v′2e−2iϕ

r

(E.19)

LHS1 = ∂u′

∂t
e−iϕ − iu′vunp

r
e−iϕ +

v2
unp

r
+ 2vunpv

′e−iϕ

r
(E.20)

RHS1 = − 1
ρunp + ρ′e−iϕ

∂(punp + p′e−iϕ)
∂r

− ∂Φunp

∂r

= − 1
ρunp

[
1 − ρ′

ρunp
e−iϕ

]
∂

∂r

[
punp + p′e−iϕ

]
− ∂Φunp

∂r

=
[

− 1
ρunp

+ ρ′

ρ2
unp

e−iϕ

][
∂punp

∂r
+ ∂p′

∂r
e−iϕ

]
− ∂Φunp

∂r

(E.21)

We again use equations (D.1) to approximate this as:

RHS1 = − 1
ρunp

∂punp

∂r
+ ρ′

ρ2
unp

e−iϕ∂punp

∂r
− 1
ρunp

∂p′

∂r
e−iϕ − ∂Φunp

∂r
(E.22)

Now we can use equations (E.20) and (E.20) to write:

∂u′

∂t
e−iϕ − iu′vunp

r
e−iϕ +

v2
unp

r
+ 2vunpv

′e−iϕ

r
=

= − 1
ρunp

∂punp

∂r
+ ρ′

ρ2
unp

e−iϕ∂punp

∂r
− 1
ρunp

∂p′

∂r
e−iϕ − ∂Φunp

∂r
.

(E.23)

Now we can use equation (2.32) to see that the third factor on the left hand

side and the first and last factor on the right hand side cancel each other out.

What’s left is:

∂u′

∂t
e−iϕ − iu′vunp

r
e−iϕ + 2vunpv

′e−iϕ

r
= ρ′

ρ2
unp

e−iϕ∂punp

∂r
− 1
ρunp

∂p′

∂r
e−iϕ (E.24)
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When divided by e−iϕ and using Ω = vunp/r:

∂u′

∂t
− iu′Ω + 2Ωv′ = − 1

ρunp

∂p′

∂r
+ ρ′

ρ2
unp

∂punp

∂r
(E.25)

E.0.2 Newton’s law of motion - angular equation

The next equation we will use is equation 2.26c:

∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂ϕ
+ uv

r︸ ︷︷ ︸
LHS

= − 1
ρr

∂p

∂ϕ
− 1
r

∂Φ
∂ϕ︸ ︷︷ ︸

RHS

LHS = ∂(vunp + v′e−iϕ)
∂t

+ vunp + v′e−iϕ

r

∂(vunp + v′e−iϕ)
∂ϕ

− (vunp + v′e−iϕ)(u′e−iϕ)
r

+ (u′e−iϕ)∂(vunp + v′e−iϕ)
∂r

= ∂vunp

∂t
+ ∂(v′)
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r
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∂ϕ
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r

+ (u′e−iϕ)[∂vunp

∂r
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∂r
e−iϕ]

(E.26)

Now we use equations (D.1) to approximate this as:

LHS ≈ ∂vunp

∂t
+ ∂(v′)

∂t
e−iϕ + vunp

r

∂vunp

∂ϕ
− iv′vunpe
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r
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r

∂vunp

∂ϕ
− vunpu

′e−iϕ

r
+ (u′e−iϕ)∂vunp
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(E.27)

Now we use assumption that a unp state solution does not depend on ϕ

(equation (2.28)):

LHS = ∂v′

∂t
e−iϕ − iv′vunpe

−iϕ

r
− vunpu

′e−iϕ

r
+ (u′e−iϕ)∂vunp

∂r

= e−iϕ

[
∂v′

∂t
− iv′vunp

r
− vunpu

′

r
+ u′∂vunp

∂r

] (E.28)

Now we will use a result:

u′

r

∂

∂r
(r2Ω) = u′

r

∂

∂r
(rv′) = u′

r
(v′ + ∂v′

∂r
), (E.29)
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to finally get:

LHS = e−iϕ

[
∂v′

∂t
− iv′Ω + u′

r

∂

∂r
(r2Ω)

]
. (E.30)

RHS = − 1
ρunp + ρ′e−iϕ

1
r

∂(punp + p′e−iϕ)
∂ϕ

− 1
r

∂Φunp

∂ϕ

= − 1
ρunpr

[
1 − ρ′

ρunp
e−iϕ

]
∂

∂ϕ

[
punp + p′e−iϕ

]
− 1
r

∂Φunp

∂ϕ

= 1
r

[
− 1
ρunp
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ρ2
unp

e−iϕ

][
∂punp

∂ϕ
+ −ip′e−iϕ

]
− 1
r

∂Φunp

∂ϕ

(E.31)

Now we use equations (2.28) and (D.1) to write is as:

RHS = ip′e−iϕ

rρunp
(E.32)

Equating lhs and rhs, and dividing by eiϕ we get:

∂v′

∂t
− iv′Ω + u′

r

∂

∂r
(r2Ω) = ip′

rρunp
. (E.33)

E.0.3 Continuity equation

The next equation we use is equation (2.26a):

∂ρ

∂t
+ u

∂ρ

∂r
+ v

r

∂ρ

∂ϕ︸ ︷︷ ︸
LHS

= −ρ

r

[
∂

∂r
(ru) + ∂v

∂ϕ

]
︸ ︷︷ ︸

RHS

.

LHS = ∂(ρunp + ρ′e−iϕ)
∂t

+ vunp + v′e−iϕ

r

∂(ρunp + ρ′e−iϕ)
∂ϕ

+ (u′e−iϕ)∂(ρunp + ρ′e−iϕ)
∂r

= ∂ρunp

∂t
+ e−iϕ∂ρ

′

∂t
+ vunp + v′e−iϕ

r
[∂ρunp

∂ϕ
− iρ′e−iϕ]

+ (u′e−iϕ)[∂ρunp

∂r
+ ∂ρ′

∂r
e−iϕ]

(E.34)

136 Chapter E Eccentricity equation derivation for a locally isothermal disk



Now we use equations (2.28)„ (2.27), and (D.1) to write it as:

LHS = ∂ρ′

∂t
e−iϕ − iρ′Ωe−iϕ + u′e−iϕ∂ρunp

∂r
(E.35)

RHS = −ρunp + ρ′e−iϕ

r

∂(ru′e−iϕ)
∂r

+ ∂(vunp + v′e−iϕ)
∂ϕ


= −ρunp + ρ′e−iϕ

r

u′e−iϕ + re−iϕ∂u
′

∂r
+ ru′∂e

−iϕ

∂r
+ ∂vunp

∂ϕ
− iv′e−iϕ


(E.36)

Now we use equations (2.28), (2.27), and (D.1) to write it as:

RHS = −ρunp

r

∂(ru′)
∂r

− iv′

e−iϕ (E.37)

Equating lhs and rhs and dividing by eiϕ:

∂ρ′

∂t
− iρ′Ω + u′∂ρunp

∂r
= −ρunp

r

∂(ru′)
∂r

− iv′

 (E.38)

E.0.4 Pressure equation

The last equation is equation (2.26d):

∂p

∂t
+ u

∂p

∂r
+ v

r

∂p

∂ψ︸ ︷︷ ︸
LHS

= −γp

r

[
∂ru

∂r
+ ∂v

∂ϕ

]
︸ ︷︷ ︸

RHS

. (E.39)

LHS = ∂(punp + p′e−iϕ)
∂t

+ vunp + v′e−iϕ

r

∂(punp + p′e−iϕ)
∂ϕ

+ (u′e−iϕ)∂(punp + p′e−iϕ)
∂r

= ∂punp

∂t
+ e−iϕ∂p

′

∂t
+ vunp + v′e−iϕ

r
[∂punp

∂ϕ
− ip′e−iϕ]

+ (u′e−iϕ)[∂ρunp

∂r
+ ∂p′

∂r
e−iϕ]

(E.40)
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Now we use equations (2.28), (2.27), and (D.1) to write it as:

RHS = ∂p′

∂t
e−iϕ − ip′Ωe−iϕ + u′e−iϕ∂punp

∂r
(E.41)

LHS = −γpunp + p′e−iϕ

r

∂(ru′e−iϕ)
∂r

+ ∂(vunp + v′e−iϕ)
∂ϕ


= −γ(punp + p′e−iϕ)

r

u′e−iϕ + re−iϕ∂u
′

∂r
+ ru′∂e

−iϕ

∂r

+ ∂vunp

∂ϕ
− iv′e−iϕ


(E.42)

Now we use equations (2.28), (2.27), and (D.1) to write it as:

RHS = −γpunp

r

∂(ru′)
∂r

− iv′

e−iϕ (E.43)

Equating LHS and RHS, and deviding by eiϕ:

∂p′

∂t
− ip′Ω + u′∂punp

∂r
= −γpunp

r

∂(ru′)
∂r

− iv′

 (E.44)
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FVERTICAL HYDROSTATIC
EQUILIBRIUM

If there is no flow in the z-direction, the sum of all forces acting on a gas particle

in that direction is zero. There are two forces acting in the z-direction:

1) Due to pressure gradient in the z-direction, a force Fp exists that pushes the

gas particle outward: for a particle at z > 0, F⃗p = |Fp|ẑ, for a particle at z < 0,

F⃗p = |Fp|(−ẑ)
Fp = δpA

2) The force of gravity in the z-direction on gas of mass m in a gravitational

potential Φ is:

Fgrav = −m∂Φ
∂z

= −ρδz∂Φ
∂z

= ρδz
∂

∂z

[
M1G√
r2 + z2

]
= ρδz

∂

∂z

 M1G

r
√

1 + (z/r)2


= for z ≪ r ≈ ρδz

∂

∂z

[
M1G

r

(
1 − z2

2r2

)]
= −ρδzM1Gz

r3

Fp = Fgrav

δpA = −ρδzM1Gz

r3

for δp ≈ p and δz ≈ H = z

p = −ρM1GH
2

r3

From this, we see that pressure is proportional ρ(H/r)2.
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GDerivation of boundary
conditions for the
eccentricity equation

The gas equation of state for a locally isothermal disk is:

P = Σc2
s , (G.1)

so its the Lagrangian perturbation is:

dP = Σdc2
s + c2

sd(Σ). (G.2)

We divide it by dt:
dP

dt
= Σdc

2
s

dt
+ c2

s
dΣ
dt
. (G.3)

We use equation (A.9) and the fact that cs does not explicitly depend on time,

to write:
dc2

s
dt

= ∂c2
s

∂t
+ u

∂c2
s

∂r
+ u

r

∂c2
s

∂ϕ
= u

∂c2
s

∂r
. (G.4)

We use (equation (2.5)):

dΣ
dt

= −Σ1
r

[
∂(ru)
∂r

+ ∂v

∂ϕ

]
, (G.5)

to write:
dP

dt
= Σu∂c

2
s

∂r
− c2

s − Σ
[
∂(ru)
∂r

+ ∂v

∂ϕ

]
. (G.6)

We write equation (G.6) in terms of perturbed velocities:

dP

dt
=
[
Σu′∂(c2

s )
∂r

− c2
sΣ

1
r

(
∂(ru′)
∂r

− iv′
)]

e−iϕ, (G.7)

and in terms of the eccentricity function:

dP

dt
=
[
ΣiΩEr∂(c2

s )
∂r

− c2
sΣ

1
r

(
∂(riΩEr)

∂r
− i

1
2ΩEr

)]
e−iϕ. (G.8)
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We write equation (G.8) as:

dP

dt
=
[
ΣiΩEr∂(c2

s )
∂r

− c2
sΣ

1
r

(
iE
∂(r2Ω)
∂r

+ ir2Ω∂E
∂r

− i
1
2ΩEr

)]
e−iϕ, (G.9)

and use (equation (2.61)) to write:

dP

dt
=
[
ΣiΩEr∂(c2

s )
∂r

− c2
sΣ

1
r

(
ir2Ω∂E

∂r

)]
e−iϕ. (G.10)

If dP/dt = 0:

E
1
c4

s

∂(c2
s )

∂r
− 1
c2

s

∂E

∂r
= 0. (G.11)

We use:
d

dr

E

c2
s

= dE

dr

1
c2

s
− d(c2

s )
dr

E

(c2
s )2 (G.12)

to write the boundary condition as:

d

dr

E

c2
s

= 0. (G.13)

G.1 An adiabatic disk

The gas equation of state for an adiabatic disk is:

P = KΣγ. (G.14)

We conduct the same procedure we did for a locally isothermal disk. First we

write the Lagrangian differential of pressure:

dP = γKΣγ−1dΣ, (G.15)

and divide it by dt:
dP

dt
= γKΣγ−1dΣ

dt
. (G.16)

We again use mass continuity equation (equation (2.5)) to write:

dP

dt
= γKΣγ−1[−Σ1

r

(
∂(ru)
∂r

+ ∂v

∂ϕ

)
]. (G.17)
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We write the it in terms of velocity perturbations:

dP

dt
= −γKΣγ

r

[
∂(ru′)
∂r

− iv′
]
e−iϕ (G.18)

and eccentricity:

dP

dt
= −γKΣγ

r

(
∂(riΩEr)

∂r
− i

1
2ΩEr

)
e−iϕ. (G.19)

We can write it in a different way:

dP

dt
= −γKΣγ

r

(
iE
∂(r2Ω)
∂r

+ ir2Ω∂(E)
∂r

− i
1
2ΩEr

)
e−iϕ, (G.20)

and use ∂
∂r

(r2Ωunp,0) = 1
2rΩunp,0 (equation (2.61)) to write:

dP

dt
= −γKΣγ

r

(
ir2Ω∂E

∂r

)
e−iϕ. (G.21)

Finally, the boundary condition for an adiabatic disk is:

∂E

∂r
= 0. (G.22)

G.1 An adiabatic disk 143





HDerivation of the
eccentricity potential and
scaled eccentricty

We compare equations (7.10) and (8.19) to find:

P (r) = 3r−1 + Σ′

Σ , (H.1)

and:

Q(r) = 2Σ′

Σ r−1 + 3q
2a6h2(1 + q)2 r

−4 − 2ω
Ωba9/2h2 r

−1/2. (H.2)

We use equation (7.13) to find the scaled eccentricity y as:

lnE = ln y − 1
2

∫
P (r)dr = ln y − 1

2

∫ [
3r−1 + Σ′

Σ

]
dr

= ln y − 1
2 [3 ln r + ln Σ] = ln

(
yr−3/2Σ−1/2

)
,

(H.3)

or as:

E = y(Σr3)−1/2. (H.4)

We use equation (7.14) to write:

k2 = Q(r) − 1
2P

′(r) − 1
4P

2(r)

= 2Σ′

Σ r−1 + 3q
2a6h2(1 + q)2 r

−4 − 2ω
Ωba9/2h2 r

−1/2 − 1
2

[
−3r−2 + Σ′′

Σ − Σ′2

Σ2

]

− 1
4

[
9r−2 + Σ′2

Σ2 + 6r−1 Σ′

Σ

]

= 3q
2a6h2(1 + q)2 r

−4 − 2ω
Ωba9/2h2 r

−1/2 − 3
4r

−2 − 1
2

Σ′′

Σ + 1
4

Σ′2

Σ + 1
2

Σ′

Σ
(H.5)

We verify that using:

E = y(Σr3)−1/2, (H.6)
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results in a Schrödinger equation. The eccentricty equation is:

2Σr2Ω0ωE(r) = 1
r

∂

∂r

[
Σc2

sr
3∂E(r)
∂r

]
+ r

d

dr
(Σc2

s )E(r)

− 1
r

∂

∂r

[
Σdc

2
s

dr
r3E(r)

]
+ ΣΩ2

0E(r) 3q
2(1 + q)2a

2.

(H.7)

We calculate different terms of equation (H.7) separately:

1st+3rd term of RHS = i

R

∂

∂R

[
ΣC2

sR
3∂E

∂R
− ΣdC

2
s

dR
R3E

]
= i

R

∂

∂R

[
Σh

2Ω2
ba

3
bR

3

R

∂

∂R

(
yΣ−1/2R−3/2

)
+ Σh

2Ω2
ba

3
bR

3

R2 yΣ−1/2R−3/2
]

= i

R
h2Ω2

ba
3
b
∂

∂R

[
ΣR2 ∂

∂R

(
yΣ−1/2R−3/2

)
+ yΣ1/2R−1/2

]
= iC2

s

∂

∂R

[
ΣR2

(
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]
= iC2

s

∂

∂R

[
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= iC2

s

∂

∂R

[
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2yΣ−1/2Σ′R1/2 − 1
2yΣ1/2R−1/2

]
= iC2

s

[
y′′Σ1/2R1/2 + 1

2y
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− 1
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(
Σ′
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4yΣ−1/2Σ′R−1/2

− 1
2y

′Σ1/2R−1/2 − 1
4yΣ−1/2Σ′R−1/2 + 1

4yΣ1/2R−3/2
]

= iC2
s

[
y′′Σ1/2R1/2 + 1

4yΣ−3/2
(
Σ′
)2
R1/2 − 1

2yΣ−1/2Σ′′R1/2

− 1
2yΣ−1/2Σ′R1/2 + 1

4yΣ1/2R−3/2
]
,

(H.8)

2nd RHS term = iR
d

dR

(
ΣC2

s

)
E = iR

d

dR

[Σh2Ω2
ba

3
b

R

]
· yΣ−1/2R−3/2

= iR−1/2yh2Ω2
ba

3
bΣ−1/2

[Σ′

R
− Σ
R

]
= iC2

syR
1/2Σ−1/2

[Σ′

R
− Σ
R2

]
= iC2

s

[
yΣ′Σ−1/2R−1/2 − yΣ1/2R−3/2

]
(H.9)
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LHS = 2ΣR2Ω∂E
∂t

= 2ΣR2ΩiωE

= 2ΣR2ΩiωyΣ−1/2R−3/2 = 2ΩiωyΣ1/2R1/2,
(H.10)

4th RHS term = 2ΣR2ΩiΩf0E = 2Ω2if0yΣ1/2R1/2 (H.11)

We sum up all contributions:

2Ωif0yΣ1/2R1/2 = iC2
s

[
y′′Σ1/2R1/2 + 1

4yΣ−3/2
(
Σ′
)2
R1/2

− 1
2yΣ−1/2Σ′′R1/2 − 1

2yΣ−1/2Σ′R−1/2

+ 1
4yΣ1/2R−3/2 + yΣ′Σ−1/2R−1/2 − yΣ1/2R−3/2

]
+ 2Ω2if0yΣ1/2R1/2,

(H.12)

and dive the equation by C2
s Σ1/2R1/2i:

y′′ + y
2Ω
C2

s

[
Ωf0 + C2

s

2Ω

[( Σ′

2Σ

)2
− 1

2
Σ′′

Σ2 + 1
2

Σ′

ΣR + 3
4R2

]
− ω

]
= 0 (H.13)

To rewrite equation (H.13) in a slightly different form, we use:

C2
s

2Ω = h2Ω2
ba

3
b

2RΩb

(
R
ab

)−3/2 = h2Ωb

2
a3

ba
−3/2
b

R ·R−3/2
R2

R2 ,

= h2Ωb

2
a

3/2
b
R3/2R

2 = h2Ωb

2

(
R

ab

)−3/2
R2,

(H.14)

If we define ωpot(r) and k(r)as:

k2(Ω, R) ≡ 2ω
c2

s
[ωpot(R) − ω], (H.15)

and:

ωpot(R) ≡ Ωf0 + h2Ωb

2

(
R

ab

)−3/2
RΣ′

2Σ +
RΣ′

2Σ

2

− R2Σ′′

2Σ − 3
4


= ωq

 R

Rcav

−7/2

+ ωP

2

(
R

ab

)−3/2
RΣ′

2Σ +
RΣ′

2Σ

2

− R2Σ′′

2Σ − 3
4

,
(H.16)

147



the eccentricity equation becomes:

d2y

dR2 + k2y = 0. (H.17)
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IScaling the eccentricty
equation with a cavity
radius

We set a = 1 and Ωb = 1 and use:

Ω0(r) =
(

r

Rcav

)−3/2
R−3/2

cav , (I.1)

and:
d

dr
= R−1

cav
d

d
(

r
Rcav

) , (I.2)

to write the eccentricity equation (equation (9.3)) as:

2Σ(r)R1/2
cav

(
r

Rcav

)1/2 ω

ωQ
E = ωP

ωQ

(
r

Rcav

)−1 d

d
(

r
Rcav

)
Σ(r)R1/2

cav
dE

d
(

r
Rcav

)


+ ωP

ωQ

r

Rcav

d

d
(

r
Rcav

) [Σ(r)R1/2
cav

(
r

Rcav

)−1
]
E

+ ωP

ωQ

(
r

Rcav

)−1 d

d
(

r
Rcav

) [Σ(r)R1/2
cav

(
r

Rcav

)
E
]

+ Σ(r)R1/2
cav

(
r

Rcav

)−3
E.

(I.3)

For the density profile (11.1):

Σ(r)R1/2
cav =

(
r−1/2 − Lr−1

)
e−(r/Rcav)Z

R1/2
cav

=
[(

r

Rcav

)−1/2
− LR−1/2

cav

(
r

Rcav

)−1
]
e−(r/Rcav)Z

,
(I.4)

which can only be written in terms of r/Rcav if L = 0. If L ̸= 0, the eccentricity

solutions depend on the product LR−1/2
cav .
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