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Part I

Introduction
What is a ‘good’ clock? How to build one? Keeping track of the time is funda-
mental to all living beings. Mechanisms marking the rhythms of life rely on an
accurate control of timing in organisms at all levels of complexity, from intracel-
lular mechanisms such as gene expression and cell division control in prokaryotes
[1], up to regulation of entire multicellular beings, as in daily sleep-wake cycles in
mammals or other circadian clocks [4][5]; and operate at time scales that are orders
of magnitude apart, with the heart beating at a pace of the order of a second and
menstruation happening once a month. Understanding the underlying molecular
mechanisms as well as the operating principles of biological clocks has, therefore,
theoretical and practical implications in sensibly any field of biology and medicine.
Indeed, the study of biological clocks has been a major field of research for some
decades, with even a Nobel prize awarded to Hall, Rosbash and Young for their
“discoveries of molecular mechanisms controlling the circadian rhythm” [2].

But how do living beings keep track of the time? The core mechanism of
biological clocks is usually credited to a set of chemical reactions containing some
negative feedback mechanism [6]. Many simple models of chemical reactions that
undergo cyclic dynamics have been devised, many of them as simplified versions
of the so-called Belousov-Zhabotinsky reaction [16]. These models have served
as simple frameworks in order to develop analytical and experimental tools for the
understanding of chemical oscillations. As simple as they are, some insight can be
gained using these simplistic models.

However, only keeping track of the time is usually insufficient for many given
purposes. For example, the pacemaker cells in our hearts not only keep a constant
rhythm, but do so synchronously. Wherever a biological clock is present, syn-
chronicity most probably is as well. It is, thus, a major concept in the field. The
theoretical landmark to study the synchronization of oscillating units has been the
Kuramoto model [7]. In this model, a population of oscillators is considered, where
each of them exhibits a natural frequency for self-sustained oscillations which are
assumed to be the result of a limit-cycle solution to some governing dynamical sys-
tem. The oscillators are then weakly coupled to one another, by introducing some
coupling functions modulated by a coupling strength. A phase transition occurs at
a critical value of the coupling strength, where the population of oscillators shifts
from a totally asynchronous phase to a state where a group of oscillators lock to a
common phase [11].

There is one effect that could be considered as competing with synchroniza-
tion: noise. There are multiple sources of noise with very distinct natures; we
will focus on the noise associated to dealing with a finite number of interacting
agents. In chemical reactions, for example, it is not possible to follow the trajec-
tory of every molecule, so we focus on statistical properties such as reaction rates.
The stochasticity stems from these statistical considerations. Regarding biological
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clocks, it is known that stochasticity causes the period of the oscillations to fluc-
tuate. The interplay between noise and biochemical oscillations has been explored
both theoretically [8] and experimentally [9].

Now we are in a position to finally describe what is the aim of this work. On the
one hand, the finiteness of a chemical oscillatory system causes fluctuations in the
period of the oscillations. On the other hand, synchronization between oscillators
causes them to entrain to one another. How do these effects interact? Is it possible
to improve the ‘robustness’ of a limit cycle to stochastic fluctuations by means of
synchronization?

To explore this question, we abstractly divide a reaction container with some
fixed and finite volume in two separate compartments, and then consider some sort
of transport between these as a way of synchronizing both. We seek to understand
whether or not is possible to retrieve a better oscillator from this coupling -here
‘better’ meaning with a less fluctuating period, more robust-. The possibilities here
are vast, so we limit to some few configurations and present some arguments on
why we do not see an improvement in the period distribution, or rather why we do
see an improvement in one of the cases. In the latter, we argue that this mechanism
may not be of biological relevance.

At least one alternative mechanism has been devised as a viable way of ob-
taining sustained oscillations. Suppose there is a system of reactions that can be
modelled, in the deterministic limit, by a set of equations that approach a steady
state value asymptotically in time. We now want to consider systems that approach
the fixed point in an oscillatory manner, i.e., systems that spiral-in hyperbolically
when they get close enough to the fixed point. If one onsiders the finite-population
version of such systems, where noise is present due to the stochastic nature of the
individual reactions taking place, noise acts as a destabilizing force, kicking the
system out of its otherwise stationary state. In certain conditions, the natural spi-
ralling around this limiting state has been found to be sufficient in order to define
maintained oscillations [12]. As it will be discussed in the following pages, these
oscillations cannot be understood or described by means of the Kuramoto model.
We also discuss the possible effect of coupling in this particular case.
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Part II

Preliminaries
The aim of this section is to introduce the raw ingredients that will be used through-
out the present work. These are described with more or less detail, with the focus
set on getting a general picture of every one of them and why they are important or
useful for our study.

A toy model of a chemical clock: the Brusselator system

In looking for examples of oscillating chemical reactions, the most popular and
well-known of them all is the Belousov-Zhabotinsky reaction (BZR). This reaction
was first discovered by the soviet chemist Boris Belousov in 1951: he observed
that a mix of potassium bromate, cerium(IV), sulfate, malonic-acid and citric acid
in dilute sulphuric acid caused the colour of the solution to change from yellow to
colourless and back to yellow for an extended period of time.

Different abstract models were developed thereafter, not with the intention of
exactly reproducing the dynamics of the BZ reaction, but rather to get simpler
reaction networks where sustained oscillations arouse, in order to study them from
an analytical standpoint. One of these simplistic models is the one we will be using
all throughout this work: the Brusselator model. [16]

The following set of four reactions define the chemical network of the Brusse-
lator model:

∅ 1−−−−→ X

2X + Y
c−−−−→ 3X

X
b−−−−→ Y

X
1−−−−→ ∅

The rates of the first and last reactions can be (and are) set to unity without
loss of generality, if units of time and concentrations are defined appropriately. If
we consider these reactions in a well-mixed container and an infinite population of
molecules, the deterministic dynamics are described by the set of non-linear ODEs:

ẋ = 1 + cx2y − bx− x
ẏ = −cx2y + bx

(1)

Linear-stability analysis

There is only one fixed point for the system, (x∗, y∗) = (1, b/c). Its local stability
is determined by the eigenvalues of the Jacobian at the equilibrium point, namely:

µ =

(
2cxy − b− 1 cx2

−2cxy + b −cx2
)
x∗,y∗

=

(
b− 1 c
−b −c

)
(2)
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Figure 1: Sample trajectories for a Brusselator above the Hopf bifurcation. Left: a
trajectory in phase-space. Right: Time evolution for each variable.

The sign of the eigenvalues can be discussed using the determinant and trace.
The fixed point is linearly stable if λ1, λ2 have negative real parts. This is equiv-
alent (using the characteristic equation) to ∆ > 0 and τ < 0, these being the
determinant and trace of A∗, respectively. We have:

∆ = c; τ = b− 1− c (3)

The determinant is positive for any value of the rates b, c. However, the sign
of the trace defines two disjoint regions in parameter space: for b > 1 + c it is
positive, whereas for b < 1 + c it is negative. So, we have found a bifurcation at
the borderline value bC = 1 + c. For values b < bC the fixed point is a sink, for
values b > bC both eigenvalues have positive real parts and hence the fixed point
is a source.

Existance of a limit cycle: the Poincaré-Bendixon theorem

What happens to the trajectories when the fixed point is repulsive? There are no
other fixed-points in the system, so they either go to infinity in some fashion, or
approach some bounded region. In planar systems such as this one, the Poincaré-
Bendixon theorem establishes that trajectories have a very limited amount of possi-
bilities: they either approach a fixed point, diverge to infinity, or approach a closed
orbit. We can try to find a trapping region: a closed, connected set in phase space
such that the vector field (ẋ, ẏ) points inwards at all boundaries -implying that a
trajectory starting at the region does never leave the region, hence discarting the
possibility that it goes to infinity- and with no fixed points in its interior. Then, all
trajectories are ‘trapped’ inside this region, so according to the theorem they must
asymptotically approach a closed orbit (or be a closed orbit) [10], since this is the
only remaining possibility.
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Figure 2: Nullclines y1(x) and y2(x) for b = 2.5 and c = 1. The fixed point
(repulsive) is indicated by an empty small circe at the crossover of both nullclines.
The lines give an idea of the direction flow in phase space, with a color gradient
representing the local modulus of (ẋ, ẏ).

A trapping region can be constructed in the following way. Let us first have a
look at the nullclines ẋ = f(x, y) = 0 and ẏ = g(x, y) = 0. Writing them in the
form y(x) they are:

y1(x) =
(b+ 1)x− 1

cx2

y2(x) =
b

cx

(4)

Again with the condition b > 1 + c. We choose a first boundary segment B0

as the x = 0 line, from x = 0 to some yet undefined value xbound, since from our
equations it is readily clear that the flow in this line goes upwards. The nullcline
y1(x) becomes positive for values x ≥ 1

b+1 so we next define B1 as a vertical
segment going up from the point ( 1

b+1 , 0) until it meets the nullcline y2(x) at a

value y = b(b+1)
c . On this segment, the ẋ component of the flow field is always

positive, since all points lie above the ẋ = 0 nullcline. The boundary segment B2

is defined as a horizontal segment to the right of the point ( 1
b+1 ,

b(b+1)
c ). In this

case, the flow is always downwards as all points are above the ẏ = 0 nullcline.
If we look at a line going downwards with a slope of -1, which has a normal

vector (1, 1), the flow goes inwards if:

(1, 1) · (ẋ, ẏ) = 1− x ≤ 0 (5)

So, we extend the boundary B2 until we reach a value x = 1, then we choose
B3 as a segment with normal (1, 1) from that point, until it hits the ẋ = 0 nullcline.
We retrospectively define xbound as the value at which this happens, and finally
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Figure 3: Representation of the trapping region for as described in the text. The
nullclines are depicted as guidence. The vectors in the boundaries show that all the
field point inwards, but the scale is altered for representation purposes.

define B4 as a vertical segment from this point to the x-axis. Trivially, the flow
points to the left at the latter. The trapping region is completed by removing the
fixed point from the region, by defining a small circle around it. The resulting
trapping region is depicted in Figure 3.

Establishing the existence of a periodic orbit in this fashion is only possible in
principle for planar systems, where the Poincaré-Bendixon theorem is applicable.
Moreover, constructing such a trapping region can be a formidable problem in
general, so simple systems like the Brusselator present themselves as candidates
upon which the analytical tools available can be developed to their fullest.

It is worth mentioning that the frequency of the oscillations can be approxi-
mated to zero-th order if the parameters are chosen above but very close to the
Hopf bifurcation. Very close to the bifurcation value, the limit cycle is approxi-
mately a circle in phase space and it has a frequency coinciding with the imaginary
part of the Jacobian eigenvalues in the equilibrium point. The validity of this result,
though, is very limited, and in general the shape and period of the cycle must be
determined from numerical integration methods.

Chemical reactions as stochastic processes

The more general and exact way to formalize a system of chemical reactions in
a well-stirred mixture is as follows. Consider N molecular species {S1, ..., SN}
in a fixed volume Ω that react throughM different reaction channels {R1, ..., RM}.
The state of the system is represented by the state vectorX(t) = (X1(t), ..., XN (t)),
i.e., the number of Si molecules at time t -or similarly, the concentration vector
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x(t) = X(t)/Ω-.
We consider the reactions to happen at rates that only depend on the state vector

(hence we do not consider temperature changes, e.g.). These rates can be well de-
scribed by defining appropriate propensity functions aj(x)dt which give the prob-
ability that a reaction Rj will happen in the next time interval dt, given state x.
These propensity functions must be proportional to the number of ways in which
the reactants of Rj may combine, hj(x). Thus, we can define aj(x) = cjhj(x).
The rate cj has a dependency in the volume that depends on the number of reac-
tants of Rj : the number of reactions per unit time should be proportional to Ω if
molecule concentrations are kept constant. Thurefore, monomolecular reactions
have a cj that is independent of Ω, cj is linear in Ω for bimolecular reactions, and
so on.

The last quantity that determines our chemical reaction system is the stoichio-
metric matrix νji, containing the change in number of Si produced by one reaction
Rj .

As defined, this system is a jump-type Markov process. Its conditioned proba-
bility function P (x, t|x0, t0) is described by the chemical master equation [19]

∂

∂t
P (x, t|x0, t0) =

M∑
j=1

[
aj(x− νj)P (x− νj , t|x0, t0)− aj(x)P (x, t|x0, t0)

]
(6)

Master equations are, in general, difficult or impossible to solve or deal with.
A reasonable approximation can be made if the system is reasonably represented
by changing from a discrete space (molecule numbers) to a continuous one (con-
centrations).

Linear Noise Approximation (LNA)

For a volume Ω that is big enough (i.e. such that the changes due to single reactions
represent very small changes to the molecule concentrations) we may approximate
the chemical master equation 6 by a Fokker-Planck equation. The fundamental
trick is to express the molecule numbers as

Xi(t) = Ωφi(t) +
Zi(t)√

Ω
= Ωφi(t) +

√
Ωzi(t)

Here, φi(t) represents the concentrations in the deterministic limit (obtained by the
usual equations using mass-action kinetics) while Zi(t) is the contribution due to
the noise, with the ansatz that the latter dies off as Ω−1/2. This ansatz is formally
justified in [17] where the whole derivation is given.

The resulting Fokker-Plank equation (for the distribution of the displacement
zi away from the deterministic value) is

∂Q

∂t
= −

N∑
i,j=1

Jij(φ)
∂

∂zi

(
zjQ

)
+

1

2

N∑
i,j=1

Dij(φ)
∂2

∂zi∂zj
Q (7)
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the first term on the r.h.s. is a drift term and the second one is a diffusive term.
The matrices Jij and Dij are defined as:

Jij =
∂

∂φj

(
dφi
dt

)
Dij =

R∑
k=1

νikak(φ)νjk

(8)

The solution of a Fokker-Plank equation such as this one is a Gaussian, with
zero mean (implying that the mean trajectory of an ensamble of realizations follows
the deterministic mass-action equation) and a variance proportional to the matrix
of covariances Ξ that is determined as [22]:

d

dt
Ξ = J · Ξ + Ξ · JT +D (9)

The Gillespie algorithm

The Gillespie algorithm is an event-driven method used to computationally simu-
late Poisson processes [18]. Ideally, the method reproduces exactly the statistics of
the time intervals between events, although numerical errors may arise due to the
quality of the random number generators and round-off errors.

For any such process, M different events may be possible at any time (e.g. M
different chemical reactions), each with an associated rate νi (i = 0, ...,M − 1)
that possibly depend on the state vector of the system at any given time. In this
case, the rate at which an event happens is ν =

∑
i νi. With these definitions, the

algorithm proceeds as follows:

1. Draw a random number τ from the distribution

P (τ) = νe−ντ

2. Proceed by a time τ :
t→ t+ τ

3. Draw a random number a from a uniform distribution U(0, ν). Choose the
event i such that

i−1∑
j=0

νj < a <

i∑
j=0

νj

And modify the state vector according to the chosen event.

4. Adjust the event rates to the new state vector and go back to (1).
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As stated, the algorithm reproduces the process with exactitude. The comeback
is that rates usually increase when the number of agents involved in the process
grows, making the time between events increasingly small and thus simulations up
to a final time T becoming increasingly slow. This usually limits simulations in
chemical reactions systems (or similar) to some thousands of molecules.

Discrete stochastic processes such as Poisson processes define different regimes
depending on the number of agents involved: very few agents make the process
essentially discrete, while a mesoscopic number of them makes it possible to ap-
proximate the process to a continuous one up to a first order correction accounting
for the stochastic nature of the process. Further on, we will see from the simula-
tions performed for this work that the ranged of molecule numbers achieved with
Gillespie’s method is enough for the discussion that will follow, since the different
regimes are all explored in such a range.

Limit-cycle oscillations: a phase description

The fact that periodic orbits are one-dimensional objects living in higher dimen-
sional spaces appears as a key analytical tool for analysing their properties. Say
we fix a starting point x0 belonging to a limit cycle with period T as an initial con-
dition for a trajectory, x(t = 0) = x0, hence we tag this point as θ = 0. From here
on, we let time go by and we tag all other points x in the cycle using the time taken
by the trajectory to reach them, θ = t, before getting back to x0 at t = T . Each
point in the cycle is now identified with a phase θ ∈ [0, T ). A new phase φ(θ) can
always be defined such that it grows uniformly in time:

dφ

dt
= ω0 (10)

where ω0 = 2π/T . This is achieved by the transformation:

φ = ω0

∫ θ

0

[
dθ′

dt

]−1
dθ′ (11)

We now consider the effect of some external force or amount of noise as a small
perturbation on the growth rate in this phase description:

dφ

dt
= ω0 + εg(φ, t) (12)

where the function g(φ, t) may depend on the phase itself, but also explicitly
on time or on stochastic forces, and ε symbolically represents the smallness of the
perturbation, though it will be set to unity in the end. A full description of g(φ, t)
can be given in terms of local characteristics of the system when it is close to the
limit-cycle in phase space, from the nature of the interactions and a description of
the stochastic and external forces, as appropriate in every particular case.

Such an approach can be used to understand, for instance, how the stochastic
forces affect the regularity of the period of an oscillator, as Kuramoto shows in

12



[7]. As a first approximation, imagine that the function g(φ, t) represents solely a
random force which has zero mean and is Gaussian and delta-correlated, i.e.:

〈g(φ, t)〉 = 0

〈g(φ, t)g(φ, t′)〉 = 2D(φ)δ(t− t′)

A system with such a stochastic differential equation is equivalent to the fol-
lowing Fokker-Planck equation, that describes the time evolution of the probability
distribution for the state variables:

∂P (φ, t)

∂t
= −∂I(φ, t)

∂φ
(13)

with the probability flux I(φ, t) defined as

I(φ, t) =

(
ω0 +

ε2

2

dD(φ)

dφ

)
P (φ, t)− ε2 ∂

∂φ

(
D(φ)P (φ, t)

)
Here the Stratonovich interpretation of the stochastic differential equation (SDE)

is used, since we will be interested in modelling chemical reactions. The proper-
ties related to the phase shift are elucidated if the variable change φ = ω0t + ψ is
performed. Lets call Q(ψ, t) the probability distribution for ψ which is obtained
just by setting P (ω0t+ ψ, t). Now the equation reads:

∂Q(ψ, t)

∂t
= −ε2∂J(ψ, t)

∂ψ
(14)

with the new probability flux

J(ψ, t) =
1

2

∂D(ω0t+ ψ)

∂ψ
Q(ψ, t)− ∂

∂ψ

(
D(ω0t+ ψ)Q(ψ, t)

)
Now, it is clear that Q(ψ, t) is a slowly varying function of time from its pro-

portionality to ε2, and we can therefore take the period-average of the quantities
depending on D(t+ ψ, t) in the probability flux J(ψ, t) as a good approximation,
since those fluctuate much faster. The first of such terms vanishes as the average
is taken, so we are left with the second term and the final averaged approximation
reads (finally setting ε = 1):

∂Q(ψ, t)

∂t
= D̄

∂2

∂ψ2

(
Q(ψ, t)

)
(15)

which is just a diffusion equation with constant:

D̄ =
1

T

∫ T

0
D(ω0t+ ψ)dt

where T is the natural period of the oscillator. The diffusive behaviour is to
be expected, since despite the presence of “forces” keeping the fluctuations from
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growing in the transverse direction of the limit-cycle, there are no “forces” keeping
those fluctuations tangent to the limit-cycle trajectory on check. In terms of sta-
bility quantities, this is equivalent to saying that one Lyapunov exponent (the one
corresponding to the tangent direction in the periodic orbit) must be zero. Hence,
fluctuations along that direction are totally equivalent to time shifts.

The implementation of such a phase-description needs a generalization of the
concept of phase to points in the vicinity of the cycle, since an external forcing
or random fluctuations may push the system away from the stable cycle. Such a
generalization is provided by the concept of the isochrones. Take any point in phase
space x such that a trajectory going through it approaches the cycle asymptotically
as t → ∞. We look at the stroboscopic mapping (with the oscillator’s natural
period T ):

x(t)→ x(t+ rT ); r ∈ N (16)

As a larger r is chosen, the endpoint lies closer to the cycle. We assign every
point x with the phase φ corresponding to the point belonging to the cycle xφ such
that

x(t)→ x(t+ rT ) = xφ; r →∞ (17)

Thus, if the cycle lives in a N -dimensional space, the subspaces with constant
φ define (N − 1)-dimensional surfaces, which are the aforementioned isochrones.
A time shift ∆t now transforms one isochrone φ to another one φ+ ω0∆t; equiv-
alently, small fluctuations locally transverse to the cycle conserve the isochrone,
while those tangent to it represent a change of isochrone, equivalent to a time-shift.
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Figure 4: Sample trajectories for a Brusselator with intrinsic noise, for a volume
V = 3000. Left: Phase-space trajectory. Right: Time evolution for both molecular
species.
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The phase-diffusion coefficient

The phase-diffusion coefficient D introduced in this section (omitting the average
bar for the sake of further discussions) is probably the key concept upon which our
work is built. We will see that this phase description of an oscillator is valid on the
mesoscopic scale, failing at smaller scales where the demographic noise becomes
too large and the clock does not stay close to the deterministic solution any more. In
the case of a single oscillator and in such a mesoscopic scale, the value of D along
with the natural period T of the cycle determine the period distribution completely.
In this case, this distribution can be computed easily, as it will be shown at the
beggining of part II in this work.

The consequences of phase-diffusion can be understood in the following way:
take an ensemble of identical mesoscopic clocks. We let what would be a number
r of deterministic periods take place, thus the time reaching the value rT (r ∈ N).
What is the ensemble average of the mean time given by the clocks? Since the
process is diffusive it is the correct time,

〈tclock〉 = rT (18)

But how spread is the time in the ensemble? We can look at the variance around
this mean value:

〈(tclock − rT )2〉1/2 = rD (19)

It can be shown that this diffusion coefficient is inversely proportional to the
extensivity parameter Ω in chemical systems (coloquially, the volume). The pref-
actor is then of most interest, since it is what depends on the dynamical properties
of each specific clock.

The robustness of a cycle to stochastic fluctuations

Gaspard and others ([20], [21]) describes analytically how to compute the afore-
mentioned prefactor if the limit-cycle trajectory is known. They term this quantity
the ‘robustness factor’. Indeed, it quantifies the statistical deviation of the period
from its mean value due to a change in extensibility and its associated stochastic-
ity. We will only sketch here some general ideas. The robustness of biochemical
processes are of major importance also in other contexts, such as in regulatory
biochemical networks [14].

Curiously enough, the WKB approximation used in quantum mechanics that
maps quantum to classical optics can be used in the master equation of chemical
systems in the mesoscopic scale to retrieve a Hamilton-Jacobi equation. A pseudo-
energy functional E can be identified from here.

The resulting expression for the robustness factor depends essentially from how
much a change in the pseudo-energy E makes the period vary, around the mean
period T . This is:
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σ2 =
∂ET

Ω
(20)

With the important dependency σ2 ∼ Ω−1. The robustness factor ∂ET can be
computed from quantities pertaining to the deterministic limit, such as the Jacobian
and the noise-correlation matrices that may be integrated with a standard RK4, for
instance. We do not use this approach on our work, though, σ2 will be computed
directly from numerical simulations of the stochastic system.

Noise-induced oscillations: Quasicycles

For a system to present a limit-cycle some dynamical features are needed. In pla-
nar systems specifically, the bounded region in phase space delimited by the cycle
trajectory must include an unstable fixed point. However, if a controlling param-
eter is shifted below a critical value, this fixed point can be rendered stable (the
limit-cycle becomes smaller until it merges with the fixed point). This is a Hopf
bifurcation. However, for some region in parameter space, the eigenvalues of the
Jacobian corresponding to this fixed point have an imaginary part, meaning that
trajectories approaching it as time moves forward do so in a spiralling fashion, at
least locally. When noise is included into the picture, one can imagine that random
fluctuations keep the system from really reaching its otherwise stationary state,
while still showing some cycling around it due to the local spiralling nature of the
region in phase space.

The possibility of well defined, maintained oscillations in this sense has been
formally and computationally explored by McKane et al. [12]. The authors use
a linear noise approximation (LNA) to write a chemical Langevin equation, with
also a linear approximation on some neighbourhood of the fixed point. They then
use Fourier analysis to show that a peak in the Power Spectrum Density function of
the system can exist, and therefore a resonant frequency is present in the system.

Using repeated indices as summations, the linearised Langevin equation can be
written as follows:

ẋi = Mijxj + ηi(t) (21)

where the variables xi represent the concentrations and the origin is placed at
the fixed point, the matrix Mij is just de Jacobian evaluated at the origin and the
terms ηi(t) represent Gaussian forces with zero mean, delta-correlated in time and
mutually correlated with matrix Dij :

〈ηi(t)ηj(t′)〉 = 2Dijδ(t− t′) (22)

The diffusion matrixDij is determined from the stoichiometric coefficients and
the reaction rates. Now, from this set of equations the Fourier transform is easily
performed, readily giving:
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−iωx̂i = Mij x̂j + η̂i(ω) (23)

with correlations:

〈η̂i(ω)η̂j(ω
′)〉 = 2πDijδ(ω + ω′) (24)

The left hand side can be expressed as −iωδij x̂j using the Kronecker delta,
therefore:

(−Mij − iωδij)x̂j = η̂i(ω) (25)

Now we may define the complex, frequency dependent matrix

Φ(ω) = −(M + iωI)−1 (26)

which allows us to write:

x̂i = Φij(ω)η̂j(ω) (27)

We are now ready to compute the power spectrum density by taking the en-
semble average of the tensor product of the concentration vector (in the frequency
domain):

〈x̂i(ω)x̂†j(ω)〉 =

(
2πδ(0)

)
Φik(ω)DklΦ

†
lj(ω) (28)

The proportionality factor 2πδ(0) can be omitted on the account that this omis-
sion is accounted for when comparing to numerical estimations of the PSD. The
proportionality factor is the time increment used in the sampling process in a dis-
crete Fourier Transform computation.

In the obtained expression, the PSD of every subsequent chemical species are
contained in the diagonal elements of the resulting matrix. It is worth noticing
that the PSDs will be a division of polynomials in ω, with denominator being
|det (M + iωI)|2 which is of degree 2n in ω (n being the number of chemical
species), while the numerator will be of degree 2(n − 1). Therefore, no matter
the specificities of the model used, the PSDs will always decay asymptotically as
∼ ω−2 when ω →∞.

For some systems, within some range of parameter values, it can be shown that
a maximum is present in the computed PSD for an amplified frequency ω∗.
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Part III

Oscillations in two compartments
This section contains the main results of our work. The focus has been to explore
different set-ups where two chemical oscillators got synchronized through a cou-
pling mechanism, while maintaining the total volume of the system constant.

We first present the distribution of periods for the single oscillator, as a refer-
ence. Afterwards, we will present numerical results for the period distributions for
the different coupled cases.

The distribution of periods for a mesoscopic clock

As it was promised in the above section, we can give an expression for the distri-
bution of periods (or frequencies, for that matter) using the phase-description of
an oscillator. As usual, this expression should be correct in the mesoscopic scale,
where the phase picture of the oscillator is applicable also in the presence of pop-
ulation noise.

In this case, we face a first-passage time (FPT) problem: how much time does
an oscillator, initially at φ = 0, need to reach φ = 2π? The distribution of such
times is the first-passage-time distribution (FPTD) for φ = 2π. The FPT problem is
formulated by the PDE for P (φ, t) (equation 13) with an initial condition P (φ, t =
0) = δ(φ) and absorbing boundary condition P (φ = 2π, t) = 0.

However, the absorbing boundary condition can be circumvented. The PDE
can be solved without accounting for this condition if one adds a mirroring solution
in the end that makes P (φ = 2π, t) = 0 at all times. cite VanKampen

We can solve the problem for Q(ψ, t) with no absorbing conditions and initial
condition Q(ψ, t = 0) = δ(ψ). We get:

Q(ψ, t) =
1√

2πDt
exp

(
− ψ2

4Dt

)
(29)

Changing ψ = φ − t we get the distribution for P (φ, t) with initial condition
P (φ, t = 0) = δ(φ). We are also interested in adding a solution that cancels the
probability at P (φ = T, t) to get the solution for the absorbing boundary problem.
The result is:

Pabs(φ, t) =
1√

4πDt

[
exp

(
− (φ− t)2

4Dt

)
− exp

(
− (φ+ t− 2T )2

4Dt

)]
(30)

It is easy to proof by inspection that this solution satisfies the corresponding
PDE, that P (φ = T, t) = 0 and P (φ, t = 0) = δ(φ). Now, the FPTD is equal to
the flux of probability at φ = T , so:
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Figure 5: Numerically computed distribution of periods (normalized) for a single
Brusselator above the Hopf bifurcation, with parameters b = 2.2 and c = 1. We
observe a dependency of the broadness of the distribution with volume.

Pfpt(t) =
T√

4πDt3
exp

(
− (t− T )2

4Dt

)
(31)

[ref VanKampen]
This is the same distribution as for a brownian particle to reach the bottom of a

container under the effect of gravity. In figure 5 we show the numerically computed
distribution for a series of volumes.

Additionally, we should expect the phase diffusion coefficient D to have a de-
pendency D ∼ V −1 in the mesoscale, as found by Gaspard et al and explained in
equation 20. This allows us to roughly compute the robustness factor by fitting the
obtained distribution (Eq. 31) distribution. We illustrate this in figure 6 by fitting
the distribution to the obtained data for V = 25000 and then rescaling D to fit
V = 50000.

We can relate the phase-diffusion D with the moments of the distribution. In
terms of the standard deviation σ and mean µ:

µ = T

σ2 = 2DT
(32)

We should expect any clock in the mesoscopic scale to be approximated by
these expressions, even when we consider coupled cases. A basic assumption is
then that the coupling considered in our clocks do not modify the deterministic
trajectories by much, hence leaving the mean period almost unchanged, and we
focus on the effect of the coupling in the phase-diffusion coefficient.
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Figure 6: (a) Detail of the distribution depicted in figure 5 for volume = 2.5 · 104.
The solid line is a plot of the first-passage time density as expressed in equation 31,
using the mean of the numerical distribution as T (Tmean = 6.36, vertical line) and
fitting a value for D = 10.4/(2.5 · 104). (b) Detail of the distribution for volume =
5 · 104. Here the solid line takes the parameters already obtained in figure (a), with
a proper rescaling of the diffusion coefficient D = 10.4/(5 ·104), which illustrates
the dependency D ∼ V −1.

Concentration-driven transport, symmetric case

The first configuration we tried is quite simple: let us divide the volume in two
equal compartments, then introduce some transport between compartments that
is proportional to the concentration of each chemical species. This is what we
should expect for a membrane with passive transport, with molecules crossing the
membrane with a certain rate if they bump onto it.

The equations representing this system are the following:

ẋ = 1 + cx2y − (b+ 1)x− k1(x− u)

ẏ = −cx2y + bx− k2(y − v)

u̇ = 1 + cu2v − (b+ 1)u+ k1(x− u)

ẋ = cu2v − bu+ k2(y − v)

(33)

We term this configuration ‘symmetric’ since exchanging the names of the
compartments leaves the system unchanged.

Dynamical analysis

The dynamical analysis in this case gets much more complicated than for the single
oscillator, since the system is no longer planar and the Poincaré-Bendixon theorem
does not apply. The dynamics of 4D systems are much richer in behaviour. Nev-
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ertheless, we can point out some facts using LSA and rely on some numerical
integration to explore the system a bit further.

It is clear that the fixed point for the single system (1, b/c) is still a fixed point,
since the coupling terms cancel there. We can look for the stability of this fixed
point, again computing the Jacobian. This can be done in a rather compact way if
we define the matrix κ = diag(k1, k2) and use the original Jacobian µ∗ (Equation
2). Then, in block-matrix notation, the Jacobian is:

M =

(
µ− κ κ
κ µ− κ

)
(34)

This notation allows to easily perform some row and column operations that
factorizes the characteristic equation det(M − λI4) = 0:

∣∣∣∣µ− κ− λI2 κ
κ µ− κ− λI2

∣∣∣∣ =

∣∣∣∣µ− λI2 κ
µ− λI2 µ− κ− λI2

∣∣∣∣ =∣∣∣∣µ− λI2 κ
0 µ− 2κ− λI2

∣∣∣∣ = det(µ− λI2) det(µ− 2κ− λI2) = 0

(35)

The first factor indicates that the original eigenvalues are conserved after the
coupling. The second factor introduces two new eigenvalues. We now use ∆ and
τ as before for the determinant and trace of µ, and ∆̂, τ̂ respectively for µ − 2κ.
They are related as:

Figure 7: White background region – the Brusselators were stable before cou-
pling. In the dotted region the fixed point becomes a saddle (the boundary with the
stripped region is a pitch-fork bifurcation). Grey region – the Brusselators were
unstable before coupling. This case is still considered in the LSA.
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∆̂ = ∆− 2(b− 1) + 2c+ 4k1k2

τ̂ = τ − 2(k1 + k2)
(36)

Clearly, the trace τ̂ is always negative provided that the original trace τ is also
negative. Hence, if the Brusselators are originally in the stable regime, the fixed
point will be stable after the coupling if ∆̂ > 0, that after some rearranging gives
the relation:

b <
1 + 2k1

2k2
c+ 1 + 2k2 (37)

In parameter space (b, c) (assuming some fixed k1, k2), this condition is a
straight line: if b is below this line, while fulfilling τ = b − 1 − c < 0 at the
same time (which is also a straight line), the fixed point remains locally stable.
This is illustrated in figure 7.

Another way of phrasing this condition is that the system will have some posi-
tive eigenvalue (given that τ < 0) only if

k2 − k1 >
1

2
(38)

This relation will proof of some importance when exploring the coupled system
in the quasicycle regime, since it is indicative that the quasicycles happen about the
same fixed point as the original system. The fact that at least k2 > 1/2 is necessary
for the change in stability proves good: stability will not change with finite values
of the coupling constants k1, k2, at least in some range.

(a) (b)

Figure 8: (a) Concentration of X in a single stable Brusselator (blue) and two cou-
pled Brusselators in the dotted region (green and orange, for each compartment).
Parameters are b = 1.9, c = 1 and coupling constants k1 = 0 and k2 = 3. We ob-
serve that, while the oscillations in the single Brusselator die off, they persist after
the coupling. (b) Projection in the X-Y plane of the single Brusselator trajectory
and coupled Brusselator
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In the doted region in figure 7, the fixed point becomes a saddle. Numerical
integration indicates that at least two new fixed points exist, and suggest that they
are either stable or unstable, in which case the system undergoes a Hopf bifurca-
tion. This could result in the curious case in which two stable Brusselators couple
to result in a limit cycle oscillator. We illustrate this in figures 8a and 8b.

Numerical results

This system was simulated for different volumes, using a Gillespie algorithm. We
will refer to the ‘volume’ as to the sum of volumes of all compartments. This way,
the average number of molecules is conserved as a whole when the compartmen-
talization is performed. However, we should expect each compartment to be more
noisy on its own, since the extensivity is reduced.

We compute the standard deviation σ of the period distribution from the nu-
merical results obtained. The coefficient of phase-diffusion D is thereby obtained
making use of equation 32. We plot the computationally obtained Ds as a func-
tion of the volume in figure 9, in logarithmic scale, and use a regression of the
type D = a/V (solid line) only with the bigger volumes. We observe that the
periods seem to distribute to the computed PDF (eq. 31) only for volumes > 103

approximately.
It is clear from the plot, and from the obtained robustness factors, that the

oscillations are more robust in the face of noise for the single than for the coupled
case. This results may not make a general case at all, since many parameters have
been chosen arbitrarily. In the coming section, we give an argument on why we
have not observed this sort of coupling succeed even when trying for different
parameter values. This argument must be considered heuristic, since the phase-
description used in it is not an exact match of our chemical system.

An heuristic argument using Langevin equations

Let us first look, in the phase description scheme, at the coupling of two oscillators
with the only constraint that the coupling functions depend on the phase difference
for each pair of oscillators, and it does so with an odd symmetry, Γ(φ1 − φ2) =
−Γ(φ2 − φ1). In other words, the coupling strengths break the compartment sym-
metry. We will afterwards get rid of this asymmetry to look at the case of n oscil-
lators.

Now, we can write coupled Langevin equations for the phases:

φ̇1 = ω1 +K1Γ(φ2 − φ1) + ξ1(t)

φ̇2 = ω2 +K2Γ(φ1 − φ2) + ξ2(t)
(39)

Where the ξi(t) represent some white noise functions.
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Figure 9: Numerically computed phase-diffusion coefficients as a function of the
volume. The chemical system is simulated using a Gillespie algorithm and then the
periods are computed from the obtained timeseries. Blue: single brusselator. Red:
symmetrically coupled brusselators, as described in this section. The solid lines
are fits to the function D = a/V , and only the bigger volumes are used (mesoscale
and above). The regressions give, a = 10.38 and a = 16.99 for the single and
coupled cases, respectively.

This description is not an exact match of our chemical system, since here the
coupling functions depend only in the difference in phase, and the coupling in
the original chemical system depends on the distance in phase space. We should
expect the description given here to be a better one for increasing volumes, since
the fluctuations away from the limit-cycle become increasingly smaller and thus
the coupling is mostly dependent on where in the cycle the system is, and not so
much on how far from it.

With a smart combination of the equations, one can get one equation without
any nonlinear terms, which will therefore be a simple diffusive variable. This is
achieved if one computes the centre-of-mass analogue for the phases:

θ =
K2φ1 +K1φ2
K1 +K2

(40)

The equation for θ is:

θ̇ = ω + ξ(t); ω =
K2ω1 +K1ω2

K2 +K1
(41)

And the diffusion constant for this variable becomes:

D̂ =
1

2
〈ξ(t)2〉 =

K2
2D1 +K2

1D2

(K1 +K2)2
(42)
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We could look at this last equation from another perspective if we set a mean
K = (K1 + K2)/2 to fix a scale of the coupling strength and then use ∆K =
(K2 −K1)/2 as a measure of the possible asymmetry in the coupling. It must be
emphasized that the picture we are painting does not completely match our system
as described in this section. Now, we imposed from the very beginning that the
compartments should not be distinguishable. In that case, we should impose K1 =
K2 to get a more reasonable picture. Not imposing this condition, the dynamical
properties of the system (i.e. the dynamical characteristics of the deterministic
equations) may be completely different.

That very small values of ∆K should not change dramatically the dynamical
properties of the system is not an unreasonable assumption to make. Imposing
that the two systems have equal diffusion constants, and that these are doubled
with respect to their original ones after the coupling, D1 = D2 = 2D -since the
effective volume is halved-, we arrive at:

D̂ = 2D
(K + ∆K)2 + (K −∆K)2

4K2
= D

(
1 +

∆K2

K2

)
(43)

So, now adjusting to the case where ∆K = 0, we see that the diffusion coeffi-
cient remains unchanged. This is, however, the diffusion coefficient for the ‘centre
of mass’ of the oscillators, and we must remember each oscillator also fluctuates
around the centre of mass, so we should expect the actual diffusion coefficient to
be bigger in the coupled case. This is what we see from our computational results
presented previously.

As discussed, though, we should expect equation 43 to hold at least for small
asymmetries in the coupling strength. If this is actually the case, ∆K = 0 is the
minimum of a parabola, so we should expect the coupled diffusion constant to be
even bigger if these asymmetries are introduce. In other words, the symmetric
coupling seems to maximize -at least locally- the quality of the oscillations. But it
does not do the trick.
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Coupled chemical oscillators: asymmetric case

We investigated a setup where one compartment (A) is capable of sending molecules
of the type X to the other comparment (B), while compartment A remains unaware
of what happens in B. If the subscripts 1 and 2 refer to molecules in compartment
A or B respectively, the differential equations representing this system would be:

ẋ1 = a− bx1 + x21y1 − x1 −Kx1
ẏ1 = bx1 − x21y1
ẋ2 = a− bx2 + x22y2 − x2 +Kx1

ẏ2 = bx2 − x22y2

(44)

Numerical Results

We simulated this system using the Gillespie algorithm with parameters a = 2, b =
6,K = 0.2 and for a wide range of volumes. As shown in the figure, one observes
an apparent improvement regarding the standard deviation of the periods in com-
partment A. However, compartment A is independent of whatever happens at B, so

Figure 10: Blue dots: two comparments, standard deviation of the period distribu-
tion for the X molecules in compartment A, with a = 2, b = 6. Red dots: single
comparment with modified parameters â, b̂, standard deviation of the X molecules,
after rescaling volume and time.
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we must attribute this improvement only to the effect of the term −Kx1 in the first
equation.

Coupling as a parameter shift

The addtion actually represents a change in the dynamical parameters a, b since the
extra term disappears after a proper change in dimensions of time and space. If we
focus only in the first equation and define new dimensions of time such that t →
(1 +K)t and V → V/

√
1 +K (this last change reflecting on the concentrations),

it becomes:

ẋ1 = â− b̂x1 + x21y1 − x1
where

â =
a

(1 +K)3/2
, b̂ =

b

1 +K

Therefore, the first two equations are equivalent to our usual Brusselator sys-
tem, now with parameters â, b̂ and with rescaled dimensions. Note that a similar
argument could be applied if the transported molecules had been of the Y type
instead of X. To check the validity of this argument we performed a simulation
with a single compartment, now with the modified parameters, and compared to
our previous results with two compartments. We can see (figure) that, after scal-
ing the dimensions properly, the standard deviations seem very much to fall onto
the same curve as before. This indicates that the improvement was not due to the
comparmentalization but to a more suitable dynamical parameters.

Yet, a plausible mechanism for improvement of the period regularity would be
to use one compartment as a ‘dump-site’ where to send some excess of molecules
and improve the system as it has been described. Biologically, though, this could
seem more complicated and not as efficient as fine-tunning the parameters and
using the whole volume for the oscillator, an alternative that appears evolutionarily
more plausible. x
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Part IV

Quasicycles in two compartments
Limit-cycles are not the only way to generate coherent and sustained oscillations,
as we already mentioned. If a system is to approach a stable fixed point in the
deterministic limit, the addition of intrinsic noise keeps pushing the system out of
this fixed point. A proper dynamical neighbourhood of the fixed point may induce
this travels in the phase space to do so in a more or less coherent way around it,
giving rise to oscillations.

The contribution of noise to the oscillations in this case is crucially different
from that on the limit-cycle case. Now, without noise there are no oscillations,
since the system approaches the fixed point and stays there. In the limit-cycle case,
noise can be regarded as a disruptive effect on the quality of biological clocks. In
this case, noise is an indispensable ingredient to obtain oscillations.

The distribution of periods for quasicycles

One principal difference that we notice between limit-cycle oscillations and quasi-
cycles is the distribution of periods. We have seen, analytically and computation-
ally, that the periods for limit-cycle-like clocks distribute more sharply around the
mean value for increasing volumes (ref to figures and eq). This appears not to be
the case for quasicycles: the distribution of periods does not depend in the vol-
ume. We show this computationally, by running a series of Gillespie simulations
on a Brusselator system with parameters below the Hopf bifurcation, for several
volumes. The results are shown in Figure 12 where we see that the different distri-
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Figure 11: Trajectories for a Brusselator in the quasicycle regime. Left: phase-
space. Right: Time evolution for both chemical species. Some coherence in re-
volving around the fixed point is already apparent.
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Figure 12: Obtained distribution of periods for Gillespie simulations of the Brusse-
lator in a quasicycle regime. There are no appreciable differences for the different
volumes that were simulated.

butions overlap.
In this case, one has to look at the distribution of amplitudes for the oscillations

in order to see how these are shut down as the deterministic limit is approached
(Figure 13). In the mesoscopic scale, we should expect (as was explained in the
preliminaries section) the distribution in the stationary state to be a multivariate
Gaussian centred in the fixed point with some standard deviation that is smaller for
bigger volumes.

Power Spectrum Density for coupled quasicycles

Following the derivation of McKane [12] of the power spectrum density for quasi-
oscillatory chemical systems, the aim of this derivation is to compute a modified
power spectrum density for two chemical systems that are diffusively coupled by
means of a membrane between two compartments. The coupling depends on a
transport rates Ki; the power spectrum density in the limit Ki → 0 must recover
the result given at McKane.

As an example, take the Brusselator system in the stable regime, represented
by the following set of differential equations in the deterministic limit:

ẋ = a+ x2y − bx− x
ẏ = −x2y + bx

(45)

Now, the interest is to couple two such systems, in equal compartments A and B,
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Figure 13: Histograms for the amplitude distributions obtained using Gillepsie
simulations for the same Brusselator as in Figure 12. Clearly, the distribution jams
up around 0 for big volumes.

each with half the volume of the entire system.Then we get the related system:

ẋ1 = a+ x21y1 − bx1 − x1 +Kx(x2 − x1)
ẏ1 = −x21y1 + bx1 +Ky(y2 − y1)
ẋ2 = a+ x22y2 − bx2 − x2 −Kx(x2 − x1)
ẏ2 = −x22y2 + bx2 −Ky(y2 − y1)

(46)

The single system has a fixed point (x∗, y∗) = (α, β/α) that is stable for β <
1+α2. Note that the same point is also a fixed point for the coupled systems, since
the coupling terms vanish if the analogous variables are equal. (Stability conditions
can change right? I must check this.)

The stability matrix of the system is defined as:

Mij =
∂fi(x)

∂xj
(47)

and it is also useful to define the stoichiometric matrix Sij , which gives the
change in one species i by a reaction channel j; and the rate vector νj that gives
the rate constant of reaction channel j. Then, the result given by McKane for the
psd is given by:

Pi(w) =
(
Φ(w)−1 ·B ·Φ†(w)−1

)
ii

(48)

meaning the psd of component i is given by the element ii of the matrix in
brackets, and Φ = −iwI −M (I the identity matrix), B = S · diag(ν) · ST
is the noise-correlation matrix, diag(ν) is the matrix that has the reaction rates on
the diagonal, and Φ†(w) = ΦT (−w) denotes de adjoint matrix.
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Since the system-size expansion is used to derive this equations, they are valid
only for big-enough volumes.

Frequency and peak shift

We can express the PSD of the coupled systems in the symbolic form:

P̂ (w) = P (w) + εf(w) +O(ε2) (49)

where the hat indicates the perturbed system (the two coupled compartments).
Say that P (w) had an amplified frequency w = w∗, meaning that P (w∗) is a

maximum. How does the maximum shift with the perturbation? How is the height
of the maximum affected by the shift?

Define the shifted frequency as ŵ∗ = w + ε. Now, take derivatives on both
sides and demand that they vanish at w = ŵ∗. Assuming ε is small, the first terms
in a Taylor expansion around w = w∗ are the relevant ones.

dP̂ (w)

dw

∣∣
w=w∗+ε

≈ εd
2P (w)

dw2

∣∣
w=w∗ +K

df(w)

dw

∣∣
w=w∗ +Kε

d2f(w)

dw2

∣∣
w=w∗ = 0

(50)
The solution for ε, to first non-vanishing order in D, is:

ε = −K f ′(w∗)

P ′′(w∗)
+O(K2) (51)

Which is consistent with the assumption that ε is small, since ε is order K.
Now, the value of the peak at the maximum is also modified:

P̂ (w∗ + ε) = P (w∗) +Kf(w∗) +O(K2) (52)

So, basically, the peak should be higher (hence more amplified frequency? is
this condition enough?) it the value of f(w) is positive at the unperturbed resonant
frequency.

It is also possible to compute the factor of resonance R as defined in McKane
[12]:

R̂ =
P̂ (ŵ∗)

P̂ (0)
≈ P (w∗) +Kf(w∗)

P (0) +Kf(0)
≈ P (w∗) +Kf(w∗)

P (0)
(1−Kf(0)) (53)

with the result

R̂ = R(1−Kf(0)) +K(
f(w∗)

P (0)
) (54)
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Calculations

Now, note that it is possible to write all the necessary matrices for the coupled case
in terms of the matrices of the single compartment case. From here on, lower case
Greek letters µ, β and φ will correspond to the single-compartment case -µ the
stability matrix, β the noise-correlation matrix, and φ(w) = −iwI − µ-, while
M̂ , B̂ and Φ̂ refer to the coupled-systems’ matrices respectively. Then we can
write, in block matrices notation:

M̂ =

(
µ− κ κ
κ µ− κ

)
(55)

B̂ =

(
β + 2κ −2κ
−2κ β + 2κ

)
(56)

Φ̂(w) =

(
φ(w) + κ −κ
−κ φ(w) + κ

)
(57)

where κ = diag(Ki). The derivation of the matrix B is in another section. It is
useful at this point to define the coupling matrix

K =

(
κ −κ
−κ κ

)
(58)

so as to express Φ̂(w) = Φ(w) + D and B̂ = B + 2D, where the matrices
without the hat recover those of two uncoupled systems. Now we want to compute
the matrix P̂(w) = Φ̂(w)−1B̂Φ̂†(w)−1. It is possible to express the two inverse
matrices involved in this product in terms of the uncoupled matrices using the
following general result for any two invertible matrices A and B:

(A+B)−1(A+B) = I

⇒ (A+B)−1A = I − (A+B)−1B = I −A−1(I +BA−1)−1B

⇒ (A+B)−1 = A−1 −A−1(I +BA−1)−1BA−1
(59)

A small parameter ε can be introduced as follows:

(A+ εB)−1 = A−1 − εA−1(I + εBA−1)−1BA−1 (60)

and the formula can be recursively used for the term in the rhs (I+εBA−1)−1:

(I + εBA−1)−1 = I − ε(I + εBA−1)−1BA−1 = I +O(ε) (61)

So, up to first order in the perturbation parameter:

(A+ εB)−1 = A−1 − εA−1BA−1 +O(ε2) (62)

This result applied to the case at hand yields:
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P̂(w) =

=
(
Φ(w)−1 − Φ(w)−1KΦ(w)−1

)
(B + 2K)

(
Φ†(w)−1 − Φ†(w)−1KΦ†(w)−1

)
= P(w) + 2Φ(w)−1KΦ†(w)−1 − Φ(w)−1KP(w)− P(w)KΦ†(w)−1 +O(K2)

(63)

To this point, all the derivations should be valid in general: for any pair of equal
systems of chemical reactions coupled with a diffusive membrane. All the relevant
information concerning the PSDs is contained in the top-left block, since equal
chemical species in different compartments should have the same PSD and those
are contained in the diagonal. In the case of our two coupled Brusselators, we can
solely compute the 11 component of the matrix P̂(w) to obtain P̂x(w), and the
result for P̂y(w) is retrieved by changing subindices x↔ y and 1↔ 2.

∆Px(w) =
1

|det(φ)|2
(
Kx|φ22|2 +Ky|φ12|2

)
−2

[
KxPx Re

(
φ22

detφ

)
+Ky Re

(
P ∗xyφ12

detφ

)]
(64)

We can have a look on how this would look like, e.g., forKy = 0. The different
terms then are:

2Kx
|φ22|2

| det Φ|2
= 2Kx

M2
22 + w2

(∆− w2)2 + τ2w2

−2KxPx Re
φ22

det Φ
= 2Kx

B11w
2 + α

(∆− w2)2 + τ2w2

M22(∆− w2) + τw2

(∆− w2)2 + τ2w2

α = B11M
2
22 +B22M

2
12 − 2B12M12M22

And then plot the computed PSD as in figure 14.

Derivation of the noise-correlation matrixB

Again, the use of block matrices comes handy. The stoichiometric matrix S of the
coupled systems may be expressed in terms of the single-system one σ as:

S =

(
σ 0 I2 −I2
0 σ −I2 I2

)
(65)

note that σ is a 4× 2 matrix while δ = DI2.
The matrix diag(ν) is (naming diag(νs) the rate matrix of the single system):
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Figure 14: Ressonance factor for the molecular species X (PSD normalitzed by the
value at zero) for a single Brusselator (blue) and computed PSD for the coupled
double compartment Brusselator (orange). Parameters are b = 1.5, c = 1 and
Kx = 0.1, Ky = 0.

diag(ν) =


diag(νs) 0 · · · 0

0 diag(νs)
. . .

...
... · · · δ 0
0 · · · 0 δ

 (66)

Now, defining β = σ · diag(νs) · σT , the matrix B = S · diag(ν) · ST is
computed as

B =

(
β + 2δ −2δ
−2δ β + 2δ

)
(67)

Numerical results for coupled compartments

We simulated the Brusselator system in two coupled compartments with parame-
ters b = 1.8, c = 1 and computed the period distribution for several volumes. The
coupling constant was K = 0.1 for both X and Y. They are shown in figure 15. In
this particular case, the single compartment does better than the coupled ones.
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Figure 15: Variance for the periods computed by Gillespie simulations on a Brus-
selator in the quasicycle regime with b = 1.8, c = 1. (blue) Single Brusselator
(orange) Two coupled Brusselators



Part V

Concluding remarks and further
research
The extent of this work has been mostly exploratory. Using the Brusselator as a
toy model of a chemical oscillator, we have explored some possible ways of im-
plementing a syncing mechanism that could make a hypothetical biological clock
working in a fixed volume more robust to noise. Despite the Brusselator being a
very particular case, as well as the configurations that have been explored, we have
tried to give some general notions on whether this was possible or not.

In the case of concentration-driven transport between compartments, where the
transport term is linear in the concentration difference, we have given an heuristic
argument that support the numerical results obtained by stochastic simulation in a
computer. In this regard, we have used a phase description of the oscillator. On
the one hand, this sort of description hinders establishing a direct relation between
this phase picture and the original oscillator as well as correspondence of the cou-
pling functions considered with the original transport terms. On the other hand,
this makes for a more general argument, since it gives intuitions on limit-cycle
oscillators in general, not just the Brusselator system.

Using this phase-description argument, we established that the gain in robust-
ness due to the synchronization of the two compartments is never greater than the
loss by the effective reduction of volumes. Ideally, this two effects cancel each
other out, but one has to account for the fluctuations about the mean phase between
the two oscillators. This last contribution makes for a slightly less robust oscillator
as a whole.

We also implemented an asymmetric transport between compartments, with
rates still linear on the concentrations. In this implementation, it was possible for
one of the chemical species to change from compartment A to B, but not from B
to A. The motivation for this implementation is that, using similar parameters, we
observed an improvement in robustness in a similar setup where the transport from
A to B was much faster than from B to A. A similar improvement in robustness
was observed in the case that we actually showed results of here. In this case, we
argue that the dynamical behaviour of the system plays a fundamental role. The
asymmetry introduced causes the individual oscillators to function as if some shift
in parameters is performed, thus changing the Brusselator on its own, so to speak,
and fixating a different robustness coefficient from origin. Whether this is of any
biological relevance or not can be an interesting discussion. The parameters b and c
used for the Brusselator on this work were arbitrarily chosen, and it just happened
that the shift due to the mentioned coupling provided some parameters that appear
to be more robust. In this case, it appears more plausible, for the simplicity of
the solution, that evolution should fine-tune the parameters to reach some optimum
values, rather than developing a more complicated way such as compartmentaliza-
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tion, specially since half of the volume used is essentially trashed.
Finally, we also explored the possibility of coupling quasicycle oscillators. The

nature of these oscillators is very different from the limit-cycle ones that are more
usually considered. Here, noise is not a disrupting agent regarding the oscillations,
but rather what fuel them, provided the dynamical picture of the system allows for
an amplified frequency to appear. This reflects strongly on the behaviour of the
period distribution, since in this case they seem not to depend on the volume of
the system. We obtained a formula for the power-spectrum density of the coupled
system, up to first order in the coupling coefficients, that should work for small
values of the latter. We weren’t able to find any regime where the modified PSD
had a bigger amplifying coefficient than the original one. However, this may be
possible for other parameter regimes or chemical oscillators.

So far, many fundamental questions remain unanswered. Aligning with the re-
sults obtained by Gaspard et al. [20] [21] on a genetic model of biological clocks,
where cooperation in transcription factors introduced some non-linearities that im-
proved the robustness of the clocks, one could investigate if a non-linear transport
term between compartments has a similar effect.

It could also prove interesting to skip the formulation in terms of a chemical
oscillator and work with more abstract Kuramoto oscillators, for example. In this
way, one should get rid of the specificities of any particular dynamical system and
focus on the properties inherent to oscillations on their own. As a comeback, this
gets the subject further away from any real implementation in biological systems.

An even more abstract and general question would be: is there an ideal clock?
Imagine that one knew all possible biological clocks that could be build in a fixed
volume Ω, and then order them by their robustness factors from better to worse. Is
there a bound on how good a clock can be, or can it be improved all the way down
to being almost deterministic? Which one ends up on the top of the list?
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