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Abstract

Achieving quantum supremacy has the potential to drastically increase the speed at which we can solve
problems, and opens the possibility of solving problems which are impossible to solve in classical
computation. In this thesis, we measure a hybrid device, which is proposed to be able to achieve
an effective 1D p-wave superconductor, hosting Majorana zero modes. These quasiparticles can be
employed in the construction of topological quantum computers, though the realization of these zero
energy modes has long been a challenge for experimental physicists, and one that has not been solved
definitively yet.

This thesis is based on a device architecture proposed to measure the parity of Majorana zero modes
in a parity-to-charge scheme, in which the inherent parity degeneracy is lifted by the introduction of
a quantum dot, which couples the two parallel superconducting nanowires. The two lithographically
defined nanowires, are connected to each other at one end, and through a semiconducting cavity in the
other end. This forms a loop in which we can thread a magnetic flux.

We focus on the challenges of coupling two superconducting wires through a quantum dot. We
discuss and show results of the regime of a spinful Josephson junction. We see evidence that the
quasiparticles in the superconducting wires can screen the spinful Josephson junction, a phenomenon
called an Andreev dot. A special emphasis is then put on the cotunneling regime. Here we show
that we can couple a mesoscopic quantum dot to the Andreev bound states that two superconducting
wires host, at low parallel magnetic fields (B‖< 1 T). We demonstrate that we are fully able to control
the trivial Andreev bound states using a magnetic field parallel to the superconducting nanowires and
electrostatic gates. We show that the energy levels of the quantum dot can hybridize with the Andreev
bound state energy levels, and also observe phase dependence in this regime indicating coherent
transport of the electrons/quasiparticles through both arms of the loop. For future measurements, by
the application of a larger magnetic field, can drive the system into its topological phase. It would be
interesting to compare the hybridization effect of non trivial states in the superconducting nanowires,
to that of the trivial case measured in this thesis.

Lastly, we introduce the concept of quantum chaos in an Andreev billiard geometry. We show
preliminary experimental result where we can resolve the statistics of the level spacings in a chaotic
billiard with particle-hole symmetry. This project is at the moment still in the start-up phase and the
measurements are done in devices that are optimized for a parity-to-charge scheme. A comprehensive
discussion on future considerations, will follow the presentation of the preliminary measurements
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CHAPTER 0
Outline

This thesis concerns spectroscopic measurements of a system designed to achieve a
parity-to-charge readout of non-local fermionic states, called Majorana Zero Modes.
We will evaluate the technique in which a quantum dot hybridizes with fermionic
modes at zero energy in two superconducting nanowires. Wewill explain the interplay
between spin and superconductivity that such a systemhosts, and probe its dependence
on the magnetic field applied and the superconducting phase difference between two
coupled superconducting nanowires, seperated by a Josephson junction hosting a
quantum dot. This thesis will present experimental result of such a system and
compare them to theoretical results in literature. The interested reader should feel
free to pursue the theoretical derivation using the references given throughout the
text.

• Chapter 1 discusses the theory of the materials we use. A breakdown of
superconductivity, the spin-orbit interaction, Andreev reflections and quantum
dots are outlined. Furthermore we will explain the concept of a topological
superconductor, Majorana zero modes and the parity-to-charge scheme.

• Chapter 2 is a rundown of techniques of material science used to achieve
pristine heterostructures and fabricate nanodevices. The experimental meth-
ods used to measure these nanodevices in low temperature (∼15mK) cryo-free
dilution refrigerators are also explained.
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• Chapter 3 shows some of the experimental results that has been measured
during the course of the work on this master thesis. It can be seperated into
four subsections: tuning a nanodevice, spectroscopy of a quantum dot, the
spectrocopy of superconducting subgap states using a quantum dot, and spec-
troscopy at zero perpendicular magnetic field vs a magnetic flux quantum away
from true zero.

• Chapter 4 is a discussion of the results found in the previous chapter, conclud-
ing remarks, and an outlook to the future of the experiment.

• Chapter 5 is a digression to another experiment, that - though it is in its infancy
- is an extremely interesting subject: Andreev Billiards. Here we discuss how
the interplay between superconductivity and quantum chaos, form a new set of
universality classes, decribing the ensemble statistics of chaotic systems with
particle-hole symmetry.
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CHAPTER 1
Introduction

Since the original proposal by Paul Benioff in 1980 [1], quantum computation has
drawn a rising level of interest due to the computational power assosciated with it,
not just from the academic world, but also from tech companies such as Google,
IBM and Microsoft. As opposed to classical computation; which utilizes bits, that
are "on" or "off" - symbolized by logical states |1〉 and |0〉 - in a transistor circuit,
quantum computers are based on quantum bits (qubits): quantum states that can be
superpositions of on and off, 𝑐0 |0〉 + 𝑐1 |1〉, and more excitingly they can be in an
entagled state with other qubits. Quantum computers (QCs) can be based on several
quantum mechanical systems; be it spin qubits in semiconductors, superconducting
qubits such as transmons, fluxons and cooper pair boxes, and trapped ion systems.
The key similarity of these systems are that they at their essence host a two-level
system that represent to be the logical states |0〉 and |1〉.

As in classical computers, errors also occur in quantum computers, but the severity
in QCs are far more serious. Take, for example, a standard bit flip: In a classical
computer, a 1 turns into a 0. This is readily fixed by having copies of the same
original state, referred to as redundancy: Initializing identical bits, doing the desired
computations, and then evaluating the output. If for example 1 of 5 copies are
different, the computer can simply find that an error has happened as only 1 bit
came out with a different result. This is not possible in QCs due to the no-cloning
theorem1 [2, 3]. In the text we will refer to quantum errors as the decoherence of
the qubit, which is the loss of stored information of a quantum system. This thesis

1A theorem which was proven independently by W. Wooters and W. Zurek, and D. Dieks in 1982
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1.1. SUPERCONDUCTORS - TRIVIAL AND TOPOLOGICAL

will investigate systems that are proposed hosts of toplogical excitations that are the
building blocks of topological quantum computers (TQCs). As opposed to other QC
schemes TQC tackles the inherent problem of the decoherence of information, by
the virtue of storing information non-locally, and quantuminformation is described
as fault-tolerant [4]. In this scheme the act of measuring the topological charge is
enough to achieve a TQC, which is exactly what our device architecture in Sec. 1.4, is
built to achieve. The basics of a measurement based topological quantum computer
(MBTQC) is described App. 1.1.3. Naturally, other QC also mitigate errors, through
different error correction protocols, though the overhead on these are generally high
compared to TQC.

1.1 Superconductors - Trivial and Topological

Superconductors (SCs) are arguably one of the most seminal discoveries in con-
densed matter physics (CMP) of the 20th century. Some of the greatest physicists
and mathematicians have tackled the problem of realizing and describing different
superconductors, and several aspects of superconductivity are still unknown and their
research ongoing. Two principles define a superconductor: The resistance of the
material goes to zero as the temperature approaches zero and it expels magnetic
flux via the Meissner effect. Starting with its discovery by H. K. Onnes in 1911
[5], the constitutive relations describing the penetration of magnetic fields in SCs by
brothers H. and F. London in 1935 [6], led to the phenomenological description of
superconductors characterised by the Ginzburg-Landau theory in 1950 [7]. These
were in turn supported, as shown by L. Gor’kov in 1959 [8], by the microscopic
Bardeen-Cooper-Schrieffer (BCS) theory derived in 1957 [9–11]. The first part of
this theory section describes conventional superconductors in general, i.e. SCs that
can be described by BCS theory.

1.1.1 The Theory of Superconductors

As a preview to topological superconductors (TS), a brief discussion on the physics
of the superconducting properties of s-wave superconductivity is needed [12]. The
microscopics of a conventional superconductor is described by three groundbreaking
papers, published by Bardeen, Cooper and Schrieffer (BCS) in 1957 [9–11]. BCS
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1.1. SUPERCONDUCTORS - TRIVIAL AND TOPOLOGICAL

theory’s core principle is to describe an attractive interaction between electrons. The
attraction, they realized, was due to a retarded relaxation or equilibration of the lattice
as electrons in a metal pass by lattice sites. That is, electrons that distort a crystal
will have travelled far from the site before the crystal excitation has relaxed, however
the distorted potential can still influence and attract another passing electron. To
describe this they introduced the Hamiltonian, now known as the BCS Hamiltonian,

𝐻𝐵𝐶𝑆 =
∑︁
𝑘 ,𝜎

𝜖𝑘𝑐
†
𝑘𝜎
𝑐𝑘𝜎 − 𝑢

𝐿𝑑

∑︁
𝑘 ,𝑘 ′,𝑞

𝑐
†
𝑘+𝑞↑𝑐

†
−𝑘↓𝑐−𝑘 ′+𝑞↓𝑐𝑘 ′↑. (1.1.1)

The first term, with 𝜖𝑘 , described the kinetic energy of electrons with momentum
𝑘 and spin 𝜎. The second term is an electron-electron interaction with strength 𝑢,
normalized with respect to the dimensions of the SC, 𝐿𝑑. The interaction describes
the creation and annihilation of a Cooper pair, which is a bosonic excitation, formed,
at least in conventional SCs, by pairs of electrons with opposite spin and momentum.
The fermionic many-body annihilation and creation operators 𝑐𝑘 ,𝜎 and 𝑐†𝑘 ,𝜎 obey the
commutation relation laid out in Fermi-Dirac statistics,

{𝑐𝑘 ,𝜎, 𝑐𝑘 ′,𝜎′} = {𝑐†
𝑘 ,𝜎, 𝑐

†
𝑘 ′,𝜎′} = 0 {𝑐𝑘 ,𝜎, 𝑐†𝑘 ′,𝜎′} = 𝛿𝑘 ,𝑘 ′𝛿𝜎,𝜎′. (1.1.2)

SCs that can be explained using this microscopic theory are denoted as a conventional
SC. Decoupling the interaction in the Cooper channel with a bosonic-like field,
Δ, the Bogoliubov-de Gennes (BdG) mean field Hamiltonian is derived. Using
diagonalization, the Hamiltonian of the quasiparticles that describe excitations, 𝛾
defined via a Bogoliubov transformation, in a SC is given by,

𝐻 =
∑︁
𝑘

𝐸𝑘 (𝛾†↑𝑘𝛾↑𝑘 + 𝛾
†
↓𝑘𝛾↓𝑘) , 𝐸𝑘 =

√︃
𝜖2
𝑘
+ |Δ|2 , 𝛾𝜎,𝑘 = 𝑣𝑐

†
−𝑘 ,−𝜎 + 𝑢𝑐𝑘 ,𝜎,

(1.1.3)
where 𝜖𝑘 is the original electron dispersion 𝜖𝑘 ,± ∝ 𝑘2 − `, and the electron-like and
hole-like coefficients that squared sums to one, |𝑣 |2 + |𝑢 |2 = 1. Whether quasiparticles
are more hole- or electron-like is dependent on the energy,

|𝑢 |2 = 1
2

(
1 +

√
𝐸2 − Δ2

𝐸

)
. (1.1.4)

These above relations are plotted in Fig. 1.1. Here we can see that with no barrier,
within the gap 𝐸 < Δ, all transport is mediated via AR. For a larger barrier we would
see that there is a peak at 𝐸 = Δ, and AR is suppressed within the gap by the barrier
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1.1. SUPERCONDUCTORS - TRIVIAL AND TOPOLOGICAL

(a) (b) (c)

Figure 1.1: Properties of a conventional superconductor’s quasiparticles. a) the
probabilities of having the quasiparticles be hole- or electron-like. b) The dispersion
of a normal material (dashed) vs that of a superconductor (solid). Blue corresponds
to particles and red corresponds to holes. The gray dashed lines marks±|Δ|. Here the
chemical potential is set to ` = 3which can be seen from the fact that crossing/avoided
crossing is at the fermi wavevector, 𝑘𝐹 =

√
3. c) The superconducting density of states

of the Bogoliubov quasiparticles. At zero energy the Cooper pairs condense, and are
protected by the superconducting gap, Δ. At 𝐸 = Δ we see the superconducting gap
which has a very characteristic van Hove singularity. All energies are in units of the
superconducting gap Δ.

strength, 𝐻. At temperatures below the critical temperature, 𝑇𝐶 , the quasiparticles
have an instability towards Bose condensation, 𝑘𝐵𝑇𝐶 . Δ. This condensate is
located at zero energy and consists of bosonic Cooper pairs. Two other critical
parameters, that are important for most condensed matter experiments dealing with
superconducting materials are; the critical magnetic field, 𝐵𝐶 , the field at which the
SC can no longer sustain the Meissner effect, and the critical current, 𝐼𝐶 , which arises
due to the fact that moving charges create a magnetic field, and this field can in turn
reach the critical field value 𝐵𝐶 .

1.1.2 Theory of Topological Superconductors

At present, a great deal of research interest is given to realizing a p-wave SC, since it
was found by L. Fu and C. L. Kane [13] that hybrid devices employing conventional
s-wave superconductors and topological insulators could host this new phase of
matter. In this field, promising candidates for realizing the desired electron pairing
are Bismuth Selenide topological insulators doped with either Copper, Strontium or
Niobium (CuxBi2Se, SrxBi2Se and NbxBi2Se [14]). However, as of now, no bulk

6



1.1. SUPERCONDUCTORS - TRIVIAL AND TOPOLOGICAL

p-wave superconductor has been discovered. Compared to s-wave superconductors,
which is a singlet pairing of electrons (That is, a spin-down electron is paired with
a spin-up electron, and the total spin is |S| = 0) the electron-electron pairing in
p-wave SCs is mediated via a triplet pairing channel where the total spin of the
Cooper pairs are |S| = 1. Fermionic statistics dictates that the total wave function
is anti-symmetric, and as such the symmetric spin part of the wave function, results
in an anti-symmetric momentum, meaning that electrons pair-up with total non-zero
momentum. The pairing symmetry of electrons is what yields the names s-wave,
p-wave, etc. The pairing appears from the correlation function of the two paired up
electrons Δ𝜎,𝜎′ (𝑘) = 〈𝑐𝜎 (𝑘)𝑐𝜎′ (−𝑘)〉. From this equation we can read of how the
pairing of electrons behave. We can split the pairing field in its spin and momentum
part, Δ𝜎,𝜎′ (𝑘) = 𝛿(𝑘)𝜓𝜎,𝜎′ [15]. Due to the Pauli exclusion principle we know that
Δ𝜎,𝜎′ (𝑘) = −Δ𝜎′,𝜎 (−𝑘)

𝛿(𝑘) = 𝛿(−𝑘), 𝜓𝜎,𝜎′ = −𝜓𝜎′,𝜎, Spin singlet pairing,

𝛿(𝑘) = −𝛿(−𝑘), 𝜓𝜎,𝜎′ = 𝜓𝜎′,𝜎, Spin triplet pairing, (1.1.5)

where the anti-symmetry of the wave function (whether it resides in the momentum or
spin space) is clearly seen. The p-wave SC is host to interesting features not observed
in conventional SCs. This topological state of matter, hosts edge modes known as
Majorana Bound State (MBS)2, a fermionic zero energy mode which is protected by
the toplogical gap. The emergence of these zero bias states (ZBSs) in one dimen-
sional (1D) systems ismost easily understood from the perspective of theKitaev chain.

The Kitaev Toy Model, by A. Kitaev in 2001 is a proposal on how to visualize
p-wave superconductivity in a spin polarized 1D wire [16, 17]. The model starts
from a tight-binding (TB) model,

H𝑇𝐵 =

𝐿∑︁
𝑖=0

−𝑤(𝑐†
𝑖
𝑐𝑖+1 + 𝑐†𝑖+1𝑐𝑖) + Δ𝑝𝑐𝑖𝑐𝑖+1 + Δ∗

𝑝𝑐
†
𝑖
𝑐
†
𝑖+1 − `

(
𝑐𝑖𝑐

†
𝑖
+ 1
2

)
, (1.1.6)

where the hopping term strength is𝑤, the p-wave superconducting pairing potential is
Δ𝑝, and the chemical potential of the system is `. We can break up the electrons into
the Majorana basis by explicitly writing the complex and real part of the fermionic

2Majorana Bound States and Majorana Zero Modes (MZM), is used interchangeably through literature.
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1.1. SUPERCONDUCTORS - TRIVIAL AND TOPOLOGICAL

creation/annihilation operators into separate Majorana operators,

𝑐𝑖 =
1
2
(𝛾2𝑖 + 𝑖𝛾2𝑖−1) 𝑐

†
𝑖
=
1
2
(𝛾2𝑖 − 𝑖𝛾2𝑖−1), (1.1.7)

where 𝛾2𝑖 and 𝛾2𝑖−1 sits on the same fermionic lattice site. Rewriting Eq. 1.1.6 in the
Majorana basis, we can examine to limiting cases.

1) Δ𝑝 = 𝑤 = 0 and ` < 0. This is the trivial regime, where we have removed
superconductivity. Setting the hopping term to zero simply gives us a system where
all Majorana operators pair up with the Majorana operator on its respective electron
site,

H𝑀 ,1 = −`
2

2𝐿∑︁
𝑖=0

𝛾2𝑖−1𝛾2𝑖. (1.1.8)

2) Δ𝑝 = 𝑤 > 0 and ` = 0. In this case, superconductivity has been turned on, and the
strength of the hopping term is equal to the strength of the superconducting pairing
term. Majorana operators will pair up with Majorana operators from neighbouring
electron sites,

H𝑀 ,2 = −𝑖𝑤
2𝐿−1∑︁
𝑖=1

𝛾2𝑖𝛾2𝑖+1. (1.1.9)

The difference between the two regimes are highly interesting and is illustrated in Fig
1.2. Changing back to the Dirac fermionic basis, we find that,

Figure 1.2: The two regimes of a TSC nanowire. Circles indicate fermionic lattice
sites and illustrates how Majoranas couple to each other, blue dots indicate Majorana
lattice sites and doted lines of the bottom panel indicate the difference of Majorana
fermions pairing in the trivial regime versus the non-trivial regime. We clearly see
that there are unpaired Majoranas in the ends of the non-trivial regime.
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1.1. SUPERCONDUCTORS - TRIVIAL AND TOPOLOGICAL

H𝑀 ,2 = 2𝑤
𝐿−1∑︁
𝑖=1

(
𝑐
†
𝑖
𝑐𝑖 +
1
2

)
. (1.1.10)

Note that, as stated, Majoranas have paired with a neighbouring site Majoranas and
therefore,

𝑐𝑖 =
1
2
(𝛾2𝑖 + 𝑖𝛾2𝑖+1) 𝑐

†
𝑖
=
1
2
(𝛾2𝑖 − 𝑖𝛾2𝑖+1). (1.1.11)

The two Majoranas at either end of the chain pair up in a non-local state 𝑐𝑀𝑍𝑀 =

1
2 (𝛾1 + 𝑖𝛾2𝐿). If we move back to the BdG Hamiltonian we would see that all of the
fermionic lattice sites would pair up in Cooper pairs. One of the most interesting
properties of this system is that the non-local state 𝑐𝑀𝑍𝑀 does not have a partner,
and for no additional energy cost we can occupy the state. In contrast to a trivial
SC, which always have an even number of fermions at zero energy, the Cooper pair
condensate, the TSC, can either have an even or odd number of fermions, dependent
on the occupation of the non-local state 𝑐𝑀𝑍𝑀 . A small caveat is that the zero energy
mode in small wires are lifted to a finite energy if there is a wave function overlap
of (𝛾1, 𝛾2𝐿); this lifting is exponentially suppressed by the length, 𝐿, of the 1D wire
∼ e−𝐿/b , in proportion to the coherence length, b. The two states are related via
the fermionic creation/annihilation operator 𝑐𝑀𝑍𝑀

��𝜙(𝑒)〉 =
��𝜙(𝑜)〉, and we find the

occupation via the number operator, �̂�𝑀𝑍𝑀 = 𝑐
†
𝑀𝑍𝑀

𝑐𝑀𝑍𝑀 the eigenvalue being 1 (0)
for the odd (even) state. In literature we mostly describe this even-oddness with the
parity operator,

�̂� = 1 − 2𝑐†
𝑀𝑍𝑀

𝑐𝑀𝑍𝑀 = 𝑖𝛾2𝐿𝛾1. (1.1.12)

Which has eigenvalues (1,−1). To find the spectrum of the system, Eq. 1.1.6 can be
rewritten in k-space via a Fourier transform and diagonalized:

𝐸 (𝑘) = ±
√︃
(2 · 𝑤 cos(𝑘) + `)2 + 4|Δ|2 sin2(𝑘) (1.1.13)

This more general equation where we also permit ` ≠ 0, shows a phase transition at,

` ≥ −2𝑤, (1.1.14)

where the spectrum becomes gap-less at 𝑘 = ±𝜋, which we attribute to a phase
transition.
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1.1. SUPERCONDUCTORS - TRIVIAL AND TOPOLOGICAL

1.1.3 Majorana Zero Modes - Properties that Enable Topological
Quantum Computation

A key feature of MBSs are the exchange statistics that describe them. As opposed
to fermions (bosons), where exchange the of identical particles multiplies the total
wave function by - (+), MBSs are non-abelian anyons. Anyons are quasiparticles,
which can only exist in spatial dimensions 𝑑 ≤ 2, where exchange leaves the wave
function with a complex phase. For non-abelian anyons the exchange is dependent
on the order at which particles are exchanged [18].

Bosons : |Φ(𝑥1, 𝑥2)〉 = |Φ(𝑥2, 𝑥1)〉
Fermions : |Ψ(𝑥1, 𝑥2)〉 = − |Ψ(𝑥2, 𝑥1)〉 (1.1.15)

Anyons : |Θ(𝑥1, 𝑥2)〉 = 𝑒𝑖𝜑 |Θ(𝑥2, 𝑥1)〉

where for non-abelian anyons the phase is a unitary operator, 𝜑 → 𝜑�̂�, that changes
the state non-trivially based on the order of exchange of particles in the system. This
additional symmetry of the wave function is rooted in the concept of the topology of
the exchange of particles in 2+1D space-time and knot mathematics. The emergence
of this new exchange symmetry readily follows from the fact that exchanging two
particles two times has to return the same wave function. And while the world lines
in 3+1D space time can be unknotted, in 2+1D this is generally not true. This is a
reason why exchanging two particles once in 𝑑 > 2 only has the symmetry (+) and
(-). As such, even if an experimentalist knows everything about the spin, charge,
position or energy, etc. of a non-abelian anyon, there is additional information
encoded in the particles’ space-time history. This information can be manipulated by
moving particles around each other (a braiding operation) as can be seen in Fig. 1.3.
This highly non-local information is intuitively well protected from small and local
perturbation. For this thesis we will not digress further into the problem of braiding,
but a excellent review on the topic is given in [18]. Two systems with four non-abelian
anyons, that look identical at one points in space-time (the discs in Fig. 1.3), can
constitute a two level system, from the fact that their space-time history is different.
It is this non-local information, stored in the space-time history of the particles, that
can be used in quantum computations [19]. The control of these quasiparticles,
and as such the braiding operation, if they are realized in a material system, would
most probably prove extremely difficult to control in real space, thereby hindering

10



1.1. SUPERCONDUCTORS - TRIVIAL AND TOPOLOGICAL

(a) (b)

Figure 1.3: The state |0〉 is created by the annihilation of two sets of two neighbouring
Majorana particles to vacuum, while the state |1〉 is the annihilation of the two middle
Majorana particles and the two Majorana particles furthest away from each other.
Time passes vertically and the planes drawn are snapshots in time. a) This is the
expectation value 〈0| BRAID |0〉. It is topologically equivalent to a circle. b) This
is the expectation value 〈0| BRAID |1〉. It is topologically equivalent to two circles
that are intertwined. Figures inspired by [18]

braiding and as a result computation. This thesis instead takes hold in a scheme
where the states are manipulated by using measurement based topological quantum
computation [4, 20].

To circumvent the real-space braiding of non-abelian anyons in topological quantum
computation, which was the original suggestion be A. Y. Kitaev in 1997 [74], an
alternative propose emerged in 2008 [20], where the act of measuring the states, acts
as an implementation of computational gates, this is known as a one-way computer
(we collapse the wave function onto the parity as we measure, and as such destroy
any previous information [4]). This is based on the already proposed scheme of
achieving a quantum computer: measurement based quantum computer (MBQC).
The act of measuring the topological charge is enough to achieve a QC. However, the
measurement logic gates only form a Clifford set. For universal computation [4], an
introduction of a non-Clifford gate has to be introduced. In the MBTQC, there exist
no topologically protected non-Clifford gate.
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1.2 Physics of Mesoscopic Structures

A proposed method to effectively achieve a p-wave superconductor in 1D nanowires
is to combine the properties of a semiconductor with spin-orbit interaction to split
the spin bands, a superconductor to introduce proximitized superconductivity, with
particle-hole (PH) symmetry, and a magnetic field to open a helical gap at |k| = 0
[21, 22]. In the following section, we’ll explain the mechanisms that facilitate the
spin-orbit interactions in semiconductors (SMs) and the transfer of superconductivity
to the SM. We’ll also touch upon a integral part of our specific experiment; quantum
dots.

1.2.1 Spin-Orbit Coupling in Semiconductors

For the purpose of explaining spin-orbit (SO) coupling [23, Ch. 9.6, Ch. 3.3], we
imagine a crystalline semiconductor, from the crystal structure follows a band struc-
ture with electrons occupying valance and conduction band. In heavy elements SO
interaction arises. SO interaction is a relativistic effect when electrons travel in an
electric field and experience a Lorentz force due to the electrostatic potential of the
lattice moving, relative to the electron’s rest frame. The magnetic dipole moment
of the electron’s spin is coupled to the effective magnetic field (Beff or BS−0), which
the electron experiences in its rest frame. Beff originates from the potential, 𝑉 (r),
inherent to the lattice of the crystal that the electron travels, with velocity v, through
the following relation,

E(r) = −∇(𝑉 (r)) ⇒ Beff = − 1
𝑐2

(v ×E). (1.2.1)

The energy of the interaction is found via a Zeeman Hamiltonian of magnetic field,
Beff. The direction of the electric field and therefore also the direction of the effective
magnetic field the electron experiences is important: In 2D zinc-blende crystals the
result is a Dresselhaus contribution, originating from the bulk inversion asymmetry,
while the confinement of the two dimensional electron gas (2DEG), in a quantum
well, can lead to the Rashba contribution, if the confinement has a structural inversion
asymmetry [23, Ch .9.6]:

𝐻𝑆−𝑂 = −𝑔`𝐵
2𝑐2

(v×E) · S 2𝐷
==⇒ 𝐻𝑆−𝑂,2𝐷 = 𝛼𝑅 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦) + 𝛽𝐷 (𝑘𝑥𝜎𝑥 − 𝑘𝑦𝜎𝑦).

(1.2.2)
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Here g is the Landé g-factor, 𝛼𝑅 denotes the Rashba contribution, 𝛽𝐷 denotes the
Dresselhaus contribution, and `𝐵 is the Bohr magneton. For InAs quantum wells
(QWs), that we investigate, the Rashba terms dominates. One can rewrite the factors
of Eq. 1.2.2: 𝛼𝑅 = 𝛼 〈𝐸𝑧〉 and 𝛽𝐷 = 𝛽 〈𝑘𝑧〉 which is dependent on the material
specific coefficient, 𝛼, 𝛽. In bulk InAs, these compares as: 𝛼 = 117.1eÅ2 and
𝛽 = 27.18eVÅ3 [23, Ch. 9.3], as such the contribution due to Rashba spin orbit
coupling dominates. The SO coupling results in the two spin degenerate bands
splitting for crystal momenta 𝑘 ≠ 0 as depicted in Fig. 1.4.

(a) (b)

Figure 1.4: Band dispersion when Rashba S-O dominates. a) 2D band dispersion of
Rashba S-O, the plane indicates the line cut of b). b) Line cut for 1D systems. The
energies are in arbitrary units, here we use 𝛼𝑅 = 4.3. The dispersion are calculated

using the fact that Eq. 1.2.2 simplifies to 𝐸± =
ℎ̄2𝑘2| |
2𝑚∗ ± 𝛼𝑅𝑘 | |, with 𝑘 | | =

√︃
𝑘2𝑥 + 𝑘2𝑦, see

[23, Ch. 9.6]. As such we can see that we can create spin split bands using crystals
with Rashba SOI

The Helical Gap: A physical realization in 1D nanowires (NWs), where Rashba SOI
dominates, is that by applying a field perpendicular to the SOI effective B-field, we
can create a helical liquid [24], where the transport of the wire has a spin texture; i.e.
spin and velocity are correlated. 2D and 3D Majorana systems are proposed to exist
in Topological Insulators3 doped with superconductivity, as mentioned in Sec. 1.1.2.
Opening a helical gap is roughly speaking the 1D correspondence of the three or two
dimensional electron systems. The application of a magnetic field, perpendicular to
the 𝐵𝑆𝑂, in a nanowire, will open a helical gap at 𝑘 = 0, which in turn mixes the spin

3Also named Quantum Spin Hall Insulators (as it’s a precursor to Integer Quantum Hall Effect) in literature
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up and spin down states. If the Fermi level is tuned within the helical gap spin up
electrons travel right and spin down electrons travel left [24].

1.2.2 Superconducting Proximity Effect

To realize p-wave superconductivity, a requirement is that the electrons of the system
coherently pair up as Cooper pairs. Conventional s-wave SCs can be utilized to
achieve this. The transfer of the superconducting PH symmetry are facilitated by
the superconducting proximity effect. By the virtue of having an electron gas close
to a superconductor, we can achieve the desired coherence of the charge carriers in
the SM. This effect was first observed in SC-normal metal-SC (SNS) junctions by
R. Holm and W. Meissner in 1932 [25]. However, in a seminal paper from G. E.
Blonder, M. Tinkham, and T. Klapwijk [26, 27] they explained the effect from the
point of view of Andreev reflections (AR) on the interface between a normal metal
and an SC.

Andreev reflections: An electron (𝑘 ↑) in a normal metal impinging on the boundary
of a SC has no possibility of transmission into that SC, if the energy is less than the
superconducting gap, |𝐸 | < Δ, as there are no quasiparticle states available in this
energy window. However, a second-order process can happen, where the SC accepts
two electrons with opposite momentum and spin, and they transmit into the SC as a
Cooper pair (𝑘 ↑,−𝑘 ↓), see Fig. 1.5c. Phenomenologically, the incident electron
coherently pairs upwith an oppositemoving (oppositemoving in the non-translational
invariant direction) electron (−𝑘 ↓) and they are injected into the SC [28]. This leave
a hole in the SM with (𝑘 ↑), and as the group velocity is found from the dispersion
relation, v = 1

ℎ̄
∇k𝐸k, the hole traverses exactly the incident electrons path back,

see Fig. 1.5a. In realistic heterojunctions the electron can also normal reflect, see
Fig. 1.5b. This is because degradation of the interface (i.e disorder and fermi level
mismatch) introduces a place where the electron can expend its momentum 𝑘 → 𝑘′,
and as such eikx → eik′x. As such a specular reflection (SR) can take place4.

The BTK model is an intuitive model of the SC - SM interface that introduces an
4In most cases ARs are retro-reflective and the normal reflection is specular, due to the fact that hole’s band curvature

have the opposite sign of electrons. In graphene, holes and electrons have the same curvature. This means that graphene
can exhibit specular AR [29]. This is a fascinating interplay between the quantum mechanics of superconductivity and
the relativistic nature of electrons in Dirac cones. In contrast to retro-reflective AR that can be suppressed by strong SOI,
specular AR are enhanced by strong SOI, under the correct conditions[30]
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(a) (b) (c)

Figure 1.5: The AR reflection process shown as opposed to SR. a) Andreev reflection:
An electron retroreflects as a hole and a Cooper pair is injected into the SC. b)
Specular reflection: An electron undergoes a specular reflection. No charge will flow
into the SC. c) AR as seen in the DOS space. 𝐷𝑆 (𝐸) and 𝐷𝑁 (𝐸) are the DOS of a
SC and the normal metal respectively. A hole is left with opposite momentum in 𝐷𝑁 .

interface parameter, into the calculation. The interface is modelled as a repulsive
delta barrier, 𝐻𝛿(𝑥), and this potential barrier is used in the BdG equations. The
BTK model also uses the fact that the potential of the normal region5 and the pairing
potential are step-like, 𝑈 (𝑥) = 𝑉 (𝑥)Θ(−𝑥) + 𝐻𝛿(𝑥) and Δ(𝑥) = ΔΘ(𝑥). We will
return to comment on this approximation after laying out the BTK model. The wave
function of an electron impinging/reflecting/transmitting in an NS junction can be
written as,

𝜓inc =

(
1
0

)
eikex,

𝜓r = 𝑎

(
0
1

)
eikhx + b

(
1
0

)
e−ikex, (1.2.3)

𝜓t = 𝑐

(
𝑢0

𝑣0

)
eiqex + d

(
𝑣0

𝑢0

)
e−iqhx.

The coefficients of the wave functions can be solved using the Schrödinger equation
and appropriate boundary conditions. For different barrier parameters, 𝑍 , the results
are seen in Fig. 1.6.

The BTK model can also be derived using a Green’s formalism [31, Ch. 1]. This is

5Due to the fermi velocity mismatch between metals and SMs (due to the very different carrier densities) the potential
𝑉 (𝑥)Θ(−𝑥) is always step-like.
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Figure 1.6: Coefficients for the two different scattering events specular (𝐵 = 𝑏 · 𝑏∗)
or Andreev (𝐴 = 𝑎 · 𝑎∗). The figure is the result of extensive calculations in [26].
For brevity [26] has used 𝛾 = [𝑢20 + 𝑍

2(𝑢20 − 𝑣
2
0)]
2, 𝑢20 = 1 − 𝑣20 is Bogoliubov

quasiparticles coefficients defined in Eq. 1.1.4, and 𝑍 = 𝐻/( ℎ̄𝑘𝐹) is the barrier.

a more theoretically rigorous treatment of the system and considers the degradation
at the interface. A direct result of the Green’s formalism is a description of the
single particle spectrum, the pairing potential, and the coherence in real space.
The result predicts that the phase coherence from the superconductor leaks into the
normal conductor, and the Cooper pair density decreases monotonically in a distance
away from the interface. Vice versa, the model also predicts that the Cooper pair
density decreases moving closer to the interface from the SC side. This introduces a
correction to the step-like behavior in the BTK model.

Andreev Bound States: To this extent, we did not include the phase of the supercon-
ductor in the description of AR. When there is one SC in play, this does not matter.
However, as we will see later in Sec. 1.4, the device measured in this work has two
channels into the SC, which are seperated by a semiconducting region, and the SC is
loop shaped. The phase of the SC in each channel, is dependent on the flux threaded
through the loop, and as such the phase of the SC becomes an important parameter.

16



1.2. PHYSICS OF MESOSCOPIC STRUCTURES

We can write the pairing potential as Δ = |Δ|e𝑖𝜙, where 𝜙 is the phase of the SC. If
electrons coherently retro-reflect on each of the SCs we can view it as pictured in Fig.
1.7a. As discussed in [32], the phase dependent energy of the Andreev bound states
(ABS), 𝐸𝐴𝐵𝑆 (𝜙), is found by keeping track of the phase accumulated in the cycle of
an electron undergoing AR at one SC surface, traversing a semiconducting region as
hole, undergoing another AR, and traversing the semiconducting region to its initial
position. The phase acquired by the hole/electron travelling in a semiconducting
cavity of length 𝐿 is,

𝜙ℎ = −𝑘ℎ𝐿 , 𝜙𝑒 = 𝑘𝑒𝐿. (1.2.4)

Additionally there is the phase associated with an Andreev reflection on a SC with
phase 𝜙𝑆,

𝜙𝐴𝑅,𝑒 = − arccos
(𝐸
Δ

)
+ 𝜙𝑆 , 𝜙𝐴𝑅,ℎ = − arccos

(𝐸
Δ

)
− 𝜙𝑆, (1.2.5)

where e and h denote the outgoing particle from the AR. The momentum difference
between hole and electron are readily given as 𝛿𝑘𝑒,ℎ = 𝐸/( ℎ̄𝑣𝐹), where 𝑣𝐹 is the
Fermi velocity, owing to the fact that they have exactly opposite energy. The total
phase acquired is then,

𝜙𝑡𝑜𝑡 = 𝜙1,2 − 2
𝐸 · 𝐿
ℎ̄𝑣𝐹

− 2 arccos
(
𝐸

Δ

)
, (1.2.6)

where 𝜙1,2 is the phase difference of the SCs. Bound states require that 𝜙𝑡𝑜𝑡 = 2𝜋𝑛.
Using a modified superconducting coherence length of the junction b𝐽 = ℎ̄𝑣𝐹/(𝜋Δ)
in the cavity (this is the short junction limit) [32], we find that

𝐸 (𝜙1,2) = ±Δ
√︃
1 − 𝜏 sin2(𝜙1,2/2), (1.2.7)

Where 𝜏 is the transmission of both barrier (taken to be symmetric) coefficient of the
barrier between N and SC. The spectrum is plotted in Fig. 1.7c. What is apparent in
this spectrum, is that the introduction of an imperfect barrier 𝜏 < 1, opens an avoided
crossing at 𝐸 = 0

1.2.3 Quantum Dots

In many branches of solid state physics the Coulomb interaction between electrons
is either ignored or only play a perturbative role. This crude, but generally good,
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(a) (b) (c)

Figure 1.7: Andreev bound states: a) Sketch of Andreev bound states, where two
SCs couple via an ABS through a normal conducting region. b) False colour SEM
shows the Andreev bound state in the QD cavity of our device. Gates are coloured
golden, SM is coloured grey and the SC wires (which are connected to form a loop)
are coloured blue. c) Andreev bound state energy spectrum as a function of phase
difference between SCs. Energy is in units of the SC gap Δ

approximation, and is deeply grounded in the Fermi liquid theory, which explains
why interacting fermions in normal metals behave like an ideal Fermi gas at low
temperatures6. Quantum dots are one phenomenon where this description fails.
Laterally confined quantum dots (QDs), in 2DEG semiconductor physics, can be
created by electrostatically gating the 2DEG7 to confine the electron density in small
patches, as illustrated in Fig. 1.8b. QDs have several interesting properties: The
Coulomb Blockade (CB) transport phenomena (Fig. 1.9), that they are in general
decoupled from the environment, and that their quantum mechanical level spacing -
due to the particle-in-a-box-like nature of a QD - is observable.

Coulomb Blockade phenomena: A qualitative description of the CB phenomena
is best obtained using a model as pictured in Fig. 1.8a and laid out in detail in [23,
Ch. 18]. We describe the system using two normal leads, which are separated from
the quantum dot via a tunnelling barrier. We can apply a source-drain bias 𝑉SD, so
that the two reservoirs are out of equilibrium, and we can change the potential on the

6Lev Landua proposed the idea of quasiparticles, a key principle in modern day physics, and correctly suggested that
at low temperatures electrons become "dressed", which can alter e.g. their effective mass.

7In bottom-up produced nanowires QDs can be made much smaller than in 2DEGs, due to the fact that NWs already
are small in the radial direction. Confinement can then be achieved either by changing the crystal structure, alternating i.e.
between a cubic zinc-blende material and hexagonal wurtzite material, to create physical barrier, or a gate, e.g. by using a
shadow evaporation technique if for example superconductivity has to be introduced.
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QD, using a nearby gate 𝑉pg. The QD is described by an occupational energy, the
number, N, of electrons on the QD. To explain the Coulomb oscillations/resonances,
in Fig. 1.9a, we can set 𝑉SD = 0 (or 𝑒𝑉SD ≡ 𝐸𝐹). As the tunnel barriers to the leads
are significant (the wave function is only located within the QD cavity), electrons
cannot traverse the QD as is, as there are no available states. However, if we change
the chemical potential of the dot, (dubbed plunge the dot), 𝑉𝑝𝑔, we can change the
energy of the occupational levels. If we apply a more positive voltage 𝐸𝑁+1 can drop
to 𝐸𝐹 , and an electron can fill the state. This is CB transport; only at specific value
of 𝑉𝑝𝑔 will current be able to traverse the QD, as seen in Fig. 1.9a.

(a) (b)

Figure 1.8: The QD phenomena: a) The QDs occupational levels in relation to the
source and drain leads (in this with N-leads). Here is drawn the blockaded regime,
where no transport occurs. b) The wave function in the 2DEG can, via the gates
drawn in gold on top, be confined to constitute a QD. The blue line is the band edge,
and the red shows the vertical 2DEG density distribution. If we apply a negative
voltage to the gates of the system (coloured gold on top), we can create a potential,
black parabola, and laterally define a QD wave function, pictured by the purple line.

This terminology can be used in the exact same way to describe the emergence of
Coulomb diamonds in tunnelling spectroscopy (see Fig. 1.9b). For this description
we should employ charging energy and the lever arm. In this situation, we allow for
the tunning of the chemical potential difference of the reservoirs, as illustrated in Fig.
1.8a. The chemical potential of the quantum dot is given by the voltage applied to
the plunger of the dot

`𝑁 (𝑉𝑝𝑔) = `𝑁 (𝑉𝑝𝑔,0) − 𝑒𝛼𝑝𝑔Δ𝑉𝑝𝑔 (1.2.8)
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Charge can flow by plunging the dot within the window `𝑆 ≥ `𝑁 ≥ `𝐷 . What follows
from this is that when `𝑆 = `𝑁 and `𝐷 = `𝑁+1, we have that 𝑒𝑉𝑆𝐷 = `𝑁 − `𝑁+1,
which is the charging energy, 𝐸𝐶 , of the dot: The energy required to go from the
energy level of |𝑁〉 to |𝑁 + 1〉.

Thismodel only describes aCoulombdiamondwhere the tilt of the edges are identical.
In Fig. 1.9b the edges clearly have asymmetric tilts. To describe this we would have
to introduce a capacitive model. In this, the reservoirs are also capacitively coupled
to the QD. As such when applying a bias, 𝑉𝑆𝐷 , it will plunger the dot. The two
reservoirs can have different capacitive coupling which introduces the asymmetric
tilt, 𝛼𝑆 (Γ𝑆) ≠ 𝛼𝐷 (Γ𝐷).

(a) (b)

Figure 1.9: Coulomb resonances and Coulomb Blockade: a) Shows Coulomb block-
ade resonances as we sweep the plunger gates of the QD. Applying zero bias voltage,
the two reservoirs are in resonance and only by bringing the QD in resonance do the
system allow for transport. b) If we also apply a bias voltage, we observe so-called
Coulomb diamonds where bringing the QD in resonance with either source (S) or
drain (D) allows for transport a transport channel across the system. The coloured
stars indicate four different regimes in which we bring the QD’s chemical potential
in and out of resonance with the S/D lead. Black lines indicate some of the excited
states visible in spectroscopy
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1.3 The Lutchyn-Oreg Hamiltonian

By combining properties of an s-wave superconductor and a semiconductor in a
hybrid-device geometry, R. Lutchyn, J. Sau, and S. Das Sarma [21] and subsequently
Y. Oreg, G. Refael, and F. von Oppen [22] showed in 2010 that it is possible to
effectively achieve 1D p-wave superconductivity; via the Oreg-Lutchyn model, a
SM wire with Rashba spin-orbit coupling to an s-wave SC via the superconducting
proximity effect, of the form:

H𝐵𝑑𝐺 =

Kinetic( 𝑝𝑥
2𝑚

− `
)
𝜎0 ⊗ 𝜏𝑧 +

Rashba SO
𝛼𝑅

ℎ̄
𝑝𝑥𝜎𝑦 ⊗ 𝜏𝑧 +

Zeeman
𝑔`𝐵𝐵𝑥𝜎𝑧 ⊗ 𝜏0 +

s-wave
Δ𝜎0 ⊗ 𝜏𝑥 ≡ 𝐻𝑂−𝐿,

(1.3.1)
where 𝜎𝑖 and 𝜏𝑖 refers respectively to the spin space and particle-hole space. It yields
the spectrum,

𝐸2± = 𝐸2𝑧 + 𝜖2𝑝 + Δ2 +
(𝛼𝑅𝑝
ℎ̄

)2
± 2

√︂
(𝐸𝑧Δ)2 + (𝐸𝑧𝜖𝑝)2 +

(𝛼𝑅𝑝
ℎ̄
𝜖𝑝

)2
, (1.3.2)

where 𝜖𝑝 is the kinetic energy of the system from Sec 1.1.1 and adopting 𝑝𝑥 → 𝑝

(the direction parallel to the nanowire), as it is the only momentum, and 𝐸𝑧 is the
Zeeman energy 𝐸𝑧 = 𝑔`𝐵𝐵𝑥. The system undergoes a phase transition at,

𝐸𝑍 ,𝑐 =

√︃
`2 + Δ2 (1.3.3)

Because of this condition it is important that the system is driven topological before
the superconducting phase is broken at 𝐵𝑐, and therefore materials with an optimal
Landé g-factor have to be selected for experiments hoping to measure the TSC phase.

Introducing disorder, Sec. 2.1.3, into the system, can have a dramatic effect, depend-
ing on the origin of the disorder (See especially Fig. 1 of [33]). This can be seen in
Fig. 1.10, where the smooth phase boundary of a clean system becomes asymmetric
and jagged by the introduction of strong disorder [34] in a short wire. It is worth
noting that many types of disorder do not destroy the topological MZM phenomena,
if such a regime can be reached, but disorder can produce trivial zero energy modes
which can be observed in both local measurements, and by coincidence also appear
in non-local measurements [33].
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Figure 1.10: The Phase diagram in ` and 𝐸𝑧 phase space of a s-wave proximity
coupled Rashba nanowire. Left graph: Analytical calculation of the phase diagram
in a clean system with p-wave superconductivity. Right graph: An example of the
introduction of disorder to the Rashba nanowire system in a short wire limit. This
is a TB model, with hopping strength 𝑡. The green dashed line is the clean system’s
phase boundary, and the red line is the phase boundary in a disordered system.
Figures adapted from [34], where the "measure" of topology is a topological charge,
𝑄, which is explained in detail in [34].

1.4 Parity-to-Charge conversion - The Loop-Qubit

The motivation of the experiment is to perform parity readout of a pair of MZMs.
Several options to observe and verify MZMs has been proposed in the last decade.
In the LoopQubit experiment, see Fig. 1.11, which is the device we have measured,
this is achieved via the charge-to-parity scheme [4, 35, 36]. In this work we operate
at much lower field (<1T) and do not expect to find MZMs, instead we will see we
can coalesce an ABS to a zero-energy state. However, in the same way as there
exists topological fermionic parities, trivial fermionic parities is also highly relevant
to study, and the theory on the subject is scarce [37]. For now, we will turn to the
topological case.

The two parities, �̂�
��𝜙𝑒(𝑜)〉 = (−)1, of an MZM is generically degenerate, as it does

not enter in the Hamiltonian of Eq. 1.1.10, and so we would presume an experimental
signature of distinguishing the two would be hard to detect. We can change this by

8By ensuring that there is no path to ground except through tunnel barriers, we float the wire. The wire can then be
thought to be a mesoscopic island, the same way a QD is. In Fig. 1.11b this is done by applying a negative voltage to the
top electrostatic gate - electrostatics gates are discussed in Sec. 2.1.2
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(a) (b)

Figure 1.11: This figures shows the basic schematics constituting the LoopQubit
experiment [38]: a) The system is described hosting 4 MZMs where the ends couple
to the QD. The coupling is tunable, as is the phase difference of the two SC wires. b)
To achieve this scheme, the system needs to be heavily gated, seen in blue. The tuning
fork design is introduced. If we designed the trivial backbone as in a) the trivial SC
would go normal, long before the wires went topological, thereby introducing QPP.

adding an additional physical mechanism: charging energy. As discussed in Sec.
1.2.3, by floating8 the wire, we effectively fix the charge of the system, for a given
electrostatic potential. Literature refers to such a system as a Cooper pair box [4]. As
in the case of a QD, the energy required to change the charge is given by the charging
energy. In this system, adding or subtracting electrons (by filling or emptying the
zero mode) has an associated energy cost which splits the degeneracy. Note that as
we fill an electron into an already filled zero mode, the two quasiparticles can pair up
and enter the condensate, and effectively we have a empty fermionic state available.
A side note is that if there is no fermionic inter-gap states available, and Δ > 𝐸𝑐,
we can only inject an even number of electrons into the superconductor. J. Shen et
al describes the regimes and the transitions between an even and odd phase [39] at
zero energy, as a indication whether an topological zero mode has been achieved.
Another way to add charging energy to the system is via dot hybridization9. Let’s
first consider the case of a grounded SC described by the Oreg-Lutchyn Hamiltonian

9Note that the LoopQubit of Fig. 1.11b can achieve both regimes, by either not forming a dot or by not energizing its
FET gate
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Eq. 1.3.1. We model the interaction with a quantum dot with a Hamiltonian [4, 40],

𝐻𝑡𝑜𝑡 = 𝐻𝑂−𝐿 + 𝐻𝑄𝐷 + 𝐻𝑡𝑢𝑛.
𝐻𝑄𝐷 = 𝜖𝑑†𝑑 + 𝐸𝑐 (𝑑†𝑑 + 𝑛𝑔)2 (1.4.1)

𝐻𝑡𝑢𝑛. = −𝑖 𝑒
−𝑖𝜙/2

2
(𝑡2𝑑†𝛾2 + 𝑡3𝑑†𝛾3) + ℎ.𝑐.

where 𝜖 is the energy level of the QD, 𝐸𝑐 is the charging energy of the QD, 𝑡1, 𝑡2 are
the coupling between zero modes and QD, and 𝜙 is the phase difference of the two SC
wires. To emphasize that electrons inhabit the QD, electron creation (annihilation)
operators are denoted with a "d"; 𝑐(†) → 𝑑 (†). The spectrum of this Hamiltonian is,

𝐸 = −Y
2
±

√︂(Y
2

)2
+ 𝑡22 + 𝑡

2
3 + 2𝑝2,3 |𝑡3𝑡2 | sin(𝜙/2) (1.4.2)

where Y is the detuning of the quantum dot. We can then calculate the occupa-
tion/charge on the quantum dot (ignoring the offset charge), as it hybridizes with the
ground state of the system.

𝑞𝑑 = 𝑒(𝑛𝑔 − 〈𝜙𝐺𝑆 | 𝑑†𝑑 |𝜙𝐺𝑆〉)

〈𝜙𝐺𝑆 | 𝑑†𝑑 |𝜙𝐺𝑆〉 =
1
2𝐸𝑐

〈𝜙𝐺𝑆 |
𝜕𝐻

𝜕𝑛𝑔
|𝜙𝐺𝑆〉 (1.4.3)

𝑞𝑑 = 𝑒

(
𝑛𝑔 −

1
2𝐸𝑐

𝜕𝐸𝐺𝑆

𝜕𝑛𝑔

)
Here we use the Feynman-Hellmann theorem. Here we see that the charge of the
quantum dot is dependent on the ground-state energy, which in turn is parity depen-
dent. For read-out techniques, observing this parity dependent energy splitting is
not something we can do with a simple spectroscopic method. A key principle of
spectroscopy is the transfer of charge onto and off of the device we measure. As
mentioned, if charge tunnels onto the device we can fill sup-gap states (e.g. the
MZM) which in turn changes the parity of the system, and therefore, an eventual
qubit would lose its information. Charge events that fills the states in the sup-gap
spectrum are called quasiparticle poisoning (QPP). Instead one should use another
system, in our case a sensor dot (SD), to detect charge of the dot; this is refereed to
as charge sensing. The charge of the hybridized QD, can capacitively affect a charge
sensor (e.g. a single electron transistor (SET) or a QPC) as illustrated in Fig. 1.12.

QPP can be seperated into two contributions: Internal and external QPP. Internal
QPP refers to the QPs at higher energies filling the groundstates of the system. The
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Figure 1.12: Potential landscape in charge sensing schemes, which is highly depen-
dent on the charge configuration, in this case a double dot: Left picture: Depending
on the charge distribution of the capacitively coupled dot (here in red is shown a
double dot here) the QPC (shown in blue) can either conduct or not. Right picture:
Depending of the charge distribution of the capacitively coupled system the sensor
QD (shown in blue) is on resonance or not. Figures from ref. [41].

ideal way to combat this kind of poisoning is to ensure that the SC is hard gapped,
that is zero density of states within the gap, with no subgap states, other than the
states probed in the experiment. Discrete subgap states can normally be driven away
from the gap and into the BCS continuum by applying a gate potential to the wire.
However, experimentally it is difficult to ensure a hard gap SC at higher magnetic
fields. A simple way to lessen external QPP is by adding a finite charging energy to
the SC island. If we instead consider a floating SC loop, as in a Majorana Box Qubit
experiment [42] or [4], we also need to consider the charging energy of the SC as
well as that of the QD. This inturn modifies the spectrum of Eq. 1.4.2, though the
groundstate is still parity-dependent.

ABSs vs MZMs: The scope of this thesis will not be to show charge fluctuating
between a dot and a NW with MZM at the ends using a sensor dot. Instead,
we have focused on achieving a cotunneling scheme in a system with controllable
ABSs in the wires, as a precursor to these more advanced experiments. In SM/SC
heterostructures, an important notion to bare in mind is that, MZMs originate from
trivial ABS; experimentally it has been shown, that by applying the parallel magnetic
field, ABSs coalesce to zero bias states that are proposed to be MZMs [43, 44]. The
nature of trivial ABS zero bias states are therefore highly interesting to probe in our
system, before turning our attention to the more exotic topological case, where the
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zero energy states are MBSs.
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CHAPTER 2
Methods

2.1 Nanofabrication

The theoretical discussions outlined in Chap. 1 has parameters highly dependent on
the material used. A great deal of effort and research is therefore put into to making
pristine heterostructures and selecting proper materials used to fabricate devices such
as the LoopQubit mentioned in Sec. 1.4.

2.1.1 Molecular Beam Epitaxy Growth

In the lab of Topological 2DEG (TOPO2DEG) at the center of Quantum Devices,
much of the rawmaterials are created out-of-house in the Microsoft Quantum Group
in the Manfra lab at Purdue University. The stack of heterostructures that we use,
is referred to as a wafer stack, which is grown bottom-up using a Molecular Beam
Epitaxy system (MBE). The MBE has an atomic layer resolution; it is able to deposit
monolayers of alloys or pure elements, the resulting schematic of the wafer on which
we measure is seen in Fig. 2.1. The wafer itself has been produced by Tyler
Lindemann of the Manfra Group. By repeating the process, it is able to build a
stack of heterojunctions, shifting between the elements that it deposits. This sounds
straight forward, but the process needs to be highly optimized to reduce defects
in deposition steps: deposition rates and substrate temperatures for each layer are
optimized; and a close to perfect vacuum is formed so to avoid that the elements
deposit diffusively onto the wafer. There is no introduction of organic material to
the wafer, and importantly to have no native oxide formation inside the material
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2.1. NANOFABRICATION

stack. This plethora of knobs are optimized to ensure a high mobility 2DEG, with
pristine interfaces at the heterojunctions. A MBE system is a formidable piece of
machinery, however, for more information on the subject we refer to textbooks such
as [45, Chap. 14.11] One of the many expertise of the Manfra Group, is that they can

Figure 2.1: Schematic of the wafer [46] stack grown by Purdue, where the constituents
of each layer is noted.

grow extremely pure and pristine wafers, that we in the TOPO2DEG research group
can then use for fabricating nanodevices. The layers of the wafer stack is shown in
Fig. 2.1. The make-up of the wafer stack can be split into four categories:

• The Al top layer: This layer of 7nm Al introduces superconductivity to our
QW. It’s epitaxially matched to the III/V and has the added benefit that it
protects the III/V underneath from oxidization1. Aluminium oxidizes quickly
to a depth 3 nm, after which the oxidization becomes quasi-innate [47]

• The QW: The active region is the InAs layer with a bulk bandgap of 0.415eV
at low temperature, which sits between the two In0.75Ga0.25As barrier materials
with a bandgap of 0.691eV2 again at low temperatures.

• The substrate: The iron-doped InP has a bandgap of approximately 1.3eV.
There is a substantial lattice mismatch between the InP and our QW (5.87Å

1III/V is the SM, called III/V as it is composed of Indium from the III group of the periodic table (group 13) and As
which is from the V group (group 15)

2This is found using the heuristic Vegard’s law 𝐸𝑔,In0.75Ga0.25As = 0.75 · 𝐸𝑔,InAs + 0.25 · 𝐸𝑔,GaAs = 0.75 · 0.415eV + 0.25 ·
1.519eV = 0.691eV. The equation does not account for bandbending.
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in InP and 6.06Å in InAs - 3.13% mismatch) than e.g. GaSb. However, the
quality factor of resonators produced on InP is superior [48], which is used in
cQED experiments.

• The buffer: Due to the aforementioned lattice mismatch between the QW and
the insulating InP substrate, a buffer region is employed, to lessen the substrate
and QW lattice mismatch. In this wafer stack the largest portion of layers is
this buffer region, of which the main part is a graded buffer (blue layer in Fig.
2.1), which gradually changes from a ratio of 0.52-to-0.48 In-Al to a ratio of
0.81-to-0.19 In-Al.

This QW structure is referred to as a shallow 2DEG, due to the proximity to the
surface of the wafer: the wave function of the 2DEG has a finite overlap with the
heterojunction at theAl layer. This is needed; as explained in Sec. 1.2.2, the proximity
effect quickly lessens over greater distances and for high barriers. A shallow 2DEG
has the drawback that surface modes (due to defects), after the Al layer is removed,
can have a significant effect on the charge carriers of the 2DEG, as we will touch
upon in Sec. 2.1.3.

2.1.2 Nanofabrication of Quantum Devices

After having received the wafer stack, we can begin to design and fabricate the devices
to be measured in the dilution refrigerator. This method is referred to as the top-down
part of the fabrication, as opposed to the bottom up in the MBE done at Purdue. The
devices to be measured, are defined using lithographical steps3, etches, atomic layer
deposition (ALD), and metal evaporation. The wafer, which arrives as a 2-inch disc,
is cut into chips with desired size (ca. 3x5 mm in most cases), using a diamond
scriber, and then the fabrication procedure can begin. The chip itself is prepared by
depositing alignments marks on the edge of the chips, and are used as markers for the
e-beam lithography system, so that the lithographer’s software can identify the edges
of the sample, such that the pattern does not shift between overlapping lithographical
steps. These are deposited using the same lithographic procedure for gates outlined

3The etymology of the word comes from the Greek word lithos meaning "stone" and graphei meaning "to write". As
opposed to the patterning of the 18th and 19th century where stones or metal plates were used to print works of art or text
on paper, the electron beam takes the role of the lithographic stone and the paper is substituted with our microchip. The
basic principle however is the same; we transfer a pattern (in the computer/e-beam system) to a canvas (the wafer stack)
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below. A typical chip in our experiment will hold 9 devices. These devices are
isolated from each other, where each device sits on top of its own "island" or mesa,
separated from other devices by etching away the conducting material between them.
The basic steps to fabricate nanodevices (here the recipe for the LoopQubit) is as
follows and illustrated in Fig. 2.2:

1. A single drop of diluted (in most cases 4 percent - denoted A4) polymethyl
methacrylate (PMMA) e-beam resist is deposited using a micropipette and
spread out using a spinner, which evenly distributes the PMMA, after which it
is hardened by baking it at 180C.

2. The desired Al design is patterned in an e-beam lithographic step. When
PMMA is exposed to the back-scattered electrons from the substrate the
molecule breaks up, and its chemical properties change

3. PMMA is a positive resist, which means that exposed regions can be dissolved
and removed using a developer. The exposed chip is dipped in a 1:3 Methyl
Isobutyl Ketone (MIBK):IPA solution that removes exposed regions, washed
with Isopropyl Alcohol (IPA) and blow-dried with nitrogen.

4. The Al is removed in a wet etching step using the branded Transene D etch. It
is warmed up to 50℃, whereafter the chip is submerged for 5 s. Immediately
after, this is followed by a 20 s rinse in warm water and a 40 s rinse in cold
water, after which it is blow-dried using nitrogen

5. A layer of dielectric is deposited. In our fabrication this is done with 15nm
of Hafnium Oxide (HfOx), with a dielectric constant 𝑘 = 𝜖

𝜖0
= 16.68. The

dielectric ensures that there is no current flow between the gates deposited after
this step and the device’s Al/QW.

6. The next step is patterning of the gates. The role of the gates are explained later
in this section. The gate design is lithographically patterned, and developed.
After this the chip is loaded into a low pressure evaporation chamber. The
gates are split into two steps: an inner gate deposition first on top of the mesa,
and a outer gate deposition to crawl over the mesa edge4.

4The outer step uses a tri-layer technique. Here two thicker layer of EL9 resist (a copolymer, where Ethyl Lactate has
9% polymers) is used, which is topped by a PMMA A4 layer. When developed this creates a overhang, which facilitates
lift-off of the much larger outer gates.
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7. The evaporation of gold is done across the entirety of the chip, with a step of
titanium evaporation beforehand, that works as a mechanical bonder between
chip and gold. The inner gates are ∼ 2 nm thick, with a ∼ 5 nm thick Ti layer,
while the outer gates (to climb the mesa edge) are ∼ 400 nm thick, with a ∼ 10
nm thick layer of Ti. After this, it is submerged in di-oxalene. The di-oxalene
will dissolve the unexposed resist, and after a squirt of Acetone/IPA the gold is
only left where the resist was exposed and developed

Figure 2.2: Here we see a side view of the basic steps needed to define a nanodevice
in our heterostructure wafer. 1) The bare chip. 2) A layer of PMMA is added. 3) The
e-beam patterns the PMMA. 4) The exposed PMMA is developed. 5) Al is removed,
but not where PMMA remains. 6) The rest of the PMMA is stripped and the patterned
Al. 7) A layer of dielectric is added globally to the chip. 8) PMMA is added on top
of the dielectric. 9) The PMMA is patterned with the e-beam. 10) Exposed PMMA is
developed. 11) Ti/Au is added globally to the chip. 12) During the lift-off Ti/Au only
sticks to places with no PMMA prior to the evaporation step.

Electrostatically defined nanostructures:

After having loaded the chip into the dilution refrigerator (Sec. 2.2), the gates can
be energized, by applying a negative voltage on them, via the DC scheme outlined in
Sec. 2.3. We rely on the same mechanism that all SM transistors also use the physics
of a Metal-Oxide-Substrate Field-Effect-Transistor (MOSFET). In contrast to FETs,
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which either conducts or not (on or off in SM transistors), the systems we fabricate
are more controllable, in terms of controlling the amount of conductance through
our device. In particular we use them to confine electrons in quasi-1D wires and to
obtain tunnelling barriers, where less than a conductance quantum flows. We call
these barriers Quantum Point Contacts (QPCs)

The electric fields of a gate (seen in Fig. 1.11b) penetrates the dielectric of the chip.
To screen the negative charge on one side of this capacitor (gate-dielectric-device),
there is a buildup of positive charge on the chip, directly in the vicinity of the gate,
due to Coulomb’s law. In the vicinity of the gate, we are therefore able to deplete
the 2DEG’s electron carriers, and we can then constrict the 2DEG into quasi-1D or
-0D structures. The same is true for metals; they will also want to screen the electric
field of the gate. But while the screening length of semiconductors (Debye length)
can be (depending on the carrier density) in the tenths of nanometers, the screening
length of a metals (Thomas-Fermi length) is sub-nanometer. Applying a negative
charge on the gate on top of a metal will therefore leave the QW underneath the metal
unperturbed. As such quasi-1D wires can be defined by lithographically patterning
strips of Al and evaporating a gate on top of this: by applying a negative voltage to
the gate, the 2DEG is depleted except under the strip of epitaxial Al.

2.1.3 Sources of Disorder

In general, all steps in the fabricationwill introduce disorder into the system. Disorder
induced scattering is a major cause for concern in most 2DEG systems, which will
have an impact on the mobilities of the electrons. Shallow 2DEGs in particular are
very sensitive to surface disorders [49].

1. The growth: As pristine a growth might be, stochastic misgrowth is possible,
both inside the crystal but also mismatch in the heterojunction of the wafer stack. As
material science techniques are optimized this is brought down, and for SMs such as
GaAs, that are well established in the SM transistor industry, these misgrowths are
close to non-existent. Crystalline defect can introduce carrier into the 2DEGand bring
down themobility of the carriers. However, in shallow 2DEGs, wemostly assume that
most of our conduction band filling comes from band bending near heterojunctions,
and the surface [50]. Band bending is a phenomenon in heterojunctions where the
conduction and valence band of one material needs to align to the conduction and
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valence band of another material.

2. The nanofabrication: Etching away Al from the surface of the wafer to expose
the QW underneath, is key to electrostatically gate the device. However, in this step
we also expose the semiconductor to a diffusive/random dilute Al etch. This roughens
the otherwise pristine barrier on the QW, introducing scattering modes. Even if we
were to completely etch the Al homogeneously, the surface of any crystal still undergo
surface reconstruction, as the vacuum workfunction, Φ, will reconstruct the lattice at
the boundary of a crystal to minimize the free energy [51]. This also happens to some
degree in heterojunction, where atoms from each alloy/metal will leak into the other
crystal and reconstruct the lattice at the junctions. In the growths used in this thesis
this is highly minimized, which is the reason we describe the junctions as pristine.
Furthermore, the stripping of Al also oxidizes the barrier, thereby introducing oxygen
molecules into the barrier, which in general also changes the crystal structure.

2.2 Dilution Refrigerators

After having deposited Ti/Au gates on our chip, we can glue the chip with an adhesive
to the daughterboard and bond the ohmics and gates to the daughterboard, which in
turn is connected to the motherboard of the dilution refrigerator (DR). In this section
we will review the working principles of a dilution refrigerator, which is the tool to
reach the low temperature (LT) environment (∼ 15mK) needed to explore the physics
of our quantum device.

The DR works by the principle of cooling-by-mixing [52], which differs from the
"normal" way of cooling-by-evaporation. In a dilution refrigerator the cooling occurs
due to the enthalpy associated with mixing the two liquids, concentrated 3He and the
diluted 3He/4He, and is purely quantum mechanical. At its core the cooling is an
endothermic reaction as 3He atoms from the concentrated 3He phase into the dilute
3He/4He phase, as the enthalpy of a concentrated 3He liquid, 𝐻conc, is different from
the enthalpy of a diluted 3He/4He liquid, 𝐻dil. As such transport across the phase
barrier, characterized by the change of atoms in the concentrated phase, ¤𝑛3He, comes
at an enthalpic change, thereby cooling the mixing chamber, which is found by the
equation,

¤𝑄 = ¤𝑛3𝐻𝑒 (𝐻dil(𝑇) − 𝐻conc(𝑇)). (2.2.1)
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(a) (b)

Figure 2.3: Picture an schematic of a Triton 400 cryogen-free DR. a) Schematic of
the basics of a dilution refrigerator [52]. b) Picture of a Triton 400 cryogen-free DR,
here the mixing chamber is highlighted in blue and the still in red. The RC/RF filters
are pictured in the green box.

The equation describes the cooling power, ¤𝑄, which for most modern day DRs are
several hundreds of `W’s at 100mK. The reason 3He atoms enter the dilute phase
is to keep an equilibrium. The 3He/4He liquid continuously leave the dilute phase
and enters the still where it is vapourised, leaving only 4He. This in turn creates an
osmotic pressure in the mixing chamber that drive transitions into the dilute phase.
3He vapour is then circulated and cooled again, to supply the concentrated phase at
the mixing chamber. The DR used in this experiment is a Triton 400 from Oxford
Instruments, a so called cryo-free or dry DR. It is called this because the precooling
of 3He vapour is done via pulse tube coolers, as opposed to wet DRs that precool
3He-vapour with liquid nitrogen. As is evident from Fig. 2.3b, there are several brass
plates. These separate the stages of DR, going from room temperature to ∼ 15mK.
When leading currents (DC and RF) through such a system, thermalization of the
signal and attenuation are key principles, that should be accounted for (see Sec. 2.3).

34



2.3. TRANSPORT MEASUREMENT SCHEME

2.3 Transport measurement scheme

Much of the wiring seen in Fig. 2.3b accommodates RF signal lines; this is attenuated
at each stage of the dilution refrigerator, and sent into a directional coupler, which
connects to the daughterboard, on which we can bond a inductor chip with a bias
tee. The reflected signal comes out of the directional coupler and is amplified at
a Weinreb cryo-amplifier at 4 K. In an RF measurements, we would employ an
ultra high frequency (UHF) Lock-In amplifier (LIA) to analyse the signal. In the
measurements of this thesis, we use a low frequency LIA signal, to measure the
conductance of a nanodevice. Though it is an AC signal, we describe it as a DC
measurement, the reason we will explain in this section. The DC voltage we use to
energize the gates of the device and the low frequency LIA signal is sent via strips
of wires loomed together, through the different stages of the DR, into custom RC/RF
filterboards (highlighted in green in Fig. 2.3b). From the filterboards the signal
is sent to the puck; a sample holder which can be retracted from the DR without
warming the fridge to room temperature every time a sample needs to be switched.
This in turn is connected to the motherboard on which we connect the daughterboard
that holds the chip to be measured.

Fig. 2.4 shows a rudimentary scheme, of how we control voltages on the chip. A
low frequency AC voltage signal is sent from a Stanford Research SR830 Lock-In
amplifier (LIA) [53], through a AC divider with a factor of 10−5, yielding a 3`V
excitation. The voltages of the gates are controlled by a QDAC voltage generator.
Fridge and voltages are connected via a break-out-box, and as it passes through the
cold stages of the fridge the signal becomes thermalized, until it reaches the RC/RF
filter which ensures the electronic temperature reaches `eV. The outgoing current
from the sample is then passed through an I/V converter, amplifying the signal
108𝑉/𝐴, before being measured in the LIA. For 4-terminal measurements, where we
measure the current through the system and the voltage across it simultaneously, the
voltage signal is amplified in a ETH voltage amplifier with a gain of 103 at room-
temperature before it is measured in a LIA. Additionally the DC bias signal has an
DC divider with a factor of 10−3.
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Figure 2.4: Measurement schematics of the DC setup: Blacklines are used in the 4-
terminal measurement, and blue lines energize the gates. 1 SR830 LockIn amplifiers
from Stanford Research. All three are slaved, meaning they measure/source a signal
at the same frequency. 2 The Yokogawa Source Measure Unit (SMU) GS200. 3 A
QDAC Q301 high-precision low-noise voltage generator. 4 A custom voltage divider.
5 A voltage/current converter from BASEL model SP983c. 6 The voltage across the
device is amplified in an ETH low-noise differential voltage amplifier from QUSIT,
before being measured in an LIA.
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2.3.1 Tunneling Spectroscopy - Resolving Local Density of States

For a condensedmatter experimentalist, one of the most seminal technical discoveries
was made in 1960 by Ivar Giaever. In [54] he described, how by forming a S-I-N
junction5, the superconducting gap - described by BCS theory four years earlier -
could be resolved in the differential conductance. What he found was that with a
tunnel barrier between two reservoirs, the current flowing between the two would be
proportional to the convolution of the density of states in both [23],

𝐼 =
𝐺0

𝑒

∫ ∞

−∞
𝑑𝐸1𝑑𝐸2𝐷1(𝐸1)𝐷2(𝐸2) [ 𝑓1(𝐸1) − 𝑓2(𝐸2)], (2.3.1)

where the two reservoirs have a DOS 𝐷𝑖 (𝐸𝑖), and 𝑓𝑖 (𝐸𝑖) is the Fermi-Dirac distri-
bution for either reservoir. For simplification we can assume an energy independent
transmission, giving the conductance quantum 𝐺0 ≡ 2𝑒2

ℎ
. If 𝐷1(𝐸) = 𝐷𝑁 is an

energy independent DOS in a normal lead, and we define 𝐸1 = 𝐸2 − 𝑒𝑉𝑆𝐷 , we can
then simplify the expression. It now reads,

𝐼 =
𝐺0

𝑒

∫ ∞

−∞
𝑑𝐸𝐷𝑁𝐷2(𝐸) [ 𝑓 (𝐸 − 𝑒𝑉𝑆𝐷) − 𝑓 (𝐸)]. (2.3.2)

The differential conductance 𝐺 = 𝑑𝐼/𝑑𝑉𝑆𝐷 is for low temperatures given via a linear
response [23],

𝐺 =
𝑑𝐼

𝑑𝑉𝑆𝐷
=
𝐺0

𝑒
𝐷𝑁𝐷2(𝑒𝑉𝑆𝐷). (2.3.3)

In many modern experiments, the insulating material is replaced by a QPC, that fixes
the conductance to less than a conductance quanta. When the low-frequency (30 to
200 Hz) AC voltage of 3 `V from a LIA is applied to the device, and the differential
current 𝑑𝐼 is passed through a I/V converter (a Physics BASEL SP-983c) and can
be measured in a LIA. The differential four terminal voltage 𝑑𝑉 across the device
is measured in an additional LIA. Correspondingly, we can define the four terminal
differential conductance, 𝐺 = 𝑑𝐼/𝑑𝑉 , which let us probe the density of states of the
reservoir.

5The insulator in his experiment was a thin oxide layer between the normal metal and the SC
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CHAPTER 3
Results of Transport Measurements

In this chapter we will show many of the results produced during this thesis. The
main result is the demonstration of a controlled coupling between a QD and SC leads.
It is shown and discussed, that by changing this knob, using electrostatic gates (Sec.
2.1.2) (which generally does not have a monotonic relation to gate voltages applied),
a plethora of different phenomena takes place in the same hybrid material system.
For the sake of brevity a dictionary on the gate abbreviations can be found in App.
A, and the exact gate voltages for each figure can be found in App. B. A false color
SEM of the device design on which the following measurements are performed is
pictured in Fig. 3.1, and the expected placement (as we apply a negative voltage to
the surrounding gates) of the QD is shown in red.
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(a) (b)

Figure 3.1: a) False colour SEM of the LoopQubit device. The scale-bar is 1 `m.
The gates are highlighted in yellow, and the aluminium is highlighted in blue. The
bright purple line marks the MESA. Within the grey area is the SM/QW, while the
grey area outside is InP. The red dot shows where we expect the QD to form. b) The
LoopQubit design with gate abbreviations. Gates are coloured blue, aluminium is
coloured white, and the SM is coloured grey. Between BL and T we source a current,
by applying a small AC voltage excitation (3 `V for transport measurements and
15 `V for the 3rd harmonic measurements), and between BR and T we measure the
voltage drop across the device: this is referred to as a 4-terminal measurement.
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3.1. TUNING THE DEVICE

3.1 Tuning the Device

The devices measured at low temperature in our dilution refrigerator, undergo a series
of testing / tuning. Checking if the gates are responsive, the quality of the tunnel
barriers, and continuity of the Al wires is key to a well working experiment. As each
generation of devices generally adds more gates, to get the desired control, this is
quite an undertaking, with a large gate voltage parameter space to explore. For this
experiment 13 gates are energized, see Fig. 3.1 and App. A. In this section we
describe a series of standardized measurements to test and calibrate the device.

Calibrating the device: As mentioned in Sec. 2.1.2, we laterally define our device
using electrostatic gates. By applying a negative bias to the gates, we can deplete the
2DEG, and as electrons are unable to conduct under the gates, the effect is that the
resistance rises, 𝑅 → ∞. In our 4 terminal measurement scheme (Fig. 3.1) we can
measure this as a decrease in conductance. The response of the gates are measured
in depletion curves, an excerpt of these is shown in Fig. 3.2a and Fig. 3.2b. We can
measure at what voltage the gate has depleted the 2DEG directly below it, which is
seen as a sharp decrease of conductance, as highlighted with orange arrows in Fig.
3.2a and Fig. 3.2b. After this the gates can also deplete in their immediate vicinity;
this is seen as a gradual decrease of conductance. It is also important to checkwhether
there is a leakage current from the gate and onto the MESA. A leakage plot can show
this, where we measure the DC component of in the Lock-In signal in a Keysight
digital multimeter, as we energize the gate. A lack of leakage is shown in Fig. 3.2c, in
our devices we see that leakage is when we measure several nanoamperes of current.

A feature worth noting is that measuring conductance when moving a gate more
negative in one range, and then moving the gate more positive in the same range,
does not produce the exact same measurement. This effect is known as hysteresis.
The effect can mean that the pinch-off voltage (the voltage at which a set of gates
cuts off current through the device) is different, depending on the direction we sweep
the voltage. Therefore, for all measurements shown in this result section we only
measure conductance as we sweep the gates towards more negative voltages.

Corner features: We can pinch-off conductance all together through the device by
using gates in parallel with each other (Fig. 3.2b). As an example Vbl,w,tunnel and
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3.1. TUNING THE DEVICE

(a) (b) (c)

Figure 3.2: a) Depletion curve of the right wire plunger, Vr,wire. Below −1 V the gate
has depleted the 2DEG underneath (orange arrow). b) Depletion curve of the normal
lead tunnel barrier gates, Vl,tunnel and Vr,tunnel. At Vr,l,tunnels = −0.5 V the gates have
depleted directly under them (orange arrow). At Vr,l,tunnels ∼ −0.8 V conductance is
pinched off. c) Lack of leakage of the right wire gate, Vr,wire, to the ohmics as the gate
is energized. The colour of the curves (green and blue) corresponds to whether the
gate voltage goes towards more negative values (green) or towards 0 voltage (blue).

Vtl,w,tunnel can be energized to control the conductance into the left wire. Tunnel
barriers can also be controlled in sequence, that is we can view them as parallel or
series resistors. The tunnel-tunnel maps of series and parallel resistors/barriers are
shown in respectively Fig. 3.3a and Fig. 3.3b. Generally, we assume that tunnel
barrier where gates define an equal potential on either side of the QPC to be optimal.
Optimally, this has the effect that a saddle point QPC is formed, which should have
the best chance of adiabatically connecting the SC-leads, the N-lead or the QD.

Phase Control: When we have both wire tunnel barrier open, we can check whether
charges move coherently in the loop. This is checked by the application of a perpen-
dicular magnetic field, which threads fluxes within the superconducting loop. Here
it can be shown that changing the phase difference between the two SC nanowires
modulates the ZB states with a phase 2𝜋 ∼ 1.4mT (Fig. 3.4), corresponding to the
loop area, 1.65 `m2.

Field correction: The placement of the chip onto the daughterboard is done by hand
using an adhesive (PMMAA4). This generally introduces a slight rotation of the chip
about all three axes. Using the phase coherence of the loop, which is shown in Fig.
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3.1. TUNING THE DEVICE

(a) (b)

Figure 3.3: a) 2D voltage scan of the normal lead tunnel gates, Vl,tunnel and Vr,tunnel,
and the bottom part of the wire tunnel gates, Vbl,w,tunnel and Vbr,w,tunnel are energized
simultaneously, and an inverted corner feature is measured. Energizing either, can
pinch off conductance through the device. Resonances are also visible, as stripes of
higher conductance b) The two bottom wire tunnel gates, Vbr,w,tunnel and Vbl,w,tunnel,
are parallel resistors as energizing neither gate can pinch off conductance. Here the
normal lead tunnels are also energized and therefore in the corner (when a tunnel
barrier to the SC leads have formed) we see the emergence of Coulomb resonances
(Sec. 1.2.3). In both plots finite gate voltage is applied to the top wire tunnels,
Vtl,w,tunnel and Vtr,w,tunnel. Otherwise the Vb,w,tunnels cannot pinch off conductance.

3.4, or driving the SC material normal using the magnet, is the ways to measure the
correction needed. As we sweep the field in one direction, we can add an additional
component in the orthogonal directions to make sure, that all (or most) of the field
truly is in the desired direction. In Fig. 3.4 we do not expect the phase dependence
of the loop to depend on B||, which means that the uncorrected parallel magnetic field
has a component in the direction perpendicular to the plane of the chip. By adding a
component in the opposite direction of the plane, we can define a new parallel field,
Bzc, which only has a direction parallel to the plane of the chip.

The superconducting gap: When initializing the gates that control the coupling
between N-SC or QD-SC it is important to find whether a regime with a well-defined
superconducting gap we can be resolved, as this is a measure of the quality of the
QPC. In the devices we measure, we restrict ourselves to using the Vbl(r),w,tunnel gates
to open and close the SC wire QPC as this has the least impact on the potential of the
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3.1. TUNING THE DEVICE

(a) (b)

Figure 3.4: a) Phase oscillations (tuned by 𝐵⊥) has a drift in the 𝐵‖ direction, fol-
lowing the black arrow, due to a misalignment of the chip. b) Adding a 𝐵⊥ component
to 𝐵‖ fixes the drift. Background correction is done using a Savitzky–Golay filter
function in Matlab

wires of the two SCs, see Fig. 3.5. In Fig. 3.5, we see that by forming a QPC with
Vbr,w,tunnel we can probe the LDOS of the right SC wire: a hard superconducting gap
of ∼ 200`eV is observed, which is expected for this wafer. It should be noted that the
gate voltages where a hard superconducting gap is resolved in spectroscopy, is not by
necessity the regime where an Andreev dot is formed (Sec. 3.2.2) or where wire-dot
hybridization is optimal (Sec. 3.3). When we have formed the SC-QPC-N, we can
check the parallel field dependence, Fig. 3.6. We see that the gap persists for at least
3T of parallel magnetic field, when sweeping the corrected parallel field, 𝐵𝑧𝑐.
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Figure 3.5: Gap spectroscopy of the right wire as we energize the right tunnel
barrier. A 2D plot showing the gap emerging (being resolved) as the tunnel barriers
gate voltages is negative enough to transition into the tunnelling regime. The gap is
here highlighted by the dotted yellow arrows. To find a hard gap SC DOS we apply a
large negative voltage of −3.15 V to the right wire to expel any states in the subgap
DOS.
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Figure 3.6: Closing the gap of the right wire with the corrected parallel field, 𝐵𝑧𝑐.
The wire plunger gates are set to a negative voltage needed to remove subgap states
and form a hard gap SC. However, we still see that discrete wire states (dotted orange
arrows) are driven to zero energy via the Zeeman energy for high parallel fields.
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3.2. QUANTUM DOT SPECTROSCOPY

3.2 Quantum Dot Spectroscopy

3.2.1 Normal Lead - Quantum Dot - Superconductor System

We have previously discussed the spectroscopy of a QD (Fig. 1.8 in Sec. 1.2.3), and
how the Coulomb Blockade phenomena produces the phenomena know as Coulomb
diamonds. However, in the LoopQubit a SC is connected to the QD, and so instead
of a N-QD-N system, we measure a N-QD-SCs system. For now, we ignore the
phase of the two SCs, and instead we can simply imagine that when two SCs are
connected instead of one SC,we have twice asmany conduction channels. Phase is not
important; due to large tunnel barriers there are no coherent transport of quasiparticles
across the QD cavity [55]. We will also explore the regime of increased coupling in
later sections. This system is well explored in references such as [55, 56]. As we
probe the system using spectroscopy, we find that the Coulomb diamonds are shifted
in bias, Δ𝑉𝑆𝐷 = Δ/𝑒, and gate, Δ𝑉𝑝𝑔 = 2Δ/(𝛽𝑁𝑒), see Fig. 3.8a, where 𝛽𝑁 is the lever
arm of the normal lead. The reason behind this is best seen following the scheme
of Fig. 3.7. Firstly, due to the superconducting gap, transport only takes place if we

Figure 3.7: The N-QD-SC system. For different points in gate-bias (the Coulomb
diamond scheme), the chemical potentials of the N, SC and QD is shown in relation
to each other. Figure from [55]

apply a bias of Δ/𝑒. However, we also need to align the chemical potential of the
dot, so that it is aligned with the coherence peak of the BSC spectrum and the normal
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3.2. QUANTUM DOT SPECTROSCOPY

lead. By biasing, due to the lever arm of the source/drain lead, we have already
moved the level 𝑒Δ𝛽𝑆/𝑁 . We need to move it an additional 𝛿𝐸+ = Δ − 𝑒Δ𝛽𝑆/𝑁 . The
same is true for negative bias where we need to move it 𝛿𝐸− = −Δ + 𝑒Δ𝛽𝑆/𝑁 . This
means that the energy needed to move it is Δ𝐸 = 2Δ(1− 𝑒𝛽𝑆/𝑁) in energy. In voltage
this is Δ𝑉𝑝𝑔 = 2Δ(1 − 𝑒𝛽𝑆/𝑁)/(𝑒𝛽𝑆/𝑁). In a decoupled dot with large Γ𝑁 or Γ𝑆, we
take 𝛽𝑆/𝑁 � 1 and so Δ𝑉𝑝𝑔 ' 2Δ/(𝛽𝑆/𝑁𝑒), as previously stated. We also show that
softening the superconducting gap, by applying a perpendicular magnetic field. This
brings the tips of the diamond down towards zero bias again (Fig. 3.8b). This is
due to the fact that at finite magnetic field, the gap becomes less hard (meaning a
continuum of states fill the subgap spectrum) as well as the gap itself shrinks in size.
This means that conductance at 𝑉𝑆𝐷 < Δ(𝐵 = 0) becomes possible.

(a) (b)

Figure 3.8: Spectroscopy of a QD-SC system in the decoupled regime at a) 0mT and
b) 60mT perpendicular field. Here we highlight the two shifts in bias, Δ𝑉𝑆𝐷 , and
gate, Δ𝑉𝑝𝑔𝑠. At finite perpendicular field we begin to close the gap, which in turn also
closes the separation between the tips of the diamonds. The perpendicular critical
field of Al nanowires is 𝐵⊥ ∼ 300mT, but already at 𝐵⊥ ∼ 60mT the gap is soft (the
SC DOS has a continuum of states below Δ) to a degree that the shift in bias is largely
suppressed towards zero bias.
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3.2. QUANTUM DOT SPECTROSCOPY

3.2.2 The Andreev Dot - A Quantum Dot in a Josephson Junction

Having discussed the physics of both quantum dots and Andreev reflections in Sec.
1.2.3 and Sec. 1.2.2, and the results of a N-QD-SC system in Sec. 3.2, we will
now turn to the physics and observations of an Andreev Dot (AD)1, which is a QD
embedded in a Josephson Junction (JJ), on the basis of [57]. The physics of an AD
is closely related to that of a Yu-Shiba-Rusinov (YSR) state and Kondo physics [58].
These types of systems show an interesting competition between superconductivity,
the Kondo effect, and the spin-orientation of the QD. When the QD in the JJ has a
total spin, 𝑆tot > 0, (generally an odd number of electrons), the quasiparticles of the
SCwill want to screen this impurity, so the many-body wavefunction has no magnetic
moment [59, 60]. An AD has three main components to tune: The detuning of the
AD potential, Y, the coupling to the two SC leads, Γ, and the phase difference between
the two SC leads, 𝜑. A zoom-in of the schematic that shows the QD and the two
superconducting leads, of this device is shown in Fig. 3.9. We also introduce the
configurations of the device, below the picture (1, 2, 3, and 4 in Fig. 3.9), which is
used from now on to keep track of which regime we are in.

The coupling, Γ, between the SCs and the QD cavity is readily changed in our device
using the SC tunnel gates Vt/b,r/l,w,tunnel seen in Fig 3.92. As such, applying a negative
voltage on these gates lets us move through the coupling regimes cited in [56]. The
weakly coupled regime, 𝚪 � 𝚫, was covered in Sec. 3.2.1, which leads us to now
discuss the two other regimes.

Strongly Coupled Regime - 𝚪 � 𝚫: In this regime the Cooper pairs of the SC
can coherently traverse the cavity and so a supercurrent flows across the JJ. This is
facilitated by a negligible charging energy of the QD, meaning two electrons can
be added to the dot at a time, as opposed to how we would generally think about
QDs. Therefore, we are left with a simple Josephson junction (JJ) and the physics
accompanying this. In our case, when doing LDOS on the system we see a soft gap

1A plethora of names are used for this kind of system, which mostly depends on the physics trying to be explained:
Andreev dot, Josephson dot, magnetically induced YSR bound states, and 𝜋/0-Josephson Junctions and many others.

2One thing to add to this is also that applying more negative bias on the gates does not necessarily mean that the system
is more decoupled. In any experiments it is possible that the tunnel gates go through resonances, even as they are moved
to more negative values. Resonances can come from many sources, but generally they only persist for a short time, and
show up as a peak in conductance superimposed on the generally downward trending conductance
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3.2. QUANTUM DOT SPECTROSCOPY

Figure 3.9: Simplified schematic of the Andreev Stadium part of the LoopQubit with
gate name abbreviations, where the yellow blocks symbolize a tunable tunnel barrier
of strength Γ, the red block is a strong tunnel barrier to ensure that we are measuring
the LDOS of the system. Four pictures underneath the picture illustrates what regimes
we will demonstrate in this work. From left to right: 1) Opening the dot to form a
Josephson junction. 2) Forming an spinful Josephson junction (an Andreev dot).
3) The cotunneling regime with both wire semi-closed. 4) A strongly decoupled dot
(N-QD-SC system). In the following sections, we will elaborate what the results of
the different regimes are.

proximitized SM (Fig. 3.10), with phase dependence given by the area of the loop.

Intermediate Coupling Regime - 𝚪 ∼ 𝚫: This is the regime of the Andreev Dot.
Here we should differentiate based on the charging energy, 𝐸𝐶 , compared to the
superconducting gap, Δ [58]. The two regimes, 𝐸𝐶 > Δ and 𝐸𝐶 < Δ, both involves
the screening of the local spin of the dot by quasiparticles of the SC lead. Let us
imagine 3 occupational levels of the dot: N-1, N and N+1 electrons, where N is odd.

For EC < 𝚫; the system has a small charging energy. Due to the small charging
energy the odd occupied level N, will also be able to accept or reject an electron. This
can be understood from the point of view of Andreev reflections [61]. This leads to
an excited subgap state due to hybridization of the 𝑁 ± 1 levels.

For EC > 𝚫; the problem is rooted in a superconducting Kondo or YSR model [58].
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Figure 3.10: Right: LDOS shows a soft gap proximitized SM, with broad states
within the gap, originating from ABSs. Left: Phase dependence taken at linecut
shown in purple. We see that the conduction is strongly phase dependent. One
oscillation, 2𝜋, corresponds to the magnetic field needed to thread a flux through the
loop, 2𝜋 ' 1.4mT

Differentiating the two cases (YSR or Kondo) is whether the Kondo temperature, 𝑇𝐾 ,
is larger or smaller than the gap, Δ. For a large 𝑇𝐾 the SC completely screens the
spin, and a singlet state is formed. For a weak coupling, where the QD is a doublet
ground state, an excited YSR singlet state is formed. Previous measurements, see
Fig. 1.9b, let us can estimate a charging energy of 𝐸𝐶 ' 600`𝑒𝑉 ; well within the
𝐸𝐶 > Δ regime.

Phase Dependence of an Andreev Dot: Aswe apply a perpendicular magnetic field,
we thread flux through the loop, thereby changing the energy of the ground state.
In the odd occupational lobes, we find in theory that it is a 𝜋-JJs, meaning that the
ground state has an energetic minimum at 𝜑 = 𝜋, while the even occupational lobes
are 0-JJs, meaning that the ground state has an energetic minimum at 𝜑 = 0. In
Fig. 3.11, we see clear phase oscillations of one lobe. However, we only find phase
dependence for one lobe. In this measurement we find that the lobe starts to close,
but not closing all the way which theory predicts. In other experiments [57], is has
been shown that it should close completely and form a single crossing at zero energy
in the middle of the lobe.

An important phase diagram to understand the width of the odd occupational lobe in
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(a) (b)

Figure 3.11: Spectroscopy of what we attribute to be an odd occupational ground
state of an Andreev dot for a) 𝜑 = 𝜋 and b) 𝜑 = 0. Clear phase oscillation is
observed (illustrated by the crossed arrows). We do not see phase dependence of the
neighboring lobes, though they should also be phase dependent.

an Andreev dot, is seen in Fig. 3.12, where the boundary of a 0 and 𝜋 junction is
drawn, as we vary the coupling and the chemical potential of the dot we can transition
between a singlet or a doublet ground state, for respectively a 0- or 𝜋-JJ.

The description of an Andreev Dot is integral to understanding the system thoroughly,
and also shows a high degree of tuning capability of the system that we can go from
this regime, to the one described in Sec. 3.3. Though the observation of phase
dependent states in this device has proven difficult, it should be mentioned that they
have been seen in other experiments that have been performed in the course of this
thesis
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Figure 3.12: Phase diagram of an Andreev Quantum Dot, where the singlet and
doublet ground states phases are pictured, depending on the coupling strength, Γ,
and the AD detuning, Y′. The phase boundary is colored orange. Here Y′ is the
detuning of the chemical potential, chosen to be zero exactly between the two zero
energy crossings.

3.3 Andreev Bound States of Wires and Cotunneling
Spectroscopy

In SCswhere we do not apply as negative a voltage to the wire plunger gate, Vr,wire and
Vl,wire, the hardness of the gap is modified and discrete subgap states can appear in the
DOS. The description of these states, which ismissing fromSec. 3.2.1 and Sec. 3.2.2,
will be covered in this section. For an AD, we generally assume that we have two hard
gap superconductors at either end of the cavity, and that the ground state of the system
form as the QPs of the SCs screen the spin of the QD. However, introducing discrete
subgap state in the SCs we change the picture dramatically. Instead of forming subgap
state because of a hybridization effect between quasiparticles of the SC and electrons
on the QD, the subgap states already populate the spectrum of the SC, originating
from ABSs in the wire3. Furthermore, the QD should also be in a regime where it
is enough decoupled from the SC lead, such that there is no screening of the spin
of the electron on the QD by QPs from the SC leads. However, it should still be
coupled enough so that QPs, that populate the subgap states of the SC lead can tunnel
coherently between the QD and SC, and as such hybridize with the dot states. The
regime where we have both an Andreev dot and subgap states of the SC wire, is
for this experiment not explored. Coupling the dot to the SCs wire state enables

3We will interchangeably use the term "ABSs in the wire" and "wire states"
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Figure 3.13: The cotunneling regime in a N-QD-SC system, with a figure from [43].
Bringing the N-lead in resonance, by applying a bias voltage VSD, with the ABS of
the SC, leads to an elastic cotunneling process through the dot.

conductance via virtual processes in the otherwise blockaded Coulomb diamonds.
This we refer to as the cotunneling regime, and it is in this regime that we will probe
the QD-ABS system (Fig. 3.13). In these more coupled systems (than Sec. 3.2.1)
the wave function of the SC ABS leaks into the QD cavity. As the final parts of the
LoopQubit experiment, involve hybridizing the two end MZMs of the wire through
the QD, to create a system with a sub parity given by the two end MZMs (not by the
parity of the individual Majorana nanowires) the cotunneling regime of ABSs and a
QD is interesting to explore.

3.3.1 One Superconducting Wire with Andreev Bound States
Coupled to a Quantum Dot

Firstly, we turn our attention to a system of one QD and one SC nanowire, by closing
the tunnel barrier to the opposite SC nanowire. As in the case of the Andreev dot we
highlight the regime, by a small schematic shown in the 2D measurements.

Zero parallel magnetic field: We can first let 𝐵 = 0, and tune the system to be able
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to resolve ABS states in the cotunneling regime of the QD. In Fig. 3.14b and Fig.
3.14a, we see that with only one wire open for conductance we are able to hybridize
wire states with the levels of the QD. In this regime, we measure that the ABS states
of the wire hybridize with the levels of the QD close to the edges of the Coulomb
diamond. This verifies that the spectroscopy is not probing sequential tunnelling
events; instead, when wire states coincide with the edge of the Coulomb diamond,
the energy is perturbed by a change to the chemical potential of the dot, due to energy
level hybridization. This is illustrated in the white dotted line of Fig. 3.14b, which is
shows strong hybridization.

(a) (b)

Figure 3.14: ABS wire states in the cotunneling regime of the dot, where only one SC
nanowire is open. a) States in the left wire. b) States in the right wire. Though the
spectrum is gapped close to zero bias, the coupling is adequate to see that the wire
states in the cotunneling regime, which hybridize with the dot levels: see the white
doted lines.

Finite parallel magnetic field: By applying a parallel field (parallel to the wire),
we can move the ABS of the wire to zero via the Zeeman energy, while ensuring
that the SC does not turn normal (Fig.3.6 shows that the SC is gapped for 𝐵‖ < 3T).
Two measurements for high field in the right wire is shown in Fig. 3.15. We observe
several crossings at zero energy in Fig. 3.15a, but comparing these crossings to
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the zero bias map in 3.15b, we see that the crossing at ∼ 1.7 T and ∼ 2.7 T, are
dot states that move in field. At ∼ 0.5 T we see a state approaching zero. We can
compensate the field scan, so that we stay within the same Coulomb diamond, as
we sweep the parallel magnetic field, we can track ABS’s field dependence in the
cotunneling regime. This is shown in Fig. 3.16, where we can coalesce ABSs to zero
at ∼ 600 − 800 mT in the left wire and ∼ 500 − 600 mT in the right wire.

In Fig. 3.15b, we also see an hexagonal pattern. This is verymuch alike to the patterns
observed in experiments such as in [62] or would be measured in experiments where
a Kondo peak appears at finite magnetic field. However, in this case, the zero energy
crossing between the Coulomb resonances depends both on the chemical potential of
the dot and the magnetic field applied (see orange and green arrows in Fig. 3.15b).

(a) (b)

Figure 3.15: Uncorrected field dependence in the right wire. a) We see both wire
states (marked above and below by white dotted arrows) and dot states (marked with
a red star to the left) come towards/cross zero energy as a function of B||. We have
positioned Vpgs= −1.286V. b) A zero bias B|| vs Vpgs map. We see that the dot states
strongly depend on magnetic field. We also observe zero bias crossings that connect
the Coulomb resonances (orange and green arrow)

Wire ABS dependence of the wire chemical potential: It is apparent in Fig. 3.16
that wire states coalesce to zero energy at different field values. This can be mitigated
by using the wire plungers, as seen in Fig. 3.17. In this measurement staying within
a Coulomb blockade and changing the chemical potential of the wire we can move
wire states to zero energy.
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(a) (b)

Figure 3.16: ABS wire states in cotunneling regime parallel field dependence coa-
lescing to zero energy marked by orange arrows. a) In the left wire we coalesce an
ABS at B||' [600; 800] mT. b) In the right wire we coalesce an ABS at B||' [500; 600]
mT. In the right wire, we are also able to see the ABS split into its two partner states
at ∼ 180 mT; this is marked with a dotted white arrow.

Avoided zero energy: When wire states are at zero energy the hybridization with the
QD splits the zero energy mode close to the Coulomb resonance. This is expected for
local zero energy mode [63]. At this point when `ABS,ZB ∼ `dot(𝑉pgs,𝑉[SD] = 0), the
ABS wave function hybridizes with the dot level, whereby the wave function leaks
into the dot. This modifies 𝑘𝐹𝐿, the fermi wavevector 𝑘𝐹 , and the length of the ABS,
𝐿, which changes the energy of the zero mode, to finite energy. It is worth noting
that a highly non-local MZM do not exhibit being repelled from zero energy, though
short Majorana wires would [63]. A short (or overlapping) pair of MZMs, would
however also repel the Coulomb diamond tips, from zero due to SOI (Sec. 1.2.1),
which does not happen for local zero modes [63].

It should be noted that the technique of looking for ABS in individual wires, and
having the other wire closed, has its drawbacks. Closing off conductance into the
other SC nanowire, involves applying a large negative voltage on the gate controlling
the tunnel barrier. In this case we need to apply . −0.5𝑉 on the𝑉𝑏,𝑙 (𝑟),𝑤,𝑡𝑢𝑛𝑛𝑒𝑙 to close
of the left (right) wire. This in turn affects the electron density on the quantum dot,
and influences i.e., the normal lead tunnels, 𝑉𝑡𝑢𝑛𝑛𝑒𝑙𝑠, via crosstalk. The result is that
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(a) (b)

Figure 3.17: ABS wire plunger dependence. a) By compensating Vr,wire gate with the
Vpgs gates we can probe how the ABS depend on the wire potential, without having
dot states cross zero. b) Spectroscopy of the ABS as we change the chemical potential
of the wire and stay within a Coulomb blockade, shown by the white dotted line in a),
shows that the ABS can be driven to zero energy using the Vr,wire, strongly indicating
that it is indeed a wire state. Similar measurements have been carried out on the left
wire state. The compensation is listed in App. B

finding wire states at zero energy in the left wire and in the right wire sequentially
and then opening both at the same time, does not result in having two wire states at
zero energy. Generally, we have found the opposite: We see no wire states at

3.3.2 Two Superconducting Wires with Andreev Bound States
Coupled to a Quantum Dot

Both wires open: In this measurement scheme we rely on third harmonic mea-
surements, and keep both tunnel barriers open simultaneously. We can change the
potential of the wire and thereby the energy of the ABS of individual wires, by
changing Vl(r),wire. We have already, via𝑉𝑆𝐷-𝐵 | | maps found a suitable magnetic field
to see that ABSs go to zero in the range 500− 700mT. Third harmonic techniques are
readily implemented in the LockIn system, SR830. The third harmonic of the signal
is the second derivative of the LockIn signal. As we are in the tunnel regime, this
means that we can identify peaks and dips at e.g. zero bias, where a peak - most of
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(a) (b)

Figure 3.18: Zero field ABSs in either SC wire. a) We measure that the ABS hybridize
with the dot level at the Coulomb resonance. The compensation is listed in App. B.
b) A much stronger hybridization is measured in the right wire. We believe the reason
that the right wire in general couples more strongly to the dot is due to a cutter dot
located in the left side of the device. The cutter dot is an accidentally formed dot,
that proved impossible to remove. Therefore, we found a regime where we knew that
it was in a cotunneling regime. Having the dot in the cotunneling regime, we can
view it as an additional tunnel barrier, which necessarily also impacts the coupling.

the time - corresponds to discrete states, see Fig. 3.19.

Hybridizing Two Andreev Bound States Through a Quantum Dot

The theoretical investigation done on a more exotic system, a dot coupled to one or
two MZMs, is a surprisingly well explored phenomena. For the theoretical rigour
of ABSs hybridizing with a QD we lean on work done previously by E. Prada et al.
[63], who treats semi-non-local MBS, and trivial local zero modes in a SC nanowire
which is coupled to a QD. This is used to explain the experimental measurements
by M. T. Deng et al. [43]. There are some parallels between ABSs and MBSs. The
major difference here is that the ABS is one extended or localized states, where we
cannot treat its Majorana operators as constituting individual wave functions, that
may or may not have an overlap (as in the case of a topologically non-trivial MZM),
but instead as one fermionic mode.
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(a) (b)

Figure 3.19: a) Third harmonic signal, negative current corresponds to a dip in
conductance around zero bias, while positive current corresponds to a peak around
zero bias. b) The corresponding conductance is simultaneously measured. We can
see that there are two features that independently couples to either wire, and are very
weakly coupled to the other wire. The right (left) wire feature is marked within the
green (orange) arrows.

Only One ABS at Zero Energy - Two Superconducting Leads Connected to a
Quantum Dot

We have also measured a regime where there are only ZB states in one wire, though
conductance into the other SC lead is still possible. We observe in Fig. 3.22 that
even with no corresponding ZB state in the left wire, the zero energy ABS of the
right wire is still modulated as we apply a perpendicular magnetic field.
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(a) (b)

Figure 3.20: Two wire states in the cotunneling regime are brought to zero bias. The
phase difference of the superconductors is: 𝛿𝜙 ' 𝜋. No apparent difference can be
resolve in spectroscopy by changing the chemical potential of the dot. Compensations
of dot plunger are listed in App. B

(a) (b) (c)

Figure 3.21: The two wire states we believe to be at zero bias in Fig. 3.20, are in spec
here we probe the phase dependence for different Vpgs: a) Vcomp-pgs= −1.087V, b)
Vcomp-pgs= −1.093V, and c) Vcomp-pgs= −1.097V. Though no phase dependence were
visible in Fig. 3.20, the conductance and energy of the ABSs are clearly modulated
by the phase difference of the two SC wires.
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(a) (b)

Figure 3.22: One wire state in the right wire at ZB. We have applied a voltage to the
Vl,wire gate to that there are no left wire states. a) Spectroscopy shows hybridization
with the QD. b) Phase dependence of the right wire state, taken at Vcomp-pgs= −1.114V.
Even with no states in the left wire we still observe that the peak is modulated as we
apply phase difference between the two SC nanowires. Compensation listed in App.
B
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3.4 The Zero Field Feature

A feature we have found in these devices, are what we have dubbed a zero field
feature4 (ZFF). At true zero perpendicular field, it can be seen in spectroscopy of i.e.
Fig. 3.24, that several more discrete state are visible in cotunneling QD spectroscopy.
We can also see in Fig. 3.23, that this is true both on and off the Coulomb resonance.
The full width of this feature appears to be on the order of ∼ 400`T. Based on the

(a) on resonance with CB (b) off resonance with CB

Figure 3.23: Spectroscopy in the cotunneling regime shows the wire states are broad-
ened as we move away from true zero magnetic field, by applying a perpendicular
field. a) Cotunneling spectroscopy at B⊥ = 80 `T. b) Cotunneling spectroscopy as
we apply 2𝜋 phase difference to the SCs, corresponding to B⊥ = 1.48 mT

measurement of Fig. 3.24 we postulate that it is not the emergence of more states,
but we see that at a finite perpendicular field, the broadening of the states increases.
Broadening of the states suggests that after applying 200`T, the lifetime, associated
to these, would have decreased drastically to account for the broadening. We have
found that this is not physics originating from the loop of the experiment, as closing
one wire we still achieve the same feature. If the phenomenon is coupled to the
threading a magnetic quantum flux, Φ0 = ℎ/(2𝑒), for example as a feature that is
connected to weak anti localization, the area would correspond to ∼ 10.3`𝑚2. This
should be compared to the area of ∼ 1.65`𝑚2 which the loop of the experiment

4This feature has been measured in several generations of the design, measured on different wafers - though all in
similar heterostructures.
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(a) (b)

Figure 3.24: A cotunneling experiment: a) Taken at the ZFF. b) Taken at phase
𝜑 = 2𝜋 away from the ZFF.

encompasses. What we see in Fig. 3.21, is that the feature does not appear in a phase
map, as the parallel field for these measurements are at 680 mT. We have in previous
devices seen that this feature in 𝐵‖ persists for 𝐵‖ ∼ 60mT.
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CHAPTER 4
Wrapping up

4.1 Discussion and Conclusion

We have explored the different regimes, accessible to us, defined by the coupling
between SC leads and a QD. The different regimes are illustrated in Fig. 4.1

The Andreev Dot

We detected a phase dependent AD state, though the AD phenomena in general have
been difficult to observe in this device. However, we were unable to prove a 0-𝜋 JJ
phase transition as we changed the chemical potential of the AD, thereby loading
electrons onto the dot. What we might associate with an even occupational state
had no spectroscopic phase dependence. Furthermore, we do not have any way of
exploring the 𝐸𝐶

Δ
< 1 regime, which is discussed in [61]: the superconducting gap can

only be decreased with parallel field, and we have observed in spectroscopy that the
charging energy does not depend on the voltage applied to Vpgs gates, in the range we
have explored. Only a few examples fine-tuned cases did we see signatures of a singlet
to doublet transition as we change the occupation of the QD, see Fig. 3.11. As such
we were unable in this device to show the different phase dependence that a doublet
and a singlet ground state has. This might be a result of the mesoscopic size of the
QD (∼ 750× 350 nm2). Though we do see phase dependence, the separation between
the SC leads could be so long that the phase dependence is slightly less than expected,
meaning the doublet state does not close completely as it should. The size of the dot
could also mean that the spin of the QD might be S > 1/2: we can sequentially load
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Figure 4.1: Regimes of a SC-QD-SC system

several electrons with the same spin. Due to the size of the QD, we are able to fill
higher energy orbitals of the dot, instead of filling the orbitals sequentially, which
would fix the total spin in configurations 𝑆𝑡𝑜𝑡 = {0, 1/2}; in these systems the ground
state of many-electron QDs will follow Hund’s rules [64], of filling the orbitals of
the quantum dot. Asymmetry in the tunnel barriers can also lead to a drastically
decreased phase dependence [57], which has highly likely happened in our device,
due to resonances in the tunnel barrier. If a more controllable AD is formed, one
could also consider turning on parallel magnetic field. This should in theory induce
0 to 𝜋 JJ transitions and be able to form 0’ or 𝜋′ JJs, where there are two ground state
minima as a function of the superconducting phase. Furthermore, it should be noted
that for large coupling, we can experience difficulty in observing phase dependent 0-
or 𝜋-JJs because 𝑇𝐾 > Δ; the Kondo effect dominates, the spin is screened creating
a spin singlet state, and a doublet state is not formed. The signature is that a Kondo
peak is formed within the Coulomb diamond at zero energy [65].

Hybridization Between a Quantum Dot and One or Two Fermionic Zero Energy
States

By decoupling the QD sufficiently, we have been able to measure ABS formed in the
SC wire in the cotunneling regime of the dot. We have had great success finding
regimes where the energy level of a QD hybridizes with wire states from one wire at
zero applied magnetic field. We have demonstrated that as the energy of the Andreev
bound state align with the QD’s energy level, the two levels can hybridize. We
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have also been able to track an ABS in either wire as it coalesces to zero energy,
in the cotunneling regime of the dot. We have seen that at zero energy, we can
observe that the hybridization, as predicted [63], pushes the ABS to a finite energy
as the wavefunction is able to inhabit the QD cavity. The spectroscopy of wire
states with only one wire has generally produced better spectroscopic results, than
when both SC nanowires was open. We hypothesize that the optimal gate regime for
finding right, and left wire states differ too much. The optimal gate configuration for
simultaneously seeing ABS wire states in both wires are drastically different from
the optimal configuration of the isolated wires.

When we open both wires simultaneously, we have seen that we can independently
move ABS to zero energy by changing the voltage on the wire plunger gates Vl/r,wire,
in a third harmonic measurement. In spectroscopy it has proven to be difficult
measure and we have seen that the wire states in the cotunneling are rather broad. In
conjunction, we have also seen that going between the regimes (N-QD-SC (weakly
coupled), wire ABSs visible in cotunneling spectroscopy from one wire, and two
ABSs from two wires at zero energy visible in cotunneling spectroscopy) changes the
measured charging energy of the QD dramatically: going from respectively 𝐸𝐶 ∼ 600
`eV→ 𝐸𝐶 ∼ 400 `eV→ 𝐸𝐶 ∼ 150 `eV. We believe that the change originates from
the fact that the wave function of the electron density in QD becomes less laterally
restricted, as we open the barriers between the cavity and into the SC wires. We have
also shown that the wire states show phase dependence, both if an ABS is present
at the same energy in the other wire or not. We attribute the fact that the ABSs
are phase dependent in the latter case, because AR on the SC with no wire states,
will experience the change in the phase of the superconducting gap, as we apply
a perpendicular magnetic field. It can therefore be argued that coherent transport
into both wires is possible, which would mean that the ABSs of the two wires also
couple to each other. However, in this scheme we have no way of checking whether
this is true. Because we always see both splitting of the zero-energy state and phase
dependence the regime with ABSs it is in some respects more complex than theMZM
scheme; only when twoMZMs are present in either wire do we find a splitting at zero
energy for these non-local bound states. Furthermore, in theory, this might prove a
very good way of finding whether we have created long or short Majorana nanowire
(defined by the topological coherence length), as there are few ways in these systems
to measure the topological coherence length; only semi-non-local MZMs in a single
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wire will exhibit a zero energy splitting.

The Zero Field Feature

We are very certain that the phenomena at true zero magnetic field is physics orig-
inating from the normal leads of the experiment. Weak anti localization leads to
a resistance in the normal leads, which has an impact on the thermalization of the
charge carriers. However, this should be checked thoroughly i.e., by measuring the
electron temperature in a CB regime at and away from the ZFF.

4.2 Outlook

The Quantum Point Contact Gates

The control of the SC-QD tunnel barrier is an integral part of, not just the phenomena
we have explored, but also in general the measurement-based TQC scheme [4]. An
optimal control of the QPC gates are as such important. Therefore, it might be
interesting to see what optimization we can do. It might be, that a multi-layer gate
approach needs to be taken, to gain better control of the barriers. The tunnel barriers
in this experiment is dubbed side probes as they allow for transport to enter from the
side of the SC nanowire. The point is that MZM are 𝑘 = 0 states. If we use electrons
with a finite parallel (to the wire) momentum, 𝑘 ‖, they couple stronger to modes in
the nanowire with a finite 𝑘 ‖. Here we might add that ABSs have a finite momentum
on the order of the Fermi momentum of the SC, as their dispersion are alike to the
SC dispersion in Fig. 1.1b, which at zero energy for Δ = 0 is 𝑘 ∼ 𝑘𝐹 .

Zero Bias Peaks at Higher Parallel Magnetic Field

The main goal of the experiment is the readout of parity of MBSs in the nanowires.
In the experiments of this thesis the ZBP have been trivial, but by going to higher
magnetic fields we could be able to induce a topological phase transition. If the
MBSs in this topologically non-trivial phase are highly non-local, they should not
split at zero energy as they hybridize with the dot level, though they should repel the
dot energy level from zero as opposed to ABSs. Only when two MBSs from either
end of two SC nanowires hybridize with each other should we see a splitting (due
to the wave function overlap). In this way, the cotunneling experiment with MBS

67



4.2. OUTLOOK

are more conclusive, with respect to whether pairs of zero energy wire states can
hybridize across quantum dot, than the corresponding zero energy ABS experiment.
If we find what we believe to be MBSs in both wires and see hybridization, we would
want to measure how electrons jump on and off the MZMs in both wire ends from
and to the QD, using a sensor dot. Due to the very short time scales involved, this
needs to be done with radio frequency (RF) measurement.
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CHAPTER 5
TheAndreevBilliardExperiment -Quan-
tum Chaos Meets Particle-Hole Symme-
try

The problem that we will cover in this section is the Andreev Billiard, which due to
it being a standalone experiment, which is not connected to that of superconducting
nanowires’ ABSs. Though the project is still in a start-up phase, the physics are
interesting and deserves a discussion, on the basis of the preliminary measurements
we have done. As a remark to this: few experiments have been done on this crossroad
between quantum chaos and superconductivity, especially in hybrid SC-SMmaterials
where the chaotic cavity is laterally defined. The phenomena of quantum chaos is
solved on the basis of randommatrix theory (RMT), amathematical theory introduced
by J. Wishart in 1924 [66], treating covariance matrices in multivariate theory, and
extended to physics in the 1950’s by physicist Eugene Wigner [67], and developed
more fully by Wigner, Mehta, Gaudin and Dyson in the 1960s.

5.1 Theory

The introduction of random matrix theory into physics, was first done by E. Wigner
as a way to describe the scattering resonances observed in nuclear reactions of
large/heavy atom’s [67]. The levels in these atoms depend on the strong interactions
between the particles within, which is not a difficult problem in heavy atoms. He
proposed that even though the interactions are random the statistics follow from
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the energy eigenvalues of the random matrices that describe the Hamiltonian of
the nuclei. These in turn, should be drawn from an ensemble that depends on the
symmetries of the system. In 2DEGs, the same thought process can be used to
describe mesoscopic systems. Here quantum transport is a coherent process, but the
systems are so large that a statistical treatment of transport is preferred in many cases
[68]. Instead of nuclei potentials, the electrostatic potential 𝑉 (𝑥) - and as such the
Hamiltonian matrices or scattering matrices1 - is a random parameter, that depend
on the disorder within the system or disorder in the boundaries of the system2, and is
drawn from an ensemble [69], with a probability distribution given by,

𝑃(𝑉) = 𝑐 exp(B Tr𝑉 (𝑥)), (5.1.1)

where 𝑐 is a normalization factor and B defines the symmetry of the system. For
𝑉 (𝑥) ∝ 𝐻2 they are denoted as Gaussian ensembles; these are the ones that describe
most systems. The universality of this description of quantum transport is highly
attractive. We treat the configuration within the system as a black box and simply
approach the problem only knowing the symmetries that govern the physics of the
system. Ten universality classes exist in the Gaussian case which each are defined by
the presence or absence of anti-unitary matrices that commute with the Hamiltonian
[69]; this is colloquially known as the tenfold way. They follow from unitary or anti-
unitary matrices that either commute or anti-commute with the Hamiltonian, 𝐻 (Fig.
5.1). The presence of the time reversal is given by 𝐻T = T𝐻, while the introduction
of superconductivity means that 𝐻C = −C𝐻. The ensembles are defined by the
presence of the commutation relations and whether C2 = ±1 and T 2 = ±1. Lastly,
the system can also have a chiral symmetry defined by whether CT𝐻 = −𝐻CT .
These are the symmetries that the system can exhibit, and are summarized in Fig.
5.1. The probability distribution of energies for systems with particle-hole symmetry
(not A, AI, and AII) and AIII, is given by [69],

𝑃({𝐸𝑛}) ∝
∏
𝑖< 𝑗

|𝐸2𝑖 − 𝐸2𝑗 |2𝛽𝐸 ×
∏
𝑘

|𝐸𝑘 |𝛼𝐸+a𝛽𝐸 exp
(
−𝜋2𝛽𝐸𝑑𝐸𝐸2𝑘
4N𝛿0

)
(5.1.2)

1We will focus on the Hamiltonian - The statistics in this case, will allow us to probe the energy level ensembles. In
our systems, this is readily done with a tunnel barrier, where we spectroscopically resolve the energy levels. However,
transmission through chaotic systems follows the same statistics, and can in principle also allow us to probe the universality
classes.

2Clean systems can however also be chaotic. However, here chaos is introduced because of the non-integrable boundary
i.e. Sinai billiards
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Figure 5.1: The ten universality classes constituting the tenfold way [69]. C is the
charge conjugation operator and T is the time-reversal operator. Crosses and checks
marks whether the symmetry is present in the class or not. +1(−1) marks whether
the anti-unitary operators square to one. a is the number of 𝑑𝐸-fold topological zero
modes. 𝛼𝐸 and 𝛽𝐸 are the repulsion coefficients.

Here 𝛽𝐸 acts as a inverse temperature, that repels level 𝐸𝑖 from ±𝐸 𝑗 in the term
|𝐸2
𝑖
− 𝐸2

𝑗
|2𝛽𝐸 = (𝐸𝑖 − 𝐸 𝑗 ) |2𝛽𝐸 (𝐸𝑖 + 𝐸 𝑗 ) |2𝛽𝐸 , repels the states from the possible zero

energy state in the term |𝐸𝑘 |a𝛽𝐸 , and restricts levels to not increase towards infinity in
the exponential term. The 𝛼𝐸 parameter enters due to particle-symmetry (except in
the case for AIII), and repels the particle states from their hole counterparts [68, 69].
The mathematics and theoretical physics of random matrix theory is comprehensive
and has been explored extensively before. As such I will refer to more extensive
details in more in-depth reports done by i.e. [68–70, 72, 73]

5.2 Preliminary Results

We can measure the density of states in the device architecture shown in Fig. 5.2.
This device is based on the proposal by S. Plugge [42], which he names a Majorana
Box Qubit (MBQ). In this device, we will let the mesoscopic quantum dot, at the end
of the SC nanowires, play the role of the Andreev billiard [70]. Laterally gate defined
cavities will be an extremely powerful tool to explore the statistics of universality
classes. As discussed in Sec. 5.1, the statistics of the cavity is independent of its
shape, only the symmetries of the systems are important. However, by changing the
shape a different energy configuration can be reached. With themeans of addingmore
measurements to the statistical data analysis, we can with a much greater accuracy
determine the ensemble to which the system belongs. The Andreev billiard [70] is
shown in the inset of Fig. 5.2
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Figure 5.2: False colour SEM of the MBQ design, with gate abbreviations. Gates
are coloured yellow, the SM is grey, and the aluminium is coloured blue. Shown in
the orange box is a zoom-in of the Andreev billiard, which has three QPCs between
the normal leads and the billiard, and QPCs into the two superconducting nanowires.

We define the superconducting wires and quantum dot by energizing the electrostatic
gates of the device. When we observe a system that exhibits the phase dependence
we expect from the loop (1.7 mT), we probe the system. This is done by resolving
the LDOS of the system using spectroscopy. After measuring the phase dependence
of the device we find the same ZFF described in Sec. 3.4. In Fig. 5.3 we show the
spectroscopy of the Andreev billiard, at the ZFF, as we plunger the dot using the gate
Vtr,dot for four configuration of Vtl,dot = [−1.5,−1.75,−2.0,−2.25] V. As we apply
a voltage to these gates, we change the shape of the cavity; in theory, this means
that we are probing different configurations within the same ensemble. We use a
Matlab peak finder algorithm [71] to automatically find states in spectroscopy. The
energies of these states are recorded, and the spacing between neighbouring energies
are calculated. As the energy follows the RMT of the given ensemble, so will the
level spacing. We are interested in the level spacing to more readily compare the
result with theory [70, 72]. We compare the distribution of measured level spacings,
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Figure 5.3: In spectroscopy we observe discrete levels that change as the electrostatic
configuration within the Andreev billiard is changed by the changing gate voltages.
From left to right the Vtl,dot= [−1.5,−1.75,−2.0,−2.25] V. The peak finding algorithm
adapted from [71], finds discrete states given by the red marks, the conductance values
of which, we manually set to 𝐺 = −𝐺0 for clarity.

with that of other ensembles [72] (here shown as integrated probability)

𝑃GOE,int(𝛿) = 1 − exp
(
−𝜋𝛿

2

4

)
(5.2.1)

𝑃GUE,int(𝛿) = −4𝛿
𝜋
exp

(
−4𝛿
𝜋

)
+ erf ( 2𝛿√

𝜋
) (5.2.2)

𝑃GSE,int(𝛿) = −16𝛿(128𝛿
2 + 27𝜋)

81𝜋2
exp

(
−64𝛿

2

9𝜋

)
+ erf ( 8𝛿

3
√
𝜋
) (5.2.3)

𝑃Poisson,int(𝛿) = 1 − cosh(𝛿) + sinh(𝛿) (5.2.4)

𝑃WP,int(𝛿) = exp(−2𝛿) (−1 + exp(2𝛿) − 2𝛿) (5.2.5)

We see that the level spacings, do not follow any of the ensembles described by
the Wigner-Dyson theory or by the hybrid Wigner-Poisson distribution from [72]
(Fig. 5.4). Furthermore, we also try to resolve spectroscopy using the Vtl,dot gate
(Fig. 5.5). We change the gate Vtl,dot smoothly and Vtr,dot in four steps of Vtr,dot
= [−1.5,−1.75,−2.0,−2.25] V. The voltage configurations of the other gates are
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Figure 5.4: Statistics of Fig. 5.3. We find the level spacing of all the positive energy
states, below the superconducting gap Δ, and plot them in an integrated probability
distribution function (PDF). This is compared to integrated PDF of the Wigner-
Dyson ensembles (GOE, GUE, and GSE for respectively the orthogonal, unitary and
symplectic ensembles), corresponding to A, AI, and AII in Fig. 5.1. Also we compare
it to the Poisson and Wigner-Poisson distributions of [72]

changed slightly to accommodate this change compared to Fig. 5.3 and Fig. 5.4. The
result of the integrated probability density is shown in Fig. 5.5 and an excerpt of the
spectroscopy using Vtl,dot with Vtr,dot = −1.5 V. Here it seems as though the statistics
resemble that of the GSE (or AII in Fig. 5.1)
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Figure 5.5: The left graph: shows the integrated probability density of level spacings
measured in spectroscopy. It seems to follow that of the GSE reasonably well. The
right graph: Shows an excerpt of the spectroscopy done to measure the probabilities
plotted in the left graph. Here we vary the gate Vtl,dot while having Vtr,dot = −1.5 V
fixed. Generally we found that the states in these measurements (using Vtl,dot) had
less pronounced states than the spectroscopy of Fig. 5.3.
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5.3 Future experiments

Though we have seen signs of a non-Wigner-Dyson ensemble (the statistics of the
level spacing does not follow that of the Gaussian orthogonal, unitary or symplectic
ensembles) in the LoopQubit experiment, the design of the device is not optimized
for an Andreev billiard experiment. However, we do see that we are able to resolve
level statistics as we probe the DOS of the billiard. Especially the constricted QPC
are somewhat detrimental to the transfer of superconductivity into the billiard. In
this geometry normal scattering dominates the picture. Also, the size of the billiard
leaves something to be desired. We will discuss these shortcomings in this section.

In future experiments we need to think about the energies which are relevant in the
subject of Andreev Billiards [70].

• Superconducting gap: defined in Sec. 1.1.1, the gap Δ sets the upper energy
scale. Within the energy window 𝐸 < Δ, we can for a large barrier guaran-
tee that conducting modes are particle-hole symmetric, following Fig. 1.6,
conductance in this window is dominated by AR.

• The mean level spacing of the cavity: The isolated cavity (in this case a
mesoscopic quantum dot), has eigenenergies associated to the propagating
modes that are stable within. From the number of modes in the cavity 𝑀 (with
energies {𝜖𝑚}) the mean level spacing 𝛿 ' 2𝜋/𝑀 [70]. This sets our minimum
energy scale to resolve3

• The ergodic energy: The ergodic energy, 𝐸erg, is commensurate to the ergodic
time, 𝜏erg = 𝐴1/2/𝑣𝐹 , is the time scale after which the electrons have explored
the phase space of the isolated cavity. It is defined by the area of the cavity,
𝐴, and the fermi velocity, 𝑣𝐹 . It is an important time scale as for energies
𝐸 > ℎ̄/𝜏erg, RMT for isolated billiards breaks down [70], as non-chaotic
trajectories play a vital role in the dynamics of the problem (Fig. 5.6).

• Thouless energy: The Thouless energy 𝐸𝑇 is the commensurate energy to that
of dwell time 𝜏dwell = ℎ/𝐸𝑇 , which is the time between Andreev reflections

3We also have to consider that at finite temperature to resolve levels the level spacing should be less than the thermal
broadening
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Figure 5.6: As two electrons enter the billiard with a small microscopic separation,
their trajectory at a short time scale might be indistinguishable. After 𝜏𝐸 the separa-
tion becomes macroscopic. Only at this point can we discern that the system is truly
chaotic. Here 𝜏𝐸 = 𝛼−1 ln(𝐿∗/_𝐹), the chaos exponent 𝛼, the Lyapunov exponent,
defines the rate of divergence, _𝐹 is the fermi wavelength, and 𝐿∗ is a geometric
constant which depends on the cavity geometry. [70]

(Sec. 1.2.2). For a QPC this energy is 𝐸𝑇 = 𝑁𝛿Γ/2𝜋, where N is the number
of modes in the QPC and Γ is the transmission factor of the QPC [70].

• The Ehrenfest energy: The Ehrenfest energy 𝐸𝐸 is commensurate to the time
scale, 𝜏𝐸 which depends logarithmically on ℎ̄, at which we begin to resolve the
quantum level spacing [70] (Fig. 5.6).

Decreasing 𝜏𝐸/𝜏dwell leads us into the RMT regime [70]. This is also seen readily
from Fig. 5.6, where the Lyapunov exponent of the system means that 𝜏dwell � 𝛼−1,
so that infinitesimally close trajectories can be seen to diverge before they Andreev
retroreflect on the SC.

For future measurements the naive fitting procedure done in Fig. 5.3 and Fig. 5.5, can
most probably be optimized. Asmentioned, it is based on the peak finder algorithm of
[71] where we first remove the background using a Savitszky-Golay filter. Sometimes
it picks up peaks, which actually are not there. For future designs of the experiment,
we immediately have two things we can modify: the level spacing and the coupling
/ number of modes between billiard and SC(s). The size of the billiard will change
the number of modes supported by the isolated billiard, and as such we can make the
mean level spacing smaller. As this should be the smallest energy in a spectroscopy
measurement, this could most likely be optimized.
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When we employ a QPC the phase space of electrons and holes are not mixed
chaotically within an energy 𝐸𝑇 ∝ 𝑁𝛿 [72]. Our system which has QPCs into
separate SCs has been theoretically examined in [72]. Here it was found that such a
system follows a circular unitary ensemble (CUE), and that the level spacing should
have distribution that of a Wigner-Poisson hybrid PDF (pink line in Fig. 5.4).
However, this is not what we found. A reasonable explanation is that our QPCs
are not properly formed: this can be seen from the fact that we do not see well
resolved Coulomb diamonds in spectroscopy. Future experiments to confirm this
could therefore probe the system in a less coupled regime. However, as previously
mentioned to guarantee particle-hole symmetry, the states we examine should be
below the SC gap, Δ, and as such we should not probe the system in a regime as that
of Sec. 3.2.1. Furthermore, adding charging energy to the problem also complicates
the picture. The energy associated with adding a hole differs from that of an electron
and will therefore interfere with the PH symmetry. This generically breaks the charge
conjugation symmetry and prohibits the 2e transfer associated with AR (1.2.2) [70].

Though there are many exciting phenomena yet to be explored, and though the device
we have measured until now, is not suited for this type of measurement, we have
already seen that spectroscopy of laterally defined Andreev billiards, can prove a
key tool to observe the universality classes of hybrid mesoscopic systems, and gain
confidence in this observation due to the large number of configurations, which can
be achieved within an ensemble.
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A. DICTIONARY

A Dictionary

The meaning of abbreviations used for the gates in the device.

Gate Abbreviation Gate meaning
𝑉𝐹𝐸𝑇 The field effect transistor

𝑉 𝑓 𝑖𝑙𝑡𝑒𝑟
The filter gate, which drives
the SC backbone trivial

𝑉𝑟 (𝑙),𝑝𝑔 The split QD plunger gates

𝑉𝑝𝑔𝑠
QD plunger gates are sym-
metrically tuned

𝑉𝑡𝑙 (𝑟),𝑤,𝑡𝑢𝑛𝑛𝑒𝑙
Top part of the wire tun-
nel barrier gate, also confines
wire

𝑉𝑏𝑙 (𝑟),𝑤,𝑡𝑢𝑛𝑛𝑒𝑙
Bottom part of the wire tun-
nel barrier gate, also confines
bottom end of wire

𝑉𝑙 (𝑟),𝑤𝑖𝑟𝑒
The plunger gate of the wire,
which controls the potential
of the SC wire

𝑉𝑙 (𝑟),𝑤𝑖𝑟𝑒−𝑒𝑛𝑑
The end gate of the wire,
which drives the SC wire tip
trivial

𝑉𝑙 (𝑟),𝑡𝑢𝑛𝑛𝑒𝑙
Left and right normal lead /
sensor dot tunnel gates.

𝑉𝑙 (𝑟),𝑠𝑒𝑛𝑠
Confines the sensor dot and
controls the coupling to nor-
mal lead

𝑉𝑠,𝑝𝑔 Plunger gate of the sensor dot

𝑉[𝑋]−𝑐𝑜𝑚𝑝
Gate [X] is compensated
with other gates

B Gate Voltages of Measurements

In this appendix we show what the compensation factor and all gate voltages of the
gates are set to for each of the measurements.
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B. GATE VOLTAGES OF MEASUREMENTS

Fig. 1.9a Fig. 1.9b Fig. 3.3a Fig. 3.3b

Fig. 3.4a Fig. 3.4b Fig. 3.5 Fig. 3.6

Fig. 3.8a Fig. 3.8b Fig. 3.10 Fig. 3.11
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B. GATE VOLTAGES OF MEASUREMENTS

Fig. 3.14a Fig. 3.14b Fig. 3.15a Fig. 3.15b

Fig. 3.16a Fig. 3.16b Fig. 3.17a Fig. 3.17b

Fig. 3.18a Fig. 3.18b Fig. 3.19 Fig. 3.20 & Fig. 3.21
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B. GATE VOLTAGES OF MEASUREMENTS

Fig. 3.22 Fig. 5.3 and Fig. 5.4 Fig. 5.5

Compensations

• Fig. 3.17b: 𝑉𝑝𝑔𝑠 (𝑉𝑟 ,𝑤𝑖𝑟𝑒) = −0.2121 · (𝑉𝑟 ,𝑤𝑖𝑟𝑒 + 3.0932𝑉) − 1.129𝑉

• Fig. 3.18a: 𝑉𝑙,𝑤𝑖𝑟𝑒 (𝑉𝑝𝑔𝑠) = −0.28(𝑉𝑝𝑔𝑠 +1.100𝑉) −2.470𝑉 and𝑉𝑏𝑙,𝑤,𝑡𝑢𝑛𝑛𝑒𝑙 (𝑉𝑝𝑔𝑠) =
−0.00266(𝑉𝑝𝑔𝑠 + 1.100𝑉) − 0.2749𝑉

• Fig. 3.20 Vl,wire(Vpgs) = -0.14(Vpgs + 1.100V) - 1.47033V and Vr,wire(Vpgs) =
-0.37(Vpgs + 1.100V) - 2.94883V
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