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Abstract

We review relativistic hydrodynamics and magnetohydrodynamics as effective field theories
to a first-order in the most general frame. This allows to study both frames’ linear stability
and causality by applying constraints on some of the involved transport coefficients. This
shows that a set of frames satisfies both stability and causality under certain constraints.
Furthermore, the Eckart and Landau-Lifshitz frame is commented on, and the latter is
considered in more details for magnetohydrodynamics. We find the linear system for small
perturbations and comment on the linear stability and causality criteria. This modern per-
spective gives sensible physics without introducing new degrees of freedom as were done in
the Israel-Stewart theory. The constraints for the general frame give criteria of what frames
to choose to ensure sensible relativistic theories. This can lead to a better understanding
of dissipative effects and include them in astrophysical settings, where it has been common

practice to only consider the ideal cases.
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Page 1 oflm 1. Introduction

1 Introduction

Relativistic hydrodynamics and magnetohydrodynamics (MHD) offer a toy model descrip-
tion of fluids and plasmas in many astrophysical settings: Shocks from short Gamma Ray
Burst (GRB) [1] and Neutron stars [2]. Relativistic Reaction fronts produced by white
dwarfs (WD) merging [3]. Toy models of jets propagating from pulsars and quasars [4][5].
In astrophysics, shocks are described as a non-continuous front that travels faster than the
local sound speed in the medium. They occur in the interstellar medium (ISM) and are
produced in high-energy settings such as GRB, binary merges and supernovas [6]. Due to
the shock fronts, particles in the ISM will be accelerated, and energy is released in the
form of radiation. The acceleration of particles due to shock fronts in GRB is believed
to produce relativistic bulk velocities. The current understanding of GRB is described by
a fireball model: There is an inner engine, which can be a black hole, surrounded by a
local medium. Jets can propagate due to matter being injected into the engine. This leads
to relativistic jets that create an internal shock front is known as the glow and emit low
to high gamma radiations. When the shock wave reaches the local ISM, it is called the
external shock or afterglow and emits high-energy gamma-rays and X-rays [1]. In order to
understand these mechanics, it is necessary to understand the inner engine. The propaga-
tion of jets has been studied for both pulsars and Active Galactic Nucleus (AGN). Pulsars
are fast rotating neutron stars that have jets propagating from their poles. Neutron stars
are believed to be remnants of massive stars that have undergone core collapse and are
extremely dense with a mass of ~ 1.4 Mg and a radius of ~ 10 km, making them one of the
densest objects in the Universe, and have been found to have a large angular momentum
Q. A force-free approximation describes a model of the magnetosphere of a pulsar: Here,
the Lorentz force is assumed to be vanishing due to a screening of the electric field. The
screening occurs since electron-positron plasma is created due to the presence of a large
magnetic field By ~ 10% T. The electric field occurs when the density of the plasma is
equal to or larger than the Goldreich-Julian (GJ) density pgs. In this model, it is assumed

that no dissipative effects are taken into account, and the plasma follows the ideal MHD
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Page 2 of IW' 1. Introduction

description. Then the magnetic field lines are frozen into the plasma, and two regions of
the magnetosphere: A region of closed magnetic field lines where the plasma reaches the
GJ density and is co-rotating with the neutron star. Then, since the particles can not
travel faster than the speed of light, all magnetic field crossing a light cylinder is open. The
model of the pulsar’s magnetosphere is illustrated in figure . A similar approach has
been developed by black holes surrounded by accretion disks or envelopes. These objects
are known as quasars and/or blazers, but are both believed to be AGN with jets, and the
intensity of their radio wave depends on the observation angle, which is illustrated in fig-
ure (1b)). Relativistic hydrodynamics and MHD continue to be actively studied theories.
The first successful description of relativistic dissipative hydrodynamics was done by Eckart
[7], and later developed further by Landau and Lifshitz [8]. In both descriptions, stability
and causality were not satisfied, and their description led to inconsistent physics. This has
been solved by introducing extra degrees of freedom, which modifies the theory of hydro-
dynamics. This was first done in the Israel-Stewart theory [9][10]. This allows for a full
description of relativistic hydrodynamics with dissipative effects that are stable and causal.
However, introducing the new degrees of freedom makes the theory more complex. Similar
relativistic hydrodynamics have been studied from a kinetic theory, by finding moments of
the relativistic Boltzmann equation [11][12]. Hydrodynamics has recently been treated as
an effective field theory known as the Bemfica-Disconzi-Noronha-Kovtun (BDNK) theory.
This modern perspective of relativistic hydrodynamics allows defining conserved quantities
fully governed by three degrees of freedom T, and u*. They can locally be taught the
temperature, chemical potential and fluid velocity at equilibrium. Simultaneously, the hy-
drodynamics equation in the BDNK theory is stable and satisfies causality. Similarly this
has recently been done for relativistic MHD in describing plasma, where the equations of
interest are governed by four degrees of freedom with the fourth field corresponding to the
magnetic fields. In both the fluids and plasmas description, the theories are both stable

and causal.
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Page 3 of Im 1. Introduction
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Figure 1: Left figure: Illustration of the magnetosphere of a pulsar. At the centre the
Neutron star, where the grey area’s are the closed field lines, and blue areas are the open
field lines. The dotted lines correspond to a light cylinder, and magnetic field lines crossing
these must remain open. The fine dashed lines correspond to a change in sign for the GJ
density. Right figure: An illustration of the upper half of an AGN, where the radio wave
intensity depends on the observation angle. Both figures are original from

In this project, we will review the findings of the BDNK formulation/theory for both
hydrodynamics and MHD to a first-order: First, a definition of fluids will be given, and
hydrodynamics in the non-relativistic case to allow us to draw parallels with the BDNK
theory. Afterwards, the description of the BDNK theory is given, where we study the
stability and causality criteria for a general frame ! . The same approach will be done
for MHD where first a classical description will be considered and then the corresponding
BDNK theory. Here the Alfvén and magnetosonic modes will be derived in the Landau
frame, and the results found in for the general MHD frame will be presented and
commented on. For this project, we assume that the reader is familiar with special relativity.

Furthermore, we will make use of the Einstein summation convention, where we use the

standard notation in which Greek letters p, v etc., takes the values (0,1,2,3) and Latin letters

I The word frame in this context refer to of how one defines T, 1 and u" for hydrodynamics, and T, pu , u"
and h* in MHD.



Page 4 of IW' 2. Physics description of fluids

i,J denote the spatial components with values (1,2, 3), unless else is stated. Furthermore,
the metric will have a Lorentzian signature (—, +, +, +) which divides the four-dimensional
space-time into spatial coordinates and a time coordinate such that we are able to describe
three-dimensional values still. We will for most computation consider a flat background,
such that the general metric g, = 7, is the Minkowski metric in standard coordinates

N = (—1,1,1,1). Finally, we set the speed of light ¢ = 1, in the relativistic descriptions.

2 Physics description of fluids

Hydrodynamics is a toy model that describes flows of quantities conserved under collisions
in fluids. In order to understand the underlying physics behind fluids, this section will
go through their definition and briefly consider the underlying kinetic theory, which gives
fundamental insight into hydrodynamics. For a system of N particles that can deform under
pressure and motion, i.e., a system that is not a rigid body, suppose that the N particles
can still interact through some coupling, e.g., through collisions. For a system where the
number of particles is large, it becomes an impossible task to determine the equations of
motions, and statistical physics is a more variable approach. If the system has a scale length
L, and a mean free path ¢ determining how long a particle can travel before it undergoes
collision, and satisfies

V4
—«1 2.1
7 <1 (2.1)

then a fluid description of the system is possible [3]. Any system with a large N which is
not a rigid body and satisfies eq. can be described as fluids, e.g., gases and liquids. A
system that satisfies the criteria for fluids will have a collection of particles with a position
z' and a velocity v, and will be contained inside a phase volume d3zd3u. If the volume
contains a high number of particles but is small enough to ensure homogeneity, then all
the particles in that collection have the same velocity. Therefore, each phase volume can

be viewed as one point in the fluids and can be expected to follow a distribution function
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Page 5 of IW' 2. Physics description of fluids

which is dependent on the position and velocity at a time ¢
f = f(t’ "LA/L?/U/Z)'

It is standard to refer to such a phase volume as the fluid element, and this term will be
maintained throughout this project. Without loss of generality, only mono-atomic fluids

are considered here. The number of particles in each fluid element can be determined by
fdPzd®u = f(t, 2", u)d>zd>u.

Then, considering the change of the distribution function by an infinitesimal time dt allows
us to derive an expression of the conservation of the distribution function over time, called

the Boltzmann equation.

2.1 Boltzmann equation

Suppose first that in the fluids, no collisions occur such that all particles centred around
(2%, u?) at t, will at an infinitesimal time dt be centred around (z! 4+ u'dt,u’ + a'dt). The

distribution function is invariant between t and dt
f(t+dt,z* +uldt,u’ + a'dt)d32' d>u’ = f(t, 2", u)d>zd>u,
where the prime denotes the coordinates at dt. This corresponds to a coordinates transfor-
mation
2=t +udldt
ut =+ a'dt
where a’ is the acceleration due to external forces that acts on all the particles. Suppose
now that the force leading to the acceleration is independent on the velocity, then the fluid

elements under a coordinates transformation corresponds to writing d3z’d*u’ = Jd3zd>u,

where J is the Jacobian, and to a second order in dt satisfy

ozt 9x’
Ja'wl) = | oo o0 | =1+ 0(dt?),
u ou
oxl  Oul
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Page 6 of IW' 2. Physics description of fluids

such that
B’ dPu = dBrdPu+ O(dt?).

If collisions are taken into consideration, particles at the point (2%, u‘) might not move to
the point (2’ + u'dt,u’ + a'dt) and particles that were not originally contained in (2%, u?)
can enter into the point (z° + u'dt,u’ + a’dt). Thus, a correction for collisions needs to be
taken into consideration: let I'(f) correspond to such a collision term. Then the correction

is given by
f(t+ dt,zt + uidt, vt + a'dt)d®2' d3u' = f(t, 2", u)dPzd3u + T(f)d>zd3udt. (2.2)

Taking an expansion around dt to a first-order corresponds to writing

<f+afdt+ 0f 0z, OF Ou

ot ozt Ot out Ot

dt) Brddu = fd3zd®u+ T (f)dtd>zd®u.

Where the first term of left hand side (LHS) and the right hand side (RHS) cancels out,

and the relations then reads

Ouf +u'd;f + a* gji =T(f). (2.3)

This is the Boltzmann equation, and the RHS describes the collisions of the particles between
the time ¢ and ¢ + dt, and is known as the collisions integral |3]. In order to retrieve the
complete Boltzmann equation, an expression for the collision term needs to be derived.
Assume that all collisions are elastic and there are only collisions between two particles. In
its centre of mass during the velocity change u’ and u’ 4 a’dt, with each particle having a
different velocity u¢ and u}. The distribution function will give the number of the particles

in each respective fluid element
AdPuy = f(t,2"uh)dPuy , fadPug = f(t, 2, ub)d us.

After the collisions, the particles will have the velocities u} and %, and by neglecting any

inelastic collisions, the relative velocity will be conserved

wh = ol — bl = ' = uf — ]
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Page 7 of IW' 2. Physics description of fluids

At the point of collision, the particles scatter through a solid angle. Defining the to-
tal cross-section o(£2) by taking the integral over the whole solid angle d2. The flux of
particles that scatters out from the volume d3u;d3us of fi into the solid angle given by
[u} — ub| f1f20(Q)dQ. Dividing with d3u and integrating over the solid angle d2 and d3us
is given by

L(f1) = / / f1foubd3uo (Q)dL.
The same argument holds for particles being scattered into f;, where the distribution func-

tion is dependent on the primed velocities f| = f'(t, %, u}), such that

T(f1) ://flfzu']%d?’ua’(Q)dQ.

Since the velocity is invariant under these collisions, then so is the solid angle. Subtracting
these two expressions, and writing df2 = sin 0dfd¢, with 6, ¢ being the scattering angle and

the azimuthal angle respectively, the collision integral becomes

27 T
I(f) = / Py /0 ds /0 sin 0d0]ul — ub|(f1fa — F1F5)0 (). (2.4)

If the collision integral vanishes, the Boltzmann equation reduces to a differential equation
and describes how the distribution function is conserved. Before considering solutions, we
will here, without proof, describe an essential consequence of the Boltzmann equation. The
collision integral leads to the H-theorem, which states that if a system is out of equilibrium,
the collisions will bring it back to an equilibrium state. This happens when fi fo — f5 fo = 0,

and the distribution function for a mono-atomic system is proportional to [3]

f o< exp(—u). (2.5)
Finally, the Boltzmann equation is difficult to solve due to the collision integral, but it is
sufficient to simplify the problem by considering invariant quantities under collisions.
2.2 Moment’s equation

For a mono-atomic fluid in an elastic collision, the conserved quantities are the mass m,

the momentum mu’ and the kinetic energy (1/2)mu?. The fluids consist of N particles. By
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Page 8 of IW' 2. Physics description of fluids

averaging over the whole velocity space, the number density is given by

n= /d3uf(t,xi,ui), (2.6)

while the average velocity v, and the internal energy per number density € as [3]

1 o
v = /d%uf(t,xz,uz) (2.7a)
n
1
€= % w2d3'u7 (27b)

where w’ = u’ — v® and describes random motion in the fluids. Note that the average of
w?, satisfy (w') = 0 while in general (w?) and (w‘w’) does not. The average velocity v’
describes the velocity flow and will be referred as the fluid velocity and describes the global
dynamic of fluids. For a static fluid, the fluid velocity vanishes, but a stationary fluid can
still have local motion denoted by wu’. Thus the local velocity u’ is independent of time,
while the fluid velocity is not per definition. Suppose a force acting on the particles in the
fluids is uniform, such that (a’) = @, and that the force is independent of the velocity. For
mono-atomic fluids, m = (m), and multiplying the mass with the Boltzmann equation and

integrating over the whole velocity space gives

/d3um (8tf U f +al §£> = 8t(/mfd3“> + ai(/uimfd3u> (2.8)

= Jy(mn) + 9;(mnv*) = 0,

where the first equality holds due to the product rule. The third term on the LHS goes to
zero since the distribution function consists of finite particles and according to eq. ;
it goes towards zero when the velocity goes towards infinity. Eq. describes the con-
servation of mass in fluids; thus, no particles are created or destroyed. With the same

assumption, the conservation of momentum becomes

/d3umui (8tf+uiaif+ai§j;> = 8t(/muifd3u) +8i(/uimuifd3u) m/aifd?’u

= 0y (mnut) + @-(mn(ujui)) —mnat = 0.

(2.9)
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Page 9 of IW' 2. Physics description of fluids

Using the relation
() = ((u' —v") (! — 7)) + (W ho! + 0 (W) — v'e! = (wiw?) + o',
and defining
1Y = pma'v? + PY | with PY = nm(w'w’), (2.10)
simplifies eq.(2.9)), and reduces to
dy(nm) + 6,11 = 0. (2.11)

Note that eq. is the momentum flux tensor and describes the flux through an area
orthogonal to the i-th direction of the j-th components, which is precisely just the spatial
component of the energy-stress tensor. The term P% is the pressure tensor and is still
dependent on the distribution function. The expression of eq. for a* = 0 describes
the conservation of the linear momentum through the momentum flux tensor. Lastly, mul-

tiplying the Boltzmann equation with the internal energy

1 , Of 1 1 1 0u?
3, = 2 i 9. 7 — - 273 . - 233 _ - 7 3
/d uzmu <8tf+u81f+a 8ui> 8t<2mu du> +8l</2mu d u> /Qma Buidu

- at(mn<u2>) + 8Z(mn<u2uz)) — nma'u;,

(2.12)
and for the average brackets, the following relations holds
(W?) = (u';) = (w'w;) + viv; = € + v?
(") = ((w? + v + 2wivg) (W' +vY)) = (w?w') + (W' + v*v' + 2w w)v;.
Substituting this into eq.(2.12)) and using the definition of the thermal flux [3]:
i1 i 2
q = §nm<w w*) (2.13)

and describes the flow of thermal energy. With eq.(2.7b)) and the pressure tensor gives

1 9 nmu? p i i
Oy | mne + g mnu + 0;| [ nme + 5 + 0iq" + 0;(PYv;) — nma'v;. (2.14)

July 2022



Page 10 of Im 2. Physics description of fluids

Similar to the momentum equation, setting a’ = 0 describe the energy conservation through
the heat flux and pressure tensor. Defining now the density and the internal kinetic energy

per unit volume

p =nm, (2.15)

£ = pe, (2.16)

then eq.(2.8)),(2.11) and (2.14]) can be written together as

Ot(p) + O (pv*) =0 (2.17a)

A (pv") + 9,11V = pa’ (2.17b)

2 2\
&g(s—l—p;)) +8i<<6+ p;>v’>

These equations are known as the Boltzmann moment’s equation, and setting a* = 0

~0iq" — 8i(PijUj) + pa‘v;. (2.17¢)

describes macroscopic quantities conserved through collisions. The thermal flux in eq.
and the pressure tensor in eq. are still dependent on the distribution function,
even if such a function was known to satisfy eq. the physical implication, if any, is
not clear to us.

Nevertheless, while the exact value of the distribution function may not be obtainable, it
is possible to consider a derivation expansion, known as the Chapman-Enskog expansion.
The computation of such expansion is involved and is out of this project’s scope. Therefore,
we will only present the idea behind such an expansion and comment on the results. For an
exact computation, we refer the reader to [15]. The general idea is to introduce a variable 7
that is of the order of /L. Then by making an expansion for small 7, the Chapman-Enskog

expansion reads [15]
f=foy+7fa) +0O(). (2.18)

The first term designates the zeroth-order approximation, and the collision integral vanishes
such that the Boltzmann equation is automatically conserved. Since the integral collision

equals zero, the H-theorem states that the Maxwell distribution satisfies the Boltzmann
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Page 11 of Im 2. Physics description of fluids

equation. For the first-order, the collision integral does not vanish and is thus only con-
served by collision invariant quantities. Furthermore, the expansion further implies that
the distribution function also is expanded in a power series of the gradient. The thermal

flux and pressure tensor satisfies [16]

P = ng) + P("{) = pd¥ — ol — (69 Ppu” (2.19a)
q' = —kOiT, (2.19b)

where 67 is the Kronecker delta, and ¢ is the shear tensor given by
ij 2 Gijn K
o =n| Ov; + 0jv; — 55 TORv" |. (2.19¢)

The first term in the last equality in eq. is the zeroth-order contribution and corre-
sponds to isotropic pressure, with P¥ given only by diagonal elements. The two last terms
correspond to the first-order contribution and describes dissipation effects. The thermal
flux has no contribution in the zeroth-order, and no heat exchange occurs. The coefficients
p,n,k and ¢ are the isotropic pressure, shear viscosity, bulk viscosity, and thermal con-
ductivity, respectively. Here 7, x and ¢ are transport coefficients and describe how rapidly
fluids out of equilibrium will return to their equilibrium state, and the Chapman-Enskog
expansion determines their exact value. Thus, when writing the hydrodynamic equations,
these transport coefficients can not be evaluated by hydrodynamics but must instead be
found from underlying physics theory. This will be a fundamental premise when consid-
ering the BDNK theory. Before writing the hydrodynamics equations, the implication of

thermodynamics should be considered.

2.3 Thermodynamic equilibrium

Thermodynamic quantities, such as pressure, density, internal energy etc., play a vital role
in describing fluids. For a system isolated from its environment, the first law of thermody-
namics states that the internal energy E can vary due to heat exchange, work done to the

system, and the creation/destruction of particles. The first law of thermodynamics reads
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Page 12 of Im 2. Physics description of fluids

&l
dE =TdS — pdV + pdN, (2.20)

where T is the temperature of the system, S the entropy, p the pressure, V' the volume,
i the chemical potential and N the particle number. A thermodynamical system isolated
from its environment is said to be in equilibrium if its properties do not change. In a
system in a global thermodynamic equilibrium (GTE), properties such as the temperature,
pressure and chemical potential are uniform throughout the system. At the same time,
the entropy, internal energy and volume depend on the system’s size, and are known as
extensive properties [17]. These properties can be made independent by dividing it by the
system’s volume or the density. Setting ¢ as the internal energy per unit volume, s = pS as
the entropy per unit volume, with the specific volume V = 1/p. For a mono-atomic fluid
dN = 0, the first law reads

de = pT'ds + %dp. (2.21)

Alternatively, with a constant R € R, the internal energy satisfies
RE(S,V,N)= E(RS,RV,RN),

differentiating with respect to R and setting R =1, leads to £ =TS — pV 4+ uN. Writing

this in unit volumes reads
e+p=Ts+ pu, dp=sdT + pdy , de = Tds + udp. (2.22)

The relationship between the pressure and thermodynamics variables is known as the equa-
tion of state. This dictates that the pressure is a function satisfy p = p(T', 1), and according
to the chain rule this corresponds to writing

9 0
dp(T, p) = odT + 22

_ Op _Op
=57 8,ud'u = s

—or 0 P T au
The two last relations are implied by comparing with eq. (2.22)). Due to the relation of the

entropy and density, it can further be seen that [14]

),-(),

July 2022



Page 13 of Im 3. Non-relativistic hydrodynamics

The equation of state plays an essential role in describing a model of the universe: diluted
gas is usually considered, and an equation of state is chosen to describe the expansion of a
universe made up of specific types of matter [18]. Lastly, the second law of thermodynamics
states that the entropy of a closed system must increase. This corresponds to stating that
thermodynamic processes are irreversible in the direction they occur [3]. The second law
directly impacts hydrodynamics in terms of an entropy current. Nevertheless, the GTE
is not satisfied for fluids, which are not necessarily closed systems and can still interact
with their environment. The first law of thermodynamics can not be applied for fluids in
the global scheme. Instead a local thermodynamic equilibrium LTFE is adopted, such that
for a system not satisfying GTE it can be made up of sub systems that locally satisfies
thermodynamic equilibrium. The fluid elements have local values of temperature, internal
energy etc., and fluids is a continuum of these local values. Therefore, the thermodynamic
quantities are dependent on a time t and its position ! in the system, and can be seen as
scalar fields of the fluids [3], satisfying the relations in eq. as

dp(t,z) = sdT'(t,z*) + pdu(t, ') , de = Tds(t,z") + pdp(t, z?). (2.24)

For the variation of the entropy ds and the density dp the chain rule applies
, 0s
ds(t,x') = a7

Later, perturbation around the thermodynamic equilibrium will be considered, and with

. 9s .  Op 9 .
T 4 — 4 Y = —dT ! — Y. 2.2
AT a') + 3 duta) | dp(ta’) = SRAT(4a") + Pau(ta). (2:29)

the definition of the scalar fields, it will be possible to define amplitudes for these pertur-

bations.

3 Non-relativistic hydrodynamics

From the discussion above, we summarise the findings and the assumption that allows to

write the hydrodynamic equations:

e Fluids have a scale length much larger than the mean free path of the particles. The
inequality in eq. (2.1)) ensures that collisions occur, and according to the H-theorem,

fluids out of equilibrium will eventually return to their equilibrium state.
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Page 14 of Im 3. Non-relativistic hydrodynamics

e Hydrodynamics describes only conserved quantities, which are the system’s mass,
momentum and total energy, and in deriving the moment’s equation, only elastic

collisions occur.

e Hydrodynamics is described by an expansion of ¢/L or equivalent of the gradient
0;. The zeroth-order approximation corresponds to having a stress tensor with only
diagonal elements. The first-order approximation is a correction to the zeroth-order

and has a non-vanishing heat flux, and a pressure tensor has non-diagonal components.

The zeroth-order of hydrodynamics, are also called ideal or perfect fluids [16]. By setting
P = pfY and ¢ = 0, in the moments equation eqs. (2.17) the ideal hydrodynamics

equations become

Aip+ 9 (pv’) =0 (3.1a)
Ay (pv') + ajnl('g) = pa’ (3.1b)
2 2\ . .
O <6+ ,0;)> +3i<(6+]0+ P;’)vz) = palv; (3.1c)

where Hl(%) reads
Hz(%) = pd + pv'o’.

These equations govern the ideal hydrodynamics, where no terms contain the transport
coefficients 7, and k. The first equation describes the conservation of matter, known as
the continuity equation, and states that no particles can be created or destroyed. For the
relativistic case, this corresponds to the conservation of a four-current related to the sym-
metries of the first unitary group U(1). The second and third equations are the conservation
of momentum and the total energy. For the relativistic case, this corresponds to the con-
servation of the energy-momentum tensor. Ideal hydrodynamics consists of one vector field
vi(t, '), three scalar fields p(t,z%), p(t,z%) and (t,2%) that correspond to the local fluid
velocity, density, pressure and internal energy respectively. The egs. describe mono-

atomic fluids, and for n multi-component fluids, a summation is needed over the conserved

n
quantities, e.g., p = > pn [8]-
i=1
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Suppose now that no external force is present, then by multiplying the momentum equation

with the velocity v;, and using the continuity equation, leads to
1 N 2, j ij
SOP0?) + 50 (prPe) — 09 0;(p3).
Subtracting this with eq.(3.1c|), reduces the energy conservation to
Ore + 0;(ev") + pdiv® = 0. (3.2)
Inserting eq.(2.21]) into the eq.(3.2)), and using the continuity equation gives
Ors + 0;(sv') = 0. (3.3)

Here su* is the entropy current, and is conserved for ideal hydrodynamics. For fluids with
constant density p € R, they are said to be incompressible. In this case the continuity
equation implies that the fluid velocity is divergenceless.

The ideal hydrodynamics is not a realistic picture of fluids since the only dynamic occurs
due to pressure. Therefore, substituting egs. (2.19) with the first-order correction into the

moments equation, gives

Oip + 0 (pv*) =0 (3.4a)
(pv") + 0,11 = pa’ (3.4Db)
2 2\ A
) <s+p;> +8¢<<e +p+ p;>v’> + je = palv;, (3.4c)

where for compactness
je = —0;(no) — 9;(CoY ") — 03(kO;T),
and
2
Hij = p5ij + pU;U; — 77<6in + ajvi — 35ij8kvk) — C(Swakvk

The particles move due to collisions and small inhomogeneities in the temperature, density,

velocity, etc., which is due to the first-order correction. Thus, the first-order approximation
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gives a closer description of actual fluids. The first equality is unchanged from the zeroth-
order, and the second equality is known as the Navier-stokes equation and describes the
motion of viscous fluids [3]. The third is the heat-conduction equation which describes the
heat/energy distribution in a given fluid over time. Again, the transport coefficients 7, ¢
and k exact values can not be determined by the hydrodynamic equations but are found
from the Boltzmann equation. Determining the exact values of 1, ( and k requires specific
assumptions, and dependent on their derivation can lead to different hydrodynamics [16].
This is explicitly seen by considering fluids with x = 0,  # 0 and ¢ # 0, describing viscous
fluids with no heat exchange, while k # 0 and n = { = 0 describe fluids with heat exchange
but no viscous effects, i.e., the pressure is isotropic. This will be expanded on further when

considering the BDNK theory.

3.1 Hydrodynamics fluctuations

Suppose a given vector field v’ and two scalar fields p and ¢ satisfy the hydrodynamic
equations at an equilibrium configuration. Suppose the fields undergo small disturbances,
such that the initial flow undergoes small infinitesimal fluctuations. These small fluctuations
give rise to amplitude, e.g., the velocity v* will have the corresponding amplitude &v’.

Writing the velocity in power of the amplitude such that
vt = vl + v’ + O(6?). (3.5)

The discussion in the previous section allow us to consider this expansion to a first-order for
hydrodynamics, such that only terms linear to these amplitudes are retained. Furthermore,
only linear equations will be considered, meaning that the disturbance is non-finite, while
non-linear systems consider finite amplitudes. If the amplitude vanishes, then the zeroth
power of the amplitude series in eq. must satisfy the fluid velocity in equilibrium. Since
the fluctuations are small, then v® > §v’. Suppose now that the fluids is in a 3-dimensional
space, with the coordinates 2' = (x,y,2). We can analyse the small fluctuations of the

velocity field in terms of plane waves govern by wave vector k*, with a given wave number
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k = \/k'k;. Let dvi(t) be the disturbance associated with the wave number k, the amplitude

Svi(t, 2") can be expanded by considering an infinite homogeneous background by

oo
'(t,x') = / dkovy,(t) exp(ik'z;). (3.6)
—00

This expansion is general for any amplitude and will also be valid for the perturbation of the

thermodynamic fields. Studying the hydrodynamic equations under these small fluctuations

gives rise to two modes.

3.2 Hydrodynamics modes

The small fluctuations of the relevant fields for hydrodynamics correspond to an ampli-
tude & ~ exp(ik'z;). To see their effect on the hydrodynamic equations, suppose that the
fluid velocity v* = 0 at equilibrium, and that p,e,p € R. This setup is a solution to the

hydrodynamic equation. The fields out of thermal equilibrium reads
p=p+0p, e=c+dbe, dp=p+dp, v = &', (3.7)

where again, only terms linear in the perturbation will be retained. Using the equation of

state p = p(g, p) for the perturbation corresponds to writing

_ (9P 4 o\ o
0;0p = < (%)paz(se + < 8[))6@@.

Inserting now eq. (3.7)) into the ideal hydrodynamic equations, gives

du0p + pdidv' =0 (3.8a)

dov’ + 9p Dide + Y 95p =0 (3.8b)
pOLov e , i ap ] 0P = .

9y0e + wd;ov' =0 (3.8¢)

where w = e+p is the enthalpy. Then decompose the velocity perturbation into components
that are parallel and perpendicular with respect to the wave vector k!, and write dv’ =

(5vﬁ + 60" . Defining 5vﬁ = (k'k’0v;)/k?. Taking the time derivative of eq.( | while using
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the relation of eq. (3.8a) and (3.8¢c)) the perturbed momentum equation becomes

pdZovt + <w<8p> +p<8p) )af(svi = 0.
oe ), op) .

Using now the relation of the amplitude in eq. (3.6) and defining the sound speed v? =
(Op/0p)e + (9p/0:),(w/p), gives

vt + K*26v' = 0.

This satisfies the wave equation and describes a hydrodynamic mode that propagates with
the sound speed. By inserting the decomposition of the fluid velocity, then the only con-
tribution is from the longitudinal components since kv’ = 0. The transverse velocity
component is thus time-independent, and the thermodynamic fields decouples. Therefore,
there are two modes in hydrodynamics: one that corresponds to the longitudinal velocities
called the sound modes, and the other that corresponds to the transverse velocities called
the shear modes [19]. For the sound channel the perturbation of the thermodynamic fields
are present, and are not for the shear modes. Furthermore, from egs. , considering the
sound modes, that the following relations holds

&'

Vs

se
w

v

Us

)

‘517_
P

These relations require that the velocity perturbation must be much smaller than the sound
speed vs. Since it is required that hydrodynamics satisfies a mean free path much smaller

than the characteristic length according to eq.(2.1]), which corresponds to stating that [16]
|0ip| < |p/el,

and from the above relations corresponds to having |§v?| < |vs].

3.3 Linear analysis

The hydrodynamic equations satisfy the wave equation and define the sound modes for the
longitudinal velocities. While the wave equation is a solution to the hydrodynamic equa-

tions, we will introduce the idea of linear analysis, which will become important for more
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involved solutions. Since the longitudinal velocity components satisfy the wave equation,

then dvg(t) are given by
Sk (t) = vl exp(ogt) = dv' = dv' exp(ik'z; — o) (3.9)

where o) will generally be complex. To see this explicitly, consider egs. (3.8]) written again

for convenience

dy0p = —ikpdv’
- b
Bovt = —iZkde — iZkdp
p p
e = —iwkdv’
where for compactness a = (9p/0e), and b = (Op/Jp).. By defining a vector
8% = (8p, o', 5¢)
the linear system can be expressed in terms of a matrix My, and written as

D40y = Mypo?, (3.10)

which is a linear differential equation that has the solution satisfying the relation eq.(3.9).

Suppose that the eigenfrequnecy of the system is given by oy such that

— 0 —’ipk 0
— — _Q _ _45Q
Moy — ol ik o i%k | (3.11)
0 —iwk —0p

and taking the determinant of the matrix and solving for oy, to find that

b
o = iy [ PO ik = i,
P

This corresponds to the result of the wave equation considered in the previous section.
Nevertheless, linear analysis is essential when studying fluctuations of hydrodynamics and

will be the primary approach for more complicated systems. Furthermore, note that w = vk
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has the unit of frequency, and thus the dispersion relation gives the eigenfrequency of the
modes. For the first-order approximation, an additional term of order O(k?) would be part
of the dispersion relation w = 4vsk + iwok?. The fluctuations will be considered to be
proportional to exp(i(kz; — wt)), and we will make use of the linear analysis in studying
dispersion relations. For relativistic hydrodynamics, many fundamental ideas of the classical

description translate directly over, which will also be the case for the BDNK theory.

4 Linear stability theory

Before realising the relativistic hydrodynamics, it is necessary to study the stability of the
system. Lets Suppose that the hydrodynamics variables are the density p, the internal
energy ¢ and the fluid velocity v*. Assuming that they satisfy the hydrodynamic equations,
such that they describe an initial flow: if this flow is disturbed by small fluctuations, will the
fluctuations grow in amplitude or slowly return to equilibrium? For the latter, the system
is stable, but if the amplitude grows such that fluids never return to their initial flow, the
system is unstable [20]. For illustrative purposes, consider a ball with a mass m. If the
ball is at the top of a hill, any disturbances will send it down the hill, and it departs from
its initial state. If the ball is at the bottom of a potential well, it will return to its initial
state under certain conditions. For example, if the disturbance is small, the ball will not
gain enough kinetic energy to leave the potential well and return to its initial state. This
example is illustrated in figure . Suppose the disturbance makes the ball oscillate with
a frequency w > 0. Let z(t) be the position for the ball at a time ¢, such that the equation
of motion reads

P (t) = +wz(t),

where the plus sign is for the stable system, and the minus is for the unstable system.
The solution for the stable case is given by z(t) = z¢exp(—iwt), while the unstable case

x(t) ~ zp exp(wt) and thus grows exponential.
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stable unstable

Figure 2: Illustration of a ball with a mass m of a stable system in the potential well (left)

and the unstable case on top of the hill (right). Figure adapted from [21]

The case studies for the hydrodynamics case correspond to stating that the amplitudes
can grow exponentially. From the linear analysis, the eigenfrequency was given by w, and
the amplitudes ~ exp(ik‘z; —iwt). The dispersion relations have a real and imaginary part,

and thus to avoid the amplitudes to grow exponential, it is required that
Imw(k) <0, (4.1)

for the system to be stable. However, the stability requirement above is for the dispersion
relation only, and thus only ensures stability for small k. To find the stability for arbitrary
k, it is necessary to imply stability of the linear system’s determinant. This can be done
using the Routh-Hurwitz criterion, that states that for any polynomial with real coefficients
describing a closed system, the stability is determined by a Routh array or a Hurwitz matrix
[22][23]. For the Hurwitz matrix, consider any given polynomial with coefficients that are
real

flx) = aoxrt + a1z + asx® + aq,

with ag > 0, the leading minors of the Hurwitz determinant must all be positive. The
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Hurwitz Matrix are given by [23]

al as 0 0

aq a9 ay 0
H(f) =

0 aq as 0

0 ag as aq4

The polynomial is then said to be stable if all the leading minors are positive, where the first
minors dictate that a; > 0. For studying the linear stability of hydrodynamics fluctuations,
the dispersion relation must satisfy eq. (4.1]), while for arbitrary k it is necessary to impose

the Routh-Hurwitz criterion.

5 Relativistic hydrodynamics

When writing hydrodynamics from now on, it will refer to relativistic hydrodynamics. Be-
fore considering the BDNK theory, we will present general concepts of velocity in a rela-
tivistic theory and briefly comment on the relativistic Boltzmann equation. The theory of
relativity describes a space-time given by a smooth manifold with a Lorentzian metric. The
line-element is given by [24]

ds? = G dxtdx”

which is then usually maximised to give the proper time dr = —ds. Given a set of co-
ordinates x* where u = 0,1,2,3, with its respective proper time 7 allows to define the

four-velocity as [24]

dx#
w2
“ dr
1

\/1-82’
dx

velocity ' = Gt » the time and spatial components are given by u? =~ and u' = ~f?, with

(5.1)

By introducing the Lorentz Factor v = and using the definition of the spatial

the speed of light ¢ = 1. The components of the four-velocity reads
wt = (1, ). (5.2)

The four-velocity is the fundamental degree of freedom in relativistic hydrodynamics. For

a static fluid, i.e. when there is no relative motion between the fluid elements, the spatial
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velocity vanishes. For an arbitrary smooth space-time manifold embedded with a general
metric g"¥, then at any given point, a tangent space is spanned, and the space-time is
considered locally flat. That is, locally, the effects of any gravitational potential can be
neglected, and the metric can locally be given by the Minkowski metric g, = 71,,. For
hydrodynamics settings, for small fluid elements, the metric should reduce to the Minkowski
metric 7,,. Thus locally, Einstein’s Equivalence principle is satisfied for any fluid element

[25]. The fluid velocity u* is normalised accordingly
Nuutu” = utu, = —1. (5.3)

The normalisation of the fluid velocity, is the first constraint for hydrodynamics, which
will be taken into account together with the constraints of the shear and sound modes.
Furthermore, the fluid velocity uw* is per definition a vector, and thus must transform

accordingly under a Lorentz-transformation on a general space-time
u't = AP b (5.4)

For an arbitrary space-time, the direction derivative 0; can be generalised by introducing
the covariant derivative for any vector field, and the covariant derivative of the fluid velocity
reads [24]

Vouuy, = Opuy, — TP g,

Here I'?,,, is the Christoffel symbol and is dependent on the metric, and for a Minkowski
metric with cartesian coordinates, all the Christoffel symbols are zero. Thus, the covariant
derivative reduces to the directional derivative. The four accelerations in a general space-
time is given by

at = u"V,yut. (5.5)

The normalisation criteria in eq.(5.3]) implies that the four accelerations must be orthogonal
to the four-velocity such that u,a” = 0. Thus, any fluid element has a four-velocity that is
tangent to its worldlines, while the acceleration will be orthogonal to its worldlines, which

is illustrated in Figure (3]).
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Figure 3: The worldlines of fluid elements with a given fluid velocity, and respective four

acceleration. Figure is adapted from

The covariant derivative of the four-velocity V, u" gives rise to a two-rank tensor. It
is often useful to split such a tensor in a parallel and perpendicular direction to a given
vector, allowing us to study such properties of the directional components. First, consider
any general two-rank tensor A*. It is always possible to write it in terms of symmetric

and antisymmetric parts
AR — Aw) ) _ L g vp Lo vp
= +A —E(A +A )—|—§(A — A"H),

where (...) and [...] denote symmetric and antisymmetric over the indices, respectively.
Given the four-velocity and a generic metric g"” a projection tensor A*” can be defined

that projects any tensor on the hypersurface orthogonal to the four-velocity, given by

AP = yFu” 4 g (5.6)
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The projection tensor satisfies u, A" = 0, AMAP, = AFP and AP,V u" = V,uP,
and its trace A*, = 3. The space of the fluid is spanned by w* and A*”. Any two
rank tensor dependent on the fluid velocity, can be decomposed in parts: A term that is
parallel, orthogonal and transverse to the fluid velocity, which further can be decomposed

in symmetric traceless and antisymmetric parts. The tensor V,u, decomposes as
Vi, = auyuy + bA 4+ 20,1y + 0 + Wy (5.7)

The scalars a, b are parallel and orthogonal respectively. The vector C), is transverse, o,
is the symmetric traceless and wy,, is the skew-symmetric part. The scalars, vectors and

tensors are given by:

1
a= u/\upVAup , b= gAApV)\up
2
Ouw = A/\NAPV(VpU)\ + Vyu, — gg,,AVUu")
Wy = A)‘NAPVV[;,UV} , Cp = —ApMuAVAup,

where the fraction in the relations of b is present due to the trace of the projection ten-
sor. The scalar a vanishes since the four-velocity is orthogonal to the acceleration, the

decomposition reduces to
Vyty = W + 0 + bAu + Cuu,), (5.8)

where wy,, is called the kinematic vorticity tensor and o, is the shear tensor |3]. Both are

transverse to the four-velocity, and the shear tensor is traceless, and thus satisify
W A" = 0, A" = 0.

The physical description of these quantities, can be illustrated by taken the action and
defining the vorticity four-vector w* = (1 /2)5“”0‘6wa5u1,, where e#®8 is the levi-civita
symbol. Taking the action of the vorticity vector w, gives rise to a rotation around a fixed
axis, while the action of the shear tensor describe distortion of the fluid. Furthermore, the
scalar b contains AV aup =V yu?, which describes the expansion of the fluid. All three

cases is illustrated in Figure (4)).
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reference expansio

vorticity

Figure 4: Illustration of the different composition terms of V,u,. First figure to the left
is a reference, second the expansion where ©® = Vyu*. Third rotation around the axis
intersecting the poles and lastly the shear of the sphere due to shear tensor o, . Original

figure ||

The introduction of the four-velocity, gives rise to a four-momentum, let m be the rest

mass of any sort of particle, then the four-momentum is given accordingly
Pt = mu*.

The time component is the energy, and the spatial component is the momentum, and are
normalised such that p,pt = —m?2. Lastly, the four acceleration also introduce the four-force
given by

FH =mat. (5.9)

The four-velocity u*, the four-acceleration a*, the momentum p* and the four-force F* gives
all the quantities to derive a relativistic version of the Boltzmann equation. Its derivation is
more involved but similar to the classical description. The difference in the relativistic case
is that the phase space d*zd>u must now be Lorentz invariant under infinitesimal time d¢.
The derivation will not be considered here, but finding the relativistic moment’s equation
gives conserved quantities similar to the classical description. The conserved quantities are
the stress-energy momentum tensor T#”, and the four current J#. That is, with respect to
the covariant derivative [3]

VT =0, V,J"=0 (5.10)

July 2022



Page 27 of [107] 6. BDNK-Theory

where the four-current represents the conservation of electric charge, and the energy-
momentum tensor is the conservation of linear momentum and energy. The energy-momentum

tensor is symmetric, and the physical interpretation of the components is given by
e 7% is the energy density
e 7% the momentum density
e T the isotropic pressure
e T with j # i is the shear stress .

The kinetic theory allows to derive expressions of the zeroth and first-order approximation
of the energy-momentum tensor and the four-current. However, the kinetic description will
not be considered, and alternatively a description of hydrodynamics as an effective field

theory (EFT).

6 BDNK-Theory

The description of hydrodynamics from the kinetic theory requires a solution to the relativis-
tic Boltzmann equation, which can be rather involved. However, describing hydrodynamics
as an EFT allows for simplification in writing out the equations governing hydrodynam-
ics. For any EFT the theory is characterised by an effective action, that in turns can be

constrained by the following points [26]

o Degrees of freedom: The system needs to be characterised by variables or fields cor-

responding to degrees of freedom for the system.

o Symmetries: Constrain on an effective action given by certain symmetries, i.e., as
a gauge, global symmetries etc., such that they correspond to constraints on the

system’s dynamics.

e Ezxpansion: Physics phenomena act differently for a wide range of energy, length and

time scales. For example, particles in microscopic quantities do not behave similarly
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to macroscopic quantities. Thus, while an effective action may have an infinite amount
of terms, they can be collected in a power expansion, such that zeroth-order term is

collected together.

From the classical description, it was evident that the hydrodynamic equation describes
conserved quantities, that are characterised by two thermodynamics fields and one vector
field. The three points above must be satisfied to develop hydrodynamics as an EFT.
Firstly, the conservation of the energy-momentum tensor and the four-current comes from
the results of a kinetic theory. However, how do we establish these conservations from
an EFT perspective? This is done by studying the symmetries of the action and using
Noether’s theorem, which states that: For any symmetry of the Lagrangian, there is a
conserved quantity [16]. Translations, rotations and boosts give the symmetries of space-
time. First, defining the energy-momentum tensor for a material system is achieved by
considering the variation of the action S with a background of the metric g,,, then a
variation of the action with respect to the metric corresponds to writing g, — guw + 09,

and the energy-momentum tensor may be written as [24]

_ 2 945
vV —9 59#1/(-@)'

From this definition since the metric g, is symmetric over its indicies, then so is T#”. The

THv (6.1)

general action S under a translation gives the energy-momentum tensor, that according to
the Neother theorem, is conserved. For direct proof of this, we refer to [24]. Furthermore,
let A, be a vector potential, then with similar argumentation for the energy-momentum
tensor, a four-current can be written by considering variation of the vector potential

A, — A, +6A,, such that the four-current can be written as

_ 14
RETI0)

This corresponds to a global U(1) symmetry [16]. Thus, since the energy-momentum tensor

Z (6.2)

emits translation symmetries, and the four-current emits a U(1) symmetry, they are both

conserved and satisfy egs. ([5.10]). The equation governing hydrodynamics can be expressed
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with six fields, while they are parametrised by two thermodynamics fields and a vector
field. For this purpose, it is common practice to use u, T and u” which are the chemical
potential, temperature and fluid velocity. However, we note that these fields are auxiliary
fields, and when defining equilibrium for the BDNK theory, the fields can be seen as a local
fluid velocity, temperature and chemical potential [27]. Lastly, the thermodynamical fields
can be choosen to be €, p, p etc., it is merely a choice and they related through the first
law of thermodynamics and the equation of state.

With this brief discussion, the first two points of forming an effective field theory has
been satisfied. Firstly the degrees of freedom are given by the fields T, u and u#, and
the symmetries of the action are given by the energy-momentum tensor and the four-
currents. Lastly, the expansion is a derivative expansion, according to the Chapman-Enskog

expansion, and thus the energy-momentum tensor and the four-current can be expanded as

Wy v v Lo H w
TV =Tl + T TR =Tl + Tl (6.3)

The zeroth-order is in the power of O(1) and the first-order approximation is in the power
of O(9). As final note for this section, the four-current will be considered to be the charge
density, such that parity symmetry is satisfied. Lastly, the symmetries of the boost and
rotation, are not necessary taken into account, but their symmetries are satisfied by the
3-rank tensor MHMA = pPTHA — gVTHA which is also conserved [16]. Thus there are more
conserved quantities that could be taken into account. However, the hydrodynamic equa-
tions in eq. are dependent on six variables and its linear system is solvable, and thus

the last symmetries is not considered in this project.

6.1 General Frame for hydrodynamics

The definition of the energy-momentum tensor dictates the values of the different compo-
nents. The time-time component give the energy density, while the diagonal elements are
the pressure. From the classical description, the zeroth-order correspond to having isotropic
pressure. Therefore, decomposing the energy-momentum tensor 74" and current vector J*

similar to the decomposition of the fluid velocity in eq. (5.7]). The general tensor and vector
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can be decomposed into terms containing constitution relations, which can be thought of
as a relation between the physical values, such as the internal energy, pressure and the
current density contained in the four-current. Thus, for a comoving frame u* = (1,0,0,0)
let us define € as the components of T, P for T%, ¢ for T% and t** for T%, while for
the four-current N for J°, and j* for J*. Furthermore, from eq. and according to the
Chapman-Enskog expansion, it corresponds to writing these constitution scalars, vectors

and tensor as
E=C&p te€n =¢e+de
P ="Pe)+7Puy=p+on
N =Ny +TNay = p+ 01

_ v w o _ v
=1, + nt(l) = t(l)'

The vectors and tensor does not contribute to the zeroth-order approximation, since the
energy-momentum tensor is expected only to have diagonal elements, and the four-current
equals the current density. The variables e, 7, 7,[,r and n are the dummy variables, which
now can be considered transport coefficients and have been integrated into the first-order
term. It is convenient to write up the zeroth-order and first order of the conserved quantities

separately. Thus, the zeroth-order decomposition gives

Ti) = (e + p)uru” + pg"” (6.4a)

J(‘g) = put, (6.4Db)
and the first-order are given by
p
Ty =
)= drut + jH. (6.5b)

Seutu” 4+ Sm AP + ghu” + g ut + (6.5a)
L
J(1
Note that only at equilibrium can € and p be taught of as the local energy and the

pressure, while out of equilibrium they are auxiliary parameters. It is necessary to chose
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an equilibrium configuration, which is considered in the next section. Nevertheless, the

constitution relation are given by
1
de = u“ul,T(‘f)' 0 = §A“”T(% gt = —AFu, TP
1 2
v — 3 <A” AAY, AV AV, — 3A’“’A,\p) TP (6.6)

0T = _ou(“l) ,

= ArLJP.
The fraction in the relation of dm comes from the trace of the projection tensor. For
the zeroth-order the scalars follow same definition, by replacing T(’ﬁ with T(’ég. The first-
order approximation is of an order of O(9), and its constitution relation can be written in
terms of the derivation of the field that parameterise them, i.e. T,  and u*. Thus, for the
constitution relations, the scalars can be written in terms of the scalar fields u#V ,T', u*V ,u
and V,u", and for the vectors AV T, A¥'V ,u and utV  u”. For the tensor t*” can be
written up in terms of the shear tensor ¢*” defined in eq. . Note that the derivation
terms that define the constitution relation are merely a choice, and it is common to write

the term of V(1) as V,(1/T) [28]. The constitution relations in a general expansion then

read
Loy A A I
0e = e1=u" V) \T + sV u" + e3u”™ V| =
T T
LY A A p
(57r:7r1Tu VAT + moVyu™ + mgu™Vy T

1
0T =m fu’\V,\T + o Vaut + 130V, (

NI=

> (6.7)
ol
T

)

The minus sign in t*¥ is merely a choice and will be shown later to state that n > 0.

¢" = ru Vit + %A“)‘V,\T + rg AR

7 N\
’ﬂ‘t N———

l
= Lu V! + %A“’\VAT + l3AMVA<

tH = —notv.

Nevertheless, the constitution relations have sixteen transport coefficients: ¢;, m;, 7, i, {;

and 7. However, since T, i and u* are auxiliary parameters and out of equilibrium they
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have no microscopic definition. In order to understand this, a definition of what is meant

with equilibrium is considered in the following section.

6.2 Equilibrium constraints

From non-relativistic hydrodynamics, equilibrium corresponds to values of the thermody-
namics fields and fluid velocity that satisfy the conservation equations. Describing hydrody-
namics as an EFT should also reflect on this definition, such that specific values for the fields
T, p and u* satisfy the conservation equation in egs. . The equilibrium configuration
for the BDNK theory is also a choice, and it is conventional to choose a time-independent
equilibrium. This corresponds to having a time-like vector K* corresponding to a killing
vector [29]-[30]. For K* to be a killing vector, it must satisfy the killing equation such that
B

Lrgu =0, (6.8)

where L is the lie-derivative. Moreover, it states the direction of the symmetries of the space-
time. The killing equation implies that the general metric is time-independent 9;g,, = 0.
Studies of such an equilibrium configuration have been done in [29] - [30], and show that the
first-order approximation must vanish. For a time-like killing vector, the energy-momentum
tensor is still invariant under translation, and is Lie dragged along K, which corresponds
to writing

LxgTH =0.

For this to be satisfied Lx must vanish for the thermodynamic variables. Suppose that T,
po and uf) satisfy a time-independent equilibrium; then according to the killing equation, it
corresponds to writing 28]
u'V, T =u'Vpu =0, Tu'V,u? + APV, T =0
“ (6.9)
TAWVV(T) =0, Vyu'=0, o"=0.
By inserting the egs. into the first order constitution relations eqs. (6.7)) the first

order should vanish. The constitution relations of the first-order does not contribute, and
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all goes to zero, except for the vectors, which states

g’ = Vot + %A“’\VAT

l
j’u = llu)‘VAu“ + %A“AV)\T.

However, at this equilibrium they must be equal to zero and comparing with egs. (6.9))
it vanishes if 1 = 9 and I; = ls. The zeroth-order approximation gives the equilibrium
solution according to egs. , that € and p can be seen as the local internal energy and the
local pressure, respectively, and thus satisfy egs. . The zeroth-order approximation is
conserved and leads to some interesting consequences. For classical hydrodynamics, it was
found that the internal energy, mass and momentum are all conserved. The conservation of
the energy-momentum tensor contracted with the fluid velocity u, leads to a conservation
of the energy density, while contracted along the projection tensor is the conservation of
the momentum. The four-current govern the conservation of the charge density, and the

ideal hydrodynamics satisfy

Viud(gy = u'Vup+ pV,ul =0 (6.10a)

A”VV#T(‘SI)’ = (e +p)u' AP,V u” + APV ,p =0 (6.10b)

—uy VTl = uF'Vyu(e) + (e +p)Vyu! = 0, (6.10c)

where it has been used that uw,u* = —1, A*¥wu, = 0 and A?, A" = APF and it is

understood that e,p,p > 0. Furthermore, substituting the relations of eq.(2.22)) into the
energy conservation and using the conservation of the charge density gives
Vu(eu!) +pV,(ut) = TV ,(sut) + p(uhVup + pVuut) =0 (6.11)
= V,(su”)=0.
This states that the entropy is conserved along the fluid velocity and defines an entropy
current S* = su* that is conserved for ideal fluids. Note that for hydrodynamics to a
first-order, the entropy current is no longer conserved, and must follow the second law of

thermodynamics, by imposing that V,S* must increase |[16]. As final notes for this section,
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outside of equilibrium, the auxiliary parameters T', ;1 and u* no longer have a microscopic
definition and thus can be seen just as two scalar fields and a vector field, respectively. Thus,
in equilibrium, the thermodynamic relations in eqs. are satisfied automatically, while
at a first order correction they are not. However, corresponding relations have been found
to a higher-order but does no longer represent local thermodynamics relations [29]-[30]. As
a consequence, out of equilibrium the value of the auxiliary fields can be chosen freely, as
long as they agree in equilibrium. In the following section, this corresponds to transforming
T, and ut. Where in choosing this equilibrium configuration corresponds to a choice of
frame where the zeroth-order constitution relations are the local temperature 7', chemical
potential p and fluid velocity w*. This corresponds to the discussion of LTE in the classical
description. Studying the field transformation, implies that not all the transport coefficients

in egs.(6.7]) are genuine since we will see they are not invariant under such transformation.

6.3 Field transformation

The thermodynamics scalar fields at the equilibrium are the temperature T and the chemical
potential p. However, outside of equilibrium, the fields have no microscopic definition, and
the small perturbation of the fields does not define any microscopic quantity. It is thus
always possible to redefine the fields as long as they agree in equilibrium. By introducing

small perturbations 67, dp and dut that is in order of O(9). The fields transform as
T—T+0T, p—p+op, v —u'+ou (6.12)
To ensure that the normalisation in eq. is satisfied for any perturbation consider
wuy, = (U + our)(uy + duy) = uuut + vt ouy, + uyout + duydut,

the last term is of higher-order and can be neglected, while the second and third term must
satisfy
uyout =0, (6.13)

to ensure u#u, = —1. This is not guaranteed to be satisfied at higher-order hydrodynamics,

but is satisfied at first-order [2§]. These fields’ transformations correspond to transforming
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the energy-momentum tensor and four-current as

T — T/ + 0Ty + T/ + 6T}, J* — JI.

n n n
(o) T 0Ty + Ty + Ty, o) 190+ Jy 9

( ( 1
The terms 67 (;11)/ and d.J (“1) is of second-order, and thus neglected under these transformations
since only first-order terms are of interest. Since any higher-orders can be neglected then

it corresponds to stating that

5u#5T(‘6'; =0, 5uHT(’§'; =0, uH(SJ(‘g)

and due to eq. (6.13]) then

(5uHT(’6§ = du, ((e + p)utu” + pg'’) = pou”.

=0, 5uMJ(“1) =0

Transforming the constitution relations in eqs. (6.7)), for £ transform as
&= u;Lui,T/ i
= (uy + ouy) (uy + 6wy, ) (TH + 5T(’[‘)’§)
= (upuy + uudu, + uy,ou, + ouyduy,)(TH + 5T(’6'§)
=&+ (uuduy, + uyéu“)T(’é’)'
=& + p(uyout + u,ou”)
=¢.
The energy-momentum tensor and the four-current are invariant under these transforma-
tions. To ensure this, it is enough to impose that the remaining constitution relations
transform as
P =P, N'=N, tr'" = (6.14a)

¢’ =gt — (e +p)ou , G = " — put. (6.14b)
Their transformation are written out explicitly in Appendix [A] From the definition of the
constitution relations of the scalars, the following relations hold

g+’ =e+de

p 4+ on' =p+on

o+ 67 =p+oT,
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using now that ¢ = ¢(T, 1) with the relations in eq. (2.22)), the constitution scalars satisfy

5’ =e+de— ¢ =de— (65) 6T — (66) Sp
m

oT o
0 8

op ap

/ /

7= r—p =6 — | = I — .
0 p+9o p=39 ( >5 < >5,u

The perturbation of the fields is of first-order. Therefore, they can be written generally as

an expansion as done for the constitution relations. Defining a;, b; and ¢; that are function

")

1
6/_1, = blTquNT —+ bQVI_L'U;M + bgu“V“ <§i>

of T, u, the perturbation can be written as

1
0T = a1 TU‘“VMT + a2V ut + agu”VM<

N

out = 'V, ut + %A"”VUT + c3 APV, (;)

This is similar to

5’ = de — (g;) 5T — (g;) S

1 p
= allfu“VMT + ey Vyut + esut'v, <T> :
For 0¢’ in eqgs. (6.15]) corresponds to writing

e () o ().
3 [ aTHz ém T’La

and thus the transformation of the constitution relations correspond to transforming the

transport coefficient as

Oe Oe
/ / L .
de = 0 = €; = & <8T> <8 )T (6.16a)
o = o' = W = m— < ) <8p> (6.16b)
P 7 N @ (6.16¢)
i i oT . % a ’
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For the constitution vector ¢, we can write

" =q¢" — (e + p)ou

1
— (1 (DT (2 = (4 ) LAV (13— (D)) (1),

and similar for j#. Thus the transport coefficient related to the constitution vectors trans-

form as

rh— 1 — (e +p)e

(6.16d)
li — ll — pC;.
The constitution tensor transforms as
th — " = . (6.16e)

The transport coefficient 7 is invariant under these transformations, but &;, m;, 7;, 7; and [;
are not. For the transport coeflicients to be genuine they must be invariant under such field
transformation in order for the physics to remain the same. A combination of the none

genuine transport coefficients are invariant, consider
() 4= (32), (- (o) (52). )
&Sp’ (%pl 8Tul o)
()= (60), () = (35), )
ap o op p oT u ou)p
and using eq. we find that
(@), (), (&), (ar), o= =
Oe 0 orT u op 0 4
), (), () (7))
~((32) (5) +(52) (55) Jor=—nti
((85 SN0/ p or),
i), (o)
— | a;=sa;, | =— | b= pb;.
<6T u ou)

Then there are three genuine transport coefficients that are given by 7 and by the following

Op dp p
i=mi— e~ |, ti=li———r, 1
fi=m <65>p€ (8p>; =1 5—|—pr (6.17)

3
3

relations
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and from the constraints of equilibrium configuration it implies that ¢; = /¢». The two
relations in eq. are written explicitly in Appendix The discussion above shows
that it is possible to choose T', i and u* arbitrarily by the transformation of the transport
coefficient by choosing a value for a;, b; and ¢;. Such a choice is referred to as choosing a
hydrodynamics frame [16]. By choosing values for a;,b; and ¢;, new differential equations
will govern hydrodynamics, and can lead to instabilities that are not present in the general
frame. To clarify the consequences of such a choice, the well studied frames, Eckart and

Landau frame will be considered in the following section.

7 Landau and Eckart frame

Eckart achieved the first formulation of first-order hydrodynamics by assuming that the
four-current did not contribute at a first-order hydrodynamics [7]. Landau and Lifshits
later revised this description to allow hydrodynamics with a first-order four-current [§]. In
both cases, hydrodynamics was parameterised by two thermodynamics fields and the fluid
velocity. However, the Eckart frame and the Landau-Lifshitz (Landau) frame are unstable.
It was then proposed to add extra fields to ensure both stability and causality are satisfied
by the Israel-Stewart formulation |3]. This gives the two frames extra degrees of freedom,
and the description of hydrodynamics becomes more involved. The previous section showed
that the auxiliary parameters under transformation lead to a new frame. Thus, the Landau

and FEckart frames can be derived from the general frame.

7.1 Landau frame in hydrodynamics

Suppose that the energy flux does not contribute in the rest frame at the first-order approx-
imation, from the definition of the energy-momentum tensor that corresponds to stating
that T(Of) is equal to zero, and the time component for the four-current, likewise, vanishes.

The criteria for the Landau frame is thus given by |[3]

1%
u,, T 1

(”:0, u,Jl, = 0. (7.1)

) 1
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A frame can always be chosen such that the Landau conditions are satisfied. From egs.((6.16))
it corresponds to choosing a;, b; and ¢; appropriately such that de = d7 = ¢* = 0. This can
be achieved by setting ¢; = m; = r; = a; = b; = ¢; = 0, or by using eqgs.(6.16)) and choosing

g &(ma—egix)

R
b'— T — € X
e Aa — x€
T
Ci = )
e+p

where
Oe Oe op ap
a=|(—) , &= =— , X=l=z=] A=15) -
oT u ou ) oT 4 o)
Then the invariant transport coefficients are given by f; = m;,¢; = [; and n = 1. The

energy-momentum tensor and four-current, reduce to

TH = (e + p)u*u” + pg"” + (J;UMV#T + foVaut + f3utV, (;))A’“’ — not”

l
JH = put + Lu MV ut + %A")‘V,\T + I3APY <;>

For the landau frame the sixteen transport coefficients reduces to six, namely fi23,¢123
and 7, where /1 = f5. The Landau frame can be simplified further by evaluating the
energy-momentum tensor and the four-current in the hydrodynamic equations at equilib-
rium. The energy-momentum tensor and the four-current can be evaluated on-shell, by
imposing the zeroth-order approximation is equal to zero in eqs.(6.10]). This gives two on-
shell relations for the scalars vV ,T,u*V ,u and V,u*, and one on-shell relation of the
vectors utV , u”, AWV, T and A"V, T. Solving for utV ,pu, utV,T and u*V, u” in egs.

(6.10]) gives the following relations

Os Os
_ o oT
UV = o o Vet
(5:)" — o700
Js dp
“Pou Tt 5o 7.2
u'v, T = 52 5s 05 vV, u (7.2)
(5:)" — o700
u'Vyu” = — (sV, T + pV ).

Ts+ pp
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Inserting these relations into the energy-momentum tensor and four-current for the Landau

frame, they reduce to
T = (e 4+ p)ut'u” — (VAU AR — pot

TR pv pv K (7.3)
JH = put + x7 APV, T — To APV, T)

where (, yr and o are given by

1 op 0s 0s ds u( Os ap

C—_f2+,56,52<<3_)0>f1+<,0_3+<P_3>>f3>

gﬁﬁ_(%) ou ou oT ou T\  Ou ou
p 1

=—— 01— =4
7 Ts—l—up1 T?

1
XT = T(@ — 1)

where ¢ and o are the Bulk viscosity and the charge conductivity, and the transport coeffi-
cient xr becomes zero, due to the constraints from equilibrium. Thus by choosing a frame
such that de = é7 = ¢* = 0 and with x7 = 0 leaves three transport coefficients 7, and o.
By setting x7 = 0, the same frame proposed by Landau and Lifshitz is achieved [§].

The general frame is a collection of frames according to the transformation of the transport
coefficients. The same applies to the Landau frame: Firstly, using the on-shell constraints
to eliminate the scalar fields u*V, T, u#V ,(1/T) and the vector field u#V  u" leads to one
frame that is evaluated in hydrodynamics. If instead we chose to retain u#V T, would have
lead to a different hydrodynamics frame, and would in return impose different physics, and
different stability criteria. The problem is that the choice becomes rather arbitrary, and

there are no constraints to dictate a ”correct way” to eliminate fields.

7.2 Eckart frame in hydrodynamics

To emphasise that transformation of the transport coefficient leads to different hydrody-
namics. While generally focusing on the Landau and the general frame in the rest of the
project, the Eckart frame will briefly be introduced here. Suppose that the first-order the

four-current vanishes. This corresponds to state that there is no charge flow [3]. From the
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definition of the energy-momentum tensor and the four-current, stating that the charge flow

vanishes in the rest frame corresponds to writing

u“uyT(’g =0, J\

h =0, (7.4)

This corresponds to setting de = 67 = 0 and j¥ = 0, which can be achieved by setting

gi=1=1; =a; = b; = ¢; =0, or by choosing

& Plrio—eix)

“T 0T aa—xB)

b‘_TZ‘a—EiX
Y da—xB
l;
Ci = —.
P

Then the invariant quantities becomes £; = r; and f; = m;. The energy-momentum

__pP
E+p
tensor and the four-current to a first-order reads
T = (e + p) + pg"” + dITAH + 2¢H”) — pot
JH = put
where

_5+p

g" = <€1u)‘V)\u'“ + %AHAV)\T + ng“AV)\ <;>>

om = ﬁu/\VAT + BV + v E).

T T
Similar to the Landau frame the on-shell relations can be imposed, retaining on the scalar
field V u# leads to the same 07 = —(V u* as for the Landau frame. However, solving for

AP (/T or u MV \ut respectively gives [28]

q" = —/i(Tu)‘v,\uu + A’MVAT> + X7 APV L\T

_e+p E+p

q" oTAM Y\ (u)T) — XTAMY T

Where o and x7 is given by the relation found for the Landau-frame, while

k= (e +p)°0/(pT)
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Thus, imposing the on-shell relation, different hydrodynamic frames are manifested. That
each have different instabilities, note that choosing to eliminate A**V(u/T) and recalling
that £ = ¢, the Newtonian limit can be taken to give the classical description of the
first-order hydrodynamics [16][3]. Nevertheless, in the discussion of Landau and Eckart’s
frames can be arbitrarily chosen, but it is not guaranteed that they will lead to sensible
physics, i.e. stable frames. From the discussion of hydrodynamics as a field theory, it seems
more sensible that frames should be chosen from constraints in the general frame, such that
stability and causality are guaranteed. Lastly, the Landau frame can also be derived from a
kinetic theory and possibly the Eckart frame. However, this has recently been achieved for
the general frame, where the effective field theory description are taken into account; such

derivation can be found in [32].

8 Covariant entropy current

Thermodynamics plays a vital role in hydrodynamics, which is evident from the constraints
in equilibrium and the hydrodynamic equations themselves. Therefore, it is useful also to
consider the second law of thermodynamics, stating that the entropy for a closed system will
always increase. For the ideal hydrodynamics, it was found that the entropy is conserved

in the form of an entropy current V,(su*). Which corresponds to writing

uyT(%g + ng)) = =TV, (su"), (8.1)

according with eq.(6.10)). The entropy current to a first-order can be written as

St = S

“w

(1)

with the second term being the correction term. From eq. (8.1)) it corresponds to writing

1 o
2 12 14 1
SH = sut — —uyT(l) —=J 1

h (8.2)

The above expression is known as the canonical entropy and has been considered in [28] and

studied in more detail in [33]. It is also a full covariant version of the relation T's = p+e—pup
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[16]. For simplicity, consider the case of uncharged fluids, such that 4 = 0 and J#* = 0. The
entropy then reduces to

1 v
SH = sut — T("l) (8.3)

Taking the derivative of the entropy fully, that is including all order of derivative such that

1 1
V.St =V, (sut) — TUVVHT(‘MI; TV (uHT). (8.4)
The energy-momentum tensor is conserved, which implies a relation between the zeroth and
first-order, which for uncharged fluids corresponds to writing V, (su*) = (1/ T)ul,VuT(‘i';.

Using this relation, the derivative of the entropy current reads

1
V5 = —TH, <uT> | (8.5)
Since the energy-momentum tensor is symmetric, then the antisymmetric parts of V,,(u, /T")

can be neglected, and it is convenient to define

1
Xpv = v(y, <UV)T> .

This is a two-rank symmetric tensor and can be decomposed similarly of the energy-

momentum tensor and is given by
Xuv = _Auuu,, + BA#V + QQ(MUV) + TMV,

where its constitution relations read

1 1
A= *TUAV)\T y B = 37TA)\O-V)\UO-
_LA p lv T—i—u)‘V)\u THY — LUW
or—* \17"”* P or

(8.6)
Qu ==
Using these relations, together with the definition of T (1) given in eq. 1) the entropy

current is given by

V5" = —Ade — 3BoT + 2¢"Q,, + 21

TO' Yo (8.7)

The exact expression is derived in Appendix [C| The coefficient 3 in the second term arises

due to AMA,, = g"A,, = AY, = 3 since A*y,, = 0, similar since both ¢* and Q,, is
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transverse with the fluid velocity, then (2q(”u”))(2Q(Huy)) = 2¢"Q,,. The expression in eq.
corresponds to all orders of the derivation, and not all terms contribute to a first-order
hydrodynamics. This is why higher-order terms must be eliminated. To ensure this, the

entropy must be evaluated on-shell. For uncharged fluids the thermodynamic relations read

0s

e+p=Ts, dp=sdl, de=Tecdl where ¢=or (8.8)
Using these relation with the on-shell, the derivative of the entropy current reads
TV,S" = (v2(eg + 1) — m0 — vler ) (V)2 + ggu,,w, (8.9)

and the derivation is written explicitly in Appendix [C| The first term is along the fluid
velocity, and the second term is transverse to u*. For this reason the terms can be evaluated
separately. Then up to O(9?), and demanding that the covariant entropy current satisfy

V5% > 0 then the following inequalities are satisfied
n>0, vi(eg+m)—m —vie >0. (8.10)

The second inequality corresponds to the bulk viscosity for uncharged fluids [28], and thus
¢ > 0. These constraints ensure that an increasing entropy current is present for first-
order hydrodynamics, which agrees with the H-theorem described in the derivation of the
Boltzmann equation. The BDNK theory imposes constraints from a time-independent
equilibrium and entropy. In the following section, continuing with uncharged fluids, we find

small perturbation around equilibrium to study the linear stability of the general frame.

9 Modes for the general frame

The hydrodynamics equations in equilibrium are characterised by the two scalar fields tem-
perature T(t,z"), the chemical potential (¢, z*) and the vector field u* (¢, z*). First consider
a unboosted frame, such that ° = 0. The hydrodynamics frame is assumed to be for un-
charged fluids, corresponding to the flow being one-dimensional. There are two modes

similar to the classical description for the relativistic modes: the shear and sound modes.
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The auxiliary parameters can be transformed by corresponding to small perturbations that
give an amplitude. Here, again, it will be considered that the amplitudes are plan waves,

such that the amplitudes are proportional to the exponential of the wave vector given by
k' = (w,ksiné, K cosb,0). (9.1)

The transformation of the auxiliary parameters must agree in equilibrium. For compactness,

it is convenient to define A = §exp(ik*x,,) such that the fields transform as
T—>T+ AT, v’ —u*+ Aut.

Furthermore, the covariant derivative, in this case, corresponds to V, — ik,, and for
clarification a flat-background is considered such that g,, = nu, with n,, = (-1,1,1,1).
The perturbation of the fluid velocity Au* is spanned by u* and the wave vector kM.
Defining AU; and AUs as the basis for the vector, then Au* = AUu* + AUsk*. Recalling
that a consequence of the normalisation in eq. , the perturbation satisfies u, Au* = 0.

Solving for AU; under this constrain implies AUy = —wAUs. Thus, Au* is written as
Aut = (K" — wut)AU,, (9.2)
and satisfies the following relations
kuAut = k2AUy , AP Aut = AP k' AUs. (9.3)

Lastly, for the shear mode, the fluid velocity is transverse with the wave vector such that
ky,Aut = 0, while for the sound channel, the relation in eq. (9.3) holds. The equations of
interest is the energy and momentum conservation. For convenience, we write the zeroth-

order again as
A”,,VMT(’(‘)’; = (e +p)u'V,uf + APV, p=0
u, V,TH = —ut'V ,(e) — (e + p)V, ut =0,
and the corresponding equation for the first-order are

u, VT = —ut'V,de — Vgt (9.4a)

APVVNT(% = AMPY o + AP ut'V ,q" — APV ot (9.4b)
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where each derivation of the constitution relations are explicitly given by
V,0e = —%UAVMV,\AT — 5V, VAU
V,6m = %ukvuv MAT — 1V, V3 Au?
Vg =r <u’\VMV)\Au” + ;A”)‘VMVAAT) (9.5)
V"' =11 (u)‘VuV)\Au“ + ;A“AVNVAAT)
Vo = AR A (VN AUy + V, Vo Auy, — ggﬂvuvama)

The first expression in egs. is the first-order correction of conservation of energy,
while the second equation is the first-order correction of the momentum conservation. Fur-
thermore, in finding the derivation of the constitution relations, all terms that are of order
O(8?) is neglected, since the amplitudes are of O(9) per definition, then V,u*V)\T =

VHAu’\V AAT is of higher-order, and does not contribute in a first-order hydrodynamics.

9.1 Shear modes in the general frame

For the shear channel, the thermodynamics fields decouples, which in this case implies that
AT = 0. Furthermore, the constitution scalars all vanish for the shear modes, since for
uncharged fluids they are parameterised by V,u* and v*V,T. Likewise, the term of V,¢"
also equals zero which can be read of from eqs. (9.5). The only contributing equations for

the shear modes are the momentum conservation, and for zeroth-order reads

APVV#T(’GZ)' = —wwAP k" Au |,

and the first-order

AP T = rmw’ AP Auy — nr® AP Ry A

Adding the zeroth and first-order contribution together, and multiplying with i exp(ik’xz;)

gives us the following equation

(e + p)w — i(rw? — nr?) = 0. (9.6)
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The Routh-Hurwitz criteria states that 1 and 1 must be positive. An inequality between

r1 and n appears for the boosted frame.

9.2 Sound modes in the general frame

For the sound channel, the perturbation of T' is non-vanishing. Thus, the energy conser-
vation contributes to the sound modes. Using the relation in eq. (9.3)), with AT # 0, the

zeroth-order contribution gives

uVVMT(’fS = wWwAT —iwk,Aut =0

(9.7)
AP,,VMT(’“(L)'; = —iwwAP kY AU, + isAPP*Ek, AT = 0,
and the first-order correction are given by
v 1 1
u VTl = —slfu’\u“VHV AAT — £2u'V, Vy\Au? — % <u’\VuV,\Au’\ + TA”AV”V AAT)

1
= 5—1(,02AT — eowk2AUy — 1 | =r2AT — wk2AU,
T T
1
= exp(ik"z,) (T(81w2 + r1&%)0T — K% (g9 + rl)wéUg)
, 1
APV TEY = %AMPUQVAAT — T AFPY V3 Au? + 1 (Amﬂv“v A’ + TA”*V,N,\AT>
2
— nAHTAPA <VNV,\AuU + V, VeAuy — 390,\VHVQAUO‘>
4
= ZwAM kAT — R A, AUy — 1w A kAU + ZwA Pk, AT + S A AT,
1 4
= exp(ikt'z,) ((711 + rl)TwAp“kﬂéT + APPE, (377 — 772> k20U — r1w2Apyk”5U2) )
(9.8)

For uncharged fluids w2 can be given in terms of the bulk viscosity according to eq. (8.10))
as

my = v (m — vier) + viea — ¢, (9.9)

and allow us to write the system in terms of (. Adding the zeroth and first-order contribution

together, for the energy and momentum conservation respectively, and multiplying with
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—iexp(ikt'x,) leads to the following equations:

1
T(ww —ivi(e1w? + k)T — K202 (w — iw(eg +71))0Us = 0

1 4
T(w —i(m +r)w)dT — (ww +iK? <377 + (¢ — Ug(m — v§52) — v351> + ir1w2)5U2 = 0.

This correspond to solving the linear system Mijéi = 0 with the matrix given by

%(ww — 02 (e1w? + r1K2)) k202 (w —iw(ea +11))

Mi]’ =
F(w —i(m +ri)w) —ww — iKk? <§n + ¢ —v3(m —vieg) — v?q) + irqw?
where w = (¢ + p) is the enthalpy. Defining Dy = %n + ( as the longitudinal kinematic

viscosity [28], the determinant of the linear system gives

2
s

3 2

v2errwt +iw(vier + r)w? —ik*w(vie; + Dy + v2r)w

—(w? + V2R3 (vie} + Dyer + (e1 4 m) (1 — v2e1) + e2m1) )w? (9.10)
+1202(w? + K2y (v(eg + m — v2e1) — Dy)) = 0.
For the linearized system of the sound channel, there are two gapped modes and two sound
waves. The two gapped modes, are given by w = wy + O(9), such tat for K — 0 w # 0. The
gapped modes are thus found by letting £ — 0, and solving for w in power of k, the zeroth
order of this dispersion gives

w w
' = —i—. 9.11
g @ =i (011)

W= —

For the gapless mode, the dispersion relation must vanish when x — 0, and for small k
reads w = vgk + iwzk?, and is given by

Wsound = TUsK — %%52. (9.12)
This first term corresponds to the dispersion relation for zeroth-order hydrodynamics, and
the classical description gives a similar dispersion relation in zeroth-order. For the frame to
be stable in the sound channel for small , it is enough to demand that eq. is satisfied,
such that Imw < 0. Thus from the gapped and the gapless modes, the involved transport

coefficient is positive

Dy >0, ¢1>0, r.>0. (9.13)
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For the stable hydrodynamics frame, it is also required to check for arbitrary k, here the
Routh-Hurwitz critera is imposed. The determinant that corresponds to the system’s char-
acteristic equation can be written as a polynomial with the variables A = jw. According to
eq. (9.10) this can readily be achived, the first term containing w* corresponds to writing

(iw)* = A, etc. The determinant can be re-written in powers of A as
AN L AN L AIAZ 4 AA 4+ AP = 0 (9.14)
where the coefficients are given by

A(()”) = vleir

Agﬁ) = w(vie; + 1)

Ag”) = w® + ik (v5e] + Dyer + (e1 4 m1)(r1 — vier) + eam) (9.15)
Ag“) = k2w(vie; + Dy + v?ry)

Aflﬁ) = k203 (w? + K% (v (eg + T — v2e1) — Dy)).

The polynomial corresponds to the following Hurwitz Matrix

AR Al 0

Ay Ay AP o
o A% a0
0 Ay Ay A

and for stability to be satisfied, it is required that the leading order minors Aj, As, Ag
and Ay, are all positive, note that the determinant of the whole Matrix, can be written
as Ay = AY)Ag, thus for arbitrary s the stability requirements are given by A(()R) > 0,

A% >0, A% > 0 and
2
AP AL _ AW 40 5 <A§”)Ag‘) - A(()“)Ag“)>A§“) S (AP)aP S0 a0)

The first inequality Aé“)

> 0 implies that 171 > 0, which is in agreement with eq. (9.13).
The second inequality states that vZe; + r; > 0, which holds if the speed of sound is real

and positive, for 1,71 > 0. The first inequality in eq. (9.16) is automatically satisfied if
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the second equality is as well. They give stability requirements for €1, €2, 71 and 71 in a

non-linear way. The last inequality AELH) > 0 corresponds to stating that

1
Eg + 1 > U?El + ﬁDV' (9.17)

S
For a frame with 8° = 0, and demanding that the constraints are stable are illustrated
in figure (left). Lastly, by studying the determinant at large x, such that for short

wavelengths k — oo, given by a linear dispersion w = Wk, with W determined by
2,2 4.2 2 2 4
—Tl(Dv—H}S (0861—62—771))—(DV<€1—’U8 61—T1€2—(T‘1+62)7T1—|—U861(52—|—7T1))W +riegsW= =0,

here 0 < vy < 1. The above expression leads to other stability and causality constraints.
For causality to be satisfied it is enough to require that [28]

0< Iim Rew®)

1. 9.18
k—o0 k < ( )

Therefore, for 0 < W < 1 causality is satisfied. The stability and causality constraints from
the dispersion relation w = Wk are illustrated in figure (right). The general frame is
stable at spatial velocity 3* = 0. To find stability for frames with non-vanishing spatial

velocity, it is enough to boost the frame, which follows in the next section.
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20 20

15

2|

0 2 1 6 8 10 0 2 4 6 8 10
v?sl/% IU‘EE]/75
Figure 5: Illustration of different stability regions for different sound speeds. Here dimen-
sionless quantities have been defined as & = v2e1/Dy, where Dy = ~, on the axis. The
transport coefficients e = 0 and 7/Dy = 3/v2. Left: Stability region for arbitrary .

Right: Stability region for small wavelengths, with causality criteria. Original figure from

2

10 Modes in the boosted frame

The general frame in a co-moving frame satisfies u* = (1,0, 0,0), and corresponds to stating
B¢ = 0 according with eq. (5.2). To study hydrodynamics with spatial velocity the velocity

can be boosted according to eq. , written here again
ut = A" uY "

However, it is more useful to boost the frequency w and the wave vector k*. For an arbitrary
wave vector in the comoving frame k*, analogously for the fluid velocity can be written as
14]

k= (w, kY.
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The hydrodynamics modes correspond to longitudinal and transverse velocities to the wave
vector. Instead, consider the spatial component of the wave vector in terms that are trans-
verse and longitudinal to the spatial velocity, such that k* = ki + kﬁ For this case, the

boost only occurs for k‘ﬁ, and the spatial components of the wave-vector transform as

K=k (] = pu). (10.1)

The perpendicular component can be re-written in terms of k% and k:ﬁ/ as k‘i =k - k‘ﬁ/,
furthermore, the dot product of the velocity and ki satisfy kiﬁi = kfcos(¢ = 0), with ¢
being the angle between k* and 3°. The perpendicular component can then be written in

terms of k' as

KB

The % can be given in terms of the gamma factor, according to
52 — Y~ 1
’)/ Y

Substituting these two relations into eq. ([10.1)), gives

K :ki’+7<1175ikj—w>ﬁi. (10.3)

Thus, to find the modes in a boosted frame, it is sufficient to make the following substitutions

w— W - BE), k- k' + 7(1_7_5sz — w') B, (10.4a)
Y
where the squared of the wave vector k'k; = k? are given by
2

k2 = Kk = K2 + 2 <Mﬂ’k§ — w'> Bk, + 2 <m5%g - w') B2 (10.4b)
For arbitrary ¢ and non-vanishing spatial velocities 3% # 0, the dispersion relations can be
found with the above transformations.
10.1 Boosted shear channel

For the boosted frames, without loss of generality the wave vector can again be given by

k* = (w,rsiné, kcosh,0), such that k? = k2, and x? transforms according to ((10.4b)).
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Nevertheless, the transformation in eq. ((10.4a)) and eq. ((10.4b)) can be substituted into the
determinant of the shear channel in eq. and gives

. . 2
w i/ W K -/
(= 80+ (2 =2 = 3 Jof 0= S (6B - ) =0 105)
In the boosted frame, the shear channel emits two gapped modes, with the dispersion
relation w’ = wy + iwy 3'k;, where wy are found by letting & — 0, and solving for wy gives

W = i(e+p)Vv1-— 52’ (10.6)

7752 —-r

while the gapless modes follow the dispersion relation w = ¢(k%) + iws(k*)?, and for small

k' the gapless modes are given by

I pipt in — N2 (pigt
W = Bk~ oy VL B = (R, (10.7)

which corresponds to a shear wave, that propagates perpendicular to the longitudinal waves
[28]. From the two relations, the same stability constraints are obtained, but now also
stating that

rr>n>0 (10.8)

according to the gapped modes. The Landau frame is unstable, since r; = 0 for non-
vanishing 7, and do not satisfy the stability criteria of the shear channel for constant 3°.
The same criteria for arbitrary k° can be found with the Routh-hurwitz criteria, and the
boosted determinant of the Alfvén channel can be written in terms of A = 4w/, taking only
the real parts gives

A’(“O)AQ + A’FI)A + A'&), (10.9)
where
A(K):T‘ _52 AR :2,811{2/( o )
(0) 1 n, (1) i\ —T1
AL = (ry = m)(5'B0)? — (1 — B(k" )2

The Routh-Hurwitz criteria then implies that A’FO) > 0, which corresponds to stating that

r1 > 1, and similar for the remaining minors. The causality criteria is found in a similar
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manner as for the sound wave in the non-boosted frame. Thus, for large k?, the modes
follow a linear dispersion of cspeqr(¢) Which for a boosted frame along x! can be shown to

be given by [28§]
(r1 — [3277)c§hem — 2B cos ¢(r1 — N)Cshear + 52(7’1 cos? ¢ + nsin® ¢)—n =0, (10.10)

where 8 < 1, and for r; > 7 the Cgpeqr must satisfy

1+8 /5
— Y <1, (10.11)

ry
B+4/%

|Cshear | <

for the solution of c4peqr to be real, and thus ensure that the causality criteria holds. With
the above discussion, the eigenfrequency at small x emits the two gapped and gapless modes,
while for large x follow a linear dispersion relation. To see this explicitly, it is convenient
to write the determinant in eq. in dimensionless quantities, by writing w and &° in
units of (¢ + p)/n, such that

i w, =1 g
e+p eE+p

o=
The dimensionless determinant reduces to
—k2 4+ 4@ (i + vBR) 4+ vk Bi(k By A — i — 2vA)
where we have defined

A=D1, B="_p
n 0

Solving for @ gives the dispersion relation for arbitrary k%, and are illustrated in figure @
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Figure 6: The real and imaginary part of the dispersion relations boosted in the x-direction,
for arbitrary k = k. Here wg = ¢ + p, r1/n = 2, and 0 < ¢ < 1, where the blue lines
corresponds to ¢ = 0 and purple lines corresponds to ¢ = /2. In both figures the gapped
and gapless modes appear for small 5, and follow a linear dispersion relation for large k. The
left figure: here the dashed lines are the light-cone, and all the curves are contained between
+x. The causality criteria is satisfied according to eq. . The right figure: shows that

all the curves are at the lower imaginary plane, and thus satisfies stability. Original figure

from

10.2 Boosted sound channel

The sound channel emits two gapped and gapless modes for 3¢ = 0, and are found from
the determinant in eq. . Unfortunately, the determinant in the boosted frame is too
long to be shown in this project. Nevertheless, it is found by substituting eq. and
eq. (10.4b). The gapless modes can then be found for small £, and satisfy the dispersion

relation w’ = ¢4k + iw), where

Us

C+ = 1—7112526 COS(¢) + 1_711252\/(1 - ﬁ2)(1 - U§/32 _ 52(1 _ v?) cos2 ¢) (10.12)

This corresponds to a relativistic addition of the phase velocities for arbitrary angles ¢, and

for ¢ =0 eq. (10.12)) reduces to

Bt
1408

ct(¢ =0) (10.13)
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From eq. the stability and causality requires that 0 < ¢+ < 1, and setting 8 = 0,
implies that in frame with vanishing spatial velocity, the speed of sound is real and must
be large than zero, but smaller than the speed of light. Unfortunately, because of lack of
time, we could not derive the gapless modes to power of O(0) and, likewise for the gapped
modes. However, the gapless modes was found in [28], and their findings will be presented
here, which leads to some interesting constraints of stability and causality for the sound

channel. For an arbitrary angle ¢ the dispersion relation can be found to be given by
i
W' =cy(d)r — §FS(¢)H2, (10.14)

where

— 2 - - 2 i 2
I. — Dy cy —PBcos¢pl+ B°cy —2cPcos¢ — sin” ¢ (10.15)

Tetp 13 cx(1-5%2) - Bl —v2)cosg
and it is understood that cy is dependent on ¢. The coefficient I's(¢) is the damping

coeflicient and is always positive for different 5. The damping coefficient are obtained by
considering the linear dispersion relation for when k! — oco. Furthermore, the gapped modes

also change, and it is found that a necessary criteria for stability is given by [28§]

Dy
1—v2’

S

v2e) 11 > (10.16)

The constraints in figure still holds for the frame with § = 0, since that they were
found for large k*. As was found for the boosted Alfvén channel, it is possible to define

dimensionless quantities

Us

- - 1 1 - 1
f1=p-f1, &= eoDy," , ri=mrDy , mi=mD,,
1%

and finding the dispersion relation for arbitrary & which is illustrated in figure .The
discussion of the perturbation of the general frame leads to sets of frames that satisfy
stability and causality simultaneously. It also illustrates that frame transformations should
be chosen according to the constraints of the transport coefficients to ensure stability and
thus sensible physics. The same approach can be applied to fluids that have the property

of electrical conductivity, known as plasmas. While the approach is the same, the plasmas
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description becomes more involved, which will be considered in the rest of this project, and
concludes the hydrodynamics description as an EFT theory. Nevertheless, some comments

will be directed towards hydrodynamics in the discussion.

0.00 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
e,
wo wWo

Figure 7: Illustration of the dispersion relation for arbitrary & in the sound channel. In
both figure &, = 3, 7 = 31);2, 71 =4, =0and 1 < ¢ < 0, where the blue curves
corresponds to ¢ = 0 and purple ¢ = 7/2. The left figure: Shows that all curves are inside
4k, and thus causaility is satisfied. The left figure: shows that all imaginary parts are in
the lower half-plane and satisfies stability. Furthermore, the gapped modes can be seen
for the curves between ~ [—0.9, —0.24]. Both figures shows that for large & the dispersion
relation is linear. Original figure from

11 Physics description of plasma

Plasmas have properties that differ from a liquid, gas and solid. For that reason, it is known
as the fourth state of matter. For most descriptions, plasma has a high temperature. How-
ever, a description of cold plasma has also been developed . Magnetohydrodynamics
(MHD) offers a toy model for plasmas, and the necessary approximation will be reviewed
here. Plasmas are fluids that have the property of electrical conduction and possible a mag-
netic field due to the movement of the electric charge. The dynamics of plasma corresponds

to a coupling of matter and electrodynamic fields, and such dynamics are governed by the
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Maxwell’s law in matter, given by [34]

v.E_ "
€0

dB+VxE=0
LBV (11.1)

V.-B=0
VxB :M()(J—I—z’;‘oatE).

Here E, B are the electric and magnetic field respectively, while J, p, ug, €9 are the current
density, charge density, vacuum permeability and vacuum permittivity. Maxwell’s equation

in matter offers a dynamic of plasmas, together with the Lorentz force given by
_q
a=—(E+uxB), (11.2)
m

with a, u, m and ¢ being the acceleration, local velocity, m the particle’s mass and ¢ the
charge of the particles. For a system containing N particles that are charged, a summation
over m and ¢ is needed, together with p in the divergence of the electric field. The dynamic
of the system can be determined accordingly: given an electric and magnetic field, the
velocity u and position x are given by the Lorentzian force. In contrast, if a position and
velocity are known, Maxwell’s equation gives the electrodynamic fields. However, such a
description becomes impossible for a system of N particles. Instead, it is of more interest
to integrate the Lorentz force into the Boltzmann equation by taking the average overall
acceleration due to the Lorentzian force. The Boltzmann equation for a monoatomic plasma

now reads
q 0
m ou

Ouf +u'Oif + ((E+uxB)f) =T(f) (11.3)

For the description of plasma according to MHD, it is necessary to find the moment’s
equation. This was done for non-relativistic hydrodynamics, by averaging over collision
invariant quantities. However, the collision term does not apply here: The present of
electric and magnetic field leads to long range interactions, and thus random collisions
can not bring the system back to an equilibrium state [19]. Thus, to ensure that MHD is

govern by the same moment’s equation as fluids, with an external force corresponding to the

July 2022



Page 59 of Im 11. Physics description of plasma

Lorentz force. It is necessary to make the following key assumptions: 1) The fluid velocities
are non-relativistic, 2) the velocities of the positive and negative charges are locked together,
such that the plasma is described by a single velocity v'(t,z"), corresponding to the fluid
velocity. 3) plasmas are strongly collisional such that the particle motion corresponds to the
fluid motion. 4) The conductivity o, is large, such that in the rest frame a magnetic field
is produced even for small electric field. 5) The plasma is quasi-neutral, and the electric
field is divergencesless [21]. The last assumption occurs due to Debye shielding which will

be discussed in the following section.

11.1 Debye shielding

Suppose that the plasma is quasi-neutral, and pe, p,, corresponds to the density for negative
and positive charged particles, respectively. Quasi-neutral then means that p. ~ p,, and
the divergence of the electric field is given by
V-E = %[pe — pnl-

Assuming that the inductive electric fields are negligible, such that £ ~ —V,;¢, then the
above relation corresponds to the Poisson equation. Suppose now that a positive test charge
¢ is placed inside the plasma at the centre » = 0. This leads to inhomogeneity in the plasma
since the positive charge repels all the positive charges and attracts all the negative charges
so that at » = 0, the electron density increases. For a stationary test charge, the Poisson’s
equation in terms of the number densities n., n,, then reads [21]

V26(r) = =L (ne(r) = na(r) — 26(r), (11.4)

€0 €0

where §(r) is the Kronecker delta function. If the temperature is spatially uniform and the
plasma remains in thermal equilibrium after the insertion of the test charge. Then if the

test particle is surrounded by electrons, then n. is given by the Boltzmann relation, that

B qe
ne =ngexp | — kel )

reads |21]
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where ng, T¢, ky, is the equilibrium electron number density, Boltzmann constant, and the
electron temperature respectively. The potential ¢ for a single test particle, is expected to

be infinitesimal small, so away from origin q¢ < kpT., and expanding the energy density

ne:n0<1—£>.
B

Substituting this into the Poisson equation and defining D = 1+ (z/)%,), with

eokpTe
Ape = | : 11.5
b nog> ( )

being the Debye length for electrons [21]. The Poisson equation can then be solved by a

simplifies to

Fourier transformation
ex Z.ZL’Z’I”
at / l3 p( 2)

8wy x2D

¢(r)

and the solution then reads

o(r) = eXp< - > (11.6)

 Arwegr B ADe
For r < Ape, the potential describes a test charge in vacuum [34], where for r > Ap.,

the potential goes towards zero, and the electric field is completely shielded. Thus for the

non-relativistic case, plasmas satisfy:

e The scale length L >> Ap. such that outside of the corresponding fluid element for

plasmas, the electric field is screened, and the divergence of the electric field vanishes.

e The screening can only occur if enough particles are present in the fluid elements,
which can be shown to be satisfied when the number of particles satisfies N =

(47 /3)noA,, > 1, which corresponds to weakly coupled plasma.[21].

Furthermore, for the non-relativistic case, the velocities are assumed to be small, and thus

the displacement field can be neglected. Thus going forward, when referring to Maxwell’s
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equations, we mean

0B+VxE=0 (11.7a)
VB =0 (11.7b)
V x B = puod. (11.7¢)

The discussion above allows to derive the conservation of equation governing the MHD,
and can be found by inserting the Lorentz force into the hydrodynamics equation. Their
derivation will be considered in the following section, and we will briefly comment on the

consequences of the coupling of the electrodynamics fields.

12 Non relativistic MHD

For MHD the plasmas are considered as a system with N particles that satisfies the dynamics
of fluids, coupled with with Maxwell’s equations. Thus, deriving the conservation of MHD
the Lorentz force have to be substituted in for the force term in eqs. for the ideal case,
and eqs. for the first-order correction. For this reason the continuity equation stays
unchanged, and particles can not be created or destroyed in MHD. The only two terms that
changes are the momentum equation and the energy-conservation. The acceleration term
in the momentum equation reads pa, and due to Debye shielding the electric flux vanishes
pE = 0. Using the definition of the current density J = ¢gnv, the “flux” of the Lorentz force
reads

1 1
a=JxB=—(B-V)B- —VB% 12.1
p MO( ) o (12.1)

For the second equality eq. (11.7¢)) have been used to substitute for J, together with general
identities and eq. (11.7b)). The last term in the second equality corresponds to pressure
produced by the magnetic field, and the momentum flux for a plasma can be defined by

- 1 9

where I1) and II(;) correspond to the zeroth and first-order found for hydrodynamics. The

term (B-V)B corresponds to a magnetic tension, and applies a force to the curved magnetic
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fields, and is for that reason often referred to as a restoring force |19]. To see this explicitly,

it is convenient to consider the normalisation unit vector of B defined by

h= 5 (12.3)

Substituting this into eq. (12.1)) gives

2 2
JxB= B(h-V)h—V<B>,
o 210

where (h - V)h points towards the centre for a curved magnetic field, and go towards
zero as the magnetic lines gets straighten out. Lastly, for the non-relativistic case the
velocities are much smaller than the speed of light. Thus, the Ohm’s law is under a Galilean

transformation in the non-rest frame, given by [34]
E +v X B =mneupd. (12.4)

Here 7, is the resistivity, and the subscript e is denoted to not confuse it with shear viscosity
1. One of the key assumption for MHD, was that the conductivity was large to ensure the
production of a magnetic field. In the ideal case, this corresponds to having a plasma that
is a perfect conductor, and thus 7, — 0. Setting the RHS of eq. to zero implies that

the time derivative of the magnetic field satisfies

%—]? =V x (v x B), (12.5)

which is known as the induction equation [21]. The continuity equation, momentum con-
servation and induction equation together with the relation V-B = 0 gives eight equations,
where there are eight unknown variables p, p, v and B, making the system solvable. For the
ideal hydrodynamics it was shown that the total energy was conserved, this also applies for
MHD. To see this, consider the acceleration term of eq. : pa-v. The acceleration are
given by the Lorentz force, and the RHS of eq. reads

v-IJxB)=-J-E
1

=—(VxB)-E
Ho
1 0 1
———_—B?- —V-(ExB).
20 Ot 1o ( )
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The first equality holds for any odd permutations, and due to Ohm’s law stating E = —vxB.
The remaining equality’s are given by standard identities of the cross product. The last

term is the Poynting vector S, and the energy conservation can be written as

0 pv? B2 pv? B

Note that the electromagnetic energy corresponds to multiplying the induction law with

o [ B?
m(%)__v.s.

Using this expression, together with the continuity and momentum equation, leads to a

1 .
%B, that is

conservation of the entropy current

0s

g +V-(sv)=0, (12.7)
or equivalently, the euler equation
Oe
N +V-(ev)=Vp=0. (12.8)

Thus for the ideal MHD, the entropy current is conserved. The equations governing the

zeroth-order MHD are then given by
dp

d(pv) ~ 1
o TV 1o = %(B -V)B (12.9)

0 pv?  B? pv?

together with the divergence of the magnetic field and an equation of state. A final remark
is necessary before writing the first-order correction of MHD. For the zeroth-order MHD
the plasma follows a frozen-in flux, which can either be stated as the magnetic field lines
must pass through the fluid elements, or the magnetic fields move with the plasma. This
means that the magnetic field lines can not change, and are ”frozen” into the plasma.

The first-order approximation requires that eq. is non vanishing, and the curl of
Netod can be written as

V x (nuod) = nV*B,
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and the first order correction reads

op B
g‘FV'(pV)—O
d(pv) - 1
II=—(B-V)B
5tV MO( V)
B
aat:Vx(va)—Vx(n,qu)
o pU2 2 .
8t<6+2+2uo>+V'J5—0,

where for compactness, we have defined
. pv? 1 2
je = w+7 v—no —(V(V-v)—kVT+ —S — nuoJ=,
7
together with the divergence of the magnetic field and an equation of state. For Hydrody-
namics two modes where found, and two corresponding modes appear for MHD.

12.1 Magnetohydrodynamics modes

The zeroth-order approximation emits two modes, corresponding to the shear and sound
modes of hydrodynamics. For simplicity, the zeroth-order will be considered with the fol-
lowing assumptions: at equilibrium, the velocity is zero, the magnetic field is constant, and
the plasma is homogeneous such that the entropy is constant. Then only the continuity,

momentum and induction equation are present. The field out of equilibrium is then
p—p+dp, p—=p+op, vV =o', B— B+IB. (12.10)

The amplitude is described as a plane wave; similar to hydrodynamics, only linear terms in

the gradients are of interest. For an isotropic flow, the pressure satisfies [19]

op = v26p. (12.11)
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Furthermore, recall that 9; — ik; and J; — —iw, the perturbation of eq. (12.9)) in compo-

nents are then given by

—iwdp + pik;ovt =0
—wpdv' + ik'vydp + —k BISB; — —k; BISB! = 0
Ho Ho

—iwB" — i(k?dv;) By — i(k;B))dv' = 0

Solving for §p and dB in the continuity equation and induction equation and substituting
into the momentum equation then gives
—w?ovt + ikivskiévi—i—LBj((knév")Bj — (knB™)6v;) k"
fop

— Lk BI((kn0v™)B' — (kn B")80") = 0
Hop

where the momentum equation have been divided with p and multiplied with w. It is
convenient to consider the unit vector of the magnetic field given in eq. (12.3) writing
B = h'B, and defining

BZ

—_—, (12.12)
Hop

v
the momentum equation reduces to
w20’ — (Vi vk v; —vi (K hy) (R 0vn) )k 44 (KR ) (K" ) 60° — B (K™ Svy,)) = 0. (12.13)

The linear system can now be written up in terms of dv* = (dv!, 6v?, §v3) corresponding to
the x,y and z components of §v’, furthermore, without loss of generality suppose that A’
and k' are given by

h' = (0,0,1), k"= (ksin®,0,xcosf).

The linear system can then be written as Mydv® = 0, with the matrix given by

w? — k2 (v} + vZsin?0) 0 —k2v2sinf cos 0
My = 0 w? — k2v% cos? 0 0 . (12.14)
—k2c2sin O cos 0 0 w? — K202 cos? 0
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Recall that for the shear channel the perturbation of the velocity is perpendicular to the
wave vector, that is dv'k; = 0, this corresponds to consider the y-component of the fluid

velocity, which immediately can be read as
w? — k?v% cos? =0, (12.15)
which gives the following dispersion relations

w = tKvA COsH. (12.16)

Thus, v4 corresponds to a velocity along the magnetic field lines, which is seen by eq.
(12.12)). For B? > ugp the velocity increases, while for B? < pop the velocity goes towards
zero [20]. The dispersion relation reaches its highest value when # = 0 and can not propa-
gates perpendicular to the magnetic field since §# = 7/2 implies w = 0. The shear mode for
MHD is referred to as the Alfvén mode, and this will be maintained throughout the rest of
the project.

Similar to hydrodynamics, longitudinal modes emits for MHD. These modes are known as
the magnetosonic modes [19], and corresponds to velocities parallel to the wave vector k.
For this particular case, it corresponds to x and z component of Jv* and the Matrix for this

linear system can be written as

2 20,2 2 (i 2 2,2
w?® — k(v +visin©h)  —k°v;sinfcosf
My, = AT ° , (12.17)
—k2c2sin 0 cos 0 w? — K202 cos? 0
with its respective determinate reads

wt — (04 + v K2 4+ viv?K? cos® 6 = 0. (12.18)
Solving this gives the following dispersion relation

w = trcy (12.19)

where + defines the direction, and

2 .2 2 4,22 2.2 o2
vy +v j:\/(UA—i—U) — 4vcf cos? 0
ey = ° 25 ° . (12.20)
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Thus, in the magnetosonic channel, there are two-speed modes, a slow c_ and a fast c,..
Furthermore, for the case of vs > v4, the gas pressure is dominating, while in the reverse
case, the plasma is magnetically dominated. Both the sound speed and the Alfvén speed are
positive and real, and thus both the fast and slow magnetosonic speed is real and positive.
Lastly, the magnetosonic waves reduces to the sound waves in the case of v4 — 0, which
corresponds to stating that the magnetic field vanish. Thus, MHD and hydrodynamics are
closely related, but the introduction of the magnetic field can lead to more complex physics.
This will also be shown to be the case when describing MHD as an EFT, while it is similar
to the hydrodynamics approach, it is more involved with the introduction of the extra field
B. Before discussing MHD as an EFT, we will first consider some consequences of the

relativistic Maxwell’s equations.

13 Relativistic Maxwell’s equations

Maxwell’s equations give dynamics to the electromagnetic fields; however, as stated in
the description of plasma, such description becomes too complex. Going onwards, when
stating MHD, it refers to relativistic MHD, and likewise for plasmas. Nevertheless, to
describe MHD, which corresponds to a coupling of the electromagnetic fields to fluids, the
introduction of Maxwell’s equation is necessary. Given a potential A, that is related to the

electric and magnetic fields, the strength fields tensor is given by [24]
Fu =V, A, —V,A,, (13.1)

where F'* is fully antisymmetric, and its time-spatial components is related to the electric
field, and spatial-spatial components give the magnetic field. The Maxwell equations are
then govern by

Vi =0, V,F* =Jk (13.2)
The first term is the Bianchi identity and gives dynamics to the magnetic fields, while

the second term gives dynamics to the electric fields. For MHD, the full dynamic is given

by a matter and electromagnetic section, such that the four-current can be written as
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Jr = Jt

(em Since the F'*¥ is anti-symmetric over its indices, then it follows that

)+J“

(matter)”

V.V, F* =0, which imposes that the four-current J# is conserved. Therefore,
VvV, J' =0. (13.3)
Similar the energy-momentum tensor can be written as

_ v v
™ =T )+T

(em (matter)?

where

1
= FF,F"P — ZHWF”AFP/\'

v
Tem
While coupling the matter to the electromagnetic fields is straightforward, a direct calcu-
lation can be difficult. For that reason, a common assumption is that Té l;n) > T(ﬁ‘?’; atter)
for many astrophysical settings. For example, in studying a zero-force approximation for
pulsars and black holes [4][5]. The assumption is sound for astrophysical settings with large
|B|, and while the Maxwell equations are not Lorentz invariant themselves, it is the case

for relations between the magnetic and electric fields. For example
1
F?=F"F,, = 5(B2 — E?), (13.4)

which is invariant, and in order to satisfy causality it correspond to stating that B% > E?
[5]. The relation T (’; :n) > T(’:Z atter) corresponds to stating that the plasma is weakly coupled,
however, many astrophysical settings have a coupling constant I' ~ 10'2, and corresponds
to the ratio of potential to kinetic energy [35]. Thus, for many astrophysical settings

the assumption of weak coupling is inconsistent. These assumption can be neglected by

describing MHD as an EFT, and will be considered in the following section.

14 Magnetohydrodynmics as an EFT

The description of MHD as an EFT follows hydrodynamics analogously, with the exception
of the coupling of an extra field. As such, the degrees of freedom follow T, u and u*, which

in equilibrium corresponds to a local temperature, chemical potential and fluid velocity.
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Another degree of freedom at equilibrium correspond to the magnetic field, and as in the
non-relativistic case, it is enough to consider the unit vector h*. Similarly, the expansion of
MHD will be given as an expansion of the covariant derivative. For hydrodynamics, the con-
served quantities of interest were 7" and a four-current associated with U(1) symmetries.
However, the four-current J# is not the generalized global symmetry for electrodynamics.

The global symmetry is instead given as a two-form current [36]

1

JHY = Zghvpo

5 pos (14.1)

which should be treated similar to the four-current J#, and is associated with a two-form
potential b,,. For the 2-form potential, a 3-form strength field can be written analogously
to FHv

Hypp = 0ubyp + 0ubpy + 0pbp. (14.2)

Then from the Bianchi identity, the 2-form current is conserved, such that
VvV, JH =0. (14.3)

This corresponds to the state that the magnetic field is divergenceless, and as such, the
2-form current can be viewed as a string corresponding to the magnetic field lines. It
was explained in [36] that instead of considering magnetic field lines, the dual of F*
corresponds to electric flux lines. However, such quantity is not conserved in the electrically
charged matter because the electric field lines end on charges, and thus electrodynamics only
have one conserved 2-form current. The absence of a magnetic charge allows for different
symmetries, and they are better suited for studying plasma. If the metric is the background
of TH and the 2-form potential b, external source of J*¥, the conserved quantities read
i

vV, T" = H" ,;zJ? , V,J" =0. (14.4)
Therefore, the electric field is not necessary for describing MHD as an effective field theory.

Without loss of generality, it is enough to consider the unit vector of the magnetic field hA*

corresponding to eq. (12.3)) and this unit vector will be referred to as the magnetic field.
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The magnetic field satisfies
hh, =1, u'h, =0, (14.5)

where the first equality counts for any unit vectors, while the second relation holds due to
the magnetic field lines having no time direction. Lastly, the chemical potential in eq.
now corresponds to the chemical potential for the charge J% [36]. Before considering the
expansion of these quantities, note that per definition, the 2-form current is antisymmetric
over its indices, while the energy-momentum tensor remains symmetric. Finally the RHS
term in the conservation of T*” corresponds to a work done by an external source, and

vanishes for b, = 0 [36].

14.1 MHD: General frame

This section follows analogously the BDNK theory for hydrodynamics. An expression of
the expansion of the conserved quantities will be written together with the constitution
relations. Then constraints from the covariant entropy and the equilibrium state will be
reviewed, and small fluctuations around this equilibrium will be studied. Unfortunately,
the fluctuations of the general frame were not realised in this project, due to lack of time.
However, the stability criteria were found in [14], and we will present their findings and
comment on the results. Instead of finding the dispersion relation for the general frame, the
Landau frame will instead be considered. It offers simpler algebra but follows analogously
the derivation of the dispersion relation in the general frame, which allows us to compare
the dispersion relation and show inconsistencies with the Landau Frame. Nevertheless, the

energy-momentum tensor and the 2-form current can be written in power of O(9)

Hy _ rpHY It py o Y iz
T =Tl + Ty T = i+ J(5)- (14.6)

With the introduction of the magnetic field, the decomposition will have terms transverse

and along h*. For this reason the projection tensor now reads

AR = iy 4 g — hHRY, (14.7)
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and satisfies

Al =2, AFAP, = AFP | APy, = AP, = 0. (14.8)

The zeroth orders decompose as

T(’ég = (e + p)utu” + pg"” — pph*h” | J(’és = 2pulth¥), (14.9)

where the transport coefficients €, p, p and p in equilibrium correspond to a local energy
density, pressure, charge density and chemical potential. This is satisfied due to some
equilibrium states studied similar to the hydrodynamics, and we will later comment on this.
Nevertheless, the first-order can be decomposed in terms that are transverse, longitudinal to
h* and u*. For the energy-momentum tensor an additional term is symmetric and traceless,
and for the 2-form current a term that is antrisymmetric. They both can be written as

T(‘f)’ = deuru? + STAM + SERFRY + 20y h ) 4+ 200 pY) 4 2k HyY) 4 1410)
I = 25rut b 4 2mlb ) 4 omliut) 4 g, |

There are five constitution scalars de, dm, 0&, 07 and §x, where the latter is a scalar of mixed
terms. The constitution vectors ¢, k*, m* and n* are transverse to both h* and u”. Lastly
the constitution tensors t*¥, s*¥ are both transverse, where the first is traceless symmetric

and the last one is antisymmetric. The constitution relation is per definition in order of

O(0), and can be expanded in terms of the degrees of freedom T, u,u* and h*, and it
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possible to define them as [14]

de = —e1 A"V uy, — eoh'h'V uy, — e3ut'V, T — 40V, (;)

om = —m A"V uy, — mhRYV yu, — m3ut'V T — mut'V, (;)

56 = —& A i, — ERPRYV yuy, — EuPY T — EuiV, <,}‘>

o1 = =AM u, — hPRYV uy — T3PV, T — TV, (;ﬁ)

ox = —Tx1u"h"oBgu — Tx1V (T pht)
(14.11a)
= —TﬁlA’whlléBgyg — TEQA'“UUV(SB()UV
k= —TEkiA* W ogb,e — Tho AP u” 6 Uy
n? = —Tni A" hYdpg,e — TnoA*°u’dgby,
mt = —Tm1 AP hYépbye — Tma AP 1’ dBgsy

1
I (A“pA”" - 2A“”Ap"> SBpo

S”V = —TT‘HA‘upAVU(;BbPU,

where
1 W 1
539,“, = QV(u uy)f , 53[)“,, ZQV[u h,j]f —l—fu Hypv.
There are 28 unidentified transport coefficients that depends on T and pu. The general
frame can be transformed into arbitrary frames, by considering small fluctuations out of
the equilibrium for the fields. Similar to hydrodynamics, it corresponds to stating that not

all transport coefficients are genuine.

14.2 MHD: Frame transformation

The auxiliary parameters T and p, together with the fluid velocity and the magnetic field
h* outside of equilibrium have no microscopic definition, and just as in hydrodynamics they

transform as

T—>T+6T, p—pu+dop, v —u+du?, h* — b+ 50", (14.12)
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where the terms ¢ are of order O(0), and due to the normalisation of the fluid velocity and

the magnetic field, the following constraints must be satisfied
ugout =0, hyoh” =0, u,oht + hyout = 0. (14.13)

The difference in the field transformations in MHD from hydrodynamics, is that the fields
should not only be invariant, but respect parity and charge conjugation symmetry. By
considering vectors oy, v, and a scalar f that are dependent on i, T and satisfy CPT

symmetries ? , the two vectors du* and dh* can be decomposed as
Sut = o, A" + BR* | Sh* = Y AR+ Bu.

Then generally the scalars 3, 6T and dp in the transformed frame can be treated the same

as the constitution relation, and can be written as an expansion
0T = —a1 A"V u, — aahh"Vu, — azu'V, T — agut'V, (;)

op = —b1 A"V uy, — bah BV yuy, — bsut'V T — byut'V, <;>

- 5 - (14.14)
ﬂ = _Tﬁlu“h 5Bg,u1/ - ﬂ2vu(TphM)

A = Ty AP R S5 gue — Tra A4 S pby.,

at = —Tci AP h b,y — TCQAMV’U/A(SBQV)\.

By inserting eq.(14.2)) and (14.14)) into the constitution relations eq.(14.11)), it can be shown

that the transformation corresponds to transforming the transport coefficients. Here de, d7

and 07 transform similar to eq. (6.16|) with a sign change

€ — & + ﬁa' + ﬁb‘
i i T 3M i

Op Op

o + alubz (14.15a)
ap ap
ar® o,

T — T +

Ti — Ti + b;

2CPT stands for charge conjugation (C), parity transformation (P) and time reversal (T), where C cor-
responds to symmetries with particles respective anti particles. P is a sign flip in the spatial coordinates
and T: t — —t.
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where ¢ = 1,2, 3,4 and the constitution vectors m; and k; correspond to the vectors in eq.

(6.16]) such that

ki = ki + (e + p)e
Lo ' (14.15b)
m; — My + pc;,

where ¢ = 1,2. The remaining transport coefficients can be shown to satisfy the following
transformations [14]

e (2 )2

oT HaT aj — H@ i
Xi = Xi + T'sp;

b= b= pi (14.15¢)
Ny = Ni — PYi

nL —nL

|

where i = 1,2,3,4 for &, and i = 1,2 for the remaining ones. The transport coefficients
are not invariant under the transformation in eq. (14.15)), except . and r|. However,
similar to hydrodynamics it can be found that a combination of the transport coefficients

are invariant, and can shown to by given by [14]

fEﬂ._<3p> 5._<5P> -
i 2 Oe pz apel

i =i — pn

- p
P =M — k; 14.1

=& — (58(19 - up)>p6i - (aap(p - up)>gn

nL—=nL, 75—

782

Here ¢;, m; and 7; have ¢ = 1,2,3,4 and n;, ¢;, k; and m; have ¢ = 1,2. The transport
coeflicients f;, ?; and 1. corresponds to those from hydrodynamics, while the remaining are

additional for MHD. There are in total 14 genuine transport coefficients, and choosing a;,
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b;, ci, £;, n; etc., corresponds to changing the frame in MHD. For the stability and causality
criteria found in eq. and eq. to be satisfied, it requires certain constraints of the
transport coefficients that must be found in the two normal modes for MHD. Furthermore,
in hydrodynamics constraints of the transport coefficients were found by considering the
equilibrium settings and by demanding that V,S* > 0 at all orders. These constraints were

found in [14], and will be reviewed in the following section.

14.3 MHD: Equilibrium and entropy constraints

For the rest of this project, the background will be assumed to be flat, and no external force
is present such that

G = NMuv > b = 0.
The last equality implies that the 3-form H,,, = 0. The equilibrium configuration is found
in a similar way from hydrodynamics, with an additional killing field (* is chosen and aligns

with the magnetic field h*, such equilibrium configurations have been studied in [37][38]

[39], and it implies that [14].
0BG =0, 0Bgw =0, V. (Tph*)=0. (14.17)

For such configuration, the first-order vanish and in equilibrium the following equalities
hold
(e+p)>0, up>0, s>0, T >0, (14.18)

together with extra constraints for a MHD with a non zero spatial velocity
(20,0 738) (), 20 () 20,20, (3 o oo
on)p (9Tu ou)p E)Tua,uT 8Tu8,uT
For compactness we will define the variables

s dp s dp
= =— == == == . 14.
‘ <3T>,ﬂ X (a/) and A <3M>T <5T)u (14.20)

Thus, at equilibrium, the transport coefficient in the zeroth-order can be read as the en-

ergy density, pressure, chemical potential and charge density. The zeroth orders can be
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contracted by the fluid velocity, magnetic field and the projection tensor and for T(’é'; reads

UVVMT(’SZ)/ = —ul'V,e — (e + p)Vput' — ppu, WV, 0" =0

hz/VMT(%l)/ = (e + p)hu!'V u” + 'V ,p — BV, (up) — ppVhH =0 (14.21a)
AP N, TH = (e + p) AP ,u!V u” + APEV ,p — pupAP RHV ,BY =0,
while the 2-form current reads

u,,Jég; = W'V p — putu, V ,hY + pV  h*

hy éfs = ulVp + pVut — phth,V,u” =0 (14.21b)
APVVMJ(%@ = AP UMV R — AP PV, =0
For an ideal MHD, they define a general coupling of the magnetic field to charged matter,
the conservation of T(‘g)' along the fluid velocity corresponds to the conservation of the
energy density in the plasma, while the contraction of h, and AP, corresponds to the
momentum conservation longitudinal and transverse to the background field. Similarly,
for the 2-current, u,V,J"” the continuity equation is retained, while the two remaining
describes the dynamic of the magnetic field. Where the transverse part is Lie dragged by

the fluid along the velocity and corresponds to the frozen-in theorem. Lastly, the entropy

for the zeroth-order is also conserved, which can be seen by considering

w VTl + bl = =TV ,(su) = 0. (14.22)

The entropy current was conserved through the induction equation for the classical descrip-
tion. Thus, hl,V“J(‘g; can be seen as a general form of that equation. Finally, the term
up is related to the magnetic tension and can be seen as the magnetic pressure since that
T33 = up, which should correspond to an isotropic pressure term from the magnetic fields,
a more detailed argumentation for such interpretation is given in [36].

Finally, the remaining constraints are retained from the covariant entropy, which now reads

Gy (14.23)

1
B b u
SHY = su u#Tl) 770

T (

The covariant derivative can then be evaluated at all orders and reads

VHS“ = —T(‘Lil)/(SBg#,, — J(‘ull;(SBbm, (14.24)
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Writing out the 2-current and the energy-momentum tensor, and imposing the on-shell
relation while neglecting any terms of higher order than (O(9?) give constraints for the
transport coefficients. Such work has been carried out in [14], and can shown to be given

by

TS Qnesm = 0, g > E(Cx +¢L)% (14.25)
where
m = 21 - Mg2
Ty =my— . +pm2

CL:fl_T( >f3 T@p) fi
Cx:fg—T< (v — W>> . << (v gum)aw)ﬁ (14.26)
<;:>21—T( >p~3 ;( )
(o) o (52 e

Studying the underlying linear response theory allows finding relations between these trans-

port coefficients, and such computation shows that ¢ = ¢l [14] 3

15 Landau frame in MHD

The general frame at first-order is determined by eqs. (14.10) and simplifies a lot when
considering the Landau-frame. By imposing a frame change that satisfies the Landau con-

ditions in eq. ([7.1)) implies that at first-order MHD

ul,Tﬁl)' = —deut — 6xh* —kF =0
u, JH = dth* —n¥ =0,

(1)

which corresponds to choosing a frame such that the constitution relations ée = dy = k* =0

and 67 = m* = 0. Again, this is achieved by transforming the fields by either demanding

3The exact method corresponds to finding a dissipation matrix, which is done by finding Kubo formulae.
Then Onsager’s relations state that these dissipation matrix are symmetric over its indices. In doing so,
the relation ¢x = ¢} is found. See [14]
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that e;, = x; = k; = 7, = n; = 0, which can either be achieved by setting them to zero, or
by setting relevant relations in eqgs. (14.15)) equal to zero, and then solve for a;, b;, ¢;, /3’1

and ~y;, which give

Qe Qe _ _ Op_ e . _ Op_.
a.:i_kflﬁ orTi — 9rci _ oTTi T grci
v O0e ' O 9pde _ Opde ' ' Opde _ Op de

oT oT ou 0T oT Op ou 0T OT Ou
k; = &i on

C; =

_€+p7 i:_ﬁ771 P

These relations further impose that the invariant transport coefficient now satisfy
fi=mi, =4, my=m;, {§=§ (15.1)

In using the transformations for the general frame, and eliminating the constitution relations

such that the Landau conditions are satisfied, the conserved quantities reads

Tl = 6mAM + 66 RY + 20(HpY) 4 v

J(“S = 2mlrpYl 4 s
Following now the example for the Landau frame in hydrodynamics, by imposing on-shell.
The constitution relations can be shown to be given by ([14])
om = =L A"V uy — ('R uy,
0§ = —(x AM'V yuy — QR RIV yuy,
= —27’]HAMO}LVV(UUV)
mt = —2r | APPRY <TV[5 <h,,];> + uaHUBV>
12 vo 1 v lo}
= —2n, <A‘upA — §AP’ AP )V(pug)
MY — 2T||A#pAVU(MV[phU] + U)\hApa),
where the transport coefficients (1, (x, ¢, 7, 7, L and r; are given by eq. ([14.26)

with eq. (15.1). These constitution relations define the Landau frame, and it is possible to

investigate the Alfvén and Magnetosonic channel, which will be considered next.
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15.1 Alfvén channel in the Landau frame

The Alfvén channel describes the shear modes in MHD, and similar for hydrodynamics the
perturbation of the fluid velocity is perpendicular to the wave vector. Similar to the classical
description, h* can be considered being along the z-component such that h* = (0,0,0,1).
Then, under a general field transformation according to eq. , Oh* can be split
into components parallel and perpendicular to k*. Then since the thermodynamics fields

decouples in the Alfvén channel the following relations holds
kuout =k, 0n” =0, hyéu” =u, bt =0, 6T =6pu=0. (15.2)

The perturbations of the fields are proportional to exp(ik*x,), where without loss of gen-

erality set

kEt = (w,ksin 6,0, k cos ). (15.3)

We then define A = 6 exp(ik*x,,), and the field transformation reads
T—T+AT, p—pu+Ap, v —u"+Au”, ¥ — ¥+ AbF. (15.4)

We write in details the different contractions of w,, h, and A”, in Appendix and will
here just comment on the results, and only write the equations that do not automatically
vanish due to the relations in eqgs. . Recall that for g, = 1, the covariant derivative
V,u — Oy, and this implies that V, — ik,. The zeroth-order MHD contracted with the
fluid velocity u, and h, does not contribute in the Alfvén channel since k,Au* and k,Ah*

equals zero. Thus for the zeroth-order approximation, the following relations holds

WV TE =0, WV =0, bV, =0, bV, =0.
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The only contributing equations in the Alfvén channel are the momentum equations. Thus,

contracting with the projection tensor A”, gives

AP VTG = APV (e + p)uu” + pg"” — pphhY)

= (e +p) A,V (u'u”) — AP, upV , (RFRY)

= (e + p)u"' AP,V u” — ppht AP,V hY

=i(e + p)u'k AP AU — ipphtk, AP, ARY

=iexp(ikl'z,)(—(e + p)wAP,6u” — ppk cos OAL,0h")

AP Tl = APV, (2puln)

= pAP Ny (uh”) — pAPLNV  (u”h)

= pul' AP,V WY — pht AP,V 0"

= ip(u”'k ARP — phtk, AuP)

=ipexp(iklz,)(—wAP,6h” — K cos OAL,0u”).
There are two equations in the linear system, which is evident from the restraints of eqs.
(15.2)) since that in the Alfvén Channel, the perturbations of the magnetic field and the four
velocity are only non-zero in its y-component i.e., su* = (0,0, 6u?,0) and §h* = (0,0, k2, 0).
The eigenfrequency w of the zeroth-order approximation for the Landau frame in the Alfvén
channel is determined by the linear system M;;0" = 0 with §° = (§u?, 6h?), and the Matrix
is given by

My (p+e)w  Kupcosh |
Kkpcos B —pw

while the determinant of the Matrix of zeroth-order is given by

(p + e)w? + K2pupcos® 6§ = 0. (15.5)
Dividing by € 4+ p and defining V4 = % the zeroth-order approximation then satisfy
w = VK cos¥b, (15.6)

where Vj is the Alfvén velocity, and for the relativistic case, it corresponds to the tension of

the strings. This is expected from the classical description that the fluid elements propagates
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along the magnetic field lines, i.e the strings. The first-order approximation can be obtained
similarly. It is written explicitly in Appendix First consider the quantities 0w and 0&
in the Alfvén channel. They consist of two terms that are ~ A*V u, and ~ h*h"V ,u,.
Both of these terms must vanish in the Alfvén channel, since V,, — ik, and the wave vector

does not have any y-components, by using that AV ,u, = V, u* then
AN uy, = 1Ak Ay, = ik, Aut =0,

while the other term vanishes due to h#Auy, = 0. For the Alfvén channel the Bulk viscosity
is not included, and all the the constitution scalars can be neglected. Thus by contracting

the projection tensor A”, for the first-order approximation we obtain

APLTHY = APV, (ST AR 4 STRIRY + 204" 4 )
= —AP BP0 AP 1
= AL AT BRIV (Vouy — Viatg) — 10 AP (APPAYT — %M”M’)v“(vwo — Vyuy)
= —n AP Rk b ke Aug + 11 AP (kkyAug — kuko Auy)
= K2 () cos® 0 4y sin? 0) A*° Au,
= exp(ik“a:u)fiz(n“ cos® 0 4 sin? 0) AP §u,
AP VLI = APV 2mI R - )
= — AP RHY,m” + AP,V M
= ur AP AP RFRAY ,(Vohy — Vaho) — 1 AP A AP Y, (Vahg — Vahy)
= —ury Ak M kyAhg — pr AM APk kyAhg

= k2u(ry cos® 0 + al sin? 0) A% Au,

= exp(ik*x,)k*p(r, cos® 0 + Gl sin? ) A% Su,,
where the relation in egs.([15.2]) haven been used. It is convenient to define

T, =1, cos’ 0+ a sin?6 | Ty = cos? 0 4 sin? 6. (15.7)
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Then, adding the contributing equation with the first-order approximation and multiplying

with i exp(—iktz,) gives the linear system

w(e + p)ou? + ppr cos 05h? + irn*Tpou? = 0 (15.8)
woh? + pk cos B5u* + ipk>T,.0h* = 0, (15.9)
that can be written in Matrix form as

£+ plw + ik*T, K cos 0
My, = (e +p) " P | (15.10)

pk cos 6 pw + ipr*T,

with its respective determinant
p(p +e)w? +i(u(p + )Ty — pTy)k*w — K2 (ukTy Ty + pup? cos? 6) = 0. (15.11)

Solving for w gives the dispersion relation to O(x?) reads

w=+Varcos’ — ;(Eipﬁ,—l—'l;ﬂ)f@z (15.12)
Letting the viscosity and resistivity going towards zero gives the zeroth order dispersion
relation as expected. It is also possible to find two diffusive modes: however, it was found
in [40] that these modes are not physical. The reason for this, is that they are first found by
letting 6 — 7/2 and then x — 0. But, the Alfvén waves can not propagate perpendicular

to the magnetic field lines, and # — 7/2 is unphysical.

15.2 Landau: Alfvén channel in boosted frame

The Alfvén channel has two gapped and gapless modes for a spatial velocity 8% # 0. This

can be realised by substituting eq. (10.4a)) and (10.4b) together with h* — h*'. To see this,

consider h* = (hy, h'): they transform similar to k¥, such that
hy =~k — B'h}) , h'=h"+ ’y<1lﬁyﬁ"h§ - h;> B (15.13)

However, h; = 0 and the magnetic field and fluid velocity satisfy h*u,, = 0. For frames with

non-vanishing 3° it corresponds to stating 5°h; = 0. The first equality then reads h; = 0
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and the second equality reduces to h' — h?. The determinant in the boosted frame then

reads
Yw((W)? = (B'K)?) — K2 pp? cos? 0 — ipyk? B k([ Ty — K pTy (ivwp'k] + k*T,) = 0, (15.14)

where k? = k2 and should be read according to eq. (10.4b)). The gapped modes follow a
dispersion relation wj; = wo + w1 (k;, where wy is found by letting x — 0, in which case the

determinant reduces to
pw — B2 up* cos® 0 + iy (0T, + Tr(w + iB*yw'Ty)) = 0. (15.15)

Setting w’ = wp, and solving for wy gives

i /1= B*(wuT: + pT; £D)
2 B2uTe Ty ’

(15.16)

wo =
where D is defined as

D? = (wuT, — ,0’7;7)2 + 47;77;/6’2,u2 cos? 6.

We were unable to find a compact way in writing the first-order term for wg,. However, by

letting 6 — /2, then 7, = 7 and T, = n.: the two gapped modes reduce to

V1= Bpre  (2-8)

w g%
¢ B2 nL 32 Pk
1 52 5 ﬁz (15.17)
+ . - p - i1,/
S e e K
ve ! 52 M) + 52 b v

Note that this is inconsistent with the stability criteria in eq. , since that for Im w < 0,
it requires that 7, and 7| to be negative, which is inconsistent with the inequality from
the entropy current. Furthermore, these modes do not allow one to return to an unboosted
frame since both terms go towards infinity when 3* — 0. Which is most likely due to a bad

choice of frame.

15.3 Magnetosonic channel in the Landau frame

The magnosonic channel consists of the longitudinal components of the fluid velocity u*

and the magnetic field h*. The perturbations du* and dh* are spanned by the equilibrium
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values u*, h* and the wave vector k* such that
out = Aut + BE* + Ch* , 6h* = DE" + Fu* + Gh*.

Using now that u,du* = 0, and h,6h* = 0, and setting B = 06Uy, C = 60Uz, D = dH; and

F = §Hy the above relations reads
out = (k¥ — wut)oUy + hH6Uy , Oh* = (k¥ — Kk cos Oh*)dHy + utd Ho.
Furthermore the normalisation in eq. impose that u,0h* 4 h,du* = 0, which implies
0Hy = kcos 06U — woHj.

The amplitudes for the sound channel can then be written as

dut = (k* — wu!)oUy + h*oU,
(15.18)
Oh* = (k¥ — kcos Oh* — wut)dHy + v (k cos 06U, + 6U>),
the magnetosonic channel is parameterised by 6Uy,0Us, 0H1, 6T and dp that satisfies the
following relations
AP out = AP EFSU Ky dut = k20U, + K cos 86U,
AP S = AP kHSHy |, kyudh* = k% sin® 05 Hy — w(cos 85U, + 6Us) (15.19)
huou' = kcos 06Uy + 6Us , u,0ht = —kcos 56Uy — 0Us.

For the sound channel all the constitution relations are non-vanishing, except for the anti-

symmetric part of the 2-form current, s#. This is explicitly seen by

st = =21 | A*P A" 1V |, hg
= —Z'2T||A‘upAyg(k‘uAho- - k‘o-Ahp)
= —i2r| AP A (K ko AHy — kokpAHy)

=0.

The linear system is then found by contracting V, 7" and V,J* with the fluid velocity

Uy, the magnetic field h, and the projection tensor A?,. For the magnetosonic channel, it
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is convenient to consider relation of the entropy current. Thus, the linear system consist of

the following contractions

u, VT 4 1uh, ¥, J* = 0

hy Y, T" = 0
u, V, JH =0
AP, TH =
APV, T =0,

Where the first expression in the zeroth-approximation corresponds to considering 7'V, (sut) =
0. We write the calculation of these equations explicitly in Appendix [E] and contracted

equations reads
T(s6U K — (e6T + Sp\)w + s6Uszk cos 0) — ipry (Sp — %5T — prcosBoH) =0
wT's6U; — Kk cosO(A — ppr?sin® 05 Hy) — k2 (cos® 05U, + k cos 0)q) + sin? 0B) = 0
(6TX+ Spx) cos @ + §Hyrpsin® 6 = 0
(80T + pop) — (e + p)wdUy — ppk cos 06 Hy — ikCOUT — 21 cos O(cos 86Uy + 6Uz) = 0
p(wdH + K cos 06U ) + i%fi cos O(Top — pdT — pk cos@dHy) = 0,
(15.20)

where

A= (s— p\)oT — wTséUy + puxdp

B = §Uan| + 06Uk cos 0(Cx + 2

C=(xcos?0+sin?0(CL +11).
The Matrix is to long to be shown in this section, but for clarification, its components can be
found in Appendix . Alternatively it can be read directly from eq.. Nevertheless,

finding the determinant of the linear system allows to set up an expansion in powers of &,

to find the following dispersion relation

w = Fvik + iTKZ, (15.21)
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where
1 1
U4 = 5((12124 + Vg) cos2 0 + VSZ sin? 0) + 5\/(0}2‘ _ Vg) cos? 0 + V2 sin2 6)2 + 44 cos? 0 sin2 0
(15.22)
with
2 2 9
= SX 9 _ S°X +cp” —2spA 4 s(pA — sx)
Vi= 2 V2= . V= 7 15.93
O T(ex —N?) (e+p)(ex —A?) T(ex — A2)2(z + p) ( )

The results correspond to the findings in the classical description, and it can be read that
there are a slow v_ and a fast vy mode. For § = 0, the fast mode ¢y — Vy while for the
slow mode ¢ — V4. For § = 7/2, ¢y — Vs and c— — 0. For the classical description at
0 — m/2 implied that the fast mode was equal to the sound speed. For this reason V, can
be seen as a sort of speed of sound for the magnetosonic channel for the fast mode.

The first order-term 7, are as well to long to be presented, but it simplifies greatly for

specific angles and different modes

T(VO7 0 = O) = 24'3”]7
-t
T(Vs,0 = /2) = 1 (p(cT 4 M) — s(TA+ px))? Lt (15.24)

T 2T2(X2 — cx)(cp? + s2x — 25Ap) e+p

1/ n ri(e+p)?
— 2) = — | —
7(0.6 =7/2) 2 <3T * T%(s2x 4 p?c —2psA) )’

here when writing 7(Vy) it corresponds to setting all the other modes to zero. Finally two
diffusive modes can again be found by first setting # = 7/2, and then k — 0. However, due
to their unphysical nature they are left out of the computation. The procedure that have
been provided is analogous to the general frame, which has been done in [14] and for the

purpose of the discussion, their findings will be presented and commented.

16 MHD modes in the General frame

For the Landau frame, the two normal modes were found, the Alfvén and magnetosonic

channel. The same procedure can be considered for the general frame determined by
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eq.(14.10)), with its respective constitution relations. The general frame consists of a set of
stable and causal frames, as was also evident in the case of hydrodynamics. However, the
general frame for MHD is more involved than the Landau frame. Due to the lack of time,
we were unfortunately unable to derive the normal modes of the general frame, but we will
present the findings for the Alfvén channel in [14] and comment on the different modes.
To compare the Landau frame from the general frame, it is only necessary to consider the
first-order relations, since the zeroth-order is independent of the transport coefficients. The

equation of interest in the general frame is given by

ul,VMT(’f)' + uh,,VuJ(“l) = —ul'V,0e — W'V ,0x — V kM + pu!'V 01 + pV,mt

bV, T,

UVVHJ(HS = W'V, 01 =V, 0 (16.1)

AP TS = AP 67 + AP REV 07 + APV B+ AP,V 1

ApquJ(“l'; = —AP, W'V, m” — APtV n” + APV, sM.
Comparing these equations with the Landau frame, the difference lies in the vanishing

¥ = WV, 0€ — uV X + Yyl

four additional terms containing the constitution relation. The work carried out in [14] a
flat background with no external source was considered. For the Alfvén channel the only

contributing equations are

AP VL THY = AP WY W 4 APtk 4 APVt 162

APVVHJ(“{; = —AP RV, ;m" — AP ut'V 0" + AP,V s

By writing the derivation and solving the linear system, the Alfvén mode emits two gapless
and two gapped modes. The gapless modes are in the same form as eq. ((15.12)) where

ny>nL, 7 and 71 now defined by eq. (14.26). The gapless modes are [14]

weil e EEP (16.3)
J D) k2

They are not present in the Landau frame for ¢ = 0, and in the boosted frame they would
go towards infinity when the spatial velocity going towards zero. The stability criteria then

requires that

ng <0, kg <O. (16.4)
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While in the Landau frame, one set no = ko = 0. Thus it is clear that the Landau
Frame is not stable in the Alfvén Channel. Furthermore, gapped modes also appear in the
magnetosonic channel, and here the stability criteria also requires that ko < 0, and the
Landau frame is also unstable in the magnetosonic channel. It was shown by [14] that the

general frame emits stable and causal frames.

17 Discussion

In this thesis, we have briefly reviewed the classical description of fluids and plasmas to draw
parallels with the relativistic case. The BDNK theory has been applied to hydrodynamics
and MHD by writing them as a gradient expansion in a flat background. In order to study
the linear stability and causality of hydrodynamics, a general frame has been studied. The
transport coefficients of this frame have been constrained by an equilibrium configuration
and a covariant version of the second law of thermodynamics. We have then studied the
linear stability and causality for the general frame in hydrodynamics by considering the
small perturbations out of equilibrium that correspond to transforming the involved fields.
This gives a linear system, where the two normal modes (shear and sound modes), have
been found for small wave numbers. The linear stability and causality criteria of these two
modes have then been reviewed, and the determinant allows us to study the linear stability
and causality for arbitrary wavelengths. For magnetohydrodynamics, a similar approach
was taken. Namely, first, a definition of plasma was reviewed, and the classical description
of the conservation equation governing MHD. Then the relativistic MHD was described as
an EFT, following analogously to the BDNK theory for hydrodynamics. An equilibrium
configuration allowed to describe physics interpretation of the conservation equation to a
zeroth-order. Lastly, the linear system was found in the Landau frame and was shown to be
inconsistent and not to satisfy stability and causality as expected. The results from [14] were
then reviewed, showing that the general frame for MHD is stable and causal. The FEckart
and Landau frame lead to non-sensible physics since both frames’ stability and causality

criteria are not satisfied. The BDNK theory shows that a general frame can be derived,
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confirmed by a kinetic theory as well in [32]. Without applying the Israel-Stewart theory
and introducing extra degrees of freedom. The theories are guided by symmetries on the
effective action and give conserved quantities up to a first-order approximation that agrees
with the classical description. Namely, for hydrodynamics, the governing equation is given
by a continuity equation, momentum equation and energy equation. Similar to MHD, with
the extra equation due to coupling of the electromagnetic fields. The constraints imposed by
the transport coefficients from the normal modes ensure causality and stability and give rise
to a set of frames. The Eckart and Landau frame can be derived directly, and the constraints
show that it is inconsistent. This agrees with previous studies in hydrodynamics [9]. To our
knowledge, the general frame for MHD has not been derived from the relativistic Boltzmann
equation. Nevertheless, the BDNK theory gives sensible physics: Firstly, as already stated,
the general frame is stable and causal. Secondly, the contractions of the conserved quantities
corresponds to those in the classical description, and both for hydrodynamics and MHD
the entropy current is conserved at zeroth-order.

Furthermore, for the description of MHD, no assumption of the coupling constant or the
separation of the energy-momentum tensor is needed. Thus, it gives a more complete theory
since the coupling of matter and electromagnetic fields are retained. However, it should be
noted that hydrodynamics and MHD remain toy models, and their prediction power may
not be sufficient enough to predict physics phenomena in astrophysical settings. Rather
or not this is true is unclear to us. The future outlook for hydrodynamics and MHD, is
a bit exciting. We hope that the BDNK theory allows for a better understanding of the
physical effects of dissipative hydrodynamics and MHD in various situations, for example,
in shocks. Furthermore, studying the stability and causality criteria for an arbitrary metric
could be interesting and likewise, with an external background source. Lastly, we would
find it interesting to apply the force-free approximation for the general frame, to first study
the linear stability and causality criteria, and hopefully apply a stable MHD theory to the
magnetosphere for pulsars. This could give new insights and a better understanding of how

pulsars work.
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From the above discussion, we conclude that both hydrodynamics and MHD, in their general
frames, give a complete toy model of fluids and plasmas. The constraints imposed by the
general frame should be used as guidelines of what frames to choose. Finally, we think this

modern approach can lead to a better understanding of various astrophysical settings.

July 2022



Page 91 of Im A. Field transformations for hydrodynamics

A Field transformations for hydrodynamics

For the field transformations, only orders of O(0) is of interest. Therefore, du,du, and

5ul,T(’f)' are neglected. The transformation of P is invariant up to a first-order, accordingly

1
P - gA/“,T‘U‘V
1 Y ,
- g((uu +0up) (wy + Ouy) + guw ) (T + 0T )
1 17 1 17 v v 14
= g(uuuy + guw)TH + g(uuéuyT“ + uyu, T 4w 6T () + 90Ty
1 , 1 v
= gAWT" + g(uudul, + uyéuM)T(’é)
1
= gA#VTMV — 73

The terms in the second parenthesis cancel out, this is specifically seen by

uy,ou, TH = uuéu,,T(’g)/ + U,L(SUVT(T;
= uudu, (e + p)ut'u”
=0
uuul,éT(’ég = (e + p)uyu, (Sutu” + utdéu”)
= —(e + p)(u dut + u,6u”) =0
guV(ST(%g = (5 + p)guu(cSu“u” -+ u“éu”)

= (e + p)(updu! + u,du”) = 0.
Similar A is invariant under these transformations

N = —uLJ“/
= —(uy + ouy)(J" + 5J(’6))
= —u,J" — uu&]g))

_ W
= —u,J

:N’
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where again 5“#‘”{6) is of higher order and
uu&f(’g) = puy,dut = 0.

The transformation of the constitution vector ¢g* becomes

’

" = —A“,,u;,T”p/

= — A8 (up + du, ) (T + 5T(%§)
= —A* u, T — A“,,upAT(lg)’
= —A" u, T — A¥ u,(e + p)(du”u’ + u”duP)
= —A" u, T + (e + p)du*

=q¢" + (e + p)our.
Here we have used that

AFLSY = (ufuy, + gM))ou” = gFou” = dut.
Similar for j*

= Ak
= A¥,(JF + 5J(’6))
= AFL TP + pAF L 6u”
= j' + pdu*.

Lastly, the constitution tensor the energy-momentum tensor is replaced with T + 5T(’é§,

thus to show that t# = ¢t , it is sufficient to consider

AFVAY 5T = A AY 5(e + p) (Sutu? 4+ uduf) = 0

0 =
A
Ay T3 = 0.

)

/ . . . .
Thus, t* = t*” under these transformations, since T#” and J* are invariant under these

transport coefficient. It is enough to demand that the constitution vectors transform as eq.

(6140
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B Hydrodynamics: Invariant transport coefficients

Consider first the invariant transport coefficients

fz‘:m'—<ap> Ei_((‘)p) i b=l L,
Oe p op) . e+p

Using now the transformation relations in egs. (6.16)), then ¢, reads

=1 P
(A €+pl
p p
=1l; — pc; — i + €
AT ol e+p( plei
.

For f! using again egs. (6.16]) reads

Jp op\
[ () e ()
Oe o dp ) .

=T — (8})) g — <8p> 7 + Va; + Xb;,
oe ), dp) .

(52), (), (3).Gr), - ()

8€paTu 8p€6Tﬂ @T#

(52), ), (). Gi), - (G0,

(%pauT op) \Ou) ou)

For f! = f;, then Y = X = 0 must be satisfied. From eq. the following relations
holds

where

y

Oe Oe
— =T — =T A
o tux s gm=Tetp
(3, ),
ar ), T\ou)
where
%0 0 s
Tou or’ X oau T ar
First consider dp = 0, then
X

dp =xdp+ XdI' = dT = —)\d%
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then (Op/0e), reads
Op\ _  sdT'+ pdp
Oc) — T(cdT + \dp)
_ —sX+p
T(—cX + A)
_sX — pA
- T(ex — \?)

and for de = 0 it reads

TX+ px

de = (Tc+ p\)dT + (AT dp = dar = ——2FX
e = (Tc+ pA)dT + (AT + px)dp =0 = Tt n

Then (Op/0p). reads

<3p) ~ sdT + pdp

). xdp+M\T
_ AT — pp) + sxp — pT'e.
a T(A? — xc)

Substituting these relations into ) and & gives

sx + pA AT — pp) + xsp — pT'e
= SXTPR (Te+ p) A—s=
Y T(Xc—)\Q)( c+pA)+ T (N2 — xc) s=0
SX — PA A(sT = pp) + xsp — pT'c
X=_X"P% (1) —p=0.
Tlxe— ) AT+ =300 ) p=0

Thus f/ = f;, is invariant under these transformations.

C Covariant entropy current for uncharged fluids
The entropy current to a first-order hydrodynamics satisfies eq. written again here as

1
V,SH = —Ade — 3Bom + 2¢"'Q,, + 5 —d"o,,.

T

For simplicity consider each term separately. By using eq. (6.7]), the first term reads

—Ade = < — ﬁu’\v T> <?u’\v)\T + €QV)\U>\>

1
— eV \TV pu’,

1
= e (WVAT)” -

T
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and the second term

—3Bom = —3< Vu ) (?mw + vaAuA>

1 1
= T27r1VAu UUV T — T?TQ(V)\U,)\)Q.

The third term containing the constitution vector ¢* reads
A T1 A pA 1 1 A
QQNQ“ =2 ru*V yut + 7AM VAT — jAupva — 7Aupu V,\up

= — LWV (ALY, T) — 2 (A u V puy,) — gAﬂpA,ﬁvATva— %APAVATU"VUUP

T2 T
2 WAV ) (ALY, T PVt TLAPPAPYATY,T
= T2( Vaut) (ALY, )—?( Vauhu’Veu,) — T3 WLVNTV T,

and the last term remain the same. The on-shell relations needs to be taken into account,

and since only uncharged-fluids are considered, then
dp=sdl , de=Tds="TecdT.
The energy conservation then reads
—utVye — (e+p)Vut' = —Tew'V,T — TsV, u" =0,

solving for VT, and using that v2 = s/cT gives

'V, T = T2V ut.
The momentum equation reads

(e + pu!V, uf + APPY p = T'su!V uf + sAHPY T = 0,

and solving for A**V T gives

APPY T = =Tu'V u’.
Inserting these on-shell relations into each term gives

—Ade = —lv e1(V,u)? + lz-:gvg(vuvﬂ)Q

T° T
2

1 1
—3Bom = vag (Vuu’“‘)2 — T (Vu)”.
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The vector term cancels out, and to see this explicitly we write

2 1
2¢"Q, = Tn (u’\VAu“uUVUu#) — %(u’\vxu“uavgu#) — Trl (u/\VAu“uUVguﬂ) =0.

Note, that it only vanishes due to the equilibrium settings r; = r2, and might not vanish

at higher orders. Setting it all together gives

1
VSt = T(vz(ag + ) — T — vﬁsl)(vuu“)Q + %UMVO'MV.

Multiplying with 7" on both sides, agrees with eq. .

D Derivation of Alfvén channel in the Landau Frame

The only contributing equations in the Alfvén channel are those contracted by the projection
tensor. To see explicitly that the other terms vanishes, they are written out in this appendix.
First recall that 07 = opu = 0 and V, u* = ik, Au* = ik,h* = 0. The contraction of the

fluid velocity for both conserved quantities gives

w, VLG = u V(e + p)utu” + pgh” — pphth”)
= (e + p)u, Vy(uhu”) — ppu, V, (hHhY)
= (e + p)u,u”"V, ut + (e + p)u,u'V u” — ppu, WV, hY
= —i(e + p)k Au — ipphtkyu, ARY =0
ul,VuJ(‘g; = ul,Vu(Zpu[“h”})
= pu, V, (u'h”) — pu, V, (u”h*)
= pu, 'V, hY — pu, W'V 0" — pu,u”V P
= pu, 'V, hY — pu, W'V u” + pV, h*

= ipu,ut'k, ALY — pu, W'k, Au” + pky AR = 0,
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where it has been used that u,Ah* = h,Au*, and recall that due to the normalisation of

u# and h*, then h,Ah* = u,Aut = 0. Similar for the contractions by h,

VTl = h V(e + p)ute” + pg™” — pphth”)
= (e +p)h, V,(u'u”) — pph,V,,(R*R")
= (e + p)h "'V u” — ppV, b — pph, "V ,h”
=i(e + p)hyut'k, Au” —ippk, ARY —ipph, Wk, ARY =0
oVl = hoVu(2pulh*)
= ph,V,(u'h") — ph,V ,(u”hH)
= pVu* + phyut'V ,hY — phy, h*'V u”

= ipky Aut +iph,uky, AR —iph, hj Au” = 0.
Similar at first-order the contraction of the fluid velocity vanishes:

w VTl =, V(8 f AR + STRMRY 4 200" 4 )
= w, 67V (WPRY) + 1w,V u (0PRY) + 1,V (VB
= 57U PV B + w0V b + 1, BV 0
= 0Tu, RV b + u 8NV B = 2m AR u, BV, (RPY (pup )
= idTu, h'k, ALY + du, Mk, ARY =0

u,,V“J(“ll; = ul,Vu(2m[“h”] + s*)
= u, Vyu(m'hY) — u, vV, (m”hH)
= u,m'V, h" —u, "V, m”

= wym'V b + 2r | AP, hHN , (WPTV (5(hy )/ T))

= iu,m"'k,Ah” = 0,
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and by contracting h,,

mvgﬁ}:vawAW+ﬁﬂww+QW%W+ww
= hyV(0T) "R + 67hy Vo (W*hY) + hy Y, (04R") + by, V (€ 1)
= h*V 07 4 67V b + 6Thy, WV Y + V0% + hy 0*N yhY + hy bV, 0
= W'V (=G APV juy — (hPRAV pun) — 20| AV, (WY (1)
= WV, (—iCx APk Auy — i B kpAuy) — gy APV, (ihP kg Auy, — ihPk,Au,)
= —i( APk WV Ay + i APThP K,V Aug
= —iCx (uPut + g — WPRN kWY Ay + iy (u'u” + "7 — W*h7) Rk, Y  Aug
= —iCu K WPk Auy + in hPkok Aug = 0
oV = hoVu(@mih 4 s
= hy, V. (m'hY) — b,V (m” hH)
=V, m!" + h,m"V,h" — h,h'V,m"”
= =21 AN (WP TV [5(hppt/T)) + ihymF ke ARY + 2r | AP Ry WY L, (RPTV (5(hy i/ T))
= —2r | uAPPN , (hPV ghy, — WPV phig)
= —2r | uAPPV , (ihPkgAh, — hPk,Ahg)

= 21 uAPPRPk K, kP Ahg = 0.

Thus, for the first-order only the projection by AP, contributes, the zeroth and first-order

can be added together to give the full linear system for the Alfvén channel.
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E Derivation of the magnetosonic channel in the Landau
Frame
The first equation we consider are V,(su*) = 0 for the zeroth approximation, which corre-
sponds to considering ul,V#T(‘g)’ + uhl,V#J(’ES = 0 we find
Vu(su") = ut'V s + sV, u
= MtV + !V, T + sV, ut

= i(= oA — cwAT + s> AU; + sk cos OAT,)

/N /N
0w NN =
~— N~ =

= dexp(iktz,,)(—Awdp — cwdT + sk?5U; + sk cos O5Uz)
We next consider the contraction of ul,V“J(’fS, where we find that

ul,VﬂJ(’g; = ul,Vu(qu[“h”})
= (u'h” —u"h")u, V up + pu, Vi (Ut h” — u”hH)
= M (XVup+ AV, T) +ipu” kyu, AR + ipk, Ab¥
= ik cos O(xAp + AAT) + iwp(k cos AU, — AUs) + ip(k* sin® 0AH; — w(k cos AU, + AUs))
= i exp(iktz,,)(k cos O(xOp + Aop) + pr? sin® 05 Hy )
(E.5)

Likewise, for the contraction of hZ,VuT(’g)' we find that

h,,V“T(‘(‘)’)’ = h,V,u((e + p)uru” + pg"” — pphth”)
= (e + p)hy !V ut + W (sV, T + pV ) — ph*V o — pht (XVupe + AV, T) — ppV ,h*
=i(e + p)urk,hy, Au” + ihFk, (sAT + pAp) — iphtk, Ap — ph* 'k, (Ap + AAT) — ippk, ARH
= —iwTsAUy + ik cos 0((s — pA\)AT — wTsAU; — pxAp) — ippk? sin? A H,
= iexp(ikt'z,)(—wTs6U; + kcosO((s — pN\)oT — wT's6Uy — puxdp) — ppk* sin® 05 Hy)

(E.6)
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While for the contraction with the projection tensor, for both the conserved quantities in

the zeroth-order we explicitly find

AP TG = AP V(e + p)ule” + pg"” — pph )

= (e + p) AP LIV u” + APP(sV T + pV i) — ppAP,hHV ,hY

= —i(e + p)wAP EY AUy + iAPPk, (sAT + pAp) — ippk cos AP kY AHy

= —iexp(ik"x,) (AP k,(s6T 4 pop) — (€ + p)wAP L EYSU — ppk cos OAP kY0 Hy)
AP Tl = APV (2pultn)

= pAP LU B — pAPL IV i

= —ipwAP kY AH — ipk cos OAP kY AU,

= —iexp(tktx,)pAP k" (WAH; + kcos6U)

(E.7)

Next we consider the first-order approximation, in the same order as for the zeroth-approximation.

We can start by considering u, VT, (’61)’ + uhVVMJ(’fS = 0. We note here again that for the

sound channel s*¥ = 0.

w VTS + 1oV T = w, Y (STAM 4 6ERMRY + 201 k") + ) + uhy, V7, (2ml 1Y)
= uV,m"
— —2ur AP IV, VY, (h%ﬁ)
= ur A" (kuko Ap — %kuko—AT — pk cos Ok, Ahy)
= ur i A"k ke (Ap — %AT — KkcosOAH,)
= exp(ikPa,) (ur <2 sin® 0(Sp — %w — s cos 05 H1))
(E.8)

Next the conservation of the current contracted with the fluid velocity

w VIl = w Y @mh) = w, V(R —m ht) =0 (E.9)
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This complete vanish since that u,h* = 0, and m” is transverse to the fluid velocity, while

hy VTl = bV (ST AR 4 660 RY + 200hY) 4 1)
= WMV, 01 — V"
= —( AP WY pug — QP RPRTV WY gt + 20 APTRAV LV
= —(xkcos OA 7k ke AU — CH/@Q cos? 0h? Auy — 17H/£2 sin? Oh ) Auy, — n)| K cos AP ko k, AU,
= k?sin’ O(—k cos QAU (Cx + 2n)) — n)AUz) — C”HQ cos® O(k cos OAU; — AUs)
= exp(ik"x,)k*(cos 0(8U1 + K cos 0)¢) + sin? 0(8Uam) + dU1k cos 0(Cx + 21))))).
(E.10)
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Lastly we have the contraction of the projection tensor

APV TS = APV, (5m AR + SER*RY + 200 hY) 4 1)
= APPY 07 + AP RPN 07 4 APV 1
= —CLAM ALV puy) — CAYRTRAIV LV (puyy — 20 AP, AV R BV LV (puy
— 2L AP (APAAYT — %A“”AM)V”V(A%)
= CLAMP ANk ko Ay + (o AP I kKo Auy, + ny kAP kg Auy
+ ke AP I ey Aug + 0L A, AP Ry Aug + 01t AP K, AP kg Auy
- %mA“pkuAA"kAAuo - %nLA“pk“A’\"kgAuA
= CLA“pk,mQ sin? AU + (x APk, K cos O(k cos Auy + AU3)
+ 1) AP kgk cos O(k cos 0AUL + AUsz) + 7]||Ap"kaf<;2 cos? OAU, + 21| AP K, k% sin? AU,
— m_A“pkuﬁz sin? AU,
= exp(ik"x,) A"k, k(Cx cos 05U + k(Cx cos? 0 + sin? 0(¢) +n1.))0Un
+ 1) cos 0(2k cos 06U + 6Uz))
AP LI = APV (2mnt)
= AP, WMV m”

— 2| AP, A BTV, Y, (h N ;f)

= —T‘LApghAh‘uTvu <VU (hkéﬁ) - v)\ (hag-,))

— r APTRE (vuvau - %VMVUT - uhAV,NAh(,>

= —r APTRIE, <kgAu - %koAT - Mh*k@@)

1
= —erAp"/{ cos O(TAp — pAT — pk cos§AH)

= —exp(ikt'z,)r 1 AP kyrk cos O(Top — péT — pk cos B9 Hy )
(E.11)
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F Magnetosonic matrix
The magnetosonic modes are determined by the linear system

Mabéa =0,

where § = (6U1, 6Us, Hy,0p,0T), where a = 1,2,3,4. The Matrix can be written as

K2p Kpcos 6 0 My M;s
Mo, My 0 0 —skcos 0
My, = M3 M3 —ﬁ&ucos@ # ﬁ
0 0 k%psin? 6 KX cos 6 KA cos 6
—Kpcosf 0 —pw — ik cos? Or | ikcosOr —ﬁn,u,cosé?rl,

where

1
My = T <T)\pw — iy cos® 6 4 psin® 9)71>
S

1
Mis=—— (CTQW —ir’p?(TAcos® § — psin® 9)”)
S

Mos; = K cosf <5Tw + ik?(cos? 0¢ + sin? 0(Cx + 27)”)))
Myy = sTw + ik?(cos? o¢) + sin? o)

1
M3 = g <(5 + p)w + ik (sin? (¢ + 11 ) + cos® O(Cx + 277))>
j_p/fcosﬁ(CX +m)

Mso = —
9

The Matrix can be read directly from eq. ([15.20), and its determinant can be written

directly from the Matrix.
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