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Abstract

This thesis investigates the structural properties of materials with kagome-layered crystal
structure, focusing on the new kagome metals AV3Sb5 and the shandites M3A2Ch2. The
former have only recently been synthesized and found to have a charge ordering phase that
doubles its unit cell, called a charge density wave (CDW). The latter have been known
for a long time and have also recently resurfaced because of some interesting transport
properties, possibly connected to topological effects, but none of them is known to have a
similar CDW phase. The thesis begins by providing an overview of the materials and their
crystal structures, highlighting the unique electronic features of the kagome lattice. It then
extends the existing phenomenological Landau theory for CDW-like structural transitions
in AV3Sb5 to the shandite crystal structure, revealing that the symmetries of M3A2Ch2

could potentially allow for a CDW phase. Density Functional Theory (DFT) is then
introduced as a computational tool to study the materials of interest. The simulations
on CsV3Sb5 confirm the presence of an unstable phonon mode, signifying a structural
instability, but are not able to identify electronic instabilities. Regarding the shandites,
we focus on Pd3Sn2Se2, where we examine its similarities and differences compared to
the kagome metals. Through simulations, we demonstrate that there are no indications
of any structural or electronic instability in Pd3Sn2Se2 and other shandite compounds.
Throughout the study, further investigations are proposed, such as studying the role of
apical ions, exploring different shandite compounds, searching for shandites exhibiting
CDW phases, and delving deeper into the interplay between phonons and electronic effects
in the CDW formation. In summary, this thesis contributes to our understanding of the
structural properties of kagome-layered compounds and their interplay with the electronic
properties, laying the groundwork for future research and applications in the shandite
materials.
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Chapter 1

Introduction

The kagome lattice (Figure 2.8) is a triangular Bravais lattice with three atoms per unit cell.
In their crystal structure, some materials - both found in nature and artificially synthesized
- contain sheets of atoms arranged in a kagome lattice. The name was first used in 1951 by
physicist Itiro Syôzi [1], who was referencing a pattern used in Japanese basket-weaving,
and has stuck since then. Syôzi was studying the Ising model on the kagome lattice, and
in the following decades most of the interest around kagome was related to geometrically
frustrated magnetism and the quest to find quantum spin liquids [2], magnetic systems
with large ground state degeneracy that fail to order even at T = 0 K due to quantum
oscillations. The Hubbard model on the kagome lattice has been studied extensively,
with numerical analyses finding unconventional superconductivity, charge and spin orders
as possible ground states [3–5]. In recent years, interest in kagome materials has been
revamped because of some newly found materials with peculiar electronic properties, such
as pressure-tunable superconductivity [6], giant anomalous Hall effect (AHE) [7] and the
speculated presence of topological effects [8] and local loop currents [9].

The kagome metals AV3Sb5 (where A = K, Rb, Cs) have been the subject of extensive
research as they were the first kagome crystals discovered to exhibit superconductivity at
low temperatures. Despite the absence of magnetic ordering, these materials exhibit a
very large AHE. In a manner reminiscent of Cuprates and Iron-based superconductors,
the superconductivity in AV3Sb5 emerges from and competes with another electronically
ordered phase known as a Charge Density Wave (CDW) [6]. While the theory of a CDW
in one dimension is well established in terms of a purely electronic Peierls instability [10]
stemming from the nesting of the Fermi surface, the microscopic mechanism in two dimen-
sional layered compounds is still highly debated [11]. In a heuristic sense, the CDW is a
phenomenon in which an electronic order and a periodic lattice modulation help stabilize
each other through the electron-phonon coupling. Numerous theoretical models have been
proposed to explain the microscopic electronic nature of the CDW in AV3Sb5, often in-
volving charge-bond orders and loop currents, referred to as real and imaginary CDWs. At
the moment, first-principles calculations have been able to predict the lattice instability in
AV3Sb5, but it has not been easy to predict the electronic instability.

Recently, there has also been much interest about the ferromagnetic Co3Sn2S2 [8], with
Shandite structure and kagome layers of cobalt. Like the kagome metals, this material
has been found to have a large AHE [12], which is speculated to stem from its Weyl
semimetal nature. The shandites family M3A2Ch2 includes many other possible materials
with kagome layers, sometimes also referred to as half antiperovskite [13], but around them
there is not as much literature as Co3Sn2S2 [14, 15]. To the extent of our knowledge, none
of these materials have been found to undergo a CDW-like structural transition analogous
to AV3Sb5.

In this work, we embark on a comprehensive exploration of the kagome lattice and the
intriguing possibility of interplay between structural properties and electronic degrees of
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(a)
(b)

Figure 1.1: How times have changed: (a) kagome basket weaver in Japan, 1915. Credit:
Wikimedia Commons; (b) screenshot taken from the 2D Semiconductors website, display-
ing a sample of the kagome ferromagnet Co3Sn2S2 for sale.

freedom. In Chapter 2 we present the materials and their structure more in detail and
we give some arguments for why the electronic structure of the kagome lattice might be
interesting by studying a simple tight-binding model. Chapter 3 focuses on presenting the
existing phenomenological Landau theory for CDW-like structural transitions in AV3Sb5

and extending it to shandites M3A2Ch2 which have slightly different symmetries. The aim
is to compare these systems and identify symmetry-related factors that may determine the
potential for hosting a CDW phase. In Chapter 4 we give a quick introduction to DFT,
which we then employ in Chapter 5, to study some of the specific materials we mentioned.
By dissecting the materials’ structures, we aim to shed light on the underlying mechanisms
governing the CDW phase and pave the way for future research in this field.
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Chapter 2

The kagome lattice

Kagome metals AV3Sb5

In 2019, a new family of materials AV3Sb5 containing kagome layers of vanadium was
synthesized [16] and later found to be superconducting at T ∼ 1 − 3 K [17–19]. Using
crystallography language, we describe their crystal structure by labeling the atomic coor-
dinates in the unit cell with their Wyckoff positions. Using this convention1, the atomic
coordinates and multiplicities are determined by only using a letter (some lower symme-
try sites could also require one or more parameters). As shown in Figure 2.1a, these
compounds crystallize in the P6/mmm space group, where the V atoms are at the three
Wyckoff positions g. The vanadium kagome lattice is sandwiched in between two layers
of antimony Sb2 at the four positions h that form honeycomb lattices. Another antimony
Sb1 is contained in the same plane as the V kagome and is at the position c, forms a
simple triangular lattice. Moreover, these layers are intercalated by triangular lattices of
the alkali atom A = K,Rb,Cs, sitting at the position a.

(a)

(b)

Figure 2.1: (a) Crystal structure of the AV3Sb5 family, with the alkali atom in purple, the
vanadium ones in red and the antimony in gold. The distances measured in Å specifically
refer to KV3Sb5. Figures adapted from Reference [16]

1For each space group, the table of all possible Wyckoff positions are determined by symmetry and can
be found on the Bilbao Crystallographic Server [20].
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Figure 2.2: STM topography of an antimony Sb2 cleaved surface and respective Fourier
transform, for two different temperatures. On the left, the high temperature phase, with
a small unit cell represented with red lines and that corresponds in reciprocal space to a
hexagonal BZ indicated by six Bragg peaks. On the right, the low temperature phase with
a doubled (2x2) unit cell that in reciprocal space corresponds to a smaller BZ, signaled by
six new Bragg peaks appearing. Figure adapted from Reference [21]

(a) (b) (c)

Figure 2.3: (a) Bare electronic susceptibility for a free electron gas on a 1D chain. The
function diverges at the nesting vector. (b) In a Peierls unstable system, if the electrons
are coupled to the lattice an acoustic phonon mode will become unstable at the nesting
vector. Figure adapted from Ref. [24]. (c) Fermi surface calculated with DFT, which
resembles the one obtained with ARPES. Figure adapted from Ref. [25].

Since their initial discovery, these materials have attracted considerable attention due
to their intriguing properties. Other than superconductivity, one remarkable feature that
has been observed and that we want to focus on, is an anomaly in various transport-
related quantities at temperatures around T ∼ 80 − 100 K. One such quantity is the
in-plane resistivity, as depicted in Figure 2.1b. Detailed investigations using scanning tun-
neling microscopy (STM) topography maps [21] have revealed a connection between this
anomaly and a structural transition occurring within the material. During this transition,
the unit cell undergoes a doubling in both in-plane directions, as illustrated in Figure 2.2.
Moreover, it also experiences a doubling or quadrupling in the out-of-plane direction [22].
This structural transformation gives rise to a distinct phase known as a Charge Density
Wave (CDW), believed to originate from an electronic instability within the material. A
theoretical model commonly used to explain this type of phenomenon in one-dimensional
systems is the Peierls instability [23], which is driven by Fermi surface nesting: in a 1D
chain, the bare electronic susceptibility for an electron gas diverges at the nesting vector
2kF . This purely electronic instability also renders the lattice unstable, causing a soft-
ening of an acoustic phonon mode at q = 2kF known as a Kohn anomaly. In the stable
configuration, the unit cell doubles and a gap opens at the Fermi level in the electronic
spectrum. In two-dimensional layered materials, however, the CDW picture could become
more intricate.

In AV3Sb5, Fermi surface nesting may not be enough to cause an electronic instability.
Angle resolved photoemission spectroscopy (ARPES) measurement have indeed detected
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(b)

Figure 2.4: (a) Experimental phase diagram for CsV3Sb5, figure adapted from Ref. [32].
(b) Phonon spectrum obtained from first principles, adapted from Ref. [33]. Imaginary
frequencies are represented as negative for easy visualization. A heuristic explanation for
why imaginary frequencies indicate an unstable structure can be found in the next chapter.

a Fermi surface formed by a Γ pocket and a quasi-two-dimensional hexagonal sheet with
vertices on the M − L lines, matching DFT calculations [25], so that the electronic insta-
bility could, in principle, be caused by the nesting of this Fermi surface by the M vector
(see Figure 2.3c). In the low temperature CDW phase, ARPES is also able to measure
multiple gaps opening [26]. Most experimental evidences diverge from the simple Peierls
picture though, for example x-ray inelastic scattering measurements do not see any acous-
tic phonon anomaly [24], while coherent phonon spectroscopy predicts the condensation
of three optical phonon modes [27]. Moreover, there has been evidence of unusually large
AHE [7], time reversal symmetry breaking [28, 29] and 3-fold rotation symmetry breaking
[30] in the CDW phase, which have been speculated to stem from local loop currents [9,
31].

The AHE is a phenomenon where a material exhibits a transverse voltage perpendicular
to an applied electric current and an external magnetic field, even in the absence of any
magnetic field gradient. Unlike the ordinary Hall effect, which arises from the Lorentz force
acting on moving charges in the presence of a magnetic field, the AHE is usually associated
with the presence of spin-orbit coupling and magnetic ordering in the material. Its presence
in AV3Sb5 is compelling, since these materials don’t appear to be magnetically ordered,
and further point to an unconventional (non-Peierls) mechanism driving the CDW.

AV3Sb5 offers an intriguing platform for investigating the interplay between electron-
phonon and electron-electron interactions. Its pressure-temperature phase diagram, de-
picted in Figure 2.4a, exhibits a dual-dome structure for superconductivity [6, 34] and the
charge order of CDW gets monotonically suppressed under increasing pressure. Several
studies have attempted to reproduce the superconductivity phase diagram using DFT [33,
35, 36]. While conventional electron-phonon driven superconductors can be analyzed using
methods like Eliashberg theory [37, 38] or the more straightforward McMillan formula [39]
to estimate the critical temperature from first-principles, whether these approaches are
sufficient or not remains a topic of debate. Regarding the CDW, previous DFT simula-
tions have successfully predicted the lattice instability (shown by the imaginary frequencies
in Figure 2.4b) and its pressure dependence [33, 40] and point to strong electron-phonon
coupling.

To gain a deeper understanding of the superconductivity exhibited in these materials, it
is crucial to clarify the symmetry of the CDW phase from which the superconducting phase
originates. In Chapter 3 we will explain why the imaginary phonon eigenvalues indicate a
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Figure 2.5: Conventional unit cell of the Shandite structure, containing three kagome
layers. The kagome atoms are colored in grey.

lattice instability and we will present a phenomenological symmetry-based theory that has
been recently proposed [41]. This theory can describe the in-plane and out-of-plane unit
cell doubling (i.e., the structural transition) but remains agnostic about the microscopic
nature of the order parameter. To get a better insight into what is the role of electronic
degrees of freedom and their interplay with the lattice, we will produce and show the
results of some of our own DFT calculations in Chapter 5. Moreover, we will compare
these materials to the shandites, which we introduce in the next section.

Shandites M3A2Ch2

Shandite is the name given to the compound with chemical formula Ni3Pb2S2, discovered
in the late 1940s [42]. Several compounds with the same crystal structure M3A2Ch2,
shown in Figure 2.5, have been synthesized in the past decades, and are now typically
called shandites or half antiperovskites [43–47]. In this formula, M generally refers to a
transition metal, A to a post-transition metal and Ch is a chalcogenide.

In these crystals, which have space group R3̄m (No. 166), the kagome layers are formed
by the three M atoms sitting at the Wyckoff position e. The kagome lattice is coordinated
by a triangular lattice of A1 atoms at the a position, and is intercalated by an additional
A2 atom at the b position and two apical Ch atoms at the c position.

We will examine more in detail the arrangement of kagome layers in this crystal struc-
ture in Chapter 3, for the moment we just notice that the three major differences between
M3A2Ch2 and AV3Sb5 are: (1) the inter-layer distances in shandites are typically much
smaller (around half as much as in the V-based kagome metals); (2) the layers are not
repeating in a direction perpendicular to the layer itself, but are slightly shifted, such that
it takes 3 layers to get a conventional unit cell with c axis perpendicular to the ab plane
(see left panel of Figure 2.5); (3) the system does not posses six-fold rotational symmetry,
both because of the shifted vertical stacking and because of the configuration of the apical
ions above and below each kagome triangle. While in AV3Sb5 the Sb2 antimony act as the
apical ions and lie on the same plane, forming two honeycomb lattices, in M3A2Ch2 the
apical ions do not lie on the same plane and are alternating M2 atoms and Ch atoms (see
bottom right panel of Figure 2.5).

The mineral Rh3Pb2S2 was discovered in 1983. Subsequently, the series Rh3A2S2,
where A represents In, Sn, Tl, and Pb, has been also studied and found to possess a
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(a) (b)

Figure 2.6: Comparison of the arrangement of apical ions over the kagome triangles in:
(a) the kagome metals AV3Sb5 where the apical ions are the antimony Sb2 atoms; (b) the
shandites M3A2Ch2 where the apical ions are alternating M2 atoms and Ch atoms and
have different distances from the kagome plane.

Figure 2.7: Weyl semimetal nature of Co3Sn2S2 and AHE. Figure adapted from Ref. [49].
(a) Two bands are crossing over an entire line, called the nodal line. (b) The degeneracy
gets lifted along the whole line other than in the two Weyl points. (c) Six couples of Weyl
points are found around the BZ. (d) The anomalous Hall angle, defined as the ratio between
the anomalous Hall conductance and the full conductance, as a function of temperature.
The angle reaches approximately 20% around 120 K, a value that is considered giant since
it is an order of magnitude larger than in usual ferromagnets.

shandite structure with kagome layers composed of rhodium atoms [46].
Recently, many works have focused on investigating the properties of ferromagnetic

Co3Sn2S2, which has been found to exhibit a giant AHE. This effect is believed to arise
from the compound’s speculated Weyl semimetal characteristics [48–51], shown in Figure
2.7. In a typical semimetallic system, the valence and conduction bands overlap and
can become degenerate along an entire line referred to as the nodal line. However, in
systems lacking inversion symmetry, the introduction of spin-orbit coupling can break this
degeneracy along the entire line, except for two specific points known as Weyl points.
These Weyl points are found to be monopoles of Berry phase curvature and their existence
can even be predicted through first principles [52]. The emergence of Weyl fermions at
these points leads to chiral excitations, which could potentially explain the unconventional
behavior of electron flow observed under a magnetic field, as measured by the AHE.

Furthermore, certain shandite compounds with palladium kagome lattices have also
been examined. For instance, Rh3Pb2S2 has been discovered to exhibit superconductivity
under high pressures [14] and has been theoretically investigated in relation to topological
phonon excitations [15].

Shandites provide a versatile platform encompassing various materials. In the subse-
quent chapter, we will delve into the study of the layered kagome structure of shandites
and extend the phenomenological theory of the CDW to these materials. Notably, no shan-
dite compound exhibiting a CDW that doubles the unit cell has been discovered thus far,
making it intriguing to examine the theoretical feasibility of such a phenomenon from a
structural standpoint. Furthermore, in Chapter 5, we will employ DFT simulations to gain
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Figure 2.8: The kagome lattice with the three atom species in different colors. The unit
cell is highlighted with black solid lines.

further insights into the electronic properties of these compounds and their relationship
with the lattice.

Tight-binding model

Let’s shift our attention away from specific material examples and take a more abstract
approach to the kagome lattice. While our main emphasis is on the lattice structure itself,
we will briefly introduce a simple tight-binding model to gain insight into the behavior of
electrons within this lattice. In cartesian coordinates, we write the primitive translation
vectors of a hexagonal Bravais lattice R as

t1 = a

(
1
0

)
, t2 = a

(
−1/2√
3/2

)
, R = n1t1 + n2t2 , (2.1)

where n1, n2 are integers. For kagome, the positions of the three atomic sites inside the
unit cell are

dA =

(
0
0

)
, dB =

1

2
t1, dC =

1

2
t2, (2.2)

which are also said to form the three sub-lattices.
Using second quantization formalism, we can write down electronic field creation/an-

nihilation operators ĉ†Rα, ĉRα which create/annihilate an electron in the unit cell R at site
α2. To write a tight-binding Hamiltonian, we assign a probability amplitude −µ for the
electron to remain in the same site and a probability amplitude −t that it could hop, both

• to its nearest neighboring sites, in the same unit cell (R, α) ↔ (R, β),

• to its nearest neighboring sites, in neighboring unit cells (R, α) ↔ (R′, β) = (R −
2dαβ, β),

where dαβ = dα − dβ . In terms of field operators we have

Ĥ = −t
∑
R

∑
α ̸=β

(
ĉ†RαĉRβ + ĉ†RαĉR−2dαββ

)
− µ

∑
Rα

ĉ†RαĉRα . (2.3)

If the lattice has periodic boundary conditions, the system is translationally invariant
and the conjugate momentum k is a good quantum number. For any kind of 2D trian-
gular system, the Brillouin Zone (BZ) is a hexagon, given by the Wigner-Seitz cell in the

2For the moment we omit the spin index, which is redundant in this simple case since the tight-binding
Hamiltonian is diagonal in spin.
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reciprocal lattice spanned by

G = m1g1 +m2g2 , m1,m2 ∈ Z ,

g1 =
2π

a

(
1, 1/

√
3
)
, g2 =

2π

a

(
0, 2/

√
3
)
.

(2.4)

Using group theory language, every point k ∈BZ labels one of the one-dimensional ir-
reducible representations (irreps) of the translation group, which have character eik·R.
Projecting the operators ĉRα in those irreps, is then equivalent to doing a Fourier trans-
form

ĉRα =
1√
N

∑
k

ĉkαe
ik·R (2.5)

so that the Hamiltonian becomes

Ĥ =
∑
k

∑
αβ

ĉ†kβHαβ(k)ĉkα , (2.6)

H(k) =

 −µ −t[1 + e−2ik·(dBA)] −t[1 + e−2ik·(dCA ]

−t[1 + e−2ik·(dAB)] −µ −t[1 + e−2ik·(dCB)]

−t[1 + e−2ik·(dAC)] −t[1 + e−2ik·(dBC)] −µ

 . (2.7)

The Hamiltonian is now diagonal in k space, but not in sub-lattice space. Further
diagonalization in sub-lattice space leads to finding a set of three energies for every k
point, which can be plotted through a high symmetry path in the BZ to give the band
structure for this tight-binding model, shown in Figure 2.9. The unitary matrix that takes
us from sub-lattice space to band space can be written as

diag(ε1k, ε2k, ε3k) = U(k)H(k)U †(k) , (2.8)

U(k) =

u1A(k) u2A(k) u3A(k)u1B(k) u2B(k) u3B(k)
u1C(k) u2C(k) u3C(k)

 , (2.9)

so that the three columns of this matrix are the eigenstates of H(k) associated with the
three eigenvalues εik. The matrix elements uiα are also called sub-lattice weights. We can
interpret them as telling how much of the electron’s wavefunction is localized on one of the
three sites, for a given band and k vector. In Figure 2.9 we represent the modulus squared
of these weights on the band structure, by interpolation of RGB colors.

Although the overall system is 6-fold symmetric, depending on the k-point, the Hamil-
tonian H(k) may not be commuting with every element of the point group D6, but with
just a (normal) subgroup of it. Formally, H(k) only commutes with the little group of
k. The little group of D6 at k is the subset of symmetry operations of D6 that leave k
invariant, modulo a reciprocal lattice primitive translation. For example, the little group
at k = (0, 0), the Γ point, is D6, but the little group at k = (12 , 0), the M point, is D2.
The diagonalization of H(k) is equivalent to projecting onto the irreps of the little group at
k. One of the early developments of band theory, was the realization that the little group
can give information about band crossing and degeneracies. For example, since the little
group at k = (13 ,

1
3), the K point, is D3 and it allows for a two-dimensional irrep, we can

have a band crossing at K, where the two degenerate eigenvectors transform like the two
columns of the irrep. In contrast, at M the little group is D2, which only allows for one-
dimensional irreps, so all three bands in our tight-binding model should be non-degenerate
by symmetry at M.

In this simple model, which only accounts for the kinetics of the electrons but no
Coulomb interactions, the band structure presents a completely flat band and two bands
that cross in a Dirac cone at K, while also having two saddle points points at M . These
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Figure 2.9: (a) Band structure for a tight-binding model on the kagome lattice, having
chosen a high symmetry path in the hexagonal Brillouin Zone, shown on the right inset.
The left inset shows the correspondence between RGB colors and sub-lattice weight. (b)
When the Fermi level lies on top of the saddle point, the Fermi surface is a regular hexagon.
The colors indicate the sub-lattice weight and demonstrate the phenomenon of sub-lattice
interference: at the M points there is only one sub-lattice specie. Moreover, the Fermi
surface is perfectly nested by the M vectors.

saddle points are also referred to as van Hove singularities (vH), since the density of states
at those energies should be singular with a logarithmic divergence. Of these vH points,
the bottom one is called m-type (mixed) because it always has an equal mixture of two
sub-lattice weights, while the top one is called p-type (pure), since it always come with
only one of the three sub-lattice weights being different than zero. The hexagonal BZ
has only three nonequivalent M points (said to form the star of M, the other three are
obtained by reciprocal lattice translations), and at the specific M point plotted in Figure
2.9 the p-type vH is associated with the A sub-lattice, so it is red, while the bottom one
is a mixture of B and C, so it is between green and blue. If we were to look at the other
two nonequivalent M points, we would see the same thing happening, but with the colors
inverted.

In Figure 2.10 we show how the (modulus squared of the) wavefunction would look like
at the two kinds of vH points, in a simple scenario where s-orbital electrons are used as a
basis for the tight-binding model. At the p-type vH point, the wavefunction is completely
localized on just one of the three sites, while at the m-type vH point it is completely
localized on two of the three sites.

This phenomenon is sometimes referred to as sub-lattice interference [53]. More in-
volved theoretical investigations, such as extended Hubbard models [3–5] and Renormaliza-
tion group analyses [31], have introduced interactions to the kagome tight-binding Hamil-
tonian to model the Coulomb interaction. It is widely believed that having the Fermi level
close to the p-type vH point could promote electronic Fermi surface instabilities that can
lead to a CDW ground state in these models, similar to the one observed in AV3Sb5. The
instability could be strictly related to nesting: as shown in Figure 2.9b, at the vH filling,
the Fermi surface is a regular hexagon that is perfectly nested by the M vectors and the
divergence of the density of states could lead to enhanced scattering between electrons
close to the saddle point. Notably, the CDW in the kagome metals seems to be modulated
exactly by the M vectors.
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p-type m-type

Figure 2.10: Magnitude of the wavefunctions corresponding to the two kinds of saddle
points/vH singularities: p-type, where the wavefunction is completely localized on just
one of the three sites; m-type, where the wavefunction is completely localized on two of
the three sites.

It is still heavily debated if in real systems like AV3Sb5 the CDW instability can be
purely electronic or is actually stabilized by the electron-phonon coupling, in a way that
reminds the Peierls mechanism. In the upcoming Chapter we will focus solely on the
structural properties, but we will revisit these electronic properties and the Fermi surface
nesting in Chapter 5.
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Chapter 3

Landau theory for structural
transitions

In Landau theory, a phase transition is a process in which a system loses some of its
symmetries. Let us assume that, in the high symmetry (disordered) phase, there is a
group G describing all of the symmetry operations that leave the system invariant. We
call order parameter ψ a quantity whose thermodynamical average is zero in the disordered
phase, and it is different than zero in the ordered phase. Landau’s idea was that near the
critical temperature for the phase transition, the order parameter would be small and the
free energy functional could be Taylor expanded in powers of this small parameter. In
general, one can predict by symmetry what terms are allowed in a Taylor expansion, for
example the function cos(x) is even under the inversion x→ −x, so its Taylor expansion will
only contain even powers. Using groups and representation theory, we can generalize this
concept to discrete groups that contain more symmetry operations than just the inversion,
and predict what terms will be allowed in the free energy expansion. An order parameter
will transform under some representation Γ of the group G, so that in principle, we can
know the functional form of the free energy and we can classify all of the low symmetry
(ordered) phases that the system can enter, by listing all of the irreducible representations
that the order parameter can transform under.

In the following, we are interested in how kagome lattice layers hosted in a material
can undergo a structural transition, i.e., spontaneously break some of the space group
symmetries. This is the phenomenon observed in the kagome metals AV3Sb5 CDW phase:
some kind of electronic charge-bond order is accompanying a structural transition. In
a normal structural transition, one can imagine the order parameter to be the average
displacement ψ = ⟨∆τκ⟩ of some of the atoms κ in the unit cell with respect to their
equilibrium positions τ0κ . In the disordered phase the atoms have some fluctuations around
their equilibrium positions (phonon modes), but they average to zero. In the ordered phase,
some of these fluctuations get frozen in the crystal structure, lowering the symmetries of
the system, and we say that particular order has condensed. Condensation of an order
parameter causes the system to end up having a group of symmetriesH, which is a (normal)
subgroup of G. For a space group, the irrep is specified by picking a point in the BZ,
choosing an element of its star (the set of points obtainable by point group operations
and inequivalent by reciprocal lattice translations) and one of the irreps of the little group
(introduced previously) at that point.

Once we have identified the specific symmetries of an order parameter ψ, we can write
down a free energy F [ψ] expansion for small ψ. Since the free energy has to have all of the
symmetries of the system, it must transform under the trivial irrep Γtriv, so the problem
turns into the question of finding all the combinations of ψ (or its components, in case
of multi-dimensional irreps) which transform like Γtriv. In the case of space groups, the
terms that can enter the free energy need to be both invariant under every point group
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Figure 3.1: Ferroelectric phase transition in BaTiO3. On the left: cubic phase, for T > Tc
the average titanium displacement is zero, with the stable system represented as a red ball
sitting at the bottom of the curve. On the right: tetragonal phase, for T < Tc the average
titanium displacement is different than zero. The red ball represents the stable tetragonal
system, while the shaded red ball represents the unstable cubic system and is sitting at
the saddle point, where the curvature of the free energy is negative.

operation and invariant under all Bravais lattice translations (carry zero momentum).

Example - BaTiO3 Before moving to kagome, let us examine the simpler case of per-
ovskite barium titanate BaTiO3, which undergoes (among others) a ferroelectric structural
transition from a cubic to a tetragonal crystal system. In the cubic phase, the space group
is Pm3̄m (No. 221) and the titanium atom sits at the center of the unit cell, Wyckoff
position a, surrounded by oxygen atoms sitting at the 3 inequivalent sites d. As we will
show in Chapter 4, it is possible to use DFT to calculate the dynamical matrix in the Born-
Oppenheimer harmonic approximation. In the case of cubic BaTiO3, we can find that at
the q vector Γ, the center of the BZ, the dynamical matrix has a negative eigenvalue: a
phonon frequency is imaginary.

Since the dynamical matrix is the hessian of the Born-Oppenheimer energy surface with
respect to the atomic displacements, having a negative eigenvalue means that the system
can decrease its energy by distorting in the “direction" described by the corresponding
eigenvector, so it is unstable. The eigenvalues of the dynamical matrix are the phonon fre-
quencies squared, so a negative eigenvalue corresponds to an imaginary phonon frequency1.
Using the SMODES tool in the ISOTROPY software package [54], we can compare this
eigenvector (i.e., the phonon mode obtained with DFT) to the irreducible representations
of the point group of this system, Oh. We find that the phonon mode, which describes a
displacement of the titanium atoms along z and the oxygen ones in the opposite direction,
transforms like one of the columns of the Γ−

4 irrep.
We now have the ingredients to make a Landau theory. If we take the average displace-

ment of the titanium atom to be the order parameter ψ, we know its symmetry properties,
so we can determine the free energy expansion. Using the INVARIANTS tool [54], we find

1For more details on the dynamical matrix, which will be defined in equation 4.57, and the meaning
of the Born-Oppenheimer approximation, see Chapter 4.
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Figure 3.2: Hexagonal Brillouin Zone and star of the M vector.

the free energy up to fourth order to be

FBTO[ψ] =
a

2
ψ2 +

b

4
ψ4

which is the most basic form of a Landau free energy. With the usual ansatz a(T ) ∼ a(T −
Tc), under the critical temperature the free energy has two non-zero minima, which describe
the freezing in of the lattice phonon mode. Under the critical temperature, the system can
decrease its energy by distorting and changing its structure, such that the average titanium
displacement is different than zero. This new stable structure is a tetragonal system with
space group P4mm (No. 99).

As we will see, DFT is calculating ground state T = 0 K properties, so at that temper-
ature the cubic phase of BaTiO3 is sitting at the saddle point of the energy curve shown
in the right of Figure 3.1. The takeaway point is: finding imaginary phonon frequencies,
signals an unstable crystal structure.

2D - One kagome layer

For a single kagome layer, let us consider G = D6h × T as the group of symmetries for
the system, where the point group D6h includes 6-fold rotations, two mirrors and inversion
and T is the group of all discrete translations allowed in a triangular Bravais lattice. From
now on, we indicate with bold letters the points in the Brillouin Zone and italic letters the
irreps of the little group at that point. As seen Chapter 2, experiments and previous DFT
calculations indicate that the CDW in AV3Sb5 is modulated by the M vector, so we focus
our analysis on this point. The little group at M is D2h, which has eight one-dimensional
irreps, four even and four odd under inversion (see the character table 3.2 at the end of
the chapter). Furthermore, there are three vectors in the star of M, see Figure 3.2, with
coordinates

M1 = ±1

2
g1 , M2 = ±1

2
g2 , M3 = ±1

2
(g1 − g2) , (3.1)

which means that the eight space group irreps, labeled M±
1,2,3,4 are all three dimensional:

an order parameter transforming like one of these irreps has three components.

M+
1 irrep Let us take a look at the Landau theory for an order parameter ψ = (ψ1, ψ2, ψ3)

transforming like the M+
1 irrep, the trivial irrep of the little group at the M point. In Fig-

ure 3.3 we show how a lattice distortion (or a frozen phonon mode) transforming like one
of the three components of ψ looks like. Condensation of one of these three orders would
cause a point group symmetry breaking D6h → D2h and breaking of the translational
symmetry in one of the two primitive directions (2x1 doubling of the unit cell). We refer
to that order as a stripe phase. Up to fourth order we obtain the free energy expansion
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ψ ∝ (1, 0, 0) ψ ∝ (0, 1, 0) ψ ∝ (0, 0, 1)

Figure 3.3: Lattice distortions corresponding to the three components of the M+
1 irrep.

ψTriHex ∝ (1, 1, 1) ψSD ∝ (1,−1, 1)

Figure 3.4: Lattice distortions corresponding to the TriHex and SD patterns. They pre-
serve all the point group symmetries of D6h but break the original discrete translational
symmetry of the lattice: now we need to double both the primitive translation vectors to
preserve it.

FM+
1
[ψ] =

α

2
ψ2 +

γ

3
ψ1ψ2ψ3 +

u

4
ψ4 +

λ

4
(ψ2

1ψ
2
2 + ψ2

1ψ
2
3 + ψ2

2ψ
2
3) , (3.2)

where ψ2 = ψ2
1 + ψ2

2 + ψ2
3. The trilinear term is remarkable, part of the reason why it is

allowed is that the sum of all three M vectors is zero, so this term carries zero momentum.
Furthermore it is easy to check, with the help of Figure 3.3, that all operations of the point
group would leave this term invariant. Because of this trilinear term, the condensation
of all three components of the order parameter is always energetically favored, no matter
the sign of γ, since we can always make up for it changing the sign of one of the three
components. If one of the three was zero, the trilinear term would vanish and increase
the free energy. In Figure 3.4 we show how an order with all three components different
than zero (and same magnitude) looks like. There are two cases: all three have the same
sign, so the distortions form a so called Tri-Hexagonal pattern (TriHex)2; one has opposite
sign than the other two, the distortions form a so called Star-of-David (SD) pattern. The
condensation of one of these two orders would not break the point group symmetry, but
would break the translational symmetry and cause a doubling of the unit cell in both the
primitive directions (2x2).

As shown in [41], we can actually minimize the free energy to prove that the TriHex
or SD phases are always favored with respect to the stripe phase. In the stripe phase,
the order parameter would be e.g., ψstripe = (M, 0, 0), so that the free energy for this
configuration would be

FM+
1
[ψstripe] =

α

2
M2 +

u

4
M4 , (3.3)

and we impose u > 0 so it remains bounded. The minima of this free energy are M0 =
±
√

−α/u, such that we find the free energy for the stripe phase to be

Fstripe = −α
2

4u
(T − TM )2 , (3.4)

2Sometimes, in the literature, this configuration is also referred to as the Inverse Star-of-David (ISD).
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having used the standard ansatz that the temperature dependence of the quadratic coeffi-
cient is α(T ) ≈ α(T − TM ) and α > 0. In the TriHex/SD phase, instead, we would have a
free energy

FM+
1
[ψTriHex/SD] =

α

2
M2 +

γ

3
M3 +

3u∗
4
M4 . (3.5)

We must also require u∗ = 3u+λ > 0 for the free energy to be bounded. At the minimum,
the value of this free energy is

FTriHex/SD =
K2

2592u3∗
[54α(T − TM )u∗ − γK] (3.6)

with K = γ +
√
γ2 − 36α(T − TM )u∗, which crosses zero at

T3M =
2γ2

81αu∗
+ TM , (3.7)

so this critical temperature is always greater than TM , if γ ̸= 0.

Every other irrep An order parameter transforming like one of the seven other irreps
of the little group at the M point, M−

1 and M±
2,3,4, would give the free energy expansion

FΓ ̸=M+
1
[ψ] =

α

2
ψ2 +

u

4
ψ4 +

λ

4
(ψ2

1ψ
2
2 + ψ2

1ψ
2
3 + ψ2

2ψ
2
3) , (3.8)

which does not contain a trilinear term. None of these order could condense and just
double the unit cell, without also breaking some of the point group symmetries.

3D - P6/mmm space group

Figure 3.5: Two kagome layers in the P6/mmm stacking. Black solid lines represent the
unit cell defined by the primitive translations in 3.9.

The easiest way to stack kagome layers in three dimensions, is to just repeat the unit cell
in the direction perpendicular to the kagome plane, such that we have a 3D unit cell given
by the primitive translation vectors

t1 = a

1
0
0

 , t2 = a

−1/2√
3/2
0

 , t3 = c

0
0
1

 , (3.9)

17



Figure 3.6: Brillouin zone for the P6/mmm space group.

so that c is the inter-layer distance. This makes it so the system has the symmetries
of the P6/mmm space group (No. 191), with the three kagome sites being at the three
inequivalent Wyckoff positions f . The name of the space group comes from the fact that the
Bravais lattice is (hexagonal) Primitive and the system is 6-fold symmetric and invariant
under two mirrors and inversion, so the point group is .6/mmm or D6h in the Schoenflies
notation.

Given that the primitive translations are the same as in the 2D case, plus a third
translation perpendicular to the firsts two, the Brillouin Zone is just a hexagonal prism,
as shown in Figure 3.6. The primitive reciprocal lattice vectors are

g1 =
2π

a

(
1,

1√
3
, 0
)
, g2 =

2π

a

(
0,

2√
3
, 0
)
, g3 =

2π

c

(
0, 0, 1

)
. (3.10)

Figure 3.6 also highlights the three vectors in the star of M in red and the three, so called,
L vectors in blue. The L vectors can be obtained by just adding a 1

2g3 component to the
M vectors. Moreover, 1

2g3 is known as the A vector, represented as a black arrow in Figure
3.6.

M1 =
1

2
g1 , M2 =

1

2
g2 , M3 =

1

2
(g1 − g2) ,

L1 =
1

2
g1 +

1

2
g3 , L2 =

1

2
g2 +

1

2
g3 , L3 =

1

2
(g1 − g2) +

1

2
g3 ,

A =
1

2
g3 .

(3.11)

M order parameter The symmetry analysis of the M point in this Brillouin Zone is the
same as the 2D case in the previous section: there are three vectors in the star, the little
group is D2h and there are eight 1D irreps. Of these eight, only one (M+

1 ) gives rise to a
trilinear term in the free energy expansion, and the other seven do not. With a different
notation, now we write the order parameter transforming like M+

1 as M = (M1,M2,M3),
whose components are represented as lattice distortions in Figure 3.7. Up to fourth order
the free energy expansion in this order parameter is

FM =
αM

2
M2 +

γM
3
M1M2M3 +

uM
4
M4 +

λM
4

(M2
1M

2
2 +M2

1M
2
3 +M2

2M
2
3 ) , (3.12)

where M2 =M2
1 +M

2
2 +M

2
3 and M4 = (M2)2. Similarly as in the 2D case, the stripe phase

breaks rotational symmetry and reduces the space group to Pmmm (No. 47), while also
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M1 M2 M3

Figure 3.7: Lattice distortions corresponding to the three components of the M+
1 irrep.

Consecutive layers have exactly the same lattice distortions.

Tri-Hexagonal Star-of-David

Figure 3.8: Lattice distortions corresponding to the Tri-Hexagonal and Star-of-David con-
figurations, where all three components of the M order parameter are condensing with the
same magnitude. Consecutive layers have exactly the same lattice distortions, since M
does not give any out-of-plane modulation.

doubling the unit cell in one direction (2x1x1). Because of the trilinear term though, the
two possible ground states for this free energy are the Star-of-David or the Tri-Hexagonal
configurations, repeating on every kagome layer, which double the unit cell in the two
planar primitive directions (2x2x1) but preserve the space group P6/mmm.

L order parameter The symmetry analysis for the L point is a little easier: there are
three vectors in its star, its little group is D2h, but none of the irreps L±

1,2,3,4 can give rise
to a trilinear term allowed in the free energy. For an order parameter L = (L1, L2, L3)
transforming like one of those eight irreps, the free energy up to fourth order looks the
same, and it is

FL =
αL

2
L2 +

uL
4
L4 +

λL
4
(L2

1L
2
2 + L2

1L
2
3 + L2

2L
2
3) . (3.13)

There are two possible ground states for this free energy, which are determined by the sign
λL: if λL < 0 it is energetically favorable for all three components (L1, L2, L3) to condense
and become different than zero; vice versa, if λL > 0 it is more favorable for just one
component to condense and the other two to remain zero. We can prove this analitically
by minimizing the free energy and finding the ground states (L, 0, 0) and (L,L,L), where
respectively the free energy takes values

F1L = −
α2
L(T − TL)

2

4uL
,

F3L = −
α2
L(T − TL)

2

4uL + 4
3λL

,

(3.14)
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L1 L2 L3

Figure 3.9: Lattice distortions corresponding to the three components of the L−
2 irrep.

Differently from the components of M+
1 in Figure 3.7, here consecutive layers have opposite

lattice distortions.

where we assumed αL ≈ α(T−TL). A state with two condensed components e.g., (L,L, 0),
would always have a greater energy than these two. From these equations we can also see
that for the free energy to be bounded we need uL > 0 and λL > −3uL.

The question of how do these two possible ground state configurations look like, in
terms of lattice distortions, can only be answered once we select a particular irrep of the
little group at L. For all of these irrep, it is true that since L has an out-of-plane component,
the lattice distortions need to have some inter-layer modulation: in particular, consecutive
layers must have opposite distortions, because the out-of-plane component of L is exactly
1
2 . Out of all the irreps allowed, L−

2 is particularly interesting since it causes the same kind
of in-plane distortions as M+

1 , but has this inter-layer modulation imposed. We show the
single-L phase in Figure 3.9 and the triple-L in Figure 3.10a. The single-L configuration
breaks the space group to Immm (No. 71) and doubles the unit cell in one direction, while
the triple-L preserves the space group P6/mmm while doubling the unit cell along every
primitive direction 2x2x2. The latter is shown in Figure 3.10a, and it corresponds to an
alternating Tri-Hexagonal and Star-of-David configuration.

ML coupling Let us study the case of a system allowing two order parameters M and
L, the former transforming like M+

1 and the latter transforming one of the L little group
irreps. The combination of their components which are allowed by symmetry to enter the
free energy, would be

FML =
γML

3
(M1L2L3 ± L1M2L3 + L1L2M3)

+
λ
(1)
ML

4
(M1M2L1L2 ±M1M3L1L3 +M2M3L2L3)

+
λ
(2)
ML

4
(M2

1L
2
1 +M2

2L
2
2 +M2

3L
2
3) +

λ
(3)
ML

4
M2L2 ,

(3.15)

where the two ± sign choices are + for the cases in which L transforms as L±
1,2 and −

for the L±
3,4 cases. Because of what we mentioned at the end of the last paragraph, we

will focus on the case of the L−
2 irrep. The total free energy for the coupled system

would be F = FM + FL + FML, which contains many terms with competing effects and
is complicated enough that doing an analytical minimization is not achievable. For an in-
depth discussion on the numerical minimization of this free energy, we refer to [41], while
here we limit ourselves to a discussion on some of the possible (not all) coupled ground
states that are possible when the M order has already set in.

Assuming that the system finds itself deep in the (M,M,M) phase and that TL <<
T3M , we can write an effective Landau free energy for the (L1, L2, L3) order parameter
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Eigenvalue Eigenvector
α̃L + c (1,1,1)

α̃L − c/2
(-1,1,0)
(-1,-1,2)

(a) Starting from 3M

Eigenvalue Eigenvector
α̃L + c/2 (0,1,1)
α̃L − c/2 (0,-1,1)
α̃L + b (1,0,0)

(b) Starting from 1M

Table 3.1: (a) Eigenvalues and eigenvectors of the matrix in equation 3.17. (b) Eigenvalues
and eigenvectors of the matrix in equation 3.19.

around T ∼ TL

F̃L =C +
α̃L

2
L2 +

c

2
(L1L2 + L2L3 + L1L3)

+
ũL
4
L4 +

λ̃L
4
(L2

1L
2
2 + L2

1L
2
3 + L2

2L
2
3) ,

(3.16)

where now we need to be careful about the renormalized (tilde) parameters: they are not
just combinations of the ones found in eq. 3.15, since in this case we are far away from
TM . The quadratic part of this free energy can be written as the product

1

2

(
L1 L2 L3

) α̃L c/2 c/2
c/2 α̃L c/2
c/2 c/2 α̃L

L1

L2

L3

 , (3.17)

so that diagonalizing the matrix we get three eigenvectors, which parameterize the leading
instabilities, and some eigenvalues, which indicate the their corresponding critical temper-
atures. We report these in table 3.1a, where we can see that the value of c determines what
instability is favored: for example if c < 0 than all components of L will condense with
the same magnitude and we get to a total ordered phase (M,M,M) + (L,L,L), which in
terms of lattice distortions corresponds to a Superimposed Tri-Hexagonal + Star-of-David,
represented in Figure 3.10b. This configuration doubles the unit cell in every direction
(2x2x2) but preserves the space group P6/mmm.

If instead we assume that the system found itself in a stripe phase e.g., (M, 0, 0), and
TL << TM , the effective free energy would be

F̃L =C +
α̃L

2
L2 +

c

2
L2L3 +

b

2
L2
1

+
ũL
4
L4 +

λ̃L
4
(L2

1L
2
2 + L2

1L
2
3 + L2

2L
2
3) ,

(3.18)

so that using the same trick as before, we can rewrite the bilinear part of the free energy
as

1

2

(
L1 L2 L3

)α̃L + b 0 0
0 α̃L c/2
0 c/2 α̃L

L1

L2

L3

 , (3.19)

where the eigenvectors and eigenvalues of this matrix are reported in table 3.1b. In this
case there are three leading instabilities, for example if c < 0 and c < 2b we would
obtain an instability towards a total ordered phase (M, 0, 0) + (0, L, L), which is called
the Staggered Tri-Hexagonal, represented in Figure 3.10c in terms of lattice distortions3.
These configurations double the unit cell in every direction (2x2x2) and break the space
group to Fmmm (No. 69).

3If instead, we started from a (−M, 0, 0) we could have also have obtained an instability towards
(−M, 0, 0) + (0, L, L), called Staggered Star-of-David.
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(a) (L,L,L) (b) (M,M,M) + (L,L,L) (c) (M, 0, 0) + (0, L, L)

Figure 3.10: Lattice distortions corresponding to some of the other phases discussed in the
last two paragraphs. (a) A configuration where only the L order has condensed and all its
components have the same magnitude. It corresponds to alternating Tri-Hexagonal and
Star-of-David configurations on each layer. (b) A configuration where both M and L have
condensed with different relative magnitudes. There are again alternating Tri-Hexagonal
and Star of David configurations on each layer, but with different distortion amplitudes.
(c) A configuration where both M and L have condensed with equal relative magnitude.
This configuration corresponds to a staggered Tri-Hexagonal configuration on each layer.

A order parameter and MLA coupling For what concerns the A point, there is only
one vector in its star, which means that its little group is the same as the point group for
the system D6h, that allows for four 1D even irreps, four 1D odd irreps, two 2D even and
two 2D odd irreps. An order parameter A transforming like one of these irreps gives the
same free energy expansion

FA =
αA

2
A2 +

uA
4
A4 , (3.20)

where in the 1D cases A is just a scalar, while in the 2D case it has two components
A = (A1, A2) and A2 = A2

1 +A2
2, A4 = (A2)2.

It is possible to find trilinear combinations of order parametersM , L and A, respectively
transforming like M+

1 , L±
j and A±

j with j = 1, 2, 3, 4 4, that are invariant and are thus
allowed to enter the free energy. In that case, the contributions to the free energy are

FMA =
λMA

4
M2A2

FLA =
λ
(1)
LA

4
L2A2 +

λ
(2)
LA

4
L1L2L3A

FMLA =
γMLA

3
(M1L1 +M2L2 +M3L3)A

+
λMLA

4
(M1M2L3 +M1L2M3 + L1M2M3)A .

(3.21)

It is interesting to note that, in case we were to choose M+
1 , L−

2 and A−
2 , although the free

energy would allow such coupling, the dynamical matrix would not contain any block that
transforms like A−

2 , once brought to block diagonal form. This is because we are asking
to find a set of displacements that changes sign when moving from one layer to another
(modulated by the A vector), but that is also odd under inversion and under the horizontal
mirror, and one can easily convince themselves this is impossible.

4For simplicity we will only look at the case where A transforms like one of the 1D irreps, although
there could even be invariant MLA combinations in the case where A is two dimensional.
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3D - R3̄m space group

Another interesting way to stack kagome layers in three dimensions, is to repeat the layers
in the direction

d = −1

3
t1 +

1

3
t2 +

1

3
t3 , (3.22)

not perpendicular to the kagome plane, having used the vectors defined in 3.9. This is how
the kagome layers are stacked in the Shandite structure. Using this vector, we can define
{t1, t2,d} as a primitive hexagonal basis for the lattice, such that in cartesian coordinates
we will find one layer at z = 0, the next at z = c/3, the next at z = 2c/3 and so on. We
could still use {t1, t2, t3} as a basis, but then the unit cell defined this way (often called
conventional) would contain three kagome layers.

(a) Two consecutive layers. (b) Three consecutive layers.

Figure 3.11: (a) Two consecutive layers of kagome lattices, stacked along the d direction:
only some of the corner-sharing triangles are staggered with their counterpart on the next
layer. (b) Three consecutive layers of kagome lattices, stacked along the d direction: all
triangles are staggered with one from another layer. Notice that the colors now represent
atoms belonging to different layers and not the sub-lattice specie.

This shifted stacking is not as random as it could look by just staring at the equation
for d. As shown in Figure 3.11a, where atoms belonging to different consecutive layers are
colored in red and blue, the particular in-plane shift given by −1

3t1+
1
3t2 is such that some

of the corner-sharing triangles between consecutive layers are staggered5 with each other,
when viewed from the top. If we add a third layer, colored in green in Figure 3.11b, we
get that now all triangles are staggered with another one coming from a layer either above
or below.

The space group for this configuration is R3̄m (No. 166), where the R signifies a
trigonal crystal system that allows for a rhombohedral unit cell and .3̄m denotes the point
group, D3d in the Schoenflies notation. Let us address these two things separately.

• First, for a rhombohedral trigonal system, it is always possible to define both a hexag-
onal primitive cell (we did it above using {t1, t2,d}) and a rhombohedral primitive
cell, with primitive translation vectors {tR1, tR2, tR3}, such that |tR1| = |tR2| = |tR3|
and the angles between them are6 α = β = γ < 90◦. In terms of the conventional

5We use the term staggered, since the superimposed triangles are reminding of the staggered ethane
molecule, which has exactly the same point group D3d as this system.

6Here we are assuming that c >
√

3/2a, i.e., the inter-layer distance is quite larger than the in-plane
lattice parameter. It can be shown that this condition is equivalent to having α < 90◦, and in reciprocal
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(a) (b)

Figure 3.12: The different unit cells for the R3̄m stacked kagome lattice, with the three
repeating staggered layers. (a) The conventional (non-primitive) unit cell and the primitive
hexagonal unit cell, with the {t1, t2,d} vectors indicated with solid black arrows. (b) The
rhombohedral unit cell, with the primitive vectors {tR1, tR2, tR3} highlighted as solid black
arrows. Notice that in both these figures the colors represent again the sub-lattice specie
and not the different layers.

lattice parameters used before, they can be written as

tR1 =
1

3

 0√
3a
c

 , tR2 =
1

6

 3a

−
√
3a

2c

 , tR3 =
1

6

−3a√
3a
2c

 . (3.23)

For computational purposes, it is better to use the rhombohedral unit cell, since it
is smaller. In this unit cell, the three kagome sites are sitting at tR1/2, tR2/2 and
tR3/2 and the angle determines the inter-layer distance, such that in the limit where
α→ 0 the layers are infinitely far away from each other.

• Second, the point group D3d does not have a 6-fold rotational symmetry element,
but it does have a so called S6 symmetry element, which is a 6-fold rotation followed
by a mirror perpendicular to the rotation axis. For example, in Figure 3.11a, a 60◦

rotation with respect to the center of one of the triangles would exchange red and
blue, which corresponds to the mirror operation.

In Figure 3.13 we show the Brillouin Zone for this space group, where the recipro-
cal primitive vectors {g1,g2,g3} are defined starting from {tR1, tR2, tR3} with the usual
construction,

g1 =
2π

V
tR2 × tR3 , g2 =

2π

V
tR3 × tR1 , g3 =

2π

V
tR1 × tR2 , (3.24)

where the volume of the unit cell is V = tR1 ·(tR2×tR3). The shape of this BZ is not really
intuitive to grasp at first glance, so we also provide a 2D view of the external surface of the
BZ in Figure 3.14, which makes it easier to visualize what the high-symmetry k-points are
and the similarities between this BZ and the P6/mmm one. First of all, we can see that
the surface is made of two regular hexagons, top and bottom, similarly to the P6/mmm
BZ, but the surface that is wrapping around the sides, in this case, is made of couples

space it gives rise to the BZ in Figure 3.13, sometimes called RHL1. If the opposite was true, c <
√

3/2a,
we would find α > 90◦ and a different BZ called RHL2. For more details we refer to the BZ database on
the Bilbao Crystallographic Server [20] or Setyawan and Curtarolo [55].
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Figure 3.13: Two views of the three-dimensional R3̄m BZ, with the three M vectors
represented as red arrows and the three L vectors as blue arrows.

Figure 3.14: The external surface of the R3̄m BZ, with the relevant high-symmetry k-
points reported with different colors. notice how the alternating structure of rectangles
and hexagons reflects the S6 symmetry element of the point group.

of alternating rectangles and hexagons. The fact that they are alternating reflects the S6
symmetry element. At the center of the regular hexagons is the T point, which is akin to
the A point in P6/mmm, at the center of the rectangles are the F points, the analogues
of the M points and at the center of the non-regular hexagons are the L points. In terms
of the reciprocal primitive vectors, these high-symmetry points are

F1 =
1

2
g2 +

1

2
g3 , F2 =

1

2
g1 +

1

2
g3 , F3 =

1

2
g1 +

1

2
g2 ,

L1 =
1

2
g1 , L2 =

1

2
g2 , L3 =

1

2
g3 ,

A =
1

2
g1+

1

2
g2 +

1

2
g3 .

(3.25)

F order parameter As described above, the F point has three vectors in its star.
Moreover, the little group at F is C2h, which has two 1D even irreps and two 1D odd
irreps (see the character table 3.3 at the end of the chapter). Of these four, only the
trivial one F+

1 , allows for an invariant trilinear combination, i.e., given an order parameter
F = (F1, F2, F3) that transforms like F+

1 , the free energy expansion up to fourth order is

FF =
αF

2
F 2 +

γF
3
F1F2F3 +

uF
4
F 4 +

λF
4
(F 2

1F
2
2 + F 2

2F
2
3 + F 2

1F
2
3 ) . (3.26)
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(a) (F, F, F ) (b) (F, F,−F )

Figure 3.15: Lattice distortions corresponding to (a) Star-of-David configuration, (b) Tri-
Hexagonal configuration. Both are shown on three consecutive kagome layers arranged as
in the R3̄m shandite structure. Even though the layers are shifted, the same configuration
is repeating on each layer.

This free energy looks exactly the same as the one for M+
1 in the last section, equation

3.12, which means that also in this case the condensation of all three components is always
favored. Moreover, it turns out that the lattice distortions that transform like F+

1 also look
the same as in Figure 3.7, so that the whole phenomenology described in the last Chapter
still holds in the R3̄m case, even though the layers are slightly shifted. A stripe phase
with just one component condensing, would double the unit cell in one direction and break
the space group to P2/m (No. 10). Because of the trilinear term, the two favored phases
would be the Tri-Hexagonal and the Star-of-David configurations, repeating in every layer,
which would double the unit cell in every direction but preserve the space group R3̄m.
These are shown in Figure 3.15. This result is kind of surprising since, as we mentioned in
the introduction, no lattice-unstable R3̄m (shandite) kagome material has been found yet.

L order parameter and FL coupling The L point has three vectors in its star too,
and their little group is C2h. For an order parameter transforming like any irrep of the
little group, the free energy expansion up to fourth order is

FL =
αL

2
L2 +

uL
4
L4 +

λL
4
(L2

1L
2
2 + L2

1L
2
3 + L2

2L
2
3) . (3.27)

In the last section, for the P6/mmm space group we found that it was the L−
2 irrep that

gave rise to the same kind of distortions as M+
1 , but with a π modulation on successive

layers. The situation here is identical: in terms of lattice distortions, the L−
2 irrep gives

rise to the same kind of in-plane configuration as F+
1 , but the sign is changing on every

layer. For this reason the three components of L−
2 are as well described by Figure 3.9.

In Figure 3.16a we show the lattice distortions caused by condensation of all components
of the L order parameter in the shandite kagome-layered structure, which is the favored
configuration for λL < 0.

Likewise, if the system has both order parameters F+
1 and L−

2 , their coupling in the
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(a) (L,L,L) (b) (F, 0, 0) + (0, L, L) (c) (F, F, F ) + (F,L, L)

Figure 3.16: Lattice distortions corresponding to some configurations discussed in this
section, shown on three consecutive kagome layers arranged as in the R3̄m shandite struc-
ture. (a) A configuration where only the L order has condensed and all its components
have the same magnitude. It corresponds to alternating Tri-Hexagonal and Star-of-David
configurations on each layer. (b) A configuration where both F and L have condensed with
different relative magnitudes. There are again alternating Tri-Hexagonal and Star of David
configurations on each layer, but with different distortion amplitudes. (c) A configuration
where both F and L have condensed with equal relative magnitude. This configuration
corresponds to a staggered Tri-Hexagonal configuration on each layer.

free energy would be

FFL =
γFL

3
(F1L2L3 + L1F2L3 + L1L2F3)

+
λ
(1)
FL

4
(F1F2L1L2 + F1F3L1L3 + F2F3L2L3)

+
λ
(2)
FL

4
(F 2

1L
2
1 + F 2

2L
2
2 + F 2

3L
2
3) +

λ
(3)
FL

4
F 2L2 ,

(3.28)

which looks identical to the P6/mmm case and contains the trilinear terms. Following the
discussion of the previous section, we could have many kinds of different coupled orders
like (F, F, F ) + (L,L,L), shown in Figure 3.16c which would double the unit cell in every
direction but keep the R3̄m space group, or (F, 0, 0) + (0, L, L), shown in Figure 3.16b
which would both double the unit cell and break the space group to C2/m (No. 12).

T order parameter and FLT coupling Again, the discussion for a T order parameter
is the same as for the A order in P6/mmm. There is only one vector in the star and the
little group is D3d, the same as the point group. If we pick F+

1 and L−
2 , then the only T

irrep that can couple to them is T−
2 ,

FT =
αT

2
T 2 +

uT
4
T 4 ,

FMT =
λMT

4
M2T 2 ,

FLT =
λ
(1)
LT

4
L2T 2 +

λ
(2)
LT

4
L1L2L3T ,

FMLT =
γMLT

3
(M1L1 +M2L2 +M3L3)T ,

+
λMLT

4
(M1M2L3 +M1L2M3 + L1M2M3)T .

(3.29)
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Even in this case, symmetry does not allow for any distortion of the atoms forming the
kagome layer, i.e., the dynamical matrix does not contain any T−

2 block once diagonalized.

Conclusions Despite our efforts to identify notable distinctions in the symmetry prop-
erties of the permissible distortions between the M point in P6/mmm and the F point
in R3̄m, our investigation found no significant differences. This is a interesting property
of the two space groups and raises questions on the role these symmetries in the CDW
formation in AV3Sb5, especially in light of the fact that (to the extent of our knowledge)
there is no R3̄m kagome crystal that has a F driven lattice instability, similar to the M
modulated lattice instability in P6/mmm kagome metals. To gain more insight on the
problem, we turn to first-principles calculations, for which we introduce the theory in the
next chapter.

Character tables

The character table of a discrete group describes how the irreps behave under different
group operations divided in so-called conjugacy classes. The trivial irrep A1g is always the
first row, and from the characters we can see that something that transform like A1g is
invariant under every operation of the point group. For D2h, something that transforms
like B1g changes sign under the mirrors, and so on. We present the character tables for
D2h, which we found to be the little group for the M and L points in the P6/mmm space
group, and C2h, which we found to be the little group for the F and L points in the R3̄m
space group. Naming conventions for the irreps follow the ones adopted by the Bilbao
Crystallographic Server [20]. For more details about group theory and its applications to
condensed matter physics we refer to Arovas’ lecture notes [56].

Irrep labels Conjugacy classes and characters
L little group M little group D2h E C2 C ′

2 C ′′
2 i σh σv σd

L+
1 M+

1 A1g 1 1 1 1 1 1 1 1
L+
2 M+

2 B1g 1 1 -1 -1 1 1 -1 -1
L+
3 M+

3 B2g 1 -1 1 -1 1 -1 1 -1
L+
4 M+

4 B3g 1 -1 -1 1 1 -1 -1 1
L−
1 M−

1 A1u 1 1 1 1 -1 -1 -1 -1
L−
2 M−

2 B1u 1 1 -1 -1 -1 -1 1 1
L−
3 M−

3 B2u 1 -1 1 -1 -1 1 -1 1
L−
4 M−

4 B3u 1 -1 -1 1 -1 1 1 -1

Table 3.2: Character table for the point group D2h, which we found to be the little group
for the M and L points in the P6/mmm space group. The first four conjugacy classes
represent the identity, two-fold rotation and the two possible mirrors, respectively. The
next four are the same as the first four but followed by the inversion operation.

Irrep labels Conjugacy classes and characters
L little group F little group C2h E C2 i σh

L+
1 F+

1 Ag 1 1 1 1
L+
2 F+

2 Bg 1 -1 1 -1
L−
1 F−

1 Au 1 1 -1 -1
L−
2 F−

2 Bu 1 -1 -1 1

Table 3.3: Character table for the point group C2h, which we found to be the little group
for the F and L points in the R3̄m space group. The conjugacy classes represent the
identity, the two-fold rotation, the inversion and the horizontal mirror, respectively.
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Chapter 4

Kohn-Sham DFT

In this Chapter, our focus will be on providing a foundational understanding of DFT,
shedding light on its underlying approximations and limitations. Consequently, while many
important topics related to techniques utilized in the next Chapter will be omitted, we
acknowledge here their significance. For instance, we will not delve into the theory of
pseudopotentials, which allows to only consider valence electrons while disregarding core
electrons, nor will we explore the theory of Projector Augmented Waves, which separates
the electron wavefunctions into two components: a smooth region farther from the core,
necessitating fewer details for accurate description, and a region in proximity to the core,
requiring more detailed information for capturing its behavior. To learn more about these
two subjects and their relation with each other, we refer the reader to the review in reference
[57].

Many-body Schrödinger equation

One of the principles of Quantum Mechanics is that any system can be completely described
by a wavefunction Ψ depending on a certain set of variables, which we call quantum
numbers, and form the basis of the Hilbert space. Since physics is a game of assumptions
and approximations, and our goal is to study crystals, we will start with the assumption
that in real space Ψ is only a function of the coordinates r1, r2, ..., rN of N electrons
and R1,R2, ...,RM of M nuclei that make up the aforementioned matter. We call such
function, a many-body wavefunction

Ψ = Ψ(r1, r2, ..., rN ;R1,R2, ...,RM ) . (4.1)

Given our assumption, we can then consider the Coulomb interaction between electrons
and nuclei as the only force in play in our system, such that we can write a many-body
Schrödinger equation[

−
∑
i

∇2
i

2
−
∑
I

∇2
I

2MI
+

1

2

∑
i ̸=j

1

|ri − rj |
+

1

2

∑
I ̸=J

ZIZJ

|RI − RJ |
−
∑
i,I

ZI

|ri − RI |

]
Ψ = EtotΨ ,

(4.2)
which includes, in order, the kinetic term for the electrons, the kinetic term for the nuclei,
the Coulomb repulsion between electrons, the Coulomb repulsion between nuclei and the
attraction between electrons and nuclei. We set h̄ = 1 and measure all energies in Hartree,
defined as Ha = e2

4πϵ0a20
≃ 27 eV, all lengths in Bohr radii a0 ≃ 0.53 Å and all masses in

units of me, the mass of the electron.
This equation is too general and also too hard to solve even for simple systems, so we

will now go down a cascade of approximations that will turn this single equation into a
system of equations which describe more effectively solid state systems and can also be
solved numerically on today’s computers in reasonable time scales.
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Clamped nuclei approximation

In a solid state system, we think of the nuclei as being fixed (clamped) in a crystal structure
and not moving (at least not as fast as the electrons). This sounds too restrictive, but is
actually just the first step of a process known as the Born-Oppenheimer approximation:
we will focus for now only on the electrons, and only later we will worry about the fact
that the nuclei can move too.

There are three consequences of considering the nuclei as not moving:

1. R1, ...,RM are just fixed parameters inside Ψ and are not variables anymore;

2. the kinetic energy of the nuclei is zero (MI = ∞);

3. the energy term corresponding to the nuclei Coulomb repulsion is just a constant.

Given (3), we can take this constant term on the RHS of eq. 4.2 and redefine the energy
eigenvalue as

E = Etot −
1

2

∑
I ̸=J

ZIZJ

|RI − RJ |
. (4.3)

Moreover, we can rewrite the energy term corresponding to the attraction between electrons
and the nuclei as

−
∑
i,I

ZI

|ri − RI |
=

∑
i

Vn(ri) , (4.4)

so we can now write a many-electron Schrödinger equation[
−
∑
i

∇2
i

2
+
∑
i

Vn(ri) +
1

2

∑
i ̸=j

1

|ri − rj |

]
Ψ = EΨ . (4.5)

If it was just for the first two terms on the LHS, this would be just a sum of single-
particle Hamiltonians Ĥ0. What makes it a many-body Hamiltonian is the third term, the
electron-electron repulsion

Ĥ(r1, ..., rN ) =
∑
i

Ĥ0(ri) +
1

2

∑
i ̸=j

1

|ri − rj |
. (4.6)

Before going on, let us remark that the electron density can be written with the many-
body wavefunction as

n(r) = N

∫
dr2 ... drNΨ∗(r, r2, ..., rN )Ψ(r, r2, ..., rN ) (4.7)

Independent electrons approximation

Now we need a new approximation to solve eq. 4.5. If there was no electron-electron
interaction, we would just have a gas of free electrons. In that case, we know that the solu-
tion would be (because of Pauli’s exclusion principle) the anti-symmetrized product of the
individual single-electron wavefunctions ϕi(r), which we can write as a Slater determinant

Ψ(r1, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣
ϕ1(r1) · · · ϕ1(rN )

...
. . .

...
ϕN (r1) · · · ϕN (rN )

∣∣∣∣∣∣∣ , (4.8)

where each ϕi(r) is an eigenvector of the single-electron Hamiltonian Ĥ0, with eigenvalue
εi. That means we would have to solve N differential equations of the kind

Ĥ0(r)ϕi(r) =

[
− ∇2

2
+ Vn(r)

]
ϕi(r) = εiϕi(r) (4.9)
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Notice that the density of electrons in this case would just be

n(r) =
∑
i

|ϕi(r)|2 . (4.10)

Again, this approximation seems too drastic, so we will see how to make it better now.

Mean-field approximation

We would like to keep the single-electron description, but at the same time also introduce
the Coulomb repulsion between them. Since we have the density of electrons n(r) (i.e., a
density of charge), we can exploit Poisson equation to introduce a classical electrostatic
field generated by this density

∇2VH(r) = −4π n(r) → VH(r) =
∫
dr′

n(r′)
|r − r′|

, (4.11)

where we call VH the Hartree potential for historical reasons. The idea is that, instead
of describing the interaction of one electron with the others one by one, we can describe
the interaction of one with the distribution (the mean-field) of all the others. Now we can
insert this new potential VH inside eq. 4.9, so that in total we would have to solve a system
of N+1 differential equations[

− ∇2

2
+ Vn(r) + VH(r)

]
ϕi(r) = εi ϕi(r) , (4.12)

∇2VH(r) = −4π
∑
i

|ϕi(r)|2 . (4.13)

This system of equations is said to be self-consistent, which means that a set of solutions
{ϕi} of eq. 4.12 must also be a solution of eq. 4.13. This also means that one can start
with a guess of a solution and then solve iteratively towards a better solution.

Hartree-Fock approximation

The potential VH that we added is a completely classical effect, but for our purposes we
would like to account also for quantum effects. We said that if the electrons were to not
interact at all, then the many-body wavefunction Ψ would look like eq. 4.8. Let us now
imagine that they interact, but very lightly so we can use a variational principle as follows.
We call E the expectation value of the Hamiltonian on the state Ψ,

E = ⟨Ψ|Ĥ|Ψ⟩ =
∫
dr1...drNΨ∗Ĥ Ψ , (4.14)

then we minimize this functional with respect to the single-electron functions ϕi(r) and
impose their orthonormality

δE

δϕ∗i
= 0 , (4.15)∫

drϕ∗i (r)ϕj(r) = δij . (4.16)

This calculation is actually easier to do in second quantization so one does not have to deal
with Slater determinants, but in the end it leads to the so called Hartree-Fock equations[

− ∇2

2
+ Vn(r) + VH(r)

]
ϕi(r) +

∫
dr′ VX(r, r′)ϕi(r′) = εi ϕi(r) , (4.17)
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∇2VH(r) = −4π
∑
i

|ϕi(r)|2 , (4.18)

which is a new set of self-consistent equations that now includes quantum effects (Pauli’s
exclusion principle), under the non-local potential VX(r, r′), known as Fock exchange po-
tential

VX(r, r′) = −
∑
j

ϕ∗j (r
′)ϕj(r)

|r − r′|
. (4.19)

Kohn-Sham equations

The non-locality of VX(r, r′) actually makes it harder to solve the set of equations 4.17,
4.18, so it is better to replace it with a simplified local version Vx(r). We are also going to
add a new effective potential Vc(r) which accounts for the correlation between electrons,
so in total we get[

− ∇2

2
+ Vn(r) + VH(r) + Vx(r) + Vc(r)

]
ϕi(r) = εi ϕi(r) . (4.20)

All these effective potentials VH , Vx, Vc, are an approximation of the third term in eq. 4.2
and they stem from the fact that we decided to work with single-electron wavefunctions
ϕi as if they were free and not interacting. We have not specified yet how the potentials
Vx and Vc look like.

Hohenberg-Kohn theorem

We have seen in eq. 4.14 that the energy is in general a functional of the many-body
wavefunction, E = F [Ψ(r1, ..., rN )], but if E is specifically the ground-state (GS) energy,
then E is a functional of just the density n(r),

E = F [n(r)] . (4.21)

This is the statement of the Hohenberg-Kohn theorem, now we proceed to prove it.
As we said, the energy is a functional of the wavefunction Ψ. Moreover, the GS wave-

function is uniquely determined by the nuclear potential Vn. The one step we need to
prove is that the GS density n(r) uniquely determines the nuclear potential Vn(r)1:

n
?→ Vn → Ψ → E . (4.22)

If that was not the case, then we could obtain the same GS density from two different
nuclear potentials Vn ̸= V ′

n, so we will show that leads to a contradiction. Combining eq.
4.14 and eq. 4.5 we can write

E = ⟨Ψ| −
∑
i

∇2
i

2
+
∑
i

Vn(ri) +
1

2

∑
i ̸=j

1

|ri − rj |
|Ψ⟩

= ⟨Ψ|T̂ +
∑
i

Vn(ri) + Ŵ |Ψ⟩

=
∑
i

∫
dr1 ... dri ... drNΨ∗(r1, ..., rN )Ψ(r1, ..., rN )Vn(ri) + ⟨Ψ|T̂ + Ŵ |Ψ⟩ ,

(4.23)

1We defined it in eq. 4.4.
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and now using the definition of the density in eq. 4.7

E =

N∑
i=1

1

N

∫
dri n(ri)Vn(ri) + ⟨Ψ|T̂ + Ŵ |Ψ⟩

=

∫
drn(r)Vn(r) + ⟨Ψ|T̂ + Ŵ |Ψ⟩ .

(4.24)

Let us assume that Ψ is the GS wavefunction for the nuclear potential Vn with GS energy
E and density n(r). If we were to substitute V ′

n for Vn we would get a new Hamiltonian
Ĥ ′ for which Ψ is not the GS anymore

⟨Ψ|Ĥ ′|Ψ⟩ = ⟨Ψ|T̂ +
∑
i

V ′
n(ri) + Ŵ |Ψ⟩ > E′ , (4.25)

where E′ is the GS energy of Ĥ ′. In the same way as we did before, we can rewrite this
inequality as ∫

drn(r)V ′
n(r) + ⟨Ψ|T̂ + Ŵ |Ψ⟩ > E′ , (4.26)

so that combining with eq. 4.24 we find

E − E′ >

∫
drn(r)

[
Vn(r)− V ′

n(r)
]
. (4.27)

Since we did not make any assumption on the shapes of Vn and V ′
n, we could just redo this

whole calculation exchanging the primed and unprimed variables, so that we could get

E′ − E >

∫
drn(r)

[
V ′
n(r)− Vn(r)

]
. (4.28)

The last two equations contradict each other, therefore two different nuclear potentials
cannot lead to the same density and the theorem is proved.

Hohenberg-Kohn variational principle

Hohenberg-Kohn theorem says that the GS energy is a functional of the density, but it
does not say how to find this functional. From 4.24 and using eq. 4.20 (multiply by ϕ∗i on
the left, integrate and sum over i) we find

E = F [n] =

∫
drn(r)Vn(r) + ⟨Ψ[n]|T̂ + Ŵ |Ψ[n]⟩

=

∫
drn(r)Vn(r)−

∑
i

∫
drϕ∗i (r)

∇2

2
ϕi(r) +

1

2

∫ ∫
dr dr′

n(r)n(r′)
|r − r′|︸ ︷︷ ︸

Mean−field (Hartree) approximation

+Exc[n] . (4.29)

The idea of Kohn and Sham was to split the functional into a sum of known contributions
and the unknown one: the exchange and correlation energy. If we knew Exc we could
calculate the GS energy through the density n(r). How do we determine the density?

Hohenberg-Kohn variational principle states that the GS density n0(r) is the one that
minimizes the functional F [n], that is

δF

δn(r)

∣∣∣∣
n=n0

= 0 , (4.30)

which makes sense, because minimizing F would mean obtaining the lowest energy. Using
the chain rule, we can see that

δF

δϕ∗i
=
δF

δn

δn

δϕ∗i
=
δF

δn

δ

δϕ∗i

∑
j

|ϕj |2 =
δF

δn

∑
j

ϕjδij =
δF

δn
ϕi , (4.31)
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so we might as well minimize F with respect to ϕ∗i , since if eq. 4.30 holds, then it must
also be that δF

δϕ∗
i
= 0. Taking this functional derivative leads to a new set of self-consistent

equations for the wavefunctions ϕi(r), known as the Kohn-Sham equations[
− ∇2

2
+ Vn(r) + VH(r) + Vxc(r)

]
ϕi(r) = εi ϕi(r) , (4.32)

Vn(r) = −
∑
I

ZI

|RI − r|
, (4.33)

n(r) =
∑
i

|ϕi(r)|2 , (4.34)

∇2VH(r) = −4πn(r) , (4.35)

Vxc(r) =
δExc

δn

∣∣∣∣
n(r)

, (4.36)

with Vxc being called the exchange-correlation potential. There are several techniques to
estimate the form of the functional Exc, the two most common ones are the local density
approximation (LDA) and the generalized gradient approximation (GGA).

Local density approximation

In order to understand the LDA, we first have to look at the free electron gas. We consider
N electrons in a box of volume V , so we can solve all of the N single-electron Schrödinger
equations in momentum space and find

ϕk(r) =
1√
V
eik·r , εk =

|k|2

2
, (4.37)

as the eigenstates and eigenvalues (in Hartree units) respectively. At zero temperature the
states are all occupied up to the Fermi energy εF = k2F /2. The total number of electrons,
is then related to the Fermi momentum kF , since in momentum space the occupied states
represent a sphere of radius kF

N =
∑
i

|ϕi|2 →
V

(2π)3
2

∫
d3kΘ(|k| − kF )

=
V

(2π)3
2

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ kF

0
dk k2 =

V k3F
3π2

,

(4.38)

where the 2 comes from summing on the spins and Θ is the Heaviside step function. The
fermi momentum is then related to the average electron density n̄ = N/V by

kF = (3π2n̄)1/3 . (4.39)

Now we can turn on the electron-electron interactions and use the Hartree-Fock ap-
proximation. For the electron gas, the Fock exchange energy can be calculated exactly. By
this we mean that if we look at the last term in the LHS of eq. 4.17, multiplying by ϕ∗i (r),
summing over i and integrating over r would lend us an energy (a scalar number) which
we call EX , and is given by

EX = −
∑
i,j

∫
V
dr

∫
V
dr′

ϕ∗i (r)ϕi(r
′)ϕ∗j (r

′)ϕj(r)
|r − r′|

→ − 1

(2π)6

∫
d3kΘ(|k| − kF )

∫
d3k′Θ(|k′| − kF )

∫
V
dr

∫
V
dr′

e−i(k−k′)·(r−r′)

|r − r′|
.

(4.40)
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Now we can do a change of variables

u = kF (r − r′) , q =
k
kF

, q′ =
k′

kF
, (4.41)

so the integral becomes

EX = −
V k4F
(2π)6

16π3︷ ︸︸ ︷∫
|q|≤1

d3q
∫
|q′|≤1

d3q′ e
−i(q−q′)·u

|u|

= −
V k4F
4π3

= −3V

4

(
3

π

)1/3

n̄4/3 .

(4.42)

This is a function of the average electron density n̄: that is why we call this model the
homogeneous electron gas (HEG). Unfortunately, even for the electron gas, there is no ana-
lytical expression for the correlation energy EC , but it has been possible to calculate it with
numerical techniques like Monte Carlo and subsequently to parameterize it. This means
that the form of the functional EHEG

xc [n̄] is almost exactly known for the homogeneous
electron gas.

In interacting systems, the density may not be similar at all to the one of the homo-
geneous electron gas. Nevertheless, if it is slowly varying, we can imagine that in every
infinitesimal volume element d3r we actually have the known HEG one evaluated at the
local density n(r)

dExc =
EHEG

xc [n(r)]
V

d3r , (4.43)

so that integrating over the volume lends us

ELDA
xc [n(r)] =

∫
dExc =

∫
V
d3r

EHEG
xc [n(r)]

V
. (4.44)

One can include some inhomogeneity by considering a functional of both the density
and the density gradient, in what is known as the GGA approximation

EGGA
xc [n(r)] =

∫
V
d3r

EHEG
xc [n(r)] +H[n(r),∇n(r)]

V
. (4.45)

The challenge lies in defining the specific form of the functional H within the GGA ap-
proximation. Different approaches have been used to determine H, such as incorporating
empirical or fitted terms to match experimental or numerical results. The Perdew-Burke-
Ernzerhof (PBE) functional [58] is the most widely used GGA approximation and it is
the one that we will use in the next Chapter for our simulations. The PBE functional is
constructed using only fundamental constants as parameters and is designed to match the
local density approximation (LDA) in the limit of slowly varying density.

Details of an actual calculation

How do we start solving the set of self-consistent equations 4.32-4.36? If we have the
nuclear coordinates we can calculate the nuclear potential 4.33 immediately (this is usually
available from crystallographic data). To calculate the Hartree and exchange-correlation
potentials 4.35-4.36 we need to start with a guess of what the electron density n(r) looks
like. This guess is usually made by adding up the densities of hydrogen-like orbitals
arranged in the atomic positions of the material under study. With this first guess we
obtain also an initial form of the potentials VH and Vxc, so we can proceed to numerically
solve eq. 4.32. The set of solutions ϕi that we get out of it, is used to calculate the
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new density 4.34, from which we can get new potentials and so on, iteratively. We keep
repeating this process until the difference between a measured quantity (e.g., the density
itself or the energy or the potential) in two subsequent steps is small enough (smaller than
a tolerance that we have to set), so we say that we have reached self-consistency.

Calculating band structures

In applying DFT to a solid, we can make use of the discrete translational invariance of
its crystal structure. Said otherwise, we can use Bloch’s theorem on the single particle
wavefunctions to state they should have the form

ϕik(r) = eik·ruik(r) , (4.46)

uik(r + T) = uik(r) , T = n1a1 + n2a2 + n3a3 . (4.47)

If we replace this expression for the wavefunction inside the Kohn-Sham equations 4.32,
we get [

− ∇2

2
+ Vtot(r)

]
eik·ruik(r) = εik e

ik·ruik(r) , (4.48)

where we called Vtot = Vn + VH + Vxc. The first term on the LHS becomes

− ∇
2
·

[
(∇eik·r)uik(r) + eik·r∇uik(r)

]

=− ∇
2
·

[
ik eik·ruik(r) + eik·r∇uik(r)

]

= eik·r
|k|2

2
uik(r)− i eik·rk · ∇uik(r)− eik·r

1

2
∇2uik(r)

= − eik·r
1

2

[
∇2 + 2ik · r − |k|2

]
uik(r)

= − eik·r
1

2
(∇+ ik)2uik(r) ,

(4.49)

so that we can get rid of the exponential factor on both sides and write an equation for
just uik [

− 1

2
(∇+ ik)2 + Vtot(r)

]
uik(r) = εik uik(r) , (4.50)

which we call the crystal version of the Kohn-Sham equations. We restrict the vector k to
only live in the first Brillouin Zone (BZ). The density of electrons is then determined by
integrating over the BZ and summing over all the occupied states

n(r) =
∑
i

∫
BZ

d3k
ΩBZ

fik|uik(r)|2 , (4.51)

where fik = 1 if the state is occupied by an electron and fik = 0 otherwise, and the cell
function is normalized such that (UC is the unit cell in real space)∫

UC
d3r|uik(r)|2 = 1 . (4.52)

Density Functional Perturbation Theory

In this section, we introduce the fundamental concepts of DFPT, a technique developed in
the 1990s for calculating linear responses within first-principles methods [59, 60]. DFPT is
now implemented in numerous DFT codes. Given our interest in lattice-related properties,
we will specifically focus on the application of DFPT for computing phonon properties.
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Born-Oppenheimer approximation

Throughout the last section we always assumed the nuclei to be fixed in their equilibrium
position (what we called clamped nuclei approximation). As we said, that was the first step
of what is known as adiabatic or Born-Oppenheimer approximation, in which we assume
the nuclei to move way slower than the electrons, such that we can separate the total
wavefunction of the system into an electron-only and a nuclei-only part

Ψ(r1, ..., rN ;R1, ...,RM ) = ΨR(r1, ..., rN )Φ(R1, ...,RM ) . (4.53)

The subscript in ΨR is now there to remind ourselves that the wavefunction depends
parametrically on the positions of the nuclei and it is the solution of the many-electron
Hamiltonian 4.5 (which we also rewrite now with explicitly indicating every quantity that
depends parametrically on R = {R1, ...,RM})[

−
∑
i

∇2
i

2
+
∑
i

Vn(ri,R) +
1

2

∑
i ̸=j

1

|ri − rj |

]
ΨR = E(R)ΨR . (4.54)

Remember that in eq. 4.3 we included in E(R) also the nuclei-nuclei Coulomb repulsion.
Now if ΨR is correctly normalized we can integrate it out of the full many-body Schrödinger
equation, so that we get an effective one just for the nuclei[

−
∑
I

∇2
I

2MI
+ E(R)

]
Φ(R) = EΦ(R) . (4.55)

The quantity E(R) is known as the Born-Oppenheimer energy surface and it is the ground
state energy of a system of interacting electrons moving in the field of fixed nuclei. One
way to move forward would be of considering the nuclei as classical particles (since they
move so slow compared to the electrons), such that they satisfy Newton’s law and we can
find their equilibrium positions by imposing

FI = −∂E(R)

∂RI
= 0 , (4.56)

where FI is the force acting on the Ith nucleus and in the harmonic approximation the
vibrational frequencies ω are found by solving the secular equation

det

∣∣∣∣ 1√
MIMJ

∂2E(R)

∂RI∂RJ
− ω2

∣∣∣∣ = 0 , (4.57)

where the matrix being diagonalized here is known as the dynamical matrix.
We can take derivatives of E(R) by using Hellmann-Feynman theorem:

∂Eλ

∂λ
= ⟨ψλ|

∂Ĥλ

∂λ
|ψλ⟩ , (4.58)

the first derivative of the eigenvalue Eλ of a parameter-dependent Hamiltonian Ĥλ is given
by the expectation value of the first derivative of the Hamiltonian on the eigenstate ψλ

corresponding to Eλ. In our case, this means that the force acting on the Ith nucleus
can be calculated by taking a derivative of the many-electron Hamiltonian 4.54 (but also
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remembering eq. 4.3)

FI = −∂E(R)

∂RI

= −⟨ΨR|∂ĤR

∂RI
|ΨR⟩ − 1

2

∂

∂RI

∑
J ̸=I

ZIZJ

|RJ − RI |

= −
∑
i

∫
drdr2...drNΨ∗

RΨR
∂Vn(ri,R)

∂RI
− ZI

∑
J ̸=I

ZJ
RJ − RI

|RJ − RI |3

= ZI

∫
drnR(r)

r − RI

|r − RI |3
− ZI

∑
J ̸=I

ZJ
RJ − RI

|RJ − RI |3

=

∫
drnR(r)f

(e)
I (r)− F(n)

I ,

(4.59)

where we see that the force acting on a nucleus is the sum of two (classical) contribu-
tions: the electrostatic repulsion of the other nuclei around it F(n)

I and the attraction of
the electron charge density of all the electrons f(e)I (r). At last, the Hessian of the Born-
Oppenheimer energy surface can be written as

∂2E(R)

∂RI∂RJ
= − ∂FI

∂RJ

= −
∫
dr
∂nR(r)
∂RJ

f(e)I (r)−
∫
drnR(r)

∂f(e)I (r)
∂RJ

+
∂F(n)

I

∂RJ
.

(4.60)

This last equation is pretty important, it states that the calculation of the Hessian requires
to know the ground state electron charge density nR AND its linear response to a distortion
of the geometry of the nuclei ∂nR/∂RI . In the last Chapter we learned a way (DFT) to
give good approximations for the ground state electron density, but we still do not have a
method to calculate linear responses.

Sternheimer equations

DFPT is one of the approaches developed to approximate the linear response of the density.
The key concept is that, although we are mainly concerned with the linear response of the
density, we can consider the linear responses of other quantities that depend on the nuclear
positions RI . For example we can calculate the linear response of the total potential ∆V ,
as well as the KS wavefunctions |∆ϕi⟩ and eigenvalues ∆εi. By treating ∆V as a small
perturbation to the Schrödinger equation and approximating |∆ϕi⟩ and ∆εi at first order
in perturbation theory, we obtain a new set of self-consistent equations known as the
Sternheimer equations(
Hk+q + α

∑
v′

|uv′k+q⟩⟨uv′k+q| − εvk

)
|∆uvk+q⟩ = −

(
1−

∑
v′

|uv′k+q⟩⟨uv′k+q|
)
∆Vq|uvk⟩ ,

(4.61)
∆nq(r) = 4

∑
vk

u∗vk(r)∆uvk+q(r) , (4.62)

∆Vq(r) = ∆Vn,q(r) +
∫
dr′

∆nq(r′)
|r − r′|

eiq·(r−r′) +
dVxc(n)

dn

∣∣∣∣
n=n(r)

∆nq(r) . (4.63)

In Appendix A, a detailed explanation is provided for each quantity involved in these
equations, along with the derivation process. Numerical solutions for these equations can
be obtained using methods similar to those described earlier. In the upcoming Chapter, we
will utilize Abinit’s implementation of DFPT to compute the phonons of specific kagome-
layered systems discussed in Chapter 2.
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Chapter 5

DFT calculations

Kagome metal CsV3Sb5

Among the kagome metals, we focus on the CsV3Sb5 compound, which we simulate using
DFT as implemented in Abinit 9.6.2 [61, 62] within the PBE GGA approximation and in
a basis of Projector Augmented Waves (PAW) [63]. We use a Γ centered 16x16x8 k-point
grid and a energy cutoff of 475 eV. For the electronic occupation (the fik in equation 4.51),
we use a Gaussian smearing scheme1 with smearing temperature of 10 meV.

First of all, we calculate the ground state properties for the experimental structure, with
lattice parameters a = 5.4949Å and c = 9.3085Å, and reduced out-of-plane coordinate
of the Sb2 atoms z = 0.74217. Next, we interpolate the KS eigenvalues along a k-point
path connecting high-symmetry points in the BZ. The resulting band structure is showed
in Figure 5.1a, for a 2 eV window around the Fermi level, while the inset shows the BZ
and the k-path. At the M point, there are four different saddle points close to the Fermi
level. For each of them, we indicate the irrep that the corresponding Bloch wavefunction
transforms under, which is obtained by applying point group transformations, calculating
the character and comparing it to the character table of the little group at M, D2h (this
procedure is implemented in the IrRep Phyton code [65]). These calculated irreps agree
with a previous study [9]. The saddle point closest to the Fermi level has M+

1 character,
and we show a cut of the magnitude squared of its wavefunction in Figure 5.1b, which is
of the p-type, using the terminology introduced in Chapter 2.

In terms of atomic orbitals, the dz2 and dx2−y2 orbitals are the ones that transform
under the M+

1 irrep. In Figure 5.1c we show the orbital projections on top of the band
structure, where we can see that the saddle point closest to the Fermi level, is in fact
dominated by the vanadium dz2 orbital, but also gets contributions by dx2−y2 and dxy.
The reason why dxy is present, is that in the global coordinate system dx2−y2 and dxy
get mixed together, while we would only have dx2−y2 in the local coordinates. This also
explains the shape of the wavefunction in Figure 5.1b. More in general, we see that the
physics of the system around the Fermi level is dominated by the antimony pz and the
vanadium d orbitals. In particular, the electron pocket around Γ, shown as the cylindrical
surface in the Fermi surface in Figure 5.1d, is generated by the antimony pz orbitals, while
the hexagonal sheet that almost touches the M points is generated by the vanadium d
orbitals.

The next step is to fully relax the unit cell and the internal atomic coordinates, i.e.,
minimizing the forces defined in equation 4.59 through a Broyden method implemented
in Abinit, until every force is smaller in modulus than 1 meV/Å. Since the system is
constrained to keep the same number of atoms and remain in the same space group, this
procedure will find a structure that represents either a local minima or a saddle point

1In Abinit, this corresponds to setting the variable occopt to the value 7.
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(a)

(b)

(c) (d)

Figure 5.1: (a) Calculated band structure for CsV3Sb5, along the high-symmetry k-path
drawn as a red line in the BZ, shown in the inset. For the four saddle point that are closest
to the Fermi level, we indicate the irrep of the corresponding eigenfunction. (b) Section of
the magnitude squared of the M+

1 eigenfunction, with the three kagome atoms shown in
different colors. The wavefunction is mostly localized around one of the three, in this case
the blue one. (c) Orbital projection of the wavefunctions. The energy windows around
the Fermi level is dominated by vanadium d orbitals and antimony pz orbitals. (d) Fermi
surface obtained using FermiSurfer [64], with the color representing the magnitude of the
Fermi velocity in arbitrary units.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Lattice distortions caused by the unstable phonon mode M+
1 , shown from

above the kagome plane (a-b-c) and from the side (d-e-f), with negative magnitude(a-d),
zero magnitude (b-e) and positive magnitude (c-f).

in the Born-Oppenheimer energy surface. We find the relaxed lattice parameters to be
a = 5.5755Å and c = 9.1107Å, and the reduced out-of-plane coordinate of the Sb2 atoms
to be z = 0.7451.

Now that we have the relaxed structure, we can calculate the phonon properties. In
particular, using DFPT as implemented in Abinit, we calculate the phonons at the M
point q = (12 , 0, 0). We find that the lowest phonon mode is unstable, and has imaginary
energy ω1M = 3.73i meV. Moreover, this phonon mode (the eigenvector of the Dynamical
matrix corresponding to the ω2

1M eigenvalue) transforms like the M+
1 irrep. In terms of

atomic displacements of the vanadium atoms, this mode indeed looks exactly like the M+
1

mode that we discussed in Chapter 2 (Figure 3.3), but also includes some out-of-plane
motion of the antimony Sb2 atoms, shown in Figure 5.2. The role of the apical antimony
ions has been put under scrutiny in a recent work [66], where it has been shown that they
could heavily contribute to the stabilization of the CDW phase.

In reference [41], it is mentioned that the amount of instability of the M+
1 phonon mode

is heavily dependent on the electronic smearing temperature, which is an evidence of the
role played by the electronic degrees of freedom in the CDW instability. Here, we proceed
with a similar caluclation: we introduce a background charge, equivalent to a fraction
of an electron, uniformly distribuited through the unit cell, such that the new density of
charge is nx(r) = n(r) + e · x. For small values of x, this should simulate the effect of
electron doping. We calculate the band structures and the lowest phonon mode at M, for
different values of x and show the results in Figure 5.3. As the M+

1 saddle point crosses the
Fermi level, the instability disappears (notice that for x = 0.05 the saddle point is already
inside the 10 meV smearing window). This result is in agreement with recent experimental
evidence [67], where the electron doping was achieved by substituting vanadium atoms
with Titanium ones, and the critical doping value for the suppression of the CDW was
determined to be between x = 0.04 and x = 0.09.

This result suggests that the quasi-2D hexagonal sheet coming from the M+
1 saddle

point, could be playing some critical role in the CDW formation. To further investigate
the validity of this point, we turn our focus to the Fermi surface and calculate the Lindhard
function

L(q) = 1

N

∑
ij,k

f(εjk+q)− f(εik)

εik − εjk+q
, (5.1)

where we take εik to be the KS eigenvalues for six bands around the Fermi level (numbers
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(a) (b)

Figure 5.3: (a) Comparison of the bands closest to the Fermi level around the M point,
as a function of simulated doping x. (b) Frequency of the lowest phonon mode ω1M at
the M point as a function of simulated doping x. The imaginary frequency is reported as
negative for better visualization.

60-65 in our calculation). The Lindhard function is also referred to as the nesting function,
since it contains the information of how much the Fermi surface is nested by the particular
vector q. In Figure 5.4 we show the calculated values of L(q) for a mesh of 16x16 q-points
over the BZ at qz = 0, for the different values of simulated doping x. The x = 0 case agrees
with previous results [68, 69]. For all four panels of Figure 5.4, there is no relative peak
at the M points: not even in the x = 0 case, which is the unstable one. This means that
(at least at the DFT level), there is no electronic instability driven by bare Fermi surface
nesting that can explain the CDW transition.

Since DFT is able to predict the lattice instability, in a future work we might analyze
the full bare electronic susceptibility2

χ0(q) =
1

N

∑
ij,k

f(εjk+q)− f(εik)

εik − εjk+q + i0+
|⟨ψik|ψjk+q⟩|2 , (5.2)

which also includes the matrix elements, i.e., the overlaps between different wavefunctions
⟨ψik|ψjk+q⟩. The reason why this would be interesting is that, given the peculiar nature of
the kagome lattice and the phenomenon of sub-lattice interference, the orbital characters of
the wavefunctions could be playing an important role, which cannot be accounted by only
using the eigenvalues. In this work, we were only able to exclude a simple link between
the CDW in CsV3Sb5 and Fermi surface nesting.

2The Lindhard function we defined above, is also referred in the literature as the real part of the bare
electronic susceptibility with constant matrix element approximation.
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Figure 5.4: Comparison of the Lindhard/nesting function in eq. 5.1 for different values of
simulated doping. Notice that there is no relative peak at the M points, no matter the
value of x. The function has been normalized by the number of bands and k-points, so
that it can only take values between 0 and 1.

(a) (b)

Figure 5.5: Two different views of the three dimensional R3̄m BZ, with the k-path used
for band structures highlighted as a red line.

Shandites M3A2Ch2

We now turn our attention to the shandite kagome-layered compounds. In Chapter 3, we
saw that the F point in the R3̄m BZ is analogous to the M point in P6/mmm. Further-
more, R3̄m can allow for a symmetry based phenomenological theory of a structural tran-
sition that doubles the unit cell and looks qualitatively the same as the one for P6/mmm.
Despite these considerations, at the moment it looks like no shandite structured material
has been found to undergo a CDW modulated by the F vector. To gain more insight, we
turn to DFT calculations: our objective is to find a material whose electronic structure
looks fairly similar to the AV3Sb5 one.

Let us start with the compound Rh3Sn2S2, isoelectronic to Co3Sn2S2, simulated using
the PBE GGA functional, a Γ centered 16x16x16 k-point grid and a basis of PAW with
energy cutoff of 500 eV. For the electronic occupation (the fik in equation 4.51), we use a
Gaussian smearing scheme3 with smearing temperature of 10 meV. We first fully relax the
structure, until every force is smaller in modulus than 1 meV/Å, obtaining values fairly
close to the ones reported in Reference [46]. Using the rhombohedral primitive cell, after
relaxation we find the length of the primitive translation to be a = 5.4914 Å and the angles
between the three vectors to be α = 61.68◦, while the parameter necessary for the Wyckoff
position c of the sulphur atom is z = 0.7113. With these parameters, we calculate the
ground state properties and then interpolate the KS eigenvalues over the k-path presented
in Figure 5.5.

3In Abinit, this corresponds to setting the variable occopt to the value 7.
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(a) (b)

Figure 5.6: (a) Electronic band structure of Rh3Sn2S2 calculated with DFT. The three
colors represent the orbital projections of the wavefunctions corresponding to each eigen-
value. Moreover, for the two saddle points at F, we report the little group irrep that labels
the symmetry of the wavefunctions. (b) Phonon spectrum of Rh3Sn2S2 calculated with
DFPT. No phonon mode is unstable, such that we confirm this structure to be stable in
the shandite structure.

(a) (b)

Figure 5.7: Magnitude of the wavefunctions of Rh3Sn2S2 at the F point, for the saddle
points with symmetries labeled by little group irreps (a) F−

1 , (b) F+
1 shown in Figure 5.6a.

The cuts are taken on the kagome plane, and the three kagome atoms are depicted with
red, green and blue.

The resulting band structure is displayed in Figure 5.6a, with the colors indicating the
orbital projection of the wavefunctions corresponding to each eigenvalue. At the Fermi
level, the 4d orbitals of rhodium give the dominant contribution, with a completely flat
band between Γ and T and a saddle point at F. In the figure we also report the irrep label
that describes the symmetry of the wavefunction at the F point. As we can see, the saddle
point that is very close to the Fermi level has F−

1 character and its associated wavefunction
is of the m-type. The other saddle point, located around 0.7 eV above the Fermi level, has
F+
1 character and it is of the p-type, with the wavefunction mostly localized around just

one of the kagome sites. It is interesting to note that in this case, the saddle point F+
1 gets

a significant contribution from the p orbitals of the apical sulphur ion, shown in blue in
Figure 5.6a. We show the wavefunctions associated to the two saddle points in Figure 5.7.

Using DFPT, we calculate the full phonon spectrum using a 4x4x4 q-point grid centered
at Γ. The resulting band structure, interpolated over the same path as before, is shown in
Figure 5.6b. In the calculated spectrum, no phonon mode has imaginary frequencies, so
that we confirm Rh3Sn2S2 to be stable in the shandite structure.
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(a) (b)

Figure 5.8: (a) Electronic band structure of Pd3Sn2Se2 calculated with DFT. The three
colors represent the orbital projections of the wavefunctions corresponding to each eigen-
value. Moreover, for the two saddle points at F, we report the little group irrep that labels
the symmetry of the wavefunctions. (b) Phonon spectrum of Pd3Sn2Se2 calculated with
DFPT. No phonon mode is unstable, such that we predict this structure to be stable in
the shandite structure.

We simulated different shandite materials, aiming to identify structural instabilities and
electronic band structures that closely resemble that of AV3Sb5 in terms of having a saddle
point exhibiting F+

1 character (p-type wavefunction) in close proximity to the Fermi level.
However, none of the compounds we examined displayed any signs of instability under our
simulation conditions. In Appendix B we show the resulting band structures and lattice
parameters for the compounds that we simulated.

Let us take a look at Pd3Sn2Se2, which we simulate using the same settings as Rh3Sn2S2.
Relaxing the structure leads us to find the lattice parameters a = 5.8188 Å and α = 59.82◦,
with the parameter for the c position of the selenium ion z = 0.70564. In Figure 5.8a we
show the band structure obtained by interpolating the KS eigenvalues along the k-path
and the orbital projection of the wavefunctions. In this material, the saddle point with
F+
1 is around 60 meV below the Fermi level. In Figure 5.9 we also show the magnitude in

the kagome plane of the wavefunctions at the M point. Notice another striking difference
with the AV3Sb5 in the role of apical ions: the F+

1 p-type saddle point is not completely
dominated by the d orbitals of the kagome atoms, but instead also gets an almost equal
contribution from the selenium p orbitals.

In Chapter 2, we briefly mentioned the observation that in shandite materials the
kagome layers appear to be much closer to each other compared to kagome metals. For in-
stance, the inter-layer distance in CsV3Sb5 was found to be approximately 9.11 Å, whereas
in the relaxed structure of Pd3Sn2Se2, it is about half of that, approximately 4.75 Å. How-
ever, despite this reduced inter-layer distance, the distance between the apical ions and the
kagome planes is not significantly affected. In CsV3Sb5, the distance between the apical
antimony and the vanadium kagome atoms is approximately 2.77 Å. In Pd3Sn2Se2, the
distances between the apical selenium and the palladium kagome atoms are around 2.29
Å, while the distance between the apical tin and palladium is 2.75 Å.

In future investigations, one could explore these observations in more detail and deter-
mine if there is any correlation between these structural characteristics and the apparent
absence of CDW in shandites. A recent unpublished work [70] has indicated that the dis-
tances between the apical ions and the kagome plane in AV3Sb5 remain relatively constant
under simulated strain along the c-axis. It would be interesting to investigate whether a
similar phenomenon occurs in shandites.
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(a) (b) (c)

Figure 5.9: Magnitude of the wavefunctions of Pd3Sn2Se2 at the F point, for the saddle
points with symmetries labeled by little group irreps (a) F−

1 , (b) F+
1 , (c) F−

2 shown in
Figure 5.8a . The cuts are taken on the kagome plane, and the three kagome atoms are
depicted with red, green and blue.

(a) (b)

Figure 5.10: (a) Comparison of the bands closest to the Fermi level around the F point,
as a function of simulated doping x. (b) Frequency of the lowest phonon mode ω1F at the
F point as a function of simulated doping x.

Using DFPT we also calculate the full phonon spectrum on a 4x4x4 q-point grid cen-
tered at Γ. The resulting phonon bands are shown in Figure 5.8b. Again, we find no
imaginary frequency and so no structural instability.

In order to investigate the hypothesis proposed in the preceding chapter, which sug-
gested that the proximity of the p-type saddle point to the Fermi level might contribute to
the CDW instability, we conducted simulations involving doping and hydrostatic pressure
on Pd3Sn2Se2. This approach follows a similar line of inquiry, albeit with an opposing
objective, to the previous section. Our aim is to determine whether manipulating the sad-
dle point’s position relative to the Fermi level using these methods can induce structural
instability. Small amounts of doping are simulated in the same way that was introduced
in the last section. Hydrostatic pressure is simulated by enforcing a value of pressure −P
in the diagonal elements of the stress tensor4. For each value of applied P , we repeat the
structural relaxation and calculate ground state properties, band structure and phonons
at F.

Figure 5.10 and Figure 5.11 depict the outcomes of our simulations. In both scenarios,
bringing the saddle point closer to the Fermi level did not lead to the emergence of induced
structural instability, as indicated by the absence of imaginary phonon frequencies at q=F.
To provide a comprehensive understanding, we now delve into the relationship between the

4This is done in Abinit through the use of the strtarget variable.
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(a) (b)

Figure 5.11: (a) Comparison of the bands closest to the Fermi level around the F point,
as a function of simulated hydrostatic pressure. (b) Frequency of the lowest phonon mode
ω1F at the F point as a function of simulated hydrostatic pressure.

Figure 5.12: Fermi surface for Pd3Sn2Se2 with 8 GPa of applied hydrostatic pressure,
obtained using FermiSurfer [64]. The colors represent the magnitude of the Fermi velocity
in arbitrary units. The three panels on the right show 2D sections on the planes that
include the Γ point, the L points and the F points, respectively.

saddle point and the Fermi surface, thus completing the overall framework presented in
the previous chapter.

The Fermi surface of Pd3Sn2Se2 exhibits considerably more dispersion along the kz
direction compared to AV3Sb5. Figure 5.12 illustrates the Fermi surface of Pd3Sn2Se2
under 8 GPa of applied hydrostatic pressure, wherein the saddle point is expected to
coincide precisely with the Fermi level, as depicted in Figure 5.11a. Upon examining
various two-dimensional cross-sections, it is not easy to identify hexagonal parts of the
Fermi surface that could potentially exhibit nesting characteristics similar to those observed
in AV3Sb5.

To validate this hypothesis, we performed calculations of the Lindhard function for
two specific cases in our simulations: one with a simulated hydrostatic pressure of 8 GPa
and another with simulated doping level x = 0.3. These are the two cases that bring the
saddle point closest to the Fermi level in our calculations. In Figure 5.13, we compare
the Lindhard function of these two cases with that of the system under zero doping and
zero applied pressure. Notably, none of the three cases exhibit relative peaks at the F
point (represented by red circles) or the L point (represented by blue circles). However,
there appears to be a general trend of enhanced response along the Γ-T line, possibly
attributed to the Γ and T pockets (depicted in the full band structure in Fig. 5.8a, but
not in 5.10a-5.11a) moving closer to the Fermi level.

While symmetry considerations did not impose limitations on extending the phe-
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Figure 5.13: Comparison of the Lindhard/nesting function in eq. 5.1 for different values
of simulated doping and pressure. We compare the case of no doping and no pressure with
the two cases of applied pressure and doping that bring the F+

1 saddle point closest to the
Fermi level. In a similar fashion as Figure 5.12, we show two sections of this function. Top
row: section of the function in the plane that contains the F points. Bottom row: section
of the function in the plane that contains the L points. Both are superimposed over the
BZ for reference. Notice that in all cases there is no relative peak at the F or L points.
The function has been normalized by the number of bands and k-points, so that it can
only take values between 0 and 1.

nomenological Landau theory for the structural transition to the R3̄m space group, it
is plausible that symmetry plays a role in reducing the nesting behavior of the Fermi
surface in shandite systems compared to AV3Sb5 with the P6/mmm space group. This
reduced nesting behavior could be attributed to the D3d point group symmetry of the sys-
tem, specifically, which might prevent six-fold quasi two-dimensional sheets in the Fermi
surface. However, further investigations are required to definitively confirm this hypothesis.
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Chapter 6

Conclusion and outlook

Throughout this thesis, our investigation centered on two distinct crystal structures that
present kagome layers: AV3Sb5 with the P6/mmm space group and shandites M3A2Ch2

with the R3̄m space group.We extended the phenomenological Landau theory of CDW-
like structural transitions to the shandite crystal structure. By identifying the relevant
vector in the Brillouin Zone as the F vector, we revealed that kagome layers in the R3̄m
system can exhibit ground states characterized by Star-of-David and Tri-Hexagonal lattice
distortions, in a same fashion as what is speculated for AV3Sb5.

To comprehend the underlying electronic and lattice properties, we gave a brief intro-
duction to the Density Functional Theory and employed it to simulate various compounds
of interest.In the case of CsV3Sb5, our simulations confirmed the presence of an unstable
phonon mode at M, consistent with prior calculations. However, we could not establish a
clear connection between this mode and any peak in the Lindhard/nesting function, thereby
leaving open the question of whether Fermi surface nesting effects contribute significantly
to the driving mechanism of the CDW in this system.

Among the shandite compounds examined, we focused our attention on Pd3Sn2Se2.
We observed the presence of a saddle point at F, analogous to the saddle points found at
M in AV3Sb5. However, our simulations under various conditions of pressure and doping
did not reveal any structural instability at the F point for this compound. Furthermore,
we observed that the Fermi surface of Pd3Sn2Se2 exhibited reduced two-dimensionality
compared to AV3Sb5, making it less amenable to nesting phenomena. The main suspects
that we can point to as reasons for the apparent absence of the CDW in shandites are:
the distance between kagome layers being way smaller than in the kagome metals; the
different role played by apical ions, both in the structural configuration and in the electronic
structure.

Moving forward, several avenues for further investigation have emerged, including ex-
ploring the role of apical ions in both systems, calculating the full bare electronic suscepti-
bility in AV3Sb5, continuing the study of different shandite compounds due to their diverse
material properties and searching for a shandite exhibiting a CDW, which would lead to a
deeper understanding of the nature of the CDW and the interplay between phonons and
electronic effects.

In conclusion, this thesis has provided insights into the structural properties of AV3Sb5

and shandite compounds, laying the groundwork for future research and investigations into
the fascinating aspects and potential applications of shandite materials.
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Appendix A

Linear response theory and DFPT

Linear response

At the end of the day, we will be doing numerical calculations on our computers, so we will
look at finite differences and not really derivatives as in eqs. 4.59-4.60. For the purpose
of this section, then, we introduce the finite difference operator ∆

R , which acts on any
function that depends parametrically on R in the following way

∆
R
FR =

∑
I

∂FR

∂RI
∆RI . (A.1)

If we slightly distort the geometry of the nuclei, both the nuclear potential Vn and the
ground state density n will change (because of Hohenberg-Kohn’s theorem), but this means
that also the Hartree potential VH and the exchange-correlation potential Vxc will change.
In the context of perturbation theory, we can imagine this as a perturbation ∆V to the
Kohn-Sham Hamiltonian

H = −∇2

2
+ Vn(r,R) +

VH(r)︷ ︸︸ ︷∫
dr′

nR(r
′)

|r − r′|
+

Vxc(r)︷ ︸︸ ︷
δExc

δnR(r)
, (A.2)

∆V (r) = ∆
R
Vn(r,R) +

∫
dr′

∆
R
nR(r

′)

|r − r′|
+
dVxc(n)

dn

∣∣∣∣
n=n(r)

∆
R
nR(r) , (A.3)

where we used the chain rule ∆
R
F = dF

dn∆
R
nR . From now on ∆n = ∆

R
nR , so we will get

rid of the subscript/superscript R unless there could be ambiguities. Using the Kohn-Sham
wavefunctions ϕi, the finite difference in density can be written as

∆n(r) =
∑
i

∂nR(r)
∂RI

∆RI

=
∑
I,i

[
∂ϕ∗i (r)
∂RI

ϕi(r) + ϕ∗i (r)
∂ϕi(r)
∂RI

]
∆RI

=
∑
i

[
ϕi(r)∆ϕ∗i (r) + ϕ∗i (r)∆ϕi(r)

]
= 2Re

∑
i

ϕ∗i (r)∆ϕi(r) ,

(A.4)

where, as for the density, we call ∆ϕi(r) = ∆
R
ϕi(r). In the last line we assumed that,

since both Vtot and ∆V are real, the wavefunctions ϕi and ϕ∗i are degenerate, so that
(∆ϕi)

∗ = ∆ϕ∗i .
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In perturbation theory we always think that a perturbation to the Hamiltonian causes
a perturbation both in the eigenvalue and in the state(

H +∆V
)(

|ϕi⟩+ |∆ϕi⟩
)
=

(
εi +∆εi

)(
|ϕi⟩+ |∆ϕi⟩

)
. (A.5)

At first order we can ignore the terms ∆V |∆ϕi⟩ and ∆εi|∆ϕi⟩, such that we can rearrange
the other terms to obtain (

H − εi

)
|∆ϕi⟩ = −

(
∆V −∆εi

)
|ϕi⟩ . (A.6)

Since we usually assume that the perturbation to the state is orthogonal to the state itself
(i.e., ⟨ϕi|∆ϕi⟩ = 0), by projecting eq. A.6 on ⟨ϕi| we get

∆εi = ⟨ϕi|∆V |ϕi⟩ , (A.7)

while projecting on any other ⟨ϕj | with j ̸= i we get

|∆ϕi⟩ =
∑
j ̸=i

⟨ϕj |∆V |ϕi⟩
εi − εj

|ϕj⟩ , (A.8)

which are the standard textbook results of first-order perturbation theory. We subtly just
introduced a new set of self-consistent equations: ∆V (r) is a linear functional of ∆n(r),
which in turn depends linearly on the set of ∆ϕi(r)’s, and they depend on ∆V (r), and so
on... Let us rewrite this set of self-consistent equations once more, all together

∆V (r) = ∆
R
Vn(r,R) +

∫
dr′

∆n(r′)
|r − r′|

+
dVxc(n)

dn

∣∣∣∣
n=n(r)

∆n(r) , (A.9)

∆n(r) = 2Re
∑
i

∑
j ̸=i

ϕ∗i (r)ϕj(r)
⟨ϕj |∆V |ϕi⟩
εi − εj

, (A.10)

where in the second one we used eq. A.8 (projected in the real space basis), to rewrite the
density linear response to the perturbation.

Now, in a non-magnetic system, each of the lowest N/2 states is occupied by two
electrons with opposite spins, so that in the density we can just sum i from 1 to N/2

∆n(r) = 4Re
N/2∑
i=1

∑
j ̸=i

ϕ∗i (r)ϕj(r)
⟨ϕj |∆V |ϕi⟩
εi − εj

, (A.11)

and from this we can see that the density response to the perturbation only comes from
matrix elements that mix one occupied and one non-occupied state: the terms that only
mix occupied states can be regrouped as (remember we assumed ∆V to be real)

∆Vij
εi − εj

(
ϕ∗iϕj − ϕ∗jϕi

)
, (A.12)

but this is a purely imaginary term, so it gets canceled when we take the real part of ∆n.
Unfortunately, it turns out that evaluating ∆n this way is not computationally efficient,

since it requires extensive summation over the unoccupied states, so it is way faster to just
solve the coupled linear system in eq. A.6 with iterative methods1. The only problem
is that the operator (H − εi) on the LHS of A.6 is non-invertible since it clearly has
one null eigenvalue. Since we saw that the response of the system to a perturbation
only depends on the matrix elements that mix occupied (valence) states with unoccupied

1It is my understanding that Abinit uses the so called conjugate-gradient method, see Reference [71].
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(conduction) states, we can project the RHS on the unoccupied states manifold with a
projection operator Pc, and add a multiple of a projector operator Pv onto the occupied
states manifold in the LHS as to make it invertible:(

H + αPv − εi

)
|∆ϕi⟩ = −Pc∆V |ϕi⟩ , (A.13)

and so this is the linear system that we have to solve2.

Monochromatic perturbations

Let us introduce in eq. A.13 an index for the wavevector k in the Brillouin Zone and an
index v indicating which valence band we are talking about. Projecting both sides of the
last equation on the manifold of states at some other wavevector k + q, we obtain

Pk+q
(
H + αPv − εvk

)
|∆ϕvk⟩ = −Pk+qPc∆V |ϕvk⟩ . (A.14)

Because of translational invariance, Pk+q commutes with H and with the other projectors,
so that we can write(

H + αPk+q
v − εvk

)
|∆ϕvk+q⟩ = −Pk+q

c ∆V |ϕvk⟩ , (A.15)

where Pk+q
v,c = Pk+qPv,c is the projector onto the occupied/empty states at momentum

k + q and Pk+q|∆ϕvk⟩ = |∆ϕvk+q⟩3.
Now we can decompose the perturbation in Fourier harmonics

∆V (r) =
∑
q

∆Vq(r)eiq·r (A.16)

where ∆V q(r) are lattice-periodic functions. Following what we already did in Section 4,
we can rewrite A.15 for just the periodic parts uvk and ∆uvk of the wavefunctions(
Hk+q + α

∑
v′

|uv′k+q⟩⟨uv′k+q| − εvk

)
|∆uvk+q⟩ = −

(
1−

∑
v′

|uv′k+q⟩⟨uv′k+q|
)
∆Vq|uvk⟩ ,

(A.17)
where Hk+q = e−i(k+q)·rHei(k+q)·r. The Fourier components of the density response and
of the perturbation are

∆nq(r) = 4
∑
vk

u∗vk(r)∆uvk+q(r) , (A.18)

∆Vq(r) = ∆Vn,q(r) +
∫
dr′

∆nq(r′)
|r − r′|

eiq·(r−r′) +
dVxc(n)

dn

∣∣∣∣
n=n(r)

∆nq(r) . (A.19)

In conclusion, quoting from Ref. [59], eqs. A.17-A.18-A.19 , sometimes called Sternheimer
equations, “form a set of self-consistent relations for the charge-density and wave-function
linear response to a perturbation of a wave vector q, which can be solved in terms of lattice
periodic functions only, and which is decoupled from all other sets of similar equations
holding for other Fourier components of the same perturbation. Thus perturbations of
different periodicity can be treated independently of each other with a numerical workload
that is, for each perturbation, of the same order as that needed for the unperturbed system.”

2This above discussion only applies to system with a finite gap, i.e., insulators and not metals.
3Of course for any projector operator P it holds that P 2 = P .
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Appendix B

Other simulated shandites

We report the band structures, relaxed lattice parameters and lowest phonon frequency
ω1F at the F point. These quantities were calculated with DFT as implemented in Abinit
9.6.2, using the PBE GGA exhange-correlation functional, a 16x16x16 Γ centered k-point
grid and a PAW basis with energy cutoff of 500eV. The electronic states were occupied
using a Gaussian smearing scheme with smearing temperature of 10 meV. The structure
was relaxed until all the forces were small than 1 meV/Å in modulus.

Figure B.1: Band structures of Rh kagome compounds and symmetry of the wavefunctions
at the F point, labeled by the little group irrep.
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Figure B.2: Band structures of Pd kagome compounds and symmetry of the wavefunctions
at the F point, labeled by the little group irrep.

Formula a [Å] α z ω1F [meV]
Rh3In2S2 5.5491 60.46◦ 0.7145 6.81
Rh3Sn2S2 5.4914 61.68◦ 0.7113 8.17
Rh3Tl2S2 5.7711 59.67◦ 0.7221 3.68
Rh3Pb2S2 5.6774 60.40◦ 0.7171 5.36
Pd3In2S2 5.6203 61.31◦ 0.7129 5.11
Pd3Sn2S2 5.5970 63.10◦ 0.7122 6.34
Pd3Tl2S2 5.8463 60.27◦ 0.7213 4.27
Pd3Pb2S2 5.7576 62.47◦ 0.7192 7.49

Table B.1: Lattice parameters calculated with DFT after relaxation, where α is the length
of the primitive translation vectors, α is the angle between them and z is the parameter
needed to describe the position of the sulphur atom. The table also reports on the right
most column the value of the lowest phonon frequency at the F point, calculated with
DFPT.
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