
Exploring near-term quantum
applications with graph states from

quantum emitters

MSc in Physics, 2021-2022

Love Pettersson

Supervisors:

Peter Lohdal and Stefano Paesani

University of Copenhagen



Faculty: Faculty of Science

Institute: The Niels Bohr Institute

Author: Love Pettersson KU-ID: bdt697

Title: Exploring near-term quantum applications with graph
states from quantum emitters

Supervisor: Peter Lohdal peter.lohdal@nbi.ku.dk

Co-Supervisor: Stefano Paesani stefano.paesani@nbi.ku.dk

Handed in: May, 2022



Abstract

The heart of this thesis is comprised of a spin-photon interface which can deterministically
generate graph states. With this interface we explore the class of graph states available
up to eight photons. Further, we construct a realistic error model accounting for its
infidelities, which are directly linked to experimental parameters. With the error model,
we explore three different quantum algorithms and two error correction applications that
can be implement on the available graph states.

More in detail, we analyse Grover’s search and Deutsch’s algorithm implemented on four
qubit graph states. Furthermore, we also describe a variational quantum eigensolver
(VQE) which can be implement with the interface, and simulate its performance on a
few-qubit experiment. Moreover, we study error-protected measurements of logical qubits,
including both Pauli errors and photon loss. This error-protection is investigated in the
context of two potentially near term applications: (1) Reading out the spin using graph
codes, (2) a BB84 protocol using graph codes instead of single photons.

From our analysis we identify that Grover’s and Deutsch’s algorithms show significant
resilience to errors present in the system, while the VQE protocol appears more suscep-
tible. We then also identify various quantum error-correcting states that can provide
noise-suppression, both for losses and Pauli errors, for realistic noises in quantum emit-
ters. These results provide a class of protocols that could enable interesting quantum
experiments and applications in near-term spin-photon quantum hardware.
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Chapter 1

Introduction

In this chapter we present some theoretical background to the two main applications
considered in this thesis, quantum computing and quantum error correction. In terms
of quantum computation, we introduce Deutsch’s algorithm, Grover’s search algorithm
and the variational quantum eigensolver. Further, we will introduce the key aspects of
quantum error correction, with special focus on stabilizer codes, which will be important
to describe the theory of graph codes.

1.1 The qubit and quantum computation

The qubit is the carrier of one unit of quantum information. Unlike its classical counter-
part, the bit, the qubit can be in a superposition of 0 and 1: |ψ〉 = a |0〉 + b |1〉. This
is what allows quantum parallelism [1], which potentially offers enormous computational
speed up. Manipulating the qubit is realised through unitary operators Û , also referred
to as gates. A unitary operator fulfils Û Û † = Û †Û = 1, where "†" indicates the hermitian
adjoint.

A qubit can be viewed as a normalised vector on a sphere, called the Bloch sphere. This
is illustrated in figure 1.1. Any single qubit operation can be defined as a rotation of the
normalised vector on the Bloch sphere, and is thus an Euler rotation [3]. Recall, that
an Euler rotation is an arbitrary rotation in three dimensions using three consecutive
rotations around only two different axes

R̂(α, β, γ) = e
−iẐα

2 e
−iŶ α

2 e
−iẐα

2 , (1.1)

where Ŷ and Ẑ, along with X̂, are the Pauli operators defined as

X̂ =

(
0 1
1 0

)
, Ŷ =

(
0 −i
i 0

)
and Ẑ =

(
1 0
0 −1

)
. (1.2)

Hence, by access to rotations around two different axes all single qubit gates are unlocked.

To make a useful quantum computation, a register of many qubits is needed. Furthermore,
to be able to perform any quantum computation, one needs to be able to access all N -
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Figure 1.1: The figure illustrates the Bloch sphere with a qubit symbolised by a green
arrow. The eigenstates of all axes are shown, with |±〉 = |0〉±|1〉√

2
and |y±〉 = |0〉±i|1〉√

2
. This

was plotted using Qutip [2].

qubit unitaries Û⊗N on the N -qubit register [4]. This requirement is reduced to requiring
access to only one two-qubit gate and all single-qubit gates, which is called a universal
gate set. This is because all Û⊗N can be decomposed by this set of gates [5]. Further, to
infer the result of a quantum computation, one needs to perform at least one measure-
ment, which inevitably collapses any superpositions. Constructing a quantum algorithm,
one seeks to exploit quantum parallelism while avoiding its collapse from measurement.

In the circuit model of quantum computing, the evolution of the qubits during a quantum
computation is readily described by a quantum circuit. A quantum circuit depicts the
gates that are needed to perform the computation and they are ordered in time. An
example is illustrated below, which consider single qubit gates ranging from one to five,
three control gates (two-qubit gates) and two measurements. Here, U1 is performed first,
then the control gate between qubit 0 and 1, etc.

|0〉0 U1 • U2 •

|0〉1 U3 •

|0〉2 U4

|0〉3 U5

2
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1.2 Quantum algorithms

This section introduces three important quantum algorithms: Deutsch’s algorithm [6],
Grover’s search algorithm [7] and the variational quantum eigensolver [8]. Along with
the algorithms themselves, concepts such as an orcale and algorithmic complexity are
introduced. We here focus on a high-level theoretical description, while an actual physical
implementation of all these algorithms is studied in chapter 4.

1.2.1 Deutsch’s algorithm

Deutsch’s algorithm aims at solving the following problem: Given a function F (x) :
{0, 1} −→ {0, 1}, determine if the function is constant or balanced. That is, is F (0) =
F (1)? Deutsch’s algorithm solves this problem by implementing a black box that calcu-
lates the function F (x). In general, the black box, also called the oracle, is designed to
solve a certain problem in a single call and is a tool to simplify the calculation of an al-
gorithm’s complexity. The complexity of an algorithm is subsequently determined by the
number of calls that are needed to the black box to finish the algorithm. Classically two
function calls are needed to solve Deutsch’s algorithm1 while, as we shall demonstrate, a
quantum computer only needs one.

The circuit below implements Deutsch’s algorithm.

|0〉q H • H

|1〉a H UB

where q stands for query qubit and a ancilla qubit. Furthermore, Ĥ is the Hadamard
gate

Ĥ =
1√
2

[
1 1
1 −1

]
, (1.3)

and ÛB is our black box, which implements the following controlled-unitary transforma-
tion:

ÛB : |i〉q |j〉a −→ |i〉q |j ⊕ F (i)〉a . (1.4)

The evolution of the circuit up until the measurement follows:

|0〉q |0〉a
Ĥq⊗Ĥa−−−−→

(|0〉q + |1〉q)(|0〉a − |1〉a)
2

ÛB−−→ (1.5)

(((−1)F (0) + (−1)F (1)) |0〉q + ((−1)F (0) − (−1)F (1))) |1〉r (|0〉a − |1〉a)
2

. (1.6)

1Since the function must be evaluated for both inputs to determine if it is constant or balanced.
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Hence, the measurement yields |0〉 (|1〉) with unit probability for a constant (balanced)
function, showing in a very direct way a quantum advantage for this very simple task.

1.2.2 Grover’s search algorithm

Grover’s search algorithm is a quantum algorithm which offers a quadratic speedup for
an unstructured database search [9]. Given an unstructured database with N = 2n items,
Grover’s algorithm aims to find one item indexed b0. Classically, the solution is found
through an exhaustive search, which on average finds the solution after O(N

2
) steps [7].

The black box ÛB in Grover’s algorithm is composed of two operations

ÛB = ÛGÛb0 , (1.7)

with ÛG and Ûb0 defined as

ÛG = 2 |ψ〉 〈ψ| − 1̂, (1.8)

Ûb0 = 1̂− 2 |b0〉 〈b0| , (1.9)

where 1̂ is the identity matrix and |b0〉 is the item to be tagged. For N = 8 items,
three qubits are needed to compose the database (23 = 8) and the quantum circuit for
implementing the algorithm is illustrated below.

|0〉 H

Ub0 UG Ub0 UG|0〉 H

|0〉 H

The algorithm is performed in three steps. First the qubit register is initialised in an
equal superposition of N = 2n bit numbers b [9]

|ψ〉 = Ĥ⊗n |0〉⊗n =
1√
N

N−1∑
b=0

|b〉 . (1.10)

Next, the first operation of the black box, Ûb0 is applied. This operator can be seen as
flipping the phase of the item to be tagged b0:

Ûb0 |b 6= b0〉 = |b〉 , (1.11)

Ûb0 |b0〉 = − |b0〉 . (1.12)

In the final step we apply the second operation of the black box UG, which transforms
the state in (1.10) as

ÛG |ψ〉 =
N−1∑
b=0

c′b |b〉 , (1.13)

where the transformed coefficients c′b are given by

c′b =
2

N

N−1∑
j=0

cj − cb. (1.14)

4
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Denoting

c =
1

N

N−1∑
b=0

cb, (1.15)

as the average of all the coefficients, the ÛG operation can be viewed as performing an
inversion around the mean

cb −→ c′b = c− (cb − c). (1.16)

This increases, after the first iteration, the tagged item’s probability amplitude to

cb0 ≈
3√
N
. (1.17)

Hence, by repeatedly applying the black-box operation the probability of measuring the
tagged item increases. After iterating O(

√
N) times b0 ≈ 1 and measuring all register

qubits will give the correct bit number b0 with next to unit probability.

1.2.3 Variational quantum eigensolver

A promising application on Noisy Intermediate Scale Quantum (NISQ) quantum systems
[10] is the variational quantum eigensolver (VQE) [11]. This is because VQE could in
principle offer a polynomial time solution to a problem whose classical counter part scales
exponentially, all the while having shown to be resilient to noise [11, 12]. The latter being
important for NISQ systems and the former being important because it would give the
VQE a substantial advantage over classical systems.

The VQE, first developed by Ref. [8], aims to find the ground state energy E0 of a given
Hamiltonian Ĥ. It achieves this by using the variational principle, which given a trial
wavefunction |ψ〉 gives an upper bound to the ground state energy of Ĥ [3]

〈ψ| Ĥ |ψ〉
〈ψ|ψ〉

≥ E0. (1.18)

Scanning different trial wavefunctions, it is in principle possible to find the true ground
state energy. The VQE aims to find a parametrisation of the wavefunction anstatz
|ψ(φ1, .., φN)〉, such that (1.18) can be optimised with respect to them. The VQE sub-
sequently performs the optimisation in a hybrid approach between a quantum processor
unit (QPU) and a classical central processor unit (CPU), which is illustrated in figure 1.2.
The QPU calculates the expectation value of the Hamiltonian while the CPU performs
the optimisation step,

E(φ) = minφ
〈ψ(φ1, .., φN)| Ĥ |ψ(φ1, .., φN)〉
〈ψ(φ1, .., φN)|ψ(φ1, .., φN)〉

, (1.19)

feeding a new set of φ = {φi} to the QPU. The power of the VQE lies in the calculation
of (1.18) using the quantum processor compared to calculating (1.18) classically [11].

The ansatz, in the circuit model, is designed by a series of unitary gates U(φ), which

is applied to an initial register of qubits to generate the ansatz state |0〉⊗N U(φ)−−−→ |ψ(φ)〉

5
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Figure 1.2: The figure illustrates the scheme of an VQE algorithm. The QPU calculates
E(φ) and is passed to the CPU. The CPU subsequently updates the parameters and feed
them back to the QPU. This processes is repeated until convergence of 1.19.

[11]. The ansatz state |ψ(φ)〉 has to be sufficiently expressible such that an approximate
ground state is within the parameter space, while only using a polynomial amount of
optimisation parameters φi. Designing a good ansatz usually presents the difficult part
of constructing a VQE problem. Furthermore, one has to represent the Hamiltonian in
a suitable basis such that it can easily be measured on a quantum processor. A popular
basis is the Pauli basis, which forms a group under multiplication. The Pauli group for a
single qubit is given by:

P1 = {±1̂,±i1̂,±X̂,±iX̂,±Ŷ ,±iŶ ,±Ẑ,±iẐ}, (1.20)

and is extended to N qubits by taking the N -fold tensor product of all elements in (1.20),
PN = P⊗N1 . Using this basis, the Hamiltonian is mapped to a linear combination of
strings of Pauli operators

Ĥ =
∑
i

ciP̂i, (1.21)

where P̂i is a string of Pauli operators and ci its weight [11]. However, in order to avoid
the exponentially increasing terms from the N -fold Pauli group a truncation is usually
employed, which truncates (1.21) to only include a polynomial number of terms2 [13]. For
typical systems, such as electronic energies in molecules, this truncation provides a good
approximation [11].

2If all Pauli strings were included, an exponential number of samples would be needed at each step,
which is exponentially hard even for a quantum computer.

6
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1.3 Quantum error-correcting codes

This section aims to describe the basics of quantum error-correction. It starts with pre-
senting the main idea of error-correction and the difficulties of designing a quantum error-
correcting code (QECC). The section moves on to describing a classic example, Shor’s
nine-qubit code, which will follow the discussions throughout the section. Finally, the
general properties of a QECC is defined and translated to the stabilizer formalism and
stabilizer codes.

1.3.1 Basics of error-correction

In any classical information processing system, noise is present, causing bit flips. Depend-
ing on the system this noise is more or less severe, meaning the probability p of a bit flip
error to occur is either large or small. Due to the noise, a scheme to protect the informa-
tion, also called error-correcting code is needed. The simplest classical error-correcting
code is the repetition code. The repetition code encodes the bits 0 and 1 as [4]:

0 −→ 000, (1.22)

1 −→ 111, (1.23)

where 0 = 000 and 1 = 111 are referred to as the logical 0 and logical 1, respectively [4].
The logical 0 and 1 are protected from bit flips through added redundancy. For example,
if one bit flips in the logical 0 (000 −→ 001), a majority voting with the remaining bits is
done to recover the logical information (001 −→ 000). This encoding fails whenever p is
large enough to give a substantial probability of flipping more than one bit. However, in
this case simply more redundancy can be added.

Just as classical information processing systems are subjected to noise, so are quantum
information processing systems, and if not more. For these reasons, quantum error-
correcting codes are needed. The classical repetition code displays some of the difficulties
in constructing a QECC. First, due to the no cloning theorem [14] a QECC can not simply
copy the quantum state several times to create a logical state. Second, as a qubit can be
in a superposition of 0 and 1, noise can cause both bit flips and phase flips. Third, since
measurements collapses any superpositions, observations of individual qubits can not be
made to recover the original state. Instead, other recovery schemes and logical encodings
have to be engineered.

1.3.2 Shor’s nine-qubit code

A great example illustrating how information can be encoded and recovered without
collapsing any superpositions is Shor’s nine-qubit code [15]. Furthermore, it also illustrates
how the continuum of single-qubit errors collapses to only bit and phase flips. Shor’s nine-
qubit code can correct for any single-qubit error and encodes one qubit into nine in the
following manner:

7
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∣∣0〉 =
1

23/2

block 1︷ ︸︸ ︷
(|000〉+ |111〉)

block 2︷ ︸︸ ︷
(|000〉+ |111〉)

block 3︷ ︸︸ ︷
(|000〉+ |111〉), (1.24)∣∣1〉 =

1

23/2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉), (1.25)

where
∣∣0〉 and

∣∣1〉 acts as logical 0 and logical 1, and maps a single qubit state |ψ〉 =

a |0〉+ b |1〉 −→
∣∣ψ〉 = a

∣∣0〉+ b
∣∣1〉. If the logical encodings are subjected to a single-qubit

error, we detect the error by measuring different observables with eigenvalue ±1 [16].
These observables are designed to be eigenvectors to both encodings with eigenvalue +1,
and thus a measurement yielding -1 indicates an error is present. The result of the mea-
surements gives a syndrome. How these measurements are performed without disturbing
the logically encoded state is discussed in section 1.3.5.

To determine if the single-qubit error is a bit flip on one of the qubits in the first block,
we measure Ẑ1Ẑ2 and Ẑ1Ẑ3. If both measurements yield 1, no bit flip occurred in the first
block. However, if one or both of the measurements yield -1, a bit flip on either qubit
one, qubit two or qubit three occurred and applying X̂i with i ∈ {1, 2, 3} will recover the
state. The same procedure is repeated for the remaining two blocks to detect any bit flips
in the logical encodings.

Instead, to determine if the single-qubit error is a phase flip on any of the code qubits the
following two eigenvectors are measured:

X̂1X̂2X̂3X̂4X̂5X̂6, (1.26)

X̂1X̂2X̂3X̂7X̂8X̂9. (1.27)

These measurements, as for the bit flip, can result in both +1, both -1, or of opposite
signs. In the case of both yielding -1, the phase flip occurred in block one and Ẑi with
i ∈ {1, 2, 3} is applied. If instead only one of the two measurements yields -1 the phase
flip occurred in block two or three and Ẑi with i ∈ {4, 5, 6} or i ∈ {7, 8, 9} is applied to
recover the state.

Mentioned in the beginning of the section, the phase and bit flip are the only single-qubit
errors one has to be able to correct, which is true even though there is continuous set of
possible single-qubit errors [16]. This is due to the error-detection measurements, which
can be seen from considering the most general error

Ê = α1̂ + βX̂ + γŶ + ηẐ, (1.28)

and how it transforms the logically encoded state
∣∣ψ〉

Ê
∣∣ψ〉 = Ê(a

∣∣0〉+ b
∣∣1〉) = α1̂

∣∣ψ〉+ βX̂
∣∣ψ〉+ γŶ

∣∣ψ〉+ ηẐ
∣∣ψ〉 . (1.29)

Performing the error-detection measurements the state in (1.29) will collapse to the orig-
inal state

∣∣ψ〉 times one of the Pauli operators with probabilities {|α|2, |β|2, |γ|2, |η|2},
respectively [17]. Thus, the state collapses to either no error, a bit flip, a phase flip or

8
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both a bit flip and phase flip3.

In general, a QECC like Shor’s nine-qubit code works by first choosing a logical encoding.
As the logical encoding is subjected to noise, an error arises in the form of a bit flip,
phase flip or both. To detect the error, a syndrome measurement is performed, which is a
measurement of simultaneous eigenvectors to the logical encodings. If an error is detected,
recovery is performed. In the next subsection we will present the general properties of
any quantum code.

1.3.3 General properties of quantum codes

The codespace T of a QECC is a subspace of the full Hilbert space HN of dimension
2N . The codespace contains the logical encodings of the QECC, also called codewords,
which are redundantly encoded in N qubits. For instance, in Shor’s code the codespace
is of dimension 2 since it contains two codewords, and they are encoded in nine qubits
(i.e. HN is of dimension 29). Determining which errors the QECC can correct for, only a
basis of errors need to be considered, as any linear combination of correctable errors are
also correctable [17]. The basis commonly used, just as for VQE, is the Pauli basis and
is given in (1.20).

To be able to correct for a set of errors E = {Êi}, the QECC must fulfil a criterion
commonly known as the Knill-Laflamme criterion [18]

〈ψj| Ê†αÊβ |ψi〉 = δαβδji ∀Êα, Êβ ∈ E , (1.30)

where |ψ〉j , |ψ〉j ∈ T are the codewords of the QECC. Equation (1.30) actually encodes
two separate criteria, and it is worth highlighting both of these for intuition. The first
criterion is stated with the equation [17]:

〈ψj| Ê†αÊβ |ψi〉 = 0 ∀Êα, Êβ ∈ E , (1.31)

which expresses that we cannot mistake one error Êα for another Êβ, by enforcing that
Êα and Êβ must produce orthogonal states when acting on different codewords [17]. The
second criterion relates to the syndrome measurements, which enforces that no information
can be gained about the state when these are performed, i.e. the coefficients a and b in
(1.29). Otherwise, possible superpositions between codewords would collapse, which is
formulated with the equation [17]:

〈ψi| Ê†αÊβ |ψi〉 = 〈ψj| Ê†αÊβ |ψj〉 . (1.32)

An important variable for determining the error-correcting capability of a QECC is the
distance d, which is given by the weight of the smallest operator in E , with the weight of
an operator Êα defined by the number of Pauli operators in Êα different from identity.
For a QECC to be able to correct for t errors it needs a distance of at least d = 2t + 1.
However, if a QECC is to only detect s errors or correct l located errors a distance of
d = s+ 1 and d = l + 1 is needed, respectively. For example, Shor’s code can correct for
any single qubit error, and thus has a distance d = 3.

3Note that Ŷ = iX̂Ẑ, and is thus equivalent to a phase flip and bit flip error
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1.3.4 Quantum error-correction in the stabilizer formalism

The stabilizer formalism offers an alternative approach to describing a large set of quantum
states by leveraging group theory. Instead of describing a quantum state through its state
vector, the stabilizer formalism describes the state by an Abelian subgroup S of P called
the stabilizers, which the state in question is an eigenvector to [4]. This allows, for
instance, to describe a QECC by a group of commuting operators instead of the state
vectors to the codewords. Applying the stabilizer formalism is analogous to going from
the Schrödinger picture to the Heisenberg picture in quantum mechanics [19].

A stabilizer code hosting c codewords in a Hilbert space HN of dimension 2N is defined
by a stabilizer group with N − c generators S = 〈ĝ1, ..., ĝN−c〉. The code space T is the
set of vectors invariant under S:

T = {|ψ〉 | ĝ |ψ〉 = |ψ〉 ∀ĝ ∈ S}. (1.33)

Since S is a subgroup of P , all stabilizers either commute or anticommute with P . Those
errors E ∈ P which anitcommutes with at least one stabilizer generator are correctable4.
For instance, assume ĝk ∈ S, |ψ〉i, |ψ〉j ∈ T and {ĝk, Ê} = 0, then

〈ψi| Ê |ψj〉 = 〈ψi| Êĝk |ψj〉 = −〈ψi| ĝkÊ |ψj〉 = −〈ψi| Ê |ψj〉 = 0, (1.34)

and both the criterion in (1.31) and in (1.32) are fulfilled. Hence, we see if an error
anticommutes with one stabilizer generator it is indeed correctable. More formally, a
stabilizer code can correct all errors in some set E which fulfil:

Ê = Ê†αÊβ ∈ S ∪ P \ C(S) ∀Êα, Êβ ∈ E , (1.35)

where C(S) is the centraliser of S and is defined as all operators in P that commutes with
S: C(S) = {p̂ ∈ P | p̂ĝk = ĝkp̂ ∀ĝk ∈ S}. With the centraliser defined, the distance
of a stabilizer code is given by the minimum weight of all operators in C(S) \ S.

While operators in S fixes T , operators in C(S)\S map states in T between each other and
thus acts as logical operators [17]. For a code with c codewords there are c independent
logical operators, Zi and X i, which generate C(S) \ S and follow the usual commutation
rules:

[X i, Xj] = 0 ∀i, j, (1.36)

[Zi, Xj] = 2iδijY i ∀i, j, (1.37)

[Zi, Zj] = 0 ∀i, j, (1.38){
X i, Zj

}
= 0 ∀i, j. (1.39)

Concluding, we note that Shor’s code is a stabilizer code. The operators we measured to
check weather a phase flip or bit flip occurred are in fact the stabilizer generators of the
code and are shown in table 1.1. From the generators, it is straightforward to show that
Ẑ1Ẑ4Ẑ7 ∈ C(S) \ S, which is the operator of smallest weight in the centraliser, and thus
the code is indeed of distance d = 3.

4Strictly speaking, Ê ∈ S is also correctable, but it acts as the identity on the encoded information.
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Table 1.1: The stabilizer generators of Shor’s code.

ĝ1 X̂1 X̂2 X̂3 X̂4 X̂5 X̂6 1̂7 1̂8 1̂9

ĝ2 X̂1 X̂2 X̂3 1̂4 1̂5 1̂6 X̂7 X̂8 X̂9

ĝ3 Ẑ1 Ẑ2 1̂3 1̂4 1̂5 1̂6 1̂7 1̂8 1̂9

ĝ4 Ẑ1 1̂2 Ẑ3 1̂4 1̂5 1̂6 1̂7 1̂8 1̂9

ĝ5 1̂1 1̂2 1̂3 Ẑ4 Ẑ5 1̂6 1̂7 1̂8 1̂9

ĝ6 1̂1 1̂2 1̂3 Ẑ4 1̂5 Ẑ6 1̂7 1̂8 1̂9

ĝ7 1̂1 1̂2 1̂3 1̂4 1̂5 1̂6 Ẑ7 Ẑ8 1̂9

ĝ8 1̂1 1̂2 1̂3 1̂4 1̂5 1̂6 Ẑ7 1̂8 Ẑ9

1.3.5 Measuring stabilizers

We here present how to measure a stabilizer without disturbing the encoded information,
which generalises to any observable with eigenvalues ±1. To measure a stabilizer a pro-
jective measurement onto its eigenspace is performed [4]. Such a measurement is achieved
using an ancilla qubit as illustrated in the circuit below:

|0〉a H • H

Si

0/1

To see the circuit indeed measures the stabilizer Ŝi, we follow the dynamics of the circuit
until the measurement

ĤaÛ
SiĤa |0〉a |ψ〉 =

Ĥa√
2

(|0〉a |ψ〉+ |1〉a Ŝi |ψ〉)

=
1

2
(1 + Si) |0〉a |ψ〉+

1

2
(1− Si) |1〉a |ψ〉 ,

(1.40)

where ÛSi is a control operator applying Ŝi if the control qubit is one, and Si is the
eigenvalue of Ŝi. Thus, if |ψ〉 is in the eigenstate with eigenvalue 1 of Ŝi, the measurement
of the ancilla qubit will result in |0〉a with unit probability. If instead |ψ〉 is in the
eigenstate with eigenvalue -1 of Ŝi, the measurement outcome of the ancilla qubit will be
|1〉a.
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Chapter 2

Graph states and graph codes

With the stabilizer formalism introduced, we proceed with discussing graph states and
graph codes, which offers a graphical description to stabilizer states and stabilizer codes
[20, 21]. The graph state is one of the fundamental building blocks of this thesis, as it
will be used in all applications we consider. We begin the chapter by introducing graph
states and an operation called local complementation, which allows to identify graph states
equivalent under local (single-qubit) operations and can be described by an intuitive graph
operation. We end the chapter by introducing graph codes, where we discuss how a code
is built, how information is encoded, and present an example.

2.1 Graph states and local complementation

A graph state |G〉 is a quantum state defined by N -qubits initialised in the plus eigenstate
of the Pauli-X operator and a pattern E of control phases [22]:

|G〉 =
∏

{α,β}∈E

ÛCZ
αβ |+〉

⊗N , (2.1)

where ÛCZ is given by:

ÛCZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (2.2)

As the name indicates, a graph state is associated to a graph object G(V,E) where qubits
are represented by a set of vertices and the pattern of ÛCZ by a set of edges. This offers
a convenient way of illustrating graph states. As an example, the graph object of the star
graph state containing four qubits entangled with three ÛCZ is illustrated in figure 2.1.

Graph states are a stabilizer states, and can thus be uniquely described by their stabilizer
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Figure 2.1: The figure illustrates the star graph state with four qubits (vertices) entangled
with three control phases (edges).

generators [20]. A graph state with N -qubits have N -stabilizer generators given by:

{ĝn} = {X̂n

∏
i∈NG(n)

Ẑi} for n = 1, 2, .., N, (2.3)

where NG(n) is defined as the neighbourhood of qubit n, which is the set of all its neigh-
bouring qubits {j |{j, n} ∈ E}. Here X̂n represents the Pauli-X operator on qubit n
and Ẑi the Pauli-Z operator on qubit i. As we proceed, we will denote a generator’s origin
from the position of its Pauli-X operator, i.e. ĝn has position n.

Another important unitary group when discussing graph states is the local Clifford group
C. The local Clifford group is defined by the set of local unitaries {Ûi} fulfilling: P =
ÛiPÛ †i , which entails a stabilizer state is mapped to a stabilizer state under the action
of Ûi [22]. The single qubit Clifford group C1 = {Ĥ, Ŝ} is generated by the Hadamard
operator given in (1.3) and the phase operator

Ŝ =

1 0

0 i

 , (2.4)

and the N -fold tensor product of C1 generates the N -qubit local clifford group CN = C⊗N1 .
Two graph states |G〉 and |G′〉 are said to be local clifford equivalent (LC-equivalent) if
they can be transformed into each other via an operation in CN . An important property for
graph states is that two graph states are LC-equivalent iff they are connected by a sequence
of local complemetation operations [22]. Local complemetation is a particular type of
local-Clifford operation, which when applied on qubit α is described by the unitaries

ÛLC
α =

√
−iX̂α

∏
{β∈NG(α)}

√
iẐβ = e−i

π
4
X̂α

∏
{β∈NG(α)}

ei
π
4
Ẑβ , (2.5)

which has a simple interpretation in term of graph transformations. Local complementa-
tion applied to vertex α of the graphG(V,E) transforms its subgraphG[NG(α)] ⊆ G(V,E)
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(a) (b)

Figure 2.2: (a) Graphically illustrates local complementation with the black vertex as
the target qubit (α). If there are no edge connecting two vertices of the neighbourhood
subgraph, the complement will add one. However, if there is an edge, the complement
will remove it. Furthermore, (b) illustrates the full local equivalence class associated with
the four qubit linear graph, excluding isomorphic graphs.

to its complement [23] and is illustrated in figure 2.2, along with local equivalence class1

associated with the four qubit linear graph. The connection between such graph transfor-
mation rules and LC-equivalent graph states represents a very interesting and important
link that allows to study quantum states just in terms of their graph representation. This
property makes graph states a very convenient tool to investigate quantum codes, which
is the main reason we focus on them here.

As a final remark on local complementation, the table 2.1 presents how the Pauli operators
of the respective qubits in the graph state transform under conjugation with ÛLC

α . With
|G′〉 = ÛLC

α |G〉, the transformation ensures the stabilizer generators of |G〉 transforms to
the stabilizer generators of |G′〉 [24].

Table 2.1: The transformation of the Pauli operators of each qubit in the graph state
under conjugation with ULC

α .

qubit X Y Z

α X -Z Y

NG(α) -Y X Z

V \ (NG(α) ∪ α) X Y Z

2.2 Graph codes

Having introduced graph states, we proceed the discussion by introducing graph codes.
Just as graph states are stabilizer states, graph codes are stabilizer codes [21]. The
section starts with defining the logical encodings and their operators, and then follows up
by describing how a physical qubit can be encoded a graph code.

1The local equivalence class associated with a graph, is the class of graphs accessible from local
complementation only.
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2.2.1 Code construction

A graph code can be defined with the graph state |G〉 and a subset of qubits I [25]. The
subset I is necessary to define the logical operators and to encode a physical qubit in the
graph code. Given I and |G〉, the logical encodings are defined as:

∣∣0〉 = |G〉 , (2.6)

∣∣1〉 =
∏
n∈I

Ẑn |G〉 . (2.7)

Using the fact that Ẑn commutes with all ÛCZ
ij and that ÛCZ

ij is unitary we can prove that∣∣0〉 and ∣∣1〉 are orthogonal:〈
0
∣∣1〉 = 〈+|⊗N Û †

∏
n∈I

ẐnÛ |+〉⊗N = 〈+|⊗N |+〉⊗N−|I| |−〉⊗|I| = 0, (2.8)

where Û denotes the collection of control phase operators constructing the graph state.

Figure 2.3: The left picture shows the code graph and the subset I. The two pictures to
the right displays the respective graph objects of the codewords. The logical zero is the
original graph and logical one is the original graph with self-loops on the vertices in the
subset I.

Moreover, logical one can be viewed as the original graph (i.e. logical zero) but with
self-loops as depicted in figure 2.3, where self-loops represents local Pauli-Z operations
instead of control phases [25]. Logical one share most of its generators with the original
graph state, but with generators originating from the subset I modified as

ĝn =

{
−ĝn, if n ∈ I.
ĝn, otherwise.

(2.9)
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With the logical encodings the logical operators are defined as:

X =
∏
n∈I

Ẑn, (2.10)

Z = X̂n

∏
i∈NG(n)

Ẑi, n ∈ I. (2.11)

Note that there is freedom in choosing Z, any generator originating from I suffice. Also,
note a logical operator times a stabilizer is still a logical operator 〈X,Z〉×Ŝ. Furthermore,
showing X and Z operates on the logical encodings in the correct way is straightforward:

X
∣∣0〉 =

∏
n∈I

Ẑn
∣∣0〉 =

∏
n∈I

Ẑn |G〉 =
∣∣1〉 , (2.12)

X
∣∣1〉 =

∏
n∈I

(Ẑn)2
∣∣0〉 =

∣∣0〉 , (2.13)

Z
∣∣0〉 = X̂n

∏
i∈NG(n)

Ẑi
∣∣0〉 = ĝn

∣∣0〉 =
∣∣0〉 , (2.14)

Z
∣∣1〉 = −(−ĝn)

∣∣1〉 = −
∣∣1〉 . (2.15)

Given the logical encodings and their respective generators, a graph code with two code-
words for a N -qubit graph can be constructed. The code’s N-1 generators are found from
(2.3) and are given by:

ĝ′n =

{
ĝ′n = Zĝn, if n ∈ I.
ĝ′n = ĝn, otherwise.

(2.16)

That is, the generators of the code {ĝ′n} are the generators of logical zero in (2.3), with
the generators originating from the subset I modified as: ĝn −→ Zĝn. This ensures the
correct commutation relations between the logical operators and the generators2.

2.2.2 Encoding information into graph codes

There are two ways of encoding the state of a generic qubit |ψ〉p = a |0〉 + b |1〉 into a
graph code in a measurement based manner [25]. In the first approach, the graph state
|G〉N (N -qubits) is first prepared and then the physical qubit is entangled by performing
control phases with the qubits in the subset I. This creates the composite state

a |0〉p
∣∣0〉

N
+ b |1〉p

∣∣1〉
N

= |+〉p (a
∣∣0〉

N
+ b
∣∣1〉

N
) + |−〉p (a

∣∣0〉
N
− b
∣∣1〉

N
)

= |+〉p
∣∣ψ〉

N
+ |−〉Z

∣∣ψ〉
N
,

(2.17)

2Remember the logical operators are in the centraliser of the code and thus commute with all gener-
ators.
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Figure 2.4: The figure shows the full graph |G〉N+1 in red, the code graph |G〉N in blue
and the subset I in green. Furthermore, the physical qubit to be encoded is represented
as the black vertex.

where p refers to the physical qubit whose state is to be encoded, and
∣∣0〉

N
and

∣∣1〉
N

are
the logical encodings of the graph code defined by |G〉N and I. Measuring the physical
qubit in the Pauli-X basis projects its state to the graph code up to a logical-Z operation.

The second approach is realised by first preparing the graph state |G〉N+1, with the phys-
ical qubit first prepared in |+〉, which is displayed in figure 2.4. Then, measuring the
physical qubit in the basis {|ψ〉 ,

∣∣ψ⊥〉} prepares the code in the measurement outcome
up to conjugation. To see how this is done, we first rewrite |G〉N+1 as:

|G〉N+1 =
∏
j∈I

ÛCZ
pj |+〉p |G〉N

=
|0〉p |G〉N + |1〉p

∏
j∈I Ẑj |G〉N√

2

=
|0〉p

∣∣0〉
N

+ |1〉p
∣∣1〉

N√
2

.

(2.18)

Again, p symbolizes the physical qubit, and
∣∣0〉

N
and

∣∣1〉
N

the logical encodings of the
graph code defined by |G〉N and I. Moving to the more general basis

|ψ〉 =
√
α |0〉+

√
1− αeiξ |1〉 , (2.19)∣∣ψ⊥〉 =

√
1− αe−iξ |0〉 −

√
α |1〉 , (2.20)

where α ∈ [0, 1] and ξ ∈ [0, 2π], we can rewrite (2.18)
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|G〉N+1 =
(
√
α |ψ〉p +

√
1− αeiξ

∣∣ψ⊥〉
p
)
∣∣0〉

N
+ (
√

1− αe−iξ |ψ〉p −
√
α
∣∣ψ⊥〉

p
)
∣∣1〉

N√
2

=

∣∣ψ⊥〉
p

(
√

1− αeiξ
∣∣0〉

N
−
√
α
∣∣1〉

N
) + |ψ〉p (

√
α
∣∣0〉

N
+
√

1− αe−iξ
∣∣1〉

N
)

√
2

=

∣∣ψ⊥〉
p

∣∣∣ψ∗⊥〉
N

+ |ψ〉p
∣∣ψ∗〉

N√
2

.

(2.21)

Hence, by measuring the physical qubit in the general basis (2.19) and (2.20), its state is
projected to the logical encodings of the N -qubit graph code up to conjugation.

2.2.3 Distance three graph code

Figure 2.5: To the left, the figure illustrates how a physical qubit (black) is encoded in
the pentagon graph code. To the right, the codewords and their graph objects are shown.

We here describe an example of a graph code: the pentagon code. The pentagon graph
state with all of its qubits as the subset I defines the smallest graph code with distance
d = 3. The codewords of the graph code, along with the encoding of a physical qubit is
illustrated in figure 2.5. The logical operators and the stabilizer generators are given by:

X = Ẑ1Ẑ2Ẑ3Ẑ4Ẑ5,

Z = Ẑ1X̂2Ẑ31̂41̂5,

S = {ĝ1 = Ŷ1Ŷ2Ẑ31̂4Ẑ5,

ĝ2 = Ẑ1Ŷ2Ŷ3Ẑ41̂5,

ĝ3 = Ẑ1X̂21̂3X̂4Ẑ5,

ĝ4 = 1̂1X̂2Ẑ3Ẑ4X̂5}.

18



Exploring near-term quantum applications with graph states from quantum emitters
L. Pettersson

To verify that the code is indeed d = 3, one has to check that all single-qubit Pauli
operators and two-qubit Pauli operators anticommute with at least one of the stabilizer
generators. We note that there is at least two different generators which have two differ-
ent Pauli operators on the same qubit. Hence, all single and two-qubit Pauli operators
anticommute with at least one generator. However, this is not the case for all three-qubit
Pauli operators. For example, consider Ê = Ŷ1Ŷ2Ŷ31̂41̂5, it commutes with all generators

[ĝ1, Ê] = [ĝ2, Ê] = [ĝ3, Ê] = [ĝ4, Ê] = 0, (2.22)

and thus belongs to the centraliser of the graph code, giving the code a distance of three.
Another way of seeing this, is that there is no logical operator of weight less than three.
Thus, any single-qubit error will map the logical encodings out of the code space, which
will be detected measuring the stabilizers.
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Chapter 3

A quantum dot graph state generator

In this chapter we discuss a physical system which is emerging as a promising platform
for the generation of the graph states described in the previous chapter: the spin-photon
interface in a quantum dot (QD). In this thesis we will focus on this platform, which is
sometimes called the "photonic machine gun" [26] due to the capability of the quantum
dot to generate entangled single photons on demand in multiple rounds. The chapter
starts with a general introduction to the physical system, and we will then describe a
protocol for generating entangled states of time-bin encoded photonic qubits with a single
quantum dot. We continue describing the most relevant noise sources in this physical
system and a model to numerically simulate them. Finally, we report a search for all
graph states that can be generated with this system.

3.1 The quantum dot

Quantum dots are emerging as an excellent photon source for quantum computing and
quantum information due to three main properties: (1) they can deterministically emit
single photons, (2) coupling between their internal spin state and optical transitions form
a platform for a spin-photon interface, (3) it forms a solid-state system which is easy to
integrate into nanophotonic structures and waveguides. In particular, we will here focus
on QDs embedded in a photonic crystal waveguide (PWC). Excellent coupling to the
guiding waveguide, high-efficiency collection of the emitted photons, and manipulation of
the QD decay rates have all already been demonstrated to be possible with this platform
[27, 28].

Quantum dots are fabricated by growing one semiconducting-material inside a different
semiconducting-material. Due to the different band gaps of the semiconducting materials,
a three-dimensional quantum well is created, which quantizes the electronic-structure of
the valence and conduction bands to discrete energy levels, much like that of an atom1

[29, 30]. In this thesis, we are considering a InAs/GaAs QD, where InAs (indium arsenide)
is grown inside GaAs (gallium arsenide).

1Even though the QD consist of over thousands of atoms.
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In a neutral QD, optically exciting an electron to the conduction band subsequently creates
a hole in the valence band. The electron and hole forms a bound state called an exciton
and as the exciton decays, a photon is emitted with energy dependent on the band gap
and geometry of the QD [30]. While the neutral QD allows for single photon generation,
it cannot contribute as a matter qubit as it decays through dipole radiation in the order
of nanoseconds. However, by charging the QD with an external bias voltage and applying
a magnetic field, a matter qubit can be encoded in the spin of the charge carrier and
coupling between the spin and the emitted photons is possible [30]. The QD can be both
positively or negatively charged, with the ground state having an electron in conduction
band or a hole in the valence band, respectively. We will work with a positively charged
QD, whose excited state contains two holes and one electron and is called a trion.

Figure 3.1: The figure illustrates the electronic level structure of a positively charged QD,
with x and y indicating the polarisation of the different trion dipoles. The hole spin is
denoted {|⇑〉 , |⇓〉}, and the spin of the electron denoted as {|↑〉 , |↓〉}. Furthermore, δg is
the energy splitting between the ground states {|⇑〉 , |⇓〉}.

Figure 3.1 illustrates the electronic level structure of a positively charged QD, which is
a four level system. As explained above, applying an in-plane magnetic field splits the
ground state degeneracy to two stable ground states {|⇑〉 , |⇓〉}, separated by δg. The
excited state levels {{|⇑⇓〉 , ↑, {|⇑⇓, ↓〉} consist of an electron excited to the conduction
band and two holes in a singlet state, with the spin of the electron denoted {|↑〉 , |↓〉}. In
this work, we will encode the positively charged QD energy levels as:

|⇓〉 −→ |0〉 (3.1)
|⇑〉 −→ |1〉 (3.2)

|⇑⇓, ↑〉 −→ |2〉 (3.3)
|⇑⇓, ↓〉 −→ |3〉 . (3.4)
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To summarise QDs are excellent single-photon sources as they can be integrated into
nanophotonic structures. The neutral QD is not suitable as a qubit as it decays through
dipole radiation in the order of nanoseconds. However, if the QD is charged by an external
bias voltage a matter qubit can be encoded in the spin of the charge carrier. With the
charged qubit, coupling is possible between the spin and the emitted photons, enabling
deterministic entanglement generation, as we will see in the next section.

3.2 Entanglement generation in a spin-photon interface

We describe here a protocol for the generation of time-bin photons, entangled with the
spin of the hole in a positively charged QD. The protocol to realise the time-bin entangle-
ment generation is related to the Lindner-Rudolph protocol [26], and is described in great
detail in Ref. [30]. The ideal excitation and decay scheme of the protocol, along with
the spin rotations can be depicted in figure 3.2. In the protocol, two lasers are used: one
(purple colour in 3.2) resonant with the spin |0〉 ←→ |1〉 transition for spin manipulation,
and one (red colour in figure 3.2) resonant with the |1〉 −→ |2〉 transition. The x-dipole
(|0〉 ←→ |2〉) is suppressed by the nanophotonic structure.

(a) (b)

Figure 3.2: The time-bin entanglement protocol (a) illustrates the energy levels and tran-
sitions of the protcol, with Ωo as the Rabi frequency of the excitation laser and ΩR the
Rabi frequency of the rotation laser. (b) Illustrates the optical and spin pulse sequences
for one full round of the protocol.

For simplicity, let us start describing the generation of a single time-bin photon entangled
with the spin state. The spin-photon state is initialised in |Ψ〉 = (a |0〉S + b |1〉S) |∅〉p,
where |0〉S and |1〉S are the QD states in figure 3.2 and |∅〉p indicates no photons in the
optical mode. The protocol now follows:

1. Optically excite the |1〉S −→ |2〉S transition, generating an early photon a†e |∅〉p =
|e〉p.

2. Flip the ground states of the spin with a Rx(π) pulse, |0〉S −→ |1〉S and |1〉S −→
|0〉S.
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3. Optically excite the |1〉S −→ |2〉S transition again, generating a late photon a†l |∅〉p =
|l〉p.

4. Do a final Rx(π) pulse, flipping the ground states again.

With the encoding for the time bin qubit, |l〉p = |0〉p and |e〉p = |1〉p, implies the final
state is written as |Ψ〉 = a |0〉S |0〉p + b |1〉S |1〉p. For clarity, we follow the evolution of the
protocol:

a |0∅〉+ b |1∅〉 1−→ a |0∅〉+ b |1e〉
2−→ a |1∅〉+ b |0e〉 3−→ a |1l〉+ b |0e〉

4−→ +a |0l〉+ b |1e〉 = a |00〉+ b |11〉 .

(3.5)

The protocol can be seen as initialising the photonic qubit state in |0〉p and performing a
controlled-not gate (CNOT) with the spin, as illustrated in the circuit below:

|ψ〉S •

|0〉p

Thus, the protocol is easily generalised to generate multi-qubit entangled states since
each entanglement generation simply amounts to performing a CNOT between a newly
generated photonic qubit and the spin qubit. For instance, initialising the spin in |ψ〉S =
|+〉 (i.e. a = b = 1/

√
2) and performing the above protocol N -times generates the N -

qubit Greenberger–Horne–Zeilinger (GHZ) state [31]: |0〉
⊗N+|1〉⊗N√

2
. While the protocol is

interesting and can in principle generate a large number of entangled photons from a
single QD, in practice there are various noises which need to be taken into account to
investigate its performance in real implementations. This will be discussed in the coming
section.

3.3 Error model

In this section we will discuss how realistic imperfections affect the above protocol and
how these can be modelled in simulations. The error model generalises that of Ref. [30] to
multi-photon entangled states, with also some additional slight modifications. The model
is based on a Monte-Carlo approach using collapse operators with probability distributions
determined by experimental parameters. Given a quantum state to be simulated, e.g. a
graph state, its density matrix is constructed by simulating N Monte-Carlo trajectories
and taking the average as:

ρ̂ =

∑N
j=1 |ψ〉j 〈ψ|j

N
. (3.6)

The simulations consider a Hilbert space constructed as

H = {1, 2, 3, 4} ⊗ ({∅, e} ⊗ {∅, l})⊗n, (3.7)
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where {1, 2, 3, 4} are the QD energy levels, ∅ an optical mode in the vacuum state, e/l
early/late photon, and n the number of generated photons.

Figure 3.3: Errors which can arise during the time-bin entanglement protocol. First, due
to the finite detuning δe = ∆o + ∆OH + δg, there is a probability of driving the transition
|0〉 −→ |3〉. Second, the Overhauser field causes an inhomogenous broadening of the
ground state splitting by an amount ∆OH . Third, due to finite cyclicity the QD can
decay through the x-dipole transition. Fourth, photons can be lost, which is indicated by
primes. Finally, while excited, the QD can be subjected to pure dephasing γd through
phonon scattering.

3.3.1 Rotation errors

There are mainly two mechanisms giving rise to spin rotations errors: The Overhauser
field and the laser induced spin flips. As discussed in section 3.1 the QD, even though
behaving as an atom, is in fact composed by several thousands of atoms. These atoms
nuclei all have a nuclear spin (In=9/2, Ga=3/2 and As =3/2), which couples to the charge
carrier spin through the hyperfine interaction. This will perturb the energy splitting δg
of the ground states (see figure 3.3) by an amount ∆OH . Because of the inhomogenous
broadening2 of ∆OH , the spin will decohere at a time scale defined by the spin coherence
time T ∗2 =

√
2

σOH
, which is dependent on the standard deviation σOH of ∆OH . A thorough

derivation of this decoherence and how it affects the rotation pulses can be found in Ref.
[30]. In principle, the entanglement protocol is insensitive to the ground state dephasing
caused by the Overhauser field [32], which is due to the first R̂x(π) in figure 3.2 flipping

2It is inhomogenous since ∆OH changes between experiments.
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the ground states acting as an Echo pulse [30].

Although the entanglement protocol is, in principle, insensitive to the ground state de-
phasing caused by the Overhauser field, it does perturb the rotation pulses. The ground
state perturbation ∆OH perturbs the detuning between the sidebands of the Raman pulses,
which affect the rotation pulse fidelity3. Taking the ground state perturbation ∆OH into
account, the perturbed rotation operator takes the form:

Ûrot(θr, φa) = cos(θr)1̂− isin(θr)
Ωr(cos(φa)X̂ + sin(φa)Ŷ )− (∆D + ∆OH)Ẑ√

Ω2
r + (∆D + ∆OH)2

, (3.8)

where Ωr is the Rabi frequency of the rotation laser and ∆D is the detuning between
the sidebands of the Raman pulse and the ground state splitting. The angle θr =
Tr
2

√
Ω2
r + (∆D + ∆OH)2 defines the rotation angle with Tr being the pulse duration, and

φa defines the azimutal angle of rotation. During simulations, a new ∆OH is drawn from a
normal distribution N (0,

√
2/T ∗2 ) for each trajectory, which accounts for its inhomogenous

distribution.

While the Overhauser field is quite well understood as well as how it affects the rotation
fidelity, it is not the main source of error during rotations. The main source of error seems
to be a laser induced spin flips. The rate of the spin flips scales with the laser power, but
the physics behind it is not yet fully understood [30]. A hypothesis mentioned in Ref. [30]
is that the rotation laser is producing photocreation, which creates random holes that can
be seen as an effective spin flip. Although the physics is not yet fully understood, this
error can be modelled by a spin flip rate parameter κ.

During simulation of rotation pulses, we wish to apply (3.8) for a certain pulse duration
Tr. To include the spin flips, we introduce the collapse operators:

F̂1 =
√
κ |0〉 〈1| , (3.9)

F̂2 =
√
κ |1〉 〈0| . (3.10)

By drawing t from a Poisson distribution

P (t) = κe−κt, (3.11)

we evolve |ψ〉 with (3.8) for a pulse duration of t and then apply one of the spin flip
operators (3.9) and (3.10) with probability,

pj =
〈ψ| F̂ †j F̂j |ψ〉∑
i 〈ψ| F̂

†
i F̂i |ψ〉

, (3.12)

which collapses |ψ〉 as:

|ψ〉 −→ F̂j |ψ〉√
pj

. (3.13)

This procedure is repeated by drawing a new t from (3.11) until we reach the intended
pulse duration Tr and the rotation is finished.

3For more information on Raman pulses see Refs. [33, 30].
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3.3.2 Excitation and decay errors

During excitation and decay of the QD there are several errors which can occur. These
are illustrated in figure 3.3 and will be simulated with collapse operators similar to the
spin flips. During excitation of the QD there are mainly two sources of errors. First,
the optical driving laser Ωo, which is set to drive the transition |1〉 −→ |2〉, has a finite
detuning δe = ∆o + δg + ∆OH to the |3〉 level, and thus there is a finite probability to
drive the |0〉 −→ |3〉 transition. Second, as the excitation pulse is of finite duration, the
QD may decay during the pulse emitting a pulse photon. This leads to the possibility of
emitting two photons during one round of the entanglement protocol4.

While we have to account for both of these events during simulations (detuned excitation
and pulse photons), we assume that the off-resonant decay photons and the pulse photons
can be perfectly filtered out. This is possible as the off-resonant photons will be of a
different frequency and the pulse photons will have a different emission time and different
bandwidth. Assuming perfect filtering of pulse photons is in contrast to Ref. [30], but
it allow us to ignore them in the construction of the Hilbert-space, which subsequently
alleviates the size of the Hilbert-space needed for the simulations. In this way, we can
simulate larger states with more photons.

The ideal excitation operator and the collapse operators, which takes the discussed infi-
delities into account are defined as:

Ê1 = c00 |0〉 〈0|+ c11 |1〉 〈1|+ c30 |3〉 〈0|+ c21 |2〉 〈1| (ideal), (3.14)

Ê2 = c′00 |0〉 〈0| (excite-decay), (3.15)

Ê3 = c′11 |1〉 〈1| (excite-decay), (3.16)

Ê4 = c′10 |1〉 〈0| (excite-decay), (3.17)

Ê5 = c′01 |0〉 〈1| (excite-decay), (3.18)

Ê6 = c′21 |2〉 〈1| (excite-decay-excite), (3.19)

Ê7 = c′30 |3〉 〈0| (excite-decay-excite), (3.20)

Ê8 = c′20 |2〉 〈0| (excite-decay-excite), (3.21)

Ê9 = c′31 |3〉 〈1| (excite-decay-excite). (3.22)

Operator Ê1 represents the ideal evolution during excitation. Operators Ê2 to Ê5 repre-
sents a process where the QD is excited and decays with a pulse-photon. Finally, operators
Ê6 to Ê9 represent a process where the QD is first excited, then decays with a pulse-photon
and finally is re-excited again. Here, for the probability coefficients in (3.14-3.22) we will
consider the values estimated in Ref. [30].

During decay, the photon can either decay through the ideal decay path, through the
suppressed x-dipole transition, through the correct y-dipole transition and be lost, or
it can decay through the ideal decay path with the QD subjected to phonon scattering

4In an ideal round of the entanglement generation only one photon is emitted, but it exists in both
early and late time-bin.
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during excitation. An important parameter, which characterises the ratio between the
y-dipole and x-dipole transitions is the cyclicity and is given by:

C =
γy + γ′y
γx + γ′x

, (3.23)

with γy and γx representing the decay rate of the y-transition and x-transition into the
waveguide mode and γ′y and γ′x representing the decay rate of the y-transition and x-
transition into a non-guided mode (i.e. photon lost). The ratio between the decay rate
into the waveguided modes non-guided modes is defined by the beta factor β, which can
be engineered close to unity in PCW [34].

Mentioned above, while the QD is excited it is subjected to phonon scattering, which can
be defined by a pure dephasing rate γd. Phonon scattering will kill the coherence of the
QD by inducing a random phase to the state. Experimentally, this is seen by a reduced
indistinguishability of the emitted photons [30]

I =
γ

γ + 2γd
, (3.24)

where γ is the total decay rate of the QD. Given the cyclicity, indistinguishability and
the external efficiency η (such as detection and collection efficiency), the ideal operator
and the collapse operators during decay are defined as:

D̂1 = |0〉 〈0|+ |1〉 〈1|+
√

IηC

1 + C
a†e,l |2〉 〈0| , (3.25)

D̂2 =

√
C

1 + C
|3〉 〈0| , (3.26)

D̂3 =

√
1

1 + C
|2〉 〈1| , (3.27)

D̂4 =

√
1

1 + C
|3〉 〈1| , (3.28)

D̂5 =

√
(1− η)C

1 + C
|2〉 〈0| , (3.29)

D̂6 =

√
(1− I)ηC

1 + C
a†e,l |2〉 〈0| . (3.30)

Here, a†e,l is the creation operator, with e and l indicating early and late photons, re-
spectively. Operator D̂1 represents the ideal decay path, while D̂6 represents the ideal
decay path with the QD subjected to phonon scattering. Further, operators D̂2 to D̂5

represent a decay path where the photon is lost due to filtering or inefficiencies in detec-
tion/collection (characterised by η). In this work we set η = 1, and focus entirely on the
intrinsic infidelities of the QD system.

The evolution of the quantum state |ψ〉 during excitation and decay follows by applying
one of the respective collapse or the ideal operators

|ψ〉 −→ Ôj |ψ〉√
pj

, (3.31)
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where Ôj represents one operator from (3.14-3.22) during excitation or one from (3.25-
3.30) during decay. Furthermore, the probability pj of applying operator Ôj is given
by:

pj =
〈ψ| Ô†jÔj |ψ〉∑
i 〈ψ| Ô

†
i Ôi |ψ〉

. (3.32)

3.3.3 Measurement errors

Measuring a photon in the Z-basis simply amounts to detecting the photon and recording
its time-bin. However, to measure a time-bin photon in the XY-plane, the late and
early time-bins need to be interfered [30]. In practice, this is achieved via a Franson
interferometer sending the early component into a delay arm equal to the time separation
of the time-bins, and then interfering early with the late component on a 50:50 beam
splitter. A schematic of such an interferometer is illustrated in figure 3.5 and it transforms
the late and early modes to the detector modes as:a†1

a†2

 =
1√
2

−ie−iω 1

e−iω −i

a†e
a†l

 . (3.33)

Here, a†1/2 are the creation operators of respective detector (D1/D2) in the interferometer.
Furthermore, ω is the phase acquired from the delay arm, which determines the azimuthal
angle on the Bloch sphere, and the i′s are from reflecting off the beam splitter [30]. Detec-
tion in one of the detectors then maps to measuring one of the two states of an orthogonal
basis in the XY-plane. Defining ζ = w + π

2
and with the time-bin encoding defined in

section 3.3, the detectors perform a measurement in the M(ζ) = { |0〉+e
−iζ |1〉√
2

, |0〉−e
−iζ |1〉√
2
}

basis.

Errors arising in the measurement of photons will be modelled by slight rotations of the
measurement basis. Given we want to perform a measurement in the basis M(ζ), a slight
rotation by an angle θ is applied transforming M(ζ) −→ e

−iθP̂ ·n̂
2 M(ζ). Here, P̂ stand for

the Pauli operators and n̂ an unit vector, which is set to be orthogonal to M(ζ). This is
illustrated in figure 3.5 when M(ζ = π) (e.g. the Y-basis) is slightly rotated around the
z-axis.

3.3.4 Post selection and experimental parameters

After the density matrix has been constructed post selection is applied, which projects
the density matrix to have n photons. This is performed with the following projection
operator

P̂S = 1̂QD ⊗ (|∅e〉 〈∅e|+ |∅l〉 〈∅l|)⊗n, (3.34)

which transforms the density matrix as follows

ρ̂ −→ P̂S ρ̂P̂
†
S

tr(P̂SρP̂
†
S)
. (3.35)
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Figure 3.4: Figure illustrates the schematic of a Franson interferometer for time-bin qubit
analysis. The early and late time bins are pictured as red pulses. The early component
is sent to the delay arm where it acquires a phase ω before it is interfered with the late
component at a 50:50 beam splitter. The two different detectors are then mapped to two
orthogonal states of a basis on the XY-plane.

Figure 3.5: Figure illustrating errors to the Y-basis. The red coloured vectors indicate
the case of no errors (i.e. θ = 0), and green with errors (i.e. θ 6= 0).
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As a summary of this section, we table the realistic experimental parameters needed for
the simulations [30]. This is useful as they will be continuously referred to throughout
the text.

Table 3.1: Experimental parameters

Cyclicity C = 14.7

Indistinguishability I = 0.957

Spin flip rate κ = 0.021 ns−1

Spin coherence time T ∗2 = 23.2 ns

Rabi frequency Ωr = π
7
ns−1

3.4 Graph state search

Having introduced the graph state in chapter 2 and explained how multi-photon entangled
states can be generated by consecutive applications of CNOTs between different photonic
time-bin qubits and the spin, we proceed this chapter with an exhaustive search of all
possible graph states which can be generated with our time-bin entanglement protocol and
local operations. The CNOT generation outlined in section 3.3, with the spin initialised
in |+〉S =

|0〉S+|1〉S√
2

followed by a Ĥ on the generated photon is in a graphical picture
equivalent to adding a leaf to the quantum dot spin qubit (i.e. a ÛCZ between the photon
and spin). This is seen from first considering the circuit below

|0〉S H • • •

|0〉1 H

|0〉2 H

|0〉3 H

and then using the commutation relation ÛCNOT ⊗ Ĥtarget = Ĥtarget⊗ ÛCZ and rewriting

the circuits as:

|+〉S • • •
|+〉1 •
|+〉2 •
|+〉3 •

which indeed is equivalent to adding leafs to the quantum dot spin qubit. Further, we
extend the class of states we can generate by considering possible local operations on the
spin in between the rounds of the protocol, as well as on the photons. Because single-
photon operations can be easily and deterministically performed with linear optics, this
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addition will still keep the protocol fully deterministic.

In our search, we will make extensive use of the very important property described in
section 2.1 which states that from a given graph state we can identify all the other graph
states reachable with local operations by just looking at what graphs can be obtained
under local complementation (LC) operations. This enables us to perform the search by
just looking at the properties of graphs instead of the quantum states they represent,
making the search immensely more efficient.

Algorithm 1 Graph finder
Require:
N = 2 . Initialise number of qubits to two.
storing_graphs = ←two_qubit_line .
Dictionary for storing all generated graphs in lists of their respective local equivalence
class. Initialise with the only two qubit line graph.
while N ≤ 9 do . Generating graphs up to 9 qubits/nodes.

classes_step_before← all graphs from step before
storing_classes← empty list
for class in classes_step_before do

for graph in class do
new_graph = AddNode(graph) . Generate the new graph by adding a

qubit/node to node zero.
if first_graph is True then . If this is the first graph for this number of

qubits/nodes N .
new_class = GetClass(new_graph) . Get the full local equivalence

class for new_graph.
storing_classes← storing_classes+ new_class

else
LC_equiv ← CheckLC(new_graph, storing_class) . Check if

new_graph already belongs to any of the local equivalence classes already generated.
if LC_equiv is True then

break
else

new_class = GetClass(new_graph)
storing_classes← storing_classes+ new_class

end if
end if

end for
end for
storing_graphs[N ]← storing_classes
N ← N + 1

end while

The search is done numerically with a recursive algorithm. The algorithm works by at
each step adding a leaf to the QD (vertex 0) for all graphs generated form the step be-
fore, and then generating all accessible LC-equivalence classes. The pseudo-code for the
algorithm is outlined in Algorithm 1.
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In the pseudo-code, three subroutines are used. The subroutine AddNode takes a graph
as input and updates it by adding a leaf to the 0-th vertex. This mimics the generation
of a new photon by the quantum dot.

The subroutine CheckLC checks if the new graph is locally equivalent to any of the already
generated graphs. To test whether two graphs are LC-equivalent, CheckLC implements
an algorithm originally presented in Ref. [20], which scales as O(n4) with n representing
the number of vertices.

The subroutine GetClass explores a graph’s LC-equivalence class, i.e. the class of graph
states that can be reached from it by just doing single-qubit operations. This part is the
most computationally expense task of the search, and presents the main bottleneck of
the algorithm when trying to perform the search to graph states with large numbers of
qubits. In fact, finding a graphs LC-class has been shown to belong to the computational
complexity class #P [35]. While the search could be made more efficient by instead
finding the LC-equivalence class up to isomorphism as in Ref. [36], we could potentially
miss some graphs from the search as isomorphic graphs are important5.

Figure 3.6: A graphical description of the first two rounds of algorithm 1. Here the circles
represent a LC-equivalence class, with the dots indicating the remaining graphs of the
class.

Figure 3.6 graphically displays the first two rounds of the algorithm. Along with the
graphs shown in figure 3.6 the search resulted in 22,000+ graphs for up to nine vertices,
which are shown in table 3.2 and displayed in Appendix A for up to five vertices. From
table 3.2 we see that our graph generation protocol misses to capture significantly more
graphs as the number of vertices increases, where the total number of graphs for N -
vertices is given by: Ntot = 2(N2 ) [22]. This is also illustrated in figure 3.7, which indicates
an exponential decay in the number of accessible graph with number of vertices, similar
to that shown in Ref. [37].

5This is because the search is dependent on the position of the QD.
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Table 3.2: Number of accessible graphs compared to the total number of graphs.

Number of qubits Number of graphs accessible Total number of graphs

3 4 8

4 16 64

5 64 1024

6 256 32768

7 1024 2097152

8 4096 268435456

9 16384 68719476736

Figure 3.7: The figure displays the number of accessible graphs (N ) divided by the total
number of graphs (Ntot) for a given number of vertices.
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Chapter 4

Quantum algorithms using quantum
dot generated graph states

This chapter further explores the quantum algorithms presented in the introduction and
presents simulations of their implementation using graph states generated from the error
model described in the previous chapter. These are simulated in a NISQ fashion where
errors are not corrected for, but instead kept during the computation. In this setting we
would like to study the performance of the different algorithms. Grover’s and Deutsch’s
algorithms presented here are performed through measurement based quantum comput-
ing, which is in contrast to the circuit model of computation introduced in section 1.1.
Thus, the chapter starts with an introduction to this paradigm of quantum computing.
Furthermore, the chapter introduces a protocol to perform VQE algorithms with our QD
graph state generator, and simulates a simple two-qubit implementation.

4.1 Measurement based quantum algorithms

In quantum computing there exist two main paradigms of computing models, which are
the circuit model and measurement based quantum computing (MBQC) model [38]1. As
presented in chapter 1, in the circuit model gates are applied sequentially to a quantum
state and readout is performed in the computational basis (|0〉 , |1〉). Instead of directly
applying gates on qubits, MBQC mediates gates through measurements by utilising en-
tanglement. This section aims to introduce the key features of MBQC and present results
from simulating Grover’s and Deutsch’s algorithms with graph states generated with the
error model in section 3.3.

4.1.1 Measurement based quantum computing

The key ingredient in MBQC is the family of entangled states called cluster states, which
are graph states forming a lattice. By performing single-qubit measurements on part of the
qubits of the cluster state gates are propagated to neighbouring qubits. Measurements,

1There are other paradigms as well, such as adiabatic quantum computing [39] or fusion-based quantum
computing [40]
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unlike unitary gates, are irreversible processes, and thus MBQC also adopts the name one
way quantum computing [41]. To demonstrate how a measurement can propagate a gate,
consider the 1D cluster state with two qubits in figure 4.1 where a measurement of the
left qubit is performed in the X-basis.

Figure 4.1: The figure display a 1D cluster state measuring the left qubit in the X-basis
and leaving qubit two unmeasured. As always the line represents a ÛCZ between the
qubits.

The process in figure 4.1 amounts to applying one of the projection operators X̂± =
1
2
(|0〉1 ± |1〉1)(〈0|1 ± 〈1|1) to the cluster state |ψ〉C . If the measurement results in X+, we

get:

X̂+ |ψ〉C√
〈ψC | X̂+ |ψ〉C

=
1

2
(|0〉1 + |1〉1)(〈0|1 + 〈1|1) |ψ〉C = |+〉1 |0〉2 = Ĥ2 |+〉1 |+〉2 . (4.1)

The computation above can be seen as the 1D cluster state composing one logical qubit
on which a Hadamard gate is applied. Further, with the following measurement bases,

M(Z) = {|0〉 , |1〉}, (4.2)

M(χ) = {M+(χ),M−(χ)} = {|0〉+ eiχ |1〉√
2

,
|0〉 − eiχ |1〉√

2
}, (4.3)

any single-qubit gate can be performed on a 1D cluster state2 [42]. This is shown in
figure 4.2 for a 1D cluster state with five physical qubits composing one logical qubit. For
a 1D cluster state, measuring a qubit in the general basis M(χ) with outcome M+(χ)
propagates HRz(χ) to the next qubit in the chain. Hence, given all the measurements
result in the plus state, figure 4.2 amounts to applying

ĤĤR̂z(γ)ĤR̂z(β)ĤR̂z(α) = R̂z(γ)R̂x(β)R̂z(α), (4.4)

to the final qubit. Equation 4.4 is an Euler rotation with Euler angles α, β and γ [3], and
thus gives access to any single-qubit gate. Finally, with the bases in (4.2) and (4.3) and
with a 2D cluster state single-qubit gates, along with two-qubit gates can be performed.
Thus, the 2D cluster state is considered a universal resource for MBQC3 [44].

An important detail missing from the above discussion is that measurement outcomes are
random, and so far we have only considered when the measurement results in M+(χ).
If instead a measurement in the cluster state in figure 4.2 results in M−(χ), the gate

2Measuring a qubit in the basis M(Z) simply removes it form the cluster.
3For MBQC, the 2D-cluster state is the analogue to the universal set of gates in the circuit model of

computing [5]. Furthermore, with a 3D cluster state, fault tolerance can be achieved [43].
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|+〉 Rz(α)H Rz(β)H Rz(γ)H H |ψ′〉

Figure 4.2: On top, the figure illustrates a 1D cluster state with five qubits, where the first
four qubits are being measured in the bases M(α), M(β), M(γ) and M(0), respectively.
Qubit five is the final qubit of the encoding and is left unmeasured, indicated by |+〉.
Below is the corresponding circuit of the measurement pattern with the measurements
yielding M+ for all {α, β, γ, 0}.

X̂ĤR̂z(χ) is propagated to the next qubit. Here, the extra X̂ is denoted a Pauli by-
product. Thus, measuring in the M(χ) basis amounts to applying X̂aĤR̂z(χ) to the next
qubit, with a = 0 and a = 1 for M+(χ) and M−(χ) outcome, respectively. Taking the
randomness of measurement outcomes into account the operations applied to the output
qubit from the measurement sequence in figure 4.2 are instead

X̂a4ĤX̂a3ĤR̂z(γ)X̂a2ĤR̂z(β)X̂a1ĤR̂z(α) = (4.5)

X̂a4Ẑa3X̂a2Ẑa1R̂z(−γ)R̂x(−β)R̂z(α), (4.6)

where ai stands for the measurement outcome of qubit i. Furthermore, we have used the
following commutation relations:

X̂R̂z(−γ) = R̂z(γ)X̂, (4.7)

ẐR̂x(−β) = R̂x(β)Ẑ. (4.8)

Equation 4.5 is not the rotation we intended to apply, which is due to the Pauli by-
products. To correct this, we have to adopt adaptive measurements, where the mea-
surement of a given qubit depend on the outcomes of the earlier measurements. In the
case of figure 4.2, we choose to measure qubit 2 and 3 in M((−1)a1β) and M((−1)a2γ),
respectively. This corresponds to applying

X̂a4ĤX̂a3ĤR̂z((−1)a2γ)X̂a2ĤR̂z((−1)a1β)X̂a1ĤR̂z(α) = (4.9)

X̂a4Ẑa3X̂a2Ẑa1R̂z(γ)R̂x(β)R̂z(α), (4.10)

to the final output qubit, which is what we intended up to the Pauli by-products. With
all the by-products commuted to the left, they can be dealt with by reinterpreting the
measurement outcome of the final output qubit. For example, if Û |ψ〉 = c |+〉 + d |−〉
and the by-product is Ẑ, then the by-product maps the final output state to X̂Û |ψ〉 =
c |−〉+d |+〉. However, this can be corrected by simply be reinterpreting the measurement
outcome s as s ⊕ a1, with a1 being the Pauli-Z exponent [42]. Hence, in a measurement
based computation, two forms of adaptive operations have to be performed [45]:

1. Adaptive measurements as measurements depend on the outcome of previous mea-
surements.

2. Adaptive correction to the final output qubit as Pauli by-products have been accu-
mulated during the computation.
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4.1.2 Measurement based Grover’s algorithm

The four qubit 2D cluster state shown in figure 4.3a, denoted the box graph, will act as
our resource to perform Grover’s search algorithm with two input qubits. That is, the
four qubit graph hosts two logical qubits:

∣∣ψBoxN=4

〉
= |+〉L1

|+〉L2
, with qubit one and three

composing L1 and qubit zero and two composing L2. The procedure of the algorithm
follow Ref. [45] and is depicted in figures 4.3a and 4.3b. The outline is as follows:

(i) The two logical qubits are prepared in a superposition of the logical encodings,
|0〉L1

|0〉L2
, |0〉L1

|1〉L2
, |1〉L1

|0〉L2
, |1〉L1

|1〉L2
.

(ii) The black box performs the tagging operation, which requires a ÛCZ between the
logical qubits, followed by R̂z1(α) and R̂z2(β), with the rotation angles {α, β}
determining the tagged item as:

• {0,0} −→ |1〉L1
|1〉L2

• {0,π} −→ |1〉L1
|0〉L2

• {π,0} −→ |0〉L1
|1〉L2

• {π, π} −→ |0〉L1
|0〉L2

(iii) The black box performs the inversion around the mean, which requires Ĥ, followed
by a ÛCZ and ĤẐ on both L1 and L2. Subsequently, measurements are performed
in the computational basis (see figure 4.3b).

(a)

|+〉L1
• Rz(α) H • σz H

|+〉L2
• Rz(β) H • σz H

0/1 0/1
(b)

Figure 4.3: (a) The box graph with labels indicating the physical qubits and their corre-
sponding measurement basis for performing Grover’s algorithm. (b) The quantum circuit
version of Grover’s algorithm, with L1 and L2 representing the logical qubits and the dots
connecting the two representing a ÛCZ .

The ÛCZ operations arise naturally from the choice of logical encoding in the graph. Mea-
suring qubits zero and one in the basis M(α) and M(β) respectively will, without Pauli
by-products, propagate ĤR̂z1(α) and ĤR̂z2(β). Then, measuring qubits two and three in
the basis M(π) is equivalent to applying the last ĤẐ operations of the inversion around
the mean and doing the final measurement, effectively finishing the algorithm. Further,
the tagged item is given by |a2〉L1

|a3〉L2
, with a2/a3 = 0 for measurement outcomeM+(π)

on qubit two and three, and a2/a3 = 1 for measurement outcome M−(π) on qubit two
and three. The Pauli by-products from the first two measurements are accounted for in
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final measurement outcomes, and are Ẑa0X̂a1 on logical qubit one and Ẑa1X̂a0 on logical
qubit two [45]. These will simply switch the tagged item to |a2 ⊕ a1〉L1

|a3 ⊕ a0〉L2
.

To better see how the algorithm works, we derive the algorithm for the case of no Pauli
by-products and tagging the |1〉L1

|1〉L2
item. First, the box graph is written as:∣∣ψBoxN=4

〉
=

1

2
(|0〉0 |+〉1 |0〉2 |+〉3+|0〉0 |−〉1 |1〉2 |−〉3+|1〉0 |−〉1 |0〉2 |−〉3+|1〉0 |+〉1 |1〉2 |+〉3).

(4.11)
The first two measurements of the algorithm corresponds to applying the following pro-
jection operator to

∣∣ψBoxN=4

〉
:

M̂0,+(α)⊗ M̂1,+(β)⊗ 1̂2 ⊗ 1̂3 = (|+, α〉0 〈+, α|0)⊗ (|+, β〉1 〈+, β|1)⊗ 1̂2 ⊗ 1̂3. (4.12)

Then, the final two measurements on qubit two and three are performed in the following
basis:

|ψ〉00 = |−〉2 |−〉3 , (4.13)

|ψ〉01 = |−〉2 |+〉3 , (4.14)

|ψ〉10 = |+〉2 |−〉3 , (4.15)

|ψ〉11 = |+〉2 |+〉3 . (4.16)

Choosing to tag |1〉L1
|1〉L2

sets α = β = 0 and the first measurements projects the box
state to:

|ψ〉T =
M̂0(0)⊗ M̂1(0)⊗ 1̂2 ⊗ 1̂3

∣∣ψBoxN=4

〉√
〈ψBoxN=4| M̂0(0)⊗ M̂1(0)⊗ 1̂2 ⊗ 1̂3 |ψBoxN=4〉

= (4.17)

|+〉0 |+〉1 |0〉2 |+〉3 + |+〉0 |+〉1 |1〉2 |+〉3√
2

, (4.18)

subsequently the final measurements yield

| 〈ψ11|ψ〉T |
2 = 1, (4.19)

| 〈ψ10|ψ〉T |
2 = | 〈ψ01|ψ〉T |

2 = | 〈ψ00|ψ〉T |
2 = 0, (4.20)

giving the probability of measuring the tagged item P11 = 1.

4.1.3 Simulating Grover’s algorithm

The square graph is indeed accessible with our QD and except for generating photons,
which amounts to performing a CNOT between spin and photon, three local implemen-
tations are needed. Below is the circuit to generate the square graph

|0〉S Ry(
π
2
) • • Rx(

π
2
) • Rx(

π
2
) Rz(

−π
2

)

|0〉1 H Rz(
−π
2

) Rz(
−π
2

) Rx(
π
2
)

|0〉2 H Rz(
−π
2

) Rz(
−π
2

)

|0〉3 H Rz(
−π
2

) Rz(
−π
2

)
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The R̂x(
π
2
) and R̂z(

−π
2

) comes from applying local complementation (LC). Furthermore,
all the single-qubit operations on the photons are accounted for in the final measurement
basis. Before moving on to the simulation of the algorithm, there is one thing to be
noted. The CNOT’s encodes controlled excitation’s and decays, and Rx(π) on the spin.
Whenever LC is applied on the spin, the last Rx(π) in the CNOT generation can be
concatenated with R̂x(

π
2
) to a total of R̂x(

−π
2

), which is illustrated in the circuits below.
This reduces the total rotation pulse duration, and thus also the errors that it induces.

|+〉S • Rx(
π
2
)

|0〉1
=

|+〉S • Rx(π) • Rx(π) Rx(
π
2
)

|∅〉1 Ex− decay Ex− decay
=

|+〉S • Rx(π) • Rx(
−π
2

)

|∅〉1 Ex− decay Ex− decay

We end this subsection with simulating Grover’s algorithm as described above with the
error model introduce in section 3.3. The graph state density matrix is sampled with 1000
trajectories. We simulate for three different parameter settings: (1) All errors turned of
except for T ∗2 = 23.2 ns, (2) experimental parameters following table 3.1 with θ = 0.1◦,
(3) the same setting as in (2), except for the spin flip rate changed to κ = 0.21 ns−1.
These three different settings represents an ideal setting, a realistic setting and a worst
setting.

Histograms with probabilities for all three cases without Pauli by-products are shown in
figures 4.4, 4.5, 4.6, respectively. Given the large error induced in an experimental setting,
the algorithm is fairly robust to errors with an average success probability above 75% seen
in figure 4.5. Furthermore, in an ideal setting the performance reaches an average above
95%, and, as expected, by increasing the spin flip rate by an order of magnitude the
performance reduces drastically. In the worst case, the tagging process is diffused and the
performance is not better than simply guessing.
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Figure 4.4: Running Grover’s algorithm with all experimental parameters set to zero
except T ∗2 = 23.2 ns. The error bars indicate the uncertainties from the 1000 Monte-
Carlo trajectories. The title of each subplot indicate the item we aimed to tag.

Figure 4.5: Running Grover’s algorithm with experimental parameters following table
3.1, and θ = 0.1◦. The error bars indicate the uncertainties from the 1000 Monte-Carlo
trajectories.
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Figure 4.6: Running Grover’s algorithm with experimental parameters following table 3.1
except κ = 0.21 ns−1. The error bars indicate the uncertainties from the 1000 Monte-Carlo
trajectories.

4.1.4 Measurement based Deutsch’s algorithm

The 2D cluster state shown in figure 4.8a will act as our resource state to perform Deutsch’s
algorithm with two input qubits. This cluster state is the four qubit line graph, but twisted
at one endpoint. Qubit one and two will encode logical qubit one L1, and qubit zero and
three will encode logical qubit two L2. Logical qubit one will act as our query qubit (q),
while logical qubit two will act as our ancilla qubit (a). The scheme of the algorithm
follow that of Ref. [45] and is shown in figures 4.8b and 4.7b. The outline, in the case of
a constant function, is as follows:

(i) The query and ancilla qubits are prepared in the state |+〉q |−a〉, which is done by
applying R̂z(π) to the ancilla qubit.

(ii) The black box does nothing.

(iii) Hadamard gates are applied to both query and ancilla qubits and measurements are
performed in the computational basis.

(a)

|+〉q H

|+〉a Rz(π) H

0/1 0/1
(b)

Figure 4.7: (a) The line graph with labels corresponding to physical qubits and the
corresponding measurement basis for performing Deutsch’s algorithm with a constant
function. (b) The quantum circuit version of Deutsch’s algorithm with a constant function.
Here q and a represents the query and ancilla qubit, respectively.
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By measuring qubit two in the basis M(π), with a plus state outcome, will propagate
ĤR̂z(π) onto our ancilla qubit. Then, measuring qubit zero in the basisM(Z) removes the
ÛCZ between the ancilla and query qubit. Finally, to compensate for the last Hadamard
gate on the query qubit, the final measurement is performed in the basesM(0) andM(Z)
for qubit three and one, respectively. Accounting for the Pauli by-products is done by
noting that the final output state of the algorithm is |a3 ⊕ a0〉 |a1 ⊕ a2〉, with the a′is for
i = {0, 1, 2, 3} representing the measurement outcomes of the individual qubits.

Implementing Deutsch’s algorithm for a balanced function, the outline is changed to the
following:

(i) The query and ancilla qubit are prepared in the state |+〉q |−〉a, which is done by
applying R̂z(π) to the ancilla qubit.

(ii) The black box performs a ÛCNOT between query and ancilla qubit.

(iii) Hadamard gates are applied to both the query and the ancilla qubit and measure-
ments are performed in the computational basis.

Preparing the state |+〉q |−〉a is again done by measuring qubit two in the basisM(π) prop-
agating ĤR̂z(π) to the ancilla qubit. Then, measuring qubit zero in the basis M(π

2
) will

mediate R̂zq(
−π
2

)R̂za(
−π
2

)ÛCZ
qa , and using the commutation relation ÛCZ

qa Ĥa = ĤaÛ
CNOT
qa ,

the full sequence of gates from the first two measurements amounts to R̂zq(
−π
2

)R̂za(
−π
2

)ÛCNOT
qa ⊗

R̂z(π)a1̂q. To compensate for R̂z(
−π
2

) on the ancilla qubit and ĤR̂z(
−π
2

) on the query
qubit, measurements on qubit one and three are done in bases M(−π

2
) and M(Z), re-

spectively. The Pauli by-products are again accounted for in the final measurement by
observing the output state of the algorithm is |a3 ⊕ a0 ⊕ a2〉 |a1〉 [45].

(a)

|+〉q • Rz(
−π
2

) Rz(
π
2
) H

|+〉a Rz(π) H Rz(
−π
2

) Rz(
π
2
)

0/1 0/1
(b)

Figure 4.8: (a) The line graph with labels corresponding to physical qubits and the corre-
sponding measurement basis for performing Deutsch’s algorithm with a balanced function.
(b) The quantum circuit version of Deutsch’s algorithm with a balanced function. Here,
q and a represents the query and ancilla qubit, respectively.

As an instructive example, we work out the measurement sequence for a constant function
without Pauli by-products. First, the line graph is written as∣∣ψLineN=4

〉
=

1

2
(|+〉0 |0〉1 |0〉2 |+〉3+|+〉0 |0〉1 |1〉2 |−〉3+|−〉0 |1〉1 |0〉2 |+〉3+|−〉0 |1〉1 |1〉2 |−〉3).

(4.21)
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Next, measuring qubit two and qubit zero amounts to applying the following projection
operator:

M̂0,+(Z)⊗ 1̂1 ⊗ M̂2,+(π)⊗ 1̂3 = (|0〉0 〈0|0)⊗ 1̂1 ⊗ (|−〉2 〈−|2)⊗ 1̂3, (4.22)

which projects the line graph to

|ψ〉D = M̂0(Z)⊗ 1̂1 ⊗ M̂2(π)⊗ 1̂3

∣∣ψLineN=4

〉
=

1

2
|0〉0 |0〉1 |−〉2 |+〉3 − |0〉0 |0〉1 |−〉2 |−〉3 + |0〉0 |1〉1 |−〉2 |+〉3 − |0〉0 |1〉1 |−〉2 |−〉3 .

(4.23)

Finally, measuring qubits three and one in the following basis:

|ψ〉00 = |+〉1 |0〉3 , (4.24)

|ψ〉01 = |+〉1 |1〉3 , (4.25)

|ψ〉10 = |−〉1 |0〉3 , (4.26)

|ψ〉11 = |−〉1 |1〉3 , (4.27)

yields:
| 〈ψ01|ψ〉D |

2 = 1, (4.28)

| 〈ψ00|ψ〉D |
2 = | 〈ψ10|ψ〉D |

2 = | 〈ψ11|ψ〉D |
2 = 0, (4.29)

giving unit probability of measuring the correct output state4.

4.1.5 Simulating Deutsch’s algorithm

The line graph needed for Deutsch’s algorithm can be generated with our QD. Compared
to the square graph, only two LC-operations are needed and with one of them on the
spin, which results in overall more spin rotations than the square graph. The circuit
below generates the line graph.

|0〉S Ry(
π
2
) • • Rx(

π
2
) • Rz(

−π
2

)

|0〉1 H Rz(
−π
2

) Rx(
π
2
)

|0〉2 H Rz(
−π
2

)

|0〉3 H Rz(
−π
2

)

For the simulations we consider the same three settings as for Grover’s, and sample the
graph state density matrix with 1000 trajectories. Histograms with probabilities of each
measurement outcome for the case of no Pauli by-products are shown in figures 4.9, 4.10,
4.11 for all three settings for both a balanced and a constant function. The success prob-
ability vary slightly between balanced and constant function, and on average the success
probability is lower than for Grover’s algorithm. To an extent, this can be attributed to
the lower fidelity of the generated line graph compared to the square graph, which is due

4Remember, for a constant function the output state should be |0〉a |1〉q.
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to more spin rotations during its generation.

Figure 4.9: The figures show the probability of measuring the correct outcome for a
constant (left) and a balanced (right) function. This is with all experimental parameters
set to zero except T ∗2 = 23.2 ns. The error bars indicate the uncertainties from the 1000
Monte-Carlo trajectories.

Figure 4.10: Figures show the probability of measuring the correct outcome for constant
(left) and balanced (right) function with experimental parameters following table 3.1. The
error bars indicate the uncertainties from the 1000 Monte-Carlo trajectories
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Figure 4.11: Figures show the probability of measuring the correct outcome for constant
(left) and balanced (right) function, with experimental parameters following table 3.1 ex-
cept with spin flip rate changed to κ = 0.21 ns−1. The error bars indicate the uncertainties
from the 1000 Monte-Carlo trajectories

4.2 Photonic variational quantum eigensolver

This section presents how one can construct a VQE algorithm using the QD graph state
generator introduced in section 3.4. This is a generalisation of the protocol presented in
Ref. [46], also referred to as the photonic-variational quantum eigensolver (P-VQE). The
P-VQE is different from the general VQE in the sense that we do not have a universal set
of gates, and are thus restricted to a specific set of states which we can generate. With
the P-VQE, the Hamiltonians whose ground state we wish to solve for constitutes of two
terms Ĥ = Ĥa + V̂ . Here Ĥa is an unperturbed term and V̂ represents a perturbation.
Given a graph state the unperturbed Hamiltonian is constructed by the sum of all its
stabilizer generators S = 〈ĝ1, .., ĝN〉,

Ĥa = −
∑
ĝj∈S

cj ĝj, (4.30)

and the perturbation takes the shape,

V̂ =
N∑
i

λiẐi, (4.31)

where λi indicates the strength of the perturbation. We know the ground state of Ĥa is
the corresponding graph state |G〉, and this will serve as our initial guess of the ansatz
state. If V̂ is small enough (i.e. {λi} are small) it is reasonable to assume the ground
state of the perturbed Hamiltonian Ĥ is in the neighbourhood of |G〉 [46]. As in Ref.
[46] the optimisation parameters φ are the angle of the initial rotation pulse and the
angle of the last rotation pulse of each generated photon, which is depicted for the GHZ
generation in figure 4.125. This ensures polynomial scaling of φ with the number of qubits.

5The figure 4.12 generalises to different graph states by incorporating ÛLC in between generation of
photons.
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Figure 4.12: The figure illustrates the pulse sequence for generating the N -qubit GHZ
state with the optimisation parameters φ.

The example we shall extensively study in this text is the two-qubit GHZ state, which
is locally equivalent to the two-qubit star graph. We choose the two-qubit GHZ state
because it presents the smallest Hamiltonian of our graph state VQE algorithms. The
unperturbed Hamiltonian of the two-qubit GHZ state takes the form:

Ĥa = −X̂1X̂2 − Ẑ1Ẑ2. (4.32)

In the two-qubit case there are two approaches to the VQE protocol. The first approach
follows the general outline above with the first rotation and last rotation of each generated
photon as optimisation parameters. However, one can also remove the last rotation pulse
by re-encoding the photonic qubits as |e〉p = |0〉p and |l〉p = |1〉p. While this reduces the
number of rotations and thus the errors that accompanies, it also removes one optimisation
parameter. The modified pulse sequence to generate the ideal two-qubit GHZ state for
the second approach follows:

|0〉S |∅〉p
R̂y(

π
2
)

−−−→
(|0〉S + |1〉S) |∅〉p√

2

Excite−and−decay−−−−−−−−−−−→ (4.33)

(|0〉S |∅〉p + |1〉S |e〉p)√
2

R̂x(π)−−−→
(|1〉S |∅〉p + |0〉S |e〉p)√

2

Excite−and−decay−−−−−−−−−−−→ (4.34)

(|1〉S |l〉p + |0〉S |e〉p)√
2

=
(|0〉S |0〉p + |1〉S |1〉p)√

2
. (4.35)

Note, we have to keep the above R̂x(π) pulse to a pi-pulse, since this act as our Echo
pulse. That is, we can not use the angle of this rotation as an optimisation parameter.
In the next section we shall simulate the VQE algorithm using both approaches.

4.2.1 Simulating a two qubit VQE algorithm

We choose Nelder-Mead [47] as our optimisation algorithm, as it is easier to implement
experimentally compared to simulated annealing [48] or basin-hopping [49]. Moreover, we
consider three different cases of perturbation parameter settings, which are given by: (1)
λ1 = λ2 = λ, (2) λ1 = λ and λ2 = 0 and (3) λ1 = −0.3λ and λ2 = 0.6λ.
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Figure 4.13: The above three figures show the results of running the VQE algorithm for all
three cases without errors. The y-axis shows the energy E, the x-axis the strength of the
perturbation λ and mode 0 is referring to the ground state energy from diagonalizing the
Hamiltonian. The three figures below show the evolution of the optimisation parameters
as functions of the perturbation strength. Note that φ1 and φ2 (indicated by 1 and 2,
respectively) directly corresponds to changing the pulse duration, which is shown as δTp
on the y-axis.

We start by simulating all of the above cases in an ideal setting with no errors using the
first approach with two optimisation parameters. Looking at figure 4.13 we see that in
the ideal case the VQE manages to find the ground state energy. Furthermore, it seems
that mainly the first variational parameter φ1 is changing during the algorithm for the
first two cases, while in the third case the second parameter evolves as well. Overall, the
ansatz state is expressible enough to find the ground state for all three cases and we move
on to include errors using the realistic error model.

Figure 4.14: The figures show the results of running the VQE algorithm for all three cases
with the error model in 3.3, using two optimisation parameters.
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Figure 4.15: The figures show the results of running the VQE algorithm for all three cases
with the error model in 3.3, using one optimisation parameter.

The figures 4.14 and 4.15 show the VQE performance for both one and two optimisation
parameters with experimental parameters set to the values given in table 3.1. Looking at
figures 4.14 and 4.15 it is difficult to see the difference in performance using one or two
optimisation parameters. However, the error slightly decreases in the two first cases when
using only one optimisation parameter instead of two, where for case (1) it goes from
37± 7% −→ 33± 6% and for case (2) 38± 8% −→ 34± 6%. The increase in performance,
although small, is expected from looking at the evolution of the optimisation parameters
in figure 4.13 and accounting for the large errors induced by rotation pulses. For case
(3) the error is instead larger for one optimisation parameter, with the error going from
31 ± 6% −→ 29 ± 6% by including the second optimisation parameter. The decrease in
performance indicates, in this case, that the second optimisation parameter is necessary
for the expressability of the ansatz state.

Figure 4.16: The figure illustrates three plots of the error in the VQE algorithm against
T ∗2 for three different perturbation settings. The error bars indicate the uncertainty from
10 different optimisation runs. The red striped line indicates the position of T ∗2 = 23.2
ns, and the black dotted line the position of ∆E/E = 1%.

The errors using realistic experimental parameters are rather large. Although we do not
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have an error threshold like the chemical accuracy in quantum chemistry, we can explore
what the constraints are on the experimental parameters to achieve an error smaller than
∆E/E < 1%. In GaAs/InAs quantum dots the T ∗2 parameter will always be present due
to the nuclear spin of the constitutes6. Hence, we choose to turn off all other experimental
parameters, and scan ∆E/E over different values of T ∗2 . This is illustrated in figure 4.16
for all three cases with λ = 1. Figure 4.16 imply a T ∗2 = 73.2 ns would be needed to be
able to achieve ∆E/E < 1% for all three different perturbations.

Summarising, we have investigated the smallest instance of our graph state VQE al-
gorithm. Sacrificing one optimisation parameter for overall less rotations resulted in
increased performance for two out of three Hamiltonians. Overall, with realistic experi-
mental parameters the performance in all three cases is rather poor, where in the best case
an average error ∼ 29±6% is achieved. As we do not have a chemical accuracy to relate to
we set the error threshold to 1% and illustrated T ∗2 = 73.2 ns plus all other errors turned
off would be needed to reach the threshold for all three versions of the perturbation.

6That is why it was never turned off in any of the three setting when simulating Grover’s and Deutsch’s
algorithm
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Chapter 5

Error and loss-tolerant applications
with quantum dot generated graph
states

This chapter presents a study of two applications using graph codes. The graph codes are
built to withstand gate errors and qubit loss. Qubit loss is a peculiar type of error, very
common in quantum photonics, where the qubit state is irreversibly erased with no chance
of recovering it with error-correction. Still, we will see how quantum codes can be built
to protect the encoded quantum state from qubit loss. The chapter starts by introducing
measurement based error-correction, which shows how the quantum information encoded
in a graph code can be recovered by only destructive qubit measurements in a way tolerant
to noise, for both gate and loss errors. This is then applied to a scheme for indirectly
reading out a spin qubit state and a scheme for quantum key distribution.

5.1 Error-corrected and loss-tolerant logical measure-
ments

For near term applications, there are several limitations to implement ancilla qubits for
measuring stabilizers, as presented in section 1.3.5. The two main limitations are: (1) re-
sources are scare and (2) two-qubit operations between photons are probabilistic. A more
friendly approach for quantum photonics consists in the case of where only single-qubit
measurements on the code qubits, readily and deterministically available with photons,
are used to recover or process the encoded information. For simplicity, we will here focus
on applications that require measuring a logical operator of a graph code. In the next
subsection we will describe how to build graph codes and decode them in this scenario.

5.1.1 Building a code for destructive measurements

Constructing a graph code for destructive measurement based error-correction follows the
principles introduced in section 2.2.2, but with one addition, a measurement pattern. As
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discussed in section 2.2.2 the subset I of the graph state |G〉 defines the logical operators
and the stabilizer generators of the code. However, as measurements are destructive we
can only infer information of a subset of the stabilizers and the logical operator of the
graph code simultaneously. This is summed up below:
Stabilizer and logical operator matching:

Consider a graph state |G〉 constructed from qubits O, which along with I defines a graph
code T with stabilizers SC. If there is a subset of stabilizers SR ∈ SC and a logical operator
L that satisfy:

1. All stabilizers commute with the logical operator at each output qubit: [Ŝ
[j]
i , L̂

[j]] = 0
∀Ŝi ∈ SR and ∀j ∈ O

2. All stabilizers commute on all qubits O: [Ŝ
[j]
i , Ŝ

[j]
k ] = 0 ∀Ŝi, Ŝk ∈ SR and ∀j ∈ O,

then the value of all the stabilizers in SR and the logical operator L of T can be inferred
simultaneously from a measurement pattern M of collapsing single-qubit measurements
on the qubits O. The stabilizers in SR still forms a stabilizer group and error-correction
can proceed as usual.

This follows directly from the transformation of stabilizers under measurements of single
Pauli operators discussed in Appendix B. Thus, apart from choosing a graph state |G〉
and the subset I, one has to define a measurement pattern to complete the graph code.
The measurement pattern plays a crucial role in the error-correcting capabilities of the
code, and the procedure for choosing the best measurement pattern is done in three steps
and outlined below:

1. Given a graph code T and a logical operator L, find all measurement patterns
compatible with L. That is, find all measurement patterns which allows measuring
L, i.e. all qubits i where L[i] acts with a Pauli operator different from identity,
M [i] = L[i].

2. Select the measurement patterns with the most available stabilizers, i.e. |SR| is
largest.

3. From these measurement patterns, choose the pattern with the logical operator of
lowest weight. With weight referring to the number of Pauli operators different from
identity.

Each measured stabilizer gives us one bit of information. Hence, the idea behind the
best measurement pattern is: The most amount of measured stabilizers will give the most
amount of information and the lesser the weight of the logical operator the lower the
probability for an error.

5.1.2 Decoder

As syndromes and errors do not map one-to-one, one has to construct a decoder whose ob-
jective is to decide where and what error (errors) is (are) most likely given the syndrome.
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There are many examples of different decoders for various codes [50, 51, 52, 53], and we
here aim to construct a decoder suitable for logical measurements based on destructive
measurements of the physical qubits. Because we restrict ourselves to codes with a small
number of qubits, we do not care about the computational efficiency of the decoder, but
only care about maximising the noise tolerance of the decoder.

The probability of an error in the measurement of the logical operator L can be written
as:

p(εL) =
∑
N

p(εL|S(N))p(S(N)), (5.1)

where S(N) = (V1, .., VN) are the measured values of all stabilizer generators in SR (i.e.
the syndrome), with Vi being the measured value of stabilizer generator ĝi. Furthermore,
εL stands for the logical error, which is different from the physical error. From here,
the error correction is performed using maximal likelihood estimation on the conditional
probability of a logical error p(εL|S(N)),

p(εL|S(N)) −→ pcorrected(εL|S(N)) = min(p(εL|S(N)), 1− p(εL|S(N))). (5.2)

This results in the final probability of an error in the logical measurement:

p(εL) =
∑
N

pcorrected(εL|S(N))p(S(N)). (5.3)

This way of error-correcting the logical measurement can be seen as flipping the measure-
ment outcome of L if the probability of an error given the syndrome p(εL|S(N)) is large
(above 50%).

5.1.3 Adding photon loss

In the context of loss-tolerant logical measurements we are only concerned with being able
to measure a logical operator while the graph code is subjected to unheralded photon loss1.
As the measurement pattern is carried out and photon loss is detected, a new measurement
pattern has to be found for the logical operator with 1̂ on the lost qubit and same Pauli
operators on the already measured qubits. When no new measurement pattern can be
found, the measurement fails and the logical qubit is considered lost. However, for a graph
code with N stabilizer generators there exists O(2N) different possible logical operators
for a given basis2, and thus there is a multitude of measurement patterns to be chosen
from. Ultimately, logical operators with a small weight |L| requires less qubits to be
measured, and thus a code with many such logical operators will be loss-tolerant.

We consider an example to clarify the measurement procedure and the loss-tolerant prop-
erties of graph codes. Consider the four qubit star graph code shown in figure 5.1.
In this code, there are four equally loss-tolerant measurement patterns for logical-X:
{M1 = 1̂0Ẑ11̂21̂3,M2 = 1̂01̂1X̂21̂3,M3 = 1̂11̂2X̂31̂4,M4 = X̂01̂11̂21̂3}. If M1 is initiated
and photon one is detected lost, one can easily change pattern to M2, M3 or M4. That is,

1Unheralded means we do not know which photon is lost until we try to measure it.
2Remember, a logical operator times a stabilizer is still a logical operator.
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Figure 5.1: The figure illustrates the graph object of a four qubit star code with the
first qubit composing the subset I. Furthermore, the logical operators X and Z plus the
stabilizer generators S are shown.

to be able to measure logical-X of the star qubit graph code only one out of four qubits
needs to be measured. This yields the logical transmission TX = 1 − p4, with p as the
probability of photon loss. While logical-X is loss-tolerant, logical-Z is not. This can be
seen from the fact that any version of a logical-Z includes Pauli operators different from
identity on all qubits of the graph code. Thus, all qubits have to be measured yielding
TZ = (1− p)4, which makes the code very susceptible to photon loss.

Having discussed how logical measurements can be performed in an error-corrected and
loss-tolerant manner, we can merge the two. Finding the optimal measurement strategy
for both loss-tolerance and error-correction is compatible with each other, as the weight of
the logical operator is important in both cases. To complete the merger the measurement
pattern is initialised by first measuring the qubits corresponding to the logical operator
and then continues with measuring the qubits necessary to infer the values of SR. The
algorithm that decodes the graph codes for losses and gate errors simultaneously is out-
lined in pseudo code in Appendix C.

5.2 Indirect measurement of a spin state

The first application we will consider is indirectly measuring the spin state of a spin-
photon interface system, such as the QD. Imagine the spin in a generic quantum state,
|ψ〉 = a |0〉+ b |1〉 and we want to measure it. A possibility is to entangle the spin with a
photonic qubit through a CNOT, generating the state: |Ψ〉 = a |00〉 + b |11〉. Measuring
the photon in the Z-basis, due to perfect correlations in |Ψ〉, is equivalent to measuring
the spin in the Z-basis. However, as discussed in chapter 3.3 the entanglement generation
is not perfect, there are many sources of error. Hence a question arise: Can we generate
error robust graph codes that can be entangled with the spin, which yield a better indirect
measurement of the quantum dot than the Bell-like state |Ψ〉?
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To clarify, consider if the photon in |Ψ〉 is subjected to a X̂ error. This transforms

|Ψ〉 X̂−→ a |0〉S |1p〉+ b |1〉S |0〉p, and the measurement of the photon will be anti-correlated
with the spin resulting in an erroneous indirect spin readout. However, imagine the
spin is instead entangled with a simple repetition code |Ψ〉 = a |0〉S

∣∣0〉 + b |1〉S
∣∣1〉 =

a |0〉S |000〉 + b |1〉S |111〉. For this code logical-Z is given by Z = Ẑ11̂21̂3, which is com-
patible with three stabilizers {Ŝ1 = Ẑ11̂2Ẑ3, Ŝ2 = Ẑ1Ẑ21̂3, Ŝ3 = 1̂1Ẑ2Ẑ3}. If the first

photon is subjected to a X̂ error, then: |Ψ〉 X̂−→ a |0〉S |100〉 + b |1〉S |011〉. However, from
measuring the qubits of the code we obtain the syndrome (−1,−1, 1) from which we de-
tect the error on the photon and correct the graph readout. Subsequently this leads to a
correct indirect measurement of the spin. Moving on, we present a procedure to entangle
the spin and a graph code using the system presented in chapter 3.

5.2.1 Entangling the spin with graph codes

We consider a scheme where generating the entanglement between the spin and the graph
code is done simultaneously as generating the graph state of the graph code. This is done
with the same toolbox as in section 3.4 (i.e. time-bin entanglement and local complemen-
tation), but now with the spin initially in |ψ〉 = a |0〉 + b |1〉. As we shall demonstrate
below, this restricts us to graph codes defined by graph states of subgraphs from the
LC-equivalence class of the star graph.

Starting with the spin in a generic state |ψ〉 = a |0〉 + b |1〉 and generating N -photons as
described in section 3.2 and subsequently applying Ĥ to all of them, generates the state

|Ψ〉 =
∏
j∈I

ÛCZ
Sj (a |0〉S + b |1〉S) |G〉N

= a |0〉S |G〉N + b |1〉S
∏
j∈I

Zj |G〉N

= a |0〉S
∣∣0〉

N
+ b |1〉S

∣∣1〉
N
.

(5.4)

Here we have chosen to represent the N -photons as a graph state |G〉N =
∏

N |+〉
⊗N and

the subset I as all the photons. Furthermore, ÛCZ
Sj is a control phase between the spin

S and photon j. From (5.4) we see that generating photons as in section 3.2 with the
spin initially in |ψ〉 = a |0〉 + b |1〉 translates to entangling the spin with the graph code
defined by the photons in the graph state of the fully disconnected graph. As in section
3.4, from here it is possible to apply ÛLC on (5.4) to generate graph codes defined by
different graph states. The transformation |Ψ〉 −→ ÛLC |Ψ〉 follows as:
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Code transformation under local complementation

Consider the entangled state |Ψ〉 = a |0〉S
∣∣0〉

N
+ b |1〉S

∣∣1〉
N
, where

∣∣0〉
N

and
∣∣1〉

N
are the

codewords associated with the graph code defined by the graph state |G〉N . With:

1. |G〉N as the graph state associated with the subgraph G[VN ] ⊆ G(Vall, E), where
G(Vall, E) is the graph state of all particles including the spin,

2. |G〉′N as the graph state associated with the subgraph G′[VN ] ⊆ G′(Vall, E), where
G′(Vall, E) = ULCG(Vall, E),

3. {|ψ〉 ,
∣∣ψ⊥〉} as a generic basis and "∗" complex conjugation,

applying ÛLC on |Ψ〉 will transform it to: |Ψ〉 = a |ψ〉S
∣∣ψ∗〉′

N
+ b
∣∣ψ⊥〉

S

∣∣∣ψ⊥∗〉′
N
, with the

graph state of the graph code transformed as |G〉N −→ |G〉
′
N and the basis of the spin and

graph code transformed as {|0〉 , |1〉} −→ {(|ψ〉 / |ψ∗〉), (
∣∣ψ⊥〉 / ∣∣ψ⊥∗〉)}.

This transformation rule is most easily shown by first rewriting (5.4) in terms of the graph
state |G〉N+1 of G(Vall, E) (i.e. the full graph state of all particles |Vall| = N + 1):∏

j∈I

ÛCZ
Sj (

(a+ b)√
2
|+〉S +

(a− b)√
2
|−〉S) |G〉N

=
(a+ b)√

2
|G〉N+1 + ẐS

(a− b)√
2
|G〉N+1 .

(5.5)

Applying ÛLC on |G〉N+1 follow the rules presented in section 2.1, but first has to be
commuted through ZS

ÛLC(
(a+ b)√

2
|G〉N+1 + ẐS

(a− b)√
2
|G〉N+1)

=
(a+ b)√

2
|G〉′N+1 +

∏
j

P̂S,j
(a− b)√

2
|G〉′N+1 .

(5.6)

Here, P̂S,j = {X̂S, ŶS, ẐS} and
∏

j P̂S,j depend on the commutation between ÛLC and ẐS,
which subsequently depend on the qubit ULC is applied on. From here, we considered
the three cases where

∏
j P̂S,j is one of the three Pauli operators, since products of Pauli

operators on the same qubit map to Pauli operators:

• Case 1: P̂S = ẐS. We have

|Ψ〉 =
(a+ b)√

2
|G〉′N+1 + ẐS

(a− b)√
2
|G〉′N+1

=
(a+ b)

2
(|0〉S |G〉

′
N + |1〉S

∏
j∈I

Ẑj |G〉′N) + ẐS
(a− b)

2
(|0〉S |G〉

′
N + |1〉S

∏
j∈I

Ẑj |G〉′N)

=
(a+ b)

2
(|0〉S

∣∣0〉′
N

+ |1〉S
∣∣1〉′

N
) +

(a− b)
2

(|0〉S
∣∣0〉′

N
− |1〉S

∣∣1〉′
N

)

= a |0〉S
∣∣0〉′

N
+ b |1〉S

∣∣1〉′
N
.

(5.7)
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• Case 2: P̂S = X̂S. We have

|Ψ〉 =
(a+ b)√

2
|G〉′N+1 + X̂S

(a− b)√
2
|G〉′N+1

=
(a+ b)

2
(|+〉S |+〉

′
N + |−〉S |−〉

′
N) +

(a− b)
2

(|+〉S |+〉
′
N − |−〉S |−〉

′
N)

= a |+〉S |+〉
′
N + b |−〉S |−〉

′
N .

(5.8)

• Case 3: P̂S = ŶS. We have

|Ψ〉 =
(a+ b)√

2
|G〉′N+1 + ŶS

(a− b)√
2
|G〉′N+1

=
(a+ b)

2
(|y−〉S |y+〉′N + |y+〉S |y−〉

′
N) +

(a− b)
2

(|y+〉S |y−〉
′
N − |y−〉S |y+〉′N)

= a |y+〉S |y−〉
′
N + b |y−〉S |y+〉′N .

(5.9)

In all three cases the subset I, which defines the codewords of the graph code, is the
neighbourhood of the spin NG(S).

In conclusion, after generating N -photons G(Vall, E) is initially the star graph. Hence,
by only applying ÛLC after generating the last photon we are restricted to graph codes
of subgraphs from the LC-equivalence class of the star graph. To reach different LC-
equivalence classes, we would need to generate photons after applying ÛLC on the spin
(as in section 3.4). However, this requires commuting control phases between spin and
photons with the Pauli operators on the spin, which leaves traces of Pauli operators on
the newly generated photons. Subsequently, this disturbs the codewords of the graph
code and one could not in general write the full state as a state with perfect correlations
between spin and graph code.

5.2.2 First search with depolarizing noise

As a starting point, we study a simplified scenario where the entangling of the spin and
the graph codes are performed without errors and then the graph code is subjected to
depolarizing noise3. This allows us to work with graph codes represented by qubits and
pure states, which is in contrast to the realistic error model and subsequently is not as
computationally heavy. Thus, the depolarizing noise let us do an initial search of the
error-correcting capabilities of the codes before applying the realistic error model. The
density matrix of a single qubit system subjected to the depolarizing noise transforms as

Λ(ρ̂) = (1− ε)ρ̂+
ε

3
(X̂ρ̂X̂ + Ŷ ρ̂Ŷ + Ẑρ̂Ẑ), (5.10)

where ε is the probability of an error. In other words, the depolarizing noise applies
one of the Pauli operators to the qubit with probability ε

3
, and is readily generalised

3No noise applied to the spin for simplicity, since now measuring the logical operator of the code
correctly corresponds to indirectly measuring the spin correctly.
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to multi-qubit systems. We will call the different graph codes: Star-spin-middle (SSM),
Fully-connected (FC) and Star-spin-leaf (SSL). The entanglement between the spin and
the graphs codes for three and four photons are illustrated in figure 5.2, and from section
5.2.1 it is straightforward to show that the composite state of the spin and the different
graph codes takes the shape:

|Ψ〉 = a |0〉S
∣∣0〉

SSM
+ b |1〉S

∣∣1〉
SSM

= a |0〉S
N∏
j

|+〉+ b |1〉S
N∏
j

|−〉 , (5.11)

|Ψ〉 = b |+〉S |+〉SSL + a |−〉S |−〉SSL = b |+〉S
N−1∏
j

|+〉j |0〉α + a |−〉S
N−1∏
j

|−〉j |1〉α , (5.12)

|Ψ〉 = b |y+〉S |y−〉FC + a |y−〉S |y+〉FC = b |y+〉S
N∏
j

|y+〉j + a |y−〉S
N∏
j

|y−〉j . (5.13)

In (5.12) qubit α is the photon which ULC is applied on to go from FC to SSL. Given
that the three different graph codes are all repetition codes they all have the same error-
correcting capabilities for their respective measurement basis (with the depolarize noise).
Figure 5.3 displays the logical error against probability of a physical error for up to 11
photons. As expected, the larger the graph (i.e. more photons) the more robust the graph
code is to errors. Three photons is the lowest number of photons to achieve a lower error
rate than direct transmission. Furthermore, the symmetric shape of the graph codes in
figure 5.3 is due to the maximum likelihood in the error-correction.

Figure 5.2: The figure shows the spin in black and photons in dark red. The graph objects
are the graphs G(Vall, E) mentioned in section 5.2.1.
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Figure 5.3: The figure shows a plot of the logical error f(εL) against the physical error
probability f(ε). The different colours indicate the number of photons (n) in the graph
codes, and the dotted line direct transmission. Note that f(εL) and f(ε) are re-scaled by
a factor of 3

2
against the depolarizing noise error rate ε.

5.2.3 Results from the realistic error model

Having constructed a decoder and tested the different graph codes against depolarizing
noise, we move on to the realistic error model presented in section 3.34. Given all the
error mechanisms in the generation of photons and subsequently measuring them, we in-
vestigate if graph codes can outperform single photon entanglement for reading out the
spin. We study the different graph codes for three photons, as this was the lowest number
of photons to achieve a lower error rate than a single photon.

Before moving on to show results, it is worth highlighting the decoding process with the
realistic error model. The process works by first generating the density matrix and then
performing projective measurements following the measurement pattern. We project on
every possible outcome, building a tree as in figure 5.4 with nodes corresponding to the
probability of the measurement outcome. From the tree, measurements can be sampled
to obtain p(S(N)) and p(εL|S(N)) in (5.3). At each step (i.e. generating a density matrix
for a given set of parameters), we sample 20,000 measurement sequences (i.e. going from
top to bottom of the tree) from which we use to calculate the logical error and perform
error-correction. Note that the time consuming part of the simulation is not sampling
from the tree, but generating the density matrix and the corresponding tree.

4Note that now the spin is not free from noise. In the simulations, we have to measure the spin as
well to check that it is indeed in the correct state, which now dictates our logical error.
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Figure 5.4: The figure illustrates a tree, where going left corresponds to a measurement
outcome of 1, and going right corresponds to an measurement outcome of -1. In the figure
pijk represents the probability of measuring qubit i up (i = 1) or down (i = −1) given
the previous measurements of qubit j and k.

Since rotation errors are the leading source of errors [30], we start by examining the log-
ical error rate against κ and T ∗2 while turning off all other errors. As in section 4.1.3,
the density matrix is sampled with 1000 trajectories. From figure 5.5 we observe that the
SSL and FC codes achieve a lower logical error rate than direct transmission, while SSM
does not give an advantage. We have two hypothesis to the performance of SSL and FC
and not SSM. First: As both SSL and FC include one ÛLC on the spin, the R̂(π

2
) from

ÛLC can be concatenated with the last R̂(π) from the last photon generation to R̂(−π
2

)

(as in section 4.1.3). This results in an overall R̂(π
2
) less in their generation, and thus

less rotation errors. Second: Rotation errors from κ and T ∗2 could induce a certain type
of error (e.g. bit flips or phase flips), which SSL and FC can correct well while SSM can
not.

The analysis continues by scanning εL against θ while all other error parameters are set
to their values in table 3.1. This is due to θ not having a well characterised experimental
value while the other error parameters do. Looking at figure 5.6, we see, as expected from
figure 5.5, that an indirect measurement using SSL and FC in a realistic experimental
setting beats direct transmission. Furthermore, as θ increases SSM seems to beat direct
transmission as well, however, with a larger εL than SSL and FC.

Moving on, we can examine how the logical error rate scales with photon loss. In figure
5.7 we scan the logical error rate against the probability of photon loss for the three dif-
ferent codes. We have set the experimental parameters to the values given in table 3.1
and θ = 0.1◦. Direct transmission is a straight line, since every time the photon is lost
we discard the run. As expected, εL grows with the probability of photon loss ploss as
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Figure 5.5: The figures shows the logical error rate εL against the experimental parameters
κ and T ∗2 , respectively. The different colours indicate different graph codes or direct
transmission. Furthermore, the striped line indicate the realistic experimental value for
respective parameter.

Figure 5.6: The figures shows the logical error rate (εL) against the angle (θ), which ac-
counts for the imperfect measurement of photons. In the plot, all experimental parameters
are set to their realistic values as per table 3.1.
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less stabilizers are available. Furthermore, all graph codes outperform direct transmission
until a certain threshold value. The threshold value FC is around Ploss ∼ 34 − 36%, for
SSL around ∼ 42− 44%, while for SSM it is around Ploss ∼ 3− 4%. We chose to stop at
ploss = 0.7 since at high Ploss no measurements can be performed.

Figure 5.7: The figure shows the logical error rate εL against photon loss Ploss. In the
plot, all experimental parameters are set to their realistic values as per table 3.1, and the
measurement parameter is set to θ = 0.1◦.

5.3 Loss-tolerant and error-corrected quantum key dis-
tribution

In this section we study a more practical application of our error and loss protected logical
measurements. More specifically, we investigate a novel BB84-protocol for quantum key
distribution (QKD) using graph codes instead of single photons. We will focus on graph
codes defined by graph states which can be generated by our QD, i.e. the graphs explored
in section 3.4. Furthermore, we will want to correct for photon loss and for errors arising
in the generation of the graph states.

5.3.1 BB84 with graph codes

The BB84 protocol, first developed in Ref. [54], is a protocol to distribute a secret key
between two parties, which is to be used for one time pad encryption. BB84 relies on the
concept of mutually unbiased bases (MUB). Two dimensional bases B1 = {B1,0, B1,1} and
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B2 = {B2,0, B2,1} are MUB if

| 〈B1,i |B2,j〉| |2 =
1

2
∀i, j ∈ {0, 1}. (5.14)

That is, if a photon is prepared in one of the two states in B1 and we try to measure the
photon in B2, both outcomes are equally probable. With MUB, a communication channel
(optical fiber or free space) and an encoding for the photons (time-bin, polarization etc.)
the BB84 protocol follows:

1. Alice randomly chooses a basis and randomly prepares a photon in either up or
down in this basis. In both bases, up is encoded as 0 and down as 1.

2. Alice sends the photon to Bob via the communication channel. Subsequently, Bob
randomly chooses a basis which he measures the photon in. If Bob picks the same
basis as Alice the outcome is given. However, if Bob chooses the second basis the
outcome is random as per MUB.

3. Repeat step 1 and 2 many times and then compare bases of each sent photon via
classical communication. All instances where Bob chooses the correct basis, the
outcome is correlated with Alice and from these events they can build a secret key
(e.g. key=01110). This is illustrated in table 5.1.

Table 5.1: The table illustrates the BB84 protocol for nine rounds using the X and Z
bases. In the protocol, up (↑) encodes bit 0 and down (↓) encodes bit 1.

Alice’s basis X Z Z Z X X Z X Z

Alice’s state ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓

Bob’s basis X Z X X Z X Z Z Z

Bob’s measurement ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↓

Comparing bases " " $ $ $ " " $ "

Secret key 0 0 1 1 1

As the photons travel through the communication channel Eve can eavesdrop. A naive
attacking strategy for Eve to employ is to simply measure the photons in one of the two
bases (B1 and B2). After the measurement, Eve prepares a new photon in the measure-
ment outcome and sends it to Bob. However, by comparing the outcome of the first few
percent of the rounds (as shown in table 5.1), Alice and Bob can detect if Eve has been
eavesdropping. That is, through MUB, eavesdropping can be detected and BB84 presents
a secure way of distributing a secret key.

We propose a BB84-protocol using graph codes instead of single photons. As information
is redundantly encoded, photon loss and errors, up to a threshold, can be tolerated. The
scheme is illustrated in figure 5.8 and works as follows:
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Figure 5.8: The figure illustrates Alice generating a graph state and then measuring the
spin, which is represented by the black vertex. Subsequently, Alice sends the projected
graph code through a communication channel, which Eve can intercept. Finally the graph
code is measured by Bob (illustrated by the graph object of the code), with green marks
indicating a successfully measured photon and red cross a lost photon.

1. Alice generates the full graph state associated with G(VN , E) using her QD. Alice
subsequently choose, at random, one of the two bases B1 or B2 which she measures
the spin in. The measurement projects the state of the measurement outcome to
the graph code defined by the subgraph G[VN − S] ⊆ G(VN , E) and the subset I
being NG(S) (i.e. the neighbours of the spin). This follows the second approach of
encoding a physical qubit in a graph code discussed in section 2.2.2.

2. Alice sends the graph code to Bob, and Bob randomly chooses a basis to measure
the code in, i.e. one of the two logical bases B1 or B2. Again, if Bob picks the
same basis as Alice the outcome is correlated, but if he chooses the other basis the
outcome is random as per MUB.

3. Repeat steps 1 and 2 many times to generate the secret key.

Generating one photon in this protocol is equivalent to initialising the spin in |+〉S, do
one round of the time-bin entanglement protocol and measure the spin. The motivation
for the graph code protocol is that the time scale of initialising and measuring the spin
is much longer than the time scale (∼ 400 ns) of generating time-bin entangled photons
(∼ 20 ns) [30]. Thus, we assume the rate at which information is sent between Alice and
Bob is not affected by the additional time it takes to generate more photons. Furthermore,
an attractive feature of this protocol is the true randomness in the choice of state sent by
Alice, induced from the measurement.

5.3.2 Secret key rate

A common metric used to determine the performance of any QKD protocol is the secret
key rate generated between Alice and Bob. In the case of Alice and Bob using privacy
amplification and discarding rounds where they measure in different bases, a lower bound
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on the secret key rate is given by [55]

R ≥ T (IAB −min(IAE, IBE)), (5.15)

where T stands for the transmission, IAB for the mutual information between Alice and
Bob, and IAE/IBE the mutual information between Alice/Bob and Eve. However, as
in Ref. [55] only IAE is considered. The mutual information between Alice and Eve is
dependent on the attacking strategy Eve uses. Ultimately, the information Eve acquires
scales with the disturbance she induces, which makes it more likely for Bob and Alice to
detect her resulting in a zero key rate. To have a non zero key rate, Bob must have more
information than Eve IAB > IAE.

We will use an expression for the secret key rate, where it is assumed that Eve performs
symmetric attacks [56, 57], in which case the secret key rate is given by

R ≥ T (Flog2(F ) + (1− F )log2(1− F )− Felog2(Fe)− (1− Fe)log2(1− Fe)), (5.16)

where F is the fidelity of the state sent between Alice and Bob, and Fe =
1+2
√
F (1−F )

2
is

the optimal fidelity for Eve given her symmetric attacks [57, 55]. That is, the secret key
rate is a function of transmission and the fidelity of the state sent to Bob. In the graph
code scheme, we will define the fidelity F as the average fidelity of measuring the graph
code in the two MUB logical bases

F = 〈1− εB1
L , 1− εB2

L 〉. (5.17)

Furthermore, the transmission will be defined as the average success probability for Bob
to measure the graph code in both logical bases

T = 〈TB1 , TB2〉, (5.18)

where TB1 and TB2 stands for the transmission rate of respective logical basis. The motiva-
tion for the graph code BB84 scheme is that we can perform error-correction to increase
F , and find loss-tolerant graph codes to increase T . In this way, we could potentially
achieve a higher secret key rate than what is achievable with a single-qubit.

5.3.3 Loss-tolerant graph codes

Photon loss is arguably the key challenge to reach long distance QKD in optical fiber
channels. This is because transmission decreases exponentially T = e

−L
L0 with distance

L. Therefore, we will begin the study by analysing only the loss-tolerance of the graph
codes (i.e. we set F = 1), and scan the secret key rate (SKR) over the dimensionless pa-
rameter L

L0
. Furthermore, we choose the two bases B1 and B2 as two different Pauli bases.

We begin by searching for graph codes, which achieves a higher SKR than direct transmis-
sion, defined by the graph states found in section 3.4. This resulted in numerous of graph
codes, which is summarised in table 5.2. In figures 5.9a and 5.9b we illustrate the graph
states and the respective key rates for one of the best graph codes (before measuring the
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spin) for four-qubits, five-qubits, six-qubits, seven-qubits and eight-qubits.

The SKR versus Ploss plot in figure 5.9b was included to better illustrate the loss-tolerance
of the graph codes. Although the loss-tolerance increases with the number of qubits, the
increase is very small. Furthermore, note in figure 5.9b no graph code has a threshold
larger than 50%, which has a simple explanation first stated in Ref. [58]. Imagine the
threshold is above 50%, then Alice sends half of the qubits of the graph code to Bob and
half to Charlie. Bob and Charlie are both above the threshold and can both measure the
graph code with high probability, effectively cloning the state which breaks the no cloning
theorem [14].

Table 5.2: Number of loss-tolerant graph codes for four to eight number of qubits.
Number of qubits 4-qubits 5-qubits 6-qubits 7-qubits 8-qubits

Number of graph codes 44 176 704 2816 11264

Arguably, we would expect a bigger increase in performance for the larger graph codes in
figure 5.9b. We hypothesise that this is due the entanglement structure of the available
graph states with a single QD. We do not have a clear argument for this hypothesis, and
investigating it might be interesting future work. However, for example, a eight-qubit
code that cannot be generated with a single QD which is more loss-tolerant than the
best eight-qubit code shown in figure 5.9b is displayed in figure 5.10. This graph code
illustrates a clear increase in performance and a more asymptotic behaviour compared to
the code in figure 5.9b.

5.3.4 Loss and error-tolerant graph code

A more comprehensive study of the graph code BB84 protocol include both photon loss
and gate errors (i.e. F < 1 in (5.17)) when calculating the SKR. More specifically, we
are interested in errors from the generation of the graph codes themselves, as was done
in section 5.2.3. Further, we choose to study the four-qubit codes (five qubits with the
spin), which is due to larger codes rendering our error model impractical as the QD and
the photons are represented by qudits5.

As was done in section 5.2.2, we first analyse the codes while subjected to the depolarizing
noise. This is due to the real error model being time consuming, and thus the depolarizing
noise acts as a first filter to find promising codes. While there are graph codes, which on
average have a higher transmission rate in two bases than direct transmission, no such
graph codes were found for logical error rates using the depolarizing noise. That is, with
an ideal noise channel, we found no graph code which can correct for errors in two different
logical bases such that the logical error is lower than that of a single-qubit simultaneously
in both bases. With that said, error-correction can still be used to suppress the logical

5This was not the case in the search of loss-tolerant codes since photons and the QD could be repre-
sented by qubits.
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(a)

(b)

Figure 5.9: (a) The graphs of the best graph codes before measuring the spin. (b) The
left figure is a plot of the SKR versus L/L0, while the right is a plot of the SKR versus
photon loss Ploss. The graph codes are symbolised by their number of qubits and the red
striped line indicates 50% photon loss.

error rate.

With the depolarizing noise, a promising four-qubit code for both loss-tolerance and error-
correction in logical-X and logical-Z is shown in figure 5.11 along with the logical error
rates for respective basis. Not shown in figure 5.11 is the code’s loss-tolerance, which is
equal to that of the four-qubit code shown in figure 5.9a. Another attractive feature with
the code shown in figure 5.11 is that LC is applied to the spin during its generation.
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Figure 5.10: The figure illustrates one example of a graph which can not be generated by
a single QD. The code defined by the graph and the neighbours of the black vertex show
a more asymptotic behaviour in the SKR than those generated by the QD.

Figure 5.11: The figure illustrates the logical error rate for measuring Z and X of the
code defined by the graph above. This is shown for different transmission rates.

We move on to analysing the code presented in figure 5.11 with the realistic error model.
We study two sets of experimental parameter settings. First, all errors turned off except
T ∗2 = 23.2 ns, which represents an ideal case. Second, all parameters set to the values
in table 3.1, which presents a more realistic scenario. At each step 100 trajectories are
used to sample the density matrix. As seen in the figure 5.12 in an ideal setting, we
still manage to beat direct transmission up to Ploss = 50%, although with the difference
shrunk. Furthermore, note that the key rate is higher for the code than direct transmission
at 100% transmission. This is solely due to the error-correcting capability of the code. In
a more realistic setting, however, the errors are simply to large and already at Ploss = 10%
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we get a non positive key rate for the code.

Figure 5.12: The figure illustrates the SKR against photon loss for the code in figure
5.11 with the real error model in the two different settings. The orange crosses represents
direct transmission with a single qubit and the blue dots represents the code.
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Chapter 6

Conclusion and Outlook

The backbone of this study has been a QD graph state generator. First an exhaustive
graph state search was conducted. Second, given the graph states from the graph search,
we explored and simulated various near-term applications possible with this device con-
sidering a realistic error model obtained by generalising that of Ref. [30] to multi-qubit
states. Some conclusions can be drawn from this analysis:

1. The quantum dot, given the time-bin entanglement protocol, is an excellent graph
state generator which gives access to a plethora of graph states. Furthermore, the
error model accounts for most of the infidelities in the device and is directly linked
to experimental parameters, which makes it a great tool for simulations. However,
the error model is rather involved with a large Hilbert space, where the QD and the
photons are represented as qudits instead of qubits. Furthermore, the Monte-Carlo
approach makes it computationally heavy by having to construct a density matrix.
Further work could be made in to making the error model fully unitary, abandoning
the collapse operators and Monte-Carlo approach, to increase its computational
efficiency and to scale to larger graph states. Also, mapping the excitation and
decay errors to faulty two-qubit gates would allow to represent the QD and photons
as qubits and alleviate the size of the simulation Hilbert space.

2. A measurement based implementation of Grover’s search algorithm and Deutsch’s
algorithm for two logical qubits yielded an average success rate of ∼ 70%, which
given the current experimental parameters indicates they are error robust. The
P-VQE, however, did not perform as well yielding errors around ∼ 30% compared
to the exact ground state energies for only a two-qubit experiment. To reach an
error less than 1% a T ∗2 = 73.2 would be needed, with all other errors gone. In
future work exploring more noisy robust algorithms, which can be implemented on
graph states would be interesting. Furthermore, it would be interesting to see if any
quantum chemistry problem could be mapped to the Hamiltonians of any of the
available graph states we discovered with our QD graph state generator.

3. In terms of quantum error-correction we discovered two interesting applications of
logical measurements, which does not require ancilla qubits. First, we applied this
to a scenario of reading out the spin state of our QD, and managed to outperform
the baseline case of using one photon. This scenario is interesting as it corrects
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for errors that arise from the generation of the code itself. Second, we looked at
a QKD scheme and analysed how the secret key rate scaled with photon loss and
errors using graph codes. We found codes that yielded a higher secret key rate
than a single-qubit when accounting for photon loss and in an ideal setting of low
errors. However, as more errors were introduced this changed. The main problem
for the error-correction was finding graph codes which could sufficiently correct a
logical measurement in two different bases simultaneously. One interesting direction
to follow, which connects the two applications considered in this thesis, would be
error and loss protected quantum algorithms using graph codes. With the logical
measurements fitting perfectly for measurement based quantum computing.
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Appendix A

Graph zoology

We here display all graphs (excluding isomorphic graphs) which can be generated by
our QD in section 3.4 for up to five vertices. In figure A.1 all the graphs are displayed,
grouped in their LC-class indicated by the boxes. Vertices are given the colour blue to
better illustrate their labels, with label "0" given to the spin.
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Figure A.1: Graphs which can be generated by a single QD for up five-qubits, where
we ignore displaying isomorphic graphs. The boxes indicate a LC-class, and the colours
of the boxes indicate the number of vertices: 3-vertices=black, 4-vertices=red and 5-
vertices=orange.
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Appendix B

Transformation of stabilizers under
local Pauli measurements

Just as local complementation maps stabilizer states to stabilizer states, so does Pauli
measurements. In this Appendix we will show how stabilizer states transform under
Pauli measurements, which is also described in Ref. [17] and derived in Ref. [24]. First
off, the transformation of the stabilizer generators under single Pauli measurements follow
the transformation rules [17, 24]:

Transformation rules of stabilizer generators under single Pauli measurements:
Consider a stabilizer state defined by its stabilizer generators S = {ĝn} on which we
perform a single Pauli measurement P̂ [i] on qubit i. If P̂ [i] anticommutes with at least one
generator {P̂ [i], ĝk} = 0 the generators in S transforms as:

1. If the generator commutes with the measurement [ĝj, P̂
[i]] = 0: ĝj −→ ĝj

2. If the generator, different from k, anticommutes with the measurement {ĝi, P̂ [i]} = 0:
ĝj −→ ĝkĝj

3. Generator k: ĝk −→ ±P̂ [i] depending on the outcome of the measurement.

Note that the choice of generator k is arbitrary. After the measurement qubit i is sepa-
rable from all the other qubits and in an eigenstate of P̂ [i]. Furthermore, all generators
now commute with P̂ [i], meaning that they either act with P̂ [i] or 1̂ on qubit i [24].

As stabilizers are products of stabilizer generators ŜD =
∏

j∈D ĝj, their transformation
follows directly from the transformation of the generators. We will consider ŜD and a
single Pauli measurement P̂ [i] with an anticommuting generator ĝk. Furthermore, we
define the set D′ = {j ∈ D|{ĝj, P̂ [i]} = 0} ⊂ D as the subset of indices in D that
anticommutes with P̂ [i]. Now, ĝk can be in D or not, and the transformation of ŜD in the
two different cases follow:

1. ĝk /∈ D:
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ŜD −→
∏

i∈D/D′ ĝi
∏

j∈D′ ĝkĝj = ĝ
|D′|
k ŜD =

{
ŜD, if [ŜD, P̂

[i]] = 0

ĝkŜD, if {ŜD, P̂ [i]} = 0

2. ĝk ∈ D:
ŜD −→ ±P [i]

∏
i∈D/D′ ĝi

∏
j∈D′/k ĝkĝj = ±P [i]ĝ

|D′−2|
k ŜD

=

{
±P [i]ŜD, if [ŜD, P̂

[i]] = 0

±P [i]ĝkŜD, if {ŜD, P̂ [i]} = 0

In the derivation, we used the fact that if a stabilizer ŜD commutes or anticommutes with
P̂ [i] there are an even or odd number of indices in D, respectively. The significance of
this derivation is that if a stabilizer ŜD commutes with P̂ [i], the local Pauli operators on
all qubits are left unchanged except on qubit i, which has to be P̂ [i] or 1̂ [24]. Note that
this generalises to graph states as they are stabilizer states.
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Appendix C

Decoding algorithm

Algorithm 2 Loss-tolerant and error-corrected decoding
First step: Find all measurement patterns

1: M = ∅ . Initialise list of measurement patterns.
2: Θ← FindAll(T , L) . Given graph code T , FindAll generates all measurement

patterns for compatible with logical operator L.
3: for mi ∈ Θ do
4: SRi ← FindS(mi) . FindS finds all stabilizers compatible with mi.
5: Append {mi,SRi} toM . Add the measurement pattern toM.
6: end for

Second step: Run LT-EC decoder
7: MR = ∅ . Initialise list with measurement outcomes.
8: while Measurement active do
9: {mi,SRi} ← FindBest(M) . FindBest finds the best pattern, which is the one

with mi of lowest weight and largest |SR|.
10: σk ← {0, 1, na} . Try measuring qubit k, which, if qubit is not lost, gives a value

0 or 1 and if lost na.
11: MR ←MR + σk . Append measurement outcome to listMR.
12: if σk = na then . Update measurement strategiesM if qubit k was lost or not.
13: M←M− {Mk} . Remove all measurement patterns {Mk} with a Pauli

operator different from identity on qubit k.
14: else
15: M←M
16: end if
17: end while
18: if MR = ∅ then . If no measurement of L could be performed the logical qubit is

lost. Otherwise, run the EC decoder with the measurement outcomes inMR.
19: Logical qubit lost.
20: else
21: Run EC decoder withMR
22: end if
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