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Abstract

Topological defects are increasingly being identified in a wide range of biological sys-
tems and are being revealed to play a functional role in diverse biological processes
such as cell death, tissue regeneration and bacterial invasion. The emergence of such
topological defects has led to interesting analogies with nematic liquid crystals and
are widely associated with the activity, i.e. the ability of living systems to continu-
ously exert mechanical forces on their environment. In this work, we show that even
for a passive nematic, fluctuations in orientation or velocity, along with elastic ef-
fects, can result in defects showing self propulsion and stress patterns similar to those
observed in experiments on biological systems and in models of active nematics. Us-
ing continuum simulations of fluctuating nematohydrodynamics, we can reproduce
the self-propelled defect chaos phase, characteristic of active nematics. Both hy-
drodynamic and orientational fluctuations reproduce this phase along with the flow
patterns and the isotropic stress patterns. We show the possibility of both extensile
and contractile defect motion arising from fluctuations and the essential role that
elastic effects play in establishing this new phenomenon. These findings question the
current consensus that activity is the main driver of motile topological defects in bio-
logical systems and open the door to new sets of theoretical and experimental studies
to distinguish between fluctuation-induced and active behaviour in living materials.
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1 Introduction

There is now growing evidence of the emergence of liquid crystalline features in biolo-
gical systems (see [1] for a recent review). Significant among others is the nematic ori-
entational order, manifest in the form of collective alignment along particular axes [2],
which is observed in subcellular filaments [3–6], bacterial biofilms [7–9], and cell mono-
layers [10, 11]. Due to the head-tail symmetry of the nematic particles, the lowest
energy defects are of topological charge ±1/2, meaning that as one traces a loop
around the defect, the particles rotate by ±π. Topological defects in nematics have
recently been found to be at the core of many biological functions, e.g. cell extrusion
in mammalian epithelia [10], neural mound formation [12] and limb origination in the
simple animal Hydra [6] (see [1, 13, 14] for recent reviews on physical and biological
significance of topological defects).

What sets these biological nematics apart from their passive counterparts is the
presence of activity: each constituent element of living matter is capable of producing
work and injecting energy locally by means of active stress generation [15]. While
the existence of quasi long-range order has also been proven for active nematics [16,
17], the dynamical properties of defects are expected to be different from the passive
case since, as a consequence of activity, the +1/2 defects with polar symmetry can
self-propel and move along their axis of symmetry [18]. These comet-shaped +1/2
defects are characterised by a head region where the director field predominantly
bends and a tail region where splay is dominant. For an extensile active stress,
which extends along the elongation direction of active particles, the resulting motion
of +1/2 defects is along the head, while the opposite holds for contractile active
stresses that tend to point inwards along the elongation axis of active particles [18].
This persistent movement, both in the direction of the head and the tail of the
+1/2 defect, has been observed in various biological systems, e.g. contractile in
fibroblasts [11] and extensile in epithelial monolayers [10]. Recently it has even been
shown that perturbing the adhesion between cells can result in a switch between
extensile and contractile behaviours in epithelial cell layers [19]. While the emergence
of extensile or contractile behaviour of topological defects has been widely associated
to the activity of these systems, here we show that fluctuations can lead to similar
patterns of flows around topological defects and result in both extensile and contractile
defect behaviour.

In passive nematics, fluctuations are known to drive the Berezinskii–Kosterlitz–Thouless
(BKT) transition, in which spontaneously generated topological defects unbind to
break the quasi long-range order [20]. This has been analytically shown for a 2-
dimensional passive, dry nematic, by renormalisation group analyses [21]. Computa-
tional studies have shown the BKT transition for 2D passive nematics with a lattice
model with finite size scaling [22], and for a dry, freely moving, particle-based model
for various length to width ratios [23, 24]. A similar BKT type transition was also
reported in a discrete model of active nematics [25].
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Drawing analogies with the BKT transition in passive nematics, it has been shown
that in over-damped active nematics, where hydrodynamic flows are dominated and
suppressed by frictional screening, self-propulsion of ±1/2 topological defects can
lead to the defect pair unbinding, destroying any (quasi) long-range orientational or-
der [26]. Introducing fluctuating forces coupled to the nematic alignment field, it was
lately shown that such specific fluctuations can result in an effective extensile stresses
in passive nematics [27]. More recently, combining discrete, vertex-based, simulations
of model cellular layers with analytical treatment of linearised nematohydrodynamics
equations, it has even been argued that any fluctuations can result in the appearance
of “active” extensile or contractile nematics, depending on the flow-aligning beha-
viour of the particles [28]. Similarly, cell shape fluctuations in a cell-based, phase-
field, model of cell monolayer has been shown to affect self-propulsive features of
topological defects [29]. Notwithstanding these recent works, the dynamics and flow
features of topological defects in the presence of fluctuations remain poorly under-
stood. Moreover, it is not clear how different sources of fluctuations in hydrodynamic
flows and in particle alignment affect the creation, annihilation, and motion of topo-
logical defects in the absence of any active stresses and whether fluctuations alone
can explain experimental observations of contractile- and extensile-like defect mo-
tions in cellular layers. Here, we aim to fill this gap and address this challenge using
continuum model of active nematics in the presence of various sources of fluctuations.

We will now introduce some key concepts of the current work which will be recur-
ring themes throughout the thesis.

Active matter is a unique class of matter in that the particles themselves perform
work.

This sets it apart, qualitatively, from passive matter and allows for a wide range
of interesting collective phenomena [15]. Examples of active matter are as diverse
as actin myosin mixtures [30], epithelia [6, 10], or fish swarms and bird flocks [31].
As the examples illustrate, active matter is a popular model for describing collective
behaviour in living systems, showing such behaviours as flocking [15], giant number
fluctuations [32], motility induced phase transitions [33] and much more.

Active nematics is a sub field of active matter, dealing with apolar particles.
Nematics are liquid crystals in which there is no positional order (liquid), but orient-
ational order (crystal) [20]. Active nematics extends nematics by adding an active
stress which acts in the directions of the orientation [18]. This active stress leads
to a phase called active turbulence, in which self-propelled topological defects are
constantly generated and annihilate again, stirring up the fluid [18, 34]. Experi-
mental active nematics systems have been developed, for example actin-myosin or
kinesin-microtubule mixtures [30] which have made it possible to observe the active
turbulence phase [4], defect behaviours [35] and emergent length scales and scaling
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laws [36]. Experimental active nematics is backed by a large body of theoretical work
from micro scale particle descriptions [37] to large scale continuum simulations [2, 38].
But active nematics are not purely a toy model system, as many real world systems
have shown to behave as active nematics [1, 39, 40] including mouse fibroblasts [11,
41] or bacterial colonies [42].

Topological defects are topologically protected regions of the nematic, where the
order vanishes [20]. Due to their long lifetime and effect on the nematic field, they
play a large role in the behaviour of nematics. One key feature of active nematics is
its inherent instability to splay or bend depending on the sign of the active stress,
found by Aditi Simha and Ramaswamy [43] which leads to active turbulence and
unbinding of topological defect pairs, in an active analogue of the defect unbinding
(BKT) transition [14]. What sets defects in active nematics apart, is that they are
self propelled and so affect their surroundings dynamically [18]. These topological
defects have been widely studied and shown to be of real biological significance [1,
13], e.g. in MDCK epithelia [10], neural progenitor cells [12] and biofilms of elongated
bacteria [9].

Motile defects have been widely observed in mammalian cells. Weakly active
mouse fibroblasts have shown motile defects [11, 41] as well as human bronchial
epithelia [44]. In fact, in Madin-Darby canine kidney cells (MDCK), topological
defects were found to effect the extrusion of cells from the epithelial monolayer [10].
The epithelium exists in a state called dynamic homeostasis, a steady state in which
new cells enter the epithelium and other cells, e.g. damaged or aged, are extruded
from the cell layer. This dynamics must be preserved to keep the epithelium healthy.
Saw et al. [10] found motile topological defects in the layer and showed that the stress
patterns (Figures 1 and 8) exhibited by +1/2 defects were the cause of cell extrusion.

A study on neural progenitor cells, which are stem cells that can develop into the
central nervous system, showed that these cells organise nematically with topological
defects visible [12]. These defects were motile with the expected flow patterns and
created a defect chaos phase. Additionally, cells accumulated at +1/2 defects and
formed mounds, possibly functional features, as well as decreased cell density at −1/2
defects (Figure 1).

In a similar observation, Copenhagen et al. [9] found that +1/2 and −1/2 defects
play opposite roles in extra layer formation in a single layer biofilm of rod shaped
Myxococcus bacteria. Specifically, they found that +1/2 defects lead to a new layer
forming on top of the layer the defect is in, whereas −1/2 defects create a hole in
the layer, leading to one less layer at that point. They explained this behaviour by
imposing anisotropic friction (a cell moving along its axis would feel less friction that
one moving perpendicular to its long axis) and finding that +(−)1/2 defects have net
in (out) flow, meaning that the cells must escape to a new layer (flee the defect). A
recent study on MDCK layers has confirmed the hole formation effect of −1/2 defects
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Figure 1: Functional topological defects in biological systems.
a shows isotropic stress fields of ±1/2 defects in mammalian epithelial monolayers
where +1/2 defects were found to lead to cell extrusion. From [10]. b shows a +1/2
defect playing a role in Hydra morphogenesis. From [6]. c shows a tumour spheroid
(red) as it tries to invade the mesothelium (blue) and is impeded by the +1/2 defect.
From [45]. d In neural progenitor cells, +1/2 defects lead to mound formation. From
[12].

for mammalian epithelia [46].

A study on ovarian cancer cells found that topological defect flow affected the
cancer invasion called mesothelial clearance [45]. During mesothelial clearance, a
tumour must clear the cells in the mesothelium to make space for itself. The authors
found that for three types of ovarian cancer, if the tumour tries to invade near a
+1/2 topological defect, the clearance will be > 2 times slower than in a control area
(Figure 1).

Topological defects have also been shown to play a central role in morphogenesis.
In Hydra, defects determine the location of the mouth and and head of the developing
animal [6] (Figure 1).

An experiment on MDCK cells switched the behaviour of the tissue from extensile
to contractile by knocking out E-cadherin, a protein that binds cells together [19].
This means that the defect flow field was reversed. Surprisingly, the defect isotropic
stress pattern did not reverse. This means that the isotropic stress pattern is not
solely determined by flow.

Fluctuations are always present in biology [47], as thermal noise or other sources of
randomness, and have been found to affect and effect many processes. At the cellular
level, fluctuations in genetic circuits plays a crucial role in stochastic processes such
as differentiation or state switching [48] and organoid development [49], at the tissue
or population level these stochastic behaviours can mean a wider geno- or phenotype
pool leading to more resilient populations [48]. It may be noted that an extended
gene pool is the prerequisite for evolution. On a larger scale, fluctuations in ecology
can lead to long term oscillations [50] or transitions between states in lakes [51].
So fluctuations may refer to stochastic inputs to the system as well as stochastic
behaviours.

Fluctuations on the cellular level in cellular systems have been widely documented,
with many theoretical studies on e.g. fluidisation [52], but experimental quantification
of fluctuations has not followed suit. There are a few types of fluctuations that could
be considered relevant. Epithelial cells are constantly probing their environment [53,
54] which entails developing focal adhesions to the substrate and applying forces which
were found to vary > 1.5 fold several times per minute [55]. In confluent cell layers,
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the so called T1 transition swaps neighbours and in doing so affects the cell shape.
This T1 transition has been shown to be dependent on fluctuating junction lengths,
themselves affecting cell shape [56]. More generally, cell areas have been shown to vary
strongly, up to 20%, amounting to large shape changes [57]. Possibly most relevant to
this study, alignment of cells during periodic perpendicular stretching was modelled
with an alignment term plus a random noise in the orientation [58]. This revealed
an orientational noise where the authors determined a diffusion constant. Although
these cells are alone, not confluent, the diffusion constant may well be useful and is
discussed in the fluctuation strength discussion section.

With a few exceptions [25, 59], the effect of fluctuations on active nematics has
not been much studied, presumably due to difficulties in analytical and computational
treatment. Recently, Killeen, Bertrand and Lee [28] found analytically and verified
the generation of self propelled defects in a passive nematic by fluctuations using a
vertex model.

In this work, we present computational results showing that fluctuations in nematic
orientation or fluid velocity can lead to self propelled defects in a passive nematic.

We will first cover the theory behind the phenomenological approach to nematics.
We then review the relevant literature, discussing results in active nematics and noisy
nematics. Next, we discuss computational methods and the model parameters and
fluctuation implementations are introduced.

We then present results which show self propelled topological defects in a noisy,
passive nematic with hydrodynamical interactions, where we recover experimentally
observed stress and velocity fields. The effect of fluctuation strength and flow align-
ment are investigated. We also show the influence of different values for bend and
splay elastic constants.

Finally, a short conclusion summarises and contextualises the work done and out-
lines possible future directions. It is worth noting, that the section on the generation
of motile defects by fluctuations has been developed as a paper, available at [60],
which is currently under revision at PRL.
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2 Theoretical background

In this section we first develop the theory behind nematics modelling, then extend to
wet, active nematics. We then go into the details of topological defects.

2.1 Nematics

Nematics are a class of liquid crystal in which there is no positional order, but order in
the orientation [20]. It is important to note that a nematic particle is apolar but has
two-fold symmetry. An example would be an oval, whereas counterexamples would
be an arrow (polar) or a sphere (no orientation) or a triangle (3-atic).

We restrict ourselves to 2 dimensional nematics, which has several implications
which will become clear over the course of the following description. In 2 dimensions,
the orientation of the nematic can simply be described by a scalar θ ∈ [0, π), which
represents the angle of the nematic. We therefore are dealing with uniaxial nematics,
and do not need to consider biaxial nematics. This results in an order parameter
space of half a unit circle, with the points θ = 0 and θ = π identified.

We describe the orientation of the nematic with a headless unit length vector
called the director n⃗ = −n⃗, which takes into account the apolarity of the nematic
(Figure 2).

Defining the angle between the director n⃗ and the orientation of the i-th particle
θi as α, we can define the order as [61]:

S =
1

2
< 3 cos(αi)

2 − 1 > (1)

where < ... > denotes averaging over all particle orientations.

Averaging for the whole system would give the order in polar systems, however, in
nematics, when taking nonzero temperatures into account, averaging over an infinite
system leads to S −→ 0. This is because according to the Mermin-Wagner-Berezenskii
theorem, there cannot be long range order in a system with continuous symmetry [20].
In a nematic, the order decays algebraically, which is known as quasi long-range order
and has been shown also for passive [23] and active nematics [25]. Therefore averaging
must be local even at low temperatures.

While it can sometimes be easier to use the director [34, 43], a separate equation
must be formulated for the order S. An order parameter which contains all the
information about orientation and order of the nematic can be constructed as:

Qij =
S

2
(ninj −

δij
2
), (2)
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n
Figure 2: Nematic phase
with director n⃗. The
particles have no posi-
tional order but all have
the same orientation.

therefore we will only need one equation to follow the evolution of the nematic. In this
way, Q is a symmetric traceless tensor which captures the orientation of the nematic
(eigenvector corresponding to the largest eigenvalue) and the strength of the order
(S). We note that in 2D the order can be computed by S =

√
Q2

xx +Q2
yy.

2.1.1 Landau free energy

We can now construct a Landau free energy, using the Landau-de Gennes expan-
sion [62]. Because the free energy is invariant under rotations of the director or the
coordinate system and Q is not, we expand in powers of TrQ [20, 63]:

fL = C1TrQ+ C2TrQ
2 + C3TrQ

3 + C4TrQ
4

= C2TrQ
2 + C4TrQ

4. (3)

Note that, by definition TrQ = 0. It follows that, in 2D, TrQ3 = 0 which precludes
the typical first order Landau theory isotropic-nematic transition. We combine C2

and C4 to make the coupling constant C and the Landau free energy reads:

fL = C(1− TrQ2)2 (4)

2.1.2 Elastic free energy

Elastic effects also play a role which are taken into account by the so-called Frank
free energy [20]. The Frank elastic free energy is most simply formulated in terms of
n⃗, and it is easier to understand the terms this way. A general linear stiffness Kijkl,
will take into account all relations between gradients of n⃗:

fel = Kijkl∂inj∂knl. (5)
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However, symmetry considerations allow us to reduce Kijkl to 3 components [20],
k1,2,3:

fel = k1(∇ · n⃗)2 + k2(n⃗ · (∇× n⃗))2 + k3(n× (∇× n))2 (6)

So k1,2,3 are coefficients for three types of deformation called splay, twist and bend re-
spectively (Figure 3). Splay occurs when the neighbour perpendicular to the director
rotates. Twist occurs when when one of two neighbouring parallel particles rotates
out of plane into the third dimension, not possible in two dimensions. Bend occurs
when the neighbour in the direction of the director rotates.

We therefore keep splay and bend terms with constants k1 and k3.

splay
k1

bend
k3

Figure 3: Illustration of splay
and bend deformations. Here we
have drawn tangent lines to the
particles. When the field splays,
neighbours in the director direc-
tion have the same orientation,
whereas when the field bends,
neighbours perpendicular to the
director direction (along the long
side) have the same orientation.
k1 and k3 quantify the resistance
of the nematic to splay and bend
deformations, respectively.

However, we phrase our model in terms of Q and so we need to find an expression
in Q. When using the elastic energy in terms of Q, an approximation with only one
term using K = k1 = k3 is commonly employed [13, 18, 34]:

fel =
K

2
∂kQij∂kQij, (7)

capturing divergence inQ. For simplicity, we use this approach when not investigating
the effect of different elastic constants.

In this work we were also interested in exploring the effect of differing splay and
bend coefficients, however, this description does not allow for varying response to
splay vs respond to bend. Therefore we follow Edwards and Beris [64, 65] in using
three terms, one for each bend, splay and twist:

fel =
L1

2
∂kQik∂lQil +

L2

2
∂kQij∂kQij +

L3

2
Qij∂iQkl∂jQkl. (8)

We now have a one-to-one correspondence between k1,2,3 and L1,2,3 as follows [65, 66]:
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L1 =
−k1 + 2k2 + k3

4S2
=

−k1 + k3
4S2

(9a)

L2 =
k1 − k2
S2

=
k1
S2

(9b)

L3 =
−k1 + k3

2S3
=

−k1 + k3
2S3

(9c)

Now we can describe the model in terms of the more common and intuitive k con-
stants while using the more computationally useful L constants. We set k2 = 0 and
obtain expressions for Li. Although we only have two k constants, we keep the L3

term and investigate its effect. Note that we recover the single constant approxima-
tion (7) when k1 = k3.

2.1.3 Molecular field

Having developed the expression for Landau type and elastic free energy, the total
free energy is simply a sum thereof:

fnem = fL + fel (10)

= C(1− TrQ2)2 +
K

2
(∇Q)2, (11)

for the single elastic constant approximation. We can then define a molecular field
H, the negative, symmetric, traceless part of the functional derivative of Q:

H = −
(
δF
δQ

)ST

, (12)

where δa/δb is the functional derivative. The molecular field therefore is an equilib-
rating force. We use the molecular field to determine the dynamics of the nematic.
A dry nematic has only these interactions, whereas a wet nematic also interacts hy-
drodynamically with the solvent.

The time evolution of the nematic then follows:

DQ

Dt
= ΓH, (13)

where D/Dt is the co-moving, co-rotational derivative and Γ is the rotational diffus-
ivity. So this is simply relaxational dynamics to the free energy minimum.

2.2 Wet nematics

We have introduced so called dry nematics, with only nematic interactions. A wet
nematic is constructed by adding a hydrodynamical field and coupling it to the
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nematic field. The fluid velocity evolution follows incompressible Navier-Stokes with
a generic stress:

ρ(∂tv⃗ + v⃗ · ∇v⃗) = ∇ ·Π, ∇ · v⃗ = 0. (14)

The generic stress, Π, includes pressure and the typical viscose term (22) and an
elastic term (23) which couples the flow to the nematic field.

The coupling between the nematic and the flow field is called backflow and is
modulated by the flow alignment parameter, ξ. The backflow is present in both the
nematic evolution (13) and the fluid evolution (14). Regulating the influence of flow
on the nematic, ξ modulates the influence of the strain rate vs the vorticity on Q in
(20). On the other hand, the influence of the nematic field on the fluid velocity is
captured in the elastic stress term (23). The effect of the flow alignment parameter
can be understood as follows: for a threshold value ξc, when |ξ| < ξc the particle will
tumble in the flow, whereas when |ξ| > ξc the particle will align with the flow at an
angle called the Leslie angle [67]. In our case the threshold ξc = 3S+4

9S
so assuming

S ≈ Seq = 1 we get ξc ≈ 7/9 [67].

The flow alignment parameter has not been widely studied although there are a
couple of exceptions. On the experimental side, the flow alignment parameter has
been calculated for the Drosophila wing epithelium [68] or mouse fibroblasts [69], re-
vealing that ξ can have a range of values including negative. Flow alignment is gener-
ally included in theoretical studies, but investigation of the effect of the flow alignment
remain few, with exploration of interplay between flow alignment and activity [70]
and flow alignments effect on defect nucleation in active nematics with isotropic fric-
tion [67] as prominent exceptions.

2.3 Active nematics

While nematics are an equilibrium system, in using it to describe living systems,
we want to describe the activity of the living constituents, exerting forces on their
surroundings. This is often done by extending nematohydrodynamics by an active
term to create active nematics. This term is added to the stress in the Navier-Stokes
equations (14) as:

Πactive = −ζQ. (15)

The important difference to passive nematics is the constant energy injection, ren-
dering the active nematic inherently out of equilibrium.

The field of active nematics was opened when Aditi Simha and Ramaswamy [43]
discovered that active nematics are unstable to perturbations. For an active nematic
with positive (negative) activity, any bend (splay) in the system, e.g. from fluctu-
ations, will be unstable and be amplified [71]. The instability can be understood
when we consider the force the particles exert (Figure 4). The active term may be
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Figure 4: Contractile (ζ > 0) (A) and extensile (ζ < 0) (B) active particles. The flow
field induced by the particles leads to instability to splay or bend. From [75].

understood as a force dipole term. A contractile particle, a so-called “puller”, cre-
ates an inward flow in the direction of orientation and a perpendicular outward flow.
Considering aligned particles, if we splay the alignment slightly, the inward flows of
two neighbours will combine to create a torque towards each other as shown in Figure
4A. This means that a fluid of contractile active particles will be unstable to splay
deformations. A similar effect leads to extensile particles, “pushers” with an opposite
flow field, to be unstable to bend. These flow fields have been measured for the model
organisms, the bacterium E. coli, a pusher, and the single celled algae C. reinhardtii,
a puller [72–74].

When the activity is high enough, this instability will generate topological defect
pairs in the nematic field, which are topologically protected features which can play
a role in various systems. This phase is often called active turbulence [34, 76], dif-
ferent from classical, inertial, turbulence in its scaling laws and absence of energy
cascade [77]. Active turbulence has also been proposed to be in its own universality
class [78]. Note that active turbulence does not necessarily include topological defects
and that the defect stirring phase can also be called defect chaos.

Active nematics have been widely studied and have been used to explain various
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biological systems [2, 18, 30]. Although we are mostly interested in cellular systems,
for which active nematics can be a good model, there are also synthetic systems which
are certainly active nematics as they have been engineered as such [18]. The general
setup for these synthetic active nematics, is a long filament, supplying the nematic
order, and a molecular motor which walks on the filament, supplying the activity. In
fact, two motors are coupled so that when each motor walks on a different filament, the
filaments move against each other. The main classes are microtubule-kinesin or actin-
myosin systems, with the microtubule system being the first [4]. These systems made
it possible to study active nematics experimentally, verifying a decade of theoretical
research.

2.4 Topological defects

Having mentioned the emergence of topological defects in active nematics, an expos-
ition of topological defects, their nucleation, proliferation and the role they play in
biophysics, is in order.

Topological defects are singularities in the orientation field. The name arises
because they cannot be removed by smooth operations on the director field. Topo-
logical defects are characterised by their topological charge. The topological charge
can be determined by going in a loop (called Burgers circuit) Λ around the defect
and measuring the change in the orientation [20]:∮

Γ

dθ = k2π, k ∈ Z/2. (16)

The Burgers circuit is illustrated in Figure 5A. Due to the two fold symmetry of the
nematic, k has the value of half of an integer. As a smaller absolute charge also means
lower energy of the defect, ±1/2 defects are most common and are the subject of this
thesis.

A central difference between ±1/2 defects is that the +1/2 defect has a polar
symmetry in the director field, whereas the −1/2 defect has a three fold symmetric
apolar pattern. When the defects exert forces, this difference sets the defects as the
+1/2 defect becomes self propelled. This effect will be discussed in Section 2.4.2.

Due to the topological nature of the defects – they can only be removed by anni-
hilating with another defect or reaching an unanchored boundary – they are long life-
time phenomena in nematics. As well as a long lifetime, the defects affect the nematic
profoundly, organising themselves into rasters [67], effecting interesting flow fields in
wet nematics [70, 79] and generating stress patterns which affect the nematic [10,
80]. This conjunction of persistence and extensive interaction with their environment
makes topological defects such a rich phenomenon. Here, I will explain the origin of
defects, look at their interaction with their environment and describe the defect chaos
phase created by the defects.
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A B Figure 5: Topological
defects of charge +1/2
(red circle, A) and −1/2
(blue triangle, B). Bur-
gers circuit Λ in red
(A) to quantify the de-
fect charge. The polar
(apolar) symmetry of the
+1/2 (−1/2) defect is vis-
ible.

2.4.1 Defect generation

Defects can result from several sources. The simplest is confinement of the nematic,
whereby the nematic is anchored to the boundaries which are chosen such that a loop
along the boundary will result in some change of orientation which must be conserved
over the nematic. Therefore a circular confinement results in topological charge +1,
resulting in two +1/2 defects. Without anchoring, a nematic on a sphere has charge
+2 (hairy ball theorem), resulting in four +1/2 defects [81].

Figure 6: Nucleation
and unbinding of a pair
of ±1/2 defects in a
Microtubule-Kinesin
mixture. In a the bend
instability is visible. In b
the instability has grown
to nucleate a pair of ±1/2
defects. In this case the
system is extensile and so
the +1/2 defect travels
away from the −1/2
defect. From [4].

However, defects also appear in active nematics. Depending on the sign of the
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activity, the active term destabilises either bend or splay deformations, leading to
defect formation [34]. An active nematic with any noise in initial configuration or
ongoing fluctuations will therefore produce defect pairs. In this case, pairs are pro-
duced, as the total topological charge cannot change as this would be energetically
costly (infinitely in the limit [20]). This is illustrated well by the snapshots of an
active extensile microtubule-kinesin mixture in Figure 6, from [4]. In Figure 6a, we
see a bend in the material, this might occur due to fluctuations or because of other
defects stirring up the director field. Then in Figure 6b, the bend region extends
because it is unstable and nucleates a defect pair, +1/2 on the left and −1/2 on the
right. The unbinding of one defect has a kind of catalytic effect because as the defect
travels, it leaves behind a line of high distortion (which can dissipate in wet nematics)
which is particularly favourable for defect generation [34].

Finally, defects in nematics may also be caused by the Berezinskii–Kosterlitz–Thouless
(BKT) transition, which can be effected by temperature or density [21]. In the case
of 2D nematics,the first order isotropic to nematic transition is not possible and the
continuous BKT transition takes place. When the temperature is nonzero, defect
pairs are nucleated all the time but mostly just annihilate. The BKT transition de-
scribes the transition to defect unbinding, destroying the nematic order. The defect
appearance can be explained in a somewhat abridged manner as follows [20]. Tak-
ing the free energy as F = U − TS, a defect of core size a in a system of size R
has a free energy contribution Fdef ∼ π ln(R/a) and an entropic contribution due to
the free placement of the defect goes as S ∼ ln[(R/a)2]. For the defect free energy
contribution we find:

Fdef ∼ (π − 2T ) ln

(
R

a

)
, (17)

giving the critical temperature TBKT = π/2, above which a free defect will lower the
free energy.

In a 2 dimensional dry nematic, fluctuations (as effective temperature) is known to
drive the Berezinskii–Kosterlitz–Thouless (BKT) transition, in which spontaneously
generated defect pairs unbind to break the quasi long-range order of the nematic
phase [20], as previously shown. During the BKT transition, defect pairs appear,
which stay close at low temperatures, but unbind at higher temperatures and become
randomly distributed [14]. This transition was shown for nematics analytically via
renormalisation group analysis already in 1978 [21]. It has been observed in many
systems, e.g. superfluid helium [20]. The BKT transition has been observed com-
putationally for a nematic using a lattice model [22]. Also in a dry, freely moving
particle model, with aspect ratios (related loosely to flow alignment parameter) the
BKT transition has been observed [23, 24].

An analytical study of defect unbinding in active nematics found that low noise
will stabilise the nematic phase by disrupting defect movement [26]. However, at
higher noises, the BKT transition will still lead to the chaotic defect state, even at
0 activity [26]. Having seen that effective temperature leads to defect unbinding in
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a passive nematic, the question then remains whether effective temperature plays a
role in our systems of interest.

2.4.2 Defect characterisation

Defects in wet active nematics have characteristic flow and stress patterns, calculated
from first principles and seen in experiments.

The flow around a defect has been calculated analytically by e.g. Giomi et al. [82]
and has been widely observed experimentally [10, 40, 83] (Figure 7).

Figure 7: Flow of +1/2
(top) and −1/2 (bot-
tom) defects for extensile
and contractile active de-
fects. The +1/2 defect
has two counter rotat-
ing vortices, creating a
net flow through the de-
fect core. The −1/2 de-
fect has 6 counter rotat-
ing vortices, resulting in
no flow at the core. The
contractile case is exactly
the negative of the ex-
tensile case. From [18].

The +1/2 defect, owing to its polar symmetry, has a polar flow field comprised
of two counter rotating vortices. This means that the +1/2 defect is self-propelled, a
central feature to active nematics. The flow at the core is linear in the activity [82],
meaning that a positive activity will result in positive core flow, propelled in the head
direction, and negative activity will result in a negative core flow, in the tail direction.
These defects are called extensile and contractile respectively. In fact, the direction
of movement of the defects is a way of measuring whether a nematic is extensile or
contractile. An extensile nematic functions via positive elastic stresses, whereas a
contractile nematic has negative total elastic stress. A recent study was able to show
how an individual contractile cell (pulling on its neighbours) is able to exert extensile
stress (pushing on its neighbours) to make an extensile nematic, with the expected
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defect movement [19].

Figure 8: Isotropic stress patterns around ±1/2 extensile defects. A +1/2 defect has
a dipolar pattern with compression at the head and tension at the tail. A −1/2 defect
has a hexapole pattern. The top row has data from MDCK cells whereas the botton
is from active nematics simulations. The simulations match the theory well. From
[18].

The isotropic stress (σiso = 1/2TrΠ) pattern around a defects follows the same
polar-apolar pattern. While a −1/2 defect has a hexapole pattern, a +1/2 defect has
a dipole stress pattern (Figure 8). The dipole changes its direction with the flow, so
an extensile defect should have its negative pole at the defect head and vice versa.
These stress patterns mean that defects are not just visual patterns in cell orientation
but have a real effect on the mechanics of the cell layer.

2.4.3 Defect chaos

The self propelled +1/2 defects now move around, mixing up the nematic field. This
creates a phase which has been called defect chaos [84], meso-scale turbulence [36] or
active turbulence [34, 76, 85].
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Figure 9: Snapshot of active tur-
bulence from continuum simula-
tions with director as black line
and vorticity in colour. ±1/2 de-
fects are marked with a red circle
(blue triangle). Low turbulence
jets are visible, as well as vortices.

This phase is characterised by a kind of gas of self-propelled +1/2 defects and
diffusive −1/2 defects creating a swirling pattern full of jets and vortices. The flow
correlation length is set by the defect density, which is is a power law in the activ-
ity [84].

An analysis of the active nematic as a coulomb gas found a phase boundary
between the nematic phase and defect chaos as a function of activity and chaos [26].

In a very recent study, Krommydas, Carenza and Giomi [86] showed that a +1/2
defect in a passive nematic will be motile, if elasticity is taken into account. However
they neglect the flow alignment, which turns out to be crucial in our results (Section
4.2.2).
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3 Methods

I this section, we detail the equations of nematohydrodynamics, then explain the
hybrid lattice Boltzmann simulation. This leads us to the definition of the two types of
fluctuations. A table of the parameters used, their values and dimensions is presented
(Table 1).

3.1 Nematohydrodynamics

We simulate the time evolution of the order parameter, Q, and the velocity, v⃗. The
evolution of Q depends on the molecular field, H, as follows:

DQ = ΓH, (18)

where Γ is the rotational viscosity and D is the co-moving, co-rotating derivative
defined as:

DQ = ∂tQ+ v⃗ · ∇Q− S. (19)

The corotation term,

S = (ξE+Ω) · (Q+ I/2) (20)

+ (Q+ I/2) · (ξE−Ω)

− 2ξ(Q+ I/2)(Q : ∇u),

accounts for the effect the flow has on the orientation of the particles. This is done
by scaling the influence of the strain rate E = 1/2(∂ivj + ∂jvi) vs the vorticity Ω =
1/2(∂ivj − ∂jvi) by the flow alignment parameter, ξ. The operator : is defined as
A : B = AijBij

The flow is governed by incompressible Navier-Stokes equations with density ρ:

ρ(∂tv⃗ + v⃗ · ∇v⃗) = ∇ ·Π, ∇ · v⃗ = 0. (21)

Here Π is the general stress tensor, a sum of pressure, viscose, elastic and active terms
[18]:

Πviscose = 2ηE, (22)

Πelastic = −P I+ 2ξ(Q+ I/2)(Q : H) (23)

− ξH · (Q+ I/2)− ξ(Q+ I/2) ·H

−∇Q
δF
δ∇Q

+Q ·H−H ·Q,

Πactive = −ζQ. (24)
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3.2 Hybrid Lattice Boltzmann simulation

We employ a hybrid lattice Boltzmann approach, first described in Marenduzzo et
al. [87] and since used widely in active nematics simulations [34, 88, 89].

This method entails solving the fluid flow (21) via lattice Boltzmann method and
solving the nematic evolution (18) with a finite difference predictor corrector scheme
with one correction step.

The lattice Boltzmann (LB) method is a mesoscopic simulation method where the
lattice Boltzmann equation, a discretisation of the Boltzmann equation is solved [90].
Importantly, the Boltzmann equation can be shown to correspond to the Navier-
Stokes equations.

We introduce the particle distribution function f(x⃗, ξ⃗, t) which describes the dens-

ity of particles in space x⃗ and velocity ξ⃗ at time t. At equilibrium, the distribution
f = feq is known as the Maxwell-Boltzmann distribution.

To obtain the evolution of the system we calculate the total differential df/dt:

df

dt
=

(
∂f

∂t

)
dt

dt
+

(
∂f

∂xi

)
dxi

dt
+

(
∂f

∂v⃗i

)
dv⃗i
dt

(25)

∂f

∂t
+ v⃗i

∂f

∂xi

+
Fi

ρ

∂f

∂v⃗i
= Ω(f) (26)

with dtxi = v⃗i and dtξ = F/ρ. Equation (26) is called the Boltzmann equation. This
is therefore a kind of continuity equation with the source term Ω on the right which
is called the collision operator. On the left we see how f can change: advection with
velocity, v⃗, and forces affecting the velocity with force density, F/ρ. The simplest
and most widely used collision operator is called the BGK operator:

Ω(f) = −1

τ
(f − feq) (27)

named after Bhatnagar, Gross and Krook. The BGK operator implies exponential
relaxation to the equilibium distribution feq with the characteristic time τ called the
relaxation time.

To solve the Boltzmann equation on a lattice, it must be discretised. The dis-
cretisation is as follows (Figure 10): we define 9 possible velocities, with unit vectors
e⃗i = (a, b); a, b ∈ {−1, 0, 1}, i ∈ 1...9. e⃗1 = (0, 0) accounts for nonmoving particles,
while the other e⃗i point to the neighbours (also diagonal) of the lattice site on the
square lattice. This discretisation is called D2Q9 because we are in 2 dimensions and
have 9 velocities. The velocities are weighted and we use the following weighting [60]:

w⃗ =

(
4

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

36
,
1

36
,
1

36
,
1

36

)
. (28)
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Figure 10: D2Q9 discretisation of velocities. There are now 9 possible directions
(e⃗0 = (0, 0)) in which particles can stream to neighbouring lattice points.

The weighting is necessary, so that moments are conserved [90].

The Boltzmann distribution function is now discretised so that t is discretised, x⃗
refers to a lattice point and v⃗ refers to the discretised velocities.

The step reads:

fi(x⃗+ c⃗i∆t, t+∆t) = (29)

fi(x⃗, t)−
∆t

τ
(fi(x⃗, t)− f eq

i (x⃗, t)),

using the BGK collision operator. The implementation proceeds in two steps. First,
collision, in which the collision operator is applied:

f ∗
i (x⃗, t) = fi(x⃗, t)−

∆t

τ
(fi(x⃗, t)− f eq

i (x⃗, t)). (30)

The collision step simulates the equilibrating effect of collision. Following that, the
streaming step, in which the particles move in their respective directions:

fi(x⃗+ c⃗i∆t, t+∆t) = f ∗
i (x⃗, t). (31)

In this step, the components move in their relevant directions.

3.3 Fluctuation implementation

We implement fluctuations in the velocity and in the orientation.

3.3.1 Velocity fluctuations

Velocity fluctuations are implemented at the level of the Boltzmann equation as in-
troduced in Adhikari et al. [91]:
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fi(x⃗+ c⃗i, t+ 1) = fi(x⃗, t) +
1

τ
(f eq

i (x⃗, t)− fi(x⃗, t)) + ηi, (32)

with fluctuations ηi. These fluctuations must conform to a fluctuation-dissipation
relation which is done by a careful choice of ηi. The method was developed in [91,
92] and a detailed description can be found in [60] SI. We use one scalar, uκBT , which
sets the size of the fluctuations. The typical values are uκBT ∈ [0, 0.05].

These fluctuations can be understood as force fluctuations and as such, in a cell
context, might be interpreted as extending and retracting focal adhesions as in [55].
A connection might also be drawn to fluctuating line tension in vertex or voronoi
based models [56].

3.3.2 Initial noise on director

The system is initialised with some noise in the director field. This is done, because
an active, non-fluctuating, nematic is metastable in the nematic state [34], so initial
noise is needed to see the active turbulent phase.

The initial noise is implemented, for an initial angle θ0, initial noise strength n0

and uniform distribution U as follows:

θ(t = 0) = θ0 + n0 U [−π/2, π/2]. (33)

3.3.3 Rotational fluctuations

Fluctuations in the orientation must be done carefully, so as not to break the con-
straints of symmetry and tracelessness on Q. Considering Qxx = cos 2θ,Qyx = sin 2θ,
choosing two random values and adding them to both components of Q does not
exactly result in an angle change of the particle. We remedy this by calculating θ
from Q and then adding a scaled random θr:

θi(t+ 1) = θi(t) + U [−π/2, π/2]
√
ΓQκBT . (34)

This way, we guarantee that the rotational fluctuations are physically plausible. Typ-
ical values are QκBT ∈ [0, 0.05]

The fluctuations in orientation take into account that the orientation of a cell
is not necessarily exact and that even over small distances, i.e. within the nematic
correlation length, orientations are not perfectly aligned but spread about a mean
orientation as is visible in e.g. [93].
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3.3.4 Effective temperatures

To make the comparison of fluctuation strengths with experiments possible, we define
an effective temperature for velocity and rotational fluctuations. We define the ef-
fective temperature in units of the elastic constant K, which has the units of energy,
justifying the name effective temperature.

The strength of velocity fluctuations are scaled by the ratio of viscous friction, η,
to rotational diffusivity, Γ, along with density, η, and the nematic energy scale, C:

ûκBT =
T u
eff

K
=

uκBT

(η/ΓρC)−3/2

1

K
. (35)

The rotational fluctuation strength is scaled by the rotational diffusivity, Γ, and
the density, ρ, as:

Q̂κBT =
TQ
eff

K
=

QκBT

(Γρ)

1

K
. (36)

When we deviate from the single elastic constant approximation using K, we
have two elastic constants k1 and k3. We then scale the effective temperatures by the
average of the elastic constants as:

ûκBT =
2T u

eff

k1 + k3
, Q̂κBT =

2TQ
eff

k1 + k3
(37)

3.4 Data analysis

A large part of this work relies on obtaining the average properties of defects. This
is done with custom matlab code. From velocity and orientation data output from
the hybrid lattice Boltzmann, we calculate the winding number at each point to get a
topological charge field. The defects are then found using a breadth first search and
the angle is calculated according to [94]. Aligning the defects by centre and angle, we
can calculate average flow or stress fields over all defects from one simulation. From
these average fields we can then calculate derivative quantities.
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Table 1: Simulation parameters with name, symbol and value (or range) and
dimension where length: L, mass: M and time: T .

Name Symbol Value Dimension

Flow-alignment ξ [−1, 1] 1
Rotational diffusivity Γ 0.05 T/M
Solvent viscosity η 1/6 M/T
Density ρ 40 M/L2

Coupling parameter C 1 M/T 2

Frank elastic constant K [0.01, 0.05] ML2/T 2

Splay elastic constant k1 [0.01, 0.05] ML2/T 2

Bend elastic constant k3 [0.01, 0.05] ML2/T 2

LB Relaxation time τLB 1 T
Activity ζ 0 M/T 2

Initial noise in alignment n0 0.05 1
velocity fluctuation uκBT [0, 0.05] ML/T 2

director fluctuation QκBT [0, 0.05] M/T 3

Box edge length L 256 L
LB timestep τ 1 T
Simulation length nsteps [20000, 30000] 1
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4 Fluctuations induce motile defects

Defect unbinding is known to result from fluctuations during the BKT transition in
dry nematics. In this work however, we found that in a wet nematic, the fluctuation
nucleated defects can unbind and become self propelled due to backflow effects. This
is interesting because in real world systems fluctuations will always be present and
indicates that activity is not necessarily needed for many effects that are ascribed to
active nematics.

We therefore investigated the fluctuation-induced defects. I will first show general
aspects of fluctuation generated defects and then go into the effects of individual para-
meters. We will further see that mixing fluctuations and activity can have interesting
effects.

To make the results for force fluctuations and director fluctuations comparable, we
keep the parameters the same, where they are not explicitly being varied. The normal
values are: uκBT = 0.05, QκBT = 0.014, ξ = 1, K = 0.05 leading to rescaled fluctuation

strengths ûκBT = 0.024, Q̂κBT = 0.14. The fluctuation strengths were chosen because
they lead to the same defect density, while being deep enough into the defect chaos
phase. They are furthermore justified by a comparison with experimentally measured
fluctuation strengths.

4.1 Exploration of motile defects

We begin with an exposition of the defects, moving from a general picture to specific
characteristics.

4.1.1 Defect chaos

Adding fluctuations to a passive nematic, we see a defect chaos phase for both force
fluctuations (ûκBT ) and director fluctuations (Q̂κBT ) (Figure 11). ±1/2 defects are
spread throughout the simulation box, with aligned areas separated by bend walls.
The evolution looks similar to extensile active nematics in the defect chaos / meso-
scopic turbulence phase [34, 95] (See movies at [96]). Specifically, we see defect pair
nucleation, followed by unbinding due to the self propelled movement of the +1/2
defect and slower, diffusive, movement of the −1/2 defect and annihilation. To high-
light this we have drawn the focus to a pair nucleated in the first snapshot. While the
−1/2 defect moves very little, the +1/2 defect escapes and moves far away. We also
see the annihilation of the ±1/2 defect pairs for both rotational and force fluctuations.
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a.

b.
t = t0 t = t0 + 390τ t = t0 + 1690τ t = t0 + 1700τ

t = t0 t = t0 + 780τ t = t0 + 2820τ t = t0 + 2830τ

time

Figure 11: Timeseries of nematic evolution for (a) force ûκBT = 0.024, ξ = 1 and (b)

director fluctuations Q̂κBT = 0.14, ξ = 1. In both cases, we see nucleation of a defect
pair, then the self propelled +1/2 defect escaping and travelling out of frame, while
the −1/2 defect moves much slower. From the third to the fourth timepoints we can
even see annihilation events; in the third panel a +1/2 and a −1/2 defect get very
close and in the fourth panel they have annihilaited, leaving only a small disturbance
in the director field. The direction of the movement of the +1/2 defect indicates that
the system is extensile.
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4.1.2 Trajectories

To highlight the defect movement and show the difference between +1/2 and −1/2 de-
fect movement, we plot the trajectories of the defects (Figure 12). We see that whereas
the +1/2 defect traces an extended trajectory with a high persistence length, the
−1/2 defect moves very little in the same time showing a diffusive trajectory already
at short times. Note that the trajectories look very similar for both fluctuations in
orientation and velocity.

Qualitatively, this phase looks very much like the extensile active nematic defect
chaos phase. This is surprising because in active nematics literature, the assumption
is that the activity leads to the self propulsion of the defect and therefore the defect
chaos phase [82]. However, here we are seeing the same behaviour for fluctuations
only.
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Figure 12: Defect move-
ment. (a) Trajectories
of ±1/2 defects (red
and blue) and (b)
MSD of defect move-
ment. Left column
shows force fluctuations
ûκBT = 0.024, ξ = 1,
right column shows
director fluctuations
Q̂κBT = 0.14, ξ = 1. For
both fluctuation types,
+1/2 defects move faster
at medium times but
both ±1/2 defects end
up being diffusive. From
[60].

To analyse whether the movement of the defects is diffusive, we plot the mean
squared displacement (MSD). For a defect with position x⃗t at time t, the MSD for an
ensemble of defects is defined as:

MSD(t) = ⟨(x⃗t − x⃗0)
2⟩defects. (38)

For diffusive movement, MSD(t) is linear at long times. In our case we calculate
separate MSDs for ±1/2 defects to see the difference in movement (Figure 12). We
see that at short times, both +1/2 and −1/2 defects have the same MSD. However
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in the medium term, −1/2 defects are slower. At long times, both MSD curves have
the same slope, meaning that both types of defects are now moving in a similar way.

The explanation is as follows. In the short term, the defects are not yet unbound.
In the medium term, the +1/2 defect is freely self propelling, while the −1/2 defect
is just diffusing. However, in the long time, the defects act as gas particles and the
movement becomes diffusive even for the +1/2 defect. At this point the slopes are
the same, but the freely moving history of the +1/2 defect is represented by the offset
between the MSD lines.

The long term diffusive movement for both defects is in line with data from hu-
man bronchial cells [44], which found the same diffusive movement for both defects.
This is in contrast with data from bacteria [42], which see +1/2 defects moving faster
throughout the measurement time, although this may be an effect of short measure-
ment time or low defect density. As the bacteria are self-propelled, inducing active
behaviour, whereas the human bronchial cells are only hypothesised to be active
based on collective behaviour, leaving open the possibility of fluctuation driven dy-
namics, this difference in defect movement might be a way to distinguish noisy passive
nematics from active nematics.

4.1.3 Flow fields

Seeing that +1/2 defects are self-propelled we wanted to see if the flow field conforms
with typical double counter rotating vortex defect flow fields as presented in Figure 7.
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Figure 13: Flow fields of +1/2 defects. Both force fluctuations ûκBT = 0.04, ξ = 1

and director fluctuations Q̂κBT = 0.5, ξ = 1 show the extensile active nematic defect
flow of two counter rotating vortices, resulting in net flow at the defect core.

Indeed, the defects have the double counter rotating vortex flow field, resulting in
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a jet at the defect core, with both having very similar patterns and vorticities (Figure
13). The pattern is very symmetric, with both vortices having similar strengths. This
pattern matches those measured in passive nematics [83], cell layers [10, 42, 44] and
predicted by continuum theories of active extensile nematics [70, 82].

4.1.4 Isotropic stress patterns

As mentioned in the introduction, the dipole isotropic stress pattern of the +1/2
defects has been found to be important for biological functions, e.g. lead to extrusion
in MDCK layers [10]. Therefore, we next measure the average isotropic stress (σiso =
1/2Tr(Π)) around defects.

u BT Q BT

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.006

0.004

0.002

0.000

0.002

0.004

0.006

is
o

Figure 14: Isotropic stress patterns for +1/2 defects at ûκBT = 0.04, ξ = 1 and

Q̂κBT = 0.5, ξ = 1. The tension peak at the tail is consistent with active extensile
nematics isotropic stress patterns, but we would expect to see compression at the
head.

For both force and director fluctuations we see a dipole type pattern with com-
pression at the head and tension at the tail (Figure 14). The magnitude of tension at
the tail is higher than the magnitude of compression at the head. This is generally in
line with the reported dipole pattern for a cell based simulation of an extensile active
nematic [97] and the reported isotropic stress pattern for MDCK cells [10]. While the
director fluctuation pattern is very clean, the force fluctuation pattern is not, even
though both are averaged over a similar very large number of defects.
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4.1.5 Conclusion

Our first analysis of the defects generated by fluctuations has shown that they are
qualitatively very similar to those seen in active nematics simulations and to those
seen in experiments. This is striking, as it calls into question the characterisation
of biological tissues as active. In order to understand the defect generation, and
its dependence on key parameters, we undertook a quantitative analysis of defect
behaviour. In the next part, we look at the dependence of defect flow and stress fields
on fluctuation strength and nematic-hydrodynamic coupling, called flow alignment.

4.2 Extensility depends on fluctuation strength and flow align-
ment

A key feature of active defects is the self propelled motion of the +1/2 defect. To
quantify this effect and therefore allow comparison of active and fluctuation generated
defects, we construct an extensility parameter (Figure 15). We orient the defect such
that the head-tail axis is exactly the y-axis and the head is above the tail. To construct
a measure of extensility which goes to 0 when the flow is isotropic and ±1 when the
flow is exclusively in the y direction (extensile or contractile, respectively), we define

for the flow at the defect U⃗ = (Ux, Uy):

E :=
⟨Uy⟩
⟨|U⃗ |⟩

. (39)

Therefore, E goes from −1 for fully contractile defects, to 0 for no defect / passive
defects, to 1 for extensile defects, as required.

The averaging is done over a square, concentric with the defect, of height and
width 6 lattice Boltzmann units (Figure 15). This width was determined to be the
smallest box size which was stable at low extensility.

4.2.1 Fluctuation strength

We first wanted to see the transition to self propelled defects so we vary both fluctu-
ation strengths from 0 to deep into the defect chaos phase.

As the fluctuation strength increases, systems with force fluctuations, ûκBT , and

orientational fluctuations, Q̂κBT , transition very quickly to completely extensile de-
fects (Figure 16). Note that when there are no defects, we set E = 0 to make the
transition visible in the plot. Although systems with force fluctuations and orient-
ational fluctuations transition at different points and at different speeds, this is not
relevant as they are not immediately comparable. Nevertheless, it is worth noting
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Figure 15: Calculation of extensil-
ity E , in this case E = 0.98. Ve-
locity as quiver, vorticity in col-
our. We take the velocities in a
6 × 6 square around the centre of
the defect. We take the largest
box which captures the flow core –
the box were larger, we would in-
clude velocities on the outside of
the vortex, which are negative in
the y direction.
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Figure 16: Extensility given by (39) (mean ± s.d.) of defects generated by force
fluctuations (a) and director fluctuations (b) at ξ = 1. Both fluctuation types show
an abrupt transition from E = 0 to fully extensile, E = 1, at the points where defects
appear. The curves look like a step function, with no change in extensility over a
large range of fluctuations.
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that the transition is very abrupt – there are no half extensile defects. This may be
explained by the life cycle of the defects – they must overcome the binding state to
be counted for this value, which means that they must simply have a certain velocity
/ force. Combined with the fact that E is not sensitive to the magnitude of the flow
/ speed of the defects, it makes sense that we would see a step like shape. However,
it does reveal that the defects must fully develop the jet at the core to unbind. This
means that this is not BKT transition related, as there defects would unbind regard-
less of flow pattern. So we can be sure that after the transition the defects have the
typical flow field shape. Further testing has shown that the velocity of the defect does
not follow the same step shape.

4.2.2 Flow alignment

To investigate the remarkable effect a topological defect has on the flow, inducing
a double vortex flow field, we investigate the parameter which tunes the interaction
between nematic and fluid, the flow alignment parameter ξ. For natural systems, ξ
has rarely been measured, but a study of Drosophila pupal wing epithelia and one
on mouse fibroblasts concluded that ξ can take a range of values including negative
values [68, 69]. Therefore, we scan the flow alignment ξ ∈ [−1, 1] for various different
scenarios to understand the flow alignment parameter and how its effect interacts
with the effects of other parameters.

Scanning the flow alignment, ξ, for a single fluctuation strength in ûκBT or Q̂κBT

reveals that the value of the flow alignment parameter determines the sign and the
magnitude of the extensility (Figure 17). We also see a saturation at |E| = 1 when
the flow alignment magnitude is high. At lower flow alignment, defects are not ex-
tensile or do not appear at all. This means that, at low fluctuation strengths, flow
alignment is necessary for (motile) defect formation, setting these defects apart from
BKT generated defects.

To investigate the saturation and the behaviour at low flow alignment we vary the
fluctuation strength simultaneously with the flow alignment.

When varying fluctuation strength and flow alignment simultaneously, we see some
interesting behaviour (Figures 18, 19). For lower fluctuation strengths, there is a
|ξ|min under which no defects appear. This suggests that at low fluctuation strengths,
backflow effects are already at play in nucleation of defects. For higher fluctuation
strengths, defects appear at all ξ, but are not extensile (E = 0) if the flow alignment
is too small. Here it seems the backflow is not necessary for all defect generation but
still for extensility.

At very low |ξ| but large fluctuation (e.g. Figure 19B, ûκBT = 0.024), there is
an interval on the flow alignment in which the defect density stays constant. Here,
there are no defects for lower fluctuation strengths, but they appear with increasing
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Figure 17: Extensility E given by (39) (mean ± s.d.) for ûκBT = 0.024 and Q̂κBT =
0.14 for a range of flow alignment, ξ ∈ [−1, 1]. The sign of the flow alignment
parameter determines the sign of the extensility. We see that extensility saturates at
|E| = 1 for high magnitude flow alignment. However, when |ξ| is lower, the extensility
goes down and for very low |ξ|, defects can disappear completely. Black line indicates
extensility with no backflow. Dashed grey lines at ±1 as guides for the eye.
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strength of fluctuations. It seems that here we observe the BKT transition, the
generation of non motile defects and that this is quite separate from the flow pattern
formation. Further studies are required to investigate how the mechanisms of flow
alignment assisted defect generation and BKT defect generation interact, if at all.

Furthermore, the defect density is strongly dependent on the flow alignment, ξ,
with lower defect density at lower flow alignment (Figures 18B, 19B). At lower fluctu-
ation strengths, the defect density, ndef , rises monotonically with the flow alignment,
although it does show saturating behaviour as the flow alignment approaches ξ = 1.
However, at higher fluctuation (e.g. Q̂κBT = 0.4), we find that ndef peaks at |ξ| ≈ 0.3
and then decreases as the flow alignment magnitude increases. The cause of this effect
is not clear.
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Figure 18: Varying velocity fluctuations ûκBT and flow alignment ξ. A shows the
extensility E . We see that at ξ < 0, E < 0 and ξ > 0, E > 0. While at low fluctuation
strengths the defects are not generated at lower |ξ|, with increasing fluctuations, the
transition becomes sharper, although E(ξ = 0) = 0 holds. The black line represents
the results for no backflow.
B shows the number of defects. We see that at lower fluctuation values, defects
are only formed at higher |ξ|. However, as the fluctuations increase, defects can be
generated at ξ = 0, however, they are not extensile. We also see that generally defect
density increases with fluctuations.
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Figure 19: Varying velocity fluctuations Q̂κBT and flow alignment ξ. A shows the
extensility E . We see that at ξ < 0, E < 0 and ξ > 0, E > 0. While at low fluctuation
strengths the defects are not generated at lower |ξ|, with increasing fluctuations, the
transition becomes sharper, although E(ξ = 0) = 0 holds. The black line represents
the results for no backflow.
B shows the number of defects. We see that at lower fluctuation values, defects
are only formed at higher |ξ|. However, as the fluctuations increase, defects can be
generated at ξ = 0, however, they are not extensile. We also see that generally defect
density increases with fluctuations, although at high fluctuation strength and flow
alignments, the number of defects decreases again.
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Figure 20: Non-BKT defect generation depends on elastic backflow, modulated by
ξel Defect generation with elastic flow alignment parameter ξel the same value as the
corotational flow alignment parameter ξel = ξS or ξel = 0. ûκBT = 0.024, Q̂κBT = 0.14

4.3 Backflow is necessary for motile defects

Backflow is the effect of nematic order on the hydrodynamics and vice versa. Simu-
lating without backflow, we find that the defects are not extensile (E = 0, Black line
in Figure 17). This suggests that backflow is essential for extensile behaviour.

Because the flow alignment parameter, ξ, appears both in the corotation term S
in the Beris-Edwards equation for Q evolution (Eq. 18) and in the flow alignment,
specifically in the elastic stress term of the Navier-Stokes equations (Eq. 21), we split
the term into corotational ξS and elastic ξel. This allowed us to isolate the effects
of each, and we found that the defect generation depends on the elastic ξel, rather
than ξS in the corotation term, confirming that it is the elastic behaviour which leads
to extensile defects (Figure 20). This defect generation is at effective temperatures
below those at which defects are generated even at no flow alignment ξ = 0, meaning
that these are not BKT defects.

Following the investigation of fluctuation strength, effect of flow alignment and
backflow, we observe a behaviour where fluctuations nucleate defects and if the back-
flow is high enough, a flow field develops that will unbind the defects leading to the
defect chaos phase. The flow alignment parameter plays a twofold role: at low fluc-
tuation strength, a high flow alignment can lead to the formation and unbinding of
extensile defects (Figure 17). On the other hand, at high fluctuation strengths, even
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if the flow alignment is low, defects might nucleate but will not become extensile.

4.4 Interaction of fluctuations and activity

Having seen that fluctuations can have an extensile or contractile effect, depending
on the flow alignment, we wanted to explore what happens when we combine activity,
a form of active stress generation, and fluctuations. Both can have an extensile or
contractile effect, so we check how these effects interact.

Calculating the extensility for various values of rotational fluctuations and activity
at a positive flow alignment (ξ = 1), depending on the strength of each, we see either
full extensility or contractility (E = ±1). This means that at most parameter values,
either activity or fluctuations dominate (Figure 21). When there are no fluctuations
(bottom row), we see the expected behaviour (see Section 2.3) of contractile defects
(blue) at negative activity, ζ < 0, and extensile defects (red) at positive activity,
ζ > 0. In the same way, when there is no activity, ζ = 0, (middle column) we see
the expected transition from no defects to very extensile defects as the fluctuation
strength increases (as in Figure 16).

However, off these axes we see interesting behaviour. First, the extensility is not
symmetric about ζ = 0. This is because QκBT , ξ = 1 has an extensile effect at any
magnitude. However, we see that for high negative activity, low fluctuation strengths
are dominated by the activity and we get contractile defects, whereas high fluctuation
strengths still dominate activity to make an extensile defect. At Q̂κBT = 0.08, ζ = 0,

we see defects and at Q̂κBT = 0, ζ = −0.01 the activity is not strong enough to create

defects. When Q̂κBT = 0.08, ζ = −0.01 (b in Figure 21), there are no defects, so it
seems that although the activity is not strong enough to nucleate defects, it is strong
enough to counteract the fluctuations and suppress defect formation. In this way, the
fluctuations with positive flow alignment and negative activity cancel each other out.

Simulating the same parameter set, except with ξ = −1 we see an inverted pattern
of contractile defects in the upper left triangle and only extensile defects for high
activity and low fluctuation strength (unpictured).

From the figure we see that, if we have a system at Q̂κBT = 0.1 and ζ = −0.05
(a in Figure 21) and lower the activity magnitude (step to the right), we can switch
contractile to extensile. The same holds for starting at the same point but increasing
the fluctuation strength (step upwards). In this way a cell layer could switch from
extensile to contractile or vice versa by tuning only one of activity or fluctuation
strength.

In Balasubramaniam et al. [19], defects became contractile after an E-cadherin
knockout decreased active inter-cellular tension. It is entirely plausible that reduced
inter-cellular tension might lead to more cell shape fluctuation. This experiment could
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Figure 21: Rotational fluctuations with positive flow alignment have an extensile
effect, which can be stronger than activity. Extensility E defined (39) of Q̂κBT vs
ζ at ξ = 1. Behaviour at QκBT = 0 and ζ = 0 as expected. When both activity
and fluctuations are present, the effects mix. At low fluctuation strength and activity
(Q̂κBT = 0.08, ζ = −0.01, (b)) they cancel each other out and no defects are generated.
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therefore be explained by a noisy active nematic, where the activity is reduced.

4.5 Discussion of fluctuation strength

Having shown that fluctuations can generate extensile defects and suggested that real
cell systems may be driven in this way, it is important to look at the fluctuations and
judge whether they reflect fluctuations that have been experimentally observed.

Fluctuations in the orientation of the cells can be contextualised in several different
ways. A recent study on Drosophila embryo wings clearly showed the fluctuations
in orientation [93]. Taken from an aligned patch, a histogram of the orientations
showed a gaussian like distribution with a surprisingly wide standard deviation of
0.38 radians.

Let us first consider the estimation of effective temperature from topological de-
fect orientations in confined fibroblast cells [11], where the authors found an effect-
ive temperature 0.1 < Teff/K < 0.2, where K is the Frank elastic constant. The
authors concluded that in this system activity contribution to the defect dynam-
ics is small (see Fig. 4g of [11]). In their context Teff/K is dimensionless. With
QκBT = 0.014,Γ = 0.05, ρ = 0.04, Q̂κBT = 0.14 which is in line with the estim-
ated values for the fibroblasts in [11]. Note that this is just an example value, and
the minimum fluctuation level needed in our simulations to nucleate defects is even
smaller.

A more direct comparison was recently made possible with measurements of the
rotational diffusion constant of rat embryo fibroblasts [58]. The authors model the
rotation of cells on a periodically stretched medium with a Langevin equation in-
cluding a forcing term and a random diffusive term. This is actually very similar
to our fluctuation implementation. The authors found a fluctuation strength as√
2D ∈ [

√
10−5,

√
10−3] corresponding well to our range

√
ΓQκBT ∈ [

√
10−5,

√
10−3]

forQκBT ∈ [0.008, 0.1] which corresponds to effective temperatures ofQκBT ∈ [0.08, 1].

Finally, a timescale comparison shows that even in active systems, fluctuations
may play a role. The active timescale in active nematics goes as τa = η/ζ and
from studies in MDCK cells [10] can be estimated as τa ≈ O(102). For orientational
fluctuations, the timescale is τQ = (ΓQκBT )

−1/2 ≈ O(102), so of the same order.
As the activity and fluctuations vary in different tissues, the importance of each may
vary. However, in this case the timescales are very similar and may allow for interplay
of activity and fluctuations as we have seen throughout this work.

The hydrodynamic fluctuations introduced in our model, ukBT , appear as a source
term in the momentum equation and as such correspond to fluctuations in the trac-
tion forces. The fluctuating forces that cells exert on their surroundings have been
extensively documented [53, 56, 98] and are associated to various sources including,
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but not limited to, traction force fluctuations exerted by focal adhesions [54, 55, 99],
association/dissociation of stress fibres [100], and oscillations in Rho proteins [101,
102]. The amplitude of the fluctuations have been shown to reach values as high
as 50% [55] in mouse embryo fibroblasts and even 10 fold change in keratinocytes
[54]. Importantly, these fluctuating forces are persistent and quite regular, justify-
ing continual addition of hydrodynamic fluctuations in our model. Considering the
effective temperature of the hydrodynamic fluctuations, ûκBT , as used throughout,
a medium velocity fluctuation strength such as uκBT = 0.05 results in an effective
temperature ûκBT = 0.02. This is far below temperatures estimated in the fibroblast
study mentioned earlier [11].

Together, these different estimates show that the fluctuation levels that give rise
to defect nucleation in the continuum model are well below the range estimated in
the various experiments. This is not surprising since cell scale fluctuations, in the
cell shape, cell area, cell alignment, and in the traction forces are typically visible
in experiments of the cell monolayers. We emphasise that in our model the motile
defects are seen over a wide range of fluctuations and for different implementations
of fluctuations in the model, and thus represent a robust feature of the system.

Another way to test the plausibility of our results is by comparing to results
from active simulations (Figure 22). Although we are not comparing directly to
experiments, if the fluctuations results match the activity results, the fluctuations
results have the same explanatory power for systems in which active nematics was
used to explain the results. It is evident that the same velocity scales are obtained
in both cases, further reinforcing the idea that fluctuation-induced features of the
defects can reflect those obtained from the activity (Figure 22).
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Figure 22: Comparison of flow between activity α = 0.045, director fluctuations
Q̂κBT = 0.17 and force fluctuations ûκBT = 0.03 with ξ = 1, K = 0.05. These values
were chosen to match in defect density. The patterns are very similar in shape and
magnitude.

We additionally note that using estimates of the strain rates of ∼ O(10−2hr−1)
from experiments [10], and the correlation length of ∼ O(100µm) [19], and comparing
them with the characteristic strain rates ∼ O(10−4) and correlation lengths ∼ O(101)
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in simulation units, the velocities obtained in simulation units can be mapped to
∼ O(µ/hr) in the physical units, that is comparable to the averaged velocities around
topological defects that are observed in the experiments [10, 19].

In this regard, it is also important to note that the activity level can change across
different cell types and even in the same tissue at different stages. For example,
fibroblasts are believed to be very weakly active [11], and could be more strongly
affected by fluctuations. Similarly, the activity levels are strongly reduced as the
cells within a confluent tissue approach a glassy state, where again activity levels are
significantly reduced and fluctuations can play a dominant role [103].

4.6 Summary

In this Chapter, we have shown that fluctuations in velocity or orientation can lead to
a defect chaos phase including self-propelled +1/2 defects. We investigated the effect
of fluctuation strength and flow alignment on defect formation and unbinding. This
led us to an understanding of the defect formation as follows: fluctuations continually
nucleates defect pairs; when the +1/2 defect interacts with the flow, it develops a
polar flow pattern which means that the defect is self propelled. This force leads to
defect unbinding and therefore the defect chaos phase. Switching off the backflow
definitively showed that the coupling between flow and nematic is necessary for the
phenomenon. Adding activity, we saw that fluctuations and activity can work with
or against each other, meaning that a change in fluctuation strength or activity can
switch the direction of +1/2 defect movement. Finally, a thorough comparison to
available experimental fluctuation data showed that the both fluctuation strengths in
our model are realistic and the resultant dynamics match those seen in experiments.
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5 Elasticity determines defect traits

The usual single elastic constant approximation, as used in the first part of this thesis,
is clearly reductive and hides a rich phenomenology of e.g. defect shape or density [5,
104]. The effect of differing bend and splay elastic constants in active nematics was
explored by Zhang et al. [5] experimentally and computationally. Using an F-Actin
based system, they varied k1 and k3 by adding microtubules, thereby increasing the
bend constant. They found that the defect shape is affected very strongly, with V
shaped defects when k3 > k1 and U shaped defects when when k1 > k3 (Figure 23).
A molecular dynamics study by Joshi et al. [104], varied an activity renormalised
filament stiffness, a parameter which corresponded well to the persistence length of
the filament. As well as finding the V and U shapes at the stiffness extremes, they
find scaling laws in defect density, defect shape and the ratio of bend to splay energy
with respect to the filament stiffness. Finally, they also found that as the rigidity
increases, the splay energy stays roughly constant, while the bend energy decreases
until the persistence exceeds the filament length and so bend is precluded.

splay
k1

bend
k3

high k3 → only splay high k1 → only bend

A

B C

Figure 23: Effect of differing splay
and bend constants. A illustra-
tion of splay and bend deforma-
tions and their constants k1 and
k3, respectively. B Defect shape
when bend deformations are ex-
pensive (k3 high) – only splay de-
formations. C Defect shape when
splay deformations are expensive
(k1 high) – only bend deforma-
tions. B and C from [5].

For this reason we included splay (k1) and bend (k3) constants in the calculation
of the nematic free energy (as in (8)). As mentioned, this included expressing elastic
constants k1 for splay and k3 for bend in terms of Li as done in (9). For ease of
understanding, we show the results in terms of the splay constant k1 and the bend
constant k3.

In this section we explore the effect of varying elasticity. We first investigate the
effect of a low or high single elastic constant. Then we look at the influence of differing
bend and splay coefficients in various contexts of activity and fluctuations. To this
end, we systematically varied the single elastic constant, K, and then the splay and
bend constants, k1 and k3 for different combinations of Q̂κBT and ζ. Finally, we
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wanted to judge the importance of the 3rd order term in (8).

5.1 Varying single elastic constant

To understand what happens when the elastic constants differ, we first want to see
what happens when the single elastic constant is varied. This case corresponds to
equal splay and end elastic constants, k1 = k3. In fact, L2 ∼ k1 (see (9)) and so
results that show similar behaviour between varying the single elastic constant, K,
or the splay elastic constant, k1, are not surprising.

5.1.1 Rotational fluctuations

We first investigate the effect of rotational fluctuations (Figure 24). At low elasticity,
we see a small but equal dipole, aligned with the defect, in the isotropic stress. The
poles of the dipole coincide with the head, the bend region in front of the defect core,
and the tail, the splay region behind the defect core. As the elasticity increases, the
compressive pole at the head shrinks and disappears as the tensional pole at the tail
increases in size and strength. The same dipole disappearance happens when the flow
alignment is negative, as the effect of the fluctuations is not inherently extensile or
contractile but depends on the flow alignment. The flow pattern retains its shape but
grows in size.

5.1.2 Activity

For negative activity, increasing the single elastic constant, K, increases the size
and intensity of the isotropic stress and flow patterns (Figure 25), but especially the
negative pole at the tail. Note that for positive activity, we see a similar behaviour as
for rotational fluctuations, that is disappearance of the dipole to a tensile monopole.

However, when the flow alignment is negative, the picture is reversed and so is the
dipole disappearance: positive activity keeps the dipole but strengthens its negative
pole, whereas negative activity leads to a tensile monopole. This can be explained
by the differing instability of positive and negative activity. While a positive activity
leads to instability in bend (at the head), a negative activity leads to an instability
in splay (at the tail). This means that a positive activity defect will have the stress
exerted at the bend head and the negative activity defect at the splay tail. Then the
monopole emerges if the flow alignment is favourable.
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Figure 24: Dipole disappears as the elasticity increases. Low to high elasticity for a
system with rotational fluctuation strengths Q̂κBT = {2, 0.67, 0.4} from left to right at
ξ = 1. Top is the isotropic stress, bottom is the flow field with the vorticity in colour.
The contour line denotes the line of σiso = 0. Total isotropic stress for columns 1, 2, 3:
σiso,1 = 0.14, σiso,2 = 1.0, σiso,3 = 2.5
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Figure 25: Dipole strength and size increases with elastic constant K. Low to high
elasticity for a system with rotational fluctuations ζ = −0.05 at ξ = 1. Top is the
isotropic stress, bottom is the flow field with the vorticity in colour. The contour
line denotes the line of σiso = 0. Total isotropic stress for columns 1, 2, 3: σiso,1 =
0.06, σiso,2 = 0.21, σiso,3 = 0.55
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5.1.3 Antagonistic fluctuations and activity

However, for negative activity and rotational fluctuations, we see a different behaviour
(Figure 26). At low elasticity, K, we see the contractile effect of activity. However
as the elasticity increases, the isotropic stress dipole and the flow pattern flip and
the defect becomes extensile. We also see the disappearance of the dipole towards
a monopole. The behaviour is mirrored for negative flow alignment and positive
activity.
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Figure 26: Dipole flips as elasticity increases. The contour line denotes the line of
σiso = 0. Variation of single elastic constant K for Q̂κBT = {2, 0.67, 0.4} from left to
right, and ζ = −0.05. Total isotropic stress for columns 1, 2, 3: σiso,1 = 0.14, σiso,2 =
0.72, σiso,3 = 1.6

What we are seeing, is that at low elasticity, activity dominates. However, with
increasing elastic constants, the fluctuation driven effect overwhelms the active effect.
When activity and fluctuations are effectively equal but opposite, we can see that the
nucleation of defects is suppressed.
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5.2 Bend vs Splay

We further wanted to investigate the effect of varying the bend and splay elastic con-
stants, k3 and k1 respectively. This is because there is no reason to assume k1 = k3,
as the typical nematogen is an extended object with a clear nematic axis, e.g. rod
shaped bacterium or long molecule. This shape immediately suggests different con-
stants, e.g. consider a stiff rod shaped bacterium with little adhesion. The steric
interactions prevent bend but not splay. In fact, one study deduced, from the orient-
ation of unbinding defects, that k1 < k3 in melanocytes [105].

In this section then, we explore the effect of varying bend and splay constants on
topological defects. We remind the reader of the elastic free energy with three terms
and substitute in the mapping from ki to Li to make the relationships explicit:

fel =
L1

2
∂kQik∂lQil +

L2

2
∂kQij∂kQij +

L3

2
Qij∂iQkl∂jQkl (40)

fel =
−k1 + k3

8S2
∂kQik∂lQil +

k1
4S2

∂kQij∂kQij +
−k1 + k3

4S2
Qij∂iQkl∂jQkl. (41)

Note that when k3 ̸= k1, two terms that were 0 now come into play: terms for L1

and L3. The L3 term is of higher order and its relevance is explored in a later section.
The L1 term however, is of the same order and so we don’t have an a priori idea of
its importance.

We find that k1 generally determines behaviour, e.g. the dipole flip. k3 has a
much smaller role, countering the dipole to monopole transition.

5.2.1 Dipole to Monopole

With only rotational fluctuations (QκBT = 0.04, resulting in different effective tem-
peratures, detailed in the legend), we increase the splay constant and find that
the dipole disappears (Figure 27). Starting with low splay and bend constants
(k1 = 0.01, k3 = 0.01), we see a clear dipole, although the magnitude of the iso-
tropic stress is not large. As splay becomes more dominant, the negative pole at the
head disappears and the positive pole at the tail only becomes stronger. This is ex-
plained when considering that the head of the defect has mostly bend deformations,
and the tail mostly splay. Therefore, when the splay constant dominates over bend,
the stresses will develop at the splay region, the tail. The flow field however keeps its
qualitative shape, only increasing the size of the double vortex pattern

The same happens for positive activity, which exhibits a dipole with the same
polarity which disappears with increasing splay dominance (unpictured). However,
for negative activity or rotational fluctuations with negative flow alignment, the dipole
does not decrease at all. On the contrary, the negative pole at the tail only gets
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stronger. This follows the same explanation that higher stresses will emerge where
the elastic constants are higher.

In fact, the behaviour is very similar to that of varying K as in the previous
section. This points towards high splay favouring contractile type isotropic stress
dipoles, which is shown in the next part.
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Figure 27: The stress dipole disappears as splay becomes more dominant. The
contour line denotes the line of σiso = 0. Q̂κBT = {2, 1, 0.67}, ξ = 1, k1 ∈
{0.01, 0.03, 0.05}, k3 = 0.01 Total isotropic stress for columns 1, 2, 3: σiso,1 =
0.05, σiso,2 = 0.9, σiso,3 = 2.5

The effect of the bend constant, k3, is opposite but less obvious, because it can be
overwhelmed by changes in the splay constant, k1. So at low splay constant, we vary
the bend constant k3 and see that in contrast to increasing the splay constant k1, now
the negative pole at the head grows stronger (Figure 28). This makes sense because
the head is the bend region, so that pole should get stronger as its elastic constant is
increased. To quantify this, we summed the total isotropic stress and found that it
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decreases with increasing bend constant, k3.
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Figure 28: As k3 increases, the negative pole at the head gets stronger. The con-
tour line denotes the line of σiso = 0. Q̂κBT = {2, 1, 0.67}, ξ = 1, k1 = 0.01, k3 ∈
{0.01, 0.03, 0.05}. Total isotropic stress for columns 1, 2, 3: σiso,1 = 0.14, σiso,2 =
0.09, σiso,3 = 0.05

It is also visible that the defect pattern does not grow in size as with increasing
splay constant, k1, or single elastic constant, K.

5.2.2 Dipole flip with k1

When we have antagonistic rotational fluctuations and activity, that is the signs of
activity and flow alignment are opposite, we can observe a flip in the polarity of the
isotropic stress dipole when varying splay vs bend, by keeping bend constant and
increasing splay (Figure 29). Note that the isotropic stress magnitude increases.
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At low splay, we see a contractile type isotropic stress and flow pattern. This is
in line with negative activity. At high splay, we find a isotropic stress pattern very
similar to that at 0 activity (rightmost in Figure 27). This is in line with rotational
fluctuations at positive flow alignment.
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Figure 29: “Dipole” polarity flips as k1 increases. The contour line denotes the line of
σiso = 0. Q̂κBT = {0.67, 0.5, 0.4}, ξ = 1, ζ = −0.05, k1 ∈ {0.01, 0.03, 0.05}, k3 = 0.05.
Total isotropic stress for columns 1, 2, 3: σiso,1 = 0.05, σiso,2 = 0.6, σiso,3 = 1.6

As with varying only K, we see the effect of the activity at low elasticity and of
the fluctuations at high elasticity. It is not possible to see the dipole flipping with k3.

5.3 Importance of L3

As we developed the elastic free energy in terms of L (8), we expanded in Q and used
two second order terms and one third order term. However, in 2 dimensions, we only
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have bend and splay, so only two terms are needed in the k description. Because of
the map from k to L, we end up with three terms in the L description. However it is
likely that the third order term is less important and we test that here by comparing
simulations with and without the third order term. The term is only relevant when
k1 ̸= k3, so we look at defects when splay and bend constants are very different.

For only fluctuations or activity there is almost no difference between 2 terms or
3 terms, so we show defect isotropic stress patterns for antagonistic fluctuations and
activity (Figure 30).
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Figure 30: Comparison of simulations without (left) and with (right) L3 term with
antagonistic fluctuations and activity (Q̂κBT = 0.67, ξ = 1, ζ = −0.05). At high
splay (top row, k1 = 0.05, k3 = 0.01), the patterns are very similar except that when
L3 = 0, the stress is slightly higher. The same can be said for high bend (bottom
row, k1 = 0.01, k3 = 0.05), the patterns are very similar, except that the absolute
values are slightly higher.

Whether or not we include the L3 term, does not make a qualitative difference.
We have provided some images to show the similarity, but a thorough analysis of the
extra term would need a quantitative analysis. It is sufficient to note, that the defect
pattern is largely unaffected and so we need not worry about the L3 term.

5.4 Summary

In this section, we investigated the effect of varying the single elastic constant K, as
well as the impact of relaxing the single elastic constant approximation, on the stress
patterns around topological defects.

Generally, we saw that varying K or k1 are very similar, whereas k3 makes little
difference. Regarding the isotropic stress dipole, we saw that increasing K leads to a
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loss of the defect for fluctuations or activity, except in the case where flow alignment
and activity have opposite signs. When fluctuations and activity were acting against
each other, i.e. when fluctuations and activity were added, and flow alignment and
activity had opposite signs, we saw the reversal of the dipole with the elasticity. At
low elasticity, the activity dominated and we saw the isotropic stress dipole orientation
as expected from the activity, whereas at higher elasticity, the fluctuation dominated
and we saw the isotropic stress dipole orientation as expected from the fluctuations.
Seeing the fluctuations and activity acting at different scales is a valuable insight to
the interplay between activity, flow alignment and elasticity. A recent experiment
saw that reducing inter-cellular adhesion led to a switch from extensile to contractile
behaviour [19]. In this section we have seen how, in reducing elastic effects, the system
can switch between contractile and extensile.
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6 Discussion and Outlook

In this section, we review the discovery and analysis of motile topological defects
in passive nematics and the influence that fluctuation strength, flow alignment and
elastic effects have on the defects. We then contextualise the simulations, comparing
our observations to those in the literature. Finally, we propose future directions for
the work.

Using continuum simulations of a wet, passive nematic, we implemented fluctu-
ations in the hydrodynamical and the nematic field. We found self propelled topo-
logical defects for both types of fluctuations. Looking closer at the defects, we saw
that the flow field [10, 82, 83] and isotropic stress [10, 19] closely matched those seen
in experiment and both continuum [10] and cell based [97] active nematics simula-
tions. We saw that backflow is necessary to the generation of motile defects and that
the sign of the flow alignment parameter determines whether the defect movement is
extensile or contractile.

The phenomenon of the fluctuation-induced defect chaos phase may be under-
stood as follows: ±1/2 defect pairs are continually nucleated by fluctuations. The
+1/2 defect, through elastic interactions, generates a flow field with a jet in the
centre, leading to self propulsion. The +1/2 defect then propels itself through the
fluid, stirring up the director field, thereby favouring further defect creation, until
it annihilates with a diffusively moving −1/2 defect. This steady state of birth and
death of defect pairs is the defect chaos phase.

Having found that the extensile or contractile behaviour of the defects is depend-
ent on the flow alignment, we saw that fluctuations and activity can dominate each
other, depending on magnitudes. We showed that, depending on the parameter val-
ues, varying only fluctuation strength or activity can lead to a switch from extensile
to contractile behaviour, or vice versa. Activity was shown to play a larger role in
systems with a low elastic constant, whereas when the single elastic constant was in-
creased, the expected pattern for the fluctuations dominated. Varying the individual
bend and splay elastic constants, we demonstrated that an increased value results in
increased stress in the bend dominated head or the splay dominated tail, respectively.

6.1 Discussion

Our main contribution is the discovery of the fluctuation-induced defect chaos phase
in continuum simulations. Nonetheless, extensile or contractile nematics have been
predicted for passive nematics with fluctuations. Killeen, Bertrand and Lee [28]
published a paper analytically showing the existence of extensile nematics in passive
nematics with fluctuations in the velocity. To test extensility of the system, they
looked at ⟨v · (∇ · Q)⟩, which measures the agreement between the flow and the
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direction of nematic splay (the tail region of the defect), so the higher the absolute
value, the higher the absolute value of the extensility. The result of their linear
stability analysis showed, for flow alignment λ, fluctuation strength ∆ and some term
A > 0:

⟨v · (∇ ·Q)⟩ = −2λ∆A. (42)

So if λ > 0, the system is extensile, implying that the defects will also be extensile and
vice versa, if λ < 0, the system is contractile, implying that the defects will also be
contractile. Our results show that for fluctuations in both velocity or director, active
nematics style defect chaos can result. Ours is a more general result, but agrees with
[28] that fluctuations in velocity, with a positive flow alignment will lead to extensile
active nematics.

We also showed that the backflow effects, the coupling between nematic and hy-
drodynamic fields, are essential in the extensile or contractile behaviour of the defects.
The self-propulsion of +1/2 defects in passive nematics with hydrodynamics was seen
in [83], where the authors saw that adding hydrodynamics increased the speed of the
+1/2 defect relative to the speed of the −1/2 defect. A recent analytical study [86]
suggests that in wet nematics, a +1/2 defect will generically generate self propulsion.
These studies agree well with our results and our interpretation, that defects are
nucleated by fluctuations and propelled by elastic effects interacting with the fluid.

In this way, our results are well supported by recent theoretical studies. However,
this work was the first to show the interaction between fluctuations and elasticity to
create the defect chaos phase. It is also important to note that this work is based on
continuum models. These models are very general, and the equations for the evolution
of the nematic and the fluid are widely applicable, not only for cellular systems but
2D wet nematics, such as bacterial collectives [42, 106], microtubule-kinesin motor
mixtures [4], actin-myosin complexes [5] and even environmental active fluids such as
dense suspensions of phytoplankton or krills [107].

The fluctuating forces that cells exert on their surroundings have been extens-
ively documented [53, 56, 98] and are associated to various sources including, but not
limited to, traction force fluctuations exerted by focal adhesions [54, 55, 99], associ-
ation/dissociation of stress fibers [100], and oscillations in Rho proteins [101, 102].
Fluctuations in orientational order are less well investigated, but the data shows large
fluctuations, e.g. in the nematic phase in Drosophila pupal wings [93] or measurement
of rotational fluctuations in rat embryo fibroblasts [58]. We extensively compared the
fluctuations in our model to those observed in biological tissues (Section 4.5) and
found that the fluctuation strengths used in the model were of a similar or lower
magnitude. Furthermore, the timescales of fluctuation and activity and defect flow
fields were found to be on the same order of magnitude as experimental measure-
ments. Finally, we also showed that the fluctuation-induced defects were very similar
to those induced by activity in the same continuum model. These comparisons speak
to the importance of the fluctuation-induced defects. The discovery, only now, of the
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fluctuation-induced defect chaos phase in continuum modelling may be ascribed to
the little research into fluctuating wet nematics.

But the extensile or contractile defect chaos is not just a peculiar model effect
but has been observed across various biological tissues, including epithelial cells [10,
19, 44], mesothelial cells [29] and fibroblasts [11]. These cells have been characterised
as active nematics due to their exhibiting motile +1/2 defects, which we have now
shown is not uniquely a feature of active nematics. Notably, fibroblasts have been
characterised as having low activity [11] and estimation of their effective temperature
lined up well with our own effective temperatures. These fibroblasts could then be a
system in which fluctuations play a real role in defect dynamics.

In the wet passive nematic, we saw the unbinding of motile +1/2 defects, at
fluctuation strengths below those required for dry, BKT defect unbinding (Figures
19, 18). Therefore this transition to defect chaos is not the BKT transition. We
see then, that bound defect pairs, nucleated by fluctuations, are unbound by elastic
effects and that in this case, the +1/2 defect is self-propelled. This transition deserves
investigation.

When we consider that fluctuations are ubiquitous, both generically as a feature
of non-idealised systems and measured across biology [47, 53, 56, 57], it is right to
investigate active nematics in the presence of fluctuations. In doing this, we saw that,
at large ranges of activity and fluctuation strengths, the effect of one or the other
dominates the appearance of the defect chaos (Figure 21). For example, large fluctu-
ations creating an extensile defect chaos phase even when the activity was negative.
However, if we imagine that a cell or tissue operates near the boundary between the
extensile and contractile phases, the cell can easily switch between contractile and
extensile behaviour. Activity, as an active process of the cell, is available for the
cell to change and has been observed to vary as the tissue develops [103]. Similarly,
fluctuation strength can be controlled by the cells themselves, as the fluctuations
are not thermal but actually also active process of the cell such as fluctuating focal
adhesion protrusion [53, 55]. We also saw that when activity and fluctuations were
acting in opposite directions, i.e. when the signs of activity and flow alignment were
not the same, the generation of defects could be entirely suppressed. This adds an
extra dimension to the agency of the tissue – complete suppression of defect chaos
at the right activity and fluctuation strength, with easy access to the contractile or
extensile phase.

Elasticity of the nematic is another parameter that can be varied across different
cell types or varied by cells themselves [105, 108]. We found that, when increasing
the single elastic constant for a fluctuating system, an isotropic stress dipole would
turn into a monopole, with only tension at the tail. For an active system however,
depending on the flow alignment, the dipole could either disappear or grow stronger.
In light of the functional role that the stress around the defect plays, such as effecting
cell extrusion [10], control of the defect isotropic stress pattern by changing the elasti-
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city is an interesting observation. We found that when both fluctuations and activity
were present, at low elasticity, the activity dominated the defect flow and isotropic
stress patterns, but with increasing elasticity, the fluctuation-induced pattern became
stronger, finally dominating. This effect of activity and fluctuations having different
impacts at different elasticities is an interesting insight into the interplay between
these factors. It also gives another option for a tissue to switch from extensile to con-
tractile, reducing inter-cellular elastic effects by, e.g. reducing inter-cellular adhesion
or connection.

We have now seen multiple ways in which the tissue could switch from extensile
to contractile, by changing fluctuation strength, activity or the elastic constant. A
recent study investigated the active nematic behaviour of an MDCK monolayer [19]
and knocked out a key cell-cell adhesion protein. This reduction in inter-cellular
adhesion led to a flip of the isotropic stress pattern, just as we have seen. This points
towards a change in the elastic constant, as now cells have less adhesion to their
neighbours and therefore less force transmission, resulting in smaller elastic effects.
However, one might also point out that, by uncoupling the cell from its neighbours,
it is free to change its shape more freely and therefore fluctuations could play more
of a role.

6.2 Outlook

The main result of this work – the discovery of the defect chaos phase generated by
fluctuations and perpetuated by elastic effects – opens up a lot of potential research
directions both theoretically and experimentally. In particular, characterisation of the
transition from nematic order to defect chaos and characterisation of the fluctuation
and elasticity driven defect chaos.

As we have seen, the transition to defect chaos happens at lower fluctuation
strength than the BKT transition and it would be very interesting to explore this
further and possibly place this transition into a universality class. A further charac-
terisation of the fluctuation driven defect chaos phase, by e.g. correlation or struc-
ture functions might reveal differences to the active nematic defect chaos phase. This
would suggest a combined experimental and computational study to find out which
cell layers are actively driven and which are fluctuation driven.
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