
UNIVERSITY OF COPENHAGEN

MASTER THESIS

Exascale modelling using GPUs

Author:
Kristian Lyck LOTZKAT

Supervisors:
Troels Haugbølle

Åke Nordlund

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Physics

in the

Astrophysics and Planetary Science
Niels Bohr Institute

June 10, 2022

https://www.ku.dk/english/
https://nbi.ku.dk/english/staff/?pure=en/persons/12830
https://nbi.ku.dk/english/research/astrophysics/?pure=en/persons/35229
https://nbi.ku.dk/english/research/astrophysics/
https://nbi.ku.dk/english/

i

Declaration of Authorship
I, Kristian Lyck LOTZKAT, declare that this thesis titled, “Exascale modelling using
GPUs” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UNIVERSITY OF COPENHAGEN

Abstract
Faculty of Science

Niels Bohr Institute

Master of Science in Physics

Exascale modelling using GPUs

by Kristian Lyck LOTZKAT

The porting of the DISPATCH framework to execute on GPUs using OpenMP was
last year initialized by porting the finite volume MHD solver to GPUs. Here the
porting of DISPATCH is continued, with the main focus of solving selfgravity on the
GPUs. Several implementations with different memory structures are made. The
implementations are based on previous implementations, where bunches of tasks
are transferred and updated simultaneously on the GPUs. A new offload imple-
mentation is made, which allows to use several devices. Due to problems with the
existing code, implementation in the DISPATCH framework has not been possible.
Instead, the implementations have been thoroughly tested in mockups as prepara-
tion for the implementation in DISPATCH. A suggestion to a new offloading system
is given, which may provide better utilization of both the CPU and GPU hardware.

It is found that solving selfgravity on the GPUs is indeed possible. The simple
nature of the SOR method does not allow for good utilization of the GPU hardware,
but does in general perform better than the CPU-version, provided a good schedul-
ing scheme of the bunches is used. Bunches should at least contain the same number
of patches as there are streaming multiprocessors on the GPU. This seems to make
the performance less dependent on the number of available CPU cores and provides
the best results. The implementations have been compared to the CPU version and
does indeed yield the same results. However, validation from running experiments
is still needed once fully implemented in DISPATCH.

HTTPS://WWW.KU.DK/ENGLISH/
https://science.ku.dk/english/
https://nbi.ku.dk/english/

iii

Acknowledgements
I would like to thank my supervisors, Troels Haugbølle and Åke Nordlund, for pro-
viding guidance and assistance when needed throughout the project. Their vast
knowledge, both technical and theoretical, has provided a solid foundation for most
of the work.

I would also like to give a thank to Sven Karlson, who participated as an extra
supervisor during the first half of the thesis, providing great knowledge about the
technical details behind hardware and compilers.

Lastly, I will give a great thank to Stibofonden for funding a trip to Kajaani,
Finland, where I participated in a PRACE autumnschool, hosted by the CSC, about
porting codes to GPUs using OpenMP. This provided a great opportunity to discuss
the project with some of the people behind LUMI and the great experience to actually
see the LUMI supercomputer.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1

2 High Performance Computing 3
2.1 Basic computer Architecture . 3

2.1.1 Memory . 4
2.1.2 The Central Processing Unit . 5
2.1.3 The Graphics Processing Unit . 7

The execution model . 8
2.2 GPU programming . 8

2.2.1 The programming model . 9
2.2.2 Directive based programming 10

OpenMP . 11
2.3 Compilers . 12
2.4 HPC systems - Supercomputers . 13

2.4.1 LUMI . 13

3 DISPATCH 15
3.1 Key ideas . 15
3.2 Tasks . 16
3.3 Offloading . 17
3.4 Task scheduling . 17

4 Theory 19
4.1 Selfgravity . 19

4.1.1 Iterative methods . 20
Jacobi iterations and Gauss-Seidel 21
Red-black iteration . 21
Successive Overrelaxation . 22

4.1.2 Multi-grid methods . 23
4.1.3 Solving Poisson’s equation in DISPATCH 23
4.1.4 Gravity at different scales . 24

5 Implementation 26
5.1 Mockups . 26

5.1.1 poisson_mock.f90 . 26
5.1.2 GPU-implementation - pre-steps 26

Step1.f90 . 26
Step2.f90 and Step3.f90 . 27

v

Step4.f90 . 27
Step5.f90 . 28
Step6.f90 . 28
Profiling . 29

5.1.3 GPU-implementation - final versions 29
Profiling . 31

6 Results 33
6.1 Optimal setup . 33

6.1.1 CPU-version . 33
6.1.2 System size . 34
6.1.3 Patch per bunch . 35
6.1.4 Bunch per device . 35
6.1.5 Cores per device . 36
6.1.6 Patch dimensions . 38

7 Discussion 40
7.1 Current results . 40

7.1.1 Optimal setup vs. DISPATCH . 40
7.1.2 SOR on GPU . 41

7.2 DISPATCH offload implementation - improvement ideas 42
7.2.1 Execution flow . 42
7.2.2 Asynchronous pipelining . 44
7.2.3 Linked list of procedure pointers 45

8 Conclusion 47

A Bunch version 49
A.1 Device_handler_mod . 49

Update . 49
Assign device . 49

A.2 Device_mod . 50
Assign bunch . 50

A.3 Bunch_mod . 50
Copy to bunch . 50
Copy from bunch . 51
Update . 51

A.4 SOR . 52

Bibliography 54

vi

List of Figures

2.1 The memory hierarchy of computer architectures, showing the typi-
cal capacity range and access time for each layer. Not all computers
contain all the layers. The price and capacity increase as one moves
up the hierarchy, whereas the access time decreases. 5

2.2 Basic architecture of a dual core CPU-chip and the memory layers.
The main memory and L3 cache are places off-chip. The L2 cache is
usually places on-chip shared between the cores. Each core contains
a control unit, registers, an ALU and two L1 caches - one for data and
one for instructions. 6

2.3 Basic architecture of a GPU. On the left is the GPU, mainly containing
different memory layers, a workload distributor and several stream-
ing multiprocessors (SM). On the right is an SM containing different
kind of memory, warp schedulers, dispatch units and several cores . . 7

2.4 Programming abstractions for GPU hardware. The computational do-
main is decomposed into a grid, consisting of several blocks. Each
block contains several threads which are executed in warps. 10

3.1 A 2D computational domain is distributed to MPI processes. Each
MPI process owns the tasks within the blue dashed square, which is
divided in two groups boundary tasks(yellow) and internal tasks(green).
The MPI rank also holds information of boundary tasks from neigh-
bouring ranks, which constitute a third group of boundary tasks(red).
The exchange of tasks between ranks happens by simply changing a
virtual task to a boundary task and vice versa. 16

3.2 Simplified flow chart of the intra-node execution in DISPATCH. Ev-
erything within the red dashed square is the execution flow when ex-
ecuting on CPUs and everything within the blue square is the execu-
tion flow when executing on GPUs. 18

4.1 Red/Black iteration. During the first iteration all the black cells are
updated. During the second update all the red cells are updated, us-
ing the updated black cells. This procedure continues until conver-
gence after N iterations. 22

5.1 Profile of Step6.f90 using Nsight Systems, executing using eight cores
and one GPU. Three bunches containing 108 patches each are used.
The black lines indicate when a core is active. The blue lines indicate
kernel execution on the GPU and the red and green lines are data
transfers between the host and the device. 29

vii

5.2 Profile of the bunch version using Nsight Systems, executing using
eight cores and one GPU. Three bunches containing 108 patches each
are used. The black lines indicate when a core is active. The blue lines
indicate kernel execution on the GPU and the red and green lines are
data transfers between the host and the device. 31

5.3 Profile of the device version using Nsight Systems, executing using
eight cores and one GPU. Three bunches containing 108 patches each
are used. The black lines indicate when a core is active. The blue lines
indicate kernel execution on the GPU and the red and green lines are
data transfers between the host and the device. 32

5.4 Profile of the bunch version using Nsight Systems, executing using
eight cores and two GPUs. Three bunches containing 108 patches each
are used. The black lines indicate when a core is active. The blue lines
indicate kernel execution on the GPU and the red and green lines are
data transfers between the host and the device. 32

5.5 Profile of the bunch version using Nsight Systems, executing using
eight cores and one GPU. Three bunches containing 216 patches each
are used. The black lines indicate when a core is active. The blue lines
indicate kernel execution on the GPU and the red and green lines are
data transfers between the host and the device. 32

6.1 Left: Time per patch in ms vs. number of cores for different mesh sizes.
Right: Time per cell in ns vs. number of cores using different patch sizes. 34

6.2 The time per patch in ms as a function of the total number of patches
for different versions of the mockups. The GPU versions uses one
device and eight cores, and the CPU version uses 16 cores. The per-
formance seems to get better as the number of patches increase, which
is likely due to the overhead of initializing tasks, transferring data etc.
becomes less significant compared to the amount of computations. . . 34

6.3 The time per patch in ms as a function of the number of patches per
bunch for all the GPU versions, using one device and eight cores. Left
is with three bunches per device, right is with 6 bunches per device. In
general, it is best to use a bunch size which is a multiple of the number
of SMs on the GPU, rather than having the total number of patches to
be a multiple of the bunch size. 35

6.4 The time per patch in ms as a function of the number of bunches per
device for the bunch-, device- and Step6-version, using one device
and eight cores. Solid lines is with Level = 4 and dashed lines is with
Level = 5. 36

6.5 Bunch version: The time per patch in ms as a function of the number
of cores using different number of bunches and bunch sizes. Plots on
the left use 108 patches per bunch, plots on the right uses 216 patches
per bunch. The two plots on the top are with one device, the two plots
in the middle are with two devices and the two plots at the bottom are
with 3 devices. 37

6.6 Device version: The time per patch in ms as a function of the number
of cores using different number of bunches and bunch sizes. Plots on
the left use 108 patches per bunch, plots on the right uses 216 patches
per bunch. The two plots on the top are with one device, the two plots
in the middle are with two devices and the two plots at the bottom are
with 3 devices. 38

viii

6.7 Time per cell vs. number of cores using different patch-dimensions
and bunch sizes. For each run three bunches per device is used. Left
is the times for the bunch version. Right is the times for the device
version. Top uses one device, middle uses two devices and the bottom
uses 3 devices. 39

7.1 Flowchart of the suggested execution flow. 43
7.2 Asynchronous pipelining of GPU instructions using OpenMP. The red

square on top shows the current execution, where one target task is ex-
ecuted at a time. The green square in the middle is the asynchronous
pipelining, where data transfers and kernel execution are executed
concurrently. The blue square at the bottom shows the optimal exe-
cution, where threads continue execution on the CPU while the target
tasks are executed on the device. 45

ix

Listings

2.1 Example of using the target directive to offload data and kernels to
the device . 11

5.1 Assigning memory locations to thread 27
5.2 Pseudo-code example of update subroutine 27
5.3 Update function with offload . 28
5.4 Call to SOR_bunch . 29
A.1 The update routine . 49
A.2 Assigning a device, bunch and bunch-slot to a thread 49
A.3 Routine that copies to bunch, and updates when full and the device is

free . 50
A.4 Routine that copies patch data to the bunch 50
A.5 Routine that copies patch data from the bunch 51
A.6 Routine that updates the bunch on the device 51
A.7 SOR bunch routine . 52

x

List of Abbreviations

ALU Arithmic Logic Unit
AMR Adaptive Mesh Refinement
API Application Programming Interface
CG Conjugate Gradient
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DRAM Dynamic Random Access Memory
DtH Device to Host
FLOPS Floating point Operations Per Second
GPU Graphics Processing Unit
GPGPU General Purpose Graphics Processing Unit
HIP Heterogeneous computing Interface for Portability
HPC High Performance Computing
HtD Host to Device
I/O Input/Output
LB Left Bottom
LT Left Top
LHS Left Hand Sight
MHD MagnetoHydroDynamics
MPI Message Passing Interface
NUMA Nonuniform Memory Access
OpenACC Open Accelerators
OpenMP Open Multiprocessing
OS Operating System
RB Right Bottom
RHS Right Hand Sight
RT Right Top
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Treads
SM Streaming Multiprocessor
SOR Successive Overrelaxation
SRAM Static Random Access Memory

1

Chapter 1

Introduction

Testing theories describing astronomical phenomena is hard, as experiments are
practically impossible to conduct and astronomers throughout history have been
forced to rely on observations. With the invention of computers, astronomers have
gotten a tool which allows to test theories through experiments in the form of com-
puter simulations, which is now firmly established as one of the main methods to
study the various dynamics of the universe.

These simulations may include several kinds of physics, such as hydrodynam-
ics, magneto hydrodynamics, radiative transport, heating and cooling and selfgrav-
ity. For this purpose many multiphysics frameworks have been developed, such as
ENZO (Bryan et al., 2014), Athena++ (Stone et al., 2020), WOMBAT (Mendygral et
al., 2017) and Boxlib (Zhang et al., 2016).

The requirements for these frameworks increase with the available computing
power provided by the great number of supercomputers around the world. The
computing power have increased drastically over the years and we are entering the
era of exascale computing, where supercomputers are able to perform 1018 compu-
tations per second. Supercomputers contain thousands of nodes and have tradition-
ally been based on Central Processing Units (CPUs). The Supercomputer Fugaku,
located in Japan, contains 158.976 nodes, each containing one CPU with 48 cores,
making a total of 7.630.848 cores.

The massive number of nodes does indeed provide a huge amount of computing
power and hence requires scientists to develop clever solutions for the frameworks,
to exploit all of the available resources. A widespread approach is using block-based
meshes or block-based adaptive mesh refinement techniques (Berger et al., 1989), al-
lowing to distribute blocks of the computational domain to all the nodes. The main
issue with either approach comes from the time stepping required to move forward
in time. The time step has to be applied globally, requiring global synchronization
between each time step, which constitutes an issue for the scalability of the frame-
works. In a survey by Dubey et al., 2014 they conclude, that frameworks must elim-
inate the bulk synchronous model to overcome these scalability issues.

DISPATCH is a fairly new framework (Nordlund et al., 2018), which takes a dif-
ferent approach to overcome the issues with scalability. The computational domain
is divided into several smaller tasks, which are distributed among the compute
nodes, like the just mentioned methods. However, instead of using a global time
step, each task uses a locally determined time step, thus requiring no global syn-
chronization and allowing each MPI-rank to only communicate with a finite number
of other ranks. This has shown to have almost unlimited scalability and provides a
perfect tool for the upcoming exascale era (Nordlund et al., 2018).

GPUs have provided a new source of computing power and have become popu-
lar for supercomputers and as of June 2022, 7 of the top 10 most powerful computers
in the world are based on GPUs, including the first real exascale machine Frontier

Chapter 1. Introduction 2

(Top500: June 2022). Among these is also LUMI, a new supercomputer located in Fin-
land. LUMI is the most powerful computer in Europe containing 2560 nodes, each
containing one CPU with 64 cores and four AMD MI250X GPUs.

Programs must be targeted specifically to GPUs, to utilize the full hardware.
This provides yet another challenge to the frameworks, as they must be prepared
to also run efficiently on heterogeneous systems. Directive based languages, such as
OpenMP, have become very popular to accomplish this, as it can be implemented
directly in the existing code, thus minimizing the additional code which must be
made. DISPATCH is currently being prepared to run on heterogeneous systems us-
ing OpenMP.

In the current DISPATCH-setup, CPUs are used for the pre- and post-processing
of the tasks, which are transferred to the GPUs in bunches, where all the computa-
tionally heavy updates take place. This requires some modifications to the existing
solvers, as they must solve a whole bunch of tasks, rather than just individual tasks.
It is currently only the finite volume MHD solver that has been prepared for this
(Haarh, 2021).

Gravity is a central topic in physics and plays a big role in most of the dynamics
of the universe. In grid-based simulation, iterative methods are used to solve for the
gravitational potential. DISPATCH currently have two implementations, which may
be used to solve for the gravitational potential, conjugate gradient (CG) and succes-
sive overrelaxation (SOR). At the core, these methods repeat the same computation
several times, until reaching an acceptable solution. Even though the CG method in
general performs better than the SOR method, the latter is simpler and thus seems
better suited for GPU prototyping.

This thesis aims to further prepare DISPATCH for GPU execution, by prepar-
ing the SOR routine to update a bunch of tasks on the GPU. It is divided as fol-
lows: Chapter 2 contains an overview of various topics in high performance com-
puting. This includes the fundamentals of computer architectures, a description of
the various hardware, GPU programming, compilers and High performance sys-
tems. Chapter 3 gives a brief description of the key ideas and implementations of
DISPATCH. Chapter 4 contains an overview of the theory behind selfgravity, includ-
ing various techniques to solve the Poisson equation and a brief description of the
algorithm used in DISPATCH. Chapter 5 describes the implementations which are
used to prepare the SOR routine for GPU execution. In chapter 6, several tests of
the GPU implementation are presented and compared to the CPU implementation.
Chapter 7 contains a discussion of the results and key points to be aware of when
implemented in DISPATCH. It further provides a discussion of some of the current
offload implementations in DISPATCH and suggestions to further improvements
and extensions. Finally the thesis is concluded in Chapter 8.

3

Chapter 2

High Performance Computing

Astrophysical simulations are becoming more complex as time moves forward and
the available computing power is constantly increasing. This requires the develop-
ment of frameworks, that have the necessary scalability to utilize the ever-growing
amount of hardware. Scientists are thus required to have some knowledge about
several tools, which allow them to accomplish this. This is the essence of High Per-
formance Computing (HPC).

There are several things to be aware of when doing HPC. Especially two top-
ics are of great importance: 1) how memory is distributed and shared among the
available hardware and 2) the source of the computing power.

This chapter will briefly cover some of these topics. First the main components
of computer architectures are described, including the memory system and the two
main sources of computing power - the Central Processing Unit (CPU) and the
Graphics Processing Unit (GPU). As the focus of this thesis is porting code to GPUs,
a brief description of how to produce code for a GPU is given. Finally, a short de-
scription of compilers is given, as these may have a huge impact on how the GPU
application works, especially when using directive based programming languages.

2.1 Basic computer Architecture

When doing High Performance Computing, the computer architecture has a great im-
pact on the performance of the program. Many different architectures have been in-
troduced through history, which all have had their pros and cons. The most popular
architectures for simple computers, which most modern computers have adapted
- or at least very similar ones, are the Von Neumann , Harward- and Modified Har-
vard architectures which mainly differ in the number of access paths between differ-
ent hardware components. Independent of the architecture, almost every computer
consists of three main hardware components - the Central Processing Unit (CPU), a
memory system and an input/output (I/O) system - which each have to be tuned and
optimized in order to achieve the best overall performance. Besides the three main
components, most modern computers also contain some sort of Graphics Processing
Units (GPU), either integrated on the CPU (integrated GPU) or as a separate hardware
component, better known as dedicated- or discrete GPUs. As the name suggest, GPUs
were designed to handle graphical work which required processing huge amounts
of data, as quickly as possible. The great computing power of a GPU have made
them popular for more general computing tasks, where they serve as accelerators in
many HPC systems (Null et al., 2014).

High performance systems are not as simple as "normal" computers, as they con-
tain much more hardware, making the architectures more complex. They may con-
tain thousands of nodes, allowing for highly parallel execution. This allows for great

Chapter 2. High Performance Computing 4

performance, but also introduces various issues, which the programmer must deal
with. Before going into depth with this, a brief description of each of the just men-
tioned components will be given.

2.1.1 Memory

Any computer program needs a memory system to store data. Accessing memory
is in general a very slow process compared to performing actual computations, usu-
ally referred to as the processor-memory gap. This is a potential bottleneck for the
performance of a system, as it will lead to lots of idle time for the CPU while it waits
for memory to arrive. New hardware for memory have been developed, such as
static random access memory (SRAM), which is much faster to access than the dynamic
random access memory (DRAM) which is used as main memory. The problem with
the faster memory hardware is that it is much more expensive per byte. To account
for this, the memory system consists of several layers - also known as the memory
hierarchy see Figure 2.1. The idea is to have the fast memory hardware very close
to the processor, working as a kind of temporary memory - called cache - which the
processor can access very fast. The cache memory is much smaller in size - usually
in the range of KB or MB, depending on the specific location - but usually contains
the needed data. The higher levels contain a subset of the data of the lower levels
and when the needed data is not present in one layer, the system will usually find it
in the next layer in the hierarchy. In effect, this allows the memory system to seem
having the capacity of the slower memory hardware (usually GB) at the lower levels
of the hierarchy, but the access time of the faster hardware (∼4-40 clock cycles) at
the higher levels. This is all based on the principle of locality - the fact, that processors
tend to access memory in a specific pattern. It is usually split up in two categories:
temporal locality, the fact that recently accessed memory is likely to be accessed again
and spatial locality, that is if address x have just been accessed, address x + 1 is likely
to be accessed next. Thus, instead of only moving the needed data to the CPU, the
memory system moves a block of memory to the higher level in the hierarchy, in-
creasing the chance that the data, which is needed next, will be in the fast cache
memory.

At the top of the hierarchy we have the registers, usually around 64 bits in size.
They are located within the CPU, and only contain the most relevant data and ad-
dresses which are to be used for the current instruction. They are usually divided
into sets, where some sets are for general-purpose others for special purpose. The
next layers are the cache memory. There are several different kinds located at dif-
ferent places. Not all computers contain all of them. The L1 cache has the smallest
capacity and is usually located within a core, to which it is local - meaning it can only
be accessed by that specific core. Most modern computers contain two L1 caches,
one for data and one for instructions. This decreases the probability of getting a
cache miss, when the needed memory is not present. If a computer contains the L3
cache, the L2 cache is usually located on the CPU chip - shared among several cores
and the L3 cache is located off-chip between the CPU and the main memory.

Chapter 2. High Performance Computing 5

∼ 1 cycles

∼ 2− 4 cycles

∼ 10 cycles

∼ 40 cycles

∼ 200 cycles

� 200 cycles

Bits

KB

KB-MB

MB

GB

GB-TB

Che
ap

er
pe

r b
yt

e,
m

or
e ca

pa
cit

y
Faster

Secondary memory

Main Memory

L3 cache

L2 cache

L1 cache

Registers

FIGURE 2.1: The memory hierarchy of computer architectures, show-
ing the typical capacity range and access time for each layer. Not all
computers contain all the layers. The price and capacity increase as

one moves up the hierarchy, whereas the access time decreases.

Reading from memory is only one side of the story. Scientific programs also
require a lot of writing to memory, which may cause some issues, especially when
doing parallel computing using several cores or CPUs. If two CPUs contain the same
cache line from main memory and CPU A computes a new value and updates it in
its local cache, then the cache line of CPU B and the location in main memory will
contain the wrong values. Memory has to be consistent throughout the memory
hierarchy - or at least the memory in the caches should only contain the newest
updated values, which is usually handled by some cache coherence protocol by the
CPU. The protocol varies depending on the write protocol, but in almost all cases it
will affect the performance, mainly through memory overhead and is thus important
to be aware of.

The memory hierarchy is necessary to keep relevant memory as close to the CPU
as possible. Using only one CPU with one core, this is fairly simple. Modern CPUs
however usually contain several cores, and sometimes even several CPUs. This
complicates things slightly as memory may be physically further away from some
cores than others, introducing extra latency to access. An architecture where a global
memory space is shared between all cores, but parts of it is more local to some cores
than others, is referred to as a nonuniform memory access (NUMA) architecture, an
example of a distributed shared memory system.

Some architectures are made of several "individual" computers, usually referred
to as nodes. Each node may contain one or several CPUs and a local memory sys-
tem, which cannot be accessed by other nodes. Nodes are then connected via some
interconnection network, allowing to transfer data between nodes. This is an exam-
ple of a distributed memory system and is what most modern supercomputers uses
(Dumas, 2017).

2.1.2 The Central Processing Unit

The Central Processing Unit is the brain of the computer with the main purpose of
processing data. It usually consists of three main components, the Control Unit, an
Arithmic Logic Unit (ALU) and memory. The Control Unit controls which instructions
are to be executed and makes sure the needed memory is ready for the execution.
Doing so, it prepares the registers with the necessary data and decodes the instruc-
tions for the ALU, which then performs the instructions.

Chapter 2. High Performance Computing 6

CPUs have improved a lot throughout the years and modern CPUs usually con-
tain several cores, which allows the computer to run several processes concurrently
- an example of a multicore processor is shown in Figure 2.2. The cores usually only
perform one instruction at a time, thus older CPUs with one core would only allow
one process to run at a time. However, today the Operating System (OS) allows each
core to run several processes concurrently, by switching between various processes
- also known as context switching. When one process stalls, e.g. because it is waiting
for memory, the OS will switch to a different process which is ready for execution.
Context switching is completely hidden from the user, to which it will seem as if
several programs are running at the same time. With the introduction of threads -
a sort of mini processes which a process can be subdivided into - the performance
of CPUs was improved even further through multithreading - allowing multiple
threads to execute in parallel. Threads share the same execution environment as
their parent process and thus require fewer system resources. As a consequence,
context switching between threads will generate less overhead compared to context
switching between processes (Dumas, 2017).

CPU Chip
Core 1

ALUControl
Unit

Registers

L1 Cache - I L1 Cache - D

Core 2

ALUControl
Unit

Registers

L1 Cache - I L1 Cache - D

L2 Cache

L3 Cache

Main memory

FIGURE 2.2: Basic architecture of a dual core CPU-chip and the mem-
ory layers. The main memory and L3 cache are places off-chip. The
L2 cache is usually places on-chip shared between the cores. Each
core contains a control unit, registers, an ALU and two L1 caches -

one for data and one for instructions.

Most modern CPUs can also handle multiple instructions at once through pipelin-
ing - thus utilizing as much hardware as possible by dividing instructions into differ-
ent stages, which are then executed concurrently. The CPU further allows multiple
data to be computed at once - also known as Single Instruction Multiple Data (SIMD)
- which are often very useful within scientific computations, as most data is stored
as huge arrays, which undergoes several operations. Allowing multiple data to be
computed in one instruction-call can increase the performance drastically. The tech-
nical details behind all these things, which allows a CPU to process data faster, is
out of the scope for this thesis, and will not be described further. They are however
very important to be aware of while programming, as they allow for different levels
of parallelism - which can all be utilized to achieve better performance.

Through the just mentioned improvements, CPUs have become very powerful
and modern CPUs found in most laptops are able to run with a clock rate well above
3 GHz, the best once up to around 5 GHz (executing more than 5 billion clock cycles
per second). Each instruction performed takes a number of clock cycles to finish
depending on the instruction. Reading from main memory may take about 50-200

Chapter 2. High Performance Computing 7

clock cycles, whereas multiplication of two floating-point numbers only takes about
1 cycle. When comparing the performance of two CPUs, the clock-cycle may how-
ever be misleading. One of them might have a lower clock-frequency than the other
but may be able to perform several instructions per clock-cycle, leading to a better
overall performance. Because of this, the performance of a given hardware is often
compared in FLOPS (Floating point Operations Per Second), which gives a better over-
all comparison (Robey et al., 2021). As an example, the theoretical peak performance
of a 16-core AMD EPYC 7302 CPU at 3GHz is approximately 1.5 TFLOPS.

From the examples of number of clock cycles per instruction, it is obvious that
reading and writing to/from memory takes much longer than performing actual
computations (50-200 cycles vs. 1 cycle). This is commonly referred to as the processor-
memory gap. As CPU speed has improved significantly over the years, read- and
write-speed have improved very little. Despite that, engineers have found smart
ways to account for this using a complex memory hierarchy, which is described in
Section 2.1.1.

2.1.3 The Graphics Processing Unit

Graphics Processing Units were originally invented to accelerate numerical through-
put for graphical tasks - hence the name - but have developed so they today are used
in a wide variety of domains and are better described as accelerators - a special-
purpose device that supplements the CPU. They are becoming increasingly pop-
ular as the main working horse of supercomputers and thus many vendors, such
as NVIDIA and AMD, provide a big variety of powerful General Purpose GPUs
(GPGPU). Each vendor uses slightly different terminology describing the hardware
but have roughly the same architecture. For simplicity, I shall use the NVIDIA-
terminology.

GPU

GPU RAM Workload
distributor

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

Streaming
Multiprocessor

Shared memory/L1

Warp Schedulers

Dispatch Units

Registers

FIGURE 2.3: Basic architecture of a GPU. On the left is the GPU,
mainly containing different memory layers, a workload distributor
and several streaming multiprocessors (SM). On the right is an SM
containing different kind of memory, warp schedulers, dispatch units

and several cores

A simplified sketch of a GPU architecture (which does not apply to all GPU-
models) is shown in Figure 2.3. Unlike the CPU, most of the hardware on a GPU is

Chapter 2. High Performance Computing 8

made to process data and it does not contain the same amount of memory layers.
It consists of GPU RAM, a workload distributor, an L2 cache and several Streaming
Multiprocessors (SM). All instructions are executed by the SMs, rather than individ-
ual cores - which is one of the major distinctions between CPUs and GPUs. Each
SM usually contains several warp schedulers, dispatch units and a dedicated L1
cache/shared memory, several cores and a dedicated register space, which is shared
among all the cores (Robey et al., 2021). As an example, the NVIDIA A100 GPU con-
tains 108 SMs, each containing 64 single-precision cores (32 double-precision cores),
thus a total of 6912 single precision cores and a theoretical peak performance of 19.5
TFLOPS.

All memory layers on a GPU are much smaller than the equivalent memory on
a CPU, but have a much higher memory bandwidth. The physical space is instead
used for more cores. The main reason for the lack of memory, is that the memory
hierarchy on a GPU is only designed for spatial locality, where it on the CPU is
designed for both spatial and temporal locality. That is CPUs are designed to hide
memory latency through a complex cache hierarchy, where GPUs are designed to
hide latency through computations (Dumas, 2017).

The execution model

When a kernel is sent to the GPU, it is divided into several threads. Threads are
then grouped together into warps. A warp usually consists of 32-64 threads, each
operating on scalar data. Each SM can usually execute 2048 threads (32 warps) con-
currently. In practice this number is however usually much smaller. All threads
within a warp have to perform the same instruction, but may do it on different data.
The operations do thus not classify as SIMD like on the CPU, but rather as Single
Instruction Multiple Threads (SIMT). Some GPUs also contain vector hardware units,
allowing to perform SIMD operations in addition to SIMT. Since all threads within a
warp can only execute the same instruction, they are executed in lockstep and every
thread must execute all paths. The warp will not terminate before all threads are
completed, it is therefore of great importance to group similar threads as much as
possible to utilize the hardware and obtain the best performance.

The cache on the individual SMs is usually incoherent. This may potentially lead
to errors, but as we shall see in Section 2.2.1, the software usually makes sure that
no two SMs work on the same data at the same time.

The warp schedulers allow several warps to run concurrently. When a thread
within a warp gets a cache-miss, the warp will be put on a waiting list and a different
warp is scheduled. With enough threads/warps available, this will hide memory
latency, as the overall rate of computations will remain very high and thus not affect
the performance (Robey et al., 2021).

2.2 GPU programming

From the previous section, it is obvious that the architecture of a GPU is very differ-
ent from that of a CPU. This also means, that the programming model is very dif-
ferent. Programs optimized to run on CPUs will unlikely gain drastic performance
improvements just by running on a GPU. The program has to be targeted the GPU in
order to obtain this, which usually demands some sort of rewriting and rethinking
of the program, in order to achieve the best possible performance. There are several
methods to target the GPUs. One is native GPU languages such as CUDA (Compute

Chapter 2. High Performance Computing 9

Unified Device Architecture) or HIP (Heterogeneous Computing Interface for Porta-
bility), respectively created by NVIDIA and AMD, which are both API models that
target GPUs. The other option is to use directive based languages such as OpenACC
or OpenMP.

Using one of the native languages allows for finer control of the performance, as
one can target and utilize the specific hardware in use. The performance thus relies
mainly on the programmer, rather than the compiler. The main problem with na-
tive languages is, that they do not allow much portability since none of the current
native languages support all the hardware from the different vendors. They also re-
quire a separate source code, which may be very cumbersome to both produce and
maintain. This requires the programmer to keep up to date with the ever-changing
programming paradigms and requires a good understanding of the hardware and
language. Though this may result in a great performing code, it is not preferable
in most frameworks for two main reasons. 1) most modern frameworks are made
to perform well independent of the system, as it may be run on many different sys-
tems with varying computing power and architectures. This is somewhat achiev-
able on CPU-based systems, where the main headache is how memory is allocated
and shared among nodes. To have consistent performance across GPU-systems, the
framework must contain various versions, targeting hardware from the different
vendors. Though this is possible, it will undoubtedly lead to a great increase in the
extent of the framework code. 2) having specialized sections of code, which tar-
gets specific hardware requires a lot more maintenance, which can become a real
headache if the framework run on all kinds of hardware. This will likely require
updates in the code every time a new system is in use, in order to fine tune it to the
specific hardware.

The lower maintenance approach is to instead use directive based languages,
which were made to ease the creation of parallel code, or to port CPU-based code to
GPUs, with (almost) no requirements to the programmer nor the system the code
runs on. Directive based languages relies on directives, comment-like hints for
the compiler, which then produces the necessary code upon compilation. Direc-
tive based languages thus relies more on the compiler, rather than the programmer
and allows great portability between vendors. They are implemented directly in
the CPU code and do not require a separate source code and are thus easier to both
make and maintain. They do however not allow the same fine-tuned control of the
performance (Robey et al., 2021). Compilers have improved a lot on this topic and
some compilers can produce optimized code with performance similar to that of a
CUDA program made by an intermediate programmer (Li et al., 2018).

As DISPATCH may be run on several kinds of hardware, it is thus favourable
to port the code to GPUs using directive based languages and this will be the main
focus of the next section. Since directive based languages do not explicitly use low-
level languages, they do it implicitly as the compiler produces the code. It is thus
preferable to have some understanding behind the GPU programming model to pro-
duce the best possible code.

2.2.1 The programming model

In Section 2.1.3 I described how the hardware executes several threads (warps) con-
currently on the SMs. As the hardware contains several layers, which each provide
various forms of parallelization, it is important to split up the data to utilize this. Us-
ing one of the native languages this is done explicitly by the programmer, whereas

Chapter 2. High Performance Computing 10

using a directive based language it is done implicitly by the compiler. In either case,
the basic programming model remains the same.

When doing GPU programming the CPU is referred to as the host and the GPU
(or any accelerator) as the device, which is the terminology which shall be used in the
rest of this thesis.

From a programming point of view, the computational domain is decomposed
into a grid containing several independent blocks of data. A block consists of several
threads which are then executed. The grid structure of the computational domain
ensures that cache coherence is not a problem, as no two data elements will be in
two different blocks. Each block may consist of up to 1024 threads, but usually they
are smaller to obtain more memory per thread. Blocks have a local memory space,
which is shared among the threads, which can thus only synchronize with threads
within the same block. This means, that from a hardware point of view, blocks are
limited to have all threads running on the same SM, where the threads are executed
in warps, usually consisting of 32 threads (Robey et al., 2021).

Grid

Block Warp

FIGURE 2.4: Programming abstractions for GPU hardware. The com-
putational domain is decomposed into a grid, consisting of several
blocks. Each block contains several threads which are executed in

warps.

2.2.2 Directive based programming

Directives are language constructs, which through comment-like hints specifies to
the compiler, how to handle specific regions of the code. The two main directive-
based languages to support GPUs are OpenMP (Open Multi-processing) and Ope-
nACC (Open Accelerators).

The first version of OpenACC was released in 2011, developed for heterogeneous
computing and thus supported both CPU and GPU parallelism from the very be-
ginning. The interpretation of the directives is handled by a compiler flag and it
is thus not possible to produce parallel code for both CPUs and GPUs within the
same program. It offers very fine-grained control, where the user can both control
block-, warp- and thread-level parallelism. As it was developed mainly for GPUs
from NVIDIA, the support to devices from other vendors, such as AMD, does not
necessarily lead to the same increase in performance.

OpenMP on the other hand was first published in 1997 and was developed to
turn sequential codes on shared-memory multiprocessor systems into parallel code.
OpenMP did not support offloading to GPUs until 2015, where the OpenMP 4.5 ver-
sion was released which included the target directive. Since offloading to a device
is a directive of its own, OpenMP allows for both CPU and GPU parallelism within
the same program. Furthermore, as the target directive was not developed for any

Chapter 2. High Performance Computing 11

specific vendor, it is more independent of the hardware and thus offers similar per-
formance across various vendors.

As mentioned, the directives work as hints to a compiler, which then produces
the parallel code upon compilation. This means, that the level of support for various
versions of the directive based languages will differ between compilers. Further-
more, the directive specifications may be interpreted differently across compilers,
leading to different implementations (Diaz et al., 2019).

OpenACC is more well-developed, being older, but OpenMP has a broader in-
dustry support, and is expected to become more widely used in the future. Further-
more, OpenACC is not supported for all types of accelerators. Specifically, there is no
compiler support for the AMD GPUs, giving 90% of the FLOPS of the LUMI super-
computer in Finland. It was therefore decided that DISPATCH should use OpenMP
directives to enable efficient execution on GPUs.

OpenMP

OpenMP was meant to parallelize sequential code on shared-memory multiproces-
sor systems using directives or pragmas, but after the introduction of the target di-
rective in OpenMP 4.5, offloading to GPUs have been supported. As the main focus
of the thesis is porting code to a device, the primary focus will be on how one may
use the target directive to do so. All the code is for Fortran, where the call to OpenMP
directives happens with !$omp, where the C++ equivalent would be to use #pragma. To
send a kernel to the device, one has to use the combination of constructs shown in
Listing 2.1.

1 !$omp target teams distribute parallel do [clause , clause , ...]
2 do i=1,N
3 do j=1,N
4 !$omp simd [clause , clause , ...]
5 do k=1,N
6 ...
7 enddo
8 enddo
9 enddo

10 !$omp end target teams distribute parallel do

LISTING 2.1: Example of using the target directive to offload data
and kernels to the device

Each construct has the following functionality:

• target: Executes the following code block on device

• teams: Creates a league of teams

• distribute: Distributes the work to the teams

• parallel do: Distributes the work to threads within a team

• simd: SIMD execution if the hardware allows it, otherwise it is ignored

Comparing this to the programming model, teams distribute roughly corresponds to
the grid structure, where the work is divided into independent blocks and parallel do simd

roughly corresponds to dividing work to threads within a block and executing them
in parallel. The target directive creates a target task, which may be executed immedi-
ately by the thread or deferred to some later time.

Chapter 2. High Performance Computing 12

The clause part of the directives allows the programmer to control how the com-
piler executes certain constructs. E.g. clauses such as num_teams sets the number of
teams or num_threads that specifies the number of threads within a team. Though this
may improve the performance on a specific hardware, it may result in worse perfor-
mance when running on a different hardware. It is thus usually recommended to let
the compiler optimize these parameters.

Other clauses control the data environment, such as shared(list), private(list),
firstprivate(list) and lastprivate(list). Using shared(list) will share the variables
among all threads. private(list) creates a local variable for each thread that only
exists within the parallel region. The variables are undefined upon entry and must
be set within the parallel region. If they are defined prior to the parallel region, and
one wishes to make a local copy for each thread with the given value upon entry,
one must instead use the firstprivate(list) clause. If one instead wish to create a
local variable for each thread, which will update the original value upon exit of the
parallel region, one must use the lastprivate(list) clause. Variables defined before
a parallel region will by default be shared and variables defined within a parallel
region are by default private. It is good practice to specify all variables with one of
the above clauses, as it makes the code less error prone.

If the loops are perfectly nested as in the example above, one may improve per-
formance drastically by using the collapse clause, which collapses the nested loops
into one iteration space.

The biggest impact on performance usually comes from the memory transfer
between host and device. When entering the target region, scalars and statically al-
located arrays are transferred to the device by default. Depending on the specific
compiler, memory allocated on the heap is not necessarily transferred to the device
by default. It is thus recommended to include the map clause, that specifies how the
data should be mapped to and from the device. To obtain the best performance how-
ever, it is better to create data regions to avoid unnecessary data movement. This is
handled by the !$omp target data [map(to|tofrom|from)] construct. This gives the pro-
grammer the control over the data movement and allows to run several kernels on
the device, without having any transfers in between. This is referred to as a struc-
tured data region. It is also possible to use an unstructured data region, which is done
by transferring data from host to device using !$omp target enter data [map(alloc|to)]

and from device to host using !$omp target exit data [map(from|release|delete)]. Both
constructs work in the same way, the unstructured region does however allow for
more complex data management. One may also transfer specific data back and forth
within a data region using !$omp target update [to|from].

It is also possible to define data on the device, which exists throughout the du-
ration of the program. This is done using !$omp declare target (extended list). It is
also necessary to declare functions or subroutines, which are called within a target
region, with this directive. This is done by writing !$omp declare target as the first
line in the subroutine/function (OpenMP Application Programming Interface 2015).

2.3 Compilers

Compilers are the link between the source-code and the computer-hardware, by
translating instructions into machine-code, which can then be read and executed
by the computer. They are especially important when using directive based lan-
guages, as the compiler thus not only translates, but also produces extra code based

Chapter 2. High Performance Computing 13

on the directives. Many compilers exist, but not all support OpenMP, and the ex-
tent of the support across languages may differ. E.g. the GNU compiler, GCC, did
not fully support OpenMP 4.5 for FORTRAN until GCC 11, released April 2021 -
approximately 5 years after the OpenMP 4.5 release. The delay between the release
of OpenMP versions and their support by compilers, may result in slightly different
implementations across the compilers, as the specifications of the directives may be
interpreted differently. Consequently, this may lead to variations of the specific be-
havior of a directive and varying performance across compilers. It is thus important
to be aware of the level of OpenMP support of the compiler in use, and preferably
have access to several compilers.

Diaz et al., 2019 evaluate the implementation of OpenMP 4.5 in different compil-
ers (Clang, XL and GCC) on different systems. For most target directives the GCC
compiler tends to have a greater overhead and in general performs worse than the
other compilers. They conclude that:

"by comparing release versions of different compilers, there seem to be
more focus on reaching compliance with respect to the specifications,
than there is with respects to drastically changing the possible runtime
implementations, leading to the same overhead across multiple compiler
versions" (Diaz et al., 2019)

Hence, despite that the evaluations were made using an older version of the GCC
compiler than the one used in this thesis, similar performance for the different direc-
tives is to be expected.

2.4 HPC systems - Supercomputers

Modern supercomputers contain thousands of nodes. The hardware of a node may
vary a lot but is typically made of a single multicore CPU with some interior NUMA
architecture. Since GPUs provide much greater computation power, GPU based su-
percomputers have become very popular. These types of computers usually have
much fewer, but more computationally powerful nodes, usually containing a single
CPU and several GPUs.

As mentioned in section 2.1.1, nodes are connected via some interconnection net-
work, which is used for communication and synchronization among nodes. Com-
munication and synchronization of nodes is a key factor in high performance sys-
tems and may have a bad impact on the performance if not done properly. Com-
munication is usually implemented using some Message Passing Interface (MPI). It
is thus the programmer’s responsibility to distribute memory and to schedule work
on each node.

Communication and synchronization will create some overhead, which may partly
be compensated by ensuring enough work is available on each node. In most cases
there will however be situations where a lot of the hardware remains idle, while ei-
ther waiting for data or at some synchronization point. For small systems this does
not have a too significant impact, but as the systems become sufficiently big this is a
potential issue for the performance of a program and requires great attention.

2.4.1 LUMI

LUMI is a supercomputer currently being built in Finland. It will become the third
most powerful computer in the world and the most powerful in Europe. The GPU

Chapter 2. High Performance Computing 14

partition, LUMI-G, will consist of 2560 nodes, each containing one 64-core AMD
Trento CPU and four AMD MI250X GPUs, providing a potential peak performance
above 550 PFLOPS/s (LUMI’s full system architecture revealed).

LUMI was supposed to have been finished by February 2022, but is unfortu-
nately delayed, with the new release being September 2022. Access have been given
to an early access platform, which uses similar hardware to what will be used in
LUMI. Tests were planned to be made on this system, to see how the code per-
formed on a different system and with the CRAY compiler. Due to the late access
and compiler issues, this has however not been possible to complete.

15

Chapter 3

DISPATCH

DISPATCH is a fairly new framework, which aims to solve the scalability issues
other grid-based frameworks may suffer from (Dubey et al., 2014), by using locally
determined time-stepping in each task, thus avoiding any global synchronization
across MPI-ranks. This chapter gives a brief overview of the key ideas behind DIS-
PATCH and the main features of the design.

3.1 Key ideas

DISPATCH is a relatively new task-based framework. For grid-based simulations
the computational domain is split into small semi-independent tasks, in DISPATCH
called patches. One of the key features is, that each patch contains data for several
timeslots, which allows for individual and asynchronous time-stepping. Further-
more, each patch is small enough to fit into cache and allows for effective vectoriza-
tion.

There are several MPI processes (usually one per. CPU socket) which ’owns’ a
subgroup of the tasks. An MPI rank owning a task means, that the specific rank is
in charge of preparing and updating the task. The tasks within a rank may be di-
vided into three groups. Internal tasks which only have neighbouring tasks, which
are owned by the rank, Boundary tasks which are at the edge of the geometrical area,
thus at the ’border’ to a different ranks domain and Virtual tasks, which are owned
by a different rank. The basic idea for a grid-based 2D problem is shown in fig-
ure 3.1, where each square symbolizes a task/patch. This model allows for mainly
intra-node communication, and a single MPI process only has to communicate with
a finite number of neighbouring ranks. With the asynchronous time-stepping, this
allows for no global communication nor synchronization. This also means, that task
scheduling is rank local and is handled via a time ordered ready queue, which en-
sures that tasks most in need for update are picked first. The framework makes sure
that there are a lot more tasks than hardware threads, thus ensuring that threads
keep busy throughout execution.

The exchange of ghost-zones between ranks happens through non-blocking MPI
calls. With the described grouping of tasks within a rank, as a boundary task have
been updated, all the patch data is sent to the neighbouring rank, instead of just
the ghost-zone-data. This not only simplifies package creation, but also makes load-
balancing a lot easier, as it only requires changing the status of a task from ’bound-
ary’ to ’virtual’ on one rank, and from ’virtual’ to ’boundary’ on the neighbouring
rank, hence no extra data exchange is needed.

The features just described, allows for potential unlimited OpenMP and MPI
scaling.

Chapter 3. DISPATCH 16

Computational domain MPI node

Virtual task

Boundary task

Internal task

FIGURE 3.1: A 2D computational domain is distributed to MPI processes. Each MPI
process owns the tasks within the blue dashed square, which is divided in two
groups boundary tasks(yellow) and internal tasks(green). The MPI rank also holds
information of boundary tasks from neighbouring ranks, which constitute a third
group of boundary tasks(red). The exchange of tasks between ranks happens by

simply changing a virtual task to a boundary task and vice versa.

3.2 Tasks

As mentioned, DISPATCH runs a simulation, by splitting the problem into several
smaller tasks. A task is simply a derived type(object) in the FORTRAN language and
is not to be confused with an OpenMP task. The framework relies heavily on in-
heritance and the basic task object extends to several other extended types, such
as patches. A class is built up as a hierarchy. The base type is the task data type.
It carries the basic information such as task ID, number of time slots, status flags
and methods which extended types must implement, e.g. acquiring unique IDs for
spawned tasks. For grid-based simulations a task is extended to the patch data type,
which contains information concerning spatial properties, such as coordinate sys-
tem, dimensions, guard zones and physical variables, and methods to measure in-
tersections in space and time with other patches. Next is the solver data type, which
specifies which solver to use for the specific task, which physical variables that are
to be advanced in time and solver-specific parameters. The solver type is then ex-
tended to an experiment data type which adds experiment-specific procedures which
e.g. set the initial and boundary conditions.

Tasks are organized into a task list, which is another derived type. The basic type
of a task list is called a node, which contains pointers to the tasks and information
about the neighbours which a specific task depends upon. The neighbour concept is
thus not limited to spatial proximity, and a grid-based task(patch) can thus casually
depend on a radiative transfer task and exchange the data needed for the update
of each task. Hence, the neighbour concept is better described as a ’dependence
scheme’ rather than an actual neighbour, and a task thus only depends on a finite
number of other tasks.

That tasks depend on each other, usually implies some sort of exchange of data
before an update may be performed. A task updates using locally determined time
steps, which are independent of the time steps of other tasks. This means that neigh-
bouring tasks will usually not be at the exact same time. Hence, when exchanging
ghost-zones, some interpolation or extrapolation in time is usually necessary. Since
each task has access to multiple time slices, this is straightforward. Upon execution,

Chapter 3. DISPATCH 17

tasks ready for update are put in a time ordered ready-queue, which further ensures
that the oldest tasks are updated first.

3.3 Offloading

Some parts of DISPATCH have been prepared for execution on GPUs and modules
for offloading data have thus been developed. To limit the transfer back and forth
between the CPU and the GPU (which is usually the main bottleneck for GPU appli-
cations), tasks are grouped together in what is referred to as a bunch. When a bunch
is full, all the tasks are transferred and updated on the GPU. The number of tasks
which a bunch may hold is set in the beginning of the program. This allows to allo-
cate the needed memory on the GPU during the initialization of the program, where
it stays allocated throughout execution. Before the kernel is sent to the GPU, the allo-
cated memory on the device is updated with the new tasks using !$omp target update.

In situations where not enough patches are ready to completely fill a bunch, the
program would not be able to continue further. To avoid this, a time limit between
updates of bunches have been implemented. The time it takes to fill a bunch is
measured during the first time it is used and works as an upper time limit between
updates of a bunch throughout the program - making sure, that an update will be
happen, even with the lack of ready patches (Haarh, 2021).

With this setup, solvers in DISPATCH must be prepared for updating a bunch
rather than a single task. Currently it is only the DISPATCH/RAMSES solver which
have been ported to run, using the just described bunching.

The current implementation only allows to use one device, even though several
devices may be present.

3.4 Task scheduling

The task scheduling within DISPATCH is one of the key functionalities, which al-
lows the good performance and scalability. For simplicity, I shall only focus on the
task scheduling within a node.

As tasks become ready for update, they are placed in a time-ordered ready-
queue. Whether a task is ready for update or not, mainly depends on the local time
of neighbouring tasks. As mentioned, parts of the code have been prepared for GPUs
and the task scheduling thus happens slightly different, depending on whether the
code are to be executed using GPUs or CPUs. A flowchart of a simplified model of
the intra-node task scheduling is shown in figure 3.2. When executing on CPUs the
execution flow basically follows everything within the red dashed square and when
executing on the GPU the execution flow follows the steps within the blue square.
The main difference between the execution models is how, when and where a task is
updated. If executed on CPUs(offload=.false.), the thread will prepare the task for
update through a pre-update method. This is where the time step is computed and
physical variables, such as the gravitational potential. After this the relevant solver
is used to advance the task in time. After updating the task, a post-process method
is called, where e.g. the gravitational potential is updated using the updated values
from the solver. The thread then checks if neighbouring tasks have become ready
due to the update, if so, they are placed in the ready queue. This also happens in the
post-process step.

Chapter 3. DISPATCH 18

FIGURE 3.2: Simplified flow chart of the intra-node execution in DISPATCH. Ev-
erything within the red dashed square is the execution flow when executing on
CPUs and everything within the blue square is the execution flow when executing

on GPUs.

If executed on GPUs (offload=.true.), the thread will call bunch\%update, which
checks whether all bunches are busy and if so, it will update the task on the CPU (if
enabled). If that is not the case, the thread will go through the pre-update routine,
before placing the task in the bunch. If the bunch is still not full, the thread will
finish and continue to a new task. If the bunch is full, the bunch is transferred to the
GPU and all the tasks are advanced in time. After the update, the updated values are
copied from the bunch back to the tasks on the CPU and the post-update method is
called, where the gravitational potential is computed using the updated values after
which the post-process procedure is performed for all tasks.

The task scheduling may happen in different modes. The default mode lets
threads within a node ’pick’ the oldest task in the ready-queue and perform the up-
date method. The check whether a task is ready or not, happens in the pre-process
step. This requires critical regions, both when a thread pops or adds tasks from/to
the ready queue. For current available hardware, the number of threads within a
node is not big enough to create significant overhead during this process. A dif-
ferent mode makes a single thread in charge of removing and adding tasks to the
ready queue. As tasks are removed, an OpenMP thread is spawned using !$omp task

constructs, which then updates the task. This mode is more complex, but allows
for better scalability, as no critical regions are needed, and may be preferable in the
future, when the number of cores per node grows larger.

19

Chapter 4

Theory

Gravitation plays a role in most of the dynamics in the universe and is thus vital
if one wants to make simulations of such. In this chapter, the basic theory that de-
scribes gravity is presented. The gravitational potential is described by the Pois-
son equation. Many numerical methods for solving the Poisson equation exist. For
most computer simulations iterative methods have to be used, hence below is a brief
overview of various iterative methods, which may be used to compute the gravi-
tational potential given some mass distribution. Finally, a brief description of the
algorithm used to solve selfgravity in DISPATCH is presented.

4.1 Selfgravity

The gravitational force between two objects in space is described by Newtons law
of gravity. In a two-body system, the gravitational force applied on body one with
mass m1 located at position r1 = (x1, y1, z1), may be described as an interaction with
a gravitational field, g2(r1) exerted by body two with mass m2 located at position
r2 = (x2, y2, z2)

F12 = m1g2(r1), g2(r1) = −Gm2
r2 − r1

|r2 − r1|3
(4.1)

where G is the Universal gravitational constant. With only two bodies, the prob-
lem is rather simple and easy to compute. Often one is however more interested in
systems containing several bodies, which are usually represented as point masses.
Computing the net-force applied on a point mass with mass m located at position
r = (x, y, z), exerted by N point masses with individual masses mi at locations
ri = (xi, yi, zi) would just be a sum of the force exerted by each point mass. In
other words, the force applied on a point mass may be described as an interaction
with a collective gravitational field, g(r), exerted by all the other point masses.

F =
N

∑
i=1

Fi = m
N

∑
i=1

gi(r) = mg(r) (4.2)

g(r) = −G
N

∑
i=1

mi
ri − r
|ri − r|3 (4.3)

Since gravitation is a conservative force, the gravitational field may be written as the
gradient of a scalar potential

g(r) = ∇Φ(r) (4.4)

where Φ is defined as the gravitational potential. Furthermore, since the gravita-
tional field of point mass i is independent of the gravitational field of point mass j,

Chapter 4. Theory 20

the collective gravitational potential is simply the sum of the gravitational potentials
for each point mass. The collective gravitational potential is thus

Φ(r) = −G
N

∑
i=1

mi

|ri − r| (4.5)

When simulating the dynamics of the universe, it is often inconvenient to work
with collections of point masses and one instead uses a continuous mass distribu-
tion over the entire space. In 3D the mass located at position vector r′ may thus be
represented as ρ(r′)d3r′, where ρ(r′) is the local mass density and d3r′ is a small vol-
ume element. Summing over the entire space and letting d3r′ → 0 yields a collective
gravitational field of

g(r) = −G
∫

ρ(r′)
(r− r′)
|r− r′|3 d3r′ (4.6)

Taking the divergence on both sides and integrating from −∞ to ∞ yields

∇ · g(r) = −4πGρ(r) (4.7)

Using (4.4) finally yields
∇2Φ(r) = −4πGρ(r) (4.8)

where ∇2 is the Laplacian operator. This is also known as the Poisson equation,
which is used in numerical simulations involving selfgravity to solve for the grav-
itational potential based on some mass distribution, from which the gravitational
forces can be computed.

Poisson’s equation is a second-order partial differential, elliptical equation with
Dirichlet boundary conditions. The term on the RHS is usually referred to as the
source. In general, there is no analytically solution to the problem and one is thus
forced to use numerical methods to find an approximate solution. Many different
methods exists, which can be separated in two overall groups: direct methods, such
as Fourier transforms, direct N-body calculations and iterative methods, such as re-
laxation methods e.g. Gauss Seidel and successive over relaxation (SOR).

DISPATCH has implemented two methods - conjugate gradient (CG) with pre-
conditioner and SOR with Chebyshev acceleration. Both methods have similar costs,
but since the SOR method is simpler it was chosen for the GPU implementation.
Thus the CG method will not be explained further (but see Ramsey et al., 2018).

4.1.1 Iterative methods

The iterative methods are used on the differential expression of the Poisson equation
(4.8). The problem may be solved in different ways, the simplest and most common
being to introduce a pseudo-time τ and make the problem pseudo-time-dependent,
allowing one to rewrite (4.8) as

∂Φ
∂τ

= 4πGρ−∇2Φ (4.9)

This is basically a diffusion equation where one assumes that ρ is a constant of
pseudo-time and Φ is a function of pseudo-time. The function is then iterated until
∂Φ/∂τ = 0, where the Poisson equation is satisfied.

By discretizing pseudo-time and space, the difference equation to solve is (in 2D
Cartesian coordinates)

Chapter 4. Theory 21

Φn+1
i,j −Φn

i,j

∆τ
= 4πGρi,j −

Φi+1,j − 2Φi,j + Φi−1,j

(∆x)2 +
Φi,j+1 − 2Φi,j + Φi,j−1

(∆y)2 (4.10)

where ∆x and ∆y are the grid spacing, i and j are the indices in the x- and y-direction,
∆τ is the pseudo-timestep and n and n + 1 indicates the current and the updated
potentials respectively. As for any diffusion problem, the grid size puts a limit to
the allowed pseudo-time step. The maximum allowed time step in a problem with
d dimensions and the same grid spacing in all directions, is governed by

∆τ ≤ ∆x2

2d
(4.11)

The potential, which is a solution to this problem, only depends on the chosen
boundary conditions and the source term, coming from the density.

Jacobi iterations and Gauss-Seidel

The most simple method to solve (4.9) is using Jacobi iterations. In the Jacobi method,
one usually uses the biggest allowed timestep, thus setting (in 2D) ∆τ = 0.25(∆x)2.
Assuming ∆x = ∆y and rewriting (4.10) one thus arrives at

Φn+1
i,j = 0.25

(
Φn

i+1,j + Φn
i−1,j + Φn

i,j+1 + Φn
i,j−1 − 4πGρi,j(∆x)2

)
(4.12)

which allows one to compute the updated value, based on the neighbouring values
and the source. This is repeated until convergence. That is (4.9) has reached a steady
state and Φ is a solution to (4.8). Though this method is very easy to implement,
it converges very slowly (scales like N2) and it requires a separate array for stor-
ing updated values. Furthermore, the update of a single cell only depends on the
neighbouring cells and thus only updates the shortest wavelengths efficiently. The
method is thus very sensitive to the initial guess on the large-scale modes.

Rather than storing the updated values in a separate array, one might as well
store the updated values directly in the original array and use them to update the
neighbouring values. This would mean, that in (4.12) the Φn

i−1,j and Φn
i,j−1 would

instead be Φn+1
i−1,j and Φn+1

i,j−1 respectively. This is known as the Gauss-Seidel method,
which increases the convergence rate with a factor of about two. It is however still
too slow to be used in most practical simulations (Bodenheimer, 2006).

Red-black iteration

The convergence rate may be further improved by realising that each cell only de-
pends on the closest neighbours in the x-, y- and z-directions - the points are coupled
as a checkerboard. This is known as red-black ordering, which allows one to update
the black cells first, then use the updated black cells to update the red cells. This
process is continued until convergence, as illustrated in figure 4.1. Like the Gauss-
Seidel method, this does not require an extra memory array and thus requires less
memory (Press et al., 1992).

Chapter 4. Theory 22

Start: n = 0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

Φ0

n = 1

Φ0

Φ0

Φ1

Φ1

Φ0

Φ0

Φ1

Φ1

Φ0

Φ0

Φ1

Φ1

Φ0

Φ0

Φ1

Φ1

n = 2

Φ2

Φ2

Φ1

Φ1

Φ2

Φ2

Φ1

Φ1

Φ2

Φ2

Φ1

Φ1

Φ2

Φ2

Φ1

Φ1

n = 3

Φ2

Φ2

Φ3

Φ3

Φ2

Φ2

Φ3

Φ3

Φ2

Φ2

Φ3

Φ3

Φ2

Φ2

Φ3

Φ3

End: n = N

N iterations

ΦN

ΦN

ΦN−1

ΦN−1

ΦN

ΦN

ΦN−1

ΦN−1

ΦN

ΦN

ΦN−1

ΦN−1

ΦN

ΦN

ΦN−1

ΦN−1

FIGURE 4.1: Red/Black iteration. During the first iteration all the
black cells are updated. During the second update all the red cells
are updated, using the updated black cells. This procedure continues

until convergence after N iterations.

Successive Overrelaxation

Instead of performing a full update at each iteration, as is done with Jacobi and
Gauss-Seidel, it is better to try to extrapolate each step, by introducing a factor ω
and making the updated value a linear combination of Φn and Φn+1 as shown in
(4.13).

Φupdate
i,j = (1−ω)Φn

i,j + ωΦn+1
i,j (4.13)

Setting ω < 1 is called underrelaxation and may be used to stabilize unstable
methods. Setting 1 < ω < 2 is called overrelaxation, which accelerates the conver-
gence rate. If ω is greater than two, the procedure becomes unstable and small-scale
errors will grow. The optimal value of ω depends on the problem. For a uniform
Cartesian grid, the optimal value is

ω =
2

1 + (1− r2
s)

1/2 (4.14)

where rs is the spectral radius. With the same number of points and grid spacing in
each direction, rs is given by

rs =
1
d

d

∑
i=1

cos
(

π

Ni

)
(4.15)

where d is the dimensions and Ni is the number of grid points in each direction of
the grid. The method scales linearly with the number of grid points and thus often
the method of choice when using iterative methods on a grid.

If using red-black iterations, one may further improve the convergence rate using
Chebyshev acceleration (Press et al., 1992).

Chapter 4. Theory 23

4.1.2 Multi-grid methods

Iterative methods are very powerful to find a solution to the Poisson equation. How-
ever, as they only solve efficiently at the shortest wavelength (the wavelengths at
the scale of the grid), they are very sensitive to the initial guess of the large scale
modes, which may be a problem in practice as the problem converges very slowly.
To account for this, multigrid methods may be used as an extension to the iterative
methods, which may speed up the convergence rate. To do so, a reformulation of
the problem is usually used.

The Poisson equation may be written as a linear equation

∇2Φ = 4πGρ⇔ Av = S (4.16)

where A is an extremely sparse matrix representing the discrete Laplace operator,
v is the approximate gravitational potential and S is the source term. We may then
define the error e as the difference between an exact solution for the gravitational
potential, u, and the approximate solution. We further define the residual r as the
difference between the source and Av. We thus have

e = u− v
r = S− Av

Even though we do not know the exact solution, and thus not the error, we may
write an equation for it

Ae = A(u− v) = S− Av = r (4.17)

The idea is to create a series of coarser and coarser grids on top of the basic
grid. The procedure is to perform a few iterations on the finest grid, thus smoothing
out the error, and compute the residual. The residual is then restricted to a coarser
grid, where one uses (4.17) to solve for the error and then updates the approximate
solution and computes the new residual. This is repeated on increasingly coarser
and coarser grids. After reaching the coarsest grid, the error is then prolonged back
to the finest level, where the approximate solution is updated using the residual. If
the solution is not good enough, the procedure is then repeated until convergence
on the finest grid. Several procedures exist, the simplest being the V-cycle, where
one propagates from the finest to the coarsest and back. Other common procedures
are the F-cycle and the W-cycle (Bodenheimer, 2006).

4.1.3 Solving Poisson’s equation in DISPATCH

Most problems in astrophysics have a large dynamic range, which in general re-
quires a lot of global communication and synchronization, which makes simula-
tions very expensive. Some methods have been developed, such as adaptive mesh
refinement (Berger et al., 1989) which allows to use high resolution in areas where
it is needed, thus keeping the cost down to a minimum for the specific problem.
Despite the efforts, the methods still require a lot of global communication and syn-
chronization to make all domains agree on the solution. This inevitable affects the
scalability of the code and thus the performance for increasingly bigger problems.
The structure of DISPATCH, described in chapter 3, allows the framework to over-
come these problems, by splitting the domain into semi-independent patches with

Chapter 4. Theory 24

data from multiple time steps. This is utilized to solve the Poisson equation in an ef-
fective manner with no global communication and blocking synchronization across
domains.

Solving the Poisson equation in DISPATCH can be split up into three main steps.
Firstly, up-to-date data of the mass distribution and the gravitational potential is
’downloaded’ from neighbouring patches. When all the needed data is present, the
Poisson equation is solved within the given patch, from which the gravitational ac-
celeration is computed and used as a source term in the MHD solver. As the last
step, the Poisson equation is solved again, now using the just updated density from
the MHD routines, and the new solution is stored in the next time slot as a forward
prediction - allowing neighbouring patches to fill their ghost zones and proceed with
their updates. In this step the ghost zones are not yet known at the new time, so they
are instead estimated by forward extrapolation in time of previous values. The first
step of the next timestep repeats this solution, with by then up-to-date ghost zone
values.

The download procedure either takes the form of prolongation or restriction,
depending on the specific grid arrangement. In the first case linear interpolation in
time and space is used on neighbouring patches to fill the ghost zones. In the second
case, linear averaging of child patches with finer resolution is used to fill the ghost
zones. Since each patch has individual time stepping, neighbouring patches will in
general not be at the exact same time. Thus, to exchange ghost zones, some time
interpolation or extrapolation is required.

The computational procedure is as follows. In periodic cases one has to renor-
malize the problem, by offsetting the density ρ in the source term by the global av-
erage, to avoid divergent solutions. The periodic problem is thus given by

∇2Φ = 4πG(ρ− 〈ρ〉) = 4πGρ′ (4.18)

where 〈ρ〉 is the average density over the entire domain. The average density is
computed from the initial conditions and does thus not require a global summation.

The equation is solved using iterative methods on the form

4πGR = ∇2Φ− 4πGρ′ (4.19)

where R is the residual - the adjustment required in mass to make Φ the exact solu-
tion. Though the goal is to reduce the LHS to zero, it is common practice to instead
reduce its magnitude below some pre-set tolerance. In DISPATCH convergence is
reached when R fulfills

ε =
R

ρ + ρ0
(4.20)

where ρ0 is a floor value, characterising the desired tolerance in low density regions.
For non-periodic cases the procedure would be similar, but instead using (4.8) as

the starting point, thus not offsetting by the global average density.
After computing the potential, the gravitational acceleration can be obtained

from (4.4), which is then used in other solvers (Ramsey et al., 2018).

4.1.4 Gravity at different scales

Gravity is in theory a global problem, as all masses within a system affects one an-
other, which is why the solution in general needs to be synchronized across the en-
tire domain. However, in most cases the gravitational potential is smooth and slowly
varying and a change in the mass distribution will only have a small effect on the

Chapter 4. Theory 25

large-scale modes of the gravitational potential. As such, in DISPATCH the problem
is solved locally in each patch, using boundary conditions from the neighbouring
patches and the global synchronization is left out. The error on the solution is mon-
itored via the residual. Increasing errors are usually due to too big changes in the
mass distribution per time step, which may be solved by making the local time step
smaller.

An argument for why this works may be provided by looking at how the grav-
itational potential changes at different scales. The gravitational potential depends
on some mass distribution. The continuity equation tells us how the mass distribu-
tion of a fluid changes. Looking at the Fourier transform of the continuity equation,
provides some information about how this happens at different scales. This yields

∂tρ = −∇ · (ρv) F−→ ∂tρk = ik · ρkuk (4.21)

where ρk is the density at some scale, k is the wave number for some scale and uk is
the velocity of the fluid at that scale.

Doing the same for the Poisson equation and taking the time derivative yields

∇2Φ = 4πGρ
F−→ −k2Φk = 4πGρk (4.22)

− k2Φ̇k = 4πGikρkuk (4.23)

The magnitude of the relative change in gravitational potential at different scales is

Φ̇
Φ

= ik · uk ⇒
∣∣∣∣∆Φk

Φk

∣∣∣∣ = ∆t · |k · uk| (4.24)

The relative change in the potential at some scale is thus proportional to the velocity
of the mass at that scale. To put this into context, I shall look at two relevant setups
- molecular clouds and a central potential.

Larsons scaling relationship (Heyer et al., 2009) roughly states that the velocity
dispersion, uL is proportional to the square root of the cloud size, L. The wavenum-
ber is given by k = 2π/λ with λ ∝ L. Thus, for molecular clouds the velocity scales
as uk ∝ k−1/2. Using this in (4.24) yields that the relative change in the gravitational
potential scales like ∆t · k1/2.

At the other end of the scale we have a central potential, where the velocity is
given by u =

√
GM/R and thus scales as uk ∝ k1/2. Inserting this in (4.24) yields

that the relative change in the gravitational potential scales as ∆t · k3/2. In either
case we may conclude that the relative change on the greater scales is much smaller
than that of the small scales, which supports the method used in DISPATCH, where
synchronization of the global solution from small scales to large scales is ignored.

26

Chapter 5

Implementation

Instead of preparing the main code for the GPUs directly, my supervisors made a
mockup-file of the Truelove experiment, which contained the main modules of DIS-
PATCH, which were needed to run the experiment. This allowed me to prepare
small prototypes for the various modules. The implementation was split up in sev-
eral steps, implementing one part at a time. After having a working version, several
improvements were made to obtain the final versions.

5.1 Mockups

5.1.1 poisson_mock.f90

The ’original’ version which only uses CPUs. It consists of components from the
params_mod, patch_mod, poisson_mod and experiment_mod, which are needed in order to
run the experiment. The program makes one update of the gravitational potential Φ
based on the density distribution ρ using the SOR method.

5.1.2 GPU-implementation - pre-steps

Step1.f90

As the first step I added a bunch_mod to the mockup. The idea was to utilize the already
implemented parallelism of DISPATCH to fill bunches of data, which when full is
transferred to the GPU and updated. This can easily lead to race conditions, where
several threads try to write to the same place in memory simultaneously. To avoid
this, I added two subroutines init and init_thread. The first subroutine initializes
a 6-dimensional memory array indexed as memb(x,y,z,iv,ip,ib), with iv being the
variable index, ip the patch index and ib is the bunch index.

In the latter subroutine, a thread will enter a critical region where it will be as-
signed a location in the memory array, via a local patch ID, lpid and local bunch ID,
lbid. An example is shown in listing 5.1. The critical region ensures that no two
threads will be assigned the same location in the memory array, thus avoiding race
conditions. When a bunch is full, the next thread will automatically go to the next
bunch, until all bunches are full, at this point the thread will suspend the current
OpenMP task, and work on a different OpenMP task, until the bunch is free.

The idea was to make an effective way of assigning threads a location in the
memory array, while avoiding too much idle time and thus keeping as many threads
occupied as possible. It was later discovered, that having the !$omp taskyield call
within the critical region would keep the region closed for other threads to enter
and get a location in the memory array. As it will be shown, this was solved by
introducing extra queue-numbers, which allowed to move the !$omp taskyield call
outside the critical region.

Chapter 5. Implementation 27

1 SUBROUTINE init_thread (self , lpid , lbid)
2 class(bunch_t) :: self
3 integer :: lpid , lbid
4

5 !$omp critical (thread_init)
6 lpid = pid
7 pid = pid + 1
8 if (lpid > nb) then
9 ib = ib + 1

10 if (ib>num_bunch) ib = 1
11 do while(.not. bunches(ib)%empty)
12 !$omp taskyield
13 enddo
14 pid = 2
15 lpid = 1
16 endif
17 if (lpid ==1) bunches(ib)%empty = .false.
18 lbid = ib
19 !$omp end critical (thread_init)
20

21 END SUBROUTINE init_thread

LISTING 5.1: Assigning memory locations to thread

Step2.f90 and Step3.f90

In Step2.f90 a subroutine copy_to_bunch was added to the bunch_mod which transfers
patch-data to the memory array, using the memory locations, lpid and lbid, assigned
to the thread in the init_thread subroutine.

In Step3.f90 two subroutines, update and copy_from_bunch, were added. The latter
transfers the updated patch-data from the memory array back to the relevant patch.
The update subroutine is called by all threads, however only the last thread in a spe-
cific bunch to make the call, will perform the actual update of the bunch and then
transfer back the patch-data. A pseudo-code example of the method is shown in
listing 5.2.

1 SUBROUTINE update(self , lbid)
2 !$omp atomic capture
3 bunches(lbid)%ready = bunches(lbid)% ready + 1
4 lready = bunches(lbid)%ready
5 !$omp end atomic
6

7 if (MOD(lready ,nb)==0) then
8 update values in bunch
9 call self%copy_from_bunch(lbid)

10 endif
11 END SUBROUTINE update

LISTING 5.2: Pseudo-code example of update subroutine

Step4.f90

The previous steps worked as preparation of the CPU data, to be transferred easily
to the GPU. The transfer can be made in many ways, where some are more effec-
tive than others. In general, it is very costly to allocate memory on the GPU. Us-
ing a memory array on the CPU to store all the patch data allows one to allocate
the needed memory on the GPU in the very beginning of the program, using the

Chapter 5. Implementation 28

!$omp target enter data map(alloc:memb) directive. This makes a direct connection be-
tween the memory on the host and the device, allowing to update the device or host
memory, without allocating memory at the same time, using the !$omp target update

directive.
Furthermore, it is preferable to define various constants and functions, which are

to be used on the GPU, from the very beginning. This can easily be done using the
!$omp declare target directive.

In Step4.f90 the subroutines init_offload and finalize_offload were introduced,
which allocates and deallocates memory on the GPU, thus preparing the program
for an effective data transfer.

Step5.f90

Now that the memory had been transferred to the GPU, I wanted to prepare the
code for cases, where GPUs were not accessible. I thus added the two subroutines
update_host and update_device which were to be called from the subroutine, depend-
ing on whether offload is on or off. Both subroutines will update the data in the
memory array.

OpenMP only allows one kernel call per device. I thus had to add a variable,
which tells the thread, which is to update on the device, whether the device is ac-
cessible or not. If the device is occupied, the thread will suspend the OpenMP task,
until the device is free. The part of the code which takes care of this is shown in
listing 5.3. Once again, this was done with !$omp taskyield inside a critical region,
which was later changed to a queue system, in order to avoid idle time.

1 if (offload) then
2 !$omp critical (device_ready)
3 do while(GPU_active)
4 !$omp taskyield
5 enddo
6 GPU_active = .true.
7 !$omp end critical (device_ready)
8

9 call bunch%update_device(lbid)
10 GPU_active = .false.
11 else
12 call bunch%update_host(lbid)
13 endif

LISTING 5.3: Update function with offload

Step6.f90

In Step6.f90 the SOR-method was implemented to be run on the device. The function
was defined using !$omp declare target, allowing it to be called from a target-region.
The memory array on the device is firstly updated with the host data, after which
the patches in the memory array are evenly distributed to all the SM’s, which will
then execute the SOR_bunch subroutine as shown in listing 5.4. When the kernel has
finished, the memory array on the host is updated with the device data.

The implementation did execute on the GPU, but the performance was very poor.
For small systems it performed worse than the CPU-version. For larger systems the
performance was similar to the CPU-version. Furthermore, if the total number of
patches were not a multiple of the bunch size, some patches were not updated, since
a bunch is only updated when full.

Chapter 5. Implementation 29

1 !$omp target update to(memb(:,:,:,:,:,lbid), ds)
2 !$omp target teams distribute
3 do idx =1,nb
4 call bunch%sor_bunch(idx , lbid)
5 enddo
6 !$omp end target teams distribute
7 !$omp target update from(memb(:,:,:,:,:,lbid))

LISTING 5.4: Call to SOR_bunch

Profiling

A profile of the Step6.f90 was made using Nsight systems, executing with eight cores
and one GPU. The setting was set to use three bunches with 108 patches in each. The
timeline is shown in Figure 5.1. The eight rows at the top show when the cores are
active, indicated with black. The activity of the cores is very fractured and they seem
to be idle a lot of the time. This is likely due to the !$omp taskyield inside the critical
regions, especially in the init_thread routine, which do not allow threads to assign
patches to bunches while all bunches are full.

The green and red lines at the bottom indicate data transfers between host and
device - green indicating host to device(HtD) and red indicating device to host(DtH)
transfers. The blue lines indicate the execution of a kernel on the device. The GPU
seems to be active most of the time - either with a data transfer or kernel execution.
The data transfers are not necessarily scheduled right before or immediately after
the kernel execution, which is a consequence of the target directive being a task-
generating directive. From the timeline below, it can be seen that sometimes several
data transfers are executed in between kernel executions, and the DtH transfer does
not necessarily happen right after, which makes the cores stay idle even longer. The
time it takes to fill a bunch is much smaller than the time it takes to execute a kernel,
which therefore hides the overhead in this specific example.

FIGURE 5.1: Profile of Step6.f90 using Nsight Systems, executing us-
ing eight cores and one GPU. Three bunches containing 108 patches
each are used. The black lines indicate when a core is active. The blue
lines indicate kernel execution on the GPU and the red and green lines

are data transfers between the host and the device.

A profile using Nsight Compute was made, to investigate the kernels in more
detail. The SOR_bunch routine only obtained 17% of the peak performance throughput
of the SMs and only issued two warps per scheduler - thus only having an occupancy
of 12.5%.

5.1.3 GPU-implementation - final versions

Even though the SOR-routine did execute on the GPU, it was very inefficient com-
pared to the CPU-version. I thus put a lot of effort into improving the performance.

Chapter 5. Implementation 30

Furthermore, as it is currently not possible to run on several GPUs in DISPATCH, I
wanted to create a setup, which would allow this.

To do so I made a setup which uses the ideas of each step described in the pre-
vious section and mixed it with some of the current setup in DISPATCH. Three de-
rived types were introduced. A bunch type, which contains memory arrays to store
patch data and a patch list, which hold pointers to all the patches, which have data
stored in the bunch. It furthermore contains procedures, which copies to and from
bunches, copies to and from the device and updates the bunch on the device. The
bunch memory is allocated on the device during initialization and updated with
new patches during execution.

Next is the device type. It holds a number of bunches, and a device-ID which is
used in the OpenMP calls to specify which device to use. It also keeps track of the
number of active bunches and how many patches have been updated. Lastly is the
device handler type. The device handler contains a device list of all the devices, the
number of bunches per device and the size of the bunches. It contains procedures
which assigns a device-ID, bunch-ID, bunch-slot and queue number to each thread,
and updates the leftover patches, if necessary.

The SOR-bunch routine is moved to the poisson_mod and is called from the update
routine of the bunch type. A procedure has also been added to the poisson_mod, which
updates constants used in the SOR-routine on each device. This is done during the
initialization of the program.

Several attempts were made to improve the throughput of the SOR_bunch routine.
The source term was previously computed on the CPU and transferred to the GPU
using the memory array. In the new version it was instead computed as part of
the SOR_bunch routine. Small changes to the SOR iterations were added and several
clauses were added to the parallel region, such as schedule(static). The loops were
also slightly changed, making them perfectly nested.

OMP-locks are used instead of critical regions, at places where !$omp atomic is not
possible to use. To avoid having the !$omp taskyield call within a critical region (or
a locked region) a queue number is introduced. This allows the device handler, to
assign a device, bunch, and slot to threads, even though all bunches may be busy.
The thread is not allowed to copy data to the bunch, before the queue number of the
patch matches that of the bunch. The same is done for the execution on the device.
When a bunch is full, a different queue number is given and the bunch is not allowed
to call the target update, before the queue number matches that of the device.

The queue number seemed to be irrelevant, as long as there would only by one
!$omp target call within a subroutine, however, when having several calls, it being
data transfer or kernel execution, memory errors would occur. This may be due to
the compiler and may not be an issue if compiling with a different compiler. Unfor-
tunately, this was not possible to test, as I only had access to the GCC compiler.

To make sure all patches have been updated, a subroutine was added, which
checks if a device has any active bunches and if so, force an update of the data
it currently contains. This subroutine should be redundant in DISPATCH but is
necessary in the mockup to allow to have bunch sizes, which the total number of
patches in the system is not a multiple of.

Two versions were made, one which contained all the types just described, and
thus had Nbunches contiguous five-dimensional memory arrays, one for each bunch.
The second version did not contain the bunch type, but instead the device type
contained all the subroutines described for the bunch type. This version contained
Ndevices contiguous six-dimensional memory arrays, one for each device. This was
done to test how memory transfer would be affected when referencing a whole array

Chapter 5. Implementation 31

in the first version, compared to referencing a part of an array in the second version.
The first version will be referred to as the bunch-version and the second as the device-
version. Examples of the most important subroutines of the bunch-version can be
found in Appendix A. The routines in the device-version are almost identical.

The memory layout of the memory arrays were made in the same way as they
are in DISPATCH, thus having the following dimensions: memb(x, var, y, z, np, nb),
with var being the indices of the variables - such as the gravitational potential or
density, np being the patch-slots and nb the bunch-slots. The bunch-version did not
contain the bunch-slot.

Some issues occurred in the device-version when referencing parts of an array,
using several !$omp target calls within the same subroutine. This was solved using
a subroutine for each target call, which took the relevant part of the memory array
as input, which were then used as input for the target call. This was also adopted to
the bunch-version.

Profiling

Profiles of the two new versions were made using Nsight Systems, executing with
eight cores and one GPU. The setting was set to use three bunches with 108 patches
in each. The timeline for the bunch version is shown in Figure 5.2 and for the device
version in Figure 5.3. The two timelines look very similar, and the two versions did
indeed perform almost identically. Compared to the profile of Step6.f90, Figure 5.1,
the cores are almost never idle. Though this may seem good, it is unlikely that each
core is executing "relevant" work all of the time. A thread may assign a patch to a full
bunch but is not allowed to copy data into the bunch before it is free. While waiting
for this !$omp taskyield is used, to allow the thread to work on other available tasks.
The behaviour of the !$omp taskyield may however vary. Optimally the task would
be suspended and the thread would start working on another task - likely assigning
a new patch to some bunch. At some point, there will be no new tasks to work on.
At this point, the thread will continue to check whether a bunch is free, making at
seem like the core is active, when in fact not doing any relevant work.

There is always some target task running, similar to the profile of Step6.f90. The
kernels are however slightly faster, and the data transfer time has been reduced, due
to the smaller memory array, because the source term is computed within the kernel,
rather than on the host.

FIGURE 5.2: Profile of the bunch version using Nsight Systems, exe-
cuting using eight cores and one GPU. Three bunches containing 108
patches each are used. The black lines indicate when a core is active.
The blue lines indicate kernel execution on the GPU and the red and

green lines are data transfers between the host and the device.

Chapter 5. Implementation 32

FIGURE 5.3: Profile of the device version using Nsight Systems, exe-
cuting using eight cores and one GPU. Three bunches containing 108
patches each are used. The black lines indicate when a core is active.
The blue lines indicate kernel execution on the GPU and the red and

green lines are data transfers between the host and the device.

Profiles were also made using Nsight Compute. They were very similar to the
profile of Step6.f90, but had a slightly better throughput of just above 20%. If the
patch size was increased to 64 × 64 × 64 instead of 32 × 32 × 32, the throughput
was even better, almost reaching 50%. The overall time did however not seem to
improve, compared to systems with the smaller patch size, but same total amount
of cells. The poor utilization of the hardware thus seems to be a consequence of the
SOR-routine.

Profiles were also made using two and three devices, with the same setup as
above. The timelines of the bunch version can be seen in Figure 5.4 and Figure 5.5.
When using two devices, both devices seem to be active almost the whole time, with
very little time staying idle, which is exactly what one is looking for. Using three
devices do seem to introduce extra overhead, making the devices stay idle. This
seem to be due to not having enough cores, as using more cores the time the GPUs
stay idle is reduced.

FIGURE 5.4: Profile of the bunch version using Nsight Systems, ex-
ecuting using eight cores and two GPUs. Three bunches containing
108 patches each are used. The black lines indicate when a core is ac-
tive. The blue lines indicate kernel execution on the GPU and the red

and green lines are data transfers between the host and the device.

FIGURE 5.5: Profile of the bunch version using Nsight Systems, exe-
cuting using eight cores and one GPU. Three bunches containing 216
patches each are used. The black lines indicate when a core is active.
The blue lines indicate kernel execution on the GPU and the red and

green lines are data transfers between the host and the device.

33

Chapter 6

Results

6.1 Optimal setup

Several tests were run on the mockups, to see how various settings affected the per-
formance. All tests were run on the astro2_gpu partition of STENO having two 16-
core AMD EPYC 7302 CPUs and four NVIDIA Tesla Ampere A100 GPUs. During
the tests, only one of the CPUs were used, with different amounts of cores. The
CPUs have a NUMA structure with 4 nodes containing 4 cores each. One thread per
core was used.

Test were run using different system sizes, given by the total number of patches
within the mesh. The number of patches is given Npatches = 23·Level . Each patch
contains 32× 32× 32 cells, with four of them being ghost cells - two on each side,
unless otherwise stated. Each test was run five times, from which the mean time
was computed. For each test the time per patch is compared, rather than the total
execution time.

The GPU versions were run using eight cores and one GPU, unless otherwise
stated. For the GPU versions, the time includes the assigning of a patch to a bunch,
copying the patch to the bunch, transferring the bunch to the device, running the
SOR-bunch routine on the device, transferring the bunch back to the host and copy-
ing the updated patch data back to the patches. It furthermore includes a routine
that updates leftover patches in bunches after exiting the parallel region. The CPU
version only contains a subroutine that computes the source term and the SOR rou-
tine.

6.1.1 CPU-version

To compare the tests with the CPU-version, several runs were made with various
numbers of cores. The result is shown in Figure 6.1. The plot on the left is the time
per patch with different mesh sizes, Level = 4(red) and Level = 5(blue). The plot on
the right shows the time per cell using different dimensions of a patch, but the same
total number of cells. The red is with 24 patches with dimensions 64× 64× 64 and
the blue is with 25 patches with dimensions 32× 32× 32.

The total mesh size does not seem to affect the performance, however, how the
cells are distributed across patches seem to have a big impact on the performance.
Using 32 cells in each direction seem to perform better than using 64 cells in each
direction.

Using 16 cores the time per patch is 0.44 ms.

Chapter 6. Results 34

FIGURE 6.1: Left: Time per patch in ms vs. number of cores for differ-
ent mesh sizes. Right: Time per cell in ns vs. number of cores using

different patch sizes.

6.1.2 System size

It was tested how the different versions performed when increasing the number
of patches in the system. The mesh sizes used were ranging from 8 × 8 × 8 to
32× 32× 32. The result is shown in Figure 6.2. For small systems, none of the ver-
sions perform well. There will be some overhead when initializing a parallel region,
initializing tasks, transferring data to and from the device and sending the kernel
to the device. For small systems, this overhead is too significant compared to the
amount of computations.

As the system size increases, the overall performance becomes slightly better,
which is likely due to the overhead becoming less significant compared to the com-
putations. The performance improvement seems to be more significant for the GPU
versions compared to the CPU version.

FIGURE 6.2: The time per patch in ms as a function of the total num-
ber of patches for different versions of the mockups. The GPU ver-
sions uses one device and eight cores, and the CPU version uses
16 cores. The performance seems to get better as the number of
patches increase, which is likely due to the overhead of initializing
tasks, transferring data etc. becomes less significant compared to the

amount of computations.

Chapter 6. Results 35

6.1.3 Patch per bunch

The optimal bunch size was investigated for all versions. The result is shown in
Figure 6.3. The tests were run using three and six bunches. The bunch sizes were
either set such that the system size was a multiple of the bunch size, or the bunch
size was a multiple of the number of SMs on the GPU.

In general, the performance is best using a multiple of the number of SMs on the
GPU. Though this does require an extra update of a bunch which is not full after the
parallel region, it still performs better. As the number of patches per bunch becomes
larger, the performance is less hurt and performs better than the CPU version, but
still worse compared to a multiple of the SMs.

To obtain the best performance from a GPU, one should utilize all the hardware
throughout the program. When using bunch sizes that do not match the number of
SMs, some of the SMs will get more data than others, making many of the SMs idle
while the "leftovers" are updated, making the execution time of the kernel longer,
while only updating a few extra patches. When using a multiple of the number of
SMs, each SM will get the same amount of data, and will thus finish approximately
at the same time. The size does not seem to have any significant impact on the
performance, though using 108 patches seem to perform slightly better.

FIGURE 6.3: The time per patch in ms as a function of the number of
patches per bunch for all the GPU versions, using one device and
eight cores. Left is with three bunches per device, right is with 6
bunches per device. In general, it is best to use a bunch size which
is a multiple of the number of SMs on the GPU, rather than having

the total number of patches to be a multiple of the bunch size.

6.1.4 Bunch per device

It was tested how the number of bunches per device affects the performance. The
tests were run using one GPU and eight cores. The size of each bunch was set to 108
patches, based on the tests of the optimal bunch size. The result is shown in Figure
6.4. The Bunch- and Device versions seem to perform more of less identically. For
both versions it seems that the performance stays almost constant, when using two
or more bunches per device, where they both perform better than the CPU version.
There is a slight improvement when using more bunches, which on the other hand

Chapter 6. Results 36

also requires more memory and thus may not be beneficial, if using several GPUs.
Using only one bunch harms the performance for all versions.

The Step 6 version seemed to have the best performance using only 2 bunches.
This was not investigated much further, as it in general performed worse than the
CPU version.

A small extra test was performed with the bunch version, where the time it takes
to fill a bunch(FB-time) and the time from a bunch is full until it is ready for new
data(BR-time) was measured. For a run using eight cores, one GPU, three bunches
with 216 patches and Level = 5, the FB-time, excluding the time the thread waits for
the bunch to be free, ranges from 6 ms to 25 ms, with an average of 10 ms. Includ-
ing the time the thread is waiting for the bunch to open, the average FB-time is 26
ms. In general, the times to fill the bunches would be biggest the first time a bunch
was used, and then get much smaller throughout the remaining updates. Though at
some points, a big FB-time would appear randomly throughout the execution. Both
cases of the big FB-time is likely explained by cache-misses. The average BR-time is
229 ms.

FIGURE 6.4: The time per patch in ms as a function of the number of
bunches per device for the bunch-, device- and Step6-version, using
one device and eight cores. Solid lines is with Level = 4 and dashed

lines is with Level = 5.

6.1.5 Cores per device

It was tested how the number of cores affected the performance of the GPU versions.
The tests were made using different number of bunches per device and two different
bunch sizes, to see if it would have an impact when using more devices. The results
for the bunch version can be seen in Figure 6.5 and for the device version in Figure
6.6. The tests were furthermore made on different mesh sizes, Level = 4 and Level =
5.

When using a smaller bunch size, the performance seems to be less affected on
the number of cores and the mesh size. When using a greater bunch size, there seem
to be a greater difference in the performance across mesh sizes. More cores are also
needed to obtain the best performance.

Chapter 6. Results 37

Both versions perform almost identically. When only using one device, the greater
bunch size seems to have less variations when using different number of cores. For
the smaller bunch size and mesh size, the performance seems to perform slightly
worse when not using all cores on the nodes, the difference is however very small.

Optimally, the performance should increase linearly with the number of devices.
This is however not the case. Relative to using one device, the greatest speedup
using two devices is approximately 2.01 for the bunch version using a bunch size
of 108 and 1.93 using a bunch size of 216. For the device version it is 2.04 and 1.94
respectively, which is approximately the optimal speedup which one would expect.
This trend does not apply when using three devices. In this case the speedup is only
2.33 and 2.25 for the bunch version and bunch sizes of respectively 108 and 216, and
for the device version it is 2.30 and 2.25. Though it is faster, it does not reach the
optimal speedup. Furthermore, when using more devices, the number of cores have
a greater impact on the performance, compared to using one or two devices.

FIGURE 6.5: Bunch version: The time per patch in ms as a function
of the number of cores using different number of bunches and bunch
sizes. Plots on the left use 108 patches per bunch, plots on the right
uses 216 patches per bunch. The two plots on the top are with one
device, the two plots in the middle are with two devices and the two

plots at the bottom are with 3 devices.

Chapter 6. Results 38

FIGURE 6.6: Device version: The time per patch in ms as a function
of the number of cores using different number of bunches and bunch
sizes. Plots on the left use 108 patches per bunch, plots on the right
uses 216 patches per bunch. The two plots on the top are with one
device, the two plots in the middle are with two devices and the two

plots at the bottom are with 3 devices.

6.1.6 Patch dimensions

It was tested how the patch dimensions affect the performance. The tests were
made using three bunches per device and bunch sizes of 108 and 216. The patch-
dimensions was either 32× 32× 32 using Level = 5 or 64× 64× 64 using Level = 4,
making it a total of 230 cells. The time per cell is compared between the different
versions.

In general, the performance does not seem to change significantly, especially
when using enough cores. When only using one device, the greater patch dimen-
sions seem to vary quite a bit, depending on whether all cores on a node are used
or not. When using two or more devices, these variations seem to go away. In both
cases, using a smaller bunch size seem to be more stable in performance and be less
dependent on the number of cores.

Chapter 6. Results 39

FIGURE 6.7: Time per cell vs. number of cores using different patch-
dimensions and bunch sizes. For each run three bunches per device
is used. Left is the times for the bunch version. Right is the times for
the device version. Top uses one device, middle uses two devices and

the bottom uses 3 devices.

40

Chapter 7

Discussion

7.1 Current results

Due to problems with the current offload implementation in DISPATCH, it has not
been possible to implement the SOR-bunch routine in DISPATCH, and hence test
it on some experiments to validate that it works and yields the same results as the
CPU-versions. Tests were made in the mockups, yielding approximately the same
results, only varying on the last digits. Running a full experiment with DISPATCH
would indeed behave differently, as several kinds of physics would usually be com-
puted during an update. The bunch module in DISPATCH also works in a slightly
different way than the one used in the mockups, which will also have an impact on
the performance. The results from the tests do thus not necessarily compare to what
would be observed when run using the full DISPATCH code. They can however
provide some indications on what to expect on the node-level and provide possible
improvements ideas.

The two GPU versions perform almost identical. There thus seem to be no differ-
ence in having all bunches per device stored in one contiguous array or in Nbunches
smaller contiguous arrays. The latter is slightly easier to program and is almost iden-
tical to the current DISPATCH implementation and would thus seem preferable.

7.1.1 Optimal setup vs. DISPATCH

DISPATCH will distribute tasks across several nodes where the total number of tasks
per node depends on the total system size. If the number of tasks per node becomes
too small, the performance seems to be worse and one would thus like to ensure
that the number of tasks per node is above some minimum, to obtain the best per-
formance. The impact of the number of tasks seems to be slightly greater for the
GPU-versions compared to the CPU version. The mockups only contain one mesh.
In DISPATCH, a node may contain several grids at different levels for the same area.
This automatically increases the number of tasks and would likely ensure that the
number of tasks is well above 24, where the performance changes very little, when
increasing the number of tasks.

In the mockups, only one update iteration is performed for a group of patches. In
DISPATCH the number of tasks ready for update will vary throughout the execution
and it will in general take longer to preprocess, update and postprocess a task. This
will likely affect the optimal bunch size and the optimal number of bunches per
device. The number of patches per bunch should however be some multiple of the
number of SMs on the GPUs, to utilize the hardware best possible.

Optimally one would like the performance to increase linearly with the number
of devices used. This does not seem to be the case, as the performance using two or
three devices is very similar. To obtain this, one would need to fill Ndevices bunches

Chapter 7. Discussion 41

simultaneously, to keep all the devices busy throughout the execution. One thus
need to have enough hardware threads on the CPU to accomplish this. A node on
LUMI will contain one 64 code AMD Trento CPU and four AMP MI250X GPUs.
There is thus an upper limit for how fast a bunch may be filled and thus how fast
a bunch will be ready for update on the GPU. With the mockup versions, it thus
seems likely, that it will be hard to utilize all GPUs on a node, which will likely also
be the case in DISPATCH. In the current version, devices, bunches, and bunch-slots
are assigned from the same device-handler in a round-robin-fashion for all threads,
which may explain why the speedup does not increase linearly with the number of
devices. Based on the results on the number of cores using one device (Figure 6.5 and
6.6), the GPU versions do not seem to need more than 2-4 cores, when using a bunch
size of 108, to perform well. Thus, one may obtain better performance using several
devices by grouping cores together, having each group assigning tasks to one device
exclusively. This will indeed require some modifications to the current versions and
the performance will likely be very dependent on the setup of an experiment. If
the number of tasks per node is not big enough, one may end up having several
non-full bunches (worst case one for each device) when the ready-queue is empty.
It would thus seem of great importance to provide enough tasks per node, so that
the ready-queue is never empty, which will potentially allow better utilization of the
full hardware.

How cells are distributed does not seem to have any major impact on the per-
formance of the GPU versions. It does however have a great impact on the CPU
version. Using patch sizes of 64× 64× 64 performs way worse than having patch
sizes of 32× 32× 32. Since DISPATCH may run on systems with varying hardware,
it thus seems most beneficial to keep the patch sizes small.

7.1.2 SOR on GPU

In general, the GPU versions perform better than the CPU version. Using 16 cores,
one device and three bunches, containing 108 patches each, the GPU version ap-
proximately performs 2.4 times faster than the CPU version using 16 cores. This
includes all the extra functions in the GPU versions and hence the speedup for the
SOR-routine is even greater. The peak performance of the CPU using 16 cores is
about 0.77 TFLOPS, where it for one GPU is 19.5 TFLOPS. The maximum speedup
that may be obtained is thus around 25. Based on the profiles, the occupancy of
the GPU was only 12.5%, which would yield a speedup roughly consistent with the
actual result.

Running the SOR method on GPUs provides poor utilization of the hardware.
Patches within a bunch are distributed such that each SM gets at least one patch
to update. Though up to 32 threads may be used at the same time, parts of the
method only allows a single thread to be active, while the others remain idle. Fur-
thermore, at each iteration of the update, data must be distributed to threads and
they all have to synchronize at the end due to the reduction clause. This introduces
some overhead that unavoidably has an impact on the performance. Increasing the
patch-dimensions does seem to improve the utilization of the hardware, since more
computations happen within one update iteration, and thus a greater part of the
SOR-routine utilizes the full hardware of an SM. It does however not seem to im-
prove the overall performance, comparing the time per cell (Figure 6.7).

The GPU hardware may be utilized better by refactoring the entire routine, hav-
ing only loops running on the GPU. This would however introduce extra data trans-
fers between host and device and would likely make each SM stay idle while waiting

Chapter 7. Discussion 42

to perform the next update. It is thus expected that the overall performance is better
with the current setup, despite the poor utilization of the GPU hardware.

In general, it does however seem beneficial to perform the SOR routine on the
GPU, as long as the number of bunches and the bunch sizes are set correctly. As men-
tioned initially, on CPUs the SOR and CG methods for solving the Poisson equation
have similar performance, and the SOR was chosen for GPU implementation due
to the simpler code. Since exactly the simple nature of the code probably is a main
reason for the poor GPU utilization, in retrospect it seems likely that implementing
the CG method would give a larger speedup

7.2 DISPATCH offload implementation - improvement ideas

7.2.1 Execution flow

In the current offload implementation of DISPATCH, two points of the current exe-
cution flow may be improved to obtain better performance. Firstly, the time it takes
to fill a bunch, t f ill , is measured doing the first time a bunch is used. This time
is then used as a maximum interval between updates, which together with some
scaling factor, ω, is used to compute when the next update has to take place, tnext.
Every time a thread copies data to a bunch, the current time, tcurent, is measured.
If tcurrent > tnext an update is forced with the current number of patches within a
bunch, after which tnext is updated by tnext = t + ωt f ill , where the t is the time right
before tnext is updated.

This mechanism is added to avoid the program to stall in cases where no tasks
are ready for update and is thus necessary for the bunch setup to work. It however
does not seem to be the optimal way to avoid the program to stall. The main reason
being that the time it takes to fill a bunch is usually much greater the first time, as
the program is more prone to cache misses, making the interval unnecessarily big
and the program may stall too long in cases where the ready-queue is empty.

Secondly, the thread which performs the actual update of the bunch also per-
forms all the post processing of all the patches within it. There will be cases, where
some threads have no tasks to execute, and thus stay idle - especially in combination
with the mechanism described above. Hence it would seem preferable to spread
post processing across several threads and utilize the hardware better.

To improve the above issues, a slightly different approach for the offload execu-
tion is suggested.

Chapter 7. Discussion 43

FIGURE 7.1: Flowchart of the suggested execution flow.

A task should be extended to have an update status which may take the form of
CPU, pre or post. A new task type should further be introduced which is connected
to the bunch type and controls the update on the device. Furthermore, a device
handler-like method (as presented in the mockups) to assign a patch to a bunch,
by providing a bunch-ID, rather than assigning a bunch within the routine which
copies data to the bunch, the program can keep track of how many patches have
been assigned to a bunch and how many patches have actually been copied to the
bunch. The thread execution may thus take one of five different paths. A basic
flowchart of the thread execution is presented on Figure 7.1.

The first path is tasks with the pre update status. Firstly, the thread is assigned
a bunch, after which the patch is prepared and copied to the bunch. If the bunch
is full, the bunch is transferred to the device and the bunch task is set to ready and
placed as the first task in the ready queue, such that the next thread picking a task
from the ready queue, will update the bunch. The main idea of this is, that since only
a small part of the solvers in DISPATCH have been prepared for GPUs, thus when
running experiments that solves many kinds of physics, most of the solvers must be
called from the CPU. Some of the data may be independent of the data updated on
the device and might as well be computed immediately by the thread, rather than
leaving it to one thread after the device update. If the bunch is not full, or after
placing the bunch task in the ready queue, the thread will thus update the values
which are independent of the data updated on the device, before picking a new task
from the ready queue.

The second path is the bunch task. The thread will simply update the bunch on
the device and copy back the data to the patches. Instead of one thread performing
all the post-update procedures for the patches within a bunch, post update status
of each patch is changed to post, and placed back in the ready queue, allowing all
threads to cooperate on generating new tasks that may be updated. The thread then
picks a new task from the ready queue.

The third path is the case where a thread encounters an empty ready queue. In
this case, the thread will force an update of the bunch, by first checking whether
the number of patches within the bunch is above or below some limit. In the case
of the number of patches being below the limit, the thread will generate CPU tasks,
which are placed in the ready queue. If the number of patches is equal to or above

Chapter 7. Discussion 44

the limit, the thread will follow the same steps as for the bunch task. In both cases
update should not be performed before the number of assigned patches matches the
number of patches copied to the bunch. To make sure only one thread performs
either of the updates, some control variable should be used, to inform other threads
encountering the empty ready queue, that the update has been initialized.

The fourth path is tasks with the post update status. In this case the thread will
perform the last updates on the CPU, after which the neighbours will be checked.
If any of them have become ready, they are placed in the ready queue with the pre
update status.

The fifth path is tasks with the CPU update status. In this case the thread will
simply perform the remaining updates, that was supposed to be performed on the
device. The update is only performed on one patch, rather than the whole bunch.
After the update, the thread will follow the same steps as the tasks with the post
update status.

This model will generate more tasks in the ready queue - also tasks which do
not move the program forward in time. It is however very likely, that this model
will utilize the hardware even better, as there would almost always be some task to
execute. It would require some kind of execution hierarchy, making sure that the
most important tasks are executed first. A possible hierarchy would be the bunch
task at the top, tasks with the post update status, tasks with the CPU update status
and tasks with the pre update status at the bottom, based on the assumption that it
is preferable to generate tasks with the pre update status - that is, to fully complete
the update of patch - which will then possibly allow neighbouring patches to move
forward in time.

Using a hierarchy like this will likely create some overhead, when placing the
tasks in the ready queue. It may thus be preferable to create extra ready queues, one
for each update status and one for the bunch task, which are then checked in the
hierarchy order.

Using the empty ready queue as the trigger for a forced update may lead to extra
updates of non-full bunches, which will indeed execute slower than a full bunch -
provided the optimal bunch size is used. One can imagine situations, where patches
are placed in the ready queue shortly after the forced update have been called, which
would have been added to the bunch with the current implementation. It is however
the expectation, that the increased number of generated tasks and the task hierarchy
will ensure, that there is a constant flow of tasks to be executed, with very little idle
time for each hardware thread.

7.2.2 Asynchronous pipelining

A big effort was put into asynchronous pipelining, using a similar approach as
Chikin et al., 2019, allowing data transfer and kernel execution at the same time.
As it can be seen from the profiles, only one target instruction is executed at a time,
as shown in the red square on the top of Figure 7.2. Optimally one would like a
bunch to be transferred when it is ready, so that the data may be updated as soon
as the GPU is free. That is, one would like to transfer a bunch to and from the de-
vice, while another bunch is being updated, as shown in the green square on the
bottom of Figure 7.2. According to the OpenMP specifications, this should be pos-
sible using the nowait and depend clauses. The nowait allows the thread to continue
execution on the device while the target task is executed, which allow it to call other
target directives. Several attempts were made, but none of them with success. This
may be caused by the fact that the target directives were called by different threads.

Chapter 7. Discussion 45

Attempts were therefore made, where one thread was in charge of updating all the
bunches ready for update, thus making all the calls to the target directives. This
did not work either, which seems to be due to lack of support of the compiler. It
may thus work using a different compiler, or maybe for future versions of the GCC
compiler, which will have extended support of OpenMP.

FIGURE 7.2: Asynchronous pipelining of
GPU instructions using OpenMP. The red
square on top shows the current execu-
tion, where one target task is executed
at a time. The green square in the mid-
dle is the asynchronous pipelining, where
data transfers and kernel execution are
executed concurrently. The blue square at
the bottom shows the optimal execution,
where threads continue execution on the
CPU while the target tasks are executed

on the device.

Only looking at the execution on the de-
vice, the benefit of this pipelining is likely
minimal with the current setup, as the ker-
nel execution usually takes much longer
than the data transfer. However, allow-
ing the thread to continue execution on the
CPU while the target region is executed,
the benefit may be much bigger. The idea
is shown in the blue square on Figure 7.2,
where the white boxes at the bottom show
the thread execution. This is very simplified,
as threads would usually work together to
fill a bunch, the idea however remains the
same. As the target task is being executed,
the thread could be able to do other work,
such as checking neighbor relations or as-
signing other tasks to bunches, instead of
staying idle.

This model would require a taskwait call
at the end, which would potentially make
the thread stay idle while waiting for the tar-
get tasks to complete. A possible solution
to this could be to seperate the update of a
task into several steps, as described in sec-
tion 7.2.1.

This model indeed requires the nowait

and depend clauses to work properly, and
thus do not seem possible with the current
version of the GCC compiler.

7.2.3 Linked list of procedure pointers

With the current setup of DISPATCH, only the RAMSES solver has been prepared
for the bunch execution, which makes the use of other physics modules straightfor-
ward, as they must be computed on the host. The number of different physics used
will vary from simulation to simulation. All the solvers, except the RAMSES solver,
will all be called within the pre- or post-update routines immediately before or after
the update routine. As more solvers are prepared for bunch execution, one would
optimally like to transfer the bunch to the device, distribute the patches to the SMs
and then perform all the update routines within one kernel. With the current setup,
this would require several update routines, depending on what physics is enabled
and prepared for the bunch execution on the GPU. At some point, this will become
almost impossible to keep track of and the code will be harder to maintain.

Instead, it may be beneficial to create a linked list of procedures, which is then
called from the GPU. The update list would be made during the initialization, where

Chapter 7. Discussion 46

some variable from an input file could allow the programmer to control which rou-
tines to execute on the device and which to execute on the host. This would further-
more ease the future implementations of new solvers, which are ready for bunch-
execution.

A few small tests were made to see if it is even possible to transfer procedure
pointers to the device using OpenMP, which all seemed to be negative. Some further
investigations should however be made, to finally conclude if this is due to OpenMP
or some other errors in the test.

47

Chapter 8

Conclusion

It has been shown that porting the SOR routine to run on GPUs using OpenMP and
use it to solve for the gravitational potential is indeed possible. The SOR routine
itself makes it impossible to take full advantage of all the available hardware that
a GPU offers. The main performance improvements came from improving the data
transfers between host and device. A new system has been developed for this, which
allows to execute on several devices and to effectively distribute tasks to bunches. In
general, OpenMP has great support for porting code to devices, but does still seem to
have minor flaws which complicates the process. Some issues are likely due to lack
of support in the GCC compiler and are expected to work on other compilers with
better support, or in future versions of the GCC compiler. It has not been possible to
test different compilers.

Due to problems in the existing code, it has not been possible to make a proper
implementation of the SOR routine in DISPATCH, hence it has not been possible to
perform the necessary tests and validations and make it an integrated part of DIS-
PATCH. Instead, the focus has been to thoroughly test the implementation in the
mockups, to ease the implementation in the future and provide a better understand-
ing of key points to obtain the best possible performance.

Two different versions of the mockup have been made, to test whether storing all
bunches in one big contiguous memory array provide better performance than stor-
ing each bunch in its own contiguous memory array. It is found that both versions
perform identically.

The new system follows the same ideas as the current implementation. Tasks
are assigned a specific slot in one of the available bunches, which is then transferred
to the device for update when full. It is found that the bunch size should be some
multiple of the total number of streaming multiprocessors on the GPU, to obtain the
best possible performance. Matching the bunch-size to the number of SMs on the
GPU, makes the performance less dependent on the number of CPU-cores available
and would seem preferable.

Using two devices does seem to improve performance with a factor of two, pro-
vided enough tasks are available for update. Using three devices only performs
slightly better as two and seem to require several extra cores to avoid idle time on
the GPUs.

Several ideas have been proposed, to improve the current offloading system,
which builds on top of the system implemented in the mockups but could also ap-
ply to the current system. The suggestions aim to make better use of the hardware.
The main cause of idle time is caused by not having enough tasks available to fill a
bunch, forcing the program to stall until an update is forced after some time limit.
Furthermore, the thread making the update performs all the post update procedures,
which could easily be performed in parallel by several threads. It is thus suggested
to introduce an update status to each task and to force updates when the ready queue

Chapter 8. Conclusion 48

is empty, rather than some limit. The goal with the first point is to provide extra
tasks for the CPU threads and make better utilization of these. The goal of the latter
is to reduce the time the program stalls due to lack of available tasks and conse-
quently provide new tasks much faster. Due to the problems with the current code
and that the implementation of the SOR routine had the highest priority, it has not
been possible to investigate this system further.

Asynchronous pipelining has also been tested, which could potentially provide
better utilization of the CPU-cores. This is however not possible with the current
version of the GCC compiler.

Finally, a new system for the update routine is suggested, making use of a linked
list of procedures. This would make the implementation of other solvers, which
are prepared for GPU-execution, easier and provide a simple way to control what
physics to solve on the CPU and what to solve on the GPU. It would furthermore
make the code easier to maintain, as it would avoid the need of having update rou-
tines for all combinations of solvers.

49

Appendix A

Bunch version

A.1 Device_handler_mod

Update

1 SUBROUTINE update(self , patch)
2 class(device_handler_t) :: self
3 class(patch_t) :: patch
4 integer :: did , bid , pid , qid
5

6 call omp_set_lock(self%lck_assign)
7 call self%assign_device(did , bid , pid , qid)
8 call omp_unset_lock(self%lck_assign)
9

10 call self%device_list(did)% assign_bunch(patch , bid , pid , qid)
11

12 END SUBROUTINE update

LISTING A.1: The update routine

Assign device

1 SUBROUTINE assign_device(self , did , bid , pid , qid)
2 class(device_handler_t) :: self
3 integer , intent(out) :: did , bid , pid , qid
4 logical , save :: first_time = .true.
5

6 ! Get next slot in bunch and increment
7 pid = self%next_patch
8 self%next_patch = mod(self%next_patch ,self%patch_per_bunch) + 1
9

10 if (first_time) then
11 first_time = .false.
12 !$omp atomic update
13 self%device_list(self%next_device)% active_bunches = &
14 self%device_list(self%next_device)% active_bunches + 1
15 !$omp end atomic
16

17 else if (pid == 1) then
18 self%next_device = mod(self%next_device , self%n_devices) + 1
19 !$omp atomic update
20 self%device_list(self%next_device)% active_bunches = &
21 self%device_list(self%next_device)% active_bunches + 1
22 !$omp end atomic
23

24 if (self%next_device == 1) then
25 self%next_bunch = mod(self%next_bunch , self%bunch_per_device) + 1
26

Appendix A. Bunch version 50

27 if (self%next_bunch == 1) then
28 self%next_qid = mod(self%next_qid , 100) + 1
29 endif
30 endif
31 endif
32

33 did = self%next_device
34 bid = self%next_bunch
35 qid = self%next_qid
36 END SUBROUTINE assign_device

LISTING A.2: Assigning a device, bunch and bunch-slot to a thread

A.2 Device_mod

Assign bunch

1 SUBROUTINE assign_bunch(self , patch , bid , pid , qid)
2 class(device_t) :: self
3 class(patch_t) :: patch
4 integer :: bid , pid , qid , allocated , queue
5

6 call self%bunch_list(bid)% copy_to_bunch(patch , pid , qid , allocated)
7

8 if (allocated == self%patch_per_bunch - 1) then
9 call omp_set_lock(self%lck_update)

10 queue = self%next_update
11 self%next_update = mod(self%next_update ,self%bunch_per_device *2) + 1
12 call omp_unset_lock(self%lck_update)
13

14 do while(.not. self%to_update == queue)
15 !$omp taskyield
16 enddo
17

18 call self%bunch_list(bid)% update ()
19 self%to_update = mod(self%to_update ,self%bunch_per_device *2) + 1
20

21 call self%bunch_list(bid)% copy_from_bunch ()
22 !$omp atomic update
23 self%active_bunches = self%active_bunches - 1
24 !$omp end atomic
25 endif
26 END SUBROUTINE assign_bunch

LISTING A.3: Routine that copies to bunch, and updates when full
and the device is free

A.3 Bunch_mod

Copy to bunch

1 SUBROUTINE copy_to_bunch(self , patch , pid , qid , allocated)
2 class(bunch_t) :: self
3 class(patch_t), target :: patch
4 integer :: pid , qid , i1, i2 , i3
5 integer , intent(out) :: allocated
6

7 do while(.not. qid == self%queue)
8 !$omp taskyield

Appendix A. Bunch version 51

9 enddo
10

11 self%patch_list(pid)% patch => patch
12 do i3 = lb(3), ub(3)
13 do i2 = lb(2), ub(2)
14 do i1 = lb(1), ub(1)
15 self%memb(i1,iphi ,i2 ,i3,pid) = patch%phi(i1,i2,i3)
16 self%memb(i1,idensity ,i2,i3,pid) = patch%density(i1 ,i2 ,i3)
17 enddo
18 enddo
19 enddo
20 self%ds(:,pid) = patch%ds
21

22 !$omp atomic capture
23 allocated = self%allocated
24 self%allocated = self%allocated + 1
25 !$omp end atomic
26

27 if ((allocated == self%patch_per_bunch - 1)) then
28 call self%copy_to_device(self%memb , self%ds)
29 endif
30

31 END SUBROUTINE copy_to_bunch

LISTING A.4: Routine that copies patch data to the bunch

Copy from bunch

1 SUBROUTINE copy_from_bunch(self)
2 class(bunch_t) :: self
3 class(patch_t), pointer :: patch
4 integer :: i, i3 , i2, i1
5

6 call self%copy_from_device(self%memb)
7

8 do i = 1, self%allocated
9 if (.not. associated(self%patch_list(i)%patch)) exit

10 patch => self%patch_list(i)%patch
11 do i3 = lb(3), ub(3)
12 do i2 = lb(2), ub(2)
13 do i1 = lb(1), ub(1)
14 patch%phi(i1,i2,i3) = self%memb(i1,iphi ,i2 ,i3 ,i)
15 enddo
16 enddo
17 enddo
18 self%patch_list(i)% patch => null()
19 enddo
20

21 self%allocated = 0
22 self%queue = mod(self%queue ,100) + 1
23

24 END SUBROUTINE copy_from_bunch

LISTING A.5: Routine that copies patch data from the bunch

Update

1 SUBROUTINE update_device(self , memb , ds)
2 class(bunch_t) :: self
3 real(kind=realkind), pointer :: memb(:,:,:,:,:)

Appendix A. Bunch version 52

4 real(kind=realkind), pointer :: ds(:,:)
5 integer :: N, lpid
6

7 N = self%allocated
8

9 !$omp target teams distribute device(self%device_id)
10 do lpid = 1,N
11 call poisson%sor_bunch(memb(:,:,:,:,lpid), ds(:,lpid), li, ui, n_bunch)
12 enddo
13 !$omp end target teams distribute
14 END SUBROUTINE update_device

LISTING A.6: Routine that updates the bunch on the device

A.4 SOR

1 SUBROUTINE sor_bunch (memb , ds, l, u, n)
2 !$omp declare target
3 real(kind=realkind) :: memb(:,:,:,:)
4 real(kind=realkind) :: ds(:)
5 integer :: l(3), u(3), n(3)
6 integer :: i, j, k, sweep , ss , ione , jone , kone , iter , ii
7 real (8) :: a, b1, b2, b3 , res , numer , denom , rjac2 , omega , error
8

9 numer = 0.0
10 denom = 0.0
11 do i=1,3
12 if (n(i) > 1) then
13 numer = numer + cos(pi / n(i))
14 denom = denom + 1d0
15 end if
16 end do
17 rjac2 = (numer / denom)**2
18 if (chebyshev) then
19 omega = 1.0
20 else
21 omega = 2d0 / (1d0 + sqrt(1d0 - rjac2))
22 end if
23

24 ione = 1
25 jone = 1
26 kone = 1
27 if (n(1) <= 1) ione = 0
28 if (n(2) <= 1) jone = 0
29 if (n(3) <= 1) kone = 0
30

31 a = 0.0
32 if (n(1) > 1) a = a + 2. / ds (1)**2
33 if (n(2) > 1) a = a + 2. / ds (2)**2
34 if (n(3) > 1) a = a + 2. / ds (3)**2
35

36 a = 1. / a
37 b1 = a / ds (1)**2 * ione
38 b2 = a / ds (2)**2 * jone
39 b3 = a / ds (3)**2 * kone
40

41 do iter=1,max_iter
42 error = 0.0
43 do sweep=0,1
44 !$omp parallel do collapse (2) reduction(max:error) &
45 !$omp schedule(static) default(none) private(ss, i, res , ii) &

Appendix A. Bunch version 53

46 !$omp shared(memb , l, u, b1, b2, b3 , a, fourPiG , idensity) &
47 !$omp shared(iphi , omega , floor , ione , jone , kone , sweep)
48 do k=l(3),u(3)
49 do j=l(2),u(2)
50 !$omp simd reduction(max:error) private(ss ,i,res)
51 do ii=l(1),u(1),2
52 ss = modulo(j + k + sweep ,2)
53 i = ii + ss
54 if (i > u(1)) cycle
55 res = b1 * (memb(i+ione ,iphi ,j,k) + memb(i-ione ,iphi ,j,k)) &
56 + b2 * (memb(i,iphi ,j+jone ,k) + memb(i,iphi ,j-jone ,k)) &
57 + b3 * (memb(i,iphi ,j,k+kone) + memb(i,iphi ,j,k-kone)) &
58 - memb(i,iphi ,j,k) - a * fourPiG * memb(i,idensity ,j,k)
59 memb(i,iphi ,j,k) = memb(i,iphi ,j,k) + omega * res
60 error = max(abs(res / (memb(i,idensity ,j,k) + floor)), error)
61 enddo
62 enddo
63 enddo
64 !$omp end parallel do
65 if (chebyshev) then
66 if (iter == 1) then
67 omega = 1.0 / (1.0 - rjac2 * 0.5)
68 else
69 omega = 1.0 / (1.0 - rjac2 * 0.25 * omega)
70 end if
71 end if
72 enddo
73

74 error = error / (a*fourPiG)
75 if (error < tolerance) exit
76 enddo
77

78 END SUBROUTINE sor_bunch

LISTING A.7: SOR bunch routine

54

Bibliography

Berger, M.J and P Colella (1989). “Local adaptive mesh refinement for shock hydro-
dynamics”. eng. In: Journal of computational physics 82.1, pp. 64–84. ISSN: 0021-
9991.

Bodenheimer, Peter (2006). Numerical methods in astrophysics: an introduction. CRC
Press.

Bryan, Greg L. et al. (2014). “ENZO: AN ADAPTIVE MESH REFINEMENT CODE
FOR ASTROPHYSICS”. eng. In: The Astrophysical journal. Supplement series 211.2,
pp. 19–52. ISSN: 0067-0049.

Chikin, Artem, Tyler Gobran, and José Nelson Amaral (2019). “OpenMP Code Of-
floading: Splitting GPU Kernels, Pipelining Communication and Computation,
and Selecting Better Grid Geometries”. eng. In: Accelerator Programming Using Di-
rectives. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, pp. 51–74. ISBN: 3030122735.

consortium, LUMI. LUMI’s full system architecture revealed. URL: https://www.lumi-
supercomputer.eu/lumis-full-system-architecture-revealed/. (accessed:
09.06.2022).

Diaz, Jose Monsalve et al. (2019). “Analysis of OpenMP 4.5 Offloading in Implemen-
tations: Correctness and Overhead”. In: Parallel Computing 89, p. 102546. ISSN:
0167-8191. DOI: https://doi.org/10.1016/j.parco.2019.102546. URL: https:
//www.sciencedirect.com/science/article/pii/S0167819119301371.

Dubey, Anshu et al. (2014). “A survey of high level frameworks in block-structured
adaptive mesh refinement packages”. eng. In: Journal of parallel and distributed
computing 74.12, pp. 3217–3227. ISSN: 0743-7315.

Dumas, Joseph D. (2017). Computer architecture : fundamentals and principles of com-
puter design. eng. Second edition. Boca Raton: CRC Press. ISBN: 1-315-36711-4.

Haarh, Michael (2021). “Porting DISPATCH MHD to GPU using directive based pro-
gramming”. MA thesis. University of Copenhagen.

Heyer, Mark et al. (2009). “Re-Examining Larson’s Scaling Relationships in Galactic
Molecular Clouds”. eng. In: The Astrophysical journal 699.2, pp. 1092–1103. ISSN:
0004-637X.

Li, Xuechao and Po-Chou Shih (2018). “An Early Performance Comparison of CUDA
and OpenACC”. In: MATEC Web Conf. 208, p. 05002. DOI: 10.1051/matecconf/
201820805002. URL: https://doi.org/10.1051/matecconf/201820805002.

Mendygral, P. J et al. (2017). “WOMBAT: A Scalable and High-performance Astro-
physical Magnetohydrodynamics Code”. eng. In: The Astrophysical journal. Sup-
plement series 228.2, pp. 23–23. ISSN: 0067-0049.

Nordlund, Åke et al. (2018). “dispatch: a numerical simulation framework for the
exa-scale era – I. Fundamentals”. eng. In: Monthly notices of the Royal Astronomical
Society 477.1, pp. 624–638. ISSN: 0035-8711.

Null, Linda and Julia Lobour (2014). The essentials of computer organization and archi-
tecture. eng. 4. ed. Burlington, MA: Jones Bartlett Learning. ISBN: 9781284045611.

OpenMP Application Programming Interface (2015). Version 4.5. URL: https://www.
openmp.org/wp-content/uploads/openmp-4.5.pdf.

https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/
https://www.lumi-supercomputer.eu/lumis-full-system-architecture-revealed/
https://doi.org/https://doi.org/10.1016/j.parco.2019.102546
https://www.sciencedirect.com/science/article/pii/S0167819119301371
https://www.sciencedirect.com/science/article/pii/S0167819119301371
https://doi.org/10.1051/matecconf/201820805002
https://doi.org/10.1051/matecconf/201820805002
https://doi.org/10.1051/matecconf/201820805002
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

Bibliography 55

Press, William H. et al. (1992). Numerical recipes in fortran 77 : the art of scientific comput-
ing : Volume 1 of Fortran Numerical Recipes. eng. 2nd ed. Cambridge: Cambridge
University Press. ISBN: 052143064x.

Ramsey, JP, T Haugbølle, and Å Nordlund (2018). “A simple and efficient solver for
self-gravity in the DISPATCH astrophysical simulation framework”. In: Journal
of Physics: Conference Series. Vol. 1031. 1. IOP Publishing, p. 012021.

Robey, Robert and Yuliana Zamora (2021). Parallel and High Performance Computing.
eng. Second edition. Manning Publications Co. ISBN: 9781617296468.

Stone, James M et al. (2020). “The Athena++ Adaptive Mesh Refinement Framework:
Design and Magnetohydrodynamic Solvers”. eng. In: The Astrophysical journal.
Supplement series 249.1, pp. 4–. ISSN: 0067-0049.

Strohmaier, Erich et al. Top500: June 2022. URL: https://www.top500.org/lists/
top500/2022/06/. (accessed: 09.06.2022).

Zhang, Weiqun et al. (2016). “BoxLib with Tiling: An Adaptive Mesh Refinement
Software Framework”. eng. In: SIAM journal on scientific computing 38.5, S156–
S172. ISSN: 1064-8275.

https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	High Performance Computing
	Basic computer Architecture
	Memory
	The Central Processing Unit
	The Graphics Processing Unit
	The execution model

	GPU programming
	The programming model
	Directive based programming
	OpenMP

	Compilers
	HPC systems - Supercomputers
	LUMI

	DISPATCH
	Key ideas
	Tasks
	Offloading
	Task scheduling

	Theory
	Selfgravity
	Iterative methods
	Jacobi iterations and Gauss-Seidel
	Red-black iteration
	Successive Overrelaxation

	Multi-grid methods
	Solving Poisson's equation in DISPATCH
	Gravity at different scales

	Implementation
	Mockups
	poisson_mock.f90
	GPU-implementation - pre-steps
	Step1.f90
	Step2.f90 and Step3.f90
	Step4.f90
	Step5.f90
	Step6.f90
	Profiling

	GPU-implementation - final versions
	Profiling

	Results
	Optimal setup
	CPU-version
	System size
	Patch per bunch
	Bunch per device
	Cores per device
	Patch dimensions

	Discussion
	Current results
	Optimal setup vs. DISPATCH
	SOR on GPU

	DISPATCH offload implementation - improvement ideas
	Execution flow
	Asynchronous pipelining
	Linked list of procedure pointers

	Conclusion
	Bunch version
	Device_handler_mod
	Update
	Assign device

	Device_mod
	Assign bunch

	Bunch_mod
	Copy to bunch
	Copy from bunch
	Update

	SOR

	Bibliography

