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Abstract

The project computes the expectation value of Wilson lines to one-loop
order for two holographic defect conformal field theories. Supersymmetry
is completely broken for both setups, but only one of which is described by
an integrable boundary state. The known computation for the supersym-
metric dCFT with so(3) R-symmetry is briefly reviewed and its results are
reproduced. After finding the Wilson line expectation value for all three
setups we solve their gravity dual. First treating the brane configuration for
the setups and then computing the string action dual to the Wilson lines.
We find perfect agreement for the non-local observable in the double scaling
limit for all three setups as predicted by the holographic dictionary.
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1 Introduction

The idea that a string theory is dual to a large N Yang-Mills theory dates all the
way back to ’t Hooft in 1974 [1]. It was, however, as late as 1998 that Maldacena
found a precise example of such a duality, the famous AdS/CFT correspondence
[2]. Ever since then, has duality and holography been among the most hot topics in
theoretical physics. A duality means that two theories with distinct interpretation,
are equivalent at some fundamental level (a map exists). Holography is a duality
between two theories of different spacetime dimension.

Historically supersymmetry has been important for holography. The common
holographic dualities have a large amount of symmetry (supersymmetry and con-
formal symmetry) and are dual to a third, integrable, system. One could suspect
that the only reason that their holographic dictionary works, is that the symme-
try is sufficient to uniquely specify the observables on both sides. The goal of
the project is to test if it is necessary for holography to have supersymmetry and
integrability, or that our notion of holography is more fundamental.

We intend on achieving this by computing an observable on both sides of the
proposed AdS/dCFT duality. Our observable of choice is the infinite Wilson line
treated in [3]. The idea is to perform a check of the correspondence for two setups
with completely broken supersymmetry where only one of which is described by
an integrable boundary state. A description and a perturbative framework for
the two setups are laid out in [4, 5]. The hope is to deepen the understanding
of the interplay between holography and supersymmetry and between holography
and integrability. The organization of the following sections is as follows; section
2 will introduce the general setup and review some previous work, section 3 and
4 will delve into the computation on the field theory side and string theory side
respectively. In the last section we conclude and summarize the results.

2 The setup and previous work

2.1 Introduction to the setup

In the original AdS/CFT setup the starting point is a stack of N D3 branes [2].
For AdS/dCFT setups we similarly start with a stack of N D3 branes, but in this
case we also have a D5 or D7 probe brane that the D3 branes end on [6]. On the
other side of the probe brane there is fewer D3 branes, say N −k, see Figure 1. As
usual, the stack of N D3 branes corresponds to a gauge theory with gauge group
SU(N). Since the stack ends at the probe brane and only N − k branes continue
on the other side, there will be a SU(N − k) gauge group on the other side with a
interface between them. We place the coordinate system on the field theory side
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Figure 1: (a) depicts the brane configuration on the string theory side. (b) depicts
the corresponding dCFT.

such that x3 is perpendicular to the interface defect and positive x3 is the SU(N)
side. In particular, we will be interested in three cases, one with a D5 probe brane
and two with a D7 probe brane with different geometries. The observable that we
will be comparing is the particle-interface potential for positive x3, as computed
by the supersymmetric Wilson line and its holographic dual being the action of a
string suspended between the probe brane and the AdS boundary.

2.2 Characterization of the three setups

The three brane setups of interest are summarized in Table 1. For the D3-D7
setups supersymmetry is completely broken. The D3-D5 setup and the second
D3-D7 setup is described by an integrable boundary state.

Brane setup D3-D5 D3-D7 (I) D3-D7 (II)
Supersymmetry 1/2-BPS None None
Brane geometry AdS4× S2 AdS4× S2 × S2 AdS4× S4

Magnetic flux on spheres k k1, k2
(n+1)(n+2)(n+3)

6

D.s. parameter λ
π2k2

λ
π2(k21+k22)

λ
π2n2

Boundary state Integrable Non-integrable Integrable

Table 1: A brief overview of the three brane configurations that we consider.

For the D3-D5 setup, there is missing k D3 branes on one side of the probe brane,
see Figure 1. For the first D3-D7 brane setup there is N − k1k2 on one side and
for the other D3-D7 setup there is N − dG with dG = (n+ 1)(n+ 2)(n+ 3)/6. The
theories will be comparable to their dual dCFT only in a certain double scaling
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limit. As is the case in the usual AdS/CFT we first take N → ∞, but when
we take λ → ∞ we do it in such a way that the double scaling parameter stays
finite but small. Refer to Table 1 for the different setups respective double scaling
parameters. Observables on both sides of the duality will be expressed as a per-
turbative expansion in the double scaling parameter, and since this parameter can
be taken small, they can be compared order by order.

Now we will look at the dCFT dual to the three setups. Only x3 > 0 will be
considered. The action here is the regular N = 4 super Yang-Mills

SN=4 =
2

g2
YM

∫
d4x tr

[
− 1

4
FµνF

µν−1

2
DµφiD

µφi +
i

2
Ψ̄ΓµDµΨ

+
1

2
Ψ̄Γ̃i[φi,Ψ] +

1

4
[φi, φj][φi, φj]

]
, (2.1)

where the field strength tensor and covariant derivative are defined as

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], (2.2)

Dµ = ∂µ − i[Aµ, · ]. (2.3)

The equations of motion for the scalar fields becomes

∇2φcl
i (x) =

[
φcl
j (x),

[
φcl
j (x), φcl

i (x)
]]
. (2.4)

To match the symmetries of the D3-D5 brane configuration we require that the
scalar fields have SO(3) symmetry, this matches the S2 part of the brane geometry
AdS4 × S2. A particular solution to the equations of motion for the scalar fields
with the relevant symmetry is [7]

φcl
i (x) = − 1

x3

tki ⊕ 0(N−k), i = 1, 2, 3, (2.5)

φcl
i (x) = 0(N), i = 4, 5, 6, (2.6)

where tki is the k-dimensional irreducible representation of so(3), it is padded with
zeros to make it a N by N matrix. To see this is a solution to the equations of
motion we may simply plug it in and use the defining commutation relations that
the generators of so(3) satisfy. We will do it explicitly for this case

−∇2 1

x3

tki =

[
φcl
j (x),

[
φcl
j (x),− 1

x3

tki

]]
, (2.7)
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notice that (4.87) is trivially satisfied for the N − k block and for i = 4, 5, 6.

− 2

x3
3

tki =
3∑
j=1

[
− 1

x3

tkj ,

[
− 1

x3

tkj ,−
1

x3

tki

]]
, (2.8)

− 2

x3
3

tki = − 1

x3
3

3∑
j=1

[
tkj ,
[
tkj , t

k
i

]]
. (2.9)

The Lie brackets are now replaced with the structure constants and the Einstein
summation convention will be employed

2

x3
3

tki =
1

x3
3

[
tkj , ifjilt

k
l

]
= − 1

x3
3

fjilfjlmt
k
m. (2.10)

For so(3) the structure constants are fijl = εijl where ε denotes the totally an-
tisymmetric symbol. The contraction of the antisymmetric symbols becomes
εjilεjlm = −2δim and (2.10) is thus satisfied and we have confirmed that (4.36),
(2.6) is an appropriate solution to the equations of motion. Suitable solutions
for the D3-D7 setups have also been found, for the first setup with SO(3)×SO(3)
symmetry we use [8]

φ
cl (I)
i (x) = − 1

x3

(
tk1i ⊗ 1k2

)
⊕ 0(N−k1k2) for i = 1, 2, 3, (2.11)

φ
cl (I)
i (x) = − 1

x3

(
1k1 ⊗ tk2i−3

)
⊕ 0(N−k1k2) for i = 4, 5, 6. (2.12)

tki again denotes the generators of so(3) in the k-dimensional irreducible represen-
tation. For the second setup with SO(5) symmetry we use the following solution
[9]

φ
cl (II)
i (x) =

GdG
i6√
2x3

⊕ 0(N−dG) for i = 1, ..., 5; φ
cl (II)
6 (x) = 0(N). (2.13)

Here GdG
i6 are the generators of so(5) in the dG = (n+1)(n+2)(n+2)/6 dimensional

irreducible representation. This concludes the basic characterization of the three
setups, quantum fluctuations around the classical solutions will be dealt with later.

2.3 The particle-interface potential

2.3.1 Gauge theory side

In order to check that the theories are dual, we compute and compare an observable
on both sides. As previously mentioned, our observable of choice is the constant
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x3 Wilson line and its dual string. In this section we focus on the D3-D5 setup as
treated in [3]. We let the path be parameterized by

xµ(γ(λ)) = (λ, 0, 0, z) (2.14)

and compute the associated supersymmetric Wilson integral

W = lim
T→∞

tr

[
Pexp

∫ T/2

−T/2
A(t)dt

]
, (2.15)

with

A = iA0 − sinχφ3 − cosχφ6. (2.16)

The potential V as seen by the particle is then related by 〈W 〉 = e−TV . Note that
the origin of this potential is due to the fact that we had to find non-vanishing
vacuum solutions for the scalar fields in order to match the symmetries of the
holographic dual. We can now find the classical potential by plugging in the
classical vacuum expectation values for the D3-D5 setup as given in (4.36) and
(2.6).

〈W 〉tree = lim
T→∞

tr

[
Pexp

∫ T/2

−T/2
dt sinχ

1

z
tk3

]
, (2.17)

〈W 〉tree = lim
T→∞

tr exp

[
T

z
sinχtk3

]
. (2.18)

In the large T limit, only the largest eigenvalue of tk3 will contribute, following the
conventions of [3] the largest eigenvalue is η = (k − 1)/2,

〈W 〉tree = lim
T→∞

exp

[
T

2z
sinχ(k − 1)

]
, (2.19)

the potential can now be identified as

Vtree(x) = −k − 1

2x3

sinχ. (2.20)

In order to compare to the string theory side we will have to take the correct
double scaling limit, which includes the large k limit, in this case we find

Vtree(x) = − k

2x3

sinχ. (2.21)

Of course this is not the full story, since there will be quantum fluctuations around
the vacuum expectation values. The above result is simply the classical result
and is therefore denoted tree, as it amounts to the tree diagram in the Feynman
expansion.
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2.3.2 String theory side

The Wilson line corresponds to the area of the string suspended from the AdS
boundary and perpendicularly attached to the probe brane. In order to perform
this computation one first has to find where the brane is sitting. Once this is found
by extremizing the Dirac-Born-Infeld action, the precise boundary conditions can
be written. The boundary conditions were found in [10] and summarized in Table
2. Λ is the angle between the probe brane and the D3 branes, for the D3-D5 setup

y(σ0, τ) = 0 y(σ1, τ) = 1
Λ
x3(σ1, τ)

BC: x3(σ0, τ) = z y′(σ1, τ) = −Λx′3(σ1, τ)
ψ(σ0, τ) = π

2
− χ ψ(σ1, τ) = 0

Table 2: Summary of the boundary conditions for the string.

[10] found this to be Λ = πk/α′. The boundary conditions have two parameters,
z and χ. z is the initial distance to the probe brane and is the same z as in
the path parameterization for the Wilson line. χ is a parameter that controls the
suspension in the S5 part of the space, see Figure 2. One simply proceeds by
solving the equations of motion given the boundary conditions and plugging it
back into the Nambu-Goto or Polyakov action. The action is then related to the
potential by 〈W 〉 = eS where 〈W 〉 is the Wilson line and S is the action. The
action and the associated potential was found to be [10]

V (x) = − k

2x3

sinχ

[
1 +

λ sinχ

8π2k2 cos3 χ
(π − 2χ− sin 2χ) +O

(
λ2

π4k4

)]
. (2.22)

The gauge theory side was computed in [3] and found agreement to at least one-
loop order. The details of the computation on both the string theory and gauge
theory side will be carried out in the following sections for the D3-D7 brane setups.

Figure 2: The green represents the string worldsheet in AdS5 and S5. The red is
the AdS boundary and the blue is the probe brane.
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3 Gauge theory computation

3.1 Dealing with quantum corrections

The goal is to compute the Wilson line

〈W 〉 = lim
T→∞

〈
tr

[
Pexp

∫ T/2

−T/2
A(t)dt

]〉
, (3.1)

with

A(I)(t) = iA0(t)− φ(I)
3 (t) sin(χ)− φ(I)

6 (t) cos(χ), (3.2)

A(II)(t) = iA0(t)− φ(II)
5 (t) sin(χ)− φ(II)

6 (t) cos(χ), (3.3)

for the two D3-D7 setups respectively. In order to deal with the quantum fluctua-
tions, we do the usual trick of reexpanding all fields around their classical vacuum
such as φ = φcl + φ̃. For convenience, we define

U(α, β) = Pexp

∫ β

α

A(t)dt, (3.4)

the gauge invariant infinite Wilson line is then given by

W = lim
T→∞

trU

(
−T

2
,
T

2

)
. (3.5)

The expansion of the fields

A = Acl + Ã (3.6)

is now plugged into (3.4)

U(α, β) = Pexp

[ ∫ β

α

dt
(
Acl(t) + Ã(t)

)]
, (3.7)

= P

[
exp

∫ β

α

dtAcl(t)

][
exp

∫ β

α

dtÃ(t)

]
, (3.8)

since it is under the path ordering operator, everything commutes and we are able
to split the exponential. We define the first exponential

U cl(α, β) = Pexp

[ ∫ β

α

dtAcl(t)

]
. (3.9)
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The second exponential is now expanded, it turns out that up to second order is
necessary for the one-loop result,

Pexp

∫ β

α

dtÃ(t) = 1 + P

∫ β

α

dtÃ(t) +
1

2
P

(∫ β

α

dtÃ(t)

)2

+O
(
Ã3
)
. (3.10)

The result from (3.10) and the definition from (3.9) can now be used to rewrite
(3.8)

U(α, β) = PU cl(α, β)

[
1 +

∫ β

α

dtÃ(t) +
1

2

(∫ β

α

dtÃ(t)

)2 ]
+O

(
Ã3
)
. (3.11)

The final step is to put everything in correct path order and remove the path
ordering operator

U(α, β) = U cl(α, β) +

∫ β

α

dtU cl(α, t)Ã(t)U cl(t, β)

+

∫ β

α

dt

∫ β

t

dt′U cl(α, t)Ã(t)U cl(t, t′)Ã(t′)U cl(t′, β) +O(Ã3). (3.12)

To find the Wilson line we are interested in, we will need take the trace and
expectation value. This means we will be needing to find the one-loop corrections
to the vacuum expectation values 〈Ã(t)〉 and the propagators 〈Ã(t)Ã(t′)〉. The
corresponding diagram to each term in (3.12) is illustrated in Figure 3. The
following subsections will be devoted to treating each of the terms. It will be
convenient to define

Ulol(α, β) =

∫ β

α

dtU cl(α, t)Ã(t)U cl(t, β), (3.13)

Utad(α, β) =

∫ β

α

dt

∫ β

t

dt′U cl(α, t)Ã(t)U cl(t, t′)Ã(t′)U cl(t′, β), (3.14)

and

〈W 〉tree = lim
T→∞

〈
trU cl

(
−T

2
,
T

2

)〉
, (3.15)

〈W 〉lol = lim
T→∞

〈
trUlol

(
−T

2
,
T

2

)〉
, (3.16)

〈W 〉tad = lim
T→∞

〈
trUtad

(
−T

2
,
T

2

)〉
, (3.17)

such that

〈W 〉 = 〈W 〉tree + 〈W 〉lol + 〈W 〉tad +O(2− loop). (3.18)
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x3

x0

x3

x0

x3

x0

Figure 3: Diagrams at tree level and one-loop order. The middle diagram will be
called the lollipop and the third diagram will be called the tadpole.

3.1.1 One-point functions and propagators

Finding the propagators 〈Ã(t)Ã(t′)〉 and the expectation value of the correction
〈Ã(t)〉 is a rather lengthy and complicated procedure. Only the results will be
stated here. The procedure starts with the action. The action consists of the
usual N = 4 super Yang Mills action in the bulk and the action of the fields
living on the defect. At one loop order we only need to consider the action of
the bulk as interactions with the defect fields will be of higher order. To proceed
we perform the well-known trick of substituting φ → φcl + φ̃ in the action (2.1)
and treating φ̃ as the fundamental fields. Since it is the action of an interacting
field theory, many terms will be generated where φcl will play the role of mass
coefficients and interaction coupling constants. The gauge freedom will have to be
fixed as well before doing field theoretic computation. After fixing the gauge the
resulting gauge-fixed action was found in [6]

SN=4 + Sgh = Skin + Sm,b + Sm,f + Scubic + Squartic, (3.19)

where Skin are the kinetic terms, Sm,b are the mass terns for the bosons, Sm,f are
the mass terms for the fermions, Scubic are the cubic interactions and Squartic are
the quartic interactions. In particular, they found

Sm,b =
1

g2
YM

∫
d4x tr

[
[φcl
i , φ

cl
j ][φ̃i, φ̃j] + [φcl

i , φ̃j][φ
cl
i, φ̃j] + [φcl

i , φ̃j][φ̃i, φ
cl
j]

+ [φcl
i , φ̃i][φ

cl
j, φ̃j] + [Aµ, φ

cl
i ][Aµ, φcl

i ] + 2i[Aµ, φ̃i]∂µφ
cl
i

]
.

(3.20)

Two difficulties are apparent with this, first is that it mixes fields and secondly
is that φcl, and hence mass coefficients, are spacetime dependent. The spacetime
dependence means that the propagators will be related to the AdS propagators.
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And to deal with the mixing one has to diagonalize the mass matrix and find
the resulting spectrum. Then one can go back to finding the propagators of the
original fields by writing them as a sum of the mass eigenstates.

Before proceeding, we write out the two-point function we are interested in

〈Ã(t)Ã(t′)〉 =
〈
(iÃ0(t)− φ̃a(t) sinχ− φ̃6(t) cosχ)

(iÃ0(t′)− φ̃a(t′) sinχ− φ̃6(t′) cosχ)
〉
, (3.21)

where φ̃a = φ̃3 for the D3-D5 and the first D3-D7 setup and φ̃a = φ̃5 for the second
D3-D7 setup. Common for all three setups, there is no propagation between Ã0

and a different field

〈Ã(t)Ã(t′)〉 =−
〈
Ã0(t)Ã0(t′)

〉
+
〈
φ̃a(t)φ̃a(t

′)
〉

sin2 χ (3.22)

+
〈
φ̃6(t)φ̃6(t′)

〉
cos2 χ+ 2

〈
φ̃a(t)φ̃6(t′)

〉
sinχ cos χ, (3.23)

A useful way to write it is

〈Ã(t)Ã(t′)〉 =
(〈
φ̃a(t)φ̃a(t

′)
〉
−
〈
Ã0(t)Ã0(t′)

〉)
sin2 χ (3.24)

+
(〈
φ̃6(t)φ̃6(t′)

〉
−
〈
Ã0(t)Ã0(t′)

〉)
cos2 χ (3.25)

+ 2
〈
φ̃a(t)φ̃6(t′)

〉
sinχ cos χ. (3.26)

As will be argued later, it is only the off diagonal block that will end up contribut-
ing. The propagators for the D3-D5 setup was found in [6]. For the k × (N − k)
and (N − k)× k blocks they found

〈
[φ̃3(t)]aµ[φ̃3(t′)]µb

〉
−
〈
[Ã0(t)]aµ[Ã0(t′)]µb

〉
= δab(N − k)

(
k + 1

2k
Km2=

(k−2)2−1
4

+
k − 1

2k
Km2=

(k+2)2−1
4 −Km2= k2−1

4

)
, (3.27)〈

[φ̃6(t)]aµ[φ̃6(t′)]µb
〉
−
〈
[Ã0(t)]aµ[Ã0(t′)]µb

〉
= 0, (3.28)〈

[φ̃3(t)]aµ[φ̃6(t′)]µb
〉
〉 = 0, (3.29)

where Km2
= Km2

(t, t′) is the solution to(
−∂µ∂µ +

m2

x2
3

)
K(t, t′) =

g2
YM

2
δ(t− t′). (3.30)
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For the first D3-D7 setup the propagators were found in [4]〈
[φ̃3(t)]aµ[φ̃3(t′)]µb

〉
= (N − k1k2)

(
δabK

φ,(1)
sing − [tk13 t

k1
3 ⊗ 1k2 ]abK

φ,(1)
sym

)
, (3.31)

〈
[φ̃6(t)]aµ[φ̃6(t′)]µb

〉
= (N − k1k2)

(
δabK

φ,(2)
sing − [tk23 t

k2
3 ⊗ 1k1 ]abK

φ,(2)
sym

)
, (3.32)〈

[Ã0(t)]aµ[Ã0(t′)]µb
〉

= δab(N − k1k2)Km2= 1
4

(k21+k22−2), (3.33)〈
[φ̃3(t)]aµ[φ̃6(t′)]µb

〉
〉 = (N − k1k2)[tk13 ⊗ tk23 ]ab

(
Km2

−

N−
+
Km2

+

N+

− Km2
0

N0

)
, (3.34)

for the k1k2 × (N − k1k2) and (N − k1k2)× k1k2 blocks, where

K
φ,(1)
sing =

k1 + 1

2k1

Km2
(1),+ +

k1 − 1

2k1

Km2
(1),− , (3.35)

K
φ,(2)
sing =

k2 + 1

2k2

Km2
(2),+ +

k2 − 1

2k2

Km2
(2),− , (3.36)

Kφ,(1)
sym =

2Km2
(1),+

k2
1 + k1

+
2Km2

(1),−

k2
1 − k1

− k2
2 − 1

k2
1 − 1

Km2
0

N0

− Km2
−

N−
− Km2

+

N+

, (3.37)

Kφ,(2)
sym =

2Km2
(2),+

k2
2 + k2

+
2Km2

(2),−

k2
2 − k2

− k2
1 − 1

k2
2 − 1

Km2
0

N0

− Km2
−

N−
− Km2

+

N+

, (3.38)

with

λ± = −1

2
± 1

2

√
k2

1 + k2
2 − 1, (3.39)

N± = λ∓ (λ∓ − λ±) , (3.40)

N0 = −λ+λ−, (3.41)

and

m2
(1),+ =

1

4

(
k2

1 − 4k1 + k2
2 + 2

)
, (3.42)

m2
(1),− =

1

4

(
k2

1 + 4k1 + k2
2 + 2

)
, (3.43)

m2
(2),+ =

1

4

(
k2

2 − 4k2 + k2
1 + 2

)
, (3.44)

m2
(2),− =

1

4

(
k2

2 + 4k2 + k2
1 + 2

)
, (3.45)

m2
0 =

1

4

(
k2

1 + k2
2 + 6

)
, (3.46)

m2
+ =

1

4

(
k2

1 + k2
2 − 2

)
− 2λ+, (3.47)

m2
− =

1

4

(
k2

1 + k2
2 − 2

)
− 2λ−. (3.48)
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For the second D3-D7 setup the propagators in the off-diagonal block were found
in [5]

〈
[φ̃5(t)]aµ[φ̃5(t′)]µb

〉
= (N − dG)

(
δabf

sing + 4[G56G56]abf
prod

)
, (3.49)〈

[φ̃6(t)]aµ[φ̃6(t′)]µb
〉

= δab(N − dG)Km2= 1
8
n(n+4), (3.50)〈

[Ã0(t)]aµ[Ã0(t′)]µb
〉

= δab(N − dG)Km2= 1
8
n(n+4), (3.51)〈

[φ̃5(t)]aµ[φ̃6(t′)]µb
〉
〉 = 0, (3.52)

where

f sing =
n

2(n+ 2)
Km2

−+ +
n+ 4

2n+ 4
Km2

++ , (3.53)

fprod = − Km2−+

2n(n+ 2)
− Km2

++

2(n+ 2)(n+ 4)
+
Km2

−

4N+

+
Km2

+

4N−
, (3.54)

N± =
n

2
(n+ 4) + 1±

√
n

2
(n+ 4) + 1, (3.55)

with

m2
++ =

1

8
n2, (3.56)

m2
−+ =

1

8
(n+ 4)2, (3.57)

m2
+ =

1

8

(
n2 + 4n+ 8 + 4

√
2n2 + 8n+ 4

)
, (3.58)

m2
− =

1

8

(
n2 + 4n+ 8− 4

√
2n2 + 8n+ 4

)
. (3.59)

We notice now that for all three setups the two-point function has the following
form

〈[Ã(t)]dµ[Ã(t′)]µc〉 =
∑
n

Dn
dc

∑
i

λi,nK
m2
i,n(t, t′) (3.60)

where D is a diagonal prefactor. That is everything we will be needing from the
propagators. As for the one-point function, the same references that found the
propagators were able to use them to find the one-loop corrections to the classical
solutions. For they D3-D5 setup they found [6]

〈Ã〉 = 0, (3.61)
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which is due to the supersymmetry and thus does not vanish for the D3-D7 setups.
For the first D3-D7 setup they found [4]

〈Ã〉 =
2λ

4π2(k2
1 + k2

2)3

(
k4

2 sinχφcl
3 + k4

1 cosχφcl
6

)
. (3.62)

For the second D3-D7 setup they found [5]

〈Ã〉 =
λ

4π2n2
sinχφcl

5 , (3.63)

at one-loop level.

3.2 The tree

The tree level contribution 〈W 〉tree as given by (3.15) is computed for the two
D3-D7 setups

〈W 〉tree = lim
T→∞

〈
tr Pexp

[ ∫ T
2

−T
2

dtAcl(t)

]〉
, (3.64)

〈W 〉tree = lim
T→∞

tr exp

∫ T
2

−T
2

dtAcl(t). (3.65)

For both setups A is time independent

〈W 〉tree = lim
T→∞

tr exp
(
TAcl

)
, (3.66)

= lim
T→∞

[
exp
(
TAcl

)]
ii

(3.67)

In the large T limit, only the fastest growing exponential will contribute. The
result depends on the largest eigenvalue η/z and its multiplicity µ

〈W 〉tree = µ exp
(
T
η

z

)
. (3.68)

For the first setup the largest eigenvalue of A(I) is η(I)/z where 2η(I) = (k1 −
1) sinχ+(k2−1) cosχ with multiplicity µ(I) = 1. For the second setup we need the
largest eigenvalue of G56 and its multiplicity, this was found to be η(II) = n√

8
sinχ

and µ(II) = n+ 1 in [11]. The tree level results can finally be written

〈W 〉(I)tree = µ(I) exp

(
T

(k1 − 1) sinχ+ (k2 − 1) cosχ

2z

)
, (3.69)

〈W 〉(II)tree = µ(II) exp

(
T

n√
8z

)
. (3.70)
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Since the Wilson line is related to the particle interface potential by 〈W 〉 = e−TV

we can identify the tree-level potentials

V
(I)

tree(x) = − lim
T→∞

1

T
〈W 〉(I)tree = −k1 sinχ+ k2 cosχ

2x3

, (3.71)

V
(II)

tree (x) = − lim
T→∞

1

T
〈W 〉(II)tree = −n sinχ√

8x3

, (3.72)

having taken the large k1, k2 limit as implied by the double scaling limit, such that
it is comparable to the holographic dual.

3.3 The lollipop

The focus of this subsection is the evaluation of the lollipop contribution (3.16)

〈W 〉lol = lim
T→∞

〈
tr

∫ T/2

−T/2
dt U cl

(
−T

2
, t
)
Ã(t)U cl

(
t, T

2

)〉
. (3.73)

The trace allows us to cycle the U cl and combine their exponentials

〈W 〉lol = lim
T→∞

〈
tr

∫ T/2

−T/2
dt U cl

(
−T

2
, T

2

)
Ã(t)

〉
. (3.74)

We use that the expectation values are time independent and plug in the result
for U cl

〈W 〉lol = lim
T→∞

T tr eTA
cl
〈
Ã
〉

1−loop
. (3.75)

We will need 1-loop corrections to the vacuum expectation value. In the large T
limit only the components multiplying the fastest growing exponential will con-
tribute. In our conventions this will be the first component in both cases

〈W 〉lol = lim
T→∞

TµeT
η
z

〈[
Ã
]

11

〉
1−loop

. (3.76)

Given the one-loop corrections (3.61),(3.62) and (3.63), we find

〈W 〉(D5)
lol = 0, (3.77)

〈W 〉(I)lol = −µ(I) λTeTη
(I)/z

4π2z (k2
1 + k2

2)
3

(
k1k

4
2 sin(χ) + k2k

4
1 cos(χ)

)
, (3.78)

〈W 〉(II)lol = −µ(II)λTe
Tη(II)/z

4
√

8π2zn
sin(χ), (3.79)
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having again taken the double scaling limit in (3.77). For the D3-D5 setup the
one-loop corrections to the vacuum expectation values are vanishing due to super-
symmetry, that means the lollipop contribution vanishes for the D3-D5 setup

〈W 〉(D5)
lol = 0. (3.80)

3.4 And the tadpole

As in [3], the tadpole term (3.17) is the least straight forward term to compute.
However, the same techniques can be employed with just minor complications. To
proceed the analysis we write out all matrix indices explicitly

Utad(α, β) =

∫ β

α

dt

∫ β

t

dt′[U cl(α, t)]ab[Ã(t)]bc[U
cl(t, t′)]cd[Ã(t′)]de[U

cl(t′, β)]ef .

(3.81)

They are all N ×N matrices and have the same block structure.[
p× p p× (N − p)

(N − p)× p (N − p)× (N − p)

]
(3.82)

For the D3-D5 p = k, for the first D3-D7 setup p = k1k2 and for the second D3-D7
setup p = dG. We decompose the indices such that latin indices run from 1 to p
and greek indices run from p+ 1 to N and take the trace

trUtad(α, β) =

∫ β

α

dt

∫ β

t

dt′[1]µν [Ã(t)]νρ[1]ρσ[Ã(t′)]σγ[1]γµ

+

∫ β

α

dt

∫ β

t

dt′[1]µν [Ã(t)]νc[e
(t′−t)Acl

]cd[Ã(t′)]dγ[1]γµ

+

∫ β

α

dt

∫ β

t

dt′[e(t−α)Acl

]ab[Ã(t)]bρ[1]ρσ[Ã(t′)]σe[e
(β−t′)Acl

]ea (3.83)

+

∫ β

α

dt

∫ β

t

dt′[e(t−α)Acl

]ab[Ã(t)]bc[e
(t′−t)Acl

]cd[Ã(t′)]de[e
(β−t′)Acl

]ea,
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notice that U cl(α, β) is e(β−α)Acl
in the p× p block and 1 elsewhere. The exponen-

tials are combined and the expectation value is taken

〈trUtad(α, β)〉 =

∫ β

α

dt

∫ β

t

dt′〈[Ã(t)]µρ[Ã(t′)]ρµ〉

+

∫ β

α

dt

∫ β

t

dt′[e(t′−t)Acl

]cd〈[Ã(t′)]dµ[Ã(t)]µc〉

+

∫ β

α

dt

∫ β

t

dt′[e(β−α+t−t′)Acl

]eb〈[Ã(t)]bρ[Ã(t′)]ρe〉 (3.84)

+

∫ β

α

dt

∫ β

t

dt′[e(β−α+t−t′)Acl

]eb[e
(t′−t)Acl

]cd〈[Ã(t)]bc[Ã(t′)]de〉.

We briefly remind the reader that the two-point function can be expanded as

〈Ã(t)Ã(t′)〉 =
(〈
φ̃a(t)φ̃a(t

′)
〉
−
〈
Ã0(t)Ã0(t′)

〉)
sin2 χ (3.85)

+
(〈
φ̃6(t)φ̃6(t′)

〉
−
〈
Ã0(t)Ã0(t′)

〉)
cos2 χ (3.86)

+ 2
〈
φ̃a(t)φ̃6(t′)

〉
sinχ cos χ, (3.87)

where φ̃a = φ̃3 for the D3-D5 and the first D3-D7 setup and φ̃a = φ̃5 for the second
D3-D7 setup. Looking back at the first term of (3.84), we may conclude it vanishes
since in the (N − p)× (N − p) block the fields have the same usual N = 4 super
Yang-Mills propagators. That means we are left with the last three terms. Notice
that the second and third term contains 〈[Ã(t′)]dµ[Ã(t)]µc〉 and for all setups we
have that

〈[Ã(t′)]aα[Ã(t)]βb〉 ∝ δαβ. (3.88)

This means the contraction over the Kronecker delta will give a factor δµµ =
(N − p), and since the final term of (3.84) is just a contraction over the p × p
block, it will be independent of N . We conclude that, if the second or third term
does not vanish, the final term will not contribute in the large N limit. (3.84) is
now reduced to

〈trUtad(α, β)〉 =

∫ β

α

dt

∫ β

t

dt′[e(t′−t)Acl

]cd〈[Ã(t′)]dµ[Ã(t)]µc〉

+

∫ β

α

dt

∫ β

t

dt′[e(β−α+t−t′)Acl

]eb〈[Ã(t)]bρ[Ã(t′)]ρe〉. (3.89)

We use the definition from (3.17) to find the Wilson line contribution

〈W 〉tad = lim
T→∞

∫ T/2

−T/2
dα

∫ T/2

α

dβ

[
e−(α−β)Acl

+ e(α−β+T )Acl

]
cd

〈[Ã]dµ(α)[Ã]µc(β)〉,

(3.90)
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having relabeled the integration variables. As previously mentioned, the propaga-
tor has the following form in all three setups

〈[Ã]dµ(α)[Ã]µc(β)〉 =
∑
n

Dn
dc

∑
i

λi,nK
m2
i,n(α, β), (3.91)

where D is a diagonal prefactor and Km2
i,n is the spacetime part of the propagator

given in (3.92) below. We use the following representation of the propagator

Km2
i (α, β) =

g2
YMz

4π2

∫ ∞
0

dr r
sin(δr)

δ
Iνi(rz)Kνi(rz), (3.92)

νi =

√
m2
i +

1

4
, (3.93)

having defined δ = β − α. We will have to perform integrals of the form

〈W 〉tad = lim
T→∞

∫ T/2

−T/2
dα

∫ T/2

α

dβ[
e−(α−β)Acl

+ e(α−β+T )Acl

]
cd

∑
n

Dn
dc

∑
i

λi,nK
m2
i,n(α, β). (3.94)

We plug in the representation (3.92) and following [3], we proceed by changing
variables α = δ − T/2, rescaling r → r/z and doing the β integration,

〈W 〉tad =
g2
YMz

4π2
lim
T→∞

∫ T

0

dδ

∫ T/2

−T/2+δ

dβ

∫ ∞
0

dr r
sin(δr)

δ[
e−(α−β)Acl

+ e(α−β+T )Acl

]
cd

∑
n

Dn
dc

∑
i

λi,nIνi(rz)Kνi(rz), (3.95)

=
g2
YM

4π2z
lim
T→∞

∫ T

0

dδ (T − δ)
∫ ∞

0

dr r
sin(δr/z)

δ[
eδA

cl

+ e(T−δ)Acl

]
cd

∑
n

Dn
dc

∑
i

λi,nIνi,n(r)Kνi,n(r). (3.96)

The strategy is now to use integration by parts on the r integral, differentiating
sin(δr/z) in order to cancel the 1

δ
and then perform the δ integration

〈W 〉tad =
g2
YM

4π2z2
lim
T→∞

∫ T

0

dδ (T − δ)
[
eδA

cl

+ e(T−δ)Acl

]
cd

(3.97)∑
n

Dn
dc

∫ ∞
0

dr cos(δr/z)

∫ ∞
r

dr′r′
∑
i

λi,nIνi,n(r′)Kνi,n(r′).
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This particular antiderivative was chosen because it makes the boundary term
vanish at infinity, whilst the sin(δr/z) part makes the boundary term vanish at
r = 0. We can now perform the δ integration. In the large T limit we have∫ T

0

dδ (T − δ)
[
eδA

cl

+ e(T−δ)Acl

]
cd

∑
n

Dn
dc cos(δr/z) = µeηT/zTz

η

η2 + r2

∑
n

Dn
1,1,

(3.98)

since for our setups the largest eigenvalue of D coincides with the largest eigenvalue
of Acl in the first entry. We plug the result back into (3.97)

〈W 〉tad = µ
g2
YMTe

ηT/z

4π2z

∫ ∞
0

dr
η

η2 + r2∑
n

Dn
1,1

∫ ∞
r

dr′ r′
∑
i

λi,nIνi,n(r′)Kνi,n(r′). (3.99)

It is here and in the following implicit that T is large. We will now perform the r′

integration in the double scaling limit, we write it as∫ ∞
r

r′
∑
i

λiIνi(r
′)Kνi(r

′)dr′ = −
∑
i

λi

∫ r

0

r′Iνi(r
′)Kνi(r

′)dr′

+
∑
i

λi

∫ ∞
0

r′Iνi(r
′)Kνi(r

′)dr′, (3.100)

and for convenience we define the functions F and A

Fνi,n(r) =

∫ r

0

dr′ r′Iνi,n(r′)Kνi,n(r′), (3.101)

A(r) =

∫ ∞
r

dr′ r′
∑
i

λi,nIνi,n(r′)Kνi,n(r′) (3.102)

= −
∑
i

λi,nFνi,n(r) + lim
r′→∞

∑
i

λi,nFνi,n(r′). (3.103)

This definition allows us to write (3.99) as

〈W 〉tad = µ
g2
YMTe

ηT/z

4π2z

∫ ∞
0

dr
η

η2 + r2

∑
n

Dn
1,1A(r). (3.104)

By doing the integral from (3.82) we find Fνi,n(r), the result is

Fνi,n(r) =
1

2
r2
(
Iνi,n+1(r)Kνi,n−1(r) + Iνi,n(r)Kνi,n(r)

)
, (3.105)

= −νi,n
2

+
1

2
(r2 + ν2

i,n)Iνi,n(r)Kνi,n(r)− 1

2
r2I ′νi,n(r)K ′νi,n(r). (3.106)
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The double scaling limit implies large νi,n, we use the behaviour of the Bessel
functions at large order and finite argument [12] and find

Fνi,n(r) = −νi,n
2

+
1

2
(r2 + ν2

i,n)
1

2

(
ν2
i,n + r2

)−1/2
+

1

2
r2

(ν2
i,n + r2)1/2

2r2
+O

(
ν−1
i,n

)
,

(3.107)

Fνi,n(r) = −νi,n
2

+
1

2

(
ν2
i,n + r2

)1/2
+O

(
ν−1
i,n

)
. (3.108)

Given (3.103) we find A(r)

A(r) =−
∑
i

λi,n

(
−νi,n

2
+

1

2

(
ν2
i,n + r2

)1/2
)

+ lim
r′→∞

∑
i

λi,n

(
−νi,n

2
+

1

2

(
ν2
i,n + r′2

)1/2
)

+O
(
ν−1
i,n

)
, (3.109)

=− 1

2

∑
i

λi,n
(
ν2
i,n + r2

)1/2
+

1

2
lim
r′→∞

∑
i

λi,n
(
ν2
i,n + r′2

)1/2
+O

(
ν−1
i,n

)
(3.110)

The second term is Taylor expanded for large r′

(
ν2
i,n + r′2

)1/2
= r′

(
1 +

ν2
i,n

r′2

)1/2

= r′ +
ν2
i,n

2r′
+O

(
r′−3

)
, (3.111)

A(r) = −1

2

∑
i

λi,n
(
ν2
i,n + r2

)1/2
+

1

2
lim
r′→∞

r′
∑
i

λi,n +O
(
ν−1
i,n

)
. (3.112)

We note that A(r) is divergent unless
∑

i λi,n = 0, properly bunching our terms
we can satisfy this condition for the three setups. In this case we find

A(r) = −1

2

∑
i

λi,n
(
ν2
i,n + r2

)1/2
+O

(
ν−1
i,n

)
. (3.113)

This result is now plugged into (3.104) and the final integral is performed

〈W 〉tad = −µg
2
YMTe

ηT/z

8π2z

∑
n

Dn
1,1

∫ ∞
0

dr
η

η2 + r2

∑
i

λi,n
(
ν2
i,n + r2

)1/2
(3.114)

= −µg
2
YMTe

ηT/z

16π2z

∑
n

Dn
1,1∑

i

λi,n

[
2
√
ν2
i,n − η2 arccot

(
η√

ν2i,n−η2

)
− η log

(
ν2
i,n

)]
, (3.115)
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where we again used
∑

i λi,n = 0 in the second line. We are finally ready to plug
in coefficients. For the D3-D5 setup we find

〈W 〉(D5)
tad = −λTe

Tη(D5)

z

16π2z k

sin2(χ)

cos3(χ)
(2χ− π + sin(2χ)) . (3.116)

For the first D3-D7 setup we let k2 = k1 tan(ψ0) and take the large k1 limit

〈W 〉(I)tad = −µ(I)λTe
Tη(I)

z cos(ψ0)

4π2z k1

sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(2ψ0 + 2χ− π + sin(2ψ0 + 2χ)) ,

(3.117)

notice that cos(ψ0)/k1 = (k2
1 + k2

2)
−1/2

gives the combination appearing in the
double scaling parameter. For the second D3-D7 setup in the large n limit we find

〈W 〉(II)tad = −µ(II)λTe
Tη(II)

z

4
√

8π2zn

sin2(χ)

cos3(χ)
(2χ− π + sin(2χ)) . (3.118)

3.5 The full one-loop potential

The full one-loop result is now obtained by adding the lollipop and the tadpole
contribution

〈W 〉1−loop = 〈W 〉lol + 〈W 〉tad (3.119)

For the D3-D5 setup the lollipop term vanishes

〈W 〉(D5)
1−loop = 〈W 〉(D5)

tad . (3.120)

For the first D3-D7 setup we find

〈W 〉(I)1−loop =− µ(I)λTe
Tη(I)

z cos(ψ0)

4π2zk1

[
cos(χ) sin(ψ0) cos4(ψ0)

+ sin(χ) cos(ψ0) sin4(ψ0)

+
sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(2ψ0 + 2χ− π + sin(2ψ0 + 2χ))

]
, (3.121)

having also expressed the lollipop contribution in terms of ψ0 = arctan(k2/k1).
For the second setup we have

〈W 〉(II)1−loop = −µ(II) λT

4π2n

e
Tη(II)

z
√

8z

[
sin(χ)− sin2(χ)

cos3(χ)
(π − 2χ− sin(2χ))

]
. (3.122)
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We now have to find the corresponding correction to the particle-interface poten-
tial. The potential and Wilson line are related by 〈W 〉 = e−TV , we expand the
potential as V = Vtree + Ṽ

〈W 〉 = e−T (Vtree+Ṽ ) = e−TVtreee−T Ṽ , (3.123)

= e−TVtree(1− T Ṽ +O(Ṽ 2)), (3.124)

For one-loop level we identify

〈W 〉tree = e−TVtree , (3.125)

〈W 〉1−loop = −TV1−loope
−TVtree , (3.126)

the correction to the potential is thus

V1−loop = − lim
T→∞

1

T

〈W 〉1−loop

〈W 〉tree

, (3.127)

which concludes the gauge theory computation with the following results:

V
(D5)

1−loop = V
(D5)

tree

λ

8π2k2

sin(χ)

cos3(χ)
(π − 2χ− sin(2χ)) , (3.128)

V
(I)

1−loop = V
(I)

tree

(
λ

π2 (k2
1 + k2

2)

)
1

2 sin(ψ0 + χ)[
sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(π − 2ψ0 − 2χ− sin(2ψ0 + 2χ))

− cos(χ) sin(ψ0) cos4(ψ0)− sin(χ) cos(ψ0) sin4(ψ0)

]
, (3.129)

V
(II)

1−loop = V
(II)

tree

(
λ

π2n2

) [
sin(χ)

4 cos3(χ)
(π − 2χ− sin(2χ))− 1

4

]
. (3.130)

4 String theory computation

4.1 Solving the brane geometry

The dual to the Wilson line is the string that is suspended from the boundary
and perpendicularly attached to the probe brane. For this reason, we must start
with a treatment of the probe brane to find the exact position. The background
is AdS5 × S5 and in Table 3 is the orientation of the branes summarized.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 © © © © × × × × × ×
D5 © © © × © © © × × ×
D7 © © © × © © © © © ×

Table 3: The table shows the directions the branes are extended in. © denotes
that the brane is extended in the coordinate.

We adopt the conventions of [10], including units where the radius of the AdS5 is
1. The metric of the background in this coordinate system is given by

ds2 = r2(−dx2
0 + dx2

1 + dx2
2 + dx2

3) +
dr2

r2

+ dψ2 + cos2 ψ
(
dθ2 + sin2 θdφ2

)
+ sin2 ψ

(
dθ̃2 + sin2 θ̃dφ̃2

)
, (4.1)

where the latin coordinates are the coordinates of AdS5 and the greek are coor-
dinates of S5. In these coordinates, the boundary of AdS5 is at r → ∞. The
Ramond-Ramond 4-form is given by

C(4) = r4dx0 ∧ dx1 ∧ dx2 ∧ dx3 +
c(ψ)

2
d cos θ ∧ dφ ∧ d cos θ̃ ∧ dφ̃, (4.2)

here the gauge C
(4)
0123 = r4 is chosen.

4.1.1 The D5 brane

For the D3-D5 setup the D5 brane has geometry AdS4 × S2 and there is k units
of magnetic charge on the S2. We may write the world volume gauge flux as

F =
k

2
d cos θ ∧ dφ. (4.3)

The action of the D5 brane is given by

SD5 = SDBI + SWZ , (4.4)

SDBI = −T5

gs

∫
d6σ
√
− det(G+ 2πα′F), (4.5)

SWZ =
2πα′T5

2gs

∫
C(4) ∧ F , (4.6)

Tp =
1

(2π)pα′(p+1)/2gs
. (4.7)
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Here G is the induced metric and is defined by the pull-back of the metric

Gµν =
∂xM

∂ξµ
∂xN

∂ξν
gMN . (4.8)

We would like to compute the induced metric, we start start by writing the AdS5×
S5 metric as a matrix

gMN =



−r2 0 0 0 0 0 0 0 0 0
0 r2 0 0 0 0 0 0 0 0
0 0 r2 0 0 0 0 0 0 0
0 0 0 r2 0 0 0 0 0 0
0 0 0 0 r−2 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 cos2 ψ 0 0 0
0 0 0 0 0 0 0 cos2 ψ sin2 θ 0 0
0 0 0 0 0 0 0 0 sin2 ψ 0

0 0 0 0 0 0 0 0 0 sin2 ψ sin2 θ̃


.

(4.9)

The pull-back is now computed with the ansatz r = r(x3)

Gµν =



−r2 0 0 0 0 0
0 r2 0 0 0 0
0 0 r2 0 0 0

0 0 0 r2 + r−2
(
∂r
∂x3

)2

0 0

0 0 0 0 cos2 ψ 0
0 0 0 0 0 cos2 ψ sin2 θ


. (4.10)

To find the combination appearing in the Dirac Born Infeld action, we have to add
2πα′F it is convenient to define κ = πα′k this allows us to write

(G+ 2πα′F)µν =



−r2 0 0 0 0 0
0 r2 0 0 0 0
0 0 r2 0 0 0

0 0 0 r2 + r−2
(
∂r
∂x3

)2

0 0

0 0 0 0 cos2 ψ κ sin θ
0 0 0 0 −κ sin θ cos2 ψ sin2 θ


.

(4.11)

The determinant can now readily be computed

√
− det(G+ 2πα′F) = r4 sin θ

√
1 + r−4

(
∂r

∂x3

)2√
κ2 + cos4 ψ. (4.12)
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This gives us the DBI action

SDBI = − T5

4gs

∫
d6σr4 sin θ

√
1 + r−4

(
∂r

∂x3

)2√
κ2 + cos4 ψ, (4.13)

SDBI = −πT5V

gs

∫
dx3r

4

√
1 + r−4

(
∂r

∂x3

)2√
κ2 + cos4 ψ (4.14)

where we have defined
∫
dx0dx1dx2 = V . We will now do the Wess-Zumino part

of the action, we multiply out the relevant part

SWZ =
2πα′T5

2gs

∫
r4dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧

κ

4πα′
d cos θ ∧ dφ, (4.15)

=
πT5

gs
V

∫
dx3r

4κ, (4.16)

where we have used the same definition of V . The full action is now

SD5 = −πT5V

gs

√
κ2 + cos4 ψ

∫
dx3r

4

√
1 + r−4

(
∂r

∂x3

)2

− κr4√
κ2 + cos4 ψ

. (4.17)

The equations of motion are found using the Euler-Lagrange equations

∂

∂x3

(1 +
1

r4

(
∂r

∂x3

)2
)−1/2

∂r

∂x3

 = 4r3

√
1 +

1

r4

(
∂r

∂x3

)2

− 2r−1

(
1 +

1

r4

(
∂r

∂x3

)2
)−1/2(

∂r

∂x3

)2

− 4κr3√
κ2 + cos4 ψ

, (4.18)

∂

∂ψ

√
κ2 + cos4 ψ = 0. (4.19)

Let us start with (4.19)

∂

∂ψ

√
κ2 + cos4 ψ = − 4 cos3 ψ sinψ

2
√
κ2 + cos4 ψ

= 0. (4.20)

This means that the D5 brane sits at a particular value ψ = ψ1 = nπ/2, n ∈ Z for
the equation of motion (4.20) to be satisfied. The relevant solution for us will be
ψ = 0. To deal with (4.18) we plug in the ansatz

r(x3) =
Λ

x3

, (4.21)
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∂

∂x3

[(
1 +

x4
3

Λ4

Λ2

x4
3

)−1/2(
− Λ

x2
3

)]
= 4

Λ3

x3
3

√
1 +

x4
3

Λ4

Λ2

x4
3

− 2
x3

Λ

(
1 +

x4
3

Λ4

Λ2

x4
3

)−1/2
Λ2

x4
3

− Λ3

x3
3

8κ√
κ2

4
+ cos4 ψ

, (4.22)

(
1 +

1

Λ2

)−1/2(
2Λ

x3
3

)
= 4

Λ3

x3
3

√
1 +

1

Λ2
− 2

x3

Λ

(
1 +

1

Λ2

)−1/2
Λ2

x4
3

− Λ3

x3
3

4κ√
κ2 + cos4 ψ

, (4.23)

notice that all x3 cancels and the ansatz was successful. We solve for Λ

2Λ = 4Λ3

(
1 +

1

Λ2

)
− 2Λ− Λ3 4κ√

κ2 + cos4 ψ

(
1 +

1

Λ2

)1/2

, (4.24)

0 = 4Λ − 4κ√
κ2 + cos4 ψ

(
Λ2 + 1

)1/2
, (4.25)

Λ2 + 1 =
Λ2

κ2

(
κ2 + cos4 ψ

)
, (4.26)

Λ2 = − κ2

κ2 − (κ2 + cos4 ψ)
, (4.27)

Λ = ± κ

cos2 ψ
. (4.28)

It is important to note, that for large flux Λ will also be large. This will be key
for the perturbative computations to come and this will also be the case for the
other setups. We are finally ready to write down the the boundary conditions of
the string dual to the Wilson line. Let σ and τ be worldsheet parameters on the
string and let σ = σ0 and σ = σ1 denote the two endpoints. The string should
start at the AdS5 boundary which is at r = ∞ and to match the Wilson line at
x3 = z the string should also start at x3 = z. This gives us the first two boundary
conditions

r(σ0, τ) =∞, (4.29)

x3(σ0, τ) = z. (4.30)

The other end of the string has to be perpendicularly attached to the probe brane.
This means for x3 and r we will have the following Dirichlet and Neumann bound-

27



ary conditions

r(σ1, τ) =
Λ

x3(σ1, τ)
, (4.31)

x′3(σ1, τ) =
r′(σ1, τ)

Λr2(σ1, τ)
, (4.32)

having arbitrarily chosen the positive Λ solution. For x1 and x2 the brane is
filling that subspace, that means the string cannot have any suspension in those
coordinates and still be perpendicular to the brane. This leaves us only the S5 to
consider. As previously mentioned, the brane sits at ψ = 0, which is the north pole.
From any point on the S5 the shortest perpendicular path will only be controlled
by one parameter being the initial ψ coordinate. We introduce χ as a parameter
that controls the suspension along ψ.

ψ(σ0, τ) =
π

2
− χ, (4.33)

ψ(σ1, τ) = 0, (4.34)

where χ is defined as such to make it match the χ parameter on the gauge theory
side. All the boundary conditions for the setup is summarized in Table 4.

r(σ0, τ) =∞ r(σ1, τ) = Λ
x3(σ1,τ)

D3-D5 BC: x3(σ0, τ) = z x′3(σ1, τ) = r′(σ1,τ)
Λr2(σ1,τ)

ψ(σ0, τ) = π
2
− χ ψ(σ1, τ) = 0

Table 4: Boundary conditions for the fundamental string for the D3-D5 setup.

4.1.2 The first D7 brane

For the first D3-D7 setup the D7 brane has geometry AdS4 × S2 × S2 and there
is k1 and k2 units of magnetic charge on the two S2’s respectively. We may write
the world volume gauge flux as

F =
k1

2
d cos θ ∧ dφ+

k2

2
d cos θ̃ ∧ dφ̃. (4.35)

The action of the D7 brane is given by

SD7 = −T7

gs

∫
d8σ
√
− det(G+ 2πα′F) +

(2πα′)2T7

2gs

∫
C(4) ∧ F ∧ F , (4.36)

Tp =
1

(2π)pα′(p+1)/2gs
. (4.37)
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Here G is the pull-back of the metric

Gµν =
∂xM

∂ξµ
∂xN

∂ξν
gMN . (4.38)

We would like to compute the induced metric, we start start by writing the AdS5×
S5 metric as a matrix

gMN =



−r2 0 0 0 0 0 0 0 0 0
0 r2 0 0 0 0 0 0 0 0
0 0 r2 0 0 0 0 0 0 0
0 0 0 r2 0 0 0 0 0 0
0 0 0 0 r−2 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 cos2 ψ 0 0 0
0 0 0 0 0 0 0 cos2 ψ sin2 θ 0 0
0 0 0 0 0 0 0 0 sin2 ψ 0

0 0 0 0 0 0 0 0 0 sin2 ψ sin2 θ̃


.

(4.39)

The pull-back is now computed with the ansatz r = r(x3)

Gµν =



−r2 0 0 0 0 0 0 0
0 r2 0 0 0 0 0 0
0 0 r2 0 0 0 0 0

0 0 0 r2 + r−2
(
∂r
∂x3

)2

0 0 0 0

0 0 0 0 cos2 ψ 0 0 0
0 0 0 0 0 cos2 ψ sin2 θ 0 0
0 0 0 0 0 0 sin2 ψ 0

0 0 0 0 0 0 0 sin2 ψ sin2 θ̃


.

(4.40)
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To find the combination appearing in the Dirac Born Infeld action, we have to add
2πα′F it is convenient to define (f1, f2) = 2πα′(k1, k2) this allows us to write

(G+ 2πα′F)µν =

−r2 0 0 0 0 0 0 0
0 r2 0 0 0 0 0 0
0 0 r2 0 0 0 0 0

0 0 0 r2 + r−2
(
∂r
∂x3

)2

0 0 0 0

0 0 0 0 cos2 ψ f1
2

sin θ 0 0

0 0 0 0 −f1
2

sin θ cos2 ψ sin2 θ 0 0

0 0 0 0 0 0 sin2 ψ f2
2

sin θ̃

0 0 0 0 0 0 −f2
2

sin θ̃ sin2 ψ sin2 θ̃


.

(4.41)

The determinant can now readily be computed

√
− det(G+ 2πα′F) =

r2

4
sin θ sin θ̃

√
r4 +

(
∂r

∂x3

)2

√
f 2

1 f
2
2 + 4f1 sin4 ψ + 4f2 cos4 ψ + 16 sin4 ψ cos4 ψ.

(4.42)

This gives us the DBI action

SDBI = − T7

4gs

∫
d8σr4 sin θ sin θ̃

√
1 +

1

r4

(
∂r

∂x3

)2

√
f 2

1 f
2
2 + 4f1 sin4 ψ + 4f2 cos4 ψ + 16 sin4 ψ cos4 ψ,

(4.43)

SDBI = −4π2T7V

gs

∫
dx3r

4

√
1 +

1

r4

(
∂r

∂x3

)2

√
f 2

1 f
2
2 + 4f1 sin4 ψ + 4f2 cos4 ψ + 16 sin4 ψ cos4 ψ

(4.44)

where we have defined
∫
dx0dx1dx2 = V . We will now focus on the Wess-Zumino

part of the action

SWZ =
(2πα′)2T7

2gs

∫
C(4) ∧ F ∧ F . (4.45)
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We multiply out the relevant part

SWZ = 2
(2πα′)2T7

2gs

∫
r4dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧

√
λ

4π
f1d cos θ ∧ dφ ∧

√
λ

4π
f2d cos θ̃ ∧ dφ̃,

(4.46)

=
(2π)2T7

gs
V

∫
dx3r

4f1f2, (4.47)

where we have used the same definition of V and the fact that we have taken the
radius of curvature to be 1 = α′

√
λ. The full action is now

SD7 = −4π2T7V

gs

∫
dx3r

4

√
1 +

1

r4

(
∂r

∂x3

)2

κ− r4f1f2, (4.48)

where we have defined

κ =
√
f 2

1 f
2
2 + 4f1 sin4 ψ + 4f2 cos4 ψ + 16 sin4 ψ cos4 ψ. (4.49)

The equations of motion are found using the Euler-Lagrange equations

∂

∂x3

κ(1 +
1

r4

(
∂r

∂x3

)2
)−1/2

∂r

∂x3

 = 4κr3

√
1 +

1

r4

(
∂r

∂x3

)2

− 2κr−1

(
1 +

1

r4

(
∂r

∂x3

)2
)−1/2(

∂r

∂x3

)2

− 4r3f1f2, (4.50)

∂

∂ψ
κ = 0. (4.51)

Let us start with (4.51)

∂

∂ψ
κ =

1

2κ

(
16f 2

1 sin3 ψ cosψ − 16f 2
2 sinψ cos3 ψ + 64 sin3 ψ cos5 ψ − 64 sin5 ψ cos3 ψ

)
,

(4.52)

f 2
1 sin2 ψ − f 2

2 cos2 ψ + 4 sin2 ψ cos4 ψ − 4 sin4 ψ cos2 ψ = 0. (4.53)

This means that the D7 brane sits at a particular value ψ = ψ1 for the equation
of motion (4.53) to be satisfied. To deal with (4.50) we plug in the ansatz

r(x3) =
Λ

x3

(4.54)
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∂

∂x3

[(
1 +

x4
3

Λ4

Λ2

x4
3

)−1/2(
− Λ

x2
3

)]
= 4

Λ3

x3
3

√
1 +

x4
3

Λ4

Λ2

x4
3

− 2
x3

Λ

(
1 +

x4
3

Λ4

Λ2

x4
3

)−1/2
Λ2

x4
3

− 4Λ3

κx3
3

f1f2, (4.55)(
1 +

1

Λ2

)−1/2(
2Λ

x3
3

)
= 4

Λ3

x3
3

√
1 +

1

Λ2
− 2

x3

Λ

(
1 +

1

Λ2

)−1/2
Λ2

x4
3

− 4Λ3

κx3
3

f1f2,

(4.56)

also for this setup does all the x3 cancel and the ansatz is successful. We solve for
Λ

2Λ = 4Λ3

(
1 +

1

Λ2

)
− 2Λ− 4Λ3

κ
f1f2

(
1 +

1

Λ2

)1/2

, (4.57)

0 = 4Λ2 − 4Λ2

κ
f1f2

(
1 +

1

Λ2

)1/2

, (4.58)

1

Λ2
=

κ2

f 2
1 f

2
2

− 1, (4.59)

Λ = ±

√
f 2

1 f
2
2

κ2 − f 2
1 f

2
2

. (4.60)

For the boundary conditions, the same considerations for the AdS5 part of the
geometry will be valid. For the S5 part of the geometry the brane is sitting at
ψ = ψ1 where ψ1 is the solution to (4.53). That means the string must end at
this value of ψ. As for the other coordinates on S5 the brane is covering them,
that means the string cannot have suspension in these coordinates. The boundary
conditions will again have a parameter χ that controls the initial ψ coordinates
similar to the D3-D5 setup. Table 5 shows a summary of the boundary conditions
for this D3-D7 setup.

r(σ0, τ) =∞ r(σ1, τ) = Λ
x3(σ1,τ)

D3-D7(I) BC: x3(σ0, τ) = z x′3(σ1, τ) = r′(σ1,τ)
Λr2(σ1,τ)

ψ(σ0, τ) = π
2
− χ ψ(σ1, τ) = ψ1

Table 5: Boundary conditions for the string for the first D3-D7 setup.

4.1.3 The second D7 brane

The discussion in this subsection is largely borrowed from [9, 13]. In this setup we
have dG = 1

6
(n + 1)(n + 2)(n + 3) D3 branes ending on N7 = n + 2 of D7 branes
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with geometry AdS4×S4 sitting at ψ = 0. Similar to previous setups, we have dG
units of flux on the S4. But in this case the gauge field is a non-abelian gauge field
with U(N7) symmetry. The second Chern class on the S4 in this setup is given by

dG =
1

8π2

∫
S4

trF ∧ F. (4.61)

For this setup it is convenient to use coordinates on AdS5×S5 such that the metric
takes the form

ds2 = r2(−dx2
0 + dx2

1 + dx2
2 + dx2

3) +
dr2

r2
+ dψ2 + cos2 ψdΩ4

S4 , (4.62)

where dΩ4
S4 is the metric of S4. The action for the D7 branes is given by

SD7 = SDBI + SWZ , (4.63)

SDBI =
T7

gs
STr

∫
dσ8
√
− det(G+ 2πα′F ), (4.64)

SWZ =
T7

gs
STr

∫
dσ8 (2πα′)2

2
C(4) ∧ F ∧ F. (4.65)

where the STr prescription involves taking symmetric averages over all orderings
of non-abelian fields, in our case being F . For the Wess-Zumino term we find

SWZ =
T7V

gs

∫
dx3r

4 (2πα′)2

2
dG, (4.66)

having again defined V =
∫
dx0dx1dx2. The Dirac Born Infeld part was treated

carefully in [8, 13]

SDBI =
T7

gs

∫
dσ8√gAdS

√
gS

(
N7 +

(2πα′)2

8
tr εabcdF

abF cd

)
, (4.67)

SDBI =
T7V N7

3gs

∫
dx3r

4

√
1 +

1

r4

(
∂r

∂x3

)2(
1 +

6π2α′2

N7

dG

)
. (4.68)

The complete action is now

SD7 =
T7V N7

3gs

∫
dx3r

4

√
1 +

1

r4

(
∂r

∂x3

)2

(1 +Q) + r4Q, (4.69)

Q =
6π2α′2

N7

dG. (4.70)
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The equation of motion is now found

∂

∂x3

(1 +Q)

(
1 +

1

r4

(
∂r

∂x3

)2
)−1/2

∂r

∂x3

 = (1 +Q)4r3

√
1 +

1

r4

(
∂r

∂x3

)2

− 2(1 +Q)r−1

(
1 +

1

r4

(
∂r

∂x3

)2
)−1/2(

∂r

∂x3

)2

+ 4r3Q. (4.71)

Similar to the other setups this can be solved with the same ansatz r = Λ
x3

,(
1 +

1

Λ2

)−1/2(
2Λ

x3
3

)
= 4

Λ3

x3
3

√
1 +

1

Λ2
− 2

x3

Λ

(
1 +

1

Λ2

)−1/2
Λ2

x4
3

+
4Λ3

(1 +Q)x3
3

Q,

(4.72)

0 = Λ2

√
1 +

1

Λ2
−
(

1 +
1

Λ2

)−1/2

+
Λ2

(1 +Q)
Q, (4.73)

Q2

(1 +Q)2

(
1 +

1

Λ2

)
= 1, (4.74)

Λ2 =
1

(1+Q)2

Q2 − 1
, (4.75)

Λ = ± Q√
1 + 2Q

. (4.76)

The boundary conditions are similar to the first D3-D7 setup just with a different
Λ and for this case we have ψ1 = 0. The complete set of boundary conditions are
summarized in Table 6.

r(σ0, τ) =∞ r(σ1, τ) = Λ
x3(σ1,τ)

D3-D7(II) BC: x3(σ0, τ) = z x′3(σ1, τ) = r′(σ1,τ)
Λr2(σ1,τ)

ψ(σ0, τ) = π
2
− χ ψ(σ1, τ) = 0

Table 6: Boundary conditions for the string for the first D3-D7 setup.

4.2 The string action

Now that we have the precise boundary conditions for the string, we can look
to find the least action. We start with the Polyakov action and the Virasoro
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constraints

S =
1

4πα′

∫
dτdσ

(
−ẊMẊM +X ′MX ′M

)
, (4.77)

ẊMẊM +X ′MX ′M = 0, (4.78)

ẊMX ′M = 0, (4.79)

here dot denotes derivation with respect to τ and prime denotes derivation with
respect to σ where τ and σ are worldsheet parameters. We use the following ansatz

x0 = x0(τ), x3 = x3(σ), r = r(σ), ψ = ψ(σ). (4.80)

The action and constraints becomes

S =

√
λ

4π

∫
dτdσ

1

r2
r′2 + r2

(
ẋ2

0 + x′23
)

+ ψ′2, (4.81)

r2ẋ2
0 = r2x′23 +

1

r2
r′2 + ψ′2, (4.82)

The equations of motion are found using the Euler-Lagrange equations

ẍ0 = 0, (4.83)

ψ′′ = 0, (4.84)(
r2x′3

)′
= 0, (4.85)(

2r′

r2

)′
= 2r

(
ẋ2

0 + x′23
)
− 2

1

r3
r′2. (4.86)

The first three equations are solved by

x0 = z1τ + z0, (4.87)

ψ′ = m, (4.88)

r2x′3 = c. (4.89)

We choose the gauge for the time parameterization to simply have

x0 = τ. (4.90)

m and c will have to be determined given the boundary conditions. We start with
m as it is most straight forward. We let the worldsheet parameter σ run from 0
to π, this allows us to write the solution to (4.89) as

ψ(σ) = (ψ1 − ψ0)
σ

π
+ ψ0, (4.91)
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where ψ1 and ψ0 are simply the boundary conditions for the ψ coordinate. We
thus have

m =
ψ1 − ψ0

π
. (4.92)

As previously alluded to, c will be more complicated to link to the boundary
conditions. To initiate our analysis, we plug in (4.88), (4.89) and (4.90) into the
Virasoro constraint (4.82)

r2 =
c2

r2
+

1

r2
r′2 +m2, (4.93)

r′ =
√
r4 −m2r2 − c2, (4.94)

this will be a useful result throughout. Ideally, we would like to relate c to the
initial value x3(σ0, τ) = z, however we will have to settle for a relation between
r(σ1, τ) = r1 and c. To find this we simply consider (4.94) at σ1 and use the

boundary condition x′3(σ1, τ) = r′(σ1,τ)
Λr2(σ1,τ)

Λr2
1x
′
3(σ1, τ) =

√
r4

1 −m2r2
1 − c2. (4.95)

We can now use (4.89) and solve for c

Λc =
√
r4

1 −m2r2
1 − c2, (4.96)

Λ2c2 = r4
1 −m2r2

1 − c2, (4.97)

c2 =
r4

1 −m2r2
1

Λ2 + 1
. (4.98)

This gives us an equation for c, but we still need to find r1, we integrate the
Virasoro constraint (4.94) from σ = 0 to σ = π

1√
r4 −m2r2 − c2

r′ = 1, (4.99)∫ r1

∞

dr√
r4 −m2r2 − c2

= π, (4.100)

this can be inverted to find r1, notice that it does not depend on z. The equation of
motion (4.89) with the boundary condition x′3(σ1, τ) = r′(σ1,τ)

Λr2(σ1,τ)
and the Virasoro

constraint (4.94) is sufficient to uniquely specify r1. Now that we know how to
find m and c given the boundary conditions, we can go back to the action (4.81)

S =

√
λ

4π

∫
dτdσ

1

r2
r′2 + r2

(
ẋ2

0 + x′23
)

+ ψ′2, (4.101)

=

√
λ

4π

∫
dτdσr2, (4.102)
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having used the Virasoro constraint (4.82) and x0 = τ in the second line. We let
T =

∫
dτ

S =
T
√
λ

4π

∫ r1

∞

r2

r′
dr. (4.103)

The action is divergent in the r = ∞ boundary, this is expected since we had a
Neumann boundary condition, the correct mapping to the Wilson line is taking
the Legendre transform of the action [14]. Practically, this simply amounts to
subtracting the linear divergence

S =
T
√
λ

4π

∫ r1

1/ε

r2

r′
dr. (4.104)

We use the Virasoro constraint (4.94) to replace r′

S =
T
√
λ

4π

∫ r1

1/ε

r2

√
r4 −m2r2 − c2

dr, (4.105)

notice the following identity

d

dr

[
1

r

√
r4 −m2r2 − c2

]
=

r2

√
r4 −m2r2 − c2

+
c2

r2
√
r4 −m2r2 − c2

. (4.106)

Since the first term on the right hand side matches the integrand of (4.105), we
can use the identity to rewrite the action

S =
T
√
λ

4π

[
1

r

√
r4 −m2r2 − c2

∣∣∣∣r=r1
r=1/ε

−
∫ r1

1/ε

c2dr

r2
√
r4 −m2r2 − c2

]
. (4.107)

For the first term we have

1

r

√
r4 −m2r2 − c2

∣∣∣∣r=r1
r=1/ε

=
1

r1

√
r4

1 −m2r2
1 − c2 − ε

√
ε−4 −m2ε−2 − c2, (4.108)

for small epsilon the second term becomes a simple pole

ε
√
ε−4 −m2ε−2 − c2 =

1

ε

√
1−m2ε2 − c2ε4 =

1

ε
+O(ε), (4.109)

which is exactly what we need to remove in order to match the Wilson line. The
first term on the right hand side of (4.108) can be rewritten using (4.96)

1

r1

√
r4

1 −m2r2
1 − c2 =

Λc

r1

. (4.110)
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The action finally becomes

S =
T
√
λ

4π

[
Λc

r1

−
∫ r1

∞

c2dr

r2
√
r4 −m2r2 − c2

]
. (4.111)

Before initiating the perturbative expansion in order to compare to the gauge
theory side, it is highly convenient to start with an expression where the proper z
dependence is explicit. To treat the z dependence we integrate (4.89)

dz

dσ
=

c

r2
, (4.112)

z1 − z =

∫ π

0

c

r2
dσ (4.113)

where x3(σ1, τ) = z1. We use the Virasoro constraint (4.94)

z1 − z = c

∫ r1

∞

dr

r2
√
r4

1 −m2r2
1 − c2

, (4.114)

we can now use the boundary condition x3(σ1, τ) = Λ/r(σ1, τ)

z =
Λ

r1

− c
∫ r1

∞

dr

r2
√
r4

1 −m2r2
1 − c2

. (4.115)

We can finally use this result to rewrite the action to show the correct z dependence
explicitly

S =
T
√
λ

4πz
c

[
Λ

r1

− c
∫ r1

∞

dr

r2
√
r4 −m2r2 − c2

]2

. (4.116)

4.2.1 Expanding the potential perturbatively

The particle-interface potential is given by V = S/T , to compare the result to the
gauge theory result we have to expand (4.116) in the double scaling parameter.
First we find r1 by inverting (4.100) together with (4.98)∫ r1

∞

dr√
r4 −m2r2 − c2

= π, (4.117)∫ r1

∞

dr√
r4 −m2r2 − r41−m2r21

Λ2+1

= π, (4.118)

as previously remarked, in the double scaling limit Λ becomes large for all three
setups. It is useful to define the small parameter

a =
1

Λ2 + 1
. (4.119)
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We are now looking for a solution of r1 with the following form

r1 =
∑
n

cna
n. (4.120)

To proceed we expand (4.118) in a power series using Taylors theorem∑
n

an

n!

dn

dan

∫ r1(a)

∞

dr√
r4 −m2r2 − a(r4

1(a)−m2r2
1(a))

∣∣∣∣
a=0

= π, (4.121)

Since this should be valid for all values of a, we have the following set of equations

dn

dan

[∫ r1(a)

∞

dr√
r4 −m2r2 − a(r4

1(a)−m2r2
1(a))

− π

]
a=0

= 0. (4.122)

Luckily, we are able to solve the first equation n = 0∫ c0

∞

dr√
r4 −m2r2

− π = 0, (4.123)

arccsc
(
c0
m

)
m

= π, (4.124)

this gives us the unperturbed result

c0 =
m

sin(mπ)
. (4.125)

We will need the first correction to this, to find this we have to consider the first
derivative

d

da

∫ r1(a)

∞

dr√
r4 −m2r2 − a(r4

1(a)−m2r2
1(a))

∣∣∣∣
a=0

= 0. (4.126)

Since the integrand and limits are continuously differentiable we can invoke the
Leibniz integral rule, it will be useful to give the integrand a name

f(r, a) =
1√

r4 −m2r2 − a(r4
1(a)−m2r2

1(a))
, (4.127)

dr1

da
f(r1, a)

∣∣∣∣
a=0

+

∫ r1(a)

∞

∂

∂a
f(r, a)dr

∣∣∣∣
a=0

= 0. (4.128)

The first term simply becomes

dr1

da
f(r1, a)

∣∣∣∣
a=0

=
c1√

c4
0 −m2c2

0

. (4.129)
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For the second term we have∫ r1(a)

∞

∂

∂a
f(r, a)dr

∣∣∣∣
a=0

=

∫ r1

∞

r4
1 −m2r2

1

2 (r4 −m2r2 − a(r4
1 −m2r2

1))
3/2
dr

∣∣∣∣
a=0

, (4.130)

=
c4

0 −m2c2
0

2

∫ c0

∞

1

(r4 −m2r2)3/2
dr, (4.131)

=

√
c2

0 −m2

4m4
(m2 − 3c2

0) +
3(c2

0 −m2)

4m5
arccsc

(c0

m

)
.

(4.132)

We can now write an equation for c1

c1√
c4

0 −m2c2
0

+

√
c2

0 −m2

4m4
(m2 − 3c2

0) +
3(c2

0 −m2)

4m5
arccsc

(c0

m

)
= 0, (4.133)

plugging in our solution for c0 = m/ sin(m) we find c1 to be

c1 =
m

8

cos2(mπ)

sin5(mπ)
(5 + cos(2mπ)− 6mπ cot(mπ)) . (4.134)

This is all we will need to match the result to the one-loop order on the gauge
theory side

r1 =
m

sin(mπ)
+ a

m

8

cos2(mπ)

sin5(mπ)
(5 + cos(2mπ)− 6mπ cot(mπ)) +O(a2). (4.135)

It is now straight forward to find c2 by plugging in r1 into (4.98) and reexpanding

c2 = a
(
r4

1 −m2r2
1

)
, (4.136)

= a
m4 cos2(mπ)

sin4(mπ)

+ a2m
4

4

cos2(mπ)

sin8(mπ)
(5 + cos(2mπ)− 6mπ cot(mπ))

(
2− sin2(mπ)

)
+O(a3).

(4.137)

To find an expansion for the action we need to expand∫ r1

∞

dr

r2
√
r4 −m2r2 − c2

, (4.138)

at the lowest order this becomes∫ m
sin(mπ)

∞

dr

r2
√
r4 −m2r2

= −sin(2mπ)

4m3
− π

2m2
. (4.139)
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Notice that in (4.116) the first term on the right hand side has factor Λ which is
large and the second term has factor c which is small, that means this expansion
of the integral is sufficient∫ r1

∞

dr

r2
√
r4 −m2r2 − c2

= −sin(2mπ)

4m3
− π

2m2
+O(a). (4.140)

We use the above results to write an expansion of the action in (4.116)

S =
T
√
λ

4πz
c

[
Λ

r1

− c
∫ r1

∞

dr

r2
√
r4 −m2r2 − c2

]2

, (4.141)

=
T
√
λ

4πz

[
Λ cos(mπ) +

1

4Λ

cos2(mπ)

sin2(mπ)

(
7 cos(mπ) +

mπ

sin(mπ)

)
+O(Λ−2)

]
,

(4.142)

having used that a = 1
Λ2+1

and reexpanded for large Λ. To find the potential we
need to find m for the three setups and expand Λ in the double scaling parameter.
For m we have already found the relation (4.92)

m =
ψ1 − ψ0

π
, (4.143)

for the D3-D5 setup and the second D3-D7 setup we have ψ1 = 0 and ψ0 = π/2−χ
this means we have

m(D5) = m(II) =
χ

π
− 1

2
. (4.144)

For the first D3-D7 setup the ψ1 value satisfies (4.53)

4π2k
2
1

λ
sin2 ψ1 − 4π2k

2
2

λ
cos2 ψ1 + 4 sin2 ψ1 cos4 ψ1 − 4 sin4 ψ1 cos2 ψ1 = 0, (4.145)

where we are interested in the behaviour in the double scaling limit. Let

ψ1 =
∑
n

φn

(
λ

4π2(k2
1 + k2

2)

)n
(4.146)

We multiply (4.145) through by the double scaling parameter

k2
1

(k2
1 + k2

2)
tan2 ψ1 −

k2
2

(k2
1 + k2

2)
=

4λ

4π2(k2
1 + k2

2)

(
sin4 ψ1 cos2 ψ1 − sin2 ψ1 cos4 ψ1

)
,

(4.147)
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at lowest order in the double scaling parameter we find

k2
1

(k2
1 + k2

2)
tan2 φ0 =

k2
2

(k2
1 + k2

2)
, (4.148)

φ0 = arctan

(
k2

k1

)
. (4.149)

Equation (4.147) at first order in the double scaling parameter is

2k2
1

(k2
1 + k2

2)

tanφ0

sin2 φ0

φ1 = 4 sin4 φ0 cos2 φ0 − 4 sin2 φ0 cos4 φ0, (4.150)

using our solution for φ0 we find

φ1 =
2k3

1k2(k1 + k2)(k2 − k1)

(k2
1 + k2

2)
3 . (4.151)

This is all we need for the one-loop result

ψ1 = arctan

(
k2

k1

)
+

λ

4π2(k2
1 + k2

2)

2k3
1k2(k1 + k2)(k2 − k1)

(k2
1 + k2

2)
3 +O

((
λ

4π2(k21+k22)

)2
)
.

(4.152)

We conclude that for the first D3-D7 setup m is

m(I) =
ψ1

π
+
χ

π
− 1

2
, (4.153)

with the ψ1 given in (4.152). Only the angles Λ remains to be expanded, for the
D3-D5 case there are no corrections

Λ(D5) =
πk√
λ
. (4.154)

For the first D3-D7 setup we found

Λ(I) =
4π2k1k2

λ√(
4π2k21
λ

+ 4 cos4 ψ1

)(
4π2k22
λ

+ 4 sin4 ψ1

)
− 42π4k21k

2
2

λ2

. (4.155)

This can be expanded in the double scaling parameter

Λ(I) =
π(k2

1 + k2
2)1/2

√
λ

[
1− λ

π2(k2
1 + k2

2)

k2
1k

2
2

2(k2
1 + k2

2)2
+O

((
λ

π2(k21+k22)

)2
)]

. (4.156)
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For the second D3-D7 setup we had

Λ(II) =
π2(n+1)(n+3)

λ√
1 + 2π2(n+1)(n+3)

λ

. (4.157)

This can easily be expanded in the double scaling parameter

Λ(II) =
πn√
2λ

[
1− λ

4π2n2
+O

((
λ

π2n2

)2
)]

. (4.158)

We can finally plug these Λ and m into the action (4.142) and divide by T and
reexpand to identify the string theory prediction of the potentials. We first state
the result for the D3-D5 setup

V (D5)(x) = −k sin(χ)

2x3

[
1 +

λ

π2k2

sin(χ)

8 cos3(χ)
(π − 2χ− sin(2χ)) +O

(
λ2

π4k4

)]
.

(4.159)

For the first D3-D7 setup we found

V (I)(x) = −k1 sin(χ) + k2 cos(χ)

2x3

[
1 +

λ

π2 (k2
1 + k2

2)

1

2 sin(ψ0 + χ)[
sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(π − 2ψ0 − 2χ− sin(2ψ0 + 2χ))

− cos(χ) sin(ψ0) cos4(ψ0)− sin(χ) cos(ψ0) sin4(ψ0)

]
+O

(
λ2

π4(k2
1 + k2

2)2

)]
,

(4.160)

here we used the same definition as on the gauge theory side tanψ0 = k2/k1.
Finally, for the second D3-D7 setup we found

V (II)(x) = −n sin(χ)

2
√

2x3

[
1 +

λ

π2n2

(
sin(χ)

4 cos3(χ)
(π − 2χ− sin(2χ))− 1

4

)
+O

(
λ2

π4n4

)]
.

(4.161)

5 Conclusion and outlook

Comparing the string theory prediction (4.159), (4.160) and (4.161) with the gauge
theory results (3.128), (3.129) and (3.130), we find perfect agreement for all three
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cases. We may thus conclude the project as a positive test of the robustness of
the AdS/dCFT correspondence. The non-local observable matches to at least one-
loop order even for setups with completely broken supersymmetry and boundary
integrability. This means that these holographic dualities are independent of these
other notions. One could have imagined that in the D3-D5 setup the string only
matches the Wilson line because they are entirely constrained by symmetries, how-
ever with the two D3-D7 setups the symmetries is weakened sufficiently to require
a perturbative calculation.

It is interesting to compare the computation on both sides. In particular, a main
difference in the character of the computations for the supersymmetric and non-
supersymmetric setups on the gauge theory side, is that for the supersymmetric
setup the one-loop correction to the one-point function is vanishing. This cor-
rection results in an extra term in the potential at one-loop level. On the string
theory side, albeit the computations look deceptively similar for the three setups,
this extra correction gets slipped in as a correction to the D7 brane angle Λ.

Another interesting comparison between the sides is the growth of complexity
order by order. One could just as easily have gone to second loop order on the
string side as it simply amounts to Taylor expanding to one higher order. But on
for the gauge theory side going to two-loop order is completely unfeasible at the
current stage. The first thing one has to change is using the two-loop corrections
to the one-point function, and already when trying to compute this one encounters
difficulties in the form of integrals that are yet to be solved.

For the special case πm = ψ1 − ψ0 = 0 on the string theory side, one can scale
out r1 and find the potential exactly for the two integrable setups. As a proof of
concept we let m = 0 in (4.118) and perform the substitution r = r1v∫ r1

∞

dr√
r4 − r41

Λ2+1

= π, (5.1)

r1 =
1

π

∫ 1

∞

dv√
v4 − 1

Λ2+1

. (5.2)

We can use this to find c2 = r4
1/
√

Λ2 + 1 and plug the results into the equation
for the action (4.116). We use the same substitution on the other integral that
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appears in the action and identify the potential

V (x) =

√
λ

4πx3

r1√
Λ2 + 1

Λr1 −
r1√

Λ2 + 1

∫ 1

∞

dv

v2
√
v4 − 1

Λ2+1

2

. (5.3)

This expression is general to all three cases, however for the first D3-D7 setup the
angle Λ cannot be inverted to be written in terms of the fluxes k1, k2 in closed
form. Since it is possible to find the potential exactly for the D3-D5 and the
second D3-D7 setup it would be interesting to try to match it on the gauge theory
side. With the perturbative techniques employed here on the gauge theory side
this is of course not possible, however new work on localization [15] could make
this possible for the D3-D5 setup if applied to Wilson lines.
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