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Abstract

Left-right symmetric models (LRSM) were initially proposed to reconcile violation of parity in
weak interactions with our intrinsic notion of a fundamental parity symmetry. Very soon after
their proposal, it was realized that LRSM can also fit small neutrino masses, in part due to the
incorporation of right-handed neutrinos (or Heavy Neutral Leptons, HNLs), N .

In this thesis we review on fundamental concepts in LRSM, including relatively recent de-
velopments. Then we study for the first time the potential that different proposals for lepton
colliders (FCC-ee, CEPC, ILC, CLIC and a Muon Collider) have for the production and discov-
ery of a pair of HNLs. Of particular interest are the background free signals that the model can
give: doubly-displaced vertices and lepton number violating signals.

We find that some of our results reach regions of the parameter space that are impossible to
reach with current experiments.
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1 Introduction

The Standard Model (SM) [1, 2] was initially developed in the ’60s to attempt to unify weak and
electromagnetic interactions. The construction of the SM stemmed from years of developments
in both experimental and theoretical physics, from the discovery of beta decay [3] and parity
violation [4, 5] to the development of non-abelian gauge theories [6–8] and spontaneous symmetry
breaking [9–13].

Even 60 years after the publication of Weinberg’s iconic paper, the SM remains the most
precise theory that models interactions between elementary particles [14]. We know the SM
is not completely correct it has some theoretical issues and cannot account for all observed
phenomena. The observation of neutrino oscillations [15–17], the asymmetry between particles
and antiparticles in the universe [18, 19], the lack of a realistic dark matter candidate [20, 21], the
lack of charge-parity (CP) violation in strong interactions [22], the fact that it cannot account
for gravitational interactions [23–25], and many different anomalies [26] are some of the issues
that the SM has.

The most natural way to fix these discrepancies is to introduce extensions to the SM. For
example, the so-called Type-I Seesaw in its most minimal form can account for neutrino masses,
baryon asymmetry and offers a realistic dark matter candidate [27]; or Grand Unified Theories
like SU(5) [28] or SO(10) [29], which can also explain neutrino masses, baryon asymmetry, dark
matter, the hierarchy problem, and the strong CP problem.

For the rest of this thesis, we will focus on the Left-Right Symmetric Model (LRSM). Left-
right symmetric models were conceived to explain why weak interactions violate parity [30–32].
The explanation is that there is no parity violation at higher energy scales: the parity violation
we see in experiments is merely due to a discrepancy between different energy scales. It was
soon realized that LRSM could also account for neutrino oscillations [33, 34], baryon asymmetry
[35, 36], strong CP violation [37, 38] and potentially provide a dark matter candidate [39, 40].

Some of the first constraints on the energy scale of LRSM came from K − K̄ oscillations in
meson experiments. It turned out that some of the additional particles that the LRSM introduced
gave significant contributions to these experiments unless the new particles were in the O(TeV)

range [41–43]. We’ve only begun to surpass these constraints not that long ago thanks to the
Large Hadron Collider (LHC).

The LHC will eventually stop functioning, this has placed the particle physics community
at its crossroads: which direction should we take now? The community has given multiple
suggestions on what to do next, and it seems the most likely outcome will be a lepton collider.
There are different proposals: the Future Circular Collider (FCC) [44–47], the Circular Electron-
Positron Collider (CEPC) [48, 49], the International Linear Collider (ILC) [50–53], the Compact
Linear Collider (CLIC) [54–56] and a proposal which has been recently gaining plenty of attention:
Muon Colliders [57–61].

Ample research has already been done on the sensitivity that different lepton colliders will
have on the extended scalar sector of the model [62–66], but almost no studies can be found
in the literature on the potential that lepton colliders have on finding Heavy Neutral Leptons
(HNLs, or right-handed neutrinos), N , which the model naturally incorporates and which helps
explain small neutrino masses. To the best of the authors’ knowledge, there is only one study
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on the subject [67].
The objective of this thesis is to examine the sensitivity that these proposed experiments

have on the discovery of Heavy Neutral Leptons. We will focus on the background-free signals:
doubly displaced vertices and lepton number violating processes.

The thesis is organized as follows: in Section 2 we review fundamental concepts within the
Standard Model and their problems, Section 3 reviews essential concepts within the LRSM,
Section 4 reviews the different proposals for future lepton colliders, Section 5 summarizes the
relevant phenomenology of LRSM in lepton colliders, Section 6 obtains an approximate sensitivity
that the model will have on these proposals and Section 7 elaborates conclusions and briefly
discusses potential avenues of research where the project could be expanded upon.
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2 The Standard Model

As we mentioned in the Introduction, the Standard Model (SM) stems from different experimen-
tal and theoretical results. The formulation of a quantum theory of relativistic particles (which
we now know as Quantum Field Theory, QFT) was perhaps the first stepping stone. Eventu-
ally, Yang and Mills developed non-Abelian gauge theories, theories that predict a photon that
interacts with other photons, essentially a photon with a charge1. Later on, in a series of almost
simultaneous papers by Englert, Brout, Guralnik, Hagen, Kibble, and Higgs developed a way to
give these charged photons mass, nowadays this mechanism is called the Higgs mechanism2.

But little did any of the physicists at the time know how these new developments would
eventually be used to develop the SM. The hypothesization and eventual discovery of quarks
and gluons cemented the SU(3) theory of strong interactions. As for in the realm of electroweak
interaction, if we didn’t discover that weak interactions violate parity, we would’ve never been
capable of guessing which gauge group to use to model electroweak interactions.

2.1 Non-abelian gauge theories

Yang-Mills, or non-abelian gauge theories, generalize abelian gauge theories, which we use to
model quantum electrodynamics (QED). Before properly going into non-abelian gauge theories,
let us very briefly review abelian gauge theories. The Lagrangian of an abelian gauge theory
remains invariant under the following transformations:

Aµ → Aµ +
1

e
∂µα(x) = UAµU

−1 − i

e
(∂µU)U−1 ,

Fµν → Fµν ,

ψ → eiα(x)Qψ = Uψ ,

(1)

where Aµ is the photon field, Fµν = ∂µAν − ∂νAµ is the usual anti-symmetric strength tensor,
ψ is a fermion field, α(x) is a local parameter, Q is the charge operator (the generator of the
algebra of U(1)) and U = eiα(x)Q is an element of U(1). The gauge invariant Lagrangian that
describes the interactions between these particles is:

Labe. = −1

4
FµνF

µν + ψ̄
(
i /D −m

)
ψ , (2)

where Dµ = ∂µ − ieAµQ, is the covariant derivative of abelian interactions. We can also define
the F tensor as a commutation between the covariant derivatives:

[Dµ, Dν ]φ = −ieFµν Qφ . (3)

In the case of a non-abelian theory, considering a semi-simple Lie group, we will have multiple
generators of the Lie algebra that we will denote as T a. The shape that these generators have
will depend on the representation that we choose and also on the group itself, for example, in
the fundamental representation of SU(2) the generators of the Lie algebra will be proportional

1(In)famously, Pauli told Yang after a seminar he gave that his theory is not even wrong.
2Sometimes also called the ABEGHHK’tH mechanism (Anderson, Brout, Englert, Guralnik, Hagen, Higgs,

Kibble, t’Hooft).
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to the Pauli matrices. The generators will follow the commutation relations:[
T a, T b

]
= ifabcT c , (4)

where fabc are usually known as the structure constants. This equation is in direct contrast with
the abelian case, where the algebra of the U(1) group only has one generator that we denoted
as Q, which is proportional to the identity. The transformations in Eq. (1) are generalized by
substituting the U for an element of a non-abelian semi-simple Lie group, let us say to be SU(n),
for example:

Aµ → UAµU
−1 − i

g
(∂µU)U−1 ,

ψ → Uψ ,

(5)

where Aµ = Aaµ T
a and U = ei α

a(x)Ta . Due to U having the shape of matrix, we would expect
ψ to have the shape of a vector. The dimensions of the vector and its shape will depend on the
representation under which they transform. In the case of SU(2), if they transform under the
fundamental representation (where the generators are a set of 2 × 2 matrices), then we would
call them a doublet and have the shape of a 2-dimensional vector, but if they transformed under
the adjoint representation (where the generators are a set of 3 × 3 matrices), then they would
be called a triplet and have the shape of a 3-dimensional vector (or a 2× 2 matrix, but then the
transformation would be different).

Now our gauge invariant Lagrangian will be:

Lnon−abe = −1

2
Tr[FµνF

µν ] + ψ̄
(
i /D−m

)
ψ , (6)

where the covariant derivative is Dµ = ∂µ − igAaµT
a. Moreover, we can also obtain the shape of

Fµν = F aµνT
a from the commutator of the covariant derivatives:

[Dµ,Dν ]φ = −igFµνφ , (7)

which gives us:
Fµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ] , (8)

or in component form:
F aµν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (9)

The details on the quantization of the theory will not be expounded in this thesis but can be
found in most QFT books (see e.g., [68]). This procedure is called the Faddeev-Popov procedure,
which forces the inclusion of unphysical fields called ghosts, which appear to keep the theory
Lorentz and gauge invariant.

The salient feature of non-abelian gauge theories, compared to the abelian case, is that gauge
bosons can interact with one another. We can see these interactions from first term in Eq. (6)
and from the definition of Fµν in Eq. (9), the kinetic term induces vertices between three and
four Aaµ. Such interactions are unfound in QED: the photon should only couple with particles
that have a charge, and photons are chargeless.

The incorporation of a non-abelian SU(3) into strong interactions came through the eighfold
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way [69–71], it was found out that the different mesons already discovered transform under
the octet representation of a group and baryons under a decuplet. Gell-Mann figured that the
simplest group that accounts for the transformation was SU(3). This way of organizing hadrons
under an SU(3) proved to be an incredibly successful model: it famously predicted the existence
of a yet-to-be-discovered particle called the Ω baryon. Eventually we found the Ω baryon.

Then, Gell-Mann and Zweig [72, 73] independently proposed a more fundamental way of
organizing hadrons. The idea was that mesons, which transform under the octet representation
of SU(3), could be composed of more elementary particles that transform under the fundamental
and complex representation of SU(3) (3 ⊗ 3̄ = 8 ⊕ 1) and baryons composed by three of these
elementary particles (3⊗3⊗3 = 10⊕8⊕8⊕1). These elementary particles were dubbed quarks3.

The next natural step was to incorporate the SU(3) symmetry into the theory originally done
by Yang and Mills [74]. The gauge particle was called gluons. We eventually discovered all of
the proposed particles.

Another non-abelian group picked up center stage in the modeling of weak interactions, but
before we can properly talk about it, we should discuss the Higgs mechanism.

2.2 Spontaneous symmetry breaking and the Higgs mechanism

Let us consider, as an example, the simplest model that has the breaking of a spontaneous
continuous symmetry: a massive complex scalar field:

LU(1) = ∂µφ∂
µφ∗ −m2|φ|2 − λ

4
|φ|4 , (10)

where we have a U(1) symmetry: φ → eiαφ. To have a more clear picture of what is going to
happen, let us decompose φ = 1√

2
(σ + iχ), now the Lagrangian looks like:

LSO(2) =
1

2
∂µσ ∂

µσ +
1

2
∂µχ∂

µχ− m2

2

(
σ2 + χ2

)
− λ

8

(
σ2 + χ2

)2
, (11)

the Lagrangian, of course, still has the same U(1) symmetry, ( σχ ) transforms under the dou-
blet representation of U(1) (which are elements of SO(2), the group that does bi-dimensional
rotations).

If m2 > 0, then we are describing an ordinary scalar field theory with two fields, on the other
hand, if µ2 = −m2 > 0, then the potential in the Lagrangian V = m2|φ|2+ λ

4 |φ|
4 will have a local

maximum at σ2 + χ2 = 0, but a local minimum when σ2 + χ2 = 2µ2

λ . This minimum also has
a U(1) symmetry. We can choose any of the points inside the circle. We will select the minima
residing at σ2 = 2µ2

λ , χ = 0.
What does this mean? It means that the vacuum expectation value (vev), v =

√
2µ2

λ =

〈0|σ|0〉, of the σ field is non-zero. This is in conflict with the decomposition of creation and
annihilation operators we do for scalar fields, the same creation and annihilation operators which
create and annihilate particles. It is hard to reconcile the usual particle interpretation we give
fields when we do not have a field with a vanishing vev. Therefore, we have to introduce the
physical field h = σ − v, which does have a vanishing vev. The introduction of this field breaks

3The term quark comes from the unreadable book by James Joyce Finnegans Wake. Curiously enough, Zweig
called them aims in his original paper. Thankfully the particle physics community chose quark.
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the original U(1) symmetry:

LSSB =
1

2
∂µh∂

µh+
1

2
∂µχ∂

µχ− µ2h2 − µ

√
λ

2
h
(
h2 + χ2

)
− λ

8

(
h2 + χ2

)2
+
m4

2λ
, (12)

what is most remarkable here is that h has acquired mass, whereas χ remains completely massless.
h is usually called a Higgs field, and χ a Goldstone field. What we’ve just witnessed is a special
case of the Goldstone theorem, which says that for every broken generator of a global symmetry,
a massless field will appear. Had we chosen a different symmetry, say an SU(2) symmetry, and
broken two generators, two different massless fields would’ve appeared.

If we upgrade our U(1) global symmetry to a local one, we will then have scalar QED:

LsQED = −1

4
FµνF

µν +DµφD
µφ∗ + µ2|φ|2 + λ

4
|φ|4 , (13)

with Dµφ = (∂µ − igAµ)φ is the U(1) covariant derivative, where we have given φ a charge of
+1. The theory follows the same transformations we described in Eq. (1). Now, φ will acquire
a non-zero vev, and we must redefine the σ field. To simplify things for now, we can choose
a gauge where the would-be Goldstone boson, χ is zero, this is the Unitary gauge. Then our
Lagrangian becomes:

L =− 1

4
FµνF

µν +
1

2
∂µh∂

µh− µ2h2 +
1

2
g2v2AµA

µ + g2v2hAµA
µ

+
1

2
e2h2AµA

µ − λv

2
h3 − λ

8
h4 ,

(14)

here, due to our choice of gauge, the Goldstone boson has disappeared. The gauge field A has
now acquired mass mA = gv proportional to the vev of the Higgs field, the gauge coupling, and
the value of the charge of the Higgs.

We could’ve chosen other gauges where the Goldstone boson doesn’t disappear. For example,
in the Feynman-’t Hooft gauge, the Goldstone boson remains and acquires the same mass as
the gauge boson, in other gauges, like the Landau gauge the Goldstone boson remains massless.
There are other gauge choices that would have a non-trivial Faddeev-Popov procedure and where
ghosts could arise even in the U(1) case. The choice of which gauge to work with depends on
the problem at hand, it is sometimes easier to work with the Goldstone bosons, and sometimes
it isn’t. For example, it was shown that the unitary gauge for non-abelian gauge theories not to
be renormalizable [75], but they are in other gauges [8].

Of course, the choice of the gauge should not affect in any way whatsoever the physics, nature
should not be gauge dependent. This gives us an indication that the Goldstone bosons, much
like the ghost fields, are not actual physical fields. We usually say that the Goldstone fields were
eaten by the gauge boson, acquiring a mass and a longitudinal degree of polarization.

We have managed to give gauge particles a mass. Can we do the same for fermions? Let us
add a Yukawa coupling to the theory:

Lψ = iψ̄R /DψR + iψ̄L/∂ψL − yψ̄LψR φ+ h.c. , (15)

here, the sub-indices L and R denote the chirality of the spinor field. Here we will define only
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Figure 1: Particle content of the Standard Model

ψR to have a U(1) charge, ψL will remain a singlet. The eventual symmetry breaking and
appearance of the terms proportional to v will give the fermion field a mass proportional to the
Yukawa coupling y: mψ = yv.

Now we have a way to give masses to both gauge and fermion fields. This is known as the
Higgs mechanism. The theoretical advantage we have when dealing with theories that undergo
spontaneous symmetry breaking is that the theory somehow still remembers the underlining
symmetries of the theory. Takashi-Ward and Slavnov-Taylor identities remain after the breaking
of a symmetry, this was a crucial part in showing that these theories are renormalizable.

The Higgs mechanism applied to non-abelian gauge theories is what led to the development
of the unification of electromagnetic and weak interactions. The underlining structure of weak
interactions has been mapped out thanks to the discovery of different particles and their decays,
from β-decay and its violation of parity, the discovery of the µ and its only(?) decay, and various
other hadrons. The question remained in everyone’s mind whether weak interactions could also
be fitted into a symmetry, and if so, which? Glashow, Weinberg, Salam, and Ward came up with
what is the simplest model which can unify that was based on the SU(2)×U(1) group.

2.3 Electroweak theory

The electroweak part of the SM is based on the following gauge group:

GEW = SU(2)L ×U(1)Y , (16)

where the L here denotes the left-weak isospin, and the Y denotes the hypercharge. The gauge
group is meant to be spontaneously broken to U(1)Q by the Higgs mechanism, where Q is the
electric charge from electromagnetic interactions.
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GEW has four different generators. The Higgs mechanism breaks three of the four generators
leaving only one unbroken, which is the following linear combination:

Q = T 3
L +

Y

2
, (17)

where T 3
L is the third generator of the SU(2) algebra. The particle content of the SM is shown

in Fig. 1: three generations of quarks and three of leptons. W−,W+, Z and γ are related to the
gauge bosons of the SM gauge group, and H is the Higgs particle responsible for providing the
mass to the particle of the SM model. We will not touch on g, the gluon, which is the particle
that mediates strong interactions. The left-handed part of each generation of lepton and quarks
form an SU(2)L doublet:

Lepton doublets :
(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
,

Quark doublets :
(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
,

(18)

and both elements of the doublet have the same hypercharge Y . The lepton doublets have
a hypercharge Y = −1, and the quark doublets have Y = 1

3 . The right-handed part of all
the particles are SU(2)L singlets, but they all have a hypercharge equal to twice their charge.
In its original conception, the right-handed component of neutrinos was not included, there
are probably two reasons for this: neutrinos were believed to be massless (including a right-
handed component would make them massive), and a right-handed component is a singlet of the
GEW, making them (almost) sterile, which means they would almost not interact with any other
particles.

Moreover, we also have the scalar doublet, where the would-be Goldstone and Higgs bosons
reside. They have a hypercharge Y = 1:

Scalar doublet : ϕ =

(
φ+

1√
2

(
h+ v + iφ0

)) , (19)

here φ+ and φ0 are the would-be Goldstone bosons, h is the Higgs boson and v is the vev of the
SM. We have not mentioned yet the color charge (the charge of SU(3)C , the group for strong
interactions) but all of the particles, except for the quarks and gluons, are color-singlets. Weak
interactions (as far as we know) do not care about color charge, they treat quarks of different
colors charges in the same way, how this usually translates itself when computing the cross
section or decay rates involving quarks is that an extra factor of three needs to be added, one
for each different color charge.
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The full Lagrangian of electroweak interactions looks like this:

LEW =− 1

2
tr[Wµν W

µν ]− 1

4
Bµν B

µν +
∑
ΨL

Ψ̄L /DΨL +
∑
ψR

ψ̄R /DψR + |Dµϕ|2

−
(∑

L̄L · ϕY` `R +
∑

Q̄L · ϕYDDR +
∑

Q̄L · ϕ̃ YU UR + h.c.
)

+ µ2|ϕ|2 − λ|ϕ|4 ,

(20)

where W a
µν = ∂µW

a
ν − ∂νW

a
µ + g εabcW b

µW
c
ν is the field strength of the SU(2)L group with their

respective gauge bosons W a
µ , Bµν = ∂µBν − ∂νBµ is of the U(1)Y group with its respective

gauge boson Bµ. ΨL is any of the fermion gauge doublets in Eq. (18), ψR are all the fermion
SU(2)L singlets, LL is any of the leptonic doublets, `R any of the charged-lepton right-handed
singlets, QL any of the quark doublets, DR the down-quark right-handed singlets, UR the up-
quark right-handed singlets, ϕ̃ = iσ2ϕ

∗, Y`, YD, YU are the charged-lepton, down-quark and
up-quark Yukawa couplings, and Dµ is the covariant derivative of the GEW group:

Dµ = ∂µ − i gW a
µ T

a
L − i gYBµ

Y

2
. (21)

In an aim to explain to the potentially confused reader what is happening, let us briefly sum-
marize what Eq. (20) is showing us: the first line is all the kinetic terms of all the particles: gauge
bosons, fermions, and scalars, all including the necessary covariant derivatives that maintain the
Lagrangian invariant under the GEW group; the second line is all the Yukawa couplings between
fermions and the scalars; the third line is showing us the Higgs potential. We’ve included all the
renormalizable terms, which Lorentz invariance, and the GEW allow us to have with the fields we
have included. To not include any would either be a mistake4 or would imply the existence of
another symmetry, we usually call this the totalitarian principle.

2.3.1 Symmetry breaking and mass spectrum

The kinetic term of the Higgs potential will be the one responsible for giving the gauge bosons
their masses:

|Dµϕ|2 ⊃

∣∣∣∣∣− i

2

(
gW 3

µ + gYBµ g (W 1
µ − iW 2

µ)

g (W 1
µ + iW 2

µ) −gW 3
µ + gYBµ

)(
0
v√
2

)∣∣∣∣∣
2

=
1

4

v2

2

[
g2
(
W 1
µ

)2
+ g2

(
W 2
µ

)2
+
(
gYBµ − gW 3

µ

)2]
,

(22)

what we have found out is that there are two neutral bosons W 1
µ ,W

2
µ with the same mass, which

is equivalent to a charged boson. We can see this by using a different basis:

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, (23)

4I remember one of my professors once saying that everything which you symmetries allow you include has to
be included, otherwise ultraviolet completion will do it for you.
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moreover, it seems that two different gauge bosons mix and do not have a defined mass. We can
decouple them using the next transformation:Zµ = cwW

3
µ − swBµ

Aµ = swW
3
µ + cwBµ

, (24)

where cw = cos θw, sw = sin θw and tw = tan θw = gY /g is the tangent of the Weinberg angle.
Then:

Lmass−gauge =
1

4
g2v2W+

µ W
µ− +

1

8

g2v2

c2w
ZµZ

µ , (25)

we now have a mass spectrum for the gauge bosons of the SM:

MW =
1

2
gv ,

MZ =
1

2

gv

cw
,

(26)

the key point to emphasize here: there is a direct relation between the masses of the W and the
Z boson. We would be expecting:

ρ ≡
M2
Z c

2
w

M2
W

= 1 , (27)

the SM is already predicting that the mass of the Z boson will be bigger. How big it is depends,
firstly on the value of θw, and, a little more subtly on the representation under which the scalar
transforms. Indeed, had the scalar doublet actually been a triplet with Y = 2, the ρ-parameter
would’ve actually been 2, but it if had been a triplet with hypercharge Y = 0 it would’ve been
zero. This ρ-parameter functions as a probe of the quantum numbers of the scalar doublet.
In reality, this factor is actually not exactly 1. Loop corrections to the mass of the W and Z

bosons alter it slightly, which makes the ρ-parameter a powerful tool to constraint potential
beyond-the-Standard-Model (BSM) physics which might change its value.

The Yukawa couplings, in the second line of Eq. (20) give mass to all the fermions:

LYuk. = −
∑
α,β

L̄α,L · ϕ (Y`)αβ `β,R −
∑
i,j

[
Q̄i,L · ϕ (YD)ijDj,R + Q̄i,L · ϕ (YU )ijUj,R

]
+ h.c.

⊃ − v√
2

∑
α,β

¯̀
α,L (Y`)αβ `β,R − v√

2

∑
i,j

[
D̄i,L (YD)ijDR,j + Ūi,L(YU )ijUj,R

]
+ h.c.

(28)

where the sub-indices α, β indicate different lepton generations, and i, j different quark genera-
tions. It is clear, as it was near the end of Section 2.2, that the masses of the fermions will be
proportional to their Yukawa couplings times the SM vev, but the situation is different here: we
have multiple generations, and the Yukawa couplings can mix different generations. Indeed, in
general, the Yukawa matrices may not necessarily be diagonal.

But we can choose, without any loss of generality, to have some Yukawa matrices to be
diagonal. Let’s take the quark sector, if we ignore the Yukawa couplings, the Lagrangian is

10



invariant under the following global transformations:

UL → V L
Q UL , DL → V L

Q DL ,

UR → V R
U UR , DR → V R

D DR ,
(29)

where all the V ’s are unitary transformations in the flavor space of quarks. We can then choose
a V L

Q and V R
U such that diagonalizes YU , at the cost that YD may not necessarily be diagonal (if

YD were diagonal it would mean that there is an amazing flavor symmetry in the quark sector).
Or we could do it the other way around, we could choose YD to be diagonal and YU to not
be diagonal. This means that we can choose one of them to be diagonal without any loss of
generality. We will stick to convention and set YU to be diagonal.

We then have to perform a unitary transformation so that YD is diagonalized, we should only
then rotate the down quark fields DL → V L

D DL , and DR → V R
D DR . It will not be the case that

the rest of the Lagrangian will be invariant under this transformation, as we will see later, this
will impact the interactions between quarks and charged gauge bosons, but not in interactions
with neutral gauge bosons: decoupling quarks in Yukawa interactions will mix them in gauge
interactions. This mixing will bring some interesting phenomenological implications like meson
mixing, meson oscillations, and CP violation, which will be discussed a little bit more on the
following pages.

We can perform the same argument in the lepton sector and actually choose Y` to be diagonal
without any loss of generality, there will be no mixing between leptons because we did not include
a right-handed neutrino field in the model. As far as we know, this seems to be the case with
charged leptons, they do not seem to mix with one another, searches for processes that violate
charged lepton flavor (or cLFV processes), like µ− → e−e−e+ or µ− → e−e+ place very strong
bounds on the mixing between charged leptons. The case with neutral leptons, however, is
different and shall be discussed later on.

Let us now re-write the second line in Eq. (28) as:

Lψ−mass = − v√
2

∑
α

¯̀
α,L (y`)α`α,R − v√

2

∑
i

(
D̄i,L (yD)i Di,L + Ūi,L (yU )i Ui,L

)
, (30)

where much like before, mψ = 1√
2
yψv.

The values of the masses of the different fermions can be seen in Fig. 1, the third generation
of all particles have the highest values, which means that their Yukawa couplings have a bigger
value than those of the second generation; and those higher than the ones of the first generation.
Can we probe this? Is there a way to examine that it is actually the Higgs mechanism that is
responsible for giving fermions their masses and the gauge bosons theirs?

As a matter of fact, there is. The coupling of the Higgs boson to a SM particle is proportional
to their masses:

LHiggs = −
∑
ψ

mψ

v
ψ̄ψh+ 2

M2
W

v
W+
µ W

−
µ h+

M2
Z

v
ZµZ

µh , (31)

so, if kinematically allowed, we would expect the decay width of the Higgs to a pair of fermions
to be: Γ(h→ ψ̄ψ) ∝ m2

ψ. For heavier particles, like the t-quark and gauge bosons, we can check

11
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Figure 2: Measurement done by ATLAS of the couplings between Higgs and the rest of the SM
particles as a probe of the Higgs mechanism. Plot obtained from [78].

the coupling, either by the production cross-section or decays through off-shell particles.
Have we measured all the couplings between the Higgs and SM particles? The Higgs boson

was discovered in 2012 [76, 77], ever since we’ve tried relentlessly to measure all of its parameters
in hopes of disproving the SM. Fig 2 shows the measurements of the Higgs couplings performed
by ATLAS from [78]. The lighter particles are, the harder it is to probe the Higgs mechanism for
them. Quarks are even harder to probe due to their subsequent hadronization after production
and excessive amounts of background. But what is truly remarkable here is how accurate the
Higgs mechanism and the SM seem to be, all of the couplings agree to a great extent with their
SM predictions! How remarkable!

2.3.2 Interactions between gauge bosons and fermions

t3L q

U 1/2 2/3
D −1/2 −1/3
ν 1/2 0
` −1/2 −1

Table 1: Values of t3L and q for the different SM fermion fields

Now let us turn our attention to how fermions interact with gauge bosons. From the covariant
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derivative of both left-handed doublets and right-handed singlets, we arrive at:

LW =
g√
2

∑
α

ν̄α /W
+
PL `α +

g√
2

∑
i,j

Ūi /W
+
(VCKM)ij PLDj + h.c. , (32)

LZ,A =
g

cw

∑
ψ

[
ψ̄ /Z

(
t3LPL − s2wq

)
ψ
]
+
∑
ψ

e ψ̄ /AQψ , (33)

where here the VCKM = V L
D , the unitary matrix we used to help us diagonalize the down-quark

Yukawa coupling, commonly known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix, PL and
PR and the left and right-handed projectors, t3L is the value of the third weak-isospin of ψ, and
q the value of the charge of ψ, the values for different fermions are summarized in Table 1.

Notice how the photon field couples to charged fermion proportional to the value of their
charge times the constant e, as predicted from QED. Where did the e come from? As a matter
of fact e = gcw, or in other words:

1

e2
=

1

g2
+

1

g2Y
, (34)

this relationship is not an accident, and it can actually be inferred from Eq. (17) as it was proven
in [79]. The general statement arises from the possibility of having a unified theory, let us assume
that the relationship in Eq. (17) gets modified Q =

∑
iCiTi, where Ti and Ci is a constant, we

write Q as the linear combination of generators of bigger gauge groups, then:

1

e2
=
∑
i

C2
i

g2i
, (35)

where gi is the gauge coupling of those bigger gauge groups. This relationship will prove useful
in the next section.

A key feature of the SM is the presence of P violation in interactions of fermions and a W -
boson. This can be clearly seen from the PL projectors in Eq. (32). The immediate consequence
of this is that only left-handed particles and right-handed anti-particles will participate in weak
interactions with a W -boson (these interactions are commonly called charged-current interactions
or CC interactions). The discovery of parity violation in β-decays [5, 6] was perhaps one of the
most important discoveries in particle physics.

The presence of VCKM in Eq. (32) interactions has rich phenomenological implications, one of
which is meson oscillations. Meson oscillations are loop-mediated transitions between a meson to
its own anti-particle, their diagrams are shown in Fig. 3, and their probabilities can be properly
understood from the amplitude transition that can be calculated from QFT. Such processes
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would be impossible if the CKM matrix were diagonal. Moreover, the fact that the CKM matrix
can be complex implies CP violation, one of its distinct features of it is that the transition
M → M̄ has a different probability than M̄ → M : weak interactions care about whether we’re
dealing with particles or anti-particles.

The possibility of seeing meson oscillations was first postulated in 1955 by non-other than
Gell-Mann [80], and it inspired Bruno Pontecorvo to propose the possibility of oscillations be-
tween neutrinos5 [83, 84]. But, according to the SM, neutrinos cannot oscillate. There is no
mixing between neutrinos since there’s no mass term that could induce mixing, or is there...?

2.4 Problems with the SM

The SM is a beautiful theory that models the interactions between fundamental particles. It is
not beautiful for the shape, structure, or form it has, but rather because it accurately models
reality, and what can be more beautiful than reality? Indeed, Fig. 4 shows the measurement of
the cross-section of different processes compared to the predictions that the SM gives, and they
all (with a few exceptions) give you a very accurate result.

But, for good or for evil, we know that the SM is not the final answer. There are a number
of issues that SM cannot answer. We shall present some of them:

• Neutrino masses and oscillations: as we said before, the SM does not have a right-
handed neutrino field, and therefore there is no neutrino mass term, no lepton mixing,

5Pontecorvo did other remarkable things, such as being the first to propose inverse-β decay to discover neutrinos
[81] and was the first to suggest that there is a difference between electron and muon neutrinos [82]. He never
won a Nobel Prize. As a matter of fact, the Nobel Prize for the discovery of the first neutrinos was given after the
discovery of the muon neutrino, after his death. A former professor of mine claimed Pontecorvo never got a Nobel
Prize because the academy didn’t want to give it to a person who was a communist spy for the Soviet Union.
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and no lepton oscillations. But as a matter of fact, we have already witnessed neutrino
oscillations and transformations [16, 85, 86]. Indeed neutrino transformations due to prop-
agation of neutrinos through matter [87, 88] witnessed from Solar Neutrino experiments are
not predicted by the SM: for them to occur you require neutral current interactions that
violate neutrino lepton flavor or neutrino masses. The discovery of neutrino oscillations by
KamLAND showed us that neutrinos are massive.

• Baryon asymmetry of the universe: detailed studies of Big Bang Nucleosynthesis
(BBN) [89] and the Cosmic Microwave Background (CMB) [21] indicate that there is an
asymmetry between particles and anti-particles in the universe. Where did this asymme-
try come from? Sakharov postulated three conditions that must be satisfied in order to
generate baryon asymmetry [18]: baryon number non-conservation, C and CP violation,
and thermal inequilibrium. The first condition is necessary, since if we had a universe that
was baryon symmetric then baryon number violation is needed to generate it. The second
condition is needed because if we had exact C and CP symmetries, then processes gener-
ating particles would occur at the same rate as anti-particles. And the third condition is
necessary because if the universe were in thermal equilibrium, any process that can gen-
erate baryon asymmetry has an equal probability to the inverse process, thus any baryon
asymmetry would be washed out. (a formal proof of the last condition can be found in any
Cosmology book, see e.g., Chapter 11 of [90])

The SM conserved both baryon number (B) and lepton number (L), but only on per-
turbative processes. The SM has non-perturbative terms which can generate B violating
processes [22, 91]. As we saw in the previous section, there is CP violation in the SM, but
it is actually not big enough for it to properly generate baryon asymmetry [92, 93]. Devi-
ations from thermal equilibrium can only occur at very high energies [19]. The symmetry
breaking related to the SM could’ve produced a first-order phase transition [91] had the
Higgs boson been light enough [94]. The eventual discovery of the Higgs boson with its
current mass falsified the SM as a source of thermal inequilibrium.

• Dark Matter: different astrophysical and cosmological observations indicate that the
universe is not just made of SM particles, including the rotation curves of galaxies [95],
the mass of galaxy clusters [20], bullet clusters [96] and the CMB itself [21]. We know
that particle dark matter must follow a number of conditions for it to follow astrophysical
observations, such as it being electrically neutral and stable. Neutrinos follow a lot of
conditions and could be a viable dark matter candidate, but they do not comply with
cosmological data. The density of neutrinos in the universe is not high enough to account
for dark matter, they are not abundant enough or massive enough. The Standard Model
does not account for dark matter.

• Strong CP violation: at its core, the so-called strong-CP problem is: why is the neutron
dipole moment (nEDM) so small? The term generating the nEDM looks like
L ∼ dnFµν n̄σ

µν iγ5n. The explicit calculation that QCD (and by extension the SM) gives
for dn is dn = 3.2 × 10−16 θ e cm. (the explicit calculation can be found in Chapter 94
of [97]). The θ-parameter comes from the term L ∼ θεµνρσGaµνG

b
ρσ that was realized may
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not necessarily be zero [98], satisfies all possible symmetries Yang-Mills symmetries and
violates CP . The experimental value of dn ≤ 1.8 × 10−26 e cm [99], which means that
|θ| . 5× 10−11. This is the cusp of the problem strong CP problem, why is θ so small?6

• Gravity: the SM itself does not have a problem with gravity, but rather it is QFT itself
that has a problem with gravity. It can easily be seen from the dimensions of the Newtonian
Constant G, that a theory of gravity is non-renormalizable 7. Non-renormalizable theories
can be treated perturbatively until a certain energy scale. For processes with a center-
of-mass energy above that energy scale, we must find a different theory that shall model
interactions differently. For the non-renormalizable Fermi interaction which modeled β-
decay, that energy scale was of the order of the SM vev, processes with high energy the
W -boson revealed itself. The energy scale at which we can no longer treat Einstein’s Theory
in a perturbative way is above the Planck Scale MPL ' 1×1019GeV, what will reveal itself
at energies above?

2.5 Neutrino masses in the SM

What could possibly be the problem with introducing right-handed neutrino fields in the SM?
Following the same procedure as before, let us add a right-handed neutrinos νR to Eq. (20) and
(28):

L = LSM +
∑
α

i ν̄α,R /∂να,R −
∑
α,β

Lα,L · ϕ̃ (Yν)αβ νβ,R + h.c. , (36)

much like in the quark case, this would induce mixing between different leptons and generate
neutrino masses with mν ∝ Yνv. Can we probe that the Higgs mechanism gives neutrinos their
masses? A decay Γ(h → νν) ∝ m2

ν/v
2. Current bounds on neutrino masses have them at less

that 1 eV. Seeing how we are yet to probe the Higgs mechanism even for electrons (see Fig. 2),
it is unlikely that we would be capable of probing the Higgs mechanism for neutrinos. There
is only one measurement for an invisible decay of the Higgs (h → ZZ∗ → νννν). To detect
deviations from it would be unfeasible.

Eq. (36) has left us with a model for neutrino masses that proves itself very hard to probe.
We can actually find a different mechanism that might be easier to probe. We have not written
all the possible terms allowed in Eq. (36), we have missed one:

L = LSM + i
∑
i

ν̄i,R /∂νi,R −
∑
α,i

Lα,L · ϕ̃ (Yν)αi νi,R − 1

2

∑
i,j

ν̄Ci,R (MR)i,j νj,R + h.c. , (37)

where MR is a Majorana mass matrix, and the super-index C indicates charge-conjugated (ψC =

−iγ2ψ∗ in the chiral basis of Gamma matrices). This last term would not be allowed if we imposed
a symmetry that conserves lepton number. How can this be any different from the usual SM

6There are some arguments against this is either a problem or not. What is the problem with it being so small?
The Yukawa coupling of the electron is also quite small and that’s not a problem [100]. We shall not address these
debates anymore during this thesis.

7As a matter of fact, gravity is renormalizable at one-loop [101], but not at two-loops [25].
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case? After SSB we will obtain:

−Lmass = ν̄LMDνR +
1

2
ν̄CR MRνR + h.c.

=
1

2

(
ν̄L ν̄CR

)( 0 MD

MT
D MR

)(
νCL
νR

)
+ h.c. ,

(38)

where MD = 1√
2
vYν (do not confuse MD with the mass matrix for down quarks!), is a mass

term that we shall call Dirac Mass Matrix. The MT
D term was obtained from the transpose of

ν̄LMDνR. Here it is quite clear that the mass terms of νL and νR mix with one another. They
will have different masses. How can this be possible? How can it be possible that the right-chiral
component and the left-handed component of the ν field to have different masses? These will
actually be two different particles: two different Majorana particles. To avoid any potential
confusion, we will now use NR instead of νR.

We must diagonalize the matrix in Eq. (38) to obtain the mass spectrum. We will use a
unitary matrix U :

U †

(
0 MD

MT
D MR

)
U∗ =

(
Mν

MN

)
. (39)

The most general form of U is:

U =

(
c s

−s† ĉ

)
=



∞∑
n=0

(−ΘΘ†)n

2n!

∞∑
n=0

(−ΘΘ†)n

(2n+ 1)!
Θ

−
∞∑
n=0

(−Θ†Θ)n

(2n+ 1)!
Θ†

∞∑
n=0

(−Θ†Θ)n

2n!

 '

(
I Θ

−Θ† I

)
, (40)

where we will see later on the justification of the approximation in the last term to the right.
The diagonalization gives us the following relationships:

Mν = −MD
1

MN
MT
D = −ΘMNΘ

T , (41)

with MN 'MR. This is the famous Seesaw relationhip [33, 34, 102], in its original conception
we can easily see small neutrino masses naturally emerging: if MN �MD, then Mν will be very
small. This, in turn, will also make Θ =MDM

−1
N very small.

Mν may not necessarily be diagonal, but we can choose MM (and thus MN ) to be so without
any loss of generality. We must, therefore, also diagonalize Mν with the neutrino-analog of the
CKM matrix: Vν , the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix). Thus:

VνmνV
T
ν = −ΘMNΘ

T , (42)

where mν is a diagonal matrix. The diagonalization also implies mixing between the active
neutrinos and the heavy singlets (which we will refer to as heavy neutral leptons or HNLs):

νL → VννL +ΘNC
L ,

NR → −ΘTV ∗
ν ν

C
L +NR ,

(43)
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this mixing will thus produce interactions between HNLs and the rest of the SM particles, in
exactly the same way that neutrinos interact with the rest of the SM particles, but suppressed
by this mixing matrix Θ.

It is not clear how many of these singlets or right-handed neutrino fields we can add. In
principle, we can add as many as we wish. If we added N of them, then MM is a N ×N matrix,
MD a 3×N matrix, U a (3 +N )× (3 +N ) matrix and Θ a 3×N one.

We can write the interactions between neutral leptons and gauge bosons as 8:

LW =
g√
2

∑
α,i

`α /W
−
(U)i,α PLni + h.c. , (44)

LZ =
g

2cw

∑
i,j

n̄i /Z (C)i,j PLnj , (45)

where here ni can be either an active neutrino mass state or an HNL, U is a 3× (3+N ) defined
as U =

(
V Θ

)
, and C = U† U .

Now we have a clear way to probe the mass generation of neutrinos: if we find an HNL, then
we would say that neutrino masses are generated by the so-called Type-I Seesaw matrix. But
there is an issue: let’s take mν ' 1 eV and MN ' 1GeV, this implies Θ ' mν/MN ' 1× 10−9.
Then, the decay Γ(W → N`) ' |Θ|2 ' 1× 10−18. It seems to be unprobable!

The above argument is true if we only had one HNL and one neutrino. If we add more
generations of neutrinos and HNLs, then we would have more free parameters. Solving for Θ in
Eq. (42) gives us:

Θ = ±iV
√
mν O

1√
MN

, (46)

where O is a semi-orthogonal matrix of dimensions 3 × N . This is the so-called Casas-Ibarra
parametrization [103]. This parametrization of Θ will always ensure the Seesaw relation. The
freedom of the choice of this matrix O allows us to choose values of Θ that are probable. To see
why, as an example, let’s take the number of neutrinos and HNLs to be only two, then we can
choose O as:

O2 =

(
cosω sinω

− sinω cosω

)
, (47)

we can choose any value of ω and O2 will be orthogonal, thus we can choose ω ' i Im(ω), and if
Im(ω) � 1, then:

O2 '
eIm(ω)

2

(
1 i

−i 1

)
. (48)

We can choose Im(ω) to be as big as we want to, as long as perturbativity allows for it.
What is happening is that there is a symmetry, our choice of O and later of Θ imposes a lepton-
number conserving symmetry. Neutrino masses are no longer kept small due to a difference
between scales, but rather because a L-symmetry keeping them small.

There is an interesting phenomenological feature behind this, and it is that processes that
violate lepton number (or LNV processes), like neutrinoless double-beta decay (0νββ), are sup-

8There are some technicalities with the Z vertex that are different between Dirac and Majorana particles that
are addressed in Appendix A
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Figure 5: Constraints adapted from [104] (for the information on all the constraints and others,
see all the references therein), the vertical axis is the Θµ coupling.

pressed to the order of neutrino masses.
Now we have a model of neutrino masses that we could probe. Multiple searches and different

constraints have been performed throughout the years. BBN severely constrains them to be above
the MeV scale [105, 106] (unless they have a very small coupling, indeed, keV HNLs dark matter
candidates [105]), whereas other low-energy processes like cLFVs could constraint PeV HNLs
[107]. We highlight the constraints from different experiments in Fig. 5.

Moreover, besides this model being a model for neutrino masses, the incorporation of two
HNLs with almost degenerate masses can also generate baryon asymmetry of the universe [35,
108, 109], and as we mentioned in parenthesis in the paragraph above a keV HNL is a dark
matter candidate. This is the most minimal model that can explain three of the problems the
SM has: neutrino masses and oscillations, baryon asymmetry of the universe, and dark matter.

2.6 Other mass models for neutrinos

Let us briefly mention other mechanisms for the generations of neutrino masses. Besides the
type-I Seesaw, we also have the so-called Type-II Seesaw mechanism. This mechanism adds
a SU(2)L triplet with Y = 2:

∆ =

(
δ+√
2

δ++

δ0 − δ+√
2

)
, ∆ → U∆U† , (49)

where the second relations shows the transformation that ∆ has that leaves the Lagrangian
invariant, here U = eiα(x)

aTa
L . The addition of this triplet allows us the inclusion of the Yukawa

19



term:
LY,∆ = −

∑
α,β

L̄CL,α (YL)α,β ·
(
iσ2 ·∆

)
· LL,β + h.c. . (50)

This new scalar will acquire a different vev from the Higgs one, which we shall call vL, and
will sit at the component where δ0 sits. After SSB we will get four different massive scalars, two
doubly-charged scalars, one charged, and two neutral ones. All the scalars will have very similar
masses m∆. The new Yukawa term will thus give a Majorana mass term to neutrinos:

Mν =
√
2YLvL = YL

κv2

m2
∆

, (51)

where κ is a parameter with mass dimension one that enters the potential. This is also some
sort of Seesaw mechanism: neutrino masses are small because of a difference of scales: we allow
the triplet to have heavier masses compared to v2, which will leave neutrino masses small. The
curious reader can find more information on Type-II Seesaw from [110].

There are other Seesaw mechanisms, the type-III Seesaw involves the addition of lepton
triplets [111], the inverse Seesaw and linear Seesaw requires the addition of more scalars, and
the right-handed singlet field [112, 113],

Recently models where neutrinos obtain their masses due to a loop-mediated term have also
acquired popularity in recent years [114]. The idea is self-explanatory: neutrinos are naturally
light because they do not occur at tree-level. These models require the addition of further
scalar and/or fermion fields, some of which are dark matter candidates (these models are usually
called scotogenic models, scoto comes from the Greek for dark and genic from the word birth:
neutrinos are born from darkness). There is a generic classification of these models depending
on the topology of the loop-diagram involved [115]. These models are sometimes called type-IV,
type-V, and type-VI Seesaws.

We can also generate neutrino masses from the appearance of bigger gauge groups, from a
Grand Unified Theory (GUT) like SO(10), for example. Bigger GUT groups force us to include
different fields and interactions which can generate neutrino masses at tree or loop-level. The
following section will devote itself to one of these models.

We can parametrize all mechanisms for the generation of Majorana neutrino masses from
the Weinberg Operator. Weinberg showed that the operator of the lowest dimension that gives
you neutrino masses that also follows the symmetries of the GEW is [116] without the additional
fields to the original the SM has9:

L5−dim =
1

2

C5
αβ

Λ

[
L̄L,α · ϕ̃ ϕ̃T · LL,β

]
+ h.c. , (52)

after SSB, we shall acquire a Majorana mass term: Mν = C5v2/Λ. Here Λ is an energy scale
where the Weinberg Operator will no longer be valid, and we ought to work with a more funda-
mental theory. Leaving C5 = 1, one finds that Λ ' 1× 1015GeV, which by complete numerical
accident is the at the GUT scale (the energy scale of GUTs comes from constraints on proton
decay). This implies that the mechanism which gives neutrinos their masses lies at the GUT

9An analog to Weinberg Operator for Dirac Neutrinos requires the addition of right-handed neutrino fields.
The shape of the Dirac-Weinberg operator can be found in [117, 118].
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scale unless the parameter C is very small. The GUT scale should rather only be taken as the
upper value of the energy scale at which neutrinos acquire their masses.

2.7 Where to look for new physics?

Now that we’ve unveiled the fact that the SM is incomplete and needs extensions, it is natural
to ask: where should we search for new physics?

We have two different frontiers to be explored, the energy frontier and the intensity
frontier.

At the energy frontier, we are looking for new physics that would show itself at higher energy
scales. The searches at the intensity frontier look for new physics that could be accessed at the
current energy scale of experiments but has suppressed interactions due to a weak coupling. In
some sense, the energy frontier aims for a higher Λ whereas the intensity frontier looks for a
lower C in an Effective Operator that encompasses new physics like the Weinberg Operator in
Eq. (52).

Searches at the energy frontier are typically done by high-energy colliders. The intensity
frontier is probed by many different experiments, even high-energy colliders can probe it with
higher values of luminosity, but as well with low-energy experiments, neutrino experiments,
or fixed-target experiments, which look for tiny deviations from predictions of the SM from
unbeknownst feebly interacting particles.
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3 Left-Right Symmetric Model

Left-right symmetric models are based on an extension of the GEW group:

GLRSM = SU(2)R × SU(2)L ×U(1)B−L , (53)

where B − L here is baryon number minus lepton number. Much like in the SM, the idea is to
break this group, first to the SM group and subsequently to U(1)Q:

SU(2)R × SU(2)L ×U(1)B−LyvR
SU(2)L ×U(1)Yyv

U(1)Q

(54)

There may have been a larger group for example, some symmetry-breaking patterns of SO(10)

can lead to SU(3)C × GLRSM.
The idea behind gauge theories that follow GLRSM comes from an aim to explain parity

violation merely as a low-energy phenomenon. As soon as we turn up to a higher scale, parity
will no longer be violated [30–34].

In addition to GLRSM we also include a discrete symmetry to the theory, which comes in
the form of a generalized charge (C) or parity (P) conjugation. Including one of these discrete
symmetries reduces the number of free parameters in the theory and makes the particle content
left-right symmetric.

From the symmetry breaking pattern in Eq. (54) we can notice some relationships between
the different charges from different scales, analogous to Eq. (17):

Y

2
= T 3

R +
B − L

2
, (55)

there will also be an analogous relationship between the gauge couplings like in Eq. (35) we have:

1

g2Y
=

1

g2R
+

1

g2B−L
, (56)

where gR is the coupling of the SU(2)R gauge group and gB−L of the U(1)B−L one.
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3.1 Particle content

The particle content will also get extended, just as we had the left-handed doublet fields (see
Eq. (18)), we will also have right-handed doublets:

Left-handed doublets: LL,α =

(
να,L

`α,L

)
, Qi,L =

(
Ui,L

Di,L

)
,

Right-handed doublets: LR,α =

(
Nα,R

`α,R

)
, Qi,R =

(
Ui,R

Di,R

)
,

(57)

where left-handed doublets are SU(2)R singlets and right-handed doublets are SU(2)L singlets.
Both lepton doublets have a B − L of −1 and both quark doublet of 1/3.

And for the scalar field, we will include three different scalar fields an SUR triplet, an SU(2)L

triplet, and a bi-doublet, a doublet in the SU(2)L, and a doublet of SU(2)R, but the latter under
its complex representation:

∆R,L =

 δ+R,L√
2

δ++
R,L

δ0R,L − δ+R,L√
2

 , Φ =

(
φ0∗1 φ+2
−φ−1 φ02

)
(58)

where ∆R,L are the triplets and Φ is the bi-doublet, both triplets have a B − L = 2, and the
bidoublet B − L = 0. ∆R. They transform under gauge transformations as:

∆R,L → UR,L∆R,LU
†
R,L , Φ → ULΦU

†
R , (59)

with UR,L = exp
(
i αaR,L T

a
R,L

)
. There is also, of course, the U(1)B−L abelian transformations.

Furthermore, we will also have our gauge bosons. We will have the same three gauge bosons
of the SU(2)L group (we will call them W a

L,µ), and we will also have the three gauge bosons of
the SU(2)R group (W a

R,µ) and a gauge boson of the U(1)B−L group (BB−L,µ).
At this point, we must emphasize something which we mentioned at the start of this section.

We will also include a generalized discrete P or C conjugation, so we will require the Lagrangian
to be invariant under:

P : {Φ,∆L,∆R} ↔
{
Φ†,∆R,∆L

}
,

C : {Φ,∆L,∆R} ↔
{
ΦT ,∆∗

R,∆
∗
L

}
,

(60)

for the scalar sector and:

P :
{
W a
L,µ, Bµ,B−L, QL, LL

}
↔
{
W a
R,µ, BB−L,µ, QR, LR

}
,

C :
{
W a
L,µ, BB−L,µ, QL, LL

}
↔
{
−W a

R,µ, BB−L,µ, Q
C
R, L

C
R

}
,

(61)

for the gauge and fermion sector.
As it is clear from these transformations, these were inspired by the usual C and P conju-

gations. The imposition of either of these discrete symmetries forces us to make the particle
content left-right symmetric, a right-handed triplet implies a left-handed one; three left-handed
neutrinos imply three right-handed ones.
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From this, we can now write our Lagrangian:

LLRSM = −1

2
tr
[
WR,µνW

µν
R

]
− 1

2
tr
[
WL,µνW

µν
L

]
− 1

4
BB−L,µν B

µν
B−L

+ i
∑

Ψ̄L /DΨL + i
∑

Ψ̄R /DΨR + tr |Dµ∆L|2 + tr |Dµ∆R|2 + tr |DµΦ|2

−
[
Q̄L ·

(
Y Q
1 Φ+ Y Q

2 Φ̃
)
·QR + L̄L ·

(
Y `
1Φ+ Y `

2 Φ̃
)
· LR

+
1

2
L̄CL YL · (iσ2 ·∆L) · LL +

1

2
L̄CR YR · (iσ2 ·∆R) · LR + h.c.

]
+ V (∆L,∆R,Φ) ,

(62)

where all the different Y are different Yukawa matrices, Wµν
R ,Wµν

L and Bµν
B−L should be under-

stood as the usual strength tensors, Φ̃ = σ2 · Φ∗ · σ2, and V (∆L,∆R,Φ) is the scalar potential.
There have been multiple studies done on the potential alone, its symmetries, structure, the
mass spectrum of all scalar particles, the RGEs of their couplings, phenomenology. . . [119–125].
A complete review of it is beyond the scope of this thesis, and shall not be mentioned again.

The covariant derivatives look like:

DµΨ =

[
∂µ − igLW

a
L,µT

a
L − igRW

a
R,µT

a
R − igB−LBB−L,µ

(
B − L

2

)]
Ψ , (63)

Dµ∆R,L = ∂µ∆R,L − igR,LW
a
R,L;µ

[
T aR,L,∆R,L

]
− igB−LBB−L,µ∆R,L , (64)

DµΦ = ∂µΦ− igLW
a
L,µT

a
LΦ− igRW

a
R,µΦT

a
R . (65)

This is a good point to stress one of the consequences of our P or C invariance. Thanks to it
gL = gR = g. This can be seen from any of the kinetic terms, for example.

3.2 Symmetry breaking and gauge boson mass spectrum

As it was shown from the symmetry breaking pattern in (54), we will require a few vevs. The
presence of these vevs will not only break GLRSM but will also break the discrete symmetry. The
vevs will be in the following positions of the scalars:

〈∆R〉 =
1√
2

(
0 0

vR 0

)
, 〈∆L〉 =

1√
2
eiβL

(
0 0

vL 0

)
,

〈Φ〉 = 1√
2

(
v1 0

0 v2 e
iα

)
,

(66)

in general, all vevs could be complex, but we can rotate away two complex phases from the gauge
transformations, therefore, we can choose vR and v1 to be real, without any loss of generality.
We can parameterize v1 and v2 in a different way:

v1 = v cβ ,

v2 = v sβ ,
(67)

where v is the SM vev, sβ = sinβ, cβ = cosβ, and β is an arbitrary angle that dictates the
direction of the vev. At this point we can answer a question that may or may not have crossed
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the reader’s mind: where is the SM Higgs? We can re-write the definition of the bi-doublet in
Eq. (58) as it is composed of two SU(2)L doublets explicitly10:

Φ =
(
iσ2 ϕ

∗
1 ϕ2

)
, (68)

with ϕi =

(
φ+i
φ0i

)
.

The SM doublet, defined in Eq. (19), is a linear combination of both of these scalars:

ϕSM = cβ ϕ1 + sβ e
−iα ϕ2 , (69)

ϕFV = −sβeiα ϕ1 + cβ ϕ2 . (70)

The linear combination in the first line is our SM doublet, whereas the one in the second line is
a different doublet. Notice how the SM doublet has a vev corresponding to the one the Higgs
has, whereas the second doublet, ϕFV does not have a vev. The index FV will make sense as the
text progresses.

There is a hierarchy concerning the doublets, we expect:

vL � v � vR , (71)

because vR is the scale of the LRSM, and vL, as one could anticipate from the conversation
in Section 2.6 with regards to the Type-II Seesaw with an SU(2)L doublet, will be directly
proportional to neutrino masses.

We can repeat the procedure we did with regard to the SM and aim to obtain the mass
spectrum for gauge bosons. Without doing any calculations we can already predict that we will
obtain a massless particle: the photon, the gauge particle related to the unbroken U(1)Q group.
The mass terms will once again come from the kinetic terms of the scalars after redefining them
so that they have the appropriate vacuum. For the charged sector:

tr |Dµ∆R|2 ⊃
1

2
g2 v2RW

+
R,µW

−µ
R , (72)

tr |DµΦ|2 ⊃
1

4
g2 v2

[
W+
L,µW

−µ
L +W+

R,µW
−µ
R −W+

L,µW
−µ
R s2β e

iα −W−µ
L W+

R,µs2β e
−iα
]
,

(73)

where we shall neglect vL. We can immediately notice that there is a mixing in the mass terms
of WL and WR. We can more compactly parameterize the mass terms with a matrix:

LW−mass =
g2

4

(
W+
R,µ W+

L,µ

)( 2 v2R + v2 −v2 s2β e−iα

−v2 s2β eiα v2

)(
W−µ
R

W−µ
L

)
, (74)

the factor of 2 multiplying the v2R stems from the fact related that the mass comes from a triplet,
instead of a doublet, this is related to our discussion regarding the ρ parameter of the SM and
how it probed the representation under which the scalar of the SM transforms. We need the

10We could also write them as two SU(2)R doublets, but it would be with two-row vectors instead of two column
vectors
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eigenvalues to obtain the masses of our particles, these are:

M2
WR

' 1

2
g2 v2R , M2

WL
' 1

4
g2 v2 , (75)

this mixing will also imply that the gauge bosons will mix at interactions. This mixing is dictated
by a unitary matrix which also serves to diagonalize the matrix in Eq. (74):(

W−µ
R

W−µ
L

)
→

(
cos ξW sin ξW e

−iη

− sin ξW e
iη cos ξ

)(
W−µ
R

W−µ
L

)
, (76)

with η = α and tan(2ξW ) = v2

v2R
s2β. We can find an approximate expression for both cos ξW and

sin ξW in the case where v2 � v2R:

cos ξW ' 1 , sin ξW ' ξW ' v2

2 v2R
s2β '

M2
WL

M2
WR

s2β . (77)

The neutral sector of gauge particles will also mix, just as in the SM there was mixing between
W 3
L and BY , but in this case, we will have mixing between W 3

L,W
3
R and BB−L. We can easily

repeat the procedure we did for the charged sector, there will be contributions from both vR and
v. Here the matrix looks like this:

Ln−mass =
1

2

(
W 3
R,µ W 3

L,µ BB−L,µ

)g
2 v2R + 1

4 g
2v2 −1

4 g
2v2 −g gB−Lv

2
R

−1
4 g

2v2 1
4 g

2v2 0

−g gB−Lv
2
R 0 g2B−Lv

2
R


 W 3µ

R

W 3µ
L

Bµ
B−L

 ,

(78)
the eigenvalues give:

M2
ZR

' g2 v2R
c2w
c2w

, M2
ZL

' 1

4

g2 v2

c2w
, M2

A = 0 , (79)

where we have used the fact that gB−L = g cw√
c2w

, which can be inferred from Eq. (56). From here
we can already make a similar prediction to what the SM predicted to be the relations between
the masses of the Z and W boson. We would expect MZR

' 1.69MWR
. This prediction gives us

a nice way to falsify this specific version of the LRSM, the inclusion of different representations
of different scalars should change the relationship between MZR

and MWR
, akin to how the

SM ρ-parameter would change depending on the representation of the scalar multiplet. The
diagonalization is carried out by using an orthogonal matrix, which will mix all neutral gauge
bosons: Z

µ
R

ZµL
Aµ

 =

cos ζZ − sin ζZ 0

sin ζZ cos ζZ 0

0 0 1


1 0 0

0 cw −sw
0 sw cw


cR 0 −sR

0 1 0

sR 0 cR


 W 3µ

R

W 3µ
L

Bµ
B−L

 , (80)

where cR = cos θR =
√
c2w
cw

and sR = sin θR = tw. We can interpret these three matrices as follows:
the one with θR decouples WR and BB−L to give us the ZR and BY , the latter is the same SM
gauge field related to the U(1)Y group; the rotation with θw is the SM one that decouples WL and
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BY to obtain ZL and the photon, A; the last rotation is there because there is mixing between
ZL and ZR, their decoupling is proportional to the angle ζZ , which is proportional to v2

v2R
:

cos ζZ ' 1 sin ζZ ' ζZ ' − c
3/2
2w

4 c4w

v2

v2R
' − c

3/2
2w

2 c4w

M2
WL

M2
WR

, (81)

which, unlike the mixing of the W -bosons, this one does not depend on the parameter β.

3.3 Quark interactions with scalars and mass spectrum

Let’s now concentrate specifically on the first term of the third line of Eq. (63):

−LQ−Φ =
∑
i,j

Q̄i,L ·
[(
Y Q
1

)
i,j

Φ+
(
Y Q
2

)
i,j

Φ̃

]
·Qj,R + h.c. , (82)

if we impose the Lagrangian to be invariant under the C or P transformations in Eq. (60) and
(61), then we get restrictions on the Yukawa matrices:

P : Y Q
i =

(
Y Q
i

)†
, C : Y Q

i =
(
Y Q
i

)T
. (83)

We can also decouple the SM Yukawa couplings from the Yukawa coupling in the LRSM
Lagrangian:

YU = cβ Y
Q
1 + sβ e

−iα Y Q
2 ,

YD = sβ e
iα Y Q

1 + cβY
Q
2 ,

(84)

now, writing Eq. (82) in term of YU , YD, ϕSM and ϕFV:

−LQ−Φ =
∑
i,j

{
Q̄i,L ·

[
ϕ̃SM YU + ϕ̃FV

(
YD − eiα s2β YU

c2β

)]
i,j

Uj,R

+Q̄i,L ·
[
ϕSM YD + ϕFV

(
YU − e−iα s2β YD

c2β

)]
i,j

Dj,R

}
+ h.c. ,

(85)

where we remind the reader that ϕ̃ = iσ2ϕ
∗.

The subindex FV should now make some sense, it stands for flavor violating: the vertices
with either ϕFV or ϕ̃FV induce tree-level interactions which violate quark flavor. These flavor-
changing scalars can mediate processes such as B − B̄ oscillations or affect the K − K̄ mixing
at tree-level, therefore, they are very constrained. We would be expecting them of the order
O(10TeV) [126].

Notice how the restrictions in Eq. (83) also affect YU and YD, in the case of C both will be
symmetric, but in the case of P we won’t have them to be entirely hermitian, due to the α phase
that appears in the vev.

As in the SM, YU , and YD may not necessarily be diagonal. We can try to perform a similar
argument as the one we did for the SM model: the Lagrangian is still invariant under the
transformations in Eq. (29) with the condition that V R

U = V R
D = V R

Q , due to the fact that the
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right-handed counterpart now forms a doublet. Moreover, if we wish to preserve P or C:

P : V L
Q = V R

Q = VQ , C : V L
Q =

(
V R
Q

)∗
= (VQ)

∗ . (86)

In the case of C there is no issue here, both YU and YD are symmetric matrices so V T
Q YU VQ

and V T
Q YD YQ can be chosen to be diagonal, but in the case of P we have a problem: V †

Q YU VQ

and V †
Q YD VQ may not necessarily be diagonal because YU or YD are, in general, not hermitian.

We can work on the limit where sβsα is small enough that we can take them to be almost
hermitian11. In this limit, we can consider one of the Yukawa matrices to be diagonal.

But, once again, due to the fact that we can only choose one of these matrices to be diagonal,
we shall again consider YU to be diagonal, and the diagonalization of YD will induce mixing in
interactions with charged gauge bosons, both in the left-sector where the mixing will give us the
usual CKM matrix V L

CKM, and in the right-sector where there will be a right-handed CKM matrix
V R
CKM. Both of these are related to one another due to the discrete generalized symmetries:

P : V L
CKM ' V R

CKM , C : V L
CKM = V R∗

CKM , (87)

up to some complex phases, in general, both matrices should have 9 different complex phases,
but we can remove some of the phases by changing the phase of the spinor fields: the left-
handed CKM will only have one complex phase for 3 generations of quarks, the rotation may
not necessarily remove the same phases for the right-handed CKM matrix, and this will be the
case of C, where the right-handed CKM matrix will differ in having five more phases. In the case
of P, they will not differ in the number of phases.

3.4 Lepton interactions with scalars, mass spectrum and Seesaw mechanism

For leptons, we have three different terms: interactions with the bi-doublet and interactions
with both triplets. We did not have the interactions between triplets and quarks because these
interactions would violate B − L. Let’s write both of these interactions separately:

−LL−Φ =
∑
α,β

L̄α,L ·
[(
Y `
1

)
α,β

Φ+
(
Y `
2

)
α,β

Φ̃

]
· Lβ,R + h.c. , (88)

−LL−∆ =
1

2

∑
α,β

[
L̄Cα,L (YL)α,β · (iσ2 ·∆L) · Lβ,L

+ L̄Cα,R (YR)α,β · (iσ2 ·∆R) · Lβ,R
]
+ h.c. ,

(89)

once again, due to the discrete symmetry we have, all the Yukawa couplings will have some
restrictions:

P : Y `
i =

(
Y `
i

)†
, C : Y `

i =
(
Y `
i

)T
,

P : YL = YR , C : YL = Y ∗
R .

(90)

11See [124, 127] for the justification, an analysis of Yukawa couplings gives t2βsα < 2mb
mt

. Moreover, the difference
between the right-handed and left-handed CKM matrices has been calculated to less than 1% difference [128].
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We can decouple the Yukawa matrices of leptons in exactly the same way we did it for quarks:

Yν = cβ Y
`
1 + sβ e

−iα Y `
2 ,

Y` = sβ e
iα Y `

1 + cβY
`
2 ,

(91)

and once again:

−LL−Φ =
∑
α,β

{
L̄α,L ·

[
ϕ̃SM Yν + ϕ̃FV

(
Y` − eiα s2β Yν

c2β

)]
α,β

Nβ,R

+L̄α,L ·
[
ϕSM Y` + ϕFV

(
Yν − e−iα s2β Y`

c2β

)]
α,β

`β,R

}
+ h.c. .

(92)

There is almost no difference between the interactions of the quark fields with the bi-doublet,
as with the interactions between the leptons and the bi-doublet: we will also have ϕFV me-
diate flavor-changing interactions at tree level, much like µ− → e−e−e+ decays or muonium-
antimuonium oscillations for example, which once again confirms that the doublet must be quite
massive, we are yet to see cLFV processes.

But there is a major difference in the mass generation, specifically with regard to the neutrally
charged leptons. With the charged leptons, only Φ and v contribute to a mass term for leptons,
so much like in the SM we will have that M` = 1√

2
vY`, but for neutral leptons there will be

contributions from both triplets. The entire mass term for neutral leptons is:

−Lmass =
∑
α,β

[
ν̄α,L (MD)α,β Nβ,R +

1

2
νCα,L (ML)α,β νβ,L +

1

2
N̄C
α,R (MR)α,β Nβ,R

]
+h.c. , (93)

where MR = 1√
2
vR YR,ML = 1√

2
vL e

iβL YL and MD = 1√
2
v Yν . We have now three different

mass terms. Notice this: the first and third are the ones that appear in the Type-I Seesaw
mechanism (see Section 2.5) and the second term appears in the Type-II Seesaw mechanism (see
Section 2.6). The Seesaw mechanism in the LRSM is a combination of both Seesaw mechanisms.
We can once again re-write the mass terms as a matrix:

−Lmass =
1

2

(
ν̄L N̄C

R

)(M †
L MD

MT
D MR

)(
νCL
NR

)
+ h.c. . (94)

The diagonalization of this matrix is done in exactly the same way as it was done before we
will use the same unitary matrix as the one used in Eq. (40), then we obtain the Seesaw relation:

Mν ' −MD
1

MN
MT
D +M †

L ' −ΘMN ΘT +M †
L , (95)

with MN ' MR and Θ ' MDM
−1
N . In LRSM we cannot take an arbitrary number of HNLs,

we have three right-handed doublets and therefore we must have three HNLs. To reiterate what
we’ve said before, we can think of the first term as the contribution from Type-I Seesaw and the
second as the contribution from Type-II Seesaw. This equation also shows the usual "Seesaw
behavior" one would expect MD ∼ v and MN ∼ vR, then Mν ∼ v2/vR + vL. This exemplifies
what we’ve said before, it should be that vL � v because vL directly contributes to neutrino
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masses 12.
Naturally, a question should now arise which we must examine and consider, if mν ∼ v2/vR,

does this mean that vR ∼ v2/mν? This is in accordance with the discussion we had about the
Weinber Operator in Section 2.6, where we found that the energy scales responsible for neutrino
masses sit near the GUT scale (∼ 1× 1015GeV), then, does vR, the scale of the LRSM, also sit
at the GUT scale? We must remember that we have a lot more parameters in this theory, we
have the Yukawa couplings which may contribute to this suppression: Yν could be very small
compared to YR, or it could be that there is coincidental cancellation between the Type-I and
Type-II contributions. Therefore, the limit vR ∼ 1× 1015GeV should only be taken as an upper
bound.

We must also diagonalize the matrix Mν and MN , unlike in the minimal Type-I Seesaw, we
cannot take MN to be diagonal. Moreover, due to the restrictions due to the Yukawa matrices
due to the discrete symmetry (see Eq. (90)), the Seesaw relations slightly change in the case of
P or C:

P : Vνmν V
T
ν ' −MD VN

1

mN
V T
N M∗

D +
vL
vR

e−iβL VN mN V
T
N , (96)

C : Vνmν V
T
ν ' −MD VN

1

mN
V T
N MD +

vL
vR

e−iβL V ∗
N mN V

†
N , (97)

where Mν = Vνmν V
T
ν ,MN = V ∗

N mN V
†
N , where both mν and mN are diagonal matrices; and

VN and Vν are unitary matrices that diagonalize both matrices. The last term proportional to
mN is due to the restrictions regarding YL and YR in Eq. (90).

Notice that in the case where MD ' 0, we have that Vν = VN for P and Vν = V ∗
N for C,

due to the restrictions in Eq. (90) and up to some phases, due to any potential redefinition in
interactions with gauge bosons.

Remember that in the minimal Type-I Seesaw, we were capable of parametrizing Θ in terms
of an arbitrary orthogonal matrix O. We cannot do this in the LRSM, because of generalized
discrete symmetry in our model. In the case of C, for example13, MD has an explicit solution:

MD ' ±i V ∗
N

√
mN

[
1

√
mN

V T
N Vνmν V

T
ν VN

1
√
mN

− vL
vR
e−iβL

]1/2√
mN V

†
N ,

' ±iV ∗
N

√
mN

[
mν

mN
− vL
vR
e−iβL

]1/2√
mN V

†
N ,

(98)

where the second line was simplified in the case Vν ' V ∗
N . We obtained this equation by some

algebraic manipulations of Eq. (97): multiplying on the left of both parts by m
−1/2
N V ∗

N and on
the right times VN m−1/2

N , then we the product of a matrix times itself and the solution then
becomes obvious. This explicit solution of MD fixes the O matrix in Eq. (46) to be of order
one, and it cannot be arbitrarily large. What is of significance here, is that MD ∼ √

mνmN and
therefore Θ ∼

√
mν/mN , making all interactions mediated by Θ completely suppressed.

12Moreover, the potential also predicts vL ∝ v2/vR [119]
13The case for P is much more delicate and was tackled in [129–131], we shall not repeat their calculation here,

but the results are quite similar.
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t3R t3L q

Ui 1/2 1/2 2/3
Di −1/2 −1/2 −1/3
να 0 1/2 0
Nα 1/2 0 0
`α −1/2 −1/2 −1

Table 2: Quantum numbers for the different fermions in the LRSM

3.5 Interactions between gauge bosons and fermions

As in the SM, interactions between fermions and gauge bosons stem from the covariant deriva-
tives. Now we shall have:

LWL
=

g√
2

∑
α,i

n̄i /W
+
L (U∗

L)α,i PL `α +
g√
2

∑
i,j

Ūi /W
+
L

(
V L
CKM

)
i,j
PLDj

+
g ξW√

2
eiα
∑
α,i

n̄i /W
+
L (U∗

R)α,i PR `α +
g ξW√

2
eiα

∑
i,j

Ūi /W
+
L

(
V R
CKM

)
i,j
PRDj + h.c. ,
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LWR
=

g√
2

∑
α,i

n̄i /W
+
R (U∗

R)α,i PR `α +
g√
2

∑
i,j

Ūi /W
+
R

(
V R
CKM

)
i,j
PRDj

− g ξW√
2
e−iα

∑
α,i

n̄i /W
+
R (U∗

L)α,i PL `α − g ξW√
2
e−iα

∑
i,j

Ūi /W
+
R

(
V L
CKM

)
i,j
PLDj + h.c. ,

(100)

LZL
=

g

cw

∑
ψ

[
ψ̄ /ZL

(
t3LPL − s2wq

)
ψ
]
− g cw

c
1/2
2w

ζZ
∑
ψ

[
ψ̄ /ZL

(
t3RPR + t2w t

3
LPL − t2wq

)
ψ
]
, (101)

LZR
=
g cw

c
1/2
2w

∑
ψ

[
ψ̄ /ZR

(
t3RPR + t2w t

3
LPL − t2wq

)
ψ
]
+

g

cw
ζZ
∑
ψ

[
ψ̄ /ZR

(
t3LPL − s2wq

)
ψ
]
,

(102)

LA = e
∑
ψ

ψ̄ /Aqψ (103)

where UL =
(
Vν ΘV ∗

N

)
and UR =

(
−ΘT V ∗

ν VN

)
are 3× 6 matrices and ni can be either an

HNL or a neutrino: PL n ≡
(
νL NC

R

)
and PR n ≡

(
νCL NR

)
.

The terms equivalent to ξW and ζZ (defined in Eq. (77) and (81)) are due to the mixing
between the left-handed and right-handed gauge bosons.

We’re using a similar notation to define neutral current interactions to the one we used
when defining SM interactions; t3R is the third right-handed weak isospin of ψ, t3L the third
left-handed weak isospin and q its charge. We’re adding overall fermions fields: Ui, Di, `α, να,
and Nα. After diagonalizing the Seesaw matrix, we have to substitute να =

∑
α,i (UL)α,i ni and

Nα =
∑

α,i (UR)α,i ni. All of the values of the quantum numbers are in Table 2.
Considering the discussion we had in previous sections, we know that V L

CKM and V R
CKM are

related to one another due to the discrete generalized symmetries. Moreover, we know that
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(a) LNV process

(b) LNC process
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Figure 6: Hadron collider processes, diagram (a) shows a lepton number violating process (LNV
process), and diagram (b) shows the lepton number conserving process (LNC).

interactions proportional to Θ should be suppressed, and therefore we can ignore interactions
proportional to that parameter.

All the new interactions between SM fermions and the new gauge bosons can have significant
effects on some observables, the most remarkable of them are meson oscillations. Take the
diagrams in Fig. 3: the WL vertex gets modified due to the ξW extra term, and we can also
have additional diagrams with two WR’s or one WL and a WR. Moreover, there are tree-level
contributions coming from the flavor-violating bi-doublet. All of these contributions place very
strong constraints on the model, as a matter of fact, during the 80s these low-energy processes
gave the strongest constraints on vR setting it near the TeV-scale [41–43]. At the time, this
demotivated the model because there was an unfeasible scale at colliders, but the theory has
gained recent popularity due to the fact that the LHC can now probe comparable energies.

3.6 Hadron collider phenomenology and constraints

At the current time, the best constraints on the model are from the LHC. The most popular
channel for LRSM searches at the LHC is the so-called Keung-Senjanovi process (KS process)
[132]. The diagram of the process is the upper diagram in Fig. 6: it requires the production of
a WR which subsequently decays into a Ni + `α and then the HNL decays into another lepton
with the same charge. This process is a lepton number violating process (LNV process), which,
in theory, should be background free; the SM process does not predict any process with a final
state with same-sign (SS) leptons or LNV processes. Of course, there is an equivalent with
opposite-sign (OS) leptons in the final state or lepton number conserving (LNC) process, which
should not be as clean as the LNV process.
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Such LNV processes are allowed due to the Majorana nature of HNLs: an on-shell HNL can
undergo the decay N → `−UD̄ and N → `+ŪD with equal probability. But in the processes in
Fig. (6), the HNL may or may not necessarily be on-shell.

Assuming we have enough energy, then if mN > MWR
then the initial WR should be mostly

off-shell and the last WR mostly on-shell. In the case mN < MWR
, then we produce both the

initial WR and N mostly on-shell, but the final WR should be off-shell.
On-shell HNLs have equal probabilities of producing LNV and LNC processes, as long as

their decay width, ΓN � mN ; but if ΓN ∼ mN then LNC processes are preferred. On the other
hand, if HNLs are off-shell then it is LNV processes that are dominant. The details of a very
similar process in a different model can be found in [133]; but the idea is that for LNV processes
mediated or caused by Majorana fermions are proportional to the mass of the Majorana fermion
itself, so in off-shell processes where the dominant energy scale is mN we have an enhancement
of these processes, in off-shell processes where ΓN ∼ mN there is a cancellation in LNV processes
that cannot be seen in LNC processes.

There are other processes where we can search for LRSM at hadron colliders, either involving
the scalar sector or other gauge bosons. We also discussed low-energy processes, such as meson
mixing, but there are other low-energy processes that would be affected by LRSM. So far no
signal has been found, so we can only place bounds on the parameter space.

Current constraints

• Constraints from hadron colliders: Both ATLAS and CMS have done multiple searches for
the KS process [134, 135, 146–153] to no avail. Besides the KS process, we can also obtain
constraints from the invisible KS process [140], where the HNL is so light it doesn’t decay
inside the detector, and therefore we only see one of the final leptons. We expect to see a
very highly energetic lepton with the energy of MWR

/2. Both ATLAS [139] and CMS [138]
already give us constraints from this process. We can also search for decays of an on-shell
WR into a pair of highly energetic jets, which provide constraints independent on the mass
of HNLs; ATLAS and CMS data [136, 137] give a lower bound of MWR

& 4TeV.

• Constraints from low-energy processes: we’ve already discussed meson mixing and how
it can constrain LRSM parameters. Current constraints on meson mixing [126] give a
lower bound of MWR

& 3TeV. Moreover, LRSM also affects the probability of observing
neutrino-less double beta decay (0ν2β) [154–157]14.

Most interesting is also the fact that in the case of P, LRSM parameters affect the nEDM
[37, 38, 158–163]. If the reader remembers our brief discussion on SM problems, the nEDM
tells us how much CP violation there is in strong interactions. This observable actually
gives the strongest constraints on MWR

& 17TeV, which is very much above the potential
the LHC has to produce one directly.

Future constraints
14It is not hard to see that the KS process, the upper diagram in Fig. 6, is the same diagram for 0ν2β. Other

diagrams also contribute, like triplet mediated diagrams, more information can be seen in the references given.
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Figure 7: Current and future constraints of LRSM in a mN −MWR
parameter space plot. We

show the current constraints from ATLAS [134], CMS [135], di-jets signals [136, 137] which can
interpreted a WR decaying to a jet pair, and signals of high-energy leptons with missing energy
[138, 139] which can be interpreted as a KS-process with an HNL so light it decays outside of the
detector [140]. We also show the prospective bounds from the HL-LHC [140], a KS process with
a displaced vertex [141], meson oscillations [126], SHIP [142–144] and MATHUSLA [62, 145].

• Hadron colliders: we expect the next LHC runs to have much more luminosity, and therefore
have a higher probability of seeing LRSM signals. Most of the analysis has already been
done in [140]. Although, it seems that their analysis underestimated the sensitivity in a
very specific region of the parameter space [141]. It is a region of the parameter space
where the HNL in the KS process is light enough to generate a displaced vertex, but
heavy enough to decay inside the detector. These displaced vertices should be mostly,
if not completely, background free. At the current time, neither ATLAS nor CMS have
performed any searches on such displaced vertices.

• Low-energy processes: the next Belle-II and LHCb runs will have the potential to probe
masses of MWR

up to 7TeV [126], which will surpass the potential the LHC has.
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• High-intensity experiments: Future high-intensity experiments like SHIP [142] and MATH-
USLA [145] will provide complementary constraints to the ones from hadron colliders.
High-intensity experiments aim to search for displaced vertices from long-lived particles
and will be particularly sensitive to HNLs with lower masses and WR with higher masses
than the ones from hadron colliders. Both SHIP [142–144] and MATHUSLA [62, 145]
which have sensitivities up to MWR

' 18TeV and mN ' 5GeV.

We show most of these constraints in a mN −MWR
parameter space plot in Fig. 7.

3.7 Can the LRSM solve the problems the SM has?

The model we’ve described at length can solve some of the problems we’ve discussed in Sec. 2.4.
We’ve already mentioned how we can accommodate small neutrino masses into the model from
the Seesaw mechanism. The model can also give rise to BAU (see [164] for a review on the
subject of the generation of BAU in LRSM), we can also have one of our HNLs as a dark matter
particle [39, 140] as long as their masses have masses in the order of keV. We’ve also briefly
discussed how nEDM gives us constraints on LRSM parameters in the case of P: indeed, the
LRSM also provides a solution for the strong CP problem (see details in the references above,
or in [165] for a pedagogical review on the subject).

It seems like the LRSM can solve most of our problems, but the issue is that the region in
the parameter scale where the LRSM can solve most of our problems lies completely outside the
experimental reach of most experiments. For example, [39] claims that we require MWR

& 17TeV

in order to have HNLs as dark matter so as to not disrupt BBN. And in [166], it was claimed
that the minimal mass WR can have to successfully generate BAU is 18TeV. It seems that it
is the case that if we find LRSM in the LHC, we have actually proved that it cannot solve the
problems the SM has and that we must require even more physics to do so.
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4 Proposals for future lepton colliders
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Figure 8: The running plan of several collider proposals in integrated luminosity and center of
mass energy,

√
s for the FCC-ee [44], CEPC [48], the recently proposed CEPC upgrade [167],

ILC (plan H20 of [168, 169]) and CLIC [56]. The benchmark points for the muon collider were
taken from [60], where they claim that it should be possible to achieve the integrated luminosity
plots per year. See Table 3 for the exact values.

We briefly mentioned at the end of the last section the proposal of high-intensity experiments
like SHIP and MATHUSLA. The aim of these experiments is mainly to search for long-lived
particles which can escape the reach of detectors of particle accelerators. There is a list of much
many current forward experiments at CERN that are also searching for such particles. The
proposal for experiments like this is quite numerous, there is a huge incentive from the particle
physics community to search in this area as it probes areas of the parameter space of different
models which other experiments cannot easily probe. This is one of the types of experiments we
briefly talked about before that searches for physics at the intensity frontier.

Much like flowers bloom and flowers fade, the LHC will eventually fade after its bloom. We
expect the LHC to cease operations by December of 2041 [170]. This has placed the parti-
cle physics community at its crossroads: what should we do next? What should be our next
experiment? How can we keep probing the energy frontier?

As things seem to stand, the preferred direction of the particle physics community is to build
a lepton collider. We will demarcate them into three different categories: circular colliders, linear
colliders, and muon colliders.

4.1 Circular colliders

FCC-ee: the Future Circular Collider (FCC) [44–47] is a proposed 90 km circular collider. The
current proposed plan of the experiment is first it to collide electron positron pairs, in this first
stage the project has the name FCC-ee; then it is meant to upgrade to a hadron collider, which
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will be capable of reaching higher energies up to 100TeV; and in its final stage, it is proposed
to also use it as an electron-hadron collider.

The first stage, the FCC-ee will be run at much lower energies than the FCC-hh will, but the
FCC-ee will have much higher luminosity. The high luminosity reach of the FCC-ee will allow
it to probe the intensity frontier, as opposed to the FCC-hh which aims to probe mostly the
energy frontier. This is part of the common lore of collider physics: ee colliders are meant for
precision measurements, whereas hadron colliders are meant for probing higher energy scales.
This is due primarily because electrons are harder to accelerate because of energy losses due
to synchroton radiation; hadrons are heavier and therefore can reach higher energies, but since
they are composite particles and subject to complicated QCD interactions, are subject to more
uncertainties and thus more imprecise measurements.

The goals in energy and integrated luminosity for the FCC-ee are plotted in Fig. 8 and shown
in Table 3. The impressive reach in luminosity on all different scales of energy will allow the
FCC-ee to produce 1012 Z bosons, 108 W ’s, 106 Higgses and 106 top quarks.15

At the current time, it seems like the FCC-ee is the preferred proposal, it is planned to be
built in CERN, between France and Switzerland. The construction of a hypothetical FCC-ee
should be around 10.5BCHF (billion Swiss Francs) 16.

CEPC: the Circular Electron Positron Collider [48, 49, 171] is a proposed 100 km circular
collider. It will run at the same benchmark points in energy as the FCC-ee, but with different
luminosity benchmarks, which are shown in Fig. 8 and Table 3. New benchmark points were
proposed only recently, where they aim to reach integrated luminosities comparable to the ones
the FCC-ee aims to reach [167].

Much like FCC, the CEPC could be upgraded to a hadron collider which would now be called
the Super Proton-Proton Collider (SPPC). Unlike the FCC, it very much seems like construction
will start soon, sometime in this decade in China, and will begin to see operations sometime in
2030. The estimate cost of the construction the CEPC is around 5–6BUSD (billion US Dollars)
[172].

4.2 Linear Colliders

ILC: the International Linear Collider [50–53] is a proposed electron-positron linear collider
planned to have an approximate stretch of 20 km. Linear colliders have the advantage that it
is easier for them to accelerate electrons because there are no energy losses due to synchrotron
radiation, therefore they should be more capable of probing the energy frontier than circular
colliders. This is why the energy benchmarks shown in Fig. 8 and Table 3 are higher for the ILC
than for the other circular collider proposals.

There have also been suggestions to run the ILC of center-of-mass energies than the ones
shown in Table 3, namely

√
s ' 1TeV with an integrated luminosity of ∼ 8 ab−1, as well as

lower center-of-mass energies 90GeV at the Z-pole and 160GeV at the WW -threshold [168, 169].
15Here we are of course referring to the SM gauge bosons, and not to any of the new gauge bosons that the

LRSM proposes.
16At the time of writing: 1CHF ' 7.73DKK ' 1.17USD ' 1.04EUR.
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Experiment Energy (GeV) Luminosity (ab−1)
FCC-ee 90, 161, 240 and 350 150, 10, 5 and 1.7
CEPC 90, 161 and 240 16, 2.6 and 5.6

CEPC upgrade 90, 161, 240 and 360 100, 6, 20 and 1
ILC 250, 350 and 500 2, 0.2 and 4

CLIC 380, 1500 and 3000 1, 2.5 and 5
Muon Collider 3000 and 10 000 0.4 and 4 (per year)

Table 3: The exact values plotted in Fig. 8.

Initially, the ILC was meant to reach 1TeV, but the strategy after the discovery of the Higgs in
2012, and

√
s ∼ 250GeV, above the ZH threshold, to make the experiment a Higgs factory.

The experiment has been proposed to both Japan and CERN. The preferred option for
scientists in Europe is the FCC-ee, and it is unclear whether the Japanese government would
be willing to build the ILC alone without any outside help from European countries which
most likely would spend their money building the FCC-ee. The ILC would have a total cost of
7.8BILCU (billion ILC Currency Units) 17.

CLIC: the Compact Linear International Collider [54–56] is a proposed linear collider which
aims to a have a stretch between 11 km and 50 km. Being a linear collider, CLIC aims to reach
a higher center of mass energies than circular colliders.

CLIC has been proposed to CERN, and it is another option in case the FCC-ee is not built.
CLIC would have a cost of 6BCHF.

4.3 Muon collider

Muon colliders offer the best of both ee and pp colliders: muons are heavier than electrons and
should be easier to accelerate at higher energies than electrons; muons are elementary particles,
since hadrons are not elementary particles the entire center-of-mass energy is distributed between
the partons in the hadrons, muons should therefore have a higher energy reach than protons at
the same center-of-mass energy.

There are, however, several technical difficulties regarding the construction of a muon collider:
muons are unstable particles, they have a lifetime of 2.2µs in their own rest-frame; muons are
produced from pions, therefore we must first produce the pions from proton collisions with a
specific target: muons will be tertiary particles. Both of these issues provide several engineering
problems, from the cooling of muons to the acceleration of them; there are other non-engineering
problems, like the fact that muon decays will also provide huge amounts of background and the
decay of muons with TeV energies will generate several high energy electrons and neutrinos, the
neutrinos specifically can affect infrastructure far away from the place where the muon collider
would be. More details on the advantages and disadvantages of muon colliders can be found in
[173].

Some of the solutions to some of these difficulties have begun to see small steps towards
solutions, which is why there has been a surge in popularity for the construction of a muon
collider, particularly with physicists residing in the US [57–61].

17The ILCU is defined as the price of a 1USD in 2012.
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Figure 9: Possible timeline on the construction of the colliders. The timeline is adapted from
the information of the operation and construction given by the FCC-ee [45, 174], CEPC [175],
ILC [168], and CLIC [56]. The LHC is expected to shutdown by 2041 [170]. The estimate time
for the construction of all colliders depends of numerous factors impossible to predict. It is very
unlike for CERN to build both the FCC-ee and CLIC. Plot adapted slightly adapted from [176].

4.4 The future?

Are all of these projects possible? In Fig. 9 we show a very optimistic timeline for the possible
construction and operation times for the experiments we’ve described above. There are still
questions regarding each and every experiment; for example, there is still not an agreed-upon
place where to build the CEPC, and it is still quite uncertain whether the ILC will even be built
in Japan if at all [177, 178], and even though the FCC is the most likely candidate for the next
big experiment on CERN, it still remains uncertain whether there will be an ee phase before a pp
phase since there are some scientists who would prefer to jump straight into the energy frontier.
CLIC should only be considered in case the FCC is not built in CERN.

As we mentioned before, there are still numerous difficulties regarding muon colliders. It
remains uncertain whether these difficulties will ever be completely conquered.
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5 HNL-LRSM phenomenology at lepton colliders

Two sections ago we devoted our discussion to the theory of the LRSM and a little bit of the
phenomenology of LRSM at hadron colliders, as well as the relevant phenomenology of low-
energy processes that gives rise to constraints on LRSM parameters. And the previous section
was devoted to the different proposals for different lepton lepton collider experiments. Our
discussion will now shift to the phenomenology of the LRSM in these experiments.

The material we’re about to present in this section can be found in the literature [179–186].
This was initially unbeknownst to us, all of what we’re about to present are re-derivations of
previously known results.

5.1 Main channels for the production of HNLs

(a) s-channels (b) t-channel (c) u-channel
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Figure 10: Diagrams showing the production of two-HNLs at linear colliders.

We will focus on the simultaneous production of two HNLs. We shall work in the simplified
setting where Θ is negligible, for the reasons we’ve discussed in Sec. 3.4, that it is proportional
to Θ ∼ mν/mN , and therefore should be very small.

There are four main different channels for the production of two HNLs in lepton colliders:
an s-channel mediated by a ZL, another by ZR, and a t and u-channel mediated by a WR. The
diagrams of these processes are drawn in Fig. 10.

For the s-mediated channels we can only produce the same generation of HNLs. But for
the WR mediated channels, we can produce two different HNLs. We will work in the simplified
case where VN = I, and therefore there is no mixing between HNLs and charged fermions in
interactions mediated by charged gauge bosons.

There are other channels that can produce two HNLs. We will explain in the following
subsection why they are negligible.

We’ve calculated the amplitude and cross-section of the four main diagrams, as well as the
interference that is between all of them.

We calculated the cross-sections with the help of FeynCalc [187] and FeynArts [188], Mathematica

packages that help with the manipulation and calculation of the amplitudes of different Feyn-
man Diagrams. We used the implementation of LRSM for FeynRules from [189]. FeynRules

[190] is another Mathematica package that translates Lagrangians into package files which can
be used for Monte-Carlo simulators like MadGraph or WHIZARD, as well with other software to do
analytical computations, like CalcHep or FeynArts.
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The amplitudes are for the process `−(p1) + `+(p2) → N(k1) +N(k2) are:

iMZL
= i

g2 ζZ

2c
1/2
2w

[
v̄(p2) γ

µ
[(
−1

2 + s2w
)
PL + s2wPR

]
u(p1)

]
[ū(k2)γµ [PR − PL] v(k1)]

s−M2
ZL

+ iΓZL
MZ

, (104)

iMZR
= −i g

2 c2w
2 c2w

[
v̄(p2) γ

µ
[(
−1

2 + t2w
)
PL + t2wPR

]
u(p1)

]
[ū(k2)γµ [PR − PL] v(k1)]

s−M2
ZR

+ iΓZR
MZR

, (105)

iMt,WR
= −i g

2

2

[ū(k1) γ
µPR u(p1)] [v̄(p1)γµPR v(k2)]

t−M2
WR

, (106)

iMu,WR
= i

g2

2

[ū(k2) γ
µPR u(p1)] [v̄(p1)γµPR v(k1)]

u−M2
WR

, (107)

where t = (p1 − k1)
2, u = (p1 − k2)

2 and ΓZL
and ΓZR

are the decay widths of ZL and ZR

respectively. It is necessary to include the decay widths of both s-channels in the case s =

M2
ZL
,M2

ZR
we’re hitting the pole of either of them. We did not include the decay width of the

WR because particles in the t-channel cannot be on-shell.
Another important characteristic to notice is the fact that the spin-structure of the vertices

ZLNN and ZRNN we’re showing in the amplitudes in Eq. (104) and (105) is not aligning with
the ones shown in the Lagrangian in Eq. (101) and (102). Indeed, according to (101) and (102)
the spin-structure should’ve been γµ PR, but the amplitudes show γµ (PR − PL). The reason has
to do with the fact we’re dealing with Majorana particles: the same Majorana particle cannot
interact with itself and a vector current γµ, therefore only the axial-current survives γµ γ5 (see
Appendix A).

Due to the different spin structures between Dirac of Majorana, there will be a discrepancy
in the cross-section of the s-channel. This discrepancy will be negligible for particles with much
smaller masses than the intermediate boson, but if HNLs had masses comparable to the ZL or
ZR, then there will be a suppression compared to the Dirac case [191].

A second difference that arises from calculations regarding Majorana particles, as opposed
to Dirac, is that we have both a t and a u channel. In the case of Dirac HNLs, we would only
have one of them. The interference between the t and the u channel reduces the Majorana
cross-section compared to the Dirac case.

We shall not present the formula of the entire cross-section here, but we provided a summary
of the calculation in Appendix C.1. The plot of the tree-level cross-section as a function of

√
s

for different values of MWR
and mN is plotted if Fig. 11. We shall now provide a brief analysis

of the behavior of the cross-section.
Notice that in the case that

√
s�MWR

, the cross-sections of the different channels will have
a similar dependence on MWR

: σ ∝ M−4
WR

, either because of the mediating particle (remember
MZR

' 1.69MWR
in this model), or because of the ZL−ZR mixing angle ζZ ∝M−2

WR
. There are

two notable features in this range of energies: first is the easy-to-see ZL-pole, when
√
s ' MZL

then the ZL channel will dominate, and second is the behavior that the t and u channels have
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in this energy range:

σ(`−`+ → NN) ' 3 g4

512

s−m2
N

M4
WR

√
1−

m2
N

4s
, for

√
s�MWR

and
√
s 6=MZL

. (108)

This result implies that the cross-section grows quadratically with center-of-mass energy for
√
s, when

√
s � MWR

. This will actually be a very remarkable result! It means that the
cross-section will grow with energy in a specific region of the parameter space, so if we have two
colliders, one running at

√
s ' 100GeV and another running at

√
s ' 1TeV, then the latter will

have a cross-section 100 times bigger than the former for the same value of MWR
. As we will see

later on, this very important feature will allow us to probe higher values of MWR
without

√
s

necessarily reaching MWR
.

Some readers may object to these results. It cannot be the case that cross-sections increase
with energy, which violating perturbativity and the unitarity of the S-matrix (see [192] for a
recent pedagogical review). Indeed, the usual upper bound for cross-sections in order for them
not to break perturbative unitarity is σ ≤ 4πs−1 [193, 194], this means that perturbatively would
begin to break down when

√
s ∼MWR

. The result we gave in Eq. (108) is only valid in the case
√
s�MWR

, so there is no problem with us potentially breaking perturbativity.
Indeed, in the case

√
s → ∞ once again only the WR mediated channels dominate. The

cross-section in this case looks like this:

σ(`−`+ → NN) ' g4

32πM2
WR

, for
√
s→ ∞ , (109)

which perfectly aligns itself with the known result that non-abelian gauge theories that undergo
spontaneous symmetry that cross-sections cannot arbitrarily grow with energy [195–197].

Before finishing off the topic regarding the double production of HNLs, we have to same
some words about the ZR-pole. At the ZR-pole is the energy where the cross-section does not
behave as σ ∝ M−4

WR
: the ZR becomes on-shell and σ ∝ M−2

ZR
Γ−2
ZR

. We show our calculation of
ΓZ Appendix C.4, but it should be sufficient to say here that it is much smaller than MZR

. At
the ZR pole the cross-section dramatically increases, as one would usually expect.
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Figure 11: Plot of the cross-section as a function of
√
s for different values of MWR

and mN

shown in the plot. The two peaks correspond to the ZL and ZR poles.

5.2 Other HNL production channels

(a) Doublet mediated (b) Triplet mediated (c) Charged scalar mediated (d) WL mediated
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Figure 12: Other channels for the production of two HNLs. Here we are taking δ0R = Re
{
δ0R
}

,
the real component of the δ0R shown in Eq. (58).

There are other channels for producing an HNL pair, shown in Fig. 12. Notice that we did
not include any of the Goldstone bosons that are to be eaten by the gauge bosons, such as
Im
{
δ0R
}
, δ±R or the SM ones, these could be contained within the gauge bosons themselves in the

Unitary Gauge. All the channels in Fig. 12 are suppressed compared to the ones described in:

• A SM Higgs, h, mediated s-channel (Diagram (a) in Fig. 12) is suppressed because the
Higgs boson almost doesn’t interact with light fermions as we said at the end of Sec. 2.3.1.

A decay of an SM Higgs might initially seem suppressed because the coupling between two
HNLs is proportional to ΘMD, but we have another possible vertex. Much like there is
mixing between ZL − ZR and WL −WR, there is mixing between δ0R and h. The h − δ0R
mixing is proportional to sθ ∝ v2/v2R (see Appendix B). This fact was used as an advantage
to estimate the sensitivity of the LRSM parameter for Higgs decays at the LHC [198]. It
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could be interesting to analyze the potential this would have for Higgses produced in
Higgsstrahlung processes instead of in the s-channel. We will not analyze this possibility.

• The neutral flavor violating scalar, φ0FV, mediated s-channel (shown in Diagram (a) in
Fig. 12) would be proportional to lepton masses and the Dirac mass.

• The right-handed neutral triplet Higgs, δ0R, s-channel (shown in Diagram (b) of Fig. 12)
can only happen due to the h − δ0R mixing sθ. This implies that the process is twice-
suppressed: the production is proportional to lepton masses times the mixing angle. Again,
maybe a Higgsstrahlung-like process would be more interesting but we will not explore that
possibility.

• The left-handed neutral triplet Higgs, δ0L, mediated process (in Diagram (b) of Fig. 12)
can only occur due to the mixing between neutrinos and HNLs, the amplitude would be
proportional to Θ2.

• The charged flavor violating scalar, φ±FV, t-channel (in Diagram (c) of Fig. 12) is also
suppressed for the exact same reasons as to why the φ0FV mediated channel also is.

• The charged left-handed scalar triplet, δ±L , mediated t-channel (shown in Diagram (c) of
Fig. 12) is suppressed for the exact same reasons as to why the δ0L mediated channel also
is.

• The W±
L mediated channel (shown in Diagram (c), Fig. 12), is suppressed because the

cross-section is proportional to σ ∝ ξ4W , which is suppressed compared to the channels
described in the previous subsection.

All the diagrams are shown in Fig. 10 and 12 can produce a single HNL and a neutrino. One
of the few advantages of this process is that we will have less phase space suppression, but most
of these diagrams will have huge suppressions.

The diagrams in Fig. 10 will all be suppressed because their amplitude will either be propor-
tional to Θ or to ξW . Whereas the diagrams in Fig 12 will still be suppressed, some a bit less,
but still suppressed enough for us to consider them negligible.

The only diagram which might give us something interesting would be the WL mediated
channel, in the case β is big enough (remember ξW is proportional to the mixing of the vev
of the bi-doublets). This process, being a t-channel, has its cross-section behaving similarly to
the WR mediated channels in the last subsection. As we saw, there will be a cross-section in
energy until

√
s ∼ MWL

, and it plateaus for higher
√
s, which could be interesting for colliders

with relatively low energies but very high luminosity. Even though it might be an interesting
perspective, we shall not evaluate it further.

The list of diagrams we’ve given so far is by no means exhaustive. We already briefly men-
tioned the possibility of producing Higgs via Higgsstrahlung and then having them decay into a
pair of HNLs. There’s also the possibility of producing a WLWL pair. Other potential processes
do not have the adequate motivation to be examined, like the production of multiple heavy gauge
bosons like two WR or a WL,WR pair, given how the latter is suppressed by ξW .

Even though our list is not exhaustive, we’re confident we’re showing the most relevant
contributions that can be searched for.
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Figure 13: Main HNL decay channels.

5.3 Main HNL decay channels

Now that we’ve discussed the production of HNLs, we can discuss the possible signals we would
obtain from HNLs. The diagrams of the main decay channels we’re considering are in Fig. 13,
either a WR or a WL mediated channel. The latter can only happen if β 6= 0.

There are a few points we have to mention about these channels. If mN �MWR
,MWL

then
both intermediate gauge bosons would be mostly off-shell. If not, then we would have to consider
possible on-shell effects of the intermediate bosons.

Also, even though both channels could have the same final state (Ni → `−αUD̄) they do not
interfere with one another: the quarks will have different chiralities for different channels.

The decay Ni → `−α `
+
βNj is only possible if i 6= j and if kinematically allowed: the HNL with

the lowest mass cannot decay into another HNL
HNLs, since they are Majorana particles, can decay with equal probabilities to particles as

well as to anti-particles (see Appendix A) or: Γ(N → `−αW
+
R ) = Γ(N → `+αW

−
R ), where WR

can either be on-shell or of-shell, the only thing that will distinguish both of them will be the
kinematic distribution (as well as the charge, obviously).

Once again, we calculated the decay widths within the simplified scenario that VN = I, and
we considered only the decay of the lightest HNL, meaning no HNLs decaying into another HNL.
We shall only give the final result of the calculation of the decay widths in this section. The
details of the computations are in Appendix. C.2.

In the case MWR
,MWL

� mN and where we have negligible masses of the final particles,
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then:

Γ(N → `−α Ui D̄j) = Γ(N → `+α ŪiDj) '


G2
F m

5
N

64π3
M4
WL

M4
WR

∣∣V CKM
i,j

∣∣2 , for the WR mediated channel ,

G2
F m

5
N

64π3
ξ2W
∣∣V CKM
i,j

∣∣2 , for the WL mediated channel ,

(110)

Γ(N → `−α `
+
β νβ) = Γ(N → `+α `

−
β νβ) '

G2
F m

5
N

192π3
ξ2W , (111)

where here we’ve taken the left-handed and the right-handed CKM matrices to be equal, remem-
ber that in the case of P they are equal up to some phases, and in the case of C they are the
transpose of one another up to some signs, the difference between both should vanish when we
take the absolute value.

The difference between leptonic and semi-leptonic decays resides in a factor of three coming
from quark colors. If we only consider decays to light quarks (u, d, c, s, b) and leptons, then our
total decay width, ΓN , is:

ΓN '
G2
F m

5
N

16π3

[
M2
WL

M2
WR

+
3

2
ξ2W

]
, (112)

we can slightly generalize this formula to also include effects from an on-shell MWL
. In this case,

we cannot ignore the transferred momentum or the decay width of WL, then we can generalize
Eq. (112):

ΓN '
G2
F m

5
N

16π3

[
M2
WL

M2
WR

+
3

2
ξ2W I(mN ,MWL

,ΓWL
)

]
, (113)

where ΓWL
is the total decay width of the WL and I is a dimensionless function that comes from

the phase-space integration of the three-body decay which we are defining as:

I(mN ,MWL
,ΓWL

) =
1

2

∫ 1

0

(1− x)2 (1 + 2x)

(1− xm2
N/M

2
WL

)2 + Γ2
WL
/M2

WL

. (114)

We’ve plotted the decay width for HNLs in Eq. (113) in Fig. 14 for two cases, where β = 0

(where ξW = 0) and for β = π
4 , where ξ2W is maximum. There is a difference between both plots

at low masses due to the extra decay channels, as well as for heavier HNLs due to on-shell decays
into a WL-boson.

Notice that in both cases we shall have that ΓN � mN , this is a nice advantage because
it allows us to use the so-called Narrow Width Approximation (NWA). The NWA allows us to
consider intermediate particles with very small widths compared to their masses to be considered
mostly on-shell if the center-of-mass energy allows for the on-shell production (see e.g., Chapter
9 of [199]).

The NWA is a crucial tool for us if we want to calculate the cross-section of the entire process:

σ(`−`+ → NN → [`−UD̄][`+ŪD]) ' σ(`−`+ → NN)× Br(N → `−UD̄)× Br(N → `+ŪD) ,

(115)
where Br is the branching ratio of a process: the decay width of a specific process divided by the
total decay width. If we didn’t have this option we would have to calculate a 2 → 6 process. Not
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Figure 14: Plot of the decay width of an HNL in terms of its mass in GeV. For β = 0 (left) and
β = π/4 (right).
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Figure 15: Plot comparing the semi-leptonic decay widths of N into either quarks themselves or
composite mesons for MWR

= 1TeV and β = 0 at the left and β = π
4 , α = 0 on the right.

only is the calculation of the total amplitude square difficult, but the phase-space integration
also could probably not be analytical and will require the use of Monte Carlo tools to do these
integrals (see [200] for more details on these methods). Some tools rely on these methods to do
simulations and estimate cross-sections of multiparticle processes, like MadGraph [201] or WHIZARD

[202].
There is another interesting feature of having a small decay width: it means that HNLs can

have a relatively long lifetime. Indeed, the lifetime of a particle is inversely proportional to the
total decay width: τN ∝ Γ−1

N . This won’t be the case when the mass of the HNL is not that
much smaller than the mass of WR, then any HNL would decay quickly enough.

Before moving forward, let’s discuss a final possibility, which is the decay of HNLs into
composite states: either spin-0 pseudo-scalar or spin-1 vector mesons. Indeed, for sufficiently
light HNLs, with masses lower than the QCD phase transition ∆QCD ' O(GeV) HNLs will
mostly decay into composite QCD quark states rather than the quarks themselves [203].

The decay width to either a pseudo-scalar or a vector meson should be well-known in the
literature, but we’ve repeated the calculation in Appendix C.3. These decays are also mediated
by the diagrams shown in Fig. 13 with quarks in the final state. Notice, however, that here there
will be an interference between the WL and WR mediated diagrams, the final composite states
will be the same in both cases, there is no difference in chirality as in the case of decays to quarks
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themselves. Neglecting the mass of the final charged lepton:

Γ(N → `−αP
+) = Γ(N → `+αP

−) '
G2
F m

3
N

16π
f2P
∣∣V CKM
i,j

∣∣2 ∣∣∣∣∣M2
WL

M2
WR

− ξW eiα

∣∣∣∣∣
2(

1−
m2
P

m2
N

)2

, (116)

Γ(N → `−αV
+) = Γ(N → `+αV

−) =
G2
F m

3
N

16π
f2V
∣∣V CKM
i,j

∣∣2 ∣∣∣∣∣M2
WL

M2
WR

+ ξW eiα

∣∣∣∣∣
2(

1 + 2
m2
V

m2
N

) (
1−

m2
V

m2
N

)2

,

(117)

where V CKM
i,j is the CKM matrix component of particles that compose the meson, mP , and

mV are the masses of the pseudo-scalar and the vector respectively, and fP and fV their decay
constants. The values of the masses and decay constants for different mesons are in Appendix D.

What is most interesting here is that if s2βcα is not negligible, to either prefer to decay to
pseudo-scalars or vectors, depending on the value of α.

From Eq. (116) and (117) we can calculate the total decay width of HNLs decaying to mesons
and a charged lepton:

Γ(N → `+ mesons) = 2
∑
P

Γ(N → `−αP
+) + 2

∑
V

Γ(N → `−αV
+) , (118)

where the factor of two comes from the Majorana nature of HNLs.
We’ve compared the total decay width of both possible semi-leptonic decays, either to quarks

themselves or to mesons in Fig. 15. The plot is in agreement with the usual expectation that
for HNLs with masses above the O(GeV) scale should mostly decay to quarks. Notice, however,
how different both plots are for β = 0 on the left and β = π/4, α = 0 on the right. The difference
is once again due to the interference between WL and WR: there is suppression for pseudo-scalar
decays but an enhancement for vector decays.

The plots also tell us that we should only really worry about decays into composite states
for HNLs with masses below ∼ 2− 3GeV. Heavier HNLs mostly decay into quarks themselves.

5.4 Other possible decay channels

HNLs can also have decays mediated by a neutral current or by the scalar sector.
Decays mediated by a neutral current are suppressed since these decays could only be pro-

portional to Θ. Whereas decays through intermediate scalars are all suppressed for very similar
reasons as to why the cross-section production through intermediate scalars is suppressed: either
the couplings are too small.

5.5 HNL lifetime and decay length

Now that we’ve talked about the decay width, we will have a brief discussion about the lifetime
of our HNLs. It is well known that the lifetime of a particle is inversely proportional to its decay
width. With this we can obtain the decay length of an HNL in frame where it has an energy EN :

LN = βN γN τN =

√
E2
N −m2

N

mN

1

ΓN
, (119)
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Figure 16: Decay length for different HNL energies EN and values of β as a function of MWR

and mN . The different colors indicate the decay length shown in the color-bar on the right.

where βN is the speed of the HNL, γN is its relativistic factor and τN is its lifetime. Of course, in
the context of a pair of HNLs produced in a collider EN =

√
s/2, half the center-of-mass energy.

From Eq. (113) we can immediately see that the decay width is inversely proportional to
MWR

and proportional to MN . Therefore, the lighter N is and the heavier MWR
is, the bigger

lifetime and decay length N will have.
It is also entirely possible to have a relatively heavy and long-lived HNL as long as β � 1

and as long as WR is sufficiently heavy. If this were not the case, the lifetime will be short due
to decays to on-shell WL bosons. We’ve plotted the decay-length of HNLs with different energies
and different values of beta in a mN −MWR

parameter space plot in Fig. 16.

5.6 How much can lepton colliders actually see?

Let’s assume that the discovery of LRSM becomes significant when we’ve seen a specific number
of signals, Nevents, which is equal to:

Nevents = Lint. · σ(`−`+ → NN) , (120)

where Lint. is the integrated luminosity of the collider at hand.
We can find what the maximum value of MWR

can a specific collider probe for a specific value
of

√
s by solving for MWR

in Eq. (120). For lepton colliders at the ZL-pole we would have to
use the value of the cross section at that energy; for much higher energies we can use Eq. (109),
which is the maximum cross section (outside the ZR-pole). This will overestimate the actual
capacity of the lepton collider, but should be good enough as a first approximation.
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The maximum probe of mN is a simple matter of kinematics, the biggest value we can reach
of

√
s/2, but the lowest value is not entirely simple. If HNLs are very light, they might not

escape inside the detector and then we might never detect them. The minimum value we could
probe of HNLs would actually come from Eq. (119), we would need to solve for mN , here we can
safely use Eq. (112). For the new generation of lepton colliders, their geometries will allow more
or less a decay length of 3-5m (more on the next section).

We should make a statement about background free processes, we can have displaced vertices
as well as LNV processes. Displaced vertices can be considered to be almost background free
for displacements above 5mm. For lower lengths, there are a meson and τ decays would induce
background [204, 205]. LNV signals in the form of a SS final lepton state, which correspond to
half the total signal, should be background free: the SM does not have any LNV signal.

In practice there will be some complications to both of them, for displaced vertices we must
take into consideration the possible suppression we might get from not properly reconstructing
displaced vertices. Prompt SS processes can actually have SM backgrounds, not due to LNV
processes, but rather because an additional neutrino would be produced that would not actually
be seen. At the LHC, for example, the main sources of background for LNV processes come from
SM diboson events [134, 206].
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6 Sensitivity of lepton colliders on LRSM parameters

There have already been multiple studies on the potential that lepton colliders have in searches
regarding the extended scalar sector of the LRSM [62–66]. We will map the sensitivity that the
multiple proposals for lepton colliders have for HNLs and right-handed gauge bosons.

In the last section, we commented on the analytical computations we made for the production
and decay of HNLs. The production cross-section calculations will not be enough: there are
collider effects that we have to take into account to get a better estimate of the sensitivity.

One of these effects is Initial State Radiation (ISR), where we must consider second-order
QED effects. Moreover, linear colliders are intent on polarizing their beams [207], which means
that the initial leptons will have a defined distribution on helicity. Both will impact the cross-
section, ISR will suppress the cross-section whereas beam polarization can negatively or positively
increase the polarization. The latter is because of how left and right-chiral leptons interact with
LRSM gauge particles: WR will mostly interact with left-chiral anti-particles and right-chiral
particles. Therefore a polarized beam with positive helicity particles and negative helicity anti-
particles will enjoy a bigger cross section in the production of HNLs than one that isn’t. The
effect of a polarized beam is one of the few things recognized in the literature for the potential
next generation of lepton colliders [67].

We did not consider these effects analytically (the details regarding the analytical computa-
tion of ISR see Chapter 20 of [208], and for polarized lepton beams see [207]), but rather, we
used an event simulator to help us obtain how much would the cross sections change. We used
WHIZARD [202] to model both effects, with the Universal FeynRules Output (UFO) files from
[189].

ILC parameters
√
s [GeV]

Lint. [ab
−1] for each P (e−, e+) = (±0.8,±0.3)

(−,+) (+,−) (+,+) (−,−)

250 1.35 0.45 0.1 0.1

350 0.135 0.45 0.01 0.01

500 1.6 1.6 0.4 0.4

Table 4: Proposed beam polarizations and respective integrated luminosities for the ILC plan
H20 [168, 169].

CLIC parameters
√
s [GeV]

Lint. [ab
−1] for each P (e−, e+) = (±0.8, 0)

(−, 0) (+, 0)

380 0.5 0.5

1500 2.0 0.5

3000 4.0 1.0

Table 5: Proposed beam polarizations and respective integrated luminosities for CLIC [209].

6.1 Sensitivity to displaced vertices

To obtain the sensitivities we must first cut on HNLs that are not displaced enough to be
considered prompt and cut on HNLs that are too displaced so that they decay outside the
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detectors. We already said in the last section that we will consider displaced any particle whose
decay length is above 5mm, whereas the maximum displacement that HNLs can decay to depends
on the geometry of the detector. We can filter on the particles with the desired decay length by
multiplying times the decay probability in Eq. (120):

Nevents ' Lint · σ(`−`+ → NN) · Pdec. · ε (121)

where here ε is the detection efficiency, Pdec. is the decay probability:

Pdec. =
1

π

∫ π

0
dθ
[
e−Lmin./LN − e−Lmax.(θ)/LN

]
, (122)

where LN is defined in Eq. (119)18. Here we will set Lmin. = 5mm but Lmax.(θ) for a cylindrical
geometry is equal to:

Lmax.(θ) =



z

2 cos θ
, for 0 < θ < arctan

(
2r

z

)
,

r

sin θ
, for arctan

(
2r

z

)
< θ < − arctan

(
2r

z

)
,

−z
2 cos θ

, for arctan

(
2r

`

)
< θ < π ,

(123)

where r is the radius of the detector and z is the total height of the cylinder. To a very
good approximation, we can use the average maximum length, rather than integrate the entire
probability: the average maximum length is:

〈Lmax.〉 =
2

π

[
z

2
log

(
2r +

√
z2 + 4 r2

z

)
+ r log

(
z +

√
z2 + 4 r2

2r

)]
. (124)

There are several proposals for different detectors for all colliders. We will consider only two
of them as benchmark points. We will consider the geometry of the IDEA detector [45, 210] for
circular and muon colliders; and the geometry of the SiD detector [211] for linear colliders. We
will only consider HNLs that decay before reaching the muon system. The geometric values of
both detectors are in Table 6.

Detector z [cm] r [cm] 〈Lmax.〉 [cm]

IDEA 1100 450 556.59

SiD 600 250 306.56

Table 6: Geometric values for the IDEA [45] and SiD [169] detectors.

We will want the number of events detected such that there is at least a 2σ significance of the
discovery. Given how we will consider displaced particles to be background-free this will come
from only Neve. = 4. We plotted the constraints from the best runs for each experiment in Fig 17
for the case β = 0.

The FCC-ee and CEPC give their best constraints in their runs at the ZL-pole; whereas the
18We’ve checked with WHIZARD whether the momentum for distribution for HNLs would change due to ISR or

any other effect, and we found no significant difference.
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Figure 17: Sensitivity of the different experiments assuming ε = 1 and Neve. = 4. The benchmark
points are the ones shown in Table 3 with geometries in Table 6. For ILC and CLIC we took the
values of beam polarization and their corresponding luminosities from Tables 4 and 5 respectively.

rest of the experiments give their best constraints for their runs at their highest energies.
We also plotted if Fig. 17 how displaced, on average, each HNL would be. We should state

that those lines are on average, decays are processes that are due to quantum interactions and
are therefore probabilistic, this is why we’re sensitive to HNLs that can decay on average to 10m

despite the fact that they would decay outside the detector. Some of them won’t.
The sensitivity that displaced searches have managed to reach a WR with a mass in the order

of O(10TeV). If the reader remembers our discussion on whether the LRSM can solve some of
the problems that the SM has, the lack of a mechanism to generate BAU, the lack of a dark
matter candidate, and the strong-CP problem in Section 3.7, all require a WR with at least
∼ 17TeV. With the exclusion of the ILC, all of these experiments will be capable of probing
certain regions of the parameter space where we could solve some of these problems. Moreover,
a dark matter keV HNL will require another in the GeV region: all of these experiments will be
capable of probing regions of the parameter space that meet both requirements. If we discover
an HNL in this region of the parameter space, we will then only require to discover a keV HNL
in order to make the discovery of dark matter.

How realistic in an ε ' 1? There have been numerous previous studies on the sensitivity
of long-lived HNLs in the context of the minimal Type-I Seesaw, and they all assumed ε ' 1

[212–214]. [214] made a specific study on the potential detection efficiency for long-lived HNLs
and argued it should be very close to it being 1 for semi-leptonic HNL decays. Semi-leptonic HNL
decays for both models should be almost identical to one another with a difference perhaps in
the angular distribution of both particles due to the different chiral structure. The big difference
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Figure 18: Re-calculation of the sensitivity of the FCC-ee and a muon collider with different
overall efficiencies.
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Figure 19: Sensitivity the FCC-ee and a muon collider would have to long-lived HNLs for different
values of β.

in both models lies in the fact that we’re producing two long-lived HNLs and not only one. We
have to ask the question of whether we would still have a good efficiency if we manage to tag on
two long-lived HNLs rather than one.

The reconstruction efficiency for long-lived particles at the LHC is typically above 0.1 for
long-lived particles [204, 205]. The efficiency typically decreases linearly with decay length most
of the time, but new clever techniques are being developed, for example, particles that decay
inside the hadronic calorimeter (HCAP) can enjoy a better reconstruction than ones that decay
in the electromagnetic calorimeter (ECAP): the ratio of energy deposited in the ECAP over than
the one in the HCAP is much lower than what a jet would [215]. We can only hope that better
and better techniques will be developed for the LHC that will serve as experience for detections
in lepton colliders.

Having said this, we will take into consideration the possibility of having efficiencies lower
than 1. In Fig. 18, we’ve plotted the sensitivity that the FCC-ee and a muon collider would have
with an efficiency of ε = 0.5 and ε = 1 compared with the results in Fig. 17.

Finally, we should also mention the parameter β. In the case it is not zero, we will allow
decays mediated by a WL which will severely change the sensitivity of displaced searches for
heavy HNLs due to the possibility of having on-shell WL decays which will give heavy HNLs a
much shorter displacement. It will also affect, to a lower degree, the sensitivity of lighter HNLs
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Figure 20: Overall sensitivity to both prompt and displaced searches for the FCC-ee at the ZL-
pole (left) and for a Muon Collider with

√
s = 10TeV.
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Figure 21: Effect of an overall sensitivity to the results obtained in Fig. 20.

since it will open more decay channels. The difference is shown in Fig. 19.
A different study recently proposed a different detector for lepton colliders called HECATE

[216], which, if built, will give a 4π solid angle coverage in the cavern walls. It will effectively
increase the maximum decay length to either 15m or to 25m. This will increase sensitivity to
lighter HNLs, we show how much this will change in Appendix E.

6.2 Sensitivities to prompt HNLs

As we said in the previous section, we can also have background-free prompt HNL processes
when we have SS leptons in the state, which will cut the total signal in half. We can perform
the same analysis we did in the previous subsection to find the sensitivity, this time it will be
simpler:

Nevents =
1

2
Lint. · σ(`−`+ → NN) · ε , (125)

We show the sensitivity we would get only for both the FCC-ee and for a Muon Collider for
both prompt and displaced searches with an efficiency ε = 1 in Fig. 20. We’re only showing the
values in

√
s and Lint. that would give the sensitivities.

We’re comparing the sensitivity the FCC-ee would have with the constraints we would get
from meson oscillation from the next run of Belle-II and LHCb. There is a small additional
region of the parameter space we’re covering due to prompt LNV processes. On the other hand,
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a 10TeV muon collider will have much better sensitivity, potentially covering a huge region of
the parameter space, especially with regards to O(TeV) HNLs. This should not be surprising: a
bigger center-of-mass energy will improve the sensitivity to heavier HNLs.

Prompt searches will also have the potential to make statements regarding the status of
LRSM with regards to BAU, dark matter, and strong-CP violation due to the fact that they’ll
also be capable of probing WR’s in the proper region of the parameter space.

Of course, there will also be the question of the efficiency due to potential backgrounds, for
example, multi-SM gauge boson production or particle misidentification could contribute to a
background. The last ATLAS search gave an efficiency between 0.5 and 0.1 to the KS-process
for different regions of the parameter space [134]. A full study of the background of SS-lepton
signal is beyond the scope of this work. To have an idea of how much sensitivity we would lose,
we plotted the sensitivity for ε = 0.5 and ε = 0.1 in Fig. 21.

56



7 Conclusions and future avenues of research

5 10 20 30 40 50 60
MWR

[TeV]

1

101

102

103

m
N

[G
eV

]

Meson
oscillations

SHiP
MATHUSLA

Muon Collider

CLIC
ILC

CEPC

FCC-ee

Future constraints vs our results

5 10 20 30 40 50 60
MWR

[TeV]

1

101

102

103

104

m
N

[G
eV

]

Meson
oscillations

SHiP
MATHUSLA

Muon Collider, displaced

FCC-ee, displaced

Muon Collider, prompt

FCC-ee, prompt

Future constraints vs our results

Figure 22: Comparison between our results obtained in Fig. 17 and 20 and the sensitivity of
future experiments shown in Fig. 7. We did not include the constraints of the proposed upgrade
to the CEPC, but the sensitivities should be very similar.

We’ve studied the production and decay of LRSM HNLs in lepton colliders and then analyzed
the potential sensitivity that different proposals for lepton colliders have on LRSM parameters.
The signals LRSM HNLs give us are, theoretically, background-free; either in the shape of
displaced vertices or lepton number violating processes. We find that our constraints cover regions
of the parameter space that would’ve been deemed unreachable by other means. Displaced vertex
searches are more sensitive to lighter HNLs and heavier WR’s, whereas lepton number searches
have a much higher sensitivity to heavier HNLs.

The sensitivity of WR with masses in the O(10TeV) we will be capable of probing a mech-
anism for the generation of the BAU, a potential probe for dark matter and an explanation for
the lack of CP violation in strong interactions. Moreover, the discovery of this specific branch of
LRSM will also give an indirect probe for the generation of neutrino masses (to properly probe
it, we would need to see a signal proportional to Θ).

This study on the sensitivity that lepton colliders have on LRSM parameters is the first
of its kind and is open to many avenues of potential future studies: a proper analysis of the
background of SS leptons and an analysis of the reconstruction efficiency for double-displaced
vertices. Moreover, there is a question on whether the Seesaw mechanism and the origin of
neutrino masses could be actually probed. Also, whether there could be a probe of the mixing
matrix of HNLs, given how our study only did a simplified analysis assuming they do not mix.
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Appendices

Appendix A Majorana particles
19 In 1937 Ettore Majorana published a paper that contained his famous equation [220]. He
found a different equation than the Dirac Equation for relativistic neutral fermions. The main
difference is that it had fewer degrees of freedom: the Majorana equation models particles that
are their own antiparticles. Or in other words, any fermion field which follows:

ψ = ψC , (126)

with ψC = −iγ2 ψ (in the chiral basis of Gamma matrices) being the charge conjugated field.
Much like we can decompose Dirac fields as a sum of their right and left-chiral components, we
can do the same for Majorana particles:

ψ = ψL + ψCL , (127)

where ψCL will actually be right-chiral 20.
The expansion of a Majorana field in terms of the Fourier coefficients will be different from

the Dirac usual expansion. We will present both for comparison:

ψD =

∫
d3 p

(2π)3 2Ep

∑
h=±1

[
chp up e

−ip·x + dh†p vp e
ip·x
]
, (128)

ψM =

∫
d3 p

(2π)3 2Ep

∑
h=±1

[
ahp up e

−ip·x + ah†p vp e
ip·x
]
, (129)

where ψD is a Dirac field, and ψM is a Majorana field. chp and dhp are the annihilation operators
for particles and anti-particles respectively for Dirac fields, and ahp is the annihilation operator
for Majorana fields. Of course, we do not need two different operators for Majorana fields since
they’re their own anti-particle. u and v are the usual spinors.

We have the following anti-commutation relations from canonical quantization for the cre-
ation/annihilation operators of Majorana fields:{

ahp , a
h′†
q

}
= 2Ep δh,h′ δ

3(p− q) ,{
ahp , a

h′
q

}
=
{
ah†p , a

h′†
q

}
= 0 .

(130)

All of these relations can be derived from the condition in Eq. (126), but they can also
be derived from the free Majorana Lagrangian and solving the Majorana equation. The free

19The curious reader can find a more detailed discussion on Majorana particles and the phenomenological
difference between Majorana and Dirac Neutrinos in [217–219]

20This is easily seen from the fact that γ5 and γ2 anti-commute
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Majorana Lagrangian looks like this:

LMaj. =
1

2
ψ̄
(
i/∂ −m

)
ψ ,

= i ψ̄L /∂ ψL − 1

2
m
(
ψ̄L ψ

C
L + ψ̄CL ψL

)
,

(131)

the factor of 1/2 makes sure we have the appropriate value of mass when obtaining the equations
of motion. It is convenient to write the Lagrangian as we did in the last equation since this
form will have a direct application when considering Majorana neutrinos: since we only have a
left-handed neutrino field in the SM, the kinetic term looks the same in this shape.

The mass term is what really makes the difference between Dirac and Majorana fields. The
free Dirac Lagrangian has a global U(1) symmetry, but not the free Majorana Lagrangian. In
the SM without Majorana neutrinos, this is translated into a U(1) symmetry whose conserved
charge is lepton number, neutrinos with a Majorana field will thus violate lepton number.

If neutrinos were Majorana particles, then we should have processes that violate lepton
number (LNV processes). A popular example of LNV processes is neutrinoless double beta
decay (02νβ), we would also have collider examples like same-sign di-lepton signal which was
amply discussed in the main text21.

There is a caveat to LNV processes mediated by neutrinos. Due to the structure of inter-
actions of the SM and to the lightness of neutrinos, interactions that distinguish between Dirac
and Majorana neutrinos are suppressed. This is part of the so-called Practical Dirac-Majorana
confusion theorem [222–224] (see [225] for a recent review). This is, in particular, the case of all
interactions mediated by charged currents, but with neutral currents, the situation might be a
bit different.

Neutral current interactions between Dirac neutrinos and Majorana neutrinos are actually
different. Let’s take the Z-vertex, for example:

LZνν =
g

2 cw
ν̄ /Z PL ν . (132)

Now, let’s calculate the matrix element of 〈ν|: LZνν :|ν〉 in the case of Dirac neutrinos (see
Eq. (128)) and for Majorana neutrinos (see Eq. (129)). Both will be different due to the fact that
we will associate neutrinos to u and ū because only c/c† can annihilate/create neutrinos; but
since a/a† can annihilate/create both neutrinos and anti-neutrinos, we will have contributions
from both u and v:

Dirac : 〈ν|: LZνν :|ν〉 ∝ ūγµ PLu ,

Majorana : 〈ν|: LZνν :|ν〉 ∝ ūγµ PLu+ v̄γµ PLv ,

= ūγµ (PL − PR)u ,

(133)

where the last equality comes from vC = u. What this means is that two Majorana fields do
not couple themselves to a vector current. This will have consequences in the cross-section or
decay width of processes as well as the angular distribution. The differences in cross-section

21We should not assume that LNV processes are immediately associated with Majorana neutrinos or Majorana
particles. [221] proposed a neutrinoless quadruple beta decay as a probe for Dirac Neutrinos in certain extensions
of the SM. Even within the LRSM, we have LNV processes mediated by the doubly-charged triplets.
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are negligible for very light Majorana particles. Neutrino experiments are not sensitive to this
difference22.

The fact that Majorana particles do not couple with neutral current vector currents explains
the shape of the amplitude in Eqs. (104) and (105).

Before we finish this appendix, we will make a small comment on the fact that an on-shell
HNL, a Majorana particle in our model, can both decays N → `−UD̄ and N → `+ŪD. One can
see this from the evaluation of both amplitudes, both are identical. What will differ between both
of them is only the angular distribution of the decay product. For decays mediated by WR, final
leptons would be right-handed and final anti-leptons would be left-handed. [229] pronounced a
similar statement in the case of HNLs in the minimal Type-I SeeSaw.

Appendix B Scalar potential and mass spectrum

The most general scalar potential in Eq. (63), without C or P can be found in [230]. The case
for both P and C can be found in [119, 122].

We do not wish to show the full expression of the potential to the reader, lest we scare their
poor soul. Let the brave enough and curious readers venture into the references provided. We
shall only share the leading term in mass for the scalar sector and the h − δ0R mixing angle in
terms of the terms in the potential, both of which can be found in [124].

The scalar sector will induce mixing between h− δ0R, just as there mixing between WL−WR

and ZL − ZR:

h→ cθ h− sθ δ
0
R , (134)

δ0R → sθ h+ cθ δ
0
R , (135)

where here we’re referring to δ0R as the real component, the massive Higgs scalar rather than the
imaginary part of this field which is the Goldstone boson that would be eaten by ZR. We have
that:

cθ ' 1 sθ '
α

2ρ1

v

vR
, (136)

And the mass spectrum is shown in Table 7. The parameters ΛΦ, α, ρi and α3 in Eq. (136) and
in Table 7 are all parameters or combination of parameters that appear in the scalar potential.

Appendix C Phase space integration and computation of cross-
sections and decay widths

We will begin with a discussion that resembles the ones in Chapter 2 of [200]. We know that
the cross-section of a given process is related to the probability of it occurring. Let’s consider a
process with two initial particles scattering into n final particles: pa + pb → p1 + · · · + pn. Due

22The CHARM-II experiment was the first experiment to make measurements of the neutral current couplings of
neutrinos [226–228], but was only sensitive to gv+gA, the sum of the vector and axial contributions, not individual
ones. This is also the case with current experiments, such as IceCube.
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Particle Mass2
h 4

[
ΛΦ − α2/(4 ρ1)

]
v2

δ0R 4 ρ1 v
2
R

δ±±
R 4 ρ2 v

2
R

δL (ρ3 − 2 ρ1) v
2
R

ϕFV α3/(c2β) v
2
R

Table 7: Mass spectrum of the scalar sector. See details in the text. Here δ0R is once again the
real component, δL encompasses all the fields in the left-handed triplet and ϕFV all of the ones
in the flavor violating doublet.

to energy-momentum conservation, we shall have that:

pa + pb = p1 + · · ·+ pn , (137)

where all the p denote the four-momenta of a given particle. Without energy-momentum conser-
vation, we wouldn’t have a restriction on the possible configuration of the final particles in the
final state.

As we usually know from QFT books (see, e.g. Chapter 5 of [208]), we know that the
differential cross-section is:

dσ =
1

2
√
λ(s,m2

a,m
2
b)

|M|2 dΠn , (138)

where λ is the Källén function λ(a, b, c) = (a− b− c)2 − 4bc, ma is the mass of the particle with
four-momenta pa, and mb likewise; s = (pa + pb)

2 is the center-of-mass energy squared. Here
|M|2 contains in itself the information regarding the transition probability from an initial to a
final state and dΠn is the differential Lorentz Invariant Phase Space, defined as:

dΠn = (2π)4 δ4(pa + pb − p1 − · · · pn)
n∏
i=1

d4pi
(2π)4

δ(p2i −m2
i )Θ(p0i ) ,

= (2π)4 δ4(pa + pb − p1 − · · · pn)
n∏
i=1

d3pi
(2π)3

1

2Ei
,

(139)

where Θ(p) is the Heaviside function. All of the functionals appearing in the Lorentz Invari-
ant Phase Space place restrictions on the final particles. It ensures that energy-momentum is
conserved, places all final particles on-shell, and ensures they have positive energies.

Decay processes, such as p → p1 + · · · pn, are described using the differential decay width,
which is written in a very similar way to the differential cross section:

dΓ =
1

2m
|M|2 dΠn , (140)

where m is the mass of the particle with four-momentum p.
To obtain the cross section or decay width one must integrate the right-hand-side of Eq. (138)

or Eq. (140). As one can imagine, the complexity of the integral increases with a bigger n. Phase-
space integration for larger n’s requires different techniques that can be found in [94]. These
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techniques usually require the use of clever and obscure techniques such that the integrals are done
with appropriate variables which usually involve the heavy use of Gram determinants. Monte
Carlo methods are the best way one can solve these integrals, which modern event simulators
typically use.

For the problems required in this thesis, we mostly worked with simple processes like 2 →
2, 1 → 3 and 1 → 2 processes, all of which can easily be integrated. There was the possibility,
however, to calculate a 2 → 6 process which we manage to simplify with the help of the Narrow
Width Approximation (NWA).

We typically use the NWA to simplify the computation of hard multi-particle processes where
we have an intermediate unstable particle. Take the Breit-Winger distribution of a particle that
can be allowed to be produced on-shell (i.e., not in a t-channel), then we can use the following
approximation:

1

(p2 −m2) + Γ2m2

Γm→0−−−−→ π

Γm
δ(p2 −m2) . (141)

Let’s now imagine a process where we produce an unstable particle that undergoes a specific
decay, the NWA allows us to approximate the cross-section of the process to:

σ ' σP
ΓD
Γ

= σP BRD , (142)

where σP is the cross-section required for the production of the unstable particle, ΓD is the decay
width of the decay we’re considering, and BRD is the branching ratio of this decay. A detailed
proof of it can be found in [231] for a scalar unstable particle and in [232] for fermions and vector
particles.

C.1 Calculation of the `−`+ → NN cross section

As we mentioned in the main text, the calculations of the cross sections were done with the help
of the Mathematica packages FeynCalc and FeynArts, as well as the FeynRules files for the
LRSM model in [189]. We shall provide a code that calculates the entire cross-section:

Calling FeynCalc and FeynArts:

In[1]:= $LoadAddOns={"FeynArts"};

<<"FeynCalc‘";

$FAVerbose=0;

Generating diagrams
Excluding particles that have a supressed cross section

In[2]:= diags=InsertFields[CreateTopologies[0,2→→→2],

{F[2,{1}],-F[2,{1}]}→→→{F[5,{4}],F[5,{4}]},

InsertionLevel→→→{Classes},Model→→→"mLRSM",

ExcludeParticles→→→{S[1],S[2],S[3],S[4],S[9],S[10],S[11],S[12],

S[13],S[14],V[3]}];
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Generating amplitudes
Neglecting electron masses
Adding decay width to intermediate particles in the s-channel

In[3]:= amp[0]=FCFAConvert[CreateFeynAmp[diags],IncomingMomenta→→→{p1,p2},

OutgoingMomenta→→→{k1,k2},SMP→→→True,UndoChiralSplittings→→→True,

Contract→→→True,FinalSubstitutions→→→{Me→→→0,MN4→→→mN,

MZ→→→
√

SMP["m_Z"]2-i ΓΓΓZ SMP["m_Z"],MZ2→→→
√

m2
ZR

-i ΓΓΓZR mZR,MW2→→→mWR}];

Defining the relevant dot products of the particles

In[4]:= FCClearScalarProducts[];

SetMandelstam[s,t,u,p1,p2,-k1,-k2,0,0,mN,mN];

Calculating the total amplitude squared in terms of Mandelstam variables

In[5]:= amp[1]=FullSimplify[(TrickMandelstam[#1,{s,t,u,2 m2
N}]&)

[FeynAmpDenominatorExplicit[DiracSimplify[

(FermionSpinSum[#1,ExtraFactor→→→1
4

]&)

[amp[0] ComplexConjugate[amp[0]]]]]]]

Defining the limits of integration of the phase space

In[6]:= tUpper=m2
N-

1
2

s (1-

√
1-

4 m2
N

2
);

tLower=m2
N-

1
2

s (1+

√
1-

4 m2
N

2
);

Integrating the differential cross section

In[7]:= σσσ[0]=

∫ tUpper
tLower amp[1]dt

8 πππ s2

This code should generate the entire cross-section. In practice we did not write the code
like this, we separated the amplitude squared for the different contributions and integrated them
individually, lest it takes 5 hours of computation.

The shape of the differential cross section in terms of the Mandelstam variable t, as well as
the limits of integration are very well known and can be found either in Chapter 4 of [200] or
in Chapter 49 of [233]. There’s an extra factor of 1/2 in the final step to account for identical
particles in the final state.

C.2 Three-body decay calculation

The calculation of the average amplitude square was done with the help of Mathematica, but
the integration of the differential decay width was done by hand.

The Mathematica code was much simpler than the one described for the calculation of the
cross-section. We shall consider a process N(p) → `−(p1) + U(p2) + D̄(p3):
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In[1]:= Needs["FeynCalc‘"];

In[2]:= ampWR[0]=-
(i SMP["g"]2)

2 m2
WR

SpinorUBar[p1,m1].GA[µµµ,6].SpinorU[p,mN]

SpinorUBar[p2,m2].GA[µµµ,6].SpinorV[p3,m3];

In[3]:= FCClearScalarProducts[];

SetMandelstam[m12,m13,m23,p1,p2,p3,-p,m1,m2,m3,mN];

In[4]:= ampWR[1]=Simplify[DiracSimplify[(FermionSpinSum[#1,

ExtraFactor→→→1
4

]&)[ampWR[0] ComplexConjugate[ampWR[0]]]]]

Out[4]=
g4 (m12-m12+m22) (m12-m32-mN2)

4 m4
WR

where m12 = m2
` is the mass of the lepton, m22 = m2

U is the mass of the up-type quark, and
m32 = m2

D is the mass of the down-type quark. m12 = (p1 + p2)
2 ≡ m2

12 is the invariant mass
squared of the up-type quark and the lepton. This result gives us the following differential decay
width:

dΓ

dm2
12dm

2
23

=
g4

512π3M2
WR

∣∣V CKM
i,j

∣∣2 (m2
N +m2

D −m2
12

) (
m2

12 −m2
U −m2

`

)
m3
N

, (143)

with the limits of integration (see Chapter 5 of [200]):

(m2
23)

− < m2
23 < (m2

23)
+ , (144)

(mα +mU )
2 < m2

12 < (mN −mD)
2 , (145)

with: (
m2

23

)+ −
(
m2

23

)−
=

√
λ(m2

12,m
2
N ,m

2
D)
√
λ(m2

12,m
2
U ,m

2
` )

m2
12

. (146)

The subsequent integration leaves:

Γ =
G2
F m

5
N

192π3
M4
WL

M4
WR

∣∣V CKM
i,j

∣∣2 I(x2U , x2D, x2` ) , (147)

with xU = mU/mN , xD = mD/mN , x` = m`/mN , and where we define the I function as:

I(x2U , x2D, x2` ) = 12

∫ (1−xD)2

(xU+x`)2

dx

x
(x− x2U − x2` )(1 + x2D − x)

√
λ(1, x, x2D)λ(x, x

2
` , x

2
U ) , (148)

which in the case of massless final particles I(0, 0, 0) = 1, which is its maximum value.
In the case of the decays mediated by the WL, the integration formula changes slightly, in

this case:
Γ =

G2
F m

5
N

192π3
ξ2W
∣∣V CKM
i,j

∣∣2 I(x2D, x2U , x2` ) , (149)

due to the coupling, the mass of the intermediate particle, and due to the different spin-structure
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in the amplitude: WL couples to left-handed quarks and right-handed anti-quarks; WR is the
opposite.

For leptonic decays, it is sufficient to do the substitutions xD → x`, xU → 0, and to set the
CKM matrix element to 1.

Before we finalize the discussion on the calculations of three-body decays, let us finally do
the computation in the case we cannot neglect the mass of the WL-boson. The amplitude will
now include the momentum of the WL in the propagator, as well as the decay width, in this case:

dΓ

dm2
12 dm

2
13

=
G2
F M

2
WL

16π3
ξ2W

m2
13 (m

2
N −m2

13)

(m2
23 −M2

WL
)2 + Γ2

WL
M2
WL

, (150)

with integration limits:

0 < m2
13 < m2

N −m2
23 , (151)

0 < m2
23 < m2

N , (152)

which leaves the answer and from it we derived Eq. (113).

C.3 Two-body decay calculation

For the two-body meson, let us consider the low-energy four-fermion effective operator which
mediates the decay:

L = − g2

4M2
WR

V CKM
i,j

[
Ū γµ(1 + γ5)D

] [
¯̀γµPRN

]
. (153)

Remember that we obtain the probability of a process from the S-matrix, so for an HNL
decay to a meson, M and a lepton ` we have that 〈f |S|i〉 = 〈M, `|S|N〉. Remember that the
S-matrix is proportional to the Lagrangian (or the Hamiltonian), so we will need:

〈M, `|L|N〉 = − g2

4M2
WR

V CKM
i,j 〈M |

[
Ū γµ(1 + γ5)D

]
|0〉 〈`|

[
¯̀γµPRN

]
|N〉 , (154)

where we will have two contributions, a vector contribution, V , and a pseudo-scalar contribution,
P , both will be different mesons:

〈P |Ū γµ γ5D|0〉 = −ifP pµP , (155)

〈V |Ū γµD|0〉 = −i fV
mV

ε∗µV , (156)

with pP being the four momentum of the pseudo-scalar meson, εµV the polarization vector of the
vector meson, fP is the decay constant of the pseudo-scalar and fV of the vector.

The decay constants encapsulate all of the unknowns of the dynamics behind QCD. These
decay constants can be calculated using lattice QCD methods. The reason for the pµP in Eq. (155)
comes from the fact we need a vector quantity to preserve Lorentz Invariance, and this is the
only vector quantity available to us. But we cannot have pµV on the right-hand side of Eq. (156),
we know that final vector particles must be proportional to their helicity vector ε∗µV .
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Particle type gR gL

U
1

2
− 2

3
t2w −1

6
t2w

D −1

2
+

1

3
t2w −1

6
t2w

` −1

2
+ t2w

1

2
t2w

ν −1

2
t2w

1

2
t2w

N
1

2
−1

2

Table 8: Values for gR and gL for different particle types.

The 1 → 2 decays do not require any integration, this is because from the Phase Space
integration, we can see that we have to perform six integrals, but we also have a four-dimensional
Dirac Delta, which leaves us with only two integrals. If we evaluate the integral in the frame
of the decaying particle, then the amplitude will actually not depend on any of these two final
variables due to the O(3) symmetry in the initial state. For these processes, the decay width is:

Γ =

√
λ(1, x2` , x

2
M )

16πmN
|M|2 , (157)

where xM = mM/mN , with mM being the mass of the final lepton.
As we mentioned in the main text, there will be an interference term coming from both

the left-handed and the right-handed currents. This interference can either be destructive or
constructive for processes with pseudo-scalars or vectors, and it entirely depends on the value of
α. The total decay width for both processes is:

Γ(N → `− P+) =
G2
F f

2
P m

3
N

16π

∣∣V CKM
i,j

∣∣2 ∣∣∣∣∣M2
WL

M2
WR

− ξW eiα

∣∣∣∣∣
2 [

(1− x2` )
2 − x2P (1 + x2` )

] √
λ(1, x2` , x

2
P ) ,

(158)

Γ(N → `− V +) =
G2
F f

2
V m

3
N

16π

∣∣V CKM
i,j

∣∣2 ∣∣∣∣∣M2
WL

M2
WR

+ ξW eiα

∣∣∣∣∣
2 [
x2V (1 + x2` ) + (1− x2` )

2 − 2x2V
] √

λ(1, x2` , x
2
V ) .

(159)

C.4 Calculation of the decay width of ZR

We calculated the total decay width of ZR only considering the channels which are not propor-
tional to any mixing angle, neither the ZL − ZR mixing or the ν − N mixing; and only decays
to fermions. Therefore we will only consider the first term in Eq. (101), the amplitude will be
parameterized as:

iM(ZR → ψ̄ψ) = i
g cw

c
1/2
2w

ūψ /ZR [gR PR + gL PL] vψ , (160)

the values of gL and gR are in Table 8 for all fermion types.
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The decay width is also very simple to calculate, neglecting fermion masses we get:

Γ(ZR → ψ̄ψ) = Nψ
g2 c2w

24π c2w
MZR

(
g2L + g2R

)
, (161)

where Nψ is equal to 3 for quarks to account for color, 1 in the case of charged leptons, and 1/2

in the case of Majorana particles to account for same-particles in the final state.
As a first approximation, we added overall particle types: three leptons, six quarks, three

neutrinos, and only one HNL. The total decay width gives:

ΓZR
=
g4mZR

384π

55 c4w − 36 c2w + 69

c2w c2w
. (162)

Appendix D Constants used on calculations

For relevant calculations, the values of the CKM matrix and masses of elementary particles and
mesons from [233]. Most of the decay constants for vector mesons have not been measured
experimentally, so for most of them, we shall give theoretical estimates derived from Lattice
QCD or by other methods. Moreover, the vector meson B∗±

C has not been discovered yet, so we
provide the theoretical estimate of its mass derived from Lattice QCD.

The values of the masses and decay constants we used for the calculations are:

Quark content Particle Mass [MeV] fP [MeV]
ud π± 139.570 39 [233] 130.56 [233]
us K± 193.677 [233] 155.7 [233]
cd D± 1869.66 [233] 212.0 [233]
cs D±

s 1968.35 [233] 249.4 [233]
ub B± 5279.34 [233] 190.0 [233]
cb B±

c 6274.47 [233] 434 [234]

Table 9: Mass and decay constants of pseudo-scalar mesons.

Quark content Particle Mass [MeV] fV [MeV]
ud ρ± 775.26 [233] 210 [235]
us K∗± 891.67 [233] 155.7 [235]
cd D∗± 2010.26 [233] 223.5 [236]
cs D∗±

s 2112.2 [233] 268.8 [236]
ub B∗± 5324.71 [233] 186.4 [236]
cb B∗±

c 6328 [237] 422 [234]

Table 10: Mass and decay constants of vector mesons.

Appendix E Additional plots

This appendix contains the sensitivity to all the runs shown in Table 3, for both displaced vertices
and prompt LNV signals. All of the plots in this section were done using only the analytical
estimation of the cross-section, we did not include ISR or polarization effects.
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We also estimated the sensitivity that HECATE and THUNDERDOME [216] would have.
HECATE has the potential of seeing decay widths up to 25m and THUNDERDOME up to
100m23.
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Figure 23: Additional plots

23THUNDERDOME stands for Totally Hyper-UNrealistic DE-tectoR in a huge DOME. The unrealistic part
should not be understated.
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Figure 24: Additional plots
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