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Abstract

Stable oxygen isotopes from water molecules in polar ice (δ18Oice) and stable nitrogen isotopes

enclosed in gas bubbles of ancient ice (δ15N) are quantifiable indicators for paleotemperatures.

Paleotemperatures can be reconstructed by forcing firn densification models coupled to heat

diffusion and firn air diffusion models with past surface temperature and snow accumulation

rate histories and fitting the output δ15N to measured δ15N data. The firn community uses

a variety of firn models suitable for various ice core sites. However, different firn models

predict different surface temperatures. In order to estimate the uncertainty in reconstructed

temperatures resulting from using different firn models, various firn models provided by the

Community Firn Model (CFM) - an open-source framework providing several modules for

the simulation of firn physics processes - are inverted. An automated inversion procedure

was implemented with commonly used SciPy minimizers in order to avoid manual parameter

search for minimization. Paleotemperatures were reconstructed from δ18Oice and δ15N at

NorthGRIP, Greenland for different combinations of firn densification and gas diffusion mod-

els. Furthermore, run times of the CFM were reduced and a second spin run was implemented

within the CFM to make the inversion procedure more feasible. In addition, this thesis

provides an overview of the architecture of the CFM and the main modules used for this

project.
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Chapter 1

Introduction

Changes of the Earth’s climate span over timescales from several hundred million years to

several thousand to hundred years [2]. Thereby, the causes of climate changes are very diverse

and range from plate tectonics [2], the Earth’s orbit around the Sun [3], [4], or solar cycles [5]

to volcanic eruptions [6], asteroid impacts [7] and lastly the evolution of mankind [8].

The reconstruction of past climatic conditions was conducted in various studies by investig-

ating various so-called climate proxies, indicators of climate change found in climate archives

such as sediments, trees, corals or ice [8]. Paleo records are very important to understand past

climate but to also be able to make predictions for the present and future climate changes

- not only on a natural scientific basis but also to estimate the vulnerability and ability of

adaption of human societies and the environment to climate changes.

One of the most fundamental climate variables is temperature which is a driving force of the

general circulation of the atmosphere. Thus, in order to better understand past climates and

mechanisms of climate change it is important to yield an accurate temperature history.

Past surface temperatures in polar regions are often inferred from stable isotope ratios of

oxygen and hydrogen in water molecules of polar ice [9], [10], [11]. The fractionation of

oxygen and hydrogen isotopes thereby strongly depends on the temperature of formation

of precipitation but also on the site temperature of evaporation or the path way the air

masses take until the water condensates and precipitates. Many studies assume a linear

or quadratic correlation between stable oxygen isotopes from water molecules in polar ice

(δ18Oice) and temperature [12], [10]. However, due to other processes contributing to the

isotope fractionation such as the atmospheric pathway or site temperature of evaporation, this

relation varies over time and δ18Oice needs to be calibrated by an independent temperature

measurement, e.g. borehole temperatures [10], [11]. Borehole temperature measurements

provide a long-term record of surface temperature changes but do not resolve high-frequency

temperature changes.

These temperature reconstruction methods can be complemented by measurements of stable

isotopes of inert gases such as nitrogen (δ15N) and argon (δ40Ar) enclosed in air bubbles

in ancient ice. The isotopic ratios of atmospheric argon and nitrogen remained approx-

imately constant over orbital timescales [13], [14] and their isotopic ratios are assumed to

mainly being altered by diffusion processes happening in firn [15] such as gravitational frac-

tionation [16], [14], diffusive smoothing [17] and thermal fractionation caused by changes

in temperature [18], [19], [20]. By forcing a firn densification model coupled to heat and

1



1 Introduction

gas diffusion with surface temperature and snow accumulation rate histories, modeled

δ15N or δ40Ar can be fitted to measured stable isotope data to reconstruct paleotemperat-

ures [21], [15], [22], [23], [1], [24]. Thereby, many studies assume a linear correlation between

δ18Oice and temperatures in a small time interval of several thousand years and find the cor-

responding optimum slope α and intercept β resulting in the best fit of modeled to measured

δ15N or δ40Ar. The parameters α and β are often found by a manual search which makes the

whole procedure very time consuming. Furthermore, the firn community uses a variety of firn

models suitable for various ice core sites but the choice of firn model introduces an additional

uncertainty on the reconstructed paleotemperatures.

The aim of this thesis is to address these issues by assessing the sensitivity of reconstructed

temperatures to the choice of different firn models implemented in the Community Firn Model

(CFM) and by automating the firn model inversion procedure.

The CFM is an open-source framework providing several modules for the simulation of various

physical processes in firn, including among others a set of different firn densification and gas

diffusion models that can be coupled to heat diffusion [25]. Greenlandic paleotemperatures

are reconstructed by forcing the CFM with temperature histories linearly correlated to stable

oxygen isotopes from NorthGRIP and a snow accumulation rate history provided by [1] during

a time span lasting from 120,000 years to 10,000 years b2k. A combination out of a set of

four firn densification models and four gas diffusion models is used to model δ15N in firn.

An automated firn model inversion technique is developed exploiting two commonly used

open-source minimizers provided by SciPy to find optimum values of the slope and intercept

relating temperature and stable oxygen isotopes in order to fit modeled to measured δ15N.

It is furthermore investigated how well the selected minimizers perform to find an optimum

temperature curve.

A short overview of the structure and contents of this thesis is given in the following:

In Chapter 2, firn processes such as firn densification, gas diffusion and fractionation processes

altering abundances of stable oxygen isotopes form water molecules in ice and stable nitrogen

isotopes in gas bubbles are explained. Furthermore, the used firn densification models and gas

diffusion models provided by the CFM are described in more detail. Next to firn processes

and used firn models, a short overview of used the minimization methods is given.

Chapter 3 presents the used data sets and data pre-processing techniques. It is furthermore

explained how the CFM works and which settings are specified for the model runs, how

model outputs are obtained and which attempts were made to speed up the model after the

identification of bottlenecks. Besides that, it is described how the setup of a second so-called

Spin-up run improves run times and avoids data loss. Section 3.3 in Chapter 3 describes the

optimization procedure and Section 3.4 the conducted experiments to investigate temperature

sensitivities with respect to the choice of firn models.

Chapter 4 presents the results and discussion of the experiments described in Section 3.4.

A concluding summary and outlook is given in Chapter 5.
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Chapter 2

Theoretical Background

Climate archives such as sediments, trees, corals or ice give us important information about

past climate variability through various so-called climate proxies. Climate proxies are ”quan-

tifiable indicators of climate change contained in a climate archive” [2], e.g. tree rings or

diatoms, foraminifera and pollen found in sediment cores, or varying abundances of isotopes

in sediment or ice cores. In this thesis, the focus lies on abundances of stable oxygen iso-

topes of water samples from ice cores and stable isotopes of molecular nitrogen from ancient

atmosphere trapped in polar ice where these climate signals can date back several hundred thou-

sands of years [2]. Varying abundances of stable isotopes are caused by different fractionation

processes in the polar ice which will be explained in this chapter.

2.1 δ - Notation

Isotopes are defined as atoms with the same number of protons but different number of neut-

rons. Changes in abundances of stable isotopes present in polar ice or gas bubbles enclosed

in polar ice occur due to various fractionation processes caused e.g. by temperature and

precipitation changes and are thus important indicators of past climate variability.

In the following, isotopes will be denoted as:

Z+NX, (2.1)

with Z the number of protons and N the number of neutrons. X denotes the element. Stable

isotope ratios are generally indicated by the so-called δ-notation:

δZ+NX =
Rsample −Rreference

Rreference
, (2.2)

where Rsample denotes the ratio of heavy isotopes of X to light isotopes (Rsample =
15Nsample/

14Nsample) in the specimen, and Rreference denotes the very same ratio for a standard

reference.

In this project, the focus lies on the change of stable isotope ratios of oxygen in water molecules

of polar ice (δ18O), and atmospheric nitrogen in gas bubbles enclosed within the ice matrix

3



2 Theoretical Background

(δ15N). The underlying fractionation processes for oxygen and nitrogen stable isotopes will be

explained in Sections 2.3 and 2.2.2.1.

2.2 Firn Physics

Firn is denoted as the upper 40 - 120m of the ice sheet accumulation zones and can be

understood as intermediate stage between snow and ice [26], [27]. It is unconsolidated snow

that gradually densifies under the weight of overlying precipitation until it approaches pure

ice density ρice ≈ 920 kg/m3. Pores within the firn are connected and exchange air with

the overlying atmosphere, which keeps the firn air younger than the surrounding ice. The

difference between the age of the ice and the age of the gas at the so-called lock-in depth

(lid, depth where first sealing layers of ice hamper the vertical motion of gas molecules) is the

∆age:

∆age = ice agelid − gas agelid (2.3)

At the bottom of the firn the pores are closed and cannot exchange air with overlying layers

anymore. The volume fraction not occupied by ice is defined as the porosity s = 1 − ρ/ρice.

The total porosity consists of the open porosity sop and closed porosity scl. The open porosity

refers to pores that are still connected to the atmosphere and it decreases with depths as gas

bubbles gradually close-off. The closed porosity refers to the closed-off air bubbles and thus

increases with the depth of the firn column [26].

Firn can be divided into three zones which are related to the modes of firn air transport. The

convective zone (CZ) refers to the upper part of the firn. Its depth depends among others on

the local accumulation rate, local temperature and wind strength. Particularly deep convective

zones are found at sites with very low accumulation rates and strong wind [29]. Firn air in the

CZ has approximately atmospheric composition due to the continuous ventilation, so δ15N = 0.

The zone below the CZ is the diffusive zone (DZ). The mass transfer in the DZ is dominated by

molecular diffusion. In diffusive equilibrium heavy isotopes and heavy molecules are enriched

with increasing depth due to gravitational fractionation [30]. Furthermore, the diffusivity

decreases with depth due to the gradual pore compaction (decreasing open porosity). At the

lock-in depth the air gets isolated from the atmosphere, which defines the ∆age between the

trapped air and the surrounding ice. The lower zone of the firn is the non-diffusive zone or

lock-in zone. It is characterized by sealing ice layers which hamper the vertical motion of

firn air and thus further fractionation of gas isotopes. The downward transport is dominated

by advection (motion with the ice matrix). The close-off depth zcod is defined as the depth

where all bubbles are occluded and thus sop = 0. The corresponding close-off density ρcod
depends on temperature but is also influenced by insolation and wind strength [26]. The mean

close-off density ρ̄cod is found within the interval 795 - 830 kg/m3. Martinerie et al. (1992,

1994) described the mean close-off density as a function of the site temperature T [27], [31]:

ρ̄cod =

(
1

ρice
+ 6.95 · 10−7T − 4.3 · 10−5

)−1

. (2.4)
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2.2 Firn Physics

Figure 2.1: Firn characteristics. (a) Sketch of a firn column with transformation of snow to ice.
Adapted from [28]. (b) Firn densification modeled using the Barnola model implemented in the CFM
for a temperature forcing of 242K. (c) Open and closed porosity modeled with the CFM. (d) δ15N
distributions with depth for two different temperature forcings TS modeled using the CFM’s firn
air diffusion module. The deviation from a linear distribution within the firn due to gravitational
fractionation stems from thermal fractionation. Furthermore, higher temperatures lead to a more
shallow firn column which is also visible in (d) Adapted and modified from [28], [24]

However, air exchange stops already at lower densities than the close-off density due to the

sealing ice layers. The lock-in density ρlid, which marks the beginning of the non-diffusive zone

and thus the location/density where enrichment of nitrogen isotopes stops, was empirically

defined as [28]:

ρlid = ρ̄cod − 14 kg/m3. (2.5)

The relevant processes occurring in the firn that influence the stable nitrogen isotope distri-

butions are introduced in more detail in the following.

2.2.1 Firn Densification Models

Firn densification models describe the firn densification in mainly three stages. The first

stage ranges from snow to firn of the ”critical density” ρcrit = 550 kg/m3. In this stage, firn

densification is dominated by grain settling and packing and the densification rate is the most

rapid of the three stages. The second densification stage ranges from densities between the

critical density (550 kg/m3) and 820− 840 kg/m3, where individual bubbles are formed. The

densification in this stage takes place more slowly. In the third densification stage, ranging

from 820 − 840 kg/m3 to 950 kg/m3, gas bubbles are further compressed. With increasing

depth the volumes of the gas bubbles are further compressed and single air molecules are

settled within the ice matrix due to the increasing pressure. [32]
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2 Theoretical Background

Several firn densification models describing the densification in the first two stages, which

are the most crucial ones, have been developed. In this thesis, the densification models by

Herron and Langway [32], Sigfus, Goujon [33] and Barnola [34] are used/investigated. The

four models are shortly introduced in the following.

2.2.1.1 The Herron and Langway Model

The Herron and Langway model is an empirical model based on the assumption that a ”change

in air space is linearly related to the change in stress due to the weight of overlying snow” [32]:

dρ

ρice − ρ
= C · ρdh, (2.6)

with ρice = 917 kg/m3 and C is a constant. Herron and Langway derived equations for the

densification rate for the first two stages of densification. The first densification stage ranges

from the surface (snow density) to the critical density of 550 kg/m3 and is characterized by

rapid densification rates. The second densification stage ranges from the critical density to

the close-off density (820−840 kg/m3). Equation (2.6) implies that ln (ρ/ρice−ρ) and depth are

linearly related, which is also observed in plots of ln (ρ/ρice−ρ) versus depth from depth-density

information available from various sites:

h ∝ ln (ρ/(ρice − ρ)) . (2.7)

The slopes of these segments can be expressed as:

C∗ =
d ln (ρ/(ρice − ρ))

dh
for ρ < 550

kg

m3
, (2.8)

C∗∗ =
d ln(ρ/(ρice − ρ))

dh
for 550

kg

m3
< ρ < 800

kg

m3
. (2.9)

One can solve for the densification rate dρ
dt by introducing the substitution dh/dt = A/ρ where

A denotes the accumulation rate in water equivalents:

dρ

dt
=


C∗A
ρice

(ρice − ρ) for ρ < 550
kg

m3
,

C∗∗A
ρice

(ρice − ρ) for 550
kg

m3
< ρ < 800

kg

m3
.

(2.10)

For the following derivations, Herron and Langway assumed that temperature and accumu-

lation rates are not correlated and that Equations (2.10) can be rewritten as Arrhenius type

equations:

dρ

dt
=


k0A

a(ρice − ρ) for ρ < 550
kg

m3
,

k1A
b(ρice − ρ) for 550

kg

m3
< ρ < 800

kg

m3
,

(2.11)

6



2.2 Firn Physics

with k0 and k1 temperature dependent Arrhenius-type rate constants, and a and b are con-

stants related to densification mechanisms. a and b can be determined by comparing the slopes

for the two densification stages (C∗ = k0A
a and C∗∗ = k1A

b ) of two different sites (1 and 2)

with similar temperatures but different accumulation rates such that:

a =
ln(C∗

1/C
∗
2 )

ln(A1/A2)
+ 1 and b =

ln(C∗∗
1 /C∗∗

2 )

ln(A1/A2)
+ 1. (2.12)

Using this approach for various sites, the values for the constants a and b were determined

to a ≈ 1 and b ≈ 0.5. The Arrhenius type rate constants k0 and k1 were determined from

Arrhenius plots of ln k against 1/T resulting in:

k0 = 11 exp

(
−10160

RT

)
and k1 = 575 exp

(
−21400

RT

)
. (2.13)

From the densification rate it is then possible to derive equations for depth-density and depth-

age relations. Using again the relation dh/dt = A
ρ and integrating dρ over depth h with the

boundary conditions h0 = 0 and ρ = ρ0 at the surface one obtains for the first stage of

densification:

ρh =
ρiceZ0

1 + Z0
, (2.14)

with Z0 = exp
(
ρicek0h+ ln

(
ρ0

ρice−ρ0

))
.

The critical density depth h0.55 and critical density age t0.55 can then be expressed as:

h0.55 =
1

ρicek0

(
ln

(
0.55Mg/m3

ρice − 0.55Mg/m3

)
− ln

(
ρ0

ρice − ρ0

))
, (2.15)

t0.55 =
1

k0A
ln

(
ρice − ρ0

ρice − 0.55Mg/m3

)
. (2.16)

Densities and ages in the second densification stage are determined accordingly:

ρh =
ρiceZ1

1 + Z1
, (2.17)

tρ =
1

k1A0.5
ln

(
ρice − 0.55Mg/m3

ρice − ρ

)
+ t0.55, (2.18)

with Z1 = exp
(

ρicek1(h−h0.55)
A0.5 + ln

(
0.55Mg/m3

ρice−0.55Mg/m3

))
, and A the mean accumulation rate

A =
(

ρicek1

C∗∗

)2
[32].

2.2.1.2 The Sigfus Model

The Sigfus model uses basicallly the Herron and Langway formulation. The densification in

the first densification zone is calculated identically. The second densification zone includes

7



2 Theoretical Background

stress σ and the Arrhenius type rate constant for the second zone is slightly altered to:

kSig =

[
k1 · exp

(
−21400

RT

)]
2, (2.19)

where k1 is the Arrhenius type rate constant calculated in Herron and Langway according to

Equation (2.13).

The densification rate in the second zone is then calculated according to:

dρ

dt
= kSig ·

(σ − σ550) · (ρice − ρ)

g · ln
(

ρice−0.55Mg/m3

ρice−ρ

) , (2.20)

with σ550 the stress at the transition between first and second densification zone.

2.2.1.3 The Barnola Model

The Barnola model uses the Herron and Langway model for the first densification zone and

applies the Pimienta model for the second and third densification zone [25], [34].

The Pimienta model describes densification of ice below the close-off as plastic deformation of

ice around air bubbles and air channels. The densification rate is described as:

dρ

dt
= Af∆Pn = ρiceA0 exp

(
− Q

RT

)
f∆Pn, (2.21)

where A0 is a constant, Q is the activation energy for mechanical creep and ∆P is the effective

pressure [34]. The exponent n is in the range between 1 and 3 and is stress dependent. Pimienta

and Duval (1987) conducted stress tests on polar ice in order to determine the dependence

of the strain rate dε/dt on the stress σ (dε/dt = Aσn) and found n to be 1 for stresses of

0.1MPa and lower, and 3 for stresses higher than 0.1MPa [35]. The function f is described

by the spherical pore model of Wilkinson and Ashby (1975) who investigated the densification

process of a powder compact during pressure sintering [36]:

fs(ρ) =
3

16
(1− ρ/ρice) /

(
1− (1− ρ/ρice)

1/3
)3

. (2.22)

Barnola et al. deduced a function f for firn in the second densification zone (for the Barnola

model: 550−800 kg/m3) by analyzing Antarctic and Greenland density profiles with different

temperature and accumulation histories using Equation (2.21):

fe(ρ) = 10αρ
3+βρ2+δρ+γ , (2.23)

where α = −37.455, β = 99.743, γ = 30.673 and δ = −95.027.

For the third densification zone (ρ > 800 kg/m3) the Barnola model uses the Pimienta model

with f = fs(ρ). Thereby, fe(ρ) is constructed such that fe(ρ) and fs(ρ), as well as their

derivatives are equal at the transition from the second to the third densification zone (ρ =

8



2.2 Firn Physics

800 kg/m3). For both densification zones, n was chosen to be 3 since stress in firn ”rapidly”

becomes higher than 0.1MPa.

The Pimienta model was included into the Barnola model since the Herron and Langway

model in general reacts slower or does not react to shortly lasting climatic transitions and

is less suitable to sites with a relatively high accumulation rate compared to the surface

temperature. In the studies of Barnola et al. (1991) the Pimienta model provided more

realistic results for a wider range of climatic conditions [34].

2.2.1.4 The Goujon Model

Goujon et al. (2003) coupled grain boundary sliding and grain deformation with heat diffusion.

The Goujon model assumes that densification in the first zone (D < 0.6) is predominated by

boundary sliding of grains, where D = ρ
ρice

is the relative density. The densification rate in

the first zone is described as:

dD

dt
= γ

(
P

D2

)(
1− 5

3
D

)
, (2.24)

based on a grain-boundary sliding model by Alley (1987) where grain sliding depends on the

number of neighbors. For a coordination number Z < 6, grains are able to slide whereas for

Z ≈ 6 a grain is supported by a tripod of bonds and the grain cannot slide anymore which

means that the critical density D0 ≈ 0.6 is reached [37]. In Equation (2.24), P denotes the

pressure due to the overlying snow/firn and γ is a scaling factor depending on the viscosity of

grain boundaries and the geometry of grains. [37], [25].

In the second densification zone (0.6 ≤ D < 0.9), boundary sliding becomes negligible and

densification happens primarily via plastic and elastic deformation of grains due to pressure

acting on the grain contact areas [33], [25]. With increasing contact areas the densification

happens through a power-law creep mechanism described in Arzt (1982) who investigated

densification processes on dense packed spherical powders. According to the cold compaction

theory in Arzt (1982), Goujon et al. (2003) describe the densification rate in the second zone

as:
dD

dt
= 4.1817 · 104 exp

(
−EA

RT

)(
D2D0

)1/3 (a
π

)1/2( 4πP

3aZD

)3

, (2.25)

where EA denotes the Arrhenius activation energy (60 kJ/mol), P the pressure due to the

ice column applied on an average contact area a between grains, R the gas constant and Z

the coordination number [33], [38], [25]. The critical density D0 is the relative density at the

transition between the first and the second densification zone and it depends on the mean

annual temperature Tm of the ice core sites [39]:

D0 = 0.00226 · Tm[K] + 0.03. (2.26)

The densification process in the second zone proceeds until D = Dcod, the relative density at

9



2 Theoretical Background

the close-off. The close-off density is thereby calculated according to the relation derived by

Martinerie et al. (1994) (see Equation (2.4)) [33].

The viscosity scaling factor γ in Equation (2.24) should be set such that the densification rate

is constant at D0.

Barnola et al. (2015) reported some issue in implementing the Goujon model as suggested

in Goujon et al. (2003): For critical densities D0 > 0.6 the densification rate dD
dt according

to Equation (2.24) becomes zero for D = 0.6 and negative for D < 0.6 which is physically

not meaningful. Furthermore, at D = D0 the densification rate according to Equation (2.25)

becomes infinite because the contact area is equal to zero. In order to overcome these issues,

Stevens et al. (2020) slightly altered the implementation of the Goujon model at the transition

between the first and second densification zone in the CFM: D0 is limited to a maximum value

of 0.59 corresponding to ρ = 541 kg/m3. This means that the transition between the two zones

is in general predicted to occur at lower densities than the common value of ρ = 550 kg/m3.

The transition between the two zones is set to D′
0 = D0+ ϵ, where ϵ is a small value. γ is then

iterated to give a maximum value for dD
dt at the bottom of the first zone and to not exceed

dD
dt at the top of the second zone [25].

The third densification zone (0.9 ≤ D < 1) describes the densification of bubbly ice with

the deformation of an ice matrix with cylindrical (D < 0.95) and spherical (D ≥ 0.95) gas

bubbles. The respective densification rates are [33]:

dD

dt
=


2A

(
D(1−D)

[1− (1−D)1/3]
3

)
·
(
2Peff

3

)3

for 0.9 < D < 0.95,

9

4
·A(1−D)Peff for D ≥ 0.95,

(2.27)

with

Peff = P + Patm − Pb, (2.28)

where Patm is the atmospheric pressure at the altitude at the site, and Pb is the pressure of

the bubbles in the ice, and

A = 7.89 · 103 exp
(−EA

RT

)
[MPa−3s−1]. (2.29)

2.2.2 Gas Diffusion

The composition of the downward travelling air in the firn column is altered by several mech-

anisms such as gravitational separation [16], [14], diffusive smoothing [17] and thermal frac-

tionation [18], [19], [20] caused by changes in temperature.

Next to these fractionation processes, stable gas isotope ratios in firn can be additionally

altered by wind speed and surface pressure changes, but these mechanisms are assumed to

be less relevant for the data used in this study [20]. Isotope signals of ancient air extracted
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Figure 2.2: modeled firn density versus depth for four different firn densification models.
Model of the densification in the three densification zones using Barnola (BAR), Herron and Langway
(HLD), Sigfus (HLS) and Goujon (GOU) with a constant forcing (T = 242 K and A = 0.19 m ice
/yr).

from the bubbles within the ice serve thus to draw conclusions about past climate if temper-

ature changes are large and rapid enough. A common way to infer fast surface temperature

changes are stable nitrogen isotope abundances in gas bubbles enclosed in the ice matrix.

This is because the isotopic compositions of nitrogen are constant in the atmosphere at or-

bital timescales [13], [14] which means that δ15N = 0. Consequently, changes in the isotopic

ratio are assumed to mainly reflect diffusion processes that are mostly dependent on site,

firn temperature and snow accumulation [15]. δ15N measurements thus complement bore-

hole temperature reconstructions which are not suitable to detect temperature shifts on short

timescales [40], [21].

In this thesis, δ15N values are modeled using the CFM in order to determine surface tem-

perature histories during the Last Glacial Period following two approaches. The first ap-

proach calculates the δ15N values for gravitational enrichment and thermal diffusion according

to [16], [30] and [41], [15]. The second approach exploits the firn_air module of the CFM

which solves the firn-air transport equation. The firn_air module accounts for molecular

diffusion, thermal and gravitational fractionation and firn air advection.
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2 Theoretical Background

2.2.2.1 Gravitational and Thermal Fractionation

Gravitational fractionation means that heavier isotopes and heavier molecules enrich with

increasing depth in the firn column. Assuming diffusive equilibrium, the enrichment due to

gravitational fractionation is expressed as:

δXgrav[%�] =
[
exp

(
gz∆MX

RT

)
− 1

]
· 103 ≈ gz∆MX

RT
· 103, (2.30)

with ∆MX the molar mass deviation of species X from air in kg mol−1 or the mass difference

between two isotopologues [16], [30].

Thermal diffusion due to a temperature gradient in the firn leads to a thermal fractionation

and as such to an enrichment of heavy isotopes at the colder end of the firn column. As an

example, a rapid warming at the surface of the ice leads to an enrichment of heavy isotopes

at the bottom of the firn column, while a cooling would have the opposite effect. The thermal

fractionation is expressed as:

δXtherm[%�] =
[(

Ts

Tb

)αT,X

− 1

]
· 103 ≈ ΩX ·∆T, (2.31)

with ∆T = Th−Tc the temperature gradient between the hot and cold end of the firn column,

αT,S the thermal diffusion constant for species X and ΩX the thermal diffusion sensitivity of

species X [41], [15]:

ΩX ≈ αT,X

T
· 103. (2.32)

T hereby denotes the mean firn temperature which can be calculated as [15]:

T =
ThTc

Th − Tc
· ln
(
Th

Tc

)
. (2.33)

The thermal diffusion sensitivity ΩX and the thermal diffusion constant αT for stable nitrogen

isotopes were determined empirically by measuring the thermal fractionation of equilibrated

air at a known temperature gradient in a temperature range between −60 °C and 0 °C by [42]:

αT,N ≈
(
8.656− 1232

T

)
· 10−3 (2.34)

ΩN ≈
((

8.656

T
− 1232

T 2

))
%�/°C. (2.35)

Figure 2.3 shows the excursions of stable nitrogen isotopes due to thermal and gravitational

fractionation for a firn column modeled with the CFM. The CFM is forced with surface

temperatures and accumulation depicted in Figure 2.3(a). Firn densification is calculated ac-

cording to Barnola. Figure 2.3(b) shows the change in lock-in depth with modeltime due to

the change in surface temperature. Higher surface temperatures lead to a more shallow firn

column, and thus, to smaller lock-in depths due to faster densification with higher temperat-
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Figure 2.3: Thermal and gravitational fractionation of stable nitrogen isotopes. δ15N excur-
sions calculated according to Equation (2.30) and (2.31) from firn column modeled with CFM using
Barnola’s densification model. (a) Temperature and accumulation forcing. (b) Change of lock-in
depth with modeltime due to the change in the temperature forcing. (c) Thermal, gravitational and
total fractionation of stable nitrogen isotopes.

ures within the firn. This is closely related to the Arrhenius activation energy/theorem, which

predicts a higher level of crystallization with higher temperatures. Gravitational fractiona-

tion is approximately linearly dependent on depth z (compare Equation (2.30)) and as such

decreases/increases parallel to decreasing/increasing lock-in depths (Figure 2.3). A change

toward warmer surface temperatures leads to a positive δ15Ntherm excursion since the heavier
15N isotopes enrich at the colder end of the firn columns (lock-in depth). For a change toward

colder surface temperatures the opposite effect is observed.

2.2.2.2 Firn-Air Transport Equation

The transport of gas is commonly described by the one-dimensional diffusion equation first

introduced by [43] including only pure molecular diffusion and gravitational settling. The

transport equation was further developed in [44], [20], [45], [29] additionally including thermal

diffusion and the advection of air within the ice matrix. The firn-air transport equation solved

in the CFM has the following form:

∂C

∂t
=

1

sop(t, z)

∂

∂z

[
sop(t, z)κeff(t, z)

(
∂C

∂z
− ∆MXg

RT
+ΩX

dT

dz

)]
− wair(z)

∂C

∂z
, (2.36)

where C is the concentration of a gas species X, κeff is the effective molecular diffusivity of

gas in porous snow and wair is the advection rate of firn air [25]. The latter two terms of the

first term on the right hand side are the gravitational settling term and thermal diffusion term

describing the fractionation of isotopologues due to gravitational force and thermal diffusion.
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In the CFM, the thermal diffusion sensitivity ΩN for stable nitrogen isotopes was chosen to

be ΩN = 14.7 · 10−3 %�/°C according to [42], which is approximately valid for an average firn

air temperature of −30 °C.

The effective diffusivity keff accounts for the fact that firn air needs to take a longer, more

tortuous way through the pores as the open porosity decreases. For the experiments presented

in this thesis, the following parameterization according to [46] is used:

keff = γN ·D(s) = γN · c(23.7s− 2.84), (2.37)

with γN = 1.2638 the free-air diffusivity of nitrogen gas relative to CO2 [47], [44] and D(s)

the diffusion coefficient for CO2 in relation to the total firn porosity s. c is a temperature and

pressure correction factor (c = 1013.25/p[hPa] · (T [K])/253.16)1.85) [46].

The firn-air advection rate wair is represented with two different parameterizations according

to [48] and Darcy’s law (also mentioned in [49]):

Firn air advection according to Darcy The parameterization of firn air advection according

to Darcy is based on viscous flow of firn air through disordered porous medium (firn). The firn

air pressure p(z) increases with depth z in hydrostatic equilibrium according to the barometric

equation:

p(z) = p0 exp

(
−Mairg

RT
z

)
, (2.38)

where p0 is the surface pressure, M is the molar mass of air, g is the gravitational acceleration,

R is the gas constant and T is the temperature at depth z.

A deviation from the hydrostatic equilibrium results in a viscous air flow, which is described

by Darcy’s law:

v = −k

µ

(
dp

dz
− Mairg

RT
p

)
, (2.39)

with k the permeability of firn and µ the dynamic viscosity of firn air [49].

Firn air advection according to Buizert Buizert looks into the bulk motion of firn air and

describes the fluxes of firn air occurring in open and closed porosity as well as the flux between

open and closed porosity during the close up of pores to isolated bubbles. The flux in the

closed porosity is dominated by the downward transport of bubbles by the ice matrix with

velocity wice = Aρice/ρ, where A is the accumulation rate in ice equivalent and ρ and ρice are

the densities of firn and ice, respectively. The flux in the open porosity is determined by the

advection rate of air wair in open pores. The fluxes in open and closed porosity are [48]:

Φop = s∗op · wair = sop · exp
(
−Mairg

RT
z

)
· wair, (2.40)

Φcl = scl ·
pcl
p0

· wice, (2.41)
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Figure 2.4: Schematic of air fluxes in firn. The total and open porosities decrease and the closed
porosity increases. Adapted from [48].

with s∗op is the effective open porosity accounting for the increasing pressure with depth. pcl/p0
describes the enhanced pressure in the closed porosity relative to the surface pressure. The

fluxes occurring in firn between z and z +∆z are depicted in Figure 2.4.

Φ1 and Φ2 depict bulk air transport in closed porosity, Φ3 and Φ4 bulk air transport in open

porosity and Φ5 describes the trapping of firn air in bubbles. Mass conservation requires that

Φ1 +Φ3 = Φ2 +Φ4 which can be generalized to [48]:

Φop(z) + Φcl(z) = Φop(zcod) + Φcl(zcod) = Φcl(zcod). (2.42)

Combining Equations (2.38), (2.39) and (2.42) allows to solve for the firn air velocity in open

porosity [48]:

wair =
Aρice
s∗op

(
scl(zcod)pcl(zcod)

ρcod
− scl(z)pcl(z)

ρ(z)

)
. (2.43)

Figure 2.5(c) shows the modeled nitrogen excursions at lock-in depth with time due to thermal

and gravitational fractionation. δ15N is modeled with the CFM using four different densifica-

tion models (BAR, HLD, HLS, GOU) and the firn_air module which solves for the firn-air

diffusion equation. The model is forced with constant accumulation and a double temperat-

ure ramp (Figure 2.5 (a)). The different densification models predict different lock-in depths

which consequently results in higher δ15N excursions for deeper lock-in depths due to advanced

gravitational fractionation and vice versa (provided the accumulation stays constant in the

presented example).
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Figure 2.5: Firn air diffusion. Firn air diffusion modeled using four different firn densification
models and the firn_air module of the CFM which solves the firn-air transport equation. (a)
Surface temperature and accumulation forcing. (b) Change of lock-in depth with modeltime for the
four different densification models Barnola (BAR), Herron and Langway (HLD), Sigfus (HLS) and
Goujon (GOU). The lock-in depth decreases with increasing temperature and vice versa. (c) Change
of δ15N at the lock-in depth with modeltime.

2.3 Oxygen Isotopes and Temperature Reconstruction

Past surface temperatures are commonly inferred from stable water isotopes (δD and δ18Oice)

in polar ice [50], [10], [11]. The underlying fractionation processes that lead to varying abund-

ances of stable isotopes with depth are complex and depend on various factors. Hence, δ18Oice

varies with the temperature of the water vapor source, the atmospheric pathway the water

molecules take and the condensation temperature: warm air holds more water vapor and thus

a higher amount of heavier isotopologues. At the same time, heavy isotopologues are preferen-

tially removed from the air with decreasing temperature e.g. through increasing elevation and

latitude or seasonal temperature variability (Rayleigh distillation) which leads to a δ-value

more depleted in the heavy isotopes and so more negative. [2], [51].

Previous studies used the correlation between δ18O from precipitation and temperature of

formation of precipitation/surface temperature to reconstruct past surface temperatures as-

suming a linear (or quadratic) relation [12], [10]:

TS = α · δ18Oice + β, or (2.44)

(TS = α∗ · δ18O2
ice + β∗ · δ18Oice + γ∗), (2.45)

with α the slope of the linear function β the intercept. However, the present-day spatial slope

describing the relation between surface temperature and δ18Oice is not constant over time [52],
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Figure 2.6: Fractionation of stable water isotopes. Schematic of the fractionation of stable water
isotopes due to evaporation and condensation. Due to the higher vapor pressure of lighter molecules,
lighter water isotopes preferentially evaporate which results in a lower δ18Ovapor value than the ocean
(standard 0%� SMOW) and thus to a more negative δ18Oice. Condensed water is richer in heavy
isotopes than the surrounding water vapor. Consequently, precipitation is more depleted heavier
isotopes with increasing transport distance [51].

and thus needs a calibration using complementary measurements such as borehole temperature

measurements [53], [10] with the drawback of smoothing out fast surface temperature changes.

Reconstructing fast temperature changes can however be derived from stable inert gas isotopes

(such as δ15N) trapped in gas bubbles within the ice matrix (Chapter 2.2.2.1.

Hereinafter, the notation δ18O is used for stable water isotope signals of ice core water samples.

2.4 Inverse Modeling

The aim of this project is to reconstruct surface temperature histories from δ15N abundances in

gas bubbles enclosed in ancient ice. For this purpose, the CFM which models firn densification,

heat diffusion and gas diffusion is inverted by commonly used minimizers provided by the

scipy.optimize library [54]. Two algorithms are chosen for the inversion of the CFM: the

Nelder-Mead algorithm and a least squares method based on a trust region reflective algorithm.

In the following two sections, it will be roughly explained how these algorithms work.
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2.4.1 Nelder-Mead

The Nelder-Mead method is a numerical method to find the minimum or maximum of a

function f . It is a direct method which means that it calculates the value of f and compares

it to other values of f and does not use derivatives. The Nelder-Mead method is selected for

this project since it is a robust method and was also used previously for the same type of

inverse problem [24], [54].

The Nelder-Mead method uses a simplex which is a shape consisting of n + 1 vertices in n

dimensions. This means for a function f dependent on two variables the simplex is a triangle,

for a function dependent on three variables it is a tetrahedron, etc.

In the following, it will be explained how a local minimum of f dependent on two variables

x1 and x2 is found using Nelder-Mead.

As a first step, three arbitrary points in space u, v and w are picked. Then, f is evaluated at

these three points and the points are subsequently renamed such that:

f(u) < f(v) < f(w). (2.46)

u thereby represents the best performing point and w the least best performing point for f .

u

v

w

r

u

v

w

r

e

u

v

w

r

ci

co

u

v

w

w'

v'

(a) (b) (c) (d)

Reflection

Extension

Contraction Shrinkage

Figure 2.7: Simplex operations of the Nelder-Mead algorithm. Adapted from [55].

In the next step, the least best performing point w is reflected through the centroid of the

remaining points u and v (compare Figure 2.7 (a)). The reflected point is hereinafter called

r. Then f is evaluated at r. If f(r) is smaller than f(v) but larger than f(u), then w is

replaced with r and r becomes the worst performing point.

If f(r) is smaller than f(u) and f(v), the reflected point is extended by the vector between the

centroid (between u and v) and the reflected point r in order to go further into the direction
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2.4 Inverse Modeling

which already seems to work out well (compare Figure 2.7 (b)). The extended point is called

e. e replaces w if f(e) is smaller than f(r). If f(e) is larger than f(r) r replaces w.

In the case that the reflection point r performs worse than all other points u, v and w the

simplex is contracted in two different ways using the contraction point ci and co (compare

Figure 2.7 (c)). ci is the inside contracted point which is on 1/4 of the way between w and

r and co is the inside contracted point which is on 3/4 of the way between w and r. f is

evaluated at both points and if one of them outperforms v, the best performing point among

them replaces w.

If all of these attempts fail, the simplex will shrink towards u (Figure 2.7 (d)) and the procedure

starts from new [55], [56].

2.4.2 Least-Squares

The least_squares method provided by scipy.optimize solves a non-linear least squares

problem

f(x) =
N∑
i

∥yi − gi(x)∥22 =
N∑
i

∥ri(x)∥22, (2.47)

where ri are the residuals which are defined as the difference between observed values yi and

values predicted by a model gi(x).

The least_squares function provides three methods to solve the non-linear least squares

problem (e.g. the Levenberg-Marquardt algorithm, the dog-box algorithm and the trust region

reflective algorithm). For this project the trust region reflective algorithm is chosen since it is

very robust and suitable for large problems [54].

The idea of the trust region reflective algorithm is to approximate f in a certain region (the

trust region) with f̃ which is often chosen to be a quadratic approximation of f :

f(x) ≈ f̃(x) = f(c) +∇f(c)T (x− c) +
1

2!
(x− c)TH(c)(x− c), (2.48)

where ∇f is the gradient, H the Hessian matrix with respect to the independent variables and

c being the center of the selected region. Then, the minimum of f̃ is determined within the

trust region. The new point for the next iteration is then the point that minimizes f̃ within

the trust region [57]. A schematic drawing of the trust region algorithm is shown in Figure

2.8.

In order to determine a suitable trust region radius it is tested how well the quadratic model

fits f within the trust region. This is measured by comparing the actual reduction

ared = f(c)− f(t), (2.49)

where t is the new trial point, with the predicted reduction

pred = f̃(c)− f̃(t). (2.50)
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2 Theoretical Background

x1

x2

Figure 2.8: Schematic drawing of trust region algorithm. The trust region reflective algorithm
approximates the function f to be minimized by f̃ within a trust region (highlighted as colored circles).
The point within the trust region that minimizes f̃ is the new center for the next trust region.

Whether the trial step is rejected or accepted or the trust region radius is increased or decreased

depends on the ratio between ared and pred. For ratios typically below 0.0001, the new trial

point is rejected, and/or the trust region should be decreased if the ratio is below 0.25. The

trust region is typically increased if the ratio is above 0.75 [58].
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Chapter 3

Materials and Methods

The aim of this project is to deduce surface temperature histories in Greenland at North GRIP

during the Last Glacial Maximum from stable nitrogen gas isotopes enclosed in ancient ice

and to investigate the sensitivity of temperature to the usage of different densification models

and different gas diffusion parameterizations. The main approach is thereby to model stable

nitrogen gas isotope distributions using the firn_air module of the CFM and to exploit the

correlation between stable water isotopes of ice and surface temperature or temperature of pre-

cipitation formation respectively. Assuming a linear relationship between surface temperature

and δ18O (T = 1/α · δ18O+ β) one can fit δ15Nmodel to δ15Ndata by using a minimizer (e.g.

least squares) and finding the optimal parameters αopt and βopt (Figure 3.1). This chapter de-

scribes the complete workflow from data preprocessing, to running (and optimizing) the CFM

and building the minimizers.

CFM

T = 1/α ⋅ δ18O + β

δ15Nmodel - δ
15Ndata 

Minimizer: α0, β0

αopt, βopt

α, β 

, Acc

Topt

δ18O

Figure 3.1:Workflow for surface temperature reconstruction. Rough scheme of the workflow for
finding the optimal surface temperature Topt from stable nitrogen gas and stable water distributions.
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3 Materials and Methods

3.1 Data

Past surface temperature histories are reconstructed by using δ15N, δ18O and accumulation

data from North GRIP ice core drilling site located at 75.10 °N and 42.32 °W (Figure 3.2)

covering a time period from 10 to 120 kyr b2k. The whole datasets of measured δ15N and

δ18O as well as the accumulation and temperature histories reconstructed by [1] are depicted

in Figure 3.3. The used time chronology is the Greenland Ice Core Chronology 2005 (GICC05)

and GICC05modelext, respectively. GICC05 is based on annual layer counting until 60.2 kyr

b2k. GICC05modelext is the extension of GICC05 for ages older than 60.2 kyr and uses the

ss09sea06bm timescale which is shifted by 705 yr to younger ages [59], [60], [61], [62], [63].

The full data set used for this thesis and Python modules to read and preprocess data are

available on github: https://github.com/klimakathi/CFM_Kathi.git

Note: Contrary to convention ages ages older then the year 2000 are indicated with negative

values in this thesis, e.g. 120 kyr b2k is indicated as −120 kyr. Consequently, plots have to

be read from left to right with older ages on the left hand side and younger ages on the right

hand side.

60°N
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0°
W

90
°W

90
°W

0°

0°

30
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30°W50°W
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Figure 3.2: Location of North GRIP ice core drilling site.
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Figure 3.3: Full data set used for temperature history reconstructions during the Last Gla-
cial. Green: Accumulation rate in m ice/ yr [1] to agree with Kindlers temperature reconstruction.;
Orange: Temperature reconstruction by [1] using δ15N data and a firn densification model coupled
with heat diffusion. Blue points: δ15N on gas age scale measured by : • [64], [65], [66], [67], [66],
• [1], • [22], • [1]; Black points: δ18O on ice age scale. Red: Cubic smoothing spline through δ18O
data points with a cut-off frequency of 1/200 yr−1. Adapted and modified from [1].
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3.1.1 δ15N Data

In order to measure isotopic compositions of δ15N air bubbles are extracted from the ice and

isotopic compositions are determined using Isotope Ratio Mass Spectrometry (IRMS) [1]. The

full dataset of δ15N as also used in [1] contains measurements from Climate and Environmental

Physics Division (KUP) of the Physics Institute at the University of Bern and from Laboratoire

des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette published in [1], [65],

[22], [67], [68], [64], [66] (compare Table 3.1, Figure 3.3). Uncertainties for δ15N are 0.02%�
and 0.006%� measured at KUP and LSCE, respectively (compare Table 3.1).

Data sets are available including δ15N versus depth and depth versus ice and gas age on the

GICC05modelext timescale [62], [63].

In order to read the data from the data set and get gas ages and ice ages of available δ15N

data points the module read_d15N.py is implemented. This module provides the methods

get_d15N_data and get_d15N_data_interval which return δ15N and corresponding gas age

and ice age either for the full dataset or for a given ice age interval. The two methods exploit

the SciPy class scipy.interpolate.interp1d in order to linearly interpolate gas ages and

ice ages to the depths where δ15N data points are available.

Period Age [yr b2k] NGRIP depth [m] Measured at Uncertainty [%�]

Holocene to DO 8 9961− 39746 1391.11− 2092.52 KUP [1] 0.02
DO 8 to DO 17 39212− 63972 2085.50− 2463.83 KUP [22] 0.02
DO 18, 19, 20 63986− 80162 2464.09− 2620.24 LSCE [65] 0.006

GI-21 80383− 82218 2623.07− 2649.47 LSCE [1] 0.006
GS-22, GI-21 82281− 89830 2650.45− 2743.95 LSCE [67] 0.006
GS-23, GI-22 89875− 95360 2744.5− 2796.65 LSCE [68] 0.006

GS-23 95765− 102524 2800.72− 2873.87 LSCE [1] 0.006
DO 23 to 25 102668− 122183 2875.44− 3083.33 LSCE [64], [66] 0.006

Table 3.1: Overview of δ15N measurements performed at North GRIP and corresponding
uncertainties. GS and GI denote glacial stadial and glacial interstadial, respectively. Adapted
from [1].

3.1.2 δ18O Data

δ18O values versus depth and age are available from [69]. In order to read δ18O values and

corresponding ages from the dataset the module read_d18O.py is implemented. The methods

read_data_d18O and get_interval_data_noTimeGrid read the whole data or data within a

certain age interval respectively. In order to filter fast changes in δ18O the module smooth-

ing_splines.py is implemented which exploits the Python library csaps with the method

CubicSmoothingSpline [70]. This module serves as low-pass filter and fits cubic splines to

the data points [71]. The cut-off frequency is chosen to fcut-off = 1/200 yr−1 which means
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3.1 Data

that all frequencies higher than fcut-off are filtered out in order to reduce the influence of noise

in the data.
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Figure 3.4: Smoothed δ18O signal using cubic smoothing splines. δ18O smoothed with cubic
smoothing splines using a cut-off frequency of 1/200 yr−1.

Cubic Smoothing Splines The cubic smoothing spline f is constructed based on the trade-off

between minimizing the two functions

S =
n∑

j=1

wj |yj − f(xj)|2 and (3.1)

Q =

∫ [
d2f(t)

dt2

]2
dt, (3.2)

where yj denote the data points f should be fitted to and wj are weighing factors. The first

term S is an error measure and the second term Q is roughness measure [?]. The smoothing

spline f then minimizes

pS + (1− p)Q, (3.3)

where p is the smoothing parameter calculated according to [71] as:

p =
1

1 + λ
and (3.4)

2πfcut-off = (λ∆t)
1
4 , (3.5)

with ∆t the mean distance between the data points.

3.1.3 Accumulation Rates and Surface Temperatures

The net accumulation rate is recorded in the layer-thickness profile based on the measured

δ18O signal obtained from ice cores. The used accumulation rates are reconstructed by [1]

who reduced the original accumulation rates of the SS09sea06bm chronology by up to 20% in

some time intervals to match measured δ15N data with modeled δ15N signals.
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The surface temperatures presented in Figure 3.3 are the surface temperatures reconstructed

by [1] who also exploited the correlation between δ18O and temperature. By using a firn

densification model coupled with heat and gas diffusion [1] calculated stable nitrogen gas

isotope distributions and tried to find the optimal parameters α and β in order to find the

best fit of modeled δ15N distributions to δ15N data. The reconstructed surface temperatures

are used at a later point as a comparison to the surface temperature histories reconstructed

in this thesis.

3.2 The Community Firn Model

The CFM is an open-source framework that provides several modules for the simulation of

various physical processes in the firn, such as firn densification [32], [34], [33], gas diffusion [44],

[20], [45], [29]
”
water isotope diffusion [72], heat transport [73], and meltwater percolation [74]

and refreezing [74], [75]. The focus in this work is set on firn densification and firn-air diffusion.

The CFM is implemented in Python and runs on Python versions 3.6+. In this thesis CFM

version 1.1.6 is used including the most recent adjustments for the Sigfus densification model

of CFM version 1.1.11.

Density is calculated explicitly in the CFM:

ρnew = ρold +
dρ

dt
· dt. (3.6)

The model grid is a one-dimensional Lagrangian (particle/material-following) grid with a fixed

number of volume elements. For each time step accumulation is added to the top of the firn

column as new volume element, and one volume element is removed from the bottom.

The CFM runs using a .json file which specifies the configurations for the model run. Further-

more, it requires temperature and accumulation forcing input files. The forcing files must be

csv formatted and contain temperature and accumulation forcing at the respective time steps.

Using timesetup: "interp" (to be specified in the .json file) allows for specifying only years

that denote a change in the temperature / accumulation forcing. The CFM then ”uses a uni-

form dt and interpolates the input data onto the timeline that the model generates.” [25]. A

short example is presented in Table 3.2.

The most important parameters specified in the .json file used for these experiments are listed

in Chapter A.

3.2.1 Running the CFM

The CFM run starts with a spin-up run which initializes the firn column and computes dens-

ification coupled with heat diffusion according to the chosen firn densification physics in a

certain time interval specified in the .json file (yearSpin). The parameters calculated for the

last time step during the spin-up are used to initialize the firn column for the main run which
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3.2 The Community Firn Model

.csv

Time steps [yr] -115000, -114991, -114978, -114969

Temperature forcing [°C] -36.6, -36.7, -36.9, -37.1

Time steps [yr] -115000, -114991, -114978, -114969

Accumulation [m ice equ./yr] 0.112, 0.113, 0.121, 0.122

Table 3.2: Formatting of temperature and accumulation forcing files. Simple example for the
formatting of temperature and accumulation forcing files including a temperature and accumulation
rate curve between the years −115000 and −114969.

uses the given input surface temperatures and accumulation rates. Specified outputs are saved

in .hdf5 format containing a set of firn columns over a specified timegrid.

Spin Run The spin run initializes a firn column defined by depth, density, age and temper-

ature with a fixed grid length. The grid length of the firn column is defined over the initial

thickness of the firn column (H - HbaseSpin, compare Chapter A) divided by the initial or

mean accumulation in meters in ice equivalent per specified time step.

During the first time step in the spin run the Herron and Langway model is used which models

the steady-state firn density, age profiles, and bubble close-off using the first or mean entry of

the temperature and accumulation forcing files. It returns age and density for each firn/ice

volume with corresponding depths. For the subsequent time steps the densification model

specified in the configuration .json file is used. The CFM is forced with the first surface tem-

perature and accumulation rate values in the .csv input files.

The CFM allows for the coupling of densification models to heat diffusion by enabling the

heat diffusion module (”HeatDiff”: true). The heat diffusion module solves the heat diffu-

sion equation according to Patankar’s approach to solve the general differential equation [73].

All experiments are performed with enabled heat diffusion using the thermal conductivity of

firn parameterized by [76].

For each time step a model grid update is performed. The spin up module returns the model

outputs depth, density, age of the ice and temperature at the last time step of the spin up.

These outputs are then used as initial state for the ”no-spin” or main run [25]. A flowchart

explaining the procedures during the Spin-up run is depicted in Figure 3.5.

Main Run The firn column of the main run is initialized with the parameters from the last

time step of the spin run. Contrary to the spin run, it is possible to enable firn air diffusion

in the main run. The firn air module can solve the firn air diffusion / firn air transport

equation (Equation 2.36) for various gases which can be specified in the AirConfig.json

file. For the experiments in this thesis the "gaschoice" is set to d15N2 since the focus

is on stable nitrogen gas isotopes. Furthermore, it is possible to specify the depth of the

convective zone. "ConvectiveZoneDepth" is set to 1.5m according to [26] which reflects a

modern value for Greenland at North GRIP location. Additionally, it is possible to specify the
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Figure 3.5: Computation flow diagram of Spin-up run of the CFM. The spin-run of the CFM
builds a firn column characterized by depth, density, age of the firn/ice and temperature. The firn
column of the last time step is saved and used to initialize the firn column for the main run.
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Figure 3.6: Computation flow diagram of Main-up run of the CFM. Contrary to the spin run,
it is possible to include firn air diffusion in the main run. The CFM solver.py module solves the
firn air diffusion equation (Equation 2.36). The output is saved as a time series of firn columns with
parameters as specified in the .json file.
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parameterization of the diffusion coefficient D (here: "Diffu_param": "Schwander" [46]),

the parameterization of the firn air advection (here: "advection_type": "Christo" [48])

and the types of firn air fractionation (here: "thermal": "on", "gravitational": "on").

The firn air diffusion equation is solved using the same solver.py module as for heat diffusion.

It returns the concentration C of stable nitrogen gas isotopes and the firn air advection rate

wair. Figure 3.6 depicts the computation flowchart of the main run.

One major drawback of the firn air module for these experiments is that the firn air is initialized

from scratch in the main run since firn air diffusion is only applicable in the main run. Values

of 15N are initialized with an array of ones. In order to get a full column with reasonable

values, which means ̸= 1, the main run has to run for as many time steps as firn boxes are

present within the model grid. This leads to an unnecessary loss of modeled δ15N data in

the beginning of the main run (and computation time). In order to overcome this problem a

module SecondSpin.py is implemented which will be introduced in Chapter 3.2.4.

3.2.2 Model Outputs

General Model Outputs The CFM saves all outputs specified in the .json configuration

file in an results.hdf5 file. For the experiments of this thesis, the following outputs are

saved: ”BCO”, ”Modelclimate”, ”age”, ”d15N2”, ”density”, ”depth”, ”diffusivity”, ”forcing”,

”gas age”, ”temperature”, ”w air” and ”w firn”. Most of the output files are saved as two-

dimensional arrays, with one dimension being the depth of the firn column and the other

dimension the modeltime. One-dimensional arrays (Modelclimate, forcing and BCO) only

have the modeltime dimension. The forcing is hereby consisting of two arrays containing the

values of the input forcing .csv files. Modelclimate is the temperature and accumulation

forcing interpolated to the modeltime. BCO is a set of several 1D arrays containing among

others the close-off depth and lock-in depth defined according to Martinerie [27], [31].

Figure 3.7 shows most of the model outputs of the CFM run using Barnola’s densification

model and activated firn air diffusion module. Furthermore, it is shown how the model outputs

change with time due to a change in the surface temperature forcing. In Figure 3.7 (b) the

density-depth profile is shifted towards higher densities with the change of temperature forcing

toward higher values with is related to the Arrhenius activation energy theorem predicting

a higher level of crystallization within the firn with higher temperatures. The δ15N isotope

signal in (c) first shows an almost linear progression for all times ti starting from δ15N= 0

(atmospheric values) until the close-off depth is reached and the isotope ratios cannot change

anymore. For t0 the first part of the curve is linear, since only gravitational diffusion happens

which has a linear dependence on depth (compare Equation (2.30)). For later times there is

a small deviation from a linear curve visible which is due to thermal diffusion induced by a

change in temperature forcing (compare Equation (2.31)). As the close-off depth decreases the

isotope signal gradually shifts toward lower δ15N values. The equilibrium after the temperature

forcing is reached again when the δ15N value in the ice does not change anymore. For both

δ15N plots in (c) and (d), a drop to δ15N= 0.0%� is visible which is due to the fact that
15N ratios are only initialized and modeled in the main run of the CFM. In order to yield

reasonable values for 15N ratios after their initialization with an array of ones, the model
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has to run for a certain amount of time until nitrogen gas isotopes diffused to the close-off

and closed up isotopes advected down the ice column within the ice matrix. (e) depicts how

the temperature within the firn/ice column changes over time due to the change in surface

temperature forcing. The close-off depth in (f) has a very similar shape to the temperature

forcing which is related to the fact that with higher temperatures, higher densities are reached,

and thus smaller close-off depths.
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Figure 3.7: CFM model outputs tracked with time using the firn densification model ac-
cording to Barnola and the firn diffusion module. (a) Surface temperature and accumulation
rate forcing. (b) Change of density with time depending on the temperature forcing. (c) Change of
δ15N with depth at different time steps during the model run. For t0 the curve shows an abrupt jump
to 0.0%� which is an artefact of the initialization of δ15N ratios with ones in the main run. (d)
δ15N at close-off depth. The same artefact as in (c) is present in the beginning of the model run. (e)
Change of temperature within the firn column for different time steps in the model run. (f) Change
of close-off depth with time.

δ15N and ∆age The parameter important for the temperature reconstruction by inverting

the CFM is δ15N at lock-in depth. The CFM gives lock-in depths and close-off depths accord-

ing to Martinerie as output (BCO). It is then possible to determine the corresponding δ15N

value at lock-in or close-off as well as corresponding ice age and gas age at lock-in or close-off.
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Knowing ice age and gas age at lock-in depth/ close-off depth allows then for the calculation

of ∆age.

The module read_d15N.py is implemented to read δ15N at close-off depth, lock-in depth or

the depth where the diffusivity becomes zero. It further returns corresponding ice age, gas

age and ∆age.

Figure 3.8 shows some exemplary outputs of δ15N plotted at close-off depth, lock-in depth

and depth where the diffusivity becomes zero against ice age (b) and gas age (c), respectively.

Figure 3.8 (d) shows corresponding ∆ages. The CFM is forced with temperatures and ac-

cumulation rates depicted in (a) and ran with a time resolution of 2 yr using Barnola’s firn

densification model and the firn air diffusion model.

It is visible that δ15N values plotted on ice age scale and gas age scale are shifted against each

other. δ15N on ice age scale describes the age of the ice when the nitrogen gas gets trapped in

gas bubbles. δ15N on gas age scale instead refers to the age of the nitrogen gas. It is assumed

that gases travel almost instantaneously through the firn. The gas age at lock-in depth is thus

0 yr and at close-off depth a little bit older (in this example in the range between 15 yr and

65 yr).

δ15N values for different depths (lock-in, close-off and zero diffusion) are very similar which

is reasonable since the vertical motion of gases is hampered as soon as sealing layers appear

(lock-in depth). δ15N for the different depths on gas age scale are slightly shifted against each

other which is most likely due to the different ∆ages associated with the respective depth

(compare Figure 3.8(d)).

For very quick and big changes in temperature δ15N are strongly oscillating for a short interval

of time which is most probably due to some numerical instability when calculating firn air

diffusion since no in-continuities occur in the close-off depth and lock-in depth, respectively

(compare Figure B.1).

3.2.3 Speeding up the Community Firn Model

Running the CFM with activated firn air diffusion module and heat diffusion module requires

1220 s in computation time for the time interval from −50 kyr to −30 kyr (modeltime of

20 kyr), an initial firn column of 550m and yearly time resolution. Since the model is sup-

posed to be inverted, which requires several 10 to 100 model runs depending on the inversion

method, and several inversions need to be performed, one goal of this project is to reduce the

computation time of the model. Thereby, three different approaches are followed. The first

approach is to try to compute on GPUs instead of CPUs allowing for parallel data processing

and thus lower computation times [77]. The second approach is to identify the bottlenecks

in the CFM code base and to optimize computation times using the Python library Numba

which allows for faster computation times by translating NumPy code and a subset of Python

code into fast machine code [78]. The third approach dealt with the reduction of the model

grid length which is defined by the depth of the initial firn column, time step length and

accumulation rate.
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Figure 3.8: δ15N and ∆age model outputs from the CFM. (a) Surface temperature and accu-
mulation rate forcing (from Figure 3.3). (b) δ15N at lock-in depth, close-off depth a depth where
diffusivity becomes zero plotted on ice age scale. (c) δ15N at lock-in depth, close-off depth a depth
where diffusivity becomes zero plotted on gas age scale. (d) ∆ages associated with the lock-in depth,
close-off depth and depth with zero diffusivity.

3.2.3.1 Hardware

The first approach of speeding up the model is to use GPUs instead of CPUs. The library

CuPy allows for GPU-accelerated computing with Python and can accelerate operations up to

100 times. Furthermore, CuPy is highly compatible with NumPy and SciPy which means that

most NumPy and SciPy operations can be replaced by cupy and cupyx.scipy. The major
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drawback of this approach is that CuPy utilizes CUDA Toolkit libraries which only support

a certain set of GPUs. The available GPU is an NVIDIA GeForce GTX 1080 Ti not being

supported by CUDA.

3.2.3.2 Bottlenecks

Figure 3.9: Profiling of CFM. cProfile of CFM running with temperature and accumulation rate
forcing from Chapter 3.1 in the time interval between −50 kyr and −30 kyr with an initial firn
column of 550m and yearly time resolution using Barnola’s densification model and Buizert’s firn
air advection parameterization. The grid length of the model is 8888. The profiling is performed
with cProfile and visualized with SnakeViz.

As a second approach, the Python library Numba is used. Numba is a just-in-time compiler for

Python that is able to transform Python code into machine code. It supports many NumPy

operations but does not work with all variable types e.g. dictionaries, strings and tuples (check

for accepted variable types on [79]). Since the CFM uses also other variable types than NumPy

arrays (e.g. Python dictionaries, strings) a profiling of the code base is performed in order

to identify the methods that are most heavy in computation time and to only rewrite these

methods in Python code that can be compiled with Numba. The bottlenecks of the CFM are

identified with cProfile which tracks the total time each method takes that is called during

the model run. For the profiling, the CFM is running with temperature and accumulation rate

forcing from Chapter 3.1 in the time interval between −50 kyr and −30 kyr with an initial firn

column of 550m and yearly time resolution using Barnola’s densification model and Buizert’s

firn air advection parameterization. The results of the profiler are visualized in Figure 3.9.

Out of a total model run time of 1220 s (top blue bar) the firn_air module uses most of the

time with 894 s. The firn_air module calls the solver module which solves the firn diffusion
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3.2 The Community Firn Model

equation and calculates the advection rate of firn air with the function w(). w() uses a total

time of 687 s which is why the focus is set on optimizing w().

w() receives a dictionary as input which contains several firn parameters saved as NumPy

arrays such as depth, temperature, open and closed porosity, the ice matrix advection rate,

etc. Since Numba cannot deal with dictionaries, w() is rewritten such that it receives the

NumPy arrays directly instead of the dictionary containing the arrays. w() then calls several

NumPy operations which are all supported by Numba except np.gradient() and np.size()

according to [79]. In order to overcome this problem the gradient is calculated outside w() and

then given to w() as input. Furthermore, a separate function calc_size() is implemented

only using NumPy operations supported by Numba in order to substitute np.size().

After this procedure, w() could be compiled using Numba without any compilation errors,

however the code ran slower than without using Numba (compare Figure 3.10(b)) which could

mean that Numba falls back into object mode (variable types are indicated as ”pyobject”)

because there is either a function called that is not supported by Numba or an unsupported

variable type is used. Consequently, Numba cannot translate the Python code to machine code.

After a thorough review of all variable types and used NumPy/Python operations no inconsist-

encies regarding supported NumPy operations or variable types (types would be denoted as py-

objects) could be found (compare w_type_inspect.txt and test_numpy_operations.ipynb

on GitHub). The reason for this failure could be that there is still an incompatibility between

the existing Python code and Numba that is not reported by inspect_types() and the com-

piler.

Figure 3.10 depicts the time tracking of w() (b) with a model run of the CFM using the

model input from −50 kyr to −30 kyr (a). For the time tracking of w() and the most time

consuming NumPy operations called by w() the time library is used [80]. It is visible that w()

compiled with Numba (blue curve) takes more time than w() without using Numba (violet

curve). Furthermore, the elapsed time for each time step is different which seems to correlate

with the length of an array that the most time consuming NumPy operations called by w()

(np.transpose() (denoted as T1), np.reshape() (denoted as reshape1 and reshape2)) are

using as input: All of these functions use a NumPy array as input that has the length of

op_ind2. op_ind2 denotes all indices of the firn column array where the open porosity is

unequal 0. It thus describes the firn column from the surface of the ice sheets til the lock-in

depth (c). Since the lock-in depth highly depends on the temperature and accumulation rate

input, the length of op_ind correlates with the CFM input and the lock-in depth, which also

explains the variability in consumed time per function call in (c).

3.2.3.3 Model grid

As a third approach for the reduction of the total model run time the resolution of the firn

column is reduced. This is achieved by decreasing the time resolution of the modeltime grid

from 1 yr to 2 yr, 5 yr, 10 yr and 20 yr respectively. The reduction of the time resolution results

in a lower resolution of the firn column array and thus in the reduction of total model run

time (compare Figure 3.11) since the number of firn/ice volumes in the model grid is defined
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Figure 3.10: Time tracking of w() (a) Surface temperature and accumulation rate input for
the CFM. (b) Consumed time per function call of w() compiled with Numba (blue curve) and
without Numba (violet curve). The green curves show time consumption by NumPy operations
np.transpose() (T1) and np.reshape() (reshape1, reshape2) that are called by w() and which
use an array of length of op_ind2 as input. op_ind2 describes the part of the firn column are the
open porosity is unequal zero and thus correlates with the lock-in depth. The variability of the length
of op_ind2 explains the variability in time consumption per function call of w(), np.transpose(),
and np.reshape(). (c) Variability of length of array op_ind2 and lock-in depth with time (and cor-
responding surface temperature and accumulation rate input).

as [25]:

N =
H− HbaseSpin

bdot0/stpsPerYear
, (3.7)

where H is the thickness of the ice sheet, HbaseSpin is the bottom height of the initial firn

column, bdot0 is the first entry or mean of the accumulation rate per year in meters ice
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equivalent and stpsPerYear is the number of time steps per year which define the modeltime

grid. An experiment with the CFM is performed in order to investigate how a reduction
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Figure 3.11: Reduction of total model run time due to reduction of time resolution. A
reduction of time resolution results in a decrease of the grid length of the firn/ice column and thus
in a decrease in total model run time of the CFM. The CFM is forced with surface temperatures
and accumulation rates depicted in Figure 3.12(a) and ran using Barnola’s densification model and
activated firn air module.

in the model grid length affects the accuracy of modeled δ15N. Thereby, a periodic surface

temperature forcing with a frequency of 1/1000 yr is used (see Figure 3.12 (a)):

TS = 240K+ 5 · sin
(

1

1000 yr
· 2πt

)
. (3.8)

Accumulation rates are chosen according to [72] and follow a logarithmic relation to temper-

ature:

ln(A) = −21.492 + 0.0811 · TS. (3.9)

The modeled δ15N values at lock-in depth for different time resolutions are depicted in Figure

3.12(b). In order to measure uncertainties regarding the time resolution a standard deviation

of δ15N values at lock-in depth at 2 yr, 5 yr, 10 yr and 20 yr time resolution is calculated with

respect to δ15N values at 1 yr time resolution (which is assumed to deliver the most accurate

results).

The standard deviations for a 2 yr and 5 yr time resolution are 0.0012%� and 0.0055%� re-

spectively (see Table 3.3), which is within the smallest uncertainty of measured δ15N (0.006%�)
indicated in Table 3.1. For a 10 yr and 20 yr time resolution the standard deviations are clearly

higher than the smallest uncertainty for measured δ15N.

It is assumed that time resolutions with a standard deviation within or considerably smaller

than the uncertainty range of measured data fulfill the criteria to yield reliable model results.

Since a 2 yr time resolution results in the smallest standard deviation (approximately 4.5 times

smaller than for 5 yr time resolution and 5 times smaller than the uncertainty for measured
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Figure 3.12: Modeled δ15N using different time resolutions. (a) Periodic surface temperature
and accumulation rate forcing with a frequency of 1/1000 yr−1. (b) Modeled δ15N at lock-in depth
using the CFM with different modeltime resolutions. Note: δ15N for time resolutions of 15 yr and
20 yr are not depicted because for both time resolutions δ15N shows a very high variability and very
high deviations from 1 yr resolution which would make the plot unreadable. However, standard devi-
ations for all modeltime resolutions with respect to the 1 yr time resolution are specified in Table 3.3.

δ15N) and already a considerably lower model run time than the 1 yr time resolution (compare

Figure 3.11) all following results are performed using a 2 yr time resolution.

Time resolution [yr] 2 5 10 20

Standard deviation σ [%�] 0.0012 0.0055 0.0134 0.0221

Table 3.3: Uncertainties of modeled δ15N using different time resolutions in the CFM.

3.2.4 Second Spin

As mentioned in Chapter 3.2.4, it is not possible to include firn air diffusion in the spin run of

the CFM and consequently no δ15N values are calculated in the firn column. δ15N values are

initialized at the first time step of the main run with an array filled with ones. The drawback
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Figure 3.13: Exemplary model run with and without second spin. (a) Temperature forcing
including the constant temperature forcing (dashed orange line on blue background) the CFM creates
internally for the spin run by using the first temperature value from the temperature forcing file.
The solid orange curve on pink background is the temperature forcing used for the second spin. The
green curve is the temperature forcing in the second main run which is initialized from the last time
step of the second spin run. (b) The orange curve represents the δ15N modeled by the CFM during
the second spin. The green curve is the δ15N modeled during the second main run. The red curve
represents δ15N running in the same time interval as the second main run (green) but without second
spin. The black solid line represents a long run without second spin as comparison to the other model
runs.

of this procedure is that it takes a while until the nitrogen isotopes diffuse through the firn

column and realistic δ15N values at lock-in depth are yielded. In order to overcome this

problem the module secondSpin.py is implemented. secondSpin.py reads all parameters

of the firn column that are necessary to initialize the firn column (depth, age, density, age,

temperature and grain size) at ca. 5000 yr after the main run started. This period of time is

called the ”second spin”. secondSpin.py further reads also the parameters that are initialized

for the firn air (diffusivity, firn air advection rate, ice matrix velocity, gas age and values of
15N) at ca. 5000 yr after the main run started. All these parameters are then saved in the

spin.hdf5 file.

Then, a second CFM run is started at the time the first CFM main run stopped. The code

in the CFM is slightly altered to allow for the initialization of all firn air parameters from the

spin.hdf5. For this purpose the key "SecondSpin": true/false is introduced in the .json

configuration file. If "SecondSpin": true, all firn and firn air parameters are initialized

using spin.hdf5 created in the previous main run (see Figure 3.14).

Following this approach allows for realistic δ15N values from the beginning of the second main

run. Figure 3.13 shows CFM runs with (green curve in (b)) and without second spin run (red

curve in (b)) in comparison in a time interval from −43 800 yr to −30 000 yr. While the green

39



3 Materials and Methods

-5
25

00
-5

50
00

-5
00

00
-4

75
0
0

-4
25

00
-4

00
00

-3
75

00
-3

50
00

-3
25

00
-3

00
00

A
ge

 G
IC

C
0
5 

[y
r]

-3
5

-4
0

-4
5

-5
0

-5
5

Temperature [°C]

Accumulation [m ice / yr]

0.
10

0.
08

0.
0
6

0.
0
4

-4
50

00

-5
25

0
0

-5
50

0
0

-5
00

00
-4

75
00

-4
25

00
-4

00
00

-3
75

00
-3

50
00

-3
25

00
-3

00
00

G
as

 a
g
e 

G
IC

C
05

 [
yr

]

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

δ
15

N [‰]

-4
50

00

t 0
-2

.S
pi

n
t M

-2
.S

p
in

S
pi

n 
R

un

1.
 C

F
M

 r
u

n
2.

 C
F

M
 r

un

1.
 M

ai
n 

ru
n 

- 
"2

. S
pi

n"

-5
25

00
-5

50
00

-5
00

00
-4

75
00

-4
25

00
-4

00
00

-3
7
5
0
0

-3
5
00

0
-3

25
00

-3
00

00

A
g
e 

G
IC

C
0
5
 [

y
r]

Accumulation [m ice / yr]

0.
1
0

0.
0
8

0.
06

0.
04

-4
50

00

-3
5

-4
0

-4
5

-5
0

-5
5

Temperature [°C]

-5
25

00
-5

50
00

-5
00

00
-4

75
00

-4
25

00
-4

00
00

-3
7
5
0
0

-3
5
00

0
-3

25
00

-3
00

00

G
as

 a
ge

 G
IC

C
05

 [
yr

]

-4
50

00

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

δ
15

N [‰]

2.
 M

ai
n

 r
un

 
in

it
ia

li
ze

d
 f

ro
m

  
t M

-2
.S

pi
n

t 0
-1

.S
pi

n
t M

-1
.S

pi
n

. .
 .

. .
 .

T
(z

, t
M

-2
.S

pi
n)

ρ
(z

, 
t M

-2
.S

pi
n)

ag
e(

z,
 t

M
-2

.S
pi

n)

z(
t M

-2
.S

pi
n)

w
fi

rn
(z

, t
M

-2
.S

pi
n)

C
15

N
(z

, t
M

-2
-S

pi
n)

D
(z

, t
M

-2
.S

pi
n)

ga
s 

ag
e(

z,
 t

M
-2

.S
p
in

)

T
(z

, t
0-

2
.M

ai
n)

ρ
(z

, t
0-

2.
M

ai
n)

ag
e(

z,
 t

0-
2.

M
ai

n)

z(
t 0

-2
.M

ai
n)

w
fi

rn
(z

, t
0-

2
.M

ai
n)

C
1
5N

(z
, t

0
-2

.M
ai

n)
D

(z
, t

0
-2

.M
ai

n)
ga

s 
ag

e(
z,

 t
0-

2.
M

ai
n)

t 0
-2

.M
ai

n
t M

-2
.M

ai
n

. .
 .

 

sa
ve

 t
o

 
sp
in
.h
fd
5

in
it

ia
li

ze
 f

ro
m

 
sp
in
.h
df
5

Figure 3.14: Flow diagram for the CFM using a second spin. In order to prevent the model from
producing unrealistic δ15N values in the beginning of the main run, a second spin run is introduced
which basically saves the parameters needed to initialize the firn (air) column at time step tM-2.Spin.
In a second run of the CFM the firn (air) column is initialized using these saved parameters.
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3.3 Minimizers

δ15N curve is initialized from the second spin run (orange curve) the red curve is initialized

from a normal spin run with constant temperature forcing (not depicted). It is visible that

it takes around 2000 yr until the green and red curve meet. Furthermore one can clearly see

the time interval in the beginning where the ”firn air column” starts building up, both for

the orange and the red curve. The black line is a comparison of firn (air) column that has

already been built up for 6000 yr before the other two firn columns are initialized and build

up. After the build up all three curves show similar δ15N distributions. However, there are

some intervals with a clear difference of up to 0.04%� which is remarkable since all model runs

are forced with the same surface temperatures just with a different starting time.

3.3 Minimizers

Paleo surface temperatures are reconstructed from δ15N values by inverting the CFM with

two commonly used/standard minimizers from the scipy.optimize library. The minim-

izers used are the minimize and the least_squares functions [54]. The optimizing method

used for minimize is Nelder-Mead [56]. The input parameters for both parameters are the

function f to be minimized and an initial guess of variables θ0 = [α0, β0]. The general

idea of the minimizer is to create a function f that calculates a surface temperature his-

tory from δ18O data exploiting the linear relation between δ18O and temperature. The

resulting temperature history is then passed to the CFM which models firn densification,

heat diffusion and gas diffusion processes, and returns δ15N at lock-in depth. Depending

on the minimizer used f subsequently returns either a self-defined cost function that cal-

culates the mean squared error (MSE) between modeled δ15N and δ15N data (scalar out-

put) or the absolute value of the difference between modeled δ15N and δ15N data (non-

scalar output). Two modules inversion_minimize_linear_SecondSpin.py and inver-

sion_leastSquares_linear_SecondSpin.py are implemented in order to reconstruct paleo

surface temperatures using minimize and least_squares. As mentioned in Sections 3.2.2

and 3.2.4, the CFM only allows for gas diffusion calculations in the main run. In order to

ensure a well-defined starting condition for the firn column (and firn air) a second spin run is

needed. Consequently, the modules are structured such that two optimizations are performed

successively: one for the first run of the CFM including first and second spin run, and one for

the second CFM run, hereinafter called ”Second Main” run. The first optimization minimizes

fSpin in a time interval of ca. 7000 yr before the desired time interval to be modeled in the

second main run. The second optimization minimizes fMain in the desired time interval. This

procedure provides an already good first temperature guess for the second main run. Fur-

thermore, it reduces the influence of the so-called ”memory effect” which is the influence of

earlier firn states on later firn states caused by temperature and accumulation rates at earlier

time stages [24]. In the following, it will be explained in more detail how fSpin and fMain are

structured and implemented (see also Figures 3.15 and 3.16).

In general, fSpin and fMain are structured quite similarly. The first guess for α and β is used

to calculate the temperature forcing according to:

T = 1/α · δ18Osmooth + β. (3.10)
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The temperature is then saved as input_T.csv input file and passed to the CFM together

with the accumulation rate forcing file input_Acc.csv which stays the same throughout

the whole first optimization step. For each iteration the CFM runs with activated spin

run. The CFM usually returns a spin up file spin_SecondSpin.hdf5 and a results file res-

ults_SecondSpin.hdf5. In some cases, no output files are created because the CFM crashes

which happens when the close-off depth is below the actual end of the modeled firn column.

This can happen even though a big initial firn depth is set (550m) because the firn boxes can

become very thin during time intervals with low surface temperatures accompanied by low

snow accumulation rates. If no output files are created, no modeled δ15N values exist and

consequently no cost function is calculated which leads to an abortion of the minimizer. In

order to overcome this problem a condition is added which checks whether a results file exists.

If no results file exists the cost function is set directly to a high value (e.g. 100, but sometimes

the value had to be adjusted to even higher values). In the case of a successful CFM run

modeled δ15N values at lock-in depth, ice age, gas age and ∆age are read or calculated from

the results file with get_d15N_model(). Since the number of available δ15N model points

is significantly higher than available data points (2 yr time resolution vs. a mean distance

between data points of 60 yr), the modeled δ15N signal is interpolated to available ice age

time steps from the data set using interpolate_model_to_data(). In a next step the cost

function is calculated. For minimize the cost function has to be a scalar value [54] and it is

chosen as the MSE scaled with the uncertainty σδ15N of δ15N data (see Table 3.1):

M̃SE =
1

N
·
∑N

i=0(δ
15Ndata,i − δ15Nmodel, i)2

σ2
δ15N,i

, (3.11)

with N the number of available data points in the selected ice age interval.

For least_squares the cost function is simply defined as the absolute value of the dif-

ference between modeled δ15N and δ15N data (residuals) and is non-scalar. The method

least_squares then internally calculates a loss function from these residuals. least_squares

has several options to calculate the loss function, and it is chosen to "linear", which calcu-

lates the loss according to a standard least square problem [54]. The cost function is calculated

using only δ15N values in the second half of the time interval to prevent the minimizer from

fitting δ15N in a time interval where no reasonable firn column is developed yet.

For each iteration step the parameters α and β are altered as described in Section 2.4. Fur-

thermore, all important parameters (α, β, modeled gas age, modeled ice age, modeled δ15N

and δ15N data) are saved in a dictionary. If one of the termination criteria (maximum number

of iterations reaches, tolerance by the change of the cost function, tolerance by the change of

independent variables α and β, or the tolerance by the norm of the gradient is reached [54])

is fulfilled the iteration stops and the dictionary is saved as .h5 file.

Next to the parameters saved in the .h5 file, the spin_SecondSpin.hdf5 file is rewritten as

described in Section 3.2.4 to allow the firn (air) column to be initialized from the firn column

of the last time step of the second spin run.

Then the second optimization step starts in the desired time interval starting at the last time

step of the second spin run. A new accumulation file is saved for the new time interval and the

corresponding δ18O data is selected and smoothed. The first guess for the parameters α and
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β are the optimum parameters αopt, 2.Spin and βopt, 2.Spin determined by the minimizer in the

first optimization step. Then, the CFM is started using the new temperature and accumula-

tion input files and with "SecondSpin": true specified in the .json file, which makes the

CFM initialize the firn column from the new spin file. Since no spin run is performed during

the second optimization step fMain is implemented in a slightly different way than fSpin. The

firn column initialized in the second main run corresponds to the temperature history in the

last time step of the second spin. However, the minimizer changes the temperature curves

with varying parameters α and β which means that there is a rapid jump in the temperature

signal right after the initialization. Such a sudden jump in temperature would also cause a

sharp change in the firn parameters and as such contribute to the memory effect. To reduce

this effect a linear temperature ramp is inserted in the first 1000 yr of the main run connecting

the temperature at initialization with the temperature guess of the respective iteration step.

That way, the firn column is slowly adjusted to the change in climatic condition and thus the

CFM is also less likely to deal with numerical instabilities which sometimes occur during rapid

and big jumps in temperature.

The following steps are the same as for fSpin. The cost function is calculated from ca. 1000 yr

after the end of the linear temperature forcing. As for fSpin all necessary parameters are saved

in a dictionary for each iteration step and saved as .h5 when the minimizer stops.
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δ18Osmooth, 2.Spin  , Acc2.Spin save as input_Acc.csv

save as input_T.csv

Minimizer: θ0,2.Spin = [α0,2.Spin, β0,2.Spin ], fSpin

T = 1/α2.Spin ⋅ δ
18Osmooth,2.Spin + β2.Spin

CFM: input_T.csv, input_Acc.csv 

Firn densification 
Heat diffusion 
Gas diffusion

results_SecondSpin.hdf5
spin_SecondSpin.hdf5

get_d15N_data: data_NorthGRIP.xlsx, ice_agemodel,2.Spin

calc_cost_func: δ15Nmodel, 2.Spin, interp , δ
15Ndata, 2.Spin  

get_d15N_model: results_SecondSpin.hdf5

interpolate_model_to_data: ice_agemodel, 2.Spin, 
                                             δ15Nmodel, 2.Spin, 
                                             ice_agedata, 2.Spin  

ice_agemodel, 2.Spin, gas_agemodel, 2.Spin, 

δ15Nmodel, 2.Spin, Δagemodel, 2.Spin

ice_agedata, 2.Spin, 
δ15Ndata, 2.Spin

Read model outputs at lock-in depth 

δ15Nmodel, 2.Spin, interp 

results_SecondSpin.hdf5
exists?

YES

YES

NO
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cost function = 100

new guess
for α2.Spin 
and β2.Spin

cost function =
1/Ndata  ∑ (δ15Ndata, 2.Spin, i - δ

15Nmodel, 2.Spin, interp, i)
2 

σi
2

termination criteria
fulfilled?

fSpin: θ2.Spin = [α2.Spin, β2.Spin ] 

cost function

write to dictionary: count, 
                α2.Spin, β2.Spin , 
                δ15Nmodel,2.Spin, interp,
                δ15Ndata, 2.Spin,
                ice_agemodel, 2.Spin, interp, 
                gas_agemodel, 2.Spin, interp,
                cost function
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ρ(z, tM-2.Spin)
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z(tM-2.Spin) wfirn(z, tM-2.Spin)
C15N(z, tM-2-Spin)
D(z, tM-2.Spin)
gas age(z, tM-2.Spin)

spin_SecondSpin_NEW.hdf5

save dictionary to .h5

Figure 3.15: Computation flow diagram for the inversion of the CFM using a common
SciPy minimizer. To be continued in Figure 3.16.
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Minimizer: θ0,2.Main = [α0,2.Main, β0,2.Main ]

CFM: input_T.csv, input_Acc.csv,
spin_SecondSpin_NEW.hdf5 
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Heat diffusion 
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results_SecondMain.hdf5
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18Osmooth,2.Main + β2.Main  

get_d15N_data: data_NorthGRIP.xlsx, ice_agemodel,2.Main

calc_cost_func: δ15Nmodel, 2.Main, interp , δ
15Ndata, 2.Main  

get_d15N_model: results_SecondMain.hdf5
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                                             δ15Nmodel, 2.Main, 

                                             ice_agedata, 2.Main  
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δ15Nmodel, 2.Main, Δagemodel, 2.Main
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δ15Nmodel, 2.Main, interp 
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NO
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                α2.Main, β2.Main , 
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                δ15Ndata, 2.Main,
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minimize_SecondMain.h5

count += 1
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for α2.Main 
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count += 1

θopt,2.Main = [αopt, 2.Main, βopt, 2.Main]

save dictionary to .h5

δ18Osmooth, 2.Main  , Acc2.Main

save as input_Acc.csv

spin_SecondSpin_NEW.hdf5

minimize_SecondSpin.h5

get_θ_opt_SecondSpin: minimize_SecondSpin.h5              

αopt, 2.Spin, βopt, 2.Min = α0, 2.Main, β0, 2.Main

NO
count = 0 ?

YES

Topt, 2.Main

Figure 3.16: Continuation of computation flow diagram in Figure 3.15.
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3.4 Experiments

The aim of this project is to obtain surface temperature histories at North GRIP from stable

nitrogen isotopes by using different firn densification and gas diffusion models from the CFM

and commonly used built-in minimizers provided by Python. Furthermore, it should be eval-

uated how small or large differences in surface temperature histories are depending on the

choice of model and minimizer.

In order to assess this, several experiments are conducted which will be presented in the

following.

3.4.1 Experiment 1: Comparison of Firn Densification and Gas Diffusion

Models using Kindler’s Surface Temperature History

As a first approach, the CFM is forced with surface temperature and snow accumulation rate

histories for North GRIP during the Last Glacial (10 - 122 kyr b2k) reconstructed by [1] (see

Section 3.1). Thereby, a set of four different firn densification models and four different gas

diffusion models is used. The four densification models are Barnola, Herron and Langway,

Herron and Langway with Sigfus Johnsen formulation, and Goujon. The first three firn air

diffusion models are based on the firn air diffusion module of the CFM and either calculate

the firn air advection according to [48] (referred to as ”Christo” in the CFM) and [49] (referred

to as ”Darcy” in the CFM) or neglect firn air advection (referred to ”zero” in the CFM). In

the fourth gas diffusion model, the firn air diffusion module is not used and stable nitrogen

isotope ratios are calculated according to Equations (2.30) and (2.31).

In order to compare the models with each other and to compare the models with previous

studies ( [1], [24]) the mean mismatch Dmean is calculated as in [24]:

Dmean =
1

N

N∑
i=0

∣∣δ15Ndata,i − δ15Nmodel,i

∣∣ , (3.12)

with N the number of available measured δ15N data points within the optimization time

interval.

3.4.2 Experiment 2: Automated Firn Model Inversion Using Two

Minimizers and Different Firn Densification and Gas Diffusion Models

For this experiment, the CFM is run with snow accumulation rates from [1] and surface tem-

peratures reconstructed from smoothed δ18Oice as input (compare Equation 3.10). Different

combinations out of four firn densification models and four gas diffusion models are used. The

optimum parameters for α and β to fit modeled δ15N to measured δ15N are determined by

inverting the CFM using the Nelder-Mead algorithm or the least squares algorithm (presented

in Sections 2.4 and 3.3). In total, 32 inversion runs are performed for the full dataset provided

by [1] according to the procedure described in Section 3.3. For these inversions, it is not

accounted for the fact that α changes with time. This means, the optimization is performed
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over the full data set without windowing resulting in a single set of α and β.

One aim of this experiment is to evaluate the performance of the two minimizers with re-

spect to their suitability for the reconstruction of ancient surface temperatures from stable

nitrogen isotope ratios. The evaluation of the minimizers is based on how well the modeled

δ15N values fit the measured δ15N and how fast the algorithms converge. For this purpose,

Dmean, M̃SE and the Pearson correlation coefficient r are calculated. r is determined using

scipy.stats.pearsonr [81]. Furthermore, for each inversion the number of function calls as

well as improvements (referred to as a decrease of the cost function (M̃SE)) are documented.

The second aim of this experiment is to assess how the choice of different firn densification

models and different gas diffusion models influences the difference in reconstructed surface

temperature histories.

All optimization runs are started with the same initial guess α0 = 0.37%�K−1
and β0 = 73K

and performed in the time interval 10 - 122 kyr b2k.

3.4.3 Experiment 3: Randomized Firn Model Inversion

This experiment is performed similarly to experiment 2. The optimization is run by randomly

selecting a firn densification model out of BAR, HLD, HLS and GOU and a gas diffusion

model out of Christo, Darcy, zero and FA-off for each iteration step of the optimization in

order to test the temperature sensitivity to a randomly selected firn model and to investigate

whether the least squares algorithm can deal with a variable function f to be minimized.
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Chapter 4

Results and Discussion

4.1 Experiment 1: Comparison of Firn Densification and Gas

Diffusion Models using Kindler’s Surface Temperature

History

In order to investigate the performance of different firn densification and gas diffusion models,

various models are forced with the same input surface temperature histories reconstructed

by [1]. The modeled δ15N values are depicted in Figures 4.1 and 4.2.

Figure 4.1 shows modeled (coloured curves) and measured (black line with dots) δ15N on

gas age scale for the Barnola (BAR, blue), Herron and Langway (HLD, orange), Herron

and Langway with Sigfus Johnsen formulation (HLS, pink) and Goujon (GOU, green) firn

densification models with activated firn air diffusion module using firn air advection according

to Buizert [48] (”Christo”).

BAR shows a very similar trend to HLD and HLS which can be explained by the fact that all

three of the models use the Herron and Langway formulation at least for the first densification

zone. The three models show differences especially for rapid and large changes in surface

temperature during DO events. Here, some numerical instabilities seem to occur for HLD

and HLS. Furthermore, HLD reacts very slow to a (gradual) decrease in temperature after a

rapid increase which was also noted by [25] who state that the HLD model is less suitable for

transient climates with rapid changes in the climatic condition.

As seen from Figure 2.2 firn parameters such as the lock-in depth highly vary with the choice

of the firn densification model which results in a variation in stable nitrogen ratios at lock-in

depth which is also observed in this experiment.

The mean mismatches between measured and modeled δ15N in this study are in general higher

than the mean mismatches between measured and modeled δ15N by [1] and [82] (compare

Table 4.1) who used a firn densification model following the Barnola formulation [83], [34]. In

fact, the Barnola model fits the measured δ15N data best using the reconstructed temperature

history from [1]. Differences between this study and [1] and [24] may stem from the used firn

air diffusion model accompanied with a different parameterization of the thermal diffusivity

and/or usage of a different e.g. firn conductivity parameterization. [24] calculated stable

nitrogen isotope ratios from Equations (2.30) and (2.31) while the results presented here are
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obtained using the firn air diffusion model which solves the firn air transport equation (compare

Equation (2.36)).

Kindler Döring BAR HLD HLS GOU
et al. 2014 2020

Dmean [permeg] 18 20 28 43 38 44

Table 4.1: Comparison of the mean mismatch Dmean according to Equation (3.12) of the four different
firn densification models (BAR, HLD, HLS and GOU) with previous studies of Kindler et al. (2014)
[1] and Döring (2020) [24].

Figure 4.2 shows again modeled and measured δ15N and the surface temperature reconstructed

by [1] which is used to force the CFM. For this experiment the CFM is run with firn densific-

ation according to Barnola [34] and different firn air diffusion models. ”Christo”, ”Darcy” and

”zero” refer to an enabled firn air diffusion module with firn air advection calculated according

to [48] and Darcy [49] or firn air advection set to zero. ”FA off” refers to a model run without

activated firn air module. In this case δ15N is calculated according to Equations (2.30) and

(2.31).

It is notable that the modeled δ15N agree better with measured δ15N than in the previous

experiment, which is also clear from the mean mismatch Dmean (compare Table 4.2). The

best agreement is achieved with the last model run (Dmean = 25permeg) which does not

use the firn air diffusion module. This is probably because stable nitrogen isotope ratios are

calculated using the closest approach to [1] to model δ15N. For the last model run the firn

air diffusion module is not used and thermal and gravitational fractionation are calculated as

described previously. Furthermore, as described in Section 2.2 also the parameterizations of

the thermal diffusion sensitivity slightly differ for the two approaches for calculating stable

nitrogen isotope fractionation which could be an additional reason for differences in modeled

δ15N.

Even though the firn air transport equation is solved including the advection term, advection

Kindler Döring Christo Darcy zero FA off
et al. 2014 2020

Dmean [permeg] 18 20 28 28 28 25

Table 4.2: Comparison of the mean mismatch Dmean according to Equation (3.12) of the four different
firn air diffusion models (Christo, Darcy, zero, FA off) with previous studies of Kindler et al. (2014)
[1] and Döring (2020) [24].

almost does not have an influence on the δ15N values at lock-in depth. Modeled δ15N using

the firn air diffusion module provided by the CFM are very similar for all three configurations

even though calculated firn advection velocities are quite different from each other and in the
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Kindler’s Surface Temperature History
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Figure 4.1: δ15N modeled with the CFM using surface temperatures reconstructed by [1] as input
and four different densification models (Barnola (BAR), Herron and Langway (HLD), Herron and
Langway using Sigfus Johnsen formulation (HLS) and Goujon (GOU)). δ15N are calculated with
activated firn air module and Buizert’s formulation for firn air advection.

51



4 Results and Discussion

order of magnitude of the velocity of the ice matrix. While for Christo’s advection model the

firn air advection increases with depth until the lock-in depth, an opposite effect is observed

for the implemented Darcy model where firn air advection gradually decreases with depth and

follows basically the ice matrix (compare Figure 4.2). The advection rate according to Christo

becomes more apparent in warmer climates (compare Figure 4.3(a) with (b)). However, wair

ceases quickly within the upper 20m of the firn column and then the firn air follows the

velocity of the ice matrix.
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Kindler’s Surface Temperature History
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Figure 4.2: δ15N modeled with the CFM using surface temperatures reconstructed by [1] as input, the
Barnola firn densification model and four different gas diffusion models (”Christo”/”Darcy”/”zero”:
firn air diffusion module enabled with firn air advection according to Christo Buizert/ firn air ad-
vection according to Darcy/ no firn air advection; ”FA off”: firn air diffusion module disabled).

53



4 Results and Discussion

0.15 0.20 0.25 0.30

Velocity [m/yr]

0

50

100

150

200

250

300

350

D
ep

th
[m

]

(a)
Time step t5000 = -112000 kyr

wfirn

wair - Christo

wair - Darcy

0.06 0.08 0.10 0.12 0.14

Velocity [m/yr]

0

25

50

75

100

125

150

175

D
ep

th
[m

]

(b)
Time step t30000 = -62000 kyr

wfirn

wair - Christo

wair - Darcy

Figure 4.3: Firn air advection rates for Darcy’s and Christo’s model for different time
steps. Firn air advection rates and the downward velocity of the ice matrix (wfirn) are plotted against
the depth of the firn column at time steps (a) −112 000 yr and (b) −62 000 yr. The excursions visible
for Darcy’s model (orange curve) at around 15m depth stem from an almost Zero division occurring
when the change in air pressure within the firn column due to the change in open porosity is calculated
in the CFM.
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Firn Densification and Gas Diffusion Models

4.2 Experiment 2: Automated Firn Model Inversion Using Two

Minimizers and Different Firn Densification and Gas

Diffusion Models

This experiment is performed in order to investigate how well the two selected minimizers

perform for the inversion of the CFM. In total 32 inversions are performed using a combination

out of four different firn densification models (BAR, HLD, HLS, GOU), four different gas

diffusion models (Christo, Darcy, zero, FA-off) and two minimizers (Nelder-Mead algorithm

(NM), least squares (LS)).

The inversion is performed over a time interval between −120 000 yr and −10 000 yr using

the inversion approach including the second spin as described in Section 2.4 and a single set

of parameters α and β over the whole time interval for the second main run.

Tables 4.3 and 4.4 show the optimum parameters α and β found in the minimization time

interval for the second spin and second main run, respectively. Furthermore, the tables

indicate the cost functions calculated for the last iteration step, the mean mismatch for the

first guess and the last iteration step, the number of calls of fSpin and fMain and the number

of improvements (with respect to the cost function).

Figures 4.4 and 4.5 show reconstructed surface temperatures and δ15N at lock-in depth on

gas age scale using the four different firn densification models and Christo’s firn air diffusion

model for a minimization performed with the Nelder-Mead algorithm and the least squares

algorithm, respectively. Figures 4.6 and 4.7 show again reconstructed surface temperatures

and δ15N for model runs performed using Barnola’s firn densification model and four different

gas diffusion models using the Nelder-Mead algorithm and the least squares algorithm, re-

spectively. All corresponding ∆ages and δ15N on ice age scale are depicted in Figures C.1-C.4.

In general, the modeled δ15N fits measured δ15N well during the second spin run (between

−122 000 yr and −113 000 yr) for all configurations with cost function values between 3.29

and 8.52%�2 in a time interval of 9000 yr. However, α and β thereby vary widely for different

minimizers but same firn densification and gas diffusion model configuration. For most of

the cases, the least squares algorithm seems to find the better solution compared to the

Nelder-Mead algorithm which can be seen from mostly lower cost function values (by a factor

of up to 2.4) and mostly lower mean mismatch values. For all inversions the mean mismatch

value is significantly decreased compared with the mean mismatch corresponding to the

initial guess (from Dmean,0 between 94.72 and 196.83 permeg to Dmean between 9.81 and

44.14 permeg).

For the second main run, cost function and mean mismatch values are significantly higher

than for the second spin run. Furthermore, both minimizers find different but sometimes

similarly well performing optimum solutions for α and β. When comparing cost functions

and mean mismatches of the Nelder-Mead algorithm and the least squares algorithm the least

squares algorithm performs even slightly worse. However, the least squares algorithm clearly

outperforms Nelder-Mead in terms of the number of function calls which results in a lower

overall run time of the inversion.

Another interesting results is that especially for the time intervals between −80 000 yr and

−58 000 yr, and between −32 000 yr and −23 000 yr the Nelder-Mead algorithm overestimates
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δ15N by up to 0.14%� for the densification models coupled to the Christo firn advection model

which could be due to a more sparse data set within these intervals. Even though the modeled

δ15N overestimates measured δ15N by a lot, the cost function or Dmean are not affected too

much by these values. For future optimizations it could thus be very useful to include some

weighing factors for sparse data intervals into the cost function to avoid a bad fit in time

intervals with sparse data.

The second aim of this experiment was to compare temperature histories resulting from the

optimization of a range of different firn models and evaluate the fits of modeled to measured

δ15N.

By looking at cost function and mean mismatch values determined for the second main run in

Table 4.4 one can see that the best fits of δ15N were obtained for the Barnola model, followed

by Goujon, and then Herron and Langway with Sigfus formulation. The worst fits were ob-

tained using the Herron and Langway model which can be explained with the fact that Herron

and Langway reacts slowly to sudden climatic changes.

With respect to gas diffusion no clear trend is visible in terms of cost function and mean

mismatch.

In general, a wide spread in δ15N calculated with different models in a certain time interval

results in a wide spread of reconstructed temperatures in this time interval (compare Figures

4.4 and 4.6 in the time intervals between −80 000 yr and −58 000 yr, and between −32 000 yr

and −23 000 yr ). This makes sense in particular in terms of gravitational fractionation which

depends on the depth of the lock-in. As explained in Section 2.2, higher temperatures lead

to a more shallow lock-in depth and consequently lower contribution of gravitational fraction-

ation to the total isotope fractionation and vice versa. A difference between modeled δ15N

distributions for different firn models implies therefore that differences in the reconstructed

temperature histories can not only be explained by the usage of different firn models. Instead,

a major reason for the difference in this case is that the global minimum resulting in the best

fit of δ15N is not found by the respective minimizer. This means that the ”correct” temperat-

ure is not found in the first place because δ15N values are already not perfectly fitted.

For well-fitted time intervals reconstructed temperatures are very similar to the temperature

history reconstructed by [1]. While BAR, HLD, HLS, and GOU are very similar in δ15N and

show the same temperature histories and temperatures reconstructed for BAR, HLD and HLS

are very similar (compare Figure 4.5, red, orange and blue curve lie on top of each other),

temperatures reconstructed for GOU are shifted to lower values by about 3.5K. The most

significant difference between temperatures reconstructed by [1] and reconstructed temperat-

ures with different firn models of the CFM is observed for all investigated firn models in a

time interval between −50 000 yr and −45 000 yr (DO 12) with a maximum difference of 8K

for the Goujon model. Temperatures reconstructed by different models vary in a range of up

to 5K in time intervals with low variability in δ15N or sparse data.

Christo, Darcy and zero show almost the same δ15N and temperature histories (compare Fig-

ure 4.7). δ15N calculated according to Equations (2.30) and (2.31) are generally shifted toward

slightly lower values by up to 0.03%� resulting in temperatures shifted to slightly higher values

by up to 3K compared to BAR, HLD and HLS.
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Peaks in measured δ15N are mostly fitted well in terms of the timing by the model, especially

for δ15N optimized by the least square algorithm. Some small deviations may result from the

fact that the gas age is set uniformly to 0 yr at lock-in depth and uniformly to 15 yr at close-off

depth by the CFM. As a result, ∆ages calculated from gas age and ice age at lock-in depth

are likely to not being highly accurate resulting in the gas age scale also not being completely

accurate. ∆ages and δ15N plotted on ice age scale are shown in Figures C.1, C.2, C.3 and C.4.

When comparing the δ15N fits with [1] and [24] one can see that the mean misfits obtained

from this study are clearly higher (in a range from 24.88 permeg to 49.49 permeg, compare

Tables 4.3 and 4.4) than mean misfits obtained from [1] (18 permeg) and [24] (20 permeg).

Figure 4.8 depicts a scatterplot modeled versus measured δ15N values for all 32 combinations

of firn densification and gas diffusion models. Blue and red dots differentiate between modeled

δ15N using the Nelder-Mead or least squares algorithm, respectively. The Pearson correlation

coefficient is indicated for each scatter plot and minimizer. Compared to the Pearson correla-

tion coefficient obtained by [24] (r = 0.93) and [1] (r = 0.92), the correlation coefficients of this

study are lower. However, when forming the Pearson correlation coefficient from the data in

the time interval between −38 000 yr and −31 000 yr as also presented in [24], the correlation

coefficient for the Barnola model rises up to r = 0.915 and up to r = 0.906 for Herron and

Langway (compare D.1). The correlation coefficients for Herron and Langway with Sigfus

formulation remain approximately the same. Modeled and measured δ15N for Goujon show

in general very low correlation.

In previous studies, α and β were determined for much smaller time intervals (ca. 2000 yr),

because these parameters are different for different DO events. As a consequence, previous

studies either selected single DO events to find the optimum parameters α and β, or introduced

a small shifting time window in order to be able to fit a larger time interval [22], [21], [15], [24].

In this study, one large time window is used resulting in a single set of α and β. As a con-

sequence, there are time intervals where the modeled δ15N fit the data well and intervals

where the fit is not very accurate which is also seen from the Pearson correlation coefficients

calculated for the small time interval (Figure D.1). Furthermore, misfits calculated for this

study are generally larger than for [1] and [24].

Previous studies also allowed for an additional degree of freedom by parameterizing not only

temperature but also the snow accumulation rate as A = c·A0, with A0 the given accumulation

rate and c a constant to be determined by the minimizer.
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Model run α [%�K−1
] β [K] Cost Dmean,0 Dmean No. No.

2. SPIN function [permeg] [permeg] calls improve-

M̃SE [%�2] ments
BAR-Christo-NM 0.354 67.593 4.86 107.48 11.48 116 19
BAR-Christo-LS 0.577 26.479 3.38 107.48 10.12 44 8
BAR-Darcy-NM 0.353 67.899 4.9 107.53 11.53 141 29
BAR-Darcy-LS 0.54 31.039 3.47 107.53 10.09 58 13
BAR-zero-NM 0.383 59.557 4.49 107.56 10.85 157 44
BAR-zero-LS 0.577 26.479 3.38 107.48 10.12 44 8

BAR-FA-off-NM 0.389 59.879 5.37 94.92 11.77 133 33
BAR-FA-off-LS 0.455 45.907 4.37 94.92 10.49 34 6
HLD-Christo-NM 0.353 68.247 7.61 124.68 13.98 131 26
HLD-Christo-LS 0.548 30.423 4.27 124.68 10.47 70 17
HLD-Darcy-NM 0.351 68.869 7.64 124.82 14.05 134 34
HLD-Darcy-LS 0.532 32.42 4.41 124.82 10.61 70 17
HLD-zero-NM 0.36 66.176 7.39 124.84 13.75 139 33
HLD-zero-LS 0.54 31.42 4.36 124.84 10.64 70 17

HLD-FA-off-NM 0.49 39.99 5.15 112.38 11.37 186 55
HLD-FA-off-LS 0.409 55.548 7.66 112.38 13.62 35 6
HLS-Christo-NM 0.445 46.254 4.1 124.1 10.41 152 42
HLS-Christo-LS 0.542 31.214 3.53 124.1 9.81 56 12
HLS-Darcy-NM 0.392 57.791 4.87 124.23 11.54 148 37
HLS-Darcy-LS 0.542 31.216 3.53 124.23 9.81 62 15
HLS-zero-NM 0.394 57.375 4.77 124.26 11.43 151 36
HLS-zero-LS 0.548 30.464 3.5 124.26 9.81 69 16

HLS-FA-off-NM 0.392 59.12 6.08 111.81 12.43 145 38
HLS-FA-off-LS 0.451 46.864 4.99 111.81 11.14 35 7

GOU-Christo-NM 0.34 70.948 8.19 177.71 14.67 98 15
GOU-Christo-LS 0.695 13.619 3.4 161.31 10.69 39 10
GOU-Darcy-NM 0.34 70.965 7.69 177.75 14.21 107 16
GOU-Darcy-LS 0.864 3.024 3.29 196.83 44.14 31 7
GOU-zero-NM 0.34 70.965 7.7 177.78 14.22 108 13
GOU-zero-LS 0.71 12.517 3.39 161.53 10.69 41 11

GOU-FA-off-NM 0.309 82.897 8.51 165.2 14.55 122 25
GOU-FA-off-LS 0.591 24.114 6.72 148.24 13.94 30 6

Table 4.3: Comparison of performance of Least Squares and Nelder-Mead for model runs
with different parameterizations - Second spin run.
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Model run α [%�K−1
] β [K] Cost Dmean,0 Dmean No. No.

MAIN function [permeg] [permeg] calls improve-

M̃SE [%�2] ments
BAR-Christo-NM 0.359 68.979 20.03 54.62 34.02 90 14
BAR-Christo-LS 0.584 25.636 11.13 25.61 25.43 27 4
BAR-Darcy-NM 0.589 25.008 11.04 56.88 25.09 151 41
BAR-Darcy-LS 0.54 31.189 11.25 24.69 24.88 30 8
BAR-zero-NM 0.589 25.023 11.03 47.05 25.06 148 40
BAR-zero-LS 0.584 25.636 11.13 25.61 25.43 27 4

BAR-FA-off-NM 0.622 23.078 10.92 47.13 25.11 212 61
BAR-FA-off-LS 0.498 39.17 12.69 30.71 25.62 28 6
HLD-Christo-NM 0.37 65.472 30.12 57.5 41.09 104 11
HLD-Christo-LS 0.586 25.46 16.95 37.71 36.91 32 5
HLD-Darcy-NM 0.578 26.31 16.77 57.49 36.02 146 46
HLD-Darcy-LS 0.532 32.422 17.23 35.91 35.93 22 4
HLD-zero-NM 0.578 26.268 16.71 54.65 35.77 149 41
HLD-zero-LS 0.54 33.0 27.14 35.87 49.26 26 6

HLD-FA-off-NM 0.606 24.703 18.01 36.09 37.73 157 40
HLD-FA-off-LS 0.483 41.668 20.87 41.48 37.33 35 8
HLS-Christo-NM 0.495 37.947 12.97 30.01 28.8 176 36
HLS-Christo-LS 0.542 31.028 12.55 31.58 29.95 25 3
HLS-Darcy-NM 0.542 30.956 12.48 38.87 29.19 148 41
HLS-Darcy-LS 0.537 31.714 12.51 30.85 29.38 24 4
HLS-zero-NM 0.537 31.547 12.45 38.37 28.94 131 34
HLS-zero-LS 0.548 30.465 12.82 31.05 31.06 25 6

HLS-FA-off-NM 0.565 29.404 13.34 42.88 30.54 169 35
HLS-FA-off-LS 0.473 43.407 15.32 30.2 30.42 28 5

GOU-Christo-NM 0.347 71.931 30.35 64.44 41.54 97 14
GOU-Christo-LS 0.68 14.364 12.06 30.49 27.32 49 11
GOU-Darcy-NM 0.623 19.743 11.77 65.26 26.21 207 72
GOU-Darcy-LS 0.734 9.88 12.39 39.61 27.39 33 10
GOU-zero-NM 0.62 20.077 11.77 65.33 26.17 195 65
GOU-zero-LS 0.624 19.624 11.76 31.02 26.13 49 13

GOU-FA-off-NM 0.321 83.274 46.73 92.12 49.49 107 17
GOU-FA-off-LS 0.651 19.541 14.2 25.09 32.3 45 11

Table 4.4: Comparison of performance of Least Squares and Nelder-Mead for model runs
with different parameterizations - Main run.
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Figure 4.4: Reconstructed surface temperatures for different densification models (Barnola (BAR),
Herron and Langway (HLD), Herron and Langway with Sigfus formulation (HLS), Goujon (GOU))
using the Nelder-Mead algorithm and corresponding δ15N.
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Figure 4.5: Reconstructed surface temperatures for different densification models (Barnola (BAR),
Herron and Langway (HLD), Herron and Langway with Sigfus formulation (HLS), Goujon (GOU))
using the least squares algorithm and corresponding δ15N.
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Figure 4.6: Reconstructed surface temperatures for different gas diffusion models
(”Christo”/”Darcy”/”zero”: firn air diffusion module enabled with firn air advection according
to Christo Buizert/ firn air advection according to Darcy/ no firn air advection; ”FA off”: firn air
diffusion module disabled) using the Nelder-Mead algorithm and corresponding δ15N.
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Figure 4.7: Reconstructed surface temperatures for different gas diffusion models
(”Christo”/”Darcy”/”zero”: firn air diffusion module enabled with firn air advection according
to Christo Buizert/ firn air advection according to Darcy/ no firn air advection; ”FA off”: firn air
diffusion module disabled) using the least squares algorithm and corresponding δ15N.
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Figure 4.8: Scatterplot of measured and modeled δ15N for different combinations of firn
densification and gas diffusion models. The best fit of modeled δ15N is obtained by using either
a least squares (LS) or Nelder-Mead (NM) algorithm.
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4.3 Experiment 3: Randomized Firn Model Inversion

4.3 Experiment 3: Randomized Firn Model Inversion

This experiment is performed in order to test whether the data set can be fit using all firn

models in various combinations at the same time by randomly selecting a firn model out of

four and a gas diffusion model out of four for each iteration step of the optimization. For the

optimization the least square algorithm is used. Figure 4.9 shows the modeled δ15N on gas

age scale in comparison to the measured δ15N and reconstructed temperature in comparison

to the temperature reconstructed by [1]. Overall, the modeled δ15N agree well with measured

δ15N in time intervals where many measured data points are available. For time intervals

with sparse data available from measurements the fit performs worse. As a consequence,

reconstructed temperatures vary between 0K and 3K from temperatures reconstructed by [1]

for time intervals with good agreement between modeled and measured δ15N and between 2K

and 4.5K for time intervals with bad agreement.

The parameters α and β, the cost function and mean mismatch of first guess and final iteration

are indicated in Table 4.5. The Pearson correlation coefficient was calculated to r = 0.730,

in the time interval between −32 000 yr and −39 000 yr the Pearson correlation coefficient

rises to r = 0.882. In general, the cost function is slightly higher than cost functions for

optimization runs performed in experiment 2. The mean mismatch is in a similar range.

Compared to previous optimization from experiment 2, very similar results could be obtained

with similar mismatches. The least squares algorithm was able to find a solution from a

variable function f to be minimized.

Model run α [%�K−1
] β [K] Cost function Dmean,0 Dmean

MAIN [%�2] [permeg] [permeg]
Random-LS 0.382 62.648 19.52 50.82 32.17

Table 4.5: Performance of optimization run with randomly selected firn models.
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Figure 4.9: Modeled δ15N and reconstructed temperatures from an optimization run with
randomly selected firn models for each iteration step.
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Chapter 5

Conclusion and Outlook

This final chapter sums up the results of this project and will give a short outlook for further

experiments and improvements of the developed methodology.

During this project, the architecture of the CFM was investigated in detail with focus on firn

densification and firn air diffusion.

One aim of this project was to identify bottlenecks of the model and to optimize model run

times to make an inversion of the CFM more feasible. The solver.py module was identified

as the main bottleneck of the CFM. It solves the heat diffusion differential equation and the

firn air transport equation according to a numerical approach presented in [73]. The most

time consuming function in solver.py is w() which calculates the firn air advection rate.

Run times of w() vary for each time step iteration in the CFM and depend on the number of

firn boxes in the model grid between the surface of the ice sheet and the lock-in depth of the

firn column at the respective time step. Run times could not be improved by using the just-

in-time compiler Numba. Instead, run times were decreased by a factor of 2 by reducing the

grid length of the model by using 2 yr time steps instead of yearly time steps. Uncertainties

in δ15N resulting from this time resolution reduction lie within the measuring uncertainty of

δ15N (0.006%� and 0.02%�, respectively). In addition, by introducing a second spin run,

some time could be saved during the inversion procedure.

The CFM was inverted with the commonly used open-source least squares and Nelder-Mead

algorithms provided by SciPy. The two algorithms often found differing parameters α and

β which resulted however in most cases in an equally well solution in terms of cost function

and mean mismatch. Nonetheless, the Nelder-Mead algorithm is more prone to bad fitting in

time intervals with sparse measured δ15N data which could be overcome by giving sparse data

points a higher weight when calculating the cost function.

The presented inversion approach shows that the whole data set can be fit by using a single

however not unique set of α and β with mean mismatches slightly worse than those calculated

in [1] and [24]. However, similar results were achieved within the short time interval presented

in [24] for the firn densification model according to Barnola.

The CFM was run using a set of four different firn densification models and four different gas

diffusion models in order to investigate how reconstructed temperatures are affected by the

firn model choice and to possibly evaluate how well the presented models are suited to model

δ15N at NorthGRIP.
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5 Conclusion and Outlook

The best performing inversion was achieved using the Barnola model, closely followed by

Goujon and then Herron and Langway with Sigfus formulation. The optimization performed

worst using the firn densification model according to Herron and Langway. From this finding

it could be concluded that the Barnola model is the most suitable to describe firn physics at

NorthGRIP.

All mean mismatches are higher than the uncertainty from measured stable nitrogen isotopes

which is expected since only a single pair of α and β is used to fit the whole time interval

between −122 000 yr and −10 000 yr. Modeled δ15N for different models also often differ from

each other which makes it more difficult to draw conclusions on the temperature sensitivity

with respect to the choice of firn model. However, for some model runs as presented in Figure

4.5 modeled δ15N for different firn densification models are quite similar: from this it could

be seen that the firn densification model according to Goujon expects by up to 3.5K lower

temperatures than the other densification models. Reconstructed temperatures using Goujon

are even up to 8K lower than the ones reconstructed by [1]. This means the choice of firn

model has a notable influence on reconstructed surface temperatures which is worth further

investigations.

The presented approaches allowed for an evaluation of how suitable different firn densification

models are to reconstruct temperatures at NorthGRIP and how the choice of firn model in-

fluences the reconstructed temperatures. For future experiments it is important to enhance

the performance of the fit of modeled to measured δ15N which could be achieved by several

approaches.

By using a shifting window spanning only short time intervals as also presented in [24] better

fits within these time intervals could be obtained leading to a set of different parameters αi

and βi for each window i. This would also better reflect the fact that the slope α changes over

time.

The results could be further improved by using higher polynomials of δ18O for temperature

calculations and an additional parameter for the snow accumulation rate allowing for addi-

tional degrees of freedom for the solution.

Additional constraints on temperature could be set by modeling stable argon isotopes which

is also possible with the CFM. Since thermal diffusivities for nitrogen and argon are different

temperature gradients can be inferred from δ15N and δ40Ar which requires however a high

precision of measured stable isotope ratios.

A more sophisticated approach would be to perform a Monte Carlo inversion as presented

in [24] which allows for a temperature reconstruction completely independent of stable oxygen

isotopes from water molecules in ice and thus overcomes the issue of inferring temperatures

from non-temperature related signatures in δ18O.

In order to better understand which firn models are suitable for which ice core site it should

be anticipated to perform the presented experiments also for other ice core drilling sites.
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Appendix A

Configuration Files for the CFM

Most important parameters and comments on parameters in the configuartion .json file:

• physRho specifies the physics used for the calculation of firn densification. It is possible

to select out of 13 different firn densification models. In the experiments presented here,

the dynamic Herron and Langway firn densification model was used ("HLdynamic").

• TWriteInt and TWriteStart denote the output time interval and the first time step to

be written to the output file.

• HeatDiff is set to True in order to include heat diffusion. The conductivity option

allows for the selection out of 13 different parameterizations for heat conductivity. The

conductivity was set to "Schwander".

• yearSpin is the period of time in years for the spin-up.

• H is the thickness of the ice sheet and HbaseSpin denotes the bottom depth of the

modeled volume.

• stpsPerYearSpin and stpsPerYear are the number of time steps per year to be done

during spin up and the actual model run.

• grid_outputs determined whether the model outputs are put on an equally spaced grid

or not. grid_outputs was set to False.

• spinup_climate_type denotes whether the spin-up uses the first value ("initial") or

mean value ("mean") of the input temperature and accumulation forcing files. It was

set to "initial".

• no_densification was set to False since the densification was supposed to be simu-

lated.

• FirnAir was set to True. This runs the firn air module which uses also a .json config-

uration file (AirConfig.json)

• outputs specifies the model outputs. ["density", "depth", "temperature",

"age", "climate", "BCO", "isotopes"] were selected. Note: The first column
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A Configuration Files for the CFM

of the output array is the model time. The initial model time value was originally set

to -9999 in the CFM, this was changed to the initial model time step (first time step

entry in the forcing files).

The parameters in the firn air configuration file were chosen as follows:

• gaschoice was set to ["d15N2", "d40Ar"] in order to simulate δ15N and δ40Ar signals.

• gravity and thermal denote gravitational and thermal diffusion and were both set to

"on".

• runtype was set to "transient".

• Diffu_param were calculated according to "Schwander".
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Appendix B

Model Outputs

Lock-in depth and close-off depth modeled with the CFM being forced with a temperature and

snow accumulation rate history shown in Figure B.1(a). Lock-in depth and close-off depth are

plotted to make sure that strong oscillations in δ15N (Figure 3.8(c)) observed at ca. −43 000 yr

and −41 250 yr each at the onset of a DO event are not due to a strong oscillation in lock-in

depth.
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Figure B.1: Lock-in depth and close-off depth modeled with the CFM. (a) Surface temperature
and accumulation rate forcing (from Figure 3.3) for the CFM. (b) Lock-in depth and close-off depth
plotted for each time step. No large in-continuities are present which could explain the strong oscil-
lation of δ15N in time intervals with a sudden and large jump in surface temperature as observed in
Section 3.2.2.
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Appendix C

Comparison of firn models - ∆age

δ15N on ice age scale and∆ages modeled with the CFM using two different minimizers (Nelder-

Mead and least squares). In general, ∆ages roughly follow the trend of δ15N - a sudden rise

in δ15N correlates with a rise in ∆age. The values of δ15N depend on the lock-in depth which

is also correlated to ∆age. A decrease in temperature leads to an increase of the lock-in depth

and correlates with older ice/firn at lock-in depth and thus a higher ∆age.
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C Comparison of firn models - ∆age
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Figure C.1: Reconstructed ∆ages for different densification models using the Nelder-Mead algorithm
and corresponding δ15N on ice age scale.
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Figure C.2: Reconstructed ∆ages for different densification models using the least squares algorithm
and corresponding δ15N on ice age scale.
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Figure C.3: Reconstructed ∆ages for different gas diffusion models (”Christo”/”Darcy”/”zero”: firn
air diffusion module enabled with firn air advection according to Christo Buizert/ firn air advection
according to Darcy/ no firn air advection; ”FA off”: firn air diffusion module disabled) using the
Nelder-Mead algorithm and corresponding δ15N.
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Figure C.4: Reconstructed ∆ages for different gas diffusion models (”Christo”/”Darcy”/”zero”: firn
air diffusion module enabled with firn air advection according to Christo Buizert/ firn air advection
according to Darcy/ no firn air advection; ”FA off”: firn air diffusion module disabled) using the
least squares algorithm and corresponding δ15N.
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Appendix D

Pearson Correlation Coefficients

Scattterplots and Pearson correlation coefficients calculated from modeled and measured δ15N

in a time interval from −38 000 yr to −31 000 yr.
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0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.35

0.40

0.45

0.50

δ1
5
N
m
od
el

[‰
]

BAR-Christo

r: 0.832 (NM)

r: 0.879 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

δ1
5
N
m
od
el

[‰
]

BAR-Darcy

r: 0.909 (NM)

r: 0.915 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.34

0.36

0.38

0.40

0.42

0.44

0.46

δ1
5
N
m
od
el

[‰
]

BAR-zero

r: 0.911 (NM)

r: 0.879 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

δ1
5
N
m
od
el

[‰
]

BAR-FA-off

r: 0.900 (NM)

r: 0.913 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.30

0.35

0.40

0.45

0.50

0.55

δ1
5
N
m
od
el

[‰
]

HLD-Christo

r: 0.799 (NM)

r: 0.847 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.34

0.36

0.38

0.40

0.42

0.44

0.46

δ1
5
N
m
od
el

[‰
]

HLD-Darcy

r: 0.905 (NM)

r: 0.881 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.34

0.36

0.38

0.40

0.42

0.44

0.46

δ1
5
N
m
od
el

[‰
]

HLD-zero

r: 0.906 (NM)

r: 0.905 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.30

0.35

0.40

0.45

0.50

0.55

0.60

δ1
5
N
m
od
el

[‰
]

HLD-FA-off

r: 0.803 (NM)

r: 0.869 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.30

0.35

0.40

0.45

0.50

δ1
5
N
m
od
el

[‰
]

HLS-Christo

r: 0.658 (NM)

r: 0.325 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

δ1
5
N
m
od
el

[‰
]

HLS-Darcy

r: 0.392 (NM)

r: 0.432 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.25

0.30

0.35

0.40

0.45

δ1
5
N
m
od
el

[‰
]

HLS-zero

r: 0.403 (NM)

r: 0.339 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.30

0.35

0.40

0.45

0.50

δ1
5
N
m
od
el

[‰
]

HLS-FA-off

r: 0.401 (NM)

r: 0.536 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

δ1
5
N
m
od
el

[‰
]

GOU-Christo

r: 0.737 (NM)

r: 0.732 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

δ1
5
N
m
od
el

[‰
]

GOU-Darcy

r: 0.770 (NM)

r: 0.771 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

δ1
5
N
m
od
el

[‰
]

GOU-zero

r: 0.784 (NM)

r: 0.743 (LS)

0.35 0.40 0.45 0.50

δ15Ndata [‰]

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

δ1
5
N
m
od
el

[‰
]

GOU-FA-off

r: 0.764 (NM)

r: 0.851 (LS)

Figure D.1: Scatterplot of measured and modeled δ15N for different combinations of firn
densification and gas diffusion models in a time interval from −38 000 yr to −31 000 yr.
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[82] M. Döring and M. C. Leuenberger. Novel automated inversion algorithm for temperature

reconstruction using gas isotopes from ice cores. Climate of the Past, 14(6):763–788, 2018.

[83] J. Schwander, T. Sowers, J.-M. Barnola, T. Blunier, A. Fuchs, and B. Malaizé. Age
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