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Abstract

Disordered supercondoctor is still a rich field, which is full of mysteries, to study.

The essential mechanism behind them is the key to understand microscopic conden-

sated particles’ behaviors. In this thesis, we review the BCS theory and Bogoliubov-

de Gennes equations and study the superfluid stiffness in a conventional disordered

s-wave supercondoctor. We point out the criteria of a disordered supercondoctor and

confirm the effect of Tc enhancement by impurites. We also study unconventional

high-Tc d-wave supercondoctors, we try to examine a recent puzzling experiment

data presented by Božović et al. Since lack of time, we can not make a conclusion

yet not in the future we will try to resolve the discrepancy found in the d-wave case.
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1 Introduction

In this thesis, we will discuss conventional and unconventional superconductivity in

metallic systems. Superconductivity was discovered by Heike Kamerlingh Onnes in 1911

as the disappearance of the DC eletrical resistance of mercury when cooling it below

a critical temperature Tc. superconducting material do not only possess interesting

electrical properties, but also present peculiar magnetic properties. In 1933 Messner and

Ochsenfeld observed that metals in the superconducting state are perfect diamagnets,

they expel magnetic field completely. In 1957 the first successful microscopic theory of

superconductivity, the BCS theory, was presented by Bardeen, Cooper and Schrieffer.

In this thesis, we will investigate an s-wave and d-wave superconductor using the tight-

binding model with nearest neighbor hopping in a 2-D square lattice. Using Bogoliubov-

de Gennes equations, we evaluate an important quantity called superfluid stiffness Ds,

which is used to determine the criteria of superconductor in a disorder system [1]. We

examine the effect of Tc-enhancement by disorder found by Gastiasoro and Andersen

[2]. And we also shortly discuss d-wave superconductivity using Bogoliubov-de Gennes

equations.

2 BCS theory

In the following, we brief introduce the BSC theory.

2.1 Cooper pairs

The analysis of Cooper from 1956 that the instability of the Fermi surface due to Cooper

pair formation was a percursor of the BCS theory. Cooper found that any finite (and

however small) attractive interaction may lead to a bound state pair. It seems rather

bizarre to consider an attractive interaction between two apparently repulsive eletrons,

but Cooper considered that in a medium they may end up with an effective attraction

due to the slow-moving positive ions, we can call it phonons. The interaction between

electrons and phonons may be attractive. Consider two electrons located right at the

Fermi surface combine into an electron-pair state of zero momentum and zero spin. The

Schrodinger equation for the two particle wavefunction is

−~2

m

∂2ψ(r)

∂r2
+ V (r)ψ(r) = (∆ +

~2k2
F

m
)ψ(r). (2.1)

Here r = r1 − r2 is relative coordinate, V is a potential between two electrons, kF is

Fermi vector, m is electron mass and ∆ is the energy of the electron pair measured with
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respect to the energy of the two decoupled electrons with
~2k2

F
m . And we can rewrite the

Schrodinger equation in momentum space,

~2k2

m
ψ(k) +

∫
d3k′

(2π)3
V (k − k′)ψ(k′) = (∆ +

~2k2
F

m
)ψ(k), (2.2)

where

ψ(k) =

∫
d3rψ(r)e−ikr,

V (k − k′) =

∫
d3re−i(k−k

′)rV (r).

(2.3)

Then the assumption for the potential was made that the electron-phonon interaction

only exists if the eletrons are located with in ~ωD from Fermi surface.

V (k − k′) =

{
−|U | for EF ≤ ~2k2

2m , ~
2k′2

2m ≥ EF + ~ωD
0 otherwise

(2.4)

With this form of V (k − k′) we have that

(
~2(k2 − k2

F )

m
−∆)ψ(k) = |U |

∫
d3k′

(2π)3
ψ(k′). (2.5)

Introducing the density of states N(ζ), we can change momentum summations to

energy integrals. Here, ζ denotes the energy measured from Fermi level, i.e. ζ = ~2k2

2m −
EF . Also, we assume that N(ζ) varies barely between [0, ~ωD]. Then

(2ζ −∆)ψ(k) = |U |N(0)

∫ ~ωD

0
dζ ′ψ(k′). (2.6)

Finally, we arrive at (see Appendix A)

∆ = −2~ωDexp(− 2

|U |N(0)
). (2.7)

Thus we get an important conclusion that the electron pair will form a lower energy

state, or we call it bound state, since ∆ < 0. And we did not make any assumption of

the value of |U | , thus it shows that this happens for any attractive interaction no matter

how small it is. Finally note there is nothing special about the two electrons we selected

from the beginning of the calculation, so it really shows that the entire Fermi surface

is unstable when subjected to attractive electron-electron interaction. After Cooper

discovered the unstability of electron gas below a certain critical temperature Tc, it soon

led Bardeen, Cooper and Schrieffer(BCS) to develop the microscopic theory explaining

superconductivity. And we will briefly discuss BCS theory below.
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2.2 Tight-binding model and BCS theory

In this thesis, tight-binding model is applied to analyze superconductivity. In tight-

binding model, free electrons in lattice are constrained to discrete positions corresponding

to the atoms at crystal lattice (the eletrons are considered to be ’tightly bound’ to atoms).

However, the electrons can hop from one atom to another, which allows electrons to

travel through the lattice, which enable normal eletrical conduction. Hopping between

nearest-neighbors is controlled by a hopping parameter t.

In order to develop our model, we introduce second quantization formalism, which

is well used in many body systems. In this formalism, we have the so-called creation

operators(c†iσ) and annihilation operators(ciσ), which means an electron with spin σ is

added or removed from the lattice site i. The electron number operator, which gives the

number of electrons with spin σ on site i is

niσ = c†iσciσ. (2.8)

Therefore, the kinetic energy Hamiltonian for free electrons in tight-binding model can

be written as

H0 =− t
∑

<ij>,σ

(c†iσcjσ +H.c)

=
∑
k,σ

εkc
†
kσckσ.

(2.9)

Here k is momentum, εk = −2t(cos(kx) + cos(ky)) for two-dimensional square lattice

system.

Then considering about the electron-electron attractive interaction(Cooper pairs),

the Hamiltonian of BCS theory is given by [3]:

HBCS =
∑
k,σ

(εkc
†
kσckσ) +

∑
kk’

Vkk′c†k↑c
†
−k↓c-k’↓ck’↑ (2.10)

where Vkk′ = −|U | for |εk| < ~ωD. The second term is an interaction term which

describes scattering of Cooper pairs with momenta(k′,−k′ into another pair with mo-

menta (k,−k). However, this interaction term cannot be diagonalized. Hence, we apply

a mean-field decoupling of the interation term;

c†k↑c
†
−k↓c-k’↓ck’↑ ≈ 〈c

†
k↑c
†
−k↓〉c−k′↓ck′↑ + c†k↑c

†
−k↓〈c−k′↓ck′↑〉. (2.11)

Here Hartree shift is absorbed into the chemical potential.
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Then we define a parameter

∆ = −|U |
∑
k

〈c−k↓ck↑〉. (2.12)

The BCS mean-field Hamiltonian is obtained:

Hmf
BCS =

∑
k,σ

(εkc
†
kσckσ) +

∑
k

(∆c†k↑c
†
−k↓ + ∆∗c−k↓ck↑), (2.13)

which we can write in matrix form as

Hmf
BCS =

∑
k

(
c†k↑ c−k↓

)( εk ∆

∆∗ −ε−k

)(
ck↑

c†−k↓

)
. (2.14)

Here we assume the crystal exhibits inversion symmetry then the spectrum in invariant

under k → −k, i.e. ε−k = εk. Now we diagonalize the Hamiltonian by introducing the

unitary transformation U

U =

(
uk −v∗k
vk u∗k

)
, (2.15)

and demand that it diagonalizes Hmf
BCS ,

U†

(
εk ∆

∆∗ −εk

)
U =

(
Ek 0

0 −Ek

)
. (2.16)

In homogeneous case, k is a good quantum number and uk and vk can be taken to be

real. Using that U is unitary, so that |uk|2 + |vk|2 = 1, then we get that:

Ek =
√
ε2
k + |∆|2, (2.17)

|uk| =
√

1

2
(1 +

εk
Ek

), |vk| =
√

1

2
(1− εk

Ek
). (2.18)

Diagonlization also means performing a transformation, the Bogoliubov transformation,

of the original operators to a set of new fermionic creation and annihilation operators:(
γk↑

γ†−k↓

)
= U†

(
ck↑

c†−k↓

)
(2.19)

and the Hamiltonian is diagonal in these new operators:

Hmf
BCS = E0 +

∑
kσ

Ekγ
†
kσγkσ. (2.20)
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The new quasiparticles described by the number operator γ†kσγkσ are called Bogoliubons

after the Bogoliubov transformation spawning them. As is evident from Eq.2.17, there

are no fermion excitation possible with energy less than |∆|. Then the mean-field pa-

rameter |∆| provides an energy gap denoted the superconducting gap.

The self-consistent solution for ∆ is given by using Eq.2.15, 2.18 and 2.19:

∆ = −|U |
∑
k

〈c−k↓ck↑〉

= −|U |
∑
k

〈(ukγk↓ + v∗kγ
†
k↑)× (ukγk↑ − v∗kγ

†
k↓)〉

= |U |
∑
k

ukv
∗
k(1− f(Ek)− f(Ek))

= |U |
∑
k

ukv
∗
k(1− 2f(Ek))

= |U |
∑
k

∆

2Ek
tanh(

Ek

2kBT
)

(2.21)

where in the third step it was used that the Bogoliubons are free fermions so that

〈γ†kσγkσ〉 = f(Ek), here the Fermi distribution f(Ek) = 1
exp(Ek/kBT )+1 . The mean-field

assumption made by BCS is that due to the presence of cooper pairs, causes the expec-

tion value 〈c†−k↓c
†
k↑〉 6= 0, and its fluctuations around the average value are small. In

finite temperature situation, as the temperature rises, Cooper pairs are split and leave

the cooper-pair condensate as ordinary electrons. The critical temperature is the tem-

perature where all Cooper-pair break into ordinary electrons(and ∆ vanishes). Below the

critical temperature the thermodynamic average of c†−k↓c
†
k↑ is non-zero, which violates

gauge invariance [4].

2.3 Gauge invariance breaking

As we know, when a phase transition appear, there is always one kind of symmetry

broken. For metal-superconductor transition, below critical temperature the gauge sym-

metry is broken spontaneously. The gauge transformation can be written as:

A→ Ã = A +5χ,
ckσ → c̃kσ = ckσe

−iχ.
(2.22)

Here A is vector potential and χ is scalar potential. For superconductors, physical

quantities may change after performing the gauge transformation. For instance, in the

case of the Meissner effect, the London equation Je = − e2ρs(r)
m A is not gauge invariant

any more. If we perform the gauge transformation Eq.2.22 a physical quantity, current
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Je, changes. But we can still argue that the calculation unchange for the transverse part

of A fulfiling 5·A = 0. However, the longitudinal part 5χ appearing in A by the gauge

transformation affects the order parameter ∆,

∆k = −|U |
∑
k

〈c−k↓ck↑〉 → ∆̃k = ∆ke
−2iχ. (2.23)

This result indicates that the Messiner-effect calculation should have been done self-

consistently with ∆̃. So in the gauge5·A = 0, gauge transformation may not effects the

transverse part of physical quantities, but the longitudinal part would change. More de-

tails will be discussed later. And in next chapter inhomogeneous case will be considered,

we will introduce Bogoliubov-de Gennes equation and focus on the disorder dependence

of various physically interesting quantities, such as superfluid density, energy gap.
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3 Inhomogeneous BCS theory

For clean supercondoctors, just like a peaceful, boring openwater, if we want to know the

mysteries beneath the water, we need to throw some rocks in it and see what is happening.

Disorder is just like rocks, if we want to know the mechanism for superconductors, the

inhomogeneous system is our rough sea.

For homogeneous system, as we know k is a good quantum number, the unitary

transformation(Bogoliubov transformation) is rather easy to obtain as previous chapter

shows. However, for inhomogenous system, there are some random impurities sprinkled

in the crystal, therefore k is no longer a good quantum number. We need a more powerful

tool: the Bogoliubov-de Gennes equations.

3.1 Bogoliubov-de Gennes equations

The purpose of solving the Bogoliubov-de Gennes equations is to find the unitary trans-

formation which diagonalizes the Hamiltonian. The Hamiltonian describling s-wave su-

perconductivity in a two-dimensional square lattice using tight-binding model is given

by

H = −t
∑
〈ij〉,σ

(c†iσcjσ +H.c.) +
∑
i,σ

(Vi − µ)niσ − |U |
∑
i

ni↑ni↓. (3.1)

Here c†iσ(ciσ) is the electron creation(annihilation) operator with spin σ on a site ri of a

square lattice, t is nearest-neighbor hopping, Vi is real space disorder strength, µ is the

chemical potential, |U | is pairing interation, and niσ = c†iσciσ.

Then we apply mean-field approximation, which means

ni↑ni↓ ≈ 〈ci↑ci↓〉c†i↑c
†
i↓ + ci↑ci↓〈c†i↑c

†
i↓〉, (3.2)

and we define the local pairing amplitude(order parameter)

∆i = |U |〈ci↑ci↓〉. (3.3)

The Hamiltonian can be rewriten as

H = −t
∑
〈ij〉,σ

(c†iσcjσ +H.c.) +
∑
i,σ

(Vi − µ)niσ +
∑
i

[∆∗i ci↑ci↓ + c†i↑c
†
i↓∆i]. (3.4)

The Hamiltonian can be written in matrix form:

H =
∑
ij

(
c†i↑
ci↓

)(
−tδ〈ij〉 + (Vi − µ)δij ∆iδij

∆∗i δij tδ〈ij〉 − (Vi − µ)δij

)(
cj↑

c†j↓

)
, (3.5)
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Here

δij =

{
1 for i = j

0 otherwise
, (3.6)

δ〈ij〉 =

{
1 for i and j are nearest neighbor

0 otherwise
. (3.7)

The Hamiltonian can be diagonalized by the transformation

H = E0 +
∑
nσ

Enσγ
†
nσγnσ,

c†i↑ =
∑
n

(u∗ni↑γ
†
n↑ − vni↑γn↓),

c†i↓ =
∑
n

(u∗ni↓γ
†
n↓ + vni↓γn↑).

(3.8)

here γ and γ† are quasiparticle operators, which are linear combinations of the original c

operator. As well as we only care about the excitation above the superconducting ground

state, thus the summation is over positive eigenvalues only(Enσ > 0). The matrix form

for the transformation can be expressed in this way:(
c†i↑
ci↓

)
=
∑
n

(
u∗ni↑ −vni↑
v∗ni↓ uni↓

)(
γ†n↑
γn↓

)
, (3.9)

which the unitary matrix can be defined by

U =
∑
n

(
u∗ni↑ −vni↑
v∗ni↓ uni↓

)
, (3.10)

and it satisfies U †U = 1, which means uni and vni satisfy the relationship
∑

n |uni|2 +

|vni|2 = 1.

Using the form of H given by Eq. 3.4(more details seen in Appendix B), we have

[H, ci↑] = t
∑
〈j〉

cj↑ − (Vi − µ)ci↑ −∆ic
†
i↓,

[H, ci↓] = t
∑
〈j〉

cj↓ − (Vi − µ)ci↓ + ∆ic
†
i↑.

(3.11)

Here 〈j〉 means nearest neighbor. Similarly, using the form of H given by Eq. 3.8 and

[γn, γ
†
n] = 1, we have

[H, ci↑] = [H,
∑
n

(uni↑γn↑ − v∗ni↑γ
†
n↓)] =

∑
n

(−En↑uni↑γn↑ − En↓v∗ni↑γ
†
n↓),

[H, ci↓] = [H,
∑
n

(uni↓γn↓ + v∗ni↓γ
†
n↑)] =

∑
n

(−En↓uni↓γn↓ + En↑v
∗
ni↓γ

†
n↑).

(3.12)
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By substituting the transformation in Eq. 3.8 into Eq. 3.11 demanding the commutators

in Eq.3.11 and 3.12 to be equal, we can obtain the Bogoliubov-de Gennes equations

En↑uni↑ = −t
∑
〈j〉

unj↑ + (Vi − µ)uni↑ + ∆ivni↓,

En↓v
∗
ni↑ = t

∑
〈j〉

v∗nj↑ − (Vi − µ)v∗ni↑ + ∆iu
∗
ni↓,

En↓uni↓ = −t
∑
〈j〉

unj↓ + (Vi − µ)uni↓ + ∆ivni↑,

En↑v
∗
ni↓ = t

∑
〈j〉

v∗nj↓ − (Vi − µ)v∗ni↓ + ∆iu
∗
ni↑,

(3.13)

these four formula can be written in matrix form:(
K̂ ∆̂

∆̂∗ −K̂∗

)(
uni↑

vni↓

)
= En↑

(
uni↑

vni↓

)
, (3.14)

(
K̂ ∆̂

∆̂∗ −K̂∗

)(
uni↓

vni↑

)
= En↓

(
uni↓

vni↑

)
. (3.15)

Where K̂uniσ = −t
∑

<j> unjσ + (Vi − µ)uniσ and ∆̂uniσ = ∆iuniσ, and similarly for

vniσ. And it is only necessary to solve one of the Eq. 3.14 and 3.15, because it’s clear to

see if (uni↑, vni↓) is an eigenvector of matrix with eignenergy En↑, then (uni↓, vni↑) is the

eigenvector with same eigenenergy En↓, thus the spin index can be suppressed. And we

only want to consider the excitation eigenvalues En ≥ 0. The self-consistency conditions

are given by

∆i = |U |〈ci↑ci↓〉

= |U |〈
∑
n

(uniγn↑ − v∗niγ
†
n↓)×

∑
n′

(un′iγn′↓ + v∗n′iγ
†
n′↑)〉

= |U |
∑
n

univ
∗
ni(1− f(En)− f(En))

= |U |
∑
n

univ
∗
ni(1− 2f(En)).

(3.16)

〈ni〉 =
∑
σ

〈c†iσciσ〉 =
∑
nσ

(u∗niuniγ
†
nσγnσ + v∗nivniγnσ̄γ

†
nσ̄)

= 2
∑
n

u2
nif(En) + v2

ni(1− f(En)).
(3.17)

Here the summation is over positive eigenvalues only. Then we solve the BdG equations

as follows; Starting with setting a finite lattice of N sites with periodic boundary condi-

tions and define all kinds of parameters, nearest-neighbor hopping t, disorder strength
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Vi, pairing interation |U | and average density 〈n〉 =
∑

i〈ni〉 . Guess an initial set of

order parameter {∆i} and an initial chemical potential µ, which is determined by aver-

age density 〈n〉. Then we solve the BdG equations 3.14, determine the eigenvalues En

and eigenvectors {uni, vni}. Using Eq. 3.16 and Eq. 3.17, compute {∆i} and {ni}. If

these values differ from the initial ones, the whole process will be iterated with these

new values until the results are self-consistent.

3.2 Disorder and impurity

Disorder is always an important issue for superconductivity. So what happens to the

superconductivity, or we can say critical temperature Tc, upon increasing the amount of

disorder in a material? From lots of previous studies, the well acceptable answer is that

critical temperature Tc drops or remains unaffected. In strong-disorder regime, when

the coherence length ξ is longer than the inter-impurity distance, the electron-electron

interaction is affected by impurities, electrons of Cooper pair may hitting into impurity

causes SC order parameter reducing dramatically and Cooper-pairs breaking [5] [6] [7].

Thus critical temperature Tc drops. In week-disorder regime, when the coherence length ξ

is not longer than the inter-impurity distance, disorder may not affect superconductivity.

Anderson’s theorem [8] states that nonmagnetic week disorder does not affect Tc for

conventional superconductors. But Anderson’s theorem does not work in unconventional

superconductors, this is a complicated and unsovled problem. We are not going to discuss

about it in this thesis.

However, we may ask, is it possible to enhance superconductivity by disorder? At

least, there is no fundamental principle preventing it. In the following section, using the

Bogoliubov-de Gennes approach, we demonstrate that disorder-generated Tc enhance-

ments and try to figure out the criteria for superconductivity.
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4 Superfluid stiffness

In this section, we will discuss superconductivity of inhomogenous systems. But first we

have to figure out the critical line between superconductors and metals. Apparently, the

appearance of the excitation gap(∆) is not the reason for the superconductivity itself.

The superconductivity is due to the lack of gauge invariance. The superconductors

spontaneously break the gauge invariance by picking a particular phase φ below Tc. In

other word, the superconductor prefers to sustain a constant phase φ everywhere in

lattice in order to minimize the free energy. And in fact, gapless superconductors do

exist. So we need a physical quantity to determine whether a system is metallic or

superconducting.

4.1 Theory of superfluid Stiffness

In this section, we will introduce an important physical quantity, superfluid stiffness.

Superfluid stiffness can be used to examine the criteria for superconductivity.

First, let’s consider the electrical current in our model. The x component of the

paramagnetic current density can be written as:

jpxi =
∑
σ

[Ψ†σ(ri + x)(5Ψσ(ri))− (5Ψ†σ(ri))Ψσ(ri + x)] = it
∑
σ

(c†i+xσciσ − c
†
iσci+xσ),

(4.1)

and Kxi is the kinetic-energy density along with the x-oriented links:

Kxi =
∑
σ

[Ψ†σ(ri + x)Ψσ(ri) + Ψ†σ(ri)Ψσ(ri + x)] = t
∑
σ

(c†i+xσciσ + c†iσci+xσ). (4.2)

The total current-density jxi is obtained by

jxi = ejpxi + e2KxiAxi, (4.3)

here A is vector potential. More details can be seen in Appendix D.

Apply the Kubo linear response formula, we obtain

〈jx(q, ω)〉 = −e2[〈−Kx〉 − Λxx(q, ω)]Ax(q, ω). (4.4)

Here Λxx(q, ω) is obtained from

Λxx(q, iωn) =
1

N

∫ β

0
dτeiωnτ 〈jpx(q, τ)jpx(−q, 0)〉, (4.5)
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with iwn = 2πnT , by the usual analytic continuation in which ωn → ω + iδ, and

jpx(q) = it
∑
iσ

e−iqri(c†i+xσciσ − c
†
iσci+xσ). (4.6)

As is well known, the Meissner effect can be expressed by London equations. When a

superconductor in a static, ω = 0, long wavelength qy → 0, vector potential, the London

equation can be written in a transverse gauge q ·A = 0 as

jx(q) = − 1

4π

1

λ2
Ax(qy). (4.7)

In this case, the magnetic field would be expelled except within a penetration depth λ,

with
1

λ2
=

4πnse
2

mc2
. (4.8)

Here ns is the superfluid density and m the electron mass. And the linear relation

between electrical current and vector potential is

jα(q) = Λαβ(q)Aβ(q), (4.9)

Λαβ = (δαβ −
qαqβ
q2

)ΛT +
qαqβ
q2

ΛL. (4.10)

Here ΛT is the transverse part of Λ and ΛL longitudinal part. And we here apply Einstein

summation convention. For a superconductor, from Eqs. 4.7 and 4.9 one has

−
Λαβ(q→ 0)

e2
= (

ns
m

)∗ =
Ds

πe2
. (4.11)

Where Ds is superfluid stiffness which measures the ratio of the superfluid density to

the mass. Now from the linear response relation, Eq. 4.4, and Eqs. 4.10 and 4.11, we

have
Ds

πe2
= 〈−Kx〉 − Λxx(qx = 0, qy → 0, iωn = 0), (4.12)

and

0 = 〈−Kx〉 − Λxx(qx → 0, qy = 0, iωn = 0). (4.13)

And we can expect that Ds goes to 0 for a metal or insulator, and Ds remains finite for

a superconductor. More details will be discussed in Appendix D.

4.2 Calculation of the Superfluid Stiffness by BdG

In this section, we want to calculate the superfluid stiffness Ds and some physically

interesting quantities. Once the BdG iteration process is done, a self-consistent set of
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{∆i} and {ni} are obtained. Using Bogoliubov transformation Eq. 3.8, some physically

interesting quantities can be demonstrated.

Using Eq. 4.2, the kinetic-energy density along with x-oriented bonds can be ex-

pressed by:

〈−Kx〉 = 〈t
∑
i,n,σ

[(un∗i+xσu
n
iσ + un∗iσ u

n
i+xσ)f(Enσ) + σ̄2(vn∗i+xσv

n
iσ + vn∗iσ v

n
i+xσ)f(−Enσ̄)]〉,

(4.14)

here summation over all n with En > 0. For a spin-less case we can drop the spin index

and write simply as we argue in previous chapter. And since σ̄2 = 1, the above formula

can be rewritten as:

〈−Kx〉 = 2t〈
∑
i,n

[(un∗i+xu
n
i + un∗i u

n
i+x)f(En) + (vn∗i+xv

n
i + vn∗i v

n
i+x)f(−En)]〉. (4.15)

In homogeneous case(En = Ek), applying Fourier transformation yields

〈−Kx〉 = 2t〈
∑
k,k′,n

[(un∗i+xu
n
i e
−ik(ri+x)eik

′ri + un∗i u
n
i+xe

−ik′(ri+x)eikri)f(En)

+ (vn∗i+xv
n
i e
−ik(ri+x)eik

′ri + vn∗i v
n
i+xe

−ik′(ri+x)eikri)f(−En)]〉

= 4t
∑
k

(u2
kcos(kx)f(Ek) + v2

kcos(kx)f(−Ek)).

(4.16)

Then turning to the current-current correlation function, using Eqs. 4.5 and 4.6, this is

then

Λxx(qx, iωn) =
−t2

N

∑
ijσσ′

∫ β

0
dτeiωnτeiq(rj−ri)(c†i+xσ(τ)ciσ(τ)− c†iσ(τ)ci+xσ(τ))

× (c†j+xσ′(0)cjσ′(0)− c†jσ′(0)cj+xσ′(0)),

(4.17)

Fourier transform it to the real space gives

Λxx(i, j, iωn) =
−t2

N

∑
σσ′

∫ β

0
dτeiωnτ (c†i+xσ(τ)ciσ(τ)− c†iσ(τ)ci+xσ(τ))

× (c†j+xσ′(0)cjσ′(0)− c†jσ′(0)cj+xσ′(0)),

(4.18)

so that

Λxx(q, iωn) =
∑
ij

eiq(rj−ri)Λxx(i, j, iωn), (4.19)

we have to evaluate the four correlators

〈c†i+xσ(τ)ciσ(τ)c†j+xσ′(0)cjσ′(0)〉, (4.20)
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〈c†i+xσ(τ)ciσ(τ)c†jσ′(0)cj+xσ′(0)〉, (4.21)

〈c†iσ(τ)ci+xσ(τ)c†j+xσ′(0)cjσ′(0)〉, (4.22)

〈c†iσ(τ)ci+xσ(τ)c†jσ′(0)cj+xσ′(0)〉. (4.23)

Applying Wick’s theorem

〈c†i+xσ(τ)ciσ(τ)c†j+xσ′(0)cjσ′(0)〉 =− 〈cjσ′(0)c†i+xσ(τ)〉〈ciσ(τ)c†j+xσ′(0)〉

− 〈c†i+xσ(τ)c†j+xσ′(0)〉〈ciσ(τ)cjσ′(0)〉,
(4.24)

〈c†i+xσ(τ)ciσ(τ)c†jσ′(0)cj+xσ′(0)〉 =− 〈cj+xσ′(0)c†i+xσ(τ)〉〈ciσ(τ)c†jσ′(0)〉

− 〈c†i+xσ(τ)c†jσ′(0)〉〈ciσ(τ)cj+xσ′(0)〉,
(4.25)

〈c†iσ(τ)ci+xσ(τ)c†j+xσ′(0)cjσ′(0)〉 =− 〈cjσ′(0)c†iσ(τ)〉〈ci+xσ(τ)c†j+xσ′(0)〉

− 〈c†iσ(τ)c†j+xσ′(0)〉〈ci+xσ(τ)cjσ′(0)〉,
(4.26)

〈c†iσ(τ)ci+xσ(τ)c†jσ′(0)cj+xσ′(0)〉 =− 〈cj+xσ′(0)c†iσ(τ)〉〈ci+xσ(τ)c†jσ′(0)〉

− 〈c†iσ(τ)c†jσ′(0)〉〈ci+xσ(τ)cj+xσ′(0)〉.
(4.27)

Plugging in the Bogoliubov transformation Eq. 3.8, one gets for the first term in Eq.

4.24 that

−〈cjσ′(0)c†i+xσ(τ)〉〈ciσ(τ)c†j+xσ′(0)〉

= −
∑
n

(unjσ′un∗i+xσδσσ′〈γnσ′(0)γ†nσ(τ)〉+ σ̄σ̄′vn∗jσ′vni+xσδσ̄σ̄′〈γ†nσ̄′(0)γnσ̄(τ)〉)×∑
m

(umiσu
m∗
j+xσ′δσσ′〈γmσ(τ)γ†mσ′(0)〉+ σ̄σ̄′vm∗iσ v

m
j+xσ′δσ̄σ̄′〈γ†mσ̄(τ)γmσ̄′(0)〉),

(4.28)

and from the second term in Eq. 4.24

−〈c†i+xσ(τ)c†j+xσ′(0)〉〈ciσ(τ)cjσ′(0)〉

= −
∑
n

(σ̄′un∗i+xσv
n
j+xσ′δσσ̄′〈γ†nσ(τ)γnσ̄′(0)〉+ σ̄vni+xσu

n∗
j+xσ′δσ̄σ′〈γnσ̄(τ)γ†nσ′(0)〉)×∑

m

(σ̄′umiσv
m∗
jσ′δσσ̄′〈γmσ(τ)γ†mσ̄′(0)〉+ σ̄vm∗iσ u

m
jσ′δσ̄σ′〈γ†mσ̄(τ)γmσ′(0)〉).

(4.29)

The other three terms can be obtained by interchanges of i ↔ i + x and/or j ↔ j + x

indices. Using that

〈γnσ(τ)γ†nσ(0)〉 = (1− f(Enσ))e−Enστ ,

〈γ†nσ(τ)γnσ(0)〉 = f(Enσ)eEnστ ,

〈γnσ(0)γ†nσ(τ)〉 = −f(Enσ)eEnστ ,

〈γ†nσ(0)γnσ(τ)〉 = −(1− f(Enσ))e−Enστ .

(4.30)
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One can infer that the first part (of the normal part) contributes to the correlator with

Λ1n
xx(i, j, iωn) =

t2

N

∑
nmσ

∫ β

0
dτeiωnτ (unjσu

n∗
i+xσu

m
iσu

m∗
j+xσ(−f(Enσ))(1− f(Emσ))e(Enσ−Emσ)τ

+ σ̄2unjσu
n∗
i+xσv

m∗
iσ v

m
j+xσ(−f(Enσ))(f(Emσ̄))e(Enσ+Emσ̄)τ

+ σ̄2vn∗jσv
n
i+xσu

m
iσu

m∗
j+xσ(−(1− f(Enσ̄)))(1− f(Emσ))e(−Enσ̄−Emσ)τ

+ σ̄4vn∗jσv
n
i+xσv

m∗
iσ v

m
j+xσ(−(1− f(Enσ̄)))(f(Emσ̄))e(−Enσ̄+Emσ̄)τ ),

(4.31)

which σ̄2 = 1 Performing the τ -integration gives

Λ1n
xx(i, j, iωn) =

t2

N

∑
nmσ

(unjσu
n∗
i+xσu

m
iσu

m∗
j+xσ

f(Enσ)− f(Emσ)

iωn + Enσ − Emσ

+ unjσu
n∗
i+xσv

m∗
iσ v

m
j+xσ

f(Enσ) + f(Emσ̄)− 1

iωn + Enσ + Emσ̄

+ vn∗jσv
n
i+xσu

m
iσu

m∗
j+xσ

1− f(Enσ̄)− f(Emσ)

iωn − Enσ̄ − Emσ

+ vn∗jσv
n
i+xσv

m∗
iσ v

m
j+xσ

f(Emσ̄)− f(Enσ̄)

iωn − Enσ̄ + Emσ̄
),

(4.32)

likewise one can find that the first part of the superconducting part contributes with

Λ1s
xx(i, j, iωn) =

t2

N

∑
nmσ

∫ β

0
dτeiωnτ (un∗i+xσv

n
j+xσ̄u

m
iσv

m∗
jσ̄ f(Enσ)(1− f(Emσ))e(Enσ−Emσ)τ

+ σσ̄un∗i+xσv
n
j+xσ̄v

m∗
iσ u

m
jσ̄f(Enσ)f(Emσ̄)e(Enσ+Emσ̄)τ

+ σσ̄vni+xσu
n∗
j+xσ̄u

m
iσv

m∗
jσ̄ (1− f(Enσ̄))(1− f(Emσ))e(−Enσ̄−Emσ)τ

+ σ̄2σ2vni+xσu
n∗
j+xσ̄v

m∗
iσ u

m
jσ̄(1− f(Enσ̄))(f(Emσ̄))e(−Enσ̄+Emσ̄)τ ),

(4.33)

which σ̄σ = −1, Performing τ -integration of this monster gives

Λ1n
xx(i, j, iωn) =

t2

N

∑
nmσ

(− un∗i+xσvnj+xσ̄umiσvm∗jσ̄
f(Enσ)− f(Emσ)

iωn + Enσ − Emσ

+ un∗i+xσv
n
j+xσ̄v

m∗
iσ u

m
jσ̄

f(Enσ) + f(Emσ̄)− 1

iωn + Enσ + Emσ̄

+ vni+xσu
n∗
j+xσ̄u

m
iσv

m∗
jσ̄

1− f(Enσ̄)− f(Emσ)

iωn − Enσ̄ − Emσ

− vni+xσun∗j+xσ̄vm∗iσ umjσ̄
f(Emσ̄)− f(Enσ̄)

iωn − Enσ̄ + Emσ̄
).

(4.34)
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Combining it all together, we get Λ1
xx(i, j, iωn) = Λ1n

xx(i, j, iωn) + Λ1s
xx(i, j, iωn),

Λ1
xx(i, j, iωn) =

t2

N

∑
nmσ

([unjσu
n∗
i+xσu

m
iσu

m∗
j+xσ − un∗i+xσvnj+xσ̄umiσvm∗jσ̄ ]

f(Enσ)− f(Emσ)

iωn + Enσ − Emσ
+

[unjσu
n∗
i+xσv

m∗
iσ v

m
j+xσ + un∗i+xσv

n
j+xσ̄v

m∗
iσ u

m
jσ̄]
f(Enσ) + f(Emσ̄)− 1

iωn + Enσ + Emσ̄
+

[vn∗jσv
n
i+xσu

m
iσu

m∗
j+xσ + vni+xσu

n∗
j+xσ̄u

m
iσv

m∗
jσ̄ ]

1− f(Enσ̄)− f(Emσ)

iωn − Enσ̄ − Emσ
+

[vn∗jσv
n
i+xσv

m∗
iσ v

m
j+xσ − vni+xσun∗j+xσ̄vm∗iσ umjσ̄]

f(Emσ̄)− f(Enσ̄)

iωn − Enσ̄ + Emσ̄
).

(4.35)

With this notation the total function is

Λxx(i, j, iωn) = Λ1
xx(i, j, iωn)− Λ2

xx(i, j, iωn)− Λ3
xx(i, j, iωn) + Λ4

xx(i, j, iωn), (4.36)

where Λ2
xx(i, j, iωn) is obtained from the above explicit expression for Λ1

xx(i, j, iωn) by

simply interchanging the indices j ↔ j + x. Λ3
xx(i, j, iωn) is obtained from Λ1

xx(i, j, iωn)

by interchanging the indices i ↔ i + x, and Λ4
xx(i, j, iωn) is obtained by interchanging

both i↔ i+ x and j ↔ j + x in Λ1
xx(i, j, iωn). Then the final expression is

Λxx(q, iωn) =
t2

N

∑
nmijσ

eiq(rj−ri)(aijnm(u, v)
f(Enσ)− f(Emσ)

iωn + Enσ − Emσ

+ bijnm(u, v)
f(Enσ) + f(Emσ̄)− 1

iωn + Enσ + Emσ̄

+ cijnm(u, v)
1− f(Enσ̄)− f(Emσ)

iωn − Enσ̄ − Emσ

+ dijnm(u, v)
f(Emσ̄)− f(Enσ̄)

iωn − Enσ̄ + Emσ̄
).

(4.37)

with

aijnm(u, v) = unjσu
n∗
i+xσu

m
iσu

m∗
j+xσ − un∗i+xσvnj+xσ̄umiσvm∗jσ̄ − unj+xσun∗i+xσumiσum∗jσ + un∗i+xσv

n
jσ̄u

m
iσv

m∗
j+xσ̄

− unjσun∗iσ umi+xσum∗j+xσ + un∗iσ v
n
j+xσ̄u

m
i+xσv

m∗
jσ̄ + unj+xσu

n∗
iσ u

m
i+xσu

m∗
jσ − un∗iσ vnjσ̄umi+xσvm∗j+xσ̄,

(4.38)

bijnm(u, v) = unjσu
n∗
i+xσv

m∗
iσ v

m
j+xσ + un∗i+xσv

n
j+xσ̄v

m∗
iσ u

m
jσ̄ − unj+xσun∗i+xσvm∗iσ vmjσ − un∗i+xσvnjσ̄vm∗iσ umj+xσ̄

− unjσun∗iσ vm∗i+xσvmj+xσ − un∗iσ vnj+xσ̄vm∗i+xσumjσ̄ + unj+xσu
n∗
iσ v

m∗
i+xσv

m
jσ + un∗iσ v

n
jσ̄v

m∗
i+xσu

m
j+xσ̄,

(4.39)

cijnm(u, v) = vn∗jσv
n
i+xσu

m
iσu

m∗
j+xσ + vni+xσu

n∗
j+xσ̄u

m
iσv

m∗
jσ̄ − vn∗j+xσvni+xσumiσum∗jσ − vni+xσun∗jσ̄umiσvm∗j+xσ̄

− vn∗jσvniσumi+xσum∗j+xσ − vniσun∗j+xσ̄umi+xσvm∗jσ̄ + vn∗j+xσv
n
iσu

m
i+xσu

m∗
jσ + vniσu

n∗
jσ̄u

m
i+xσv

m∗
j+xσ̄,

(4.40)
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dijnm(u, v) = vn∗jσv
n
i+xσv

m∗
iσ v

m
j+xσ − vni+xσun∗j+xσ̄vm∗iσ umjσ̄ − vn∗j+xσvni+xσvm∗iσ vmjσ + vni+xσu

n∗
jσ̄v

m∗
iσ u

m
j+xσ̄

− vn∗jσvniσvm∗i+xσvmj+xσ + vniσu
n∗
j+xσ̄v

m∗
i+xσu

m
jσ̄ + vn∗j+xσv

n
iσv

m∗
i+xσv

m
jσ − vniσun∗jσ̄vm∗i+xσumj+xσ̄.

(4.41)

which in the relevant limit iωn = 0 and qx = 0 case, can be written as

Λxx(qx = 0, qy, iωn = 0) =
t2

N

∑
nmijσ

eiqy(rj−ri)([aijnm(u, v) + dijnm(u, v)]
f(Enσ)− f(Emσ)

Enσ − Emσ
+

[bijnm(u, v) + cijnm(u, v)]
f(Enσ) + f(Emσ̄)− 1

Enσ + Emσ̄
),

(4.42)

Next, we consider the Green function for superconductor:

G(τ) = −〈Tτ ciσ(τ)c†iσ(τ ′)〉

= −〈Tτ ((
∑
niσ

uniσγnσ(τ) + σ̄v∗niσγ
†
nσ̄(τ))× (

∑
n′iσ

u∗n′iσγ
†
n′σ(τ ′) + σ̄vn′iσγ

†
n′σ̄(τ ′)))〉

sinceγnσ(τ) = e−Enτγn

= −
∑
niσ

[(θ(τ − τ ′)(u2
niσ〈γnγ†n〉e−En(τ−τ ′) + v2

niσ〈γ†nγn〉eEn(τ−τ ′))+

(θ(τ ′ − τ)(u2
niσ〈γ†nγn〉eEn(τ−τ ′) + v2

niσ〈γnγ†n〉e−En(τ−τ ′))].

(4.43)

G(iwn) =

∫ β

0
dτeiwnτG(v, τ)

= −
∑
niσ

(u2
niσ(1− f(En))

∫ β

0
dτeiwnτe−Enτ + v2

niσf(En)

∫ β

0
dτeiwnτeEnτ )

= −
∑
niσ

(u2
niσ(1− f(En))

eiwnβe−Enβ − 1

iwn − En
+ v2

niσf(En)
eiwnβeEnβ − 1

iwn + En
)

since eiwnβ = −1

=
∑
niσ

(
u2
niσ

iwn − En
− v2

niσ

iwn + En
)

(4.44)

Then the density of states is

N(w) = −2ImG(iwn)

= −2
∑
niσ

Im(
u2
niσ

iwn − En
− v2

niσ

iwn + En
)

since iwn → w + iη

=
∑
niσ

(u2
niσδ(w − En)− v2

niσδ(w + En)).

(4.45)
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4.3 Numerical calculations

4.3.1 Homogeneous case

Using Eq. 4.37, the correlation function can be calculated directly no matter if the system

is homogeneous or inhomogenous, normal metallic or superconducting. However, since

the formula has 4-indices summation, the whole calculation is time-consuming for large

systems. Fortunately, in homogenous case, we can simplify this formula. And we set

t = 1 from now on.

In the homogeneous case, k is a good quantum number, we can replace n with k.

With u2
k = 1

2(1 + εk
Ek

) , v2
k = 1

2(1 − εk
Ek

) and Ek =
√
ε2k + ∆2. In the normal state, the

correlation function reduces to(∆ = 0, E → ε, v2
k = 1

2(1− εk
Ek

) = 0 )

Λxx(q, iωn) = 2
t2

N

∑
nmij

eiq(rj−ri)ãijnm(u)
f(εn)− f(εm)

iωn + εn − εm
, (4.46)

with

aijnm(u, v) = unjσu
n∗
i+xσu

m
iσu

m∗
j+xσ−unj+xσun∗i+xσumiσum∗jσ −unjσun∗iσ umi+xσum∗j+xσ+unj+xσu

n∗
iσ u

m
i+xσu

m∗
jσ .

(4.47)

Replace n with k, we get

Λxx(q, iωn) = 2
t2

N

∑
kk′ij

eiq(rj−ri)ãijkk′(u)
f(εk)− f(ε′k)

iωn + εk − ε′k
. (4.48)

Applying a Fourier transformation

uni =
∑
k

eikxuk, (4.49)

we obtain

Λxx(q, iωn) = 2
t2

N

∑
k

(e−2ikx−iqx − 2 + e2ikx+iqx)
f(εk)− f(εk+q)

iωn + εk − εk+q
. (4.50)

Therefore for qx = 0 we have

Λxx(q, iωn) = −8
t2

N

∑
k

sin2(kx)
f(εk)− f(εk+q)

iωn + εk − εk+q
. (4.51)
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Figure 1: Λxx(qy, ωn = 0) vs qy for a 2-D 64×64 clean lattice. Here average charge

density 〈n〉 = 0.85, |U | = 0, β = 1
kBT

= 20, while the solid square marks 〈−Kx〉.

We examine Eq. 4.51 in a 2-D 64×64 clean metal lattice(self-consistent result ∆i = 0

in the whole real space) with 〈n〉 = 0.85, |U | = 0.8, β = 1
kBT

= 20. See in Figure. 1,

when qy goes to a small value(qy → 0), Λxx(qy → 0, ωn = 0) = 〈−Kx〉, which means that

the superfluid density Ds = 0. Thus the system is a normal metal.

In the superconducting state, one gets
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Figure 2: Self-consistent ∆ map for a 2-D 64×64 clean lattice, here average charge

density 〈n〉 = 1, |U | = 4, β = 1
kBT

= 200.

Λxx(qx = 0, qy, iωn = 0) = −4t2

N

∑
kσ

sin2(kx)([ak,k+q(u, v) + dk,k+q(u, v)]
f(Ekσ)− f(Ek+qyσ)

Ekσ − Ek+qyσ
+

[bk,k+q(u, v) + ck,k+q(u, v)]
f(Ekσ) + f(Ek+qyσ̄)− 1

Ekσ + Ek+qyσ̄
),

(4.52)

One gets

ak,k+q(u, v) = u2
ku

2
k+q+ukvkuk+qvk+q =

1

4
(1+

εk
Ek

+
εk+q

Ek+q
+
εkεk+q

EkEk+q
+

∆k∆k+q

EkEk+q
), (4.53)

dk,k+q(u, v) = v2
kv

2
k+q+vkukuk+qvk+q =

1

4
(1− εk

Ek
−
εk+q

Ek+q
+
εkεk+q

EkEk+q
+

∆k∆k+q

EkEk+q
), (4.54)

bk,k+q(u, v) = u2
kv

2
k+q−ukvkuk+qvk+q =

1

4
(1+

εk
Ek
−
εk+q

Ek+q
−
εkεk+q

EkEk+q
−

∆k∆k+q

EkEk+q
), (4.55)

ck,k+q(u, v) = v2
ku

2
k+q−ukvkuk+qvk+q =

1

4
(1− εk

Ek
+
εk+q

Ek+q
−
εkεk+q

EkEk+q
−

∆k∆k+q

EkEk+q
). (4.56)

Defining p2(k, k + q) = 1
2(1 − εkεk+q+∆k∆k+q

EkEk+q
), and l2(k, k + q) = 1

2(1 +
εkεk+q+∆k∆k+q

EkEk+q
),
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finally we have that

Λxx(qx = 0, qy, iωn = 0)

=
4t2

N

∑
kσ

sin2(kx)[l2(k, k + q)(
1

iωn + Ekσ − Ek+qyσ
+

1

−iωn + Ekσ − Ek+qyσ
)(f(Ekσ)− f(Ek+qyσ))

+ p2(k, k + q)(
1

iωn + Ekσ + Ek+qyσ
+

1

−iωn + Ekσ + Ek+qyσ
)(1− f(Ekσ)− f(Ek+qyσ))],

(4.57)

analogously, in the limit qy = 0, thus can be written as

Λxx(qx, qy = 0, iωn = 0)

=
4t2

N

∑
kσ

(sin2(kx) +
qx
2

)×

[l2(k, k + q)(
1

iωn + Ekσ − Ek+qxσ
+

1

−iωn + Ekσ − Ek+qxσ
)(f(Ekσ)− f(Ek+qxσ))

+ p2(k, k + q)(
1

iωn + Ekσ + Ek+qxσ
+

1

−iωn + Ekσ + Ek+qxσ
)(1− f(Ekσ)− f(Ek+qxσ))].

(4.58)

As we discussed in previous chapter, the transverse part(Λxx(qx, qy = 0, iωn = 0)) vio-

lates gauge invariance, which gives incorrect value. However, it is well known that vertex

corrections fix this difficulty.
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Figure 3: Λxx(qy, ωn = 0) vs qy for a 2-D 64×64 clean lattice. Here average charge

density 〈n〉 = 1, |U | = 4, β = 1
kBT

= 200, while the solid square marks 〈−Kx〉.

Once the BdG equations are solved, a set of self-consistent result can be obtained.

Using Eqs. 4.16 and 4.57 , the homogeneous superfluid density can be calculated. See
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Figure. 2 for self-consistent ∆i in a square lattice of size 64×64, where average charge

density 〈n〉 = 1, |U | = 4, β = 1
kBT

= 200. Since the system is homogeneous, ∆i is

uniform in the real space, which is consistent. The correlation function Λxx(qy, ωn = 0)

and kinetic density 〈−Kx〉 is showed in Figure. 3. And we demand qy goes to a small

value(qy → 0), using Eq. 4.12, in this case, we get a finite ρs = Ds
πe2

= 0.6600, which

indicates this system is a superconductor. And the finite ∆i in Figure. 2 agrees with

this result. In figure 4, we evaluate the critical temperature Tc for a 2-D 22×22 lattice.

It is noticed that the superfluid density ρs and the order parameter ∆ goes to zero at

the same temperature, which indicates our result is consistent.

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

T

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

s

average 

Figure 4: ρs vs T (blue curve) and average ∆ vs T (red curve) for a 2-D 22×22 clean

lattice. Here average charge density 〈n〉 = 0.85, |U | = 0.8

4.3.2 Inhomogeneous case

The following paragraphs will demonstrate the effect of disorder. When we consider

about an inhomogeneous system, k is no longer a good quantum number. We have no

choice but use Eq. 4.37 to calculate correlation functions.

A. One impurity case; one impurity(V = 5.0) is placed at the middle of lattice,

shown in Figure. 5(a). As shown in Figure. 5(b), ∆i has a strong suppression at the

impurity sites. However, as seen in Figure. 6, the superfluid density in this case is still

a finite number(ρs = 0.0594), which indicates the system is in a superconducting state.
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(b) ∆ map

Figure 5: Disorder map and self-consistent ∆ map for a 2-D 40×40 lattice with one

impurity at the middle, here average charge density 〈n〉 = 0.85, onsite attraction |U | =
0.8, disorder strength V = 5.0, β = 1

kBT
= 113.
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Figure 6: Self-consistent Λxx(qy, ωn = 0) vs qy for a 2-D 40×40 lattice with one impurity

at the middle. Here average charge density 〈n〉 = 0.85, |U | = 0.8, β = 1
kBT

= 113, while

the solid square marks 〈−Kx〉.

From Eq. 4.12, the first term is the kinetic energy along the x direction divided by

the number of lattice sites:

〈−Kx〉 =
1

N

∑
i

−〈Ki
x〉. (4.59)
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Using Eq. 4.14, one has the local kinetic energy in the form:

〈−Ki
x〉 = 〈t

∑
n,σ

[(un∗i+xσu
n
iσ+un∗iσ u

n
i+xσ)f(Enσ)+σ̄2(vn∗i+xσv

n
iσ+vn∗iσ v

n
i+xσ)f(−Enσ̄)]〉. (4.60)

From Eq. 4.12, the second term is the current-current correlation function with a double

sum over lattice sites

Λxx(qx = 0, qy, iωn = 0) =
1

N

∑
ijσ

eiqy(rj−ri)Λxx(i, j, iωn = 0), (4.61)

with Λxx(i, j, iωn = 0) shown in Eq. 4.36. The local current current correlation function

can be written as:

Λixx(qx = 0, qy, iωn = 0) =
∑
jσ

eiqy(rj−ri)Λxx(i, j, iωn = 0). (4.62)

Then we can calculate the local superfluid density:

ρis = 〈−Ki
x〉 − Λixx(qx = 0, qy, iωn = 0). (4.63)

The local superfluid density for the one impurity case is shown in Figure. 7(a). It is

noticed that there is a suppression at the lattice site where impurity is located.
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(a) Local superfluid density map of one impurity
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Figure 7: Local superfluid density map for a 2-D 40×40 lattice, (a) is for one impurity

and (b) is for two impurities, here average charge density 〈n〉 = 0.85, onsite attraction

|U | = 0.8, disorder strength V = 5.0, β = 1
kBT

= 113.

B. Two impurities case; two impurities are placed in lattice as shown in Figure.

8(a). As seen in Figure. 8(b), ∆i drops dramatically at the lattice site where impurites
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are located. And we find similar curve and the superfluid density ρs = 0.590, shown by

Figure. 9. The local superfluid density for two impurites case is shown in Figure. 7(b). It

is noticed that there is a negative value at the lattice site where impurities locates, which

means the onsite rigidity is negative and the coherence phase φ is easy to fluctuate. From

Ginzburg-Landau equation, the free energy F ∼ ρs| 5 φ|2 + a|φ|2 + b|φ|4. To minimize

the free energy, the negative local superfluid density means that the coherence phase φ

does not want to remain as a constant instead to fluctuate strongly.
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Figure 8: Disorder map and self-consistent ∆ map for a 2-D 40×40 lattice with two

impurities, here average charge density 〈n〉 = 0.85, onsite attraction |U | = 0.8t, disorder

strength V = 5.0, β = 1
kBT

= 113.
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Figure 9: Self-consistent Λxx(qy, ωn = 0) vs qy for a 2-D 40×40 lattice with two im-

purities. Here average charge density 〈n〉 = 0.85, onsite attraction |U | = 0.8t, disorder

strength V = 5.0, β = 1
kBT

= 113.

C. Many-impurities case. We use the same parameters in the numerical calculations

as was used by A and B.( 〈n〉 = 0.85, |U | = 0.8t, V = 5.0, β = 1
kBT

= 113.). And we

produce a ∆0 = 0.0203 at T = 0, and T 0
c = 0.0110 for the clean case. Impurites are

distributed randomly on 15% of the lattice sites, shown in Figure. 10(a). In Figure 10(b),

∆/∆0 drops dramatically at the lattice site where impurites are located, which we expect.

However in some regions ∆/∆0 > 1, which indicates order parameter enhancement by

disorder. Does it means superconductivity is enhanced by disorder?
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Figure 10: Disorder map and self-consistent ∆/∆0 map for a 2-D 40×40 lattice with two

impurities, here average charge density 〈n〉 = 0.85, onsite attraction |U | = 0.8, disorder

strength V = 5.0, β = 1
kBT

= 113.

In the following paragraphs, we will demonstrate that the critical temperature of

an s-wave superconductor can be enhanced in the presence of impurities. The reason

for enhancement is that impurities make the density of states fluctuate, thus at some

lattice sites the density of states may enhance. And it is difficult to define the critical

temperature. In the homogeneous case, since the order parameter ∆ is uniform, it is

easy to define critical temperature when ∆ drops to zero in all sites. However, in the

inhomogeneous case, because of the density of states fluctuation, the ∆ does not drop

to zero everywhere in the superconductor at the same T . Instead, some regions still

remain finite ∆ while others drops to zero. Therefore, it is not crystal clear what are

the criteria of superconductivity. How do we know whether an inhomogeneous system is

a superconductor or not? Even the spatially average ∆̄, shown in Figure. 11, does not

easily allow for a definition of the critical temperature Tc. In the very dilute disorder

case, we dont need to bother with the problem that the order parameter may breaks

up into disconnected regions at high temperature. But in the dense disorder situation,

this problem need to be considered. Or can we define the critical temperature when all

edges of the system are fully connected by finite ∆ regions? But do we need to consider

about the Josephson effect? In this paper, we will try to use another way, the superfluid

stiffness Ds, to define the critical temperature. In Figure. 12, we show the T -dependence

of real-space maps of ∆/∆0 for 15% disorder system with different impurity strengths V (

〈n〉 = 0.85, |U | = 0.8t). As seen, for week impurity strength(V = 1.5), ∆ drops to zero

even below Tc, nevertheless for strong enough impurity strengths(V = 5.0), there are
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large regions for finite ∆ well above Tc. But the question is are they superconductors?

Does the superconductivity enhancement by disorder really exist?
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Figure 11: Spatially-averaged superconductor order parameter ∆̄ versus T , and for

Andersond disorder with VA = [−5, 5](blue curve)1. The clean case is shown by the

black curve.

1disorder strength V randomly distributed in [-5,5]
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Figure 12: Real-space maps of ∆/∆0 versus T (rows) for a 15% disordered system with

varing strength V = 1.5, 3.0, 5.0 for a conventional s-wave superconductor.
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Figure 13: Local superfluid density map for a 2-D 40×40 lattice, (a) is for Figure.

12(j)(V = 5.0, T/Tc = 0.8) and (b) is for 12(g)(V = 3.0, T/Tc = 1.44), here average

charge density 〈n〉 = 0.85, onsite attraction |U | = 0.8t, disorder strength V = 5.0,

β = 1
kBT

= 113.

Using Eq. 4.12, we calculate the superfluid density ρs seen in Figure. 14. It can
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be noticed that the last two case(Figure.12(k),(l)) indeed have finite superfluid density

ρs even for temperatures are well above Tc. Therefore, this evidence indicates that the

superconductivity enhancement by disorder exists. In this way, using the new criteria,

superfluid stiffness Ds, we prove the superconductivity enhancement by disorder. And

the local superfluid density is shown in Figure. 13. Where Figure. 13(a) is the local

superfluid density map of Figure. 12(j), also we can see suppressions at the disorder

lattice sites. And Figure. 13(b) is the local superfluid density map of Figure. 12(g),

which has a big area of negative superfluid density. From Figure. 14(g), we know this is

a normal state.
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Figure 14: Self-consistent Λxx(qy, ωn = 0) versus T (rows) for a 15% disordered system

with varing strength V = 1.5, 3.0, 5.0 for a conventional s-wave superconductor.
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5 d-wave superconductor

In this section, the d-wave superconductor will be discussed. The d-wave superconduc-

tor have different properties from the s-wave superconductor. For the d-wave supercon-

ductor, the Anderson’s therom does not work any more, which means the robustness

of superconductivity is weak, even a weak disorder may destroy its superconductivity.

This makes the d-wave superconductor mysterious and interesting and studying them is

essential to understand high-temperature supercondoctor.

5.1 d-wave BdG equations

Comparing to the s-wave superconductor, d-wave superconductor has a different Hamil-

tonian

H = −t
∑
〈ij〉,σ

(c†iσcjσ +H.c.) +
∑
i,σ

(Vi − µ)niσ − |U |
∑
〈ij〉

ni↑nj↓

= −t
∑
〈ij〉,σ

(c†iσcjσ +H.c.) +
∑
i,σ

(Vi − µ)niσ + |U |
∑
〈ij〉

c†i↑c
†
j↓ci↑cj↓

= −t
∑
〈ij〉,σ

(c†iσcjσ +H.c.) +
∑
i,σ

(Vi − µ)niσ +
∑
〈ij〉

[∆∗ijci↑cj↓ + c†i↑c
†
j↓∆ij ],

(5.1)

in the last line, we apply mean-field approximation, which means

c†i↑c
†
j↓ci↑cj↓ ≈ 〈c

†
i↑c
†
j↓〉ci↑cj↓ + c†i↑c

†
j↓〈ci↑cj↓〉, (5.2)

and

∆ij = |U |〈ci↑cj↓〉. (5.3)

The Hamiltonian can be diagonalized by the Bogoliubov transformation

H = E0 +
∑
nσ

Enσγ
†
nσγnσ,

c†i↑ =
∑
n

(u∗ni↑γ
†
n↑ − vni↑γn↓),

c†i↓ =
∑
n

(u∗ni↓γ
†
n↓ + vni↓γn↑).

(5.4)

Considering the commutator(refer to Appendix B), one has

[H, ci↑] = t
∑
〈j〉

cj↑ − (Vi − µ)ci↑ −
∑
〈j〉

∆ijc
†
j↓,

[H, ci↓] = t
∑
〈j〉

cj↓ − (Vi − µ)ci↓ +
∑
〈j〉

∆ijc
†
j↑.

(5.5)
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Then subsituting Eq. 5.4 into the Hamiltonian Eq. 5.1, one gets

[H, ci↑] = [H,
∑
n

(uni↑γn↑ − v∗ni↑γ
†
n↓)] =

∑
n

(−En↑uni↑γn↑ − En↓v∗ni↑γ
†
n↓),

[H, ci↓] = [H,
∑
n

(uni↓γn↓ + v∗ni↓γ
†
n↑)] =

∑
n

(−En↓uni↓γn↓ + En↑v
∗
ni↓γ

†
n↑).

(5.6)

Here γ and γ† are quasiparticle operators, which are linear combinations of the original

c operator. As well as we only care about the excitation above the superconducting

ground state, thus the summation is over positive eigenvalues only(Enσ > 0).

Demanding the commutators in Eq. 5.5 and Eq. 5.6 to be equal, one can obtain the

Bogoliubov-de Gennes equations

En↑uni↑ = −t
∑
〈j〉

unj↑ + (Vi − µ)uni↑ +
∑
〈j〉

∆ijvnj↓,

En↓v
∗
ni↑ = t

∑
〈j〉

v∗nj↑ − (Vi − µ)v∗ni↑ +
∑
〈j〉

∆iju
∗
nj↓,

En↓uni↓ = −t
∑
〈j〉

unj↓ + (Vi − µ)uni↓ +
∑
〈j〉

∆ijvnj↑,

En↑v
∗
ni↓ = t

∑
〈j〉

v∗nj↓ − (Vi − µ)v∗ni↓ +
∑
〈j〉

∆iju
∗
nj↑,

(5.7)

these four formula can be written in matrix form:(
K̂ ∆̂ij

∆̂∗ij −K̂∗

)(
uni↑

vni↓

)
= En↑

(
uni↑

vni↓

)
, (5.8)

(
K̂ ∆̂ij

∆̂∗ij −K̂∗

)(
uni↓

vni↑

)
= En↓

(
uni↓

vni↑

)
. (5.9)

Where K̂uniσ = −t
∑

<j> unjσ +(Vi−µ)uniσ and ∆̂ijuniσ =
∑
〈j〉∆ijunjσ, and similarly

for vniσ. For the same reason we argued in section 2, it is only necessary to solve one

of the Eqs. 5.8 and 5.9, thus the spin index can be suppressed. And we only want to

consider the excitation eigenvalues En ≥ 0.

The self-consistency conditions are given by

∆ij = |U |〈ci↑cj↓〉

= |U |〈
∑
n

(uniγn↑ − v∗niγ
†
n↓)×

∑
n′

(un′jγn′↓ + v∗n′jγ
†
n′↑)〉

= |U |
∑
n

univ
∗
nj(1− f(En))− unjv∗nif(En)

(5.10)
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〈ni〉 =
∑
σ

〈c†iσciσ〉 =
∑
nσ

(u∗niuniγ
†
nσγnσ + v∗nivniγnσ̄γ

†
nσ̄)

= 2
∑
n

u2
nif(En) + v2

ni(1− f(En)).
(5.11)

Here the summation is over positive eigenvalues only. In this paper, we will discuss

dx2−y2 superconductor, which means ∆i,i+x̂ = −∆i,i+ŷ. Then we guess an initial set of

order parameter {∆i} and an initial chemical potential µ, which is determined by average

density 〈n〉. And solve the Bogoliubov-de Gennes equations by a iteration process which

was discussed in section 2.

5.2 d-wave superfluid stiffness

The formula of d-wave superfluid stiffness is same as s-wave superfluid stiffness, which

is evaluated in section 3. In following paragraphs, we will demonstrate some numerical

results for the d-wave superconductor.

5.2.1 Homogeneous case

We simulate a a 2-D 22×22 clean lattice. Because the system is homogeneous, the

order parameter∆ is spatial isotrope. The local dx2−y2 wave average order parameter is

defined by ∆̄i = (∆i,i+x̂+∆i,i−x̂−∆i,i+ŷ−∆i,i−ŷ)/4. Then the average order parameter

∆̄ =
∑

i ∆i. As shown in Figure. 15, ∆̄ and ρs goes to zero at the same point, the

critical temperture is Tc = 0.0955.
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Figure 15: ρs vs T (blue curve) and average ∆ vs T (red curve) for a 2-D 22×22 clean

lattice. Here average charge density 〈n〉 = 1, |U | = 0.8

Using Eqs. 4.16 and 4.57 , the homogeneous superfluid density can be calculated.

See in Figure. 16, when T → 0, we have Λxx(qy, iωn = 0) for a 2-D 64×64 clean

lattice(blue curve) and 〈−Kx〉(solid square). Here average charge density 〈n〉 = 1, |U | =
4, T = 0.001. We can obtain a finite superfluid density ρs, which indicates it is a

superconductor.
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Figure 16: Λxx(qy, iωn = 0) for a 2-D 64×64 clean lattice. Here average charge density

〈n〉 = 1, |U | = 4, while the solid square marks 〈−Kx〉.

5.2.2 Inhomogeneous case

Recently, an experiment measured the superfluid density of a finely spaced set of high-

quality epitaxial grown films of overdoped La2−xSrxCuO4 by Božović et al [9]. They

showed that the superfluid density ρs and the superconducting critical temperture Tc

approached zero together as a function of doping, shown in Figure. 17(a). This con-

tradicts BCS theory, which predicts that the T = 0 superfluid density should be the

carrier density independ of Tc in a clean system. In a dirty superconductor, the su-

perfluid density depends on Tc. However, in the lowest temperture, the T dependence

of the penetration depth reduces to a small value, which indicates that the sample is

largely free of disorder. Under this assumption, the superfluid density ρs should remain

Tc independent, the data shown in Figure 17(a) is inconsistent with the BCS theory.
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(a) (b)

Figure 17: (a), superfluid density data measured on epitaxial grown La2−xSrxCuO4 thin

films by Božović et al. (b), The dependence of Tc on ρs0 = ρs(T → 0) by Božović et al.

The experiment data are represented by the blue diamonds; the green dashed line is the

fit to Tc = T0 + αρs for ρs > 15K and the red dashed line is the fit to Tc = γ
√
ρs0 for

ρs0 < 12K

In Figure. 17(b), they show the scaling Tc(ρs0)(The subscript 0 refers to the T0 → 0

limit). For ρs > 15K, they fit their data to a linear curve Tc = T0 + αρs, and for

ρs0 < 12K, the curve fits closely to Tc = γ
√
ρs0. From their data and Homes’ data [10],

they argue that the scaling relation between ρs and Tc should be quadratic, the linear

curve should not be shown by using BCS theory. Franz also got a quadratic relation

instead linear relation by using BdG equations [11], shown in Figure 18.
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(a) (b)

Figure 18: (a), critical temperture versus superfluid density from Franz’s paper [11].

Dashed line is the theoretical curve for clean case. (b)critical temperture versus su-

perfluid density [11] for a 2D 22×22 10% disorder system(V = −100) and |U | =

(0.80, 1.05, 1.40) for coherence length ξ = (9.9, 4.7, 2.5).

In order to examine this strange phenomenon, we use BdG equations to evaluate a

2-D d-wave superfluid density with varing charge density 〈n〉. We simulate a 2-D 22×22

lattice with 5% disorder(disorder strength V = 1.5). The superfluid density ρs versus

T curve is shown in Figure 19(b). We also calculate curves for for a 2-D 22×22 clean

lattice, shown in Figure. 19(a). And a critical temperture versus superfluid density

curve is seen in Figure. 20(a) for clean case and Figure. 20(b) for disorder case. See in

Figure. 20(a), the scaling relation in our calculation is not quadratic, we have an odd

step like curve in the middle, and in Figure. 19(a), which is inconsistent with Franz’

analysis(shown in Figure. 18(a)). It is noticed that the curve of ρs(〈n〉 = 0.90(orange)

have a almost same ρs0 as the curve of ρs(〈n〉 = 0.85(purple), but have a large difference

of Tc, which makes the step like curve appear. Since lack of time, we can not provide

more data to discuss, thus we can not make a certain conclusion. But we would study

the data carefully, get more data between 〈n〉 = [0.85, 0.90], simulate a bigger system,

and try to fix the problem we concern above.
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Figure 19: (a), a 2-D 22×22 d-wave superfluid density with varing charge density 〈n〉 for

avclean system. (b)a 2-D 22×22 d-wave superfluid density with varing charge density

〈n〉 for a 5% disorder system.
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Figure 20: (a), critical temperture versus superfluid density for a 2-D 22×22 clean lattice.

(b)critical temperture versus superfluid density for a 2D 22×22 5% disorder system.

6 Conclusion and outlook

In this thesis, we review the background of tight-binding model and BCS theory, and by

using BdG equations we study inhomogeneous BCS theory. Then a improtant physical

quality, superfluid stiffness Ds, is introduced. Applying Bogoliubov transformation, we

deduce the formula of superfluid stiffness step by step. Subsequently, we point out

the criteria of superconducting by calculating superfluid stiffness in a s-wave 40×40

system, which prove that the Tc enhancement by disorder exist. Also we discuss the

local superfluid density, we find out in normal state some area have a negative local
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superfluid density, which is not fully understood. Finally, a d-wave supercondoctor is

concerned, first, we present the derivation of d-wave BdG equations, and consider about

the puzzling experiment data presented by Božović et al. Since lack of time, our data

is not convinced enough to make a certain conclusion. In the future, we are going to

consider the deeper meaning of local superfluid density, the crystal clear definition of

local superfluid density. And we will put effort to resolve the discrepancy found in the

d-wave case.
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A Appendix A : Cooper pair

In this section the analytical derivation of the superconducting order parameter is pre-

sented. From Eq. 2.6

(2ξ −∆)ψ(k) = |U |N(0)

∫ ~ωD

0
dξ′ψ(k′). (A.1)

Then divide both sides by 2ξ −∆, one gets

ψ(k) =
|U |N(0)

∫ ~ωD
0 dξ′ψ(k′)

(2ξ −∆)
. (A.2)

And intergrate this on both sides with respect to ξ, one has∫ ~ωD

0
dξψ(k) =

∫ ~ωD

0
dξ
|U |N(0)

∫ ~ωD
0 dξ′ψ(k′)

(2ξ −∆)
. (A.3)

It is noticed that
∫ ~ωD

0 dξψ(k) is just some number. We can divide it out on both sides

to get

1 =

∫ ~ωD

0
dξ
|U |N(0)

(2ξ −∆)
=
|U |N(0)

2
ln(

2~ωD −∆

−∆
). (A.4)

In the so-called week-coupling limit where V N(0)� 1,

1 =
|U |N(0)

2
ln(

2~ωD −∆

−∆
)

− 2

|U |N(0)
= ln(

−∆

2~ωD −∆
)

e
− 2

|U|N(0) =
−∆

2~ωD −∆

∆ = (−2~ωD + ∆)e
− 2

|U|N(0)

∆ = −2~ωDe
− 2

|U|N(0) .

(A.5)

Here we neglect the second at the last line. Then we are going to discuss a little bit

about coherence length ξ0 of Cooper pair. The coherence length shows the rough spatial

extent of a Cooper pair. From Heisenberg’s uncertainty principle, one has

ξ0δk ∼ 1, (A.6)

and

∆ ∼ ~2

m
kF δk ∼ ~vF δk. (A.7)

Thus

ξ0 ∼
~vF
∆

. (A.8)
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B Appendix B: Commutators

In this section the details of the commutators in Eq. 3.11 are discussed. From Eq. 3.4,

the Hamiltonian can be written in

H = −t
∑
〈ij〉,σ

(c†iσcjσ +H.c.) +
∑
i,σ

(Vi − µ)niσ +
∑
i

[∆∗i ci↑ci↓ + c†i↑c
†
i↓∆i]. (B.1)

Consider the first item in Eq. (B.1), we have the commutator:

− t
∑
〈ij〉,σ

[c†iσcjσ +H.c., ci↑]

= −t
∑
〈j〉,σ

(c†iσ{cjσ, ci↑} − {c
†
iσ, ci↑}cjσ)

= t
∑
〈j〉,σ

δσ↑cjσ

= t
∑
〈j〉

cj↑,

(B.2)

here

δσσ′ =

{
1 for σ = σ′

0 otherwise
. (B.3)

Similarly

−t
∑
〈ij〉,σ

[c†iσcjσ +H.c., ci↓] = t
∑
〈j〉

cj↓. (B.4)

The second term in the Hamiltonian evaluates∑
i,σ

(Vi − µ)[c†iσciσ, ci↑]

=
∑
σ

(Vi − µ)(c†iσ{ciσ, ci↑} − {c
†
iσ, ci↑}ciσ)

= −
∑
σ

(Vi − µ)δσ↑ciσ

= −(Vi − µ)ci↑,

(B.5)

Similarly ∑
i,σ

(Vi − µ)[c†iσciσ, ci↓] = −(Vi − µ)ci↓ (B.6)
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For the last term in the Hamiltonian yields∑
i,σ

(∆∗i [ci↓ci↑, ci↑] + ∆i[c
†
i↑c
†
i↓, ci↑]

=
∑
i,σ

(∆∗i (ci↓{ci↑, ci↑} − {ci↓, ci↑}ci↑) + ∆i(c
†
i↑{c

†
i↓, ci↑} − {c

†
i↑, ci↑}c

†
i↓))

= −∆ic
†
i↓.

(B.7)

And: ∑
i,σ

(∆∗i [ci↓ci↑, ci↓] + ∆i[c
†
i↑c
†
i↓, ci↓] = ∆ic

†
i↑. (B.8)

By combining all expressions above one has Eq. 3.11

[H, ci↑] = t
∑
〈j〉

cj↑ − (Vi − µ)ci↑ −∆ic
†
i↓,

[H, ci↓] = t
∑
〈j〉

cj↓ − (Vi − µ)ci↓ + ∆ic
†
i↑.

(B.9)

Similarly, we can easily get the expression for d-wave(Eq. 5.5)
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C Appendix C: The general Kubo formula

Consider a quantum system described by the time independent Hamiltonian H0 in ther-

modynamic equilibrium. An expectation value of a physical quantity, described by the

operator A, can be evaluated as

〈A〉 =
1

Z0

∑
n

〈n|A|n〉e−βEn , (C.1)

here |n〉 is a complete set of eigenstates {|n〉} of the Hamiltonian H0 with eigenenergies

{En}. Suppose now that at some time, an external time dependence is applied to the

system. Then the whole Hamiltonian can be rewritten as

H(t) = H0 +H ′(t). (C.2)

The system is described by the same distribution of eigenstates but the states are

now time-dependent and they have evolved according to the new Hamiltonian. we can

obtain a new complete set of eigenstates {|n(t)〉} of the Hamiltonian H. Then the

time-dependent expection value of the operator A can be shown as:

〈A(t)〉 =
1

Z0

∑
n

〈n(t)|A|n(t)〉e−βEn . (C.3)

In the interation picture, we have

|n(t)〉 = e−iH0t|n̂(t)〉 = eiH0(t−0)Û(t, 0)|n〉, (C.4)

with the time-evolution operator Û(t, 0) = 1 − i
∫ t
o dt

′Ĥ ′(t′). Then one obtains the

expection value of A up to linear order in the perturbation.

〈A(t)〉 = 〈A〉0 − i
∫ t

0
dt′

1

Z0

∑
n

e−βEn〈n|Â(t)Ĥ ′(t′)− Ĥ ′(t′)Â(t)|n〉.

= 〈A〉0 − i
∫ t

0
dt′〈[Â(t), Ĥ ′(t′)]〉0.

(C.5)

The brackets 〈〉0 mean an equilibrium average with respect to the Hamiltonian H0. We

can rewrite the linear response result as

δ〈A〉(t) = 〈A(t)〉 − 〈A〉0 =

∫ ∞
0

dt′CRAH′(t, t′), (C.6)

where the retarded response function is

CRAH′(t, t′) = −iθ(t− t′)〈[Â(t), Ĥ ′(t′)]〉0. (C.7)
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And if the external perturbation has the form

H ′B(t) = Bf(t), (C.8)

where B is a time-independent operator and the time-dependent function f(t) is not an

operator. The response function CRAH′
B

(t, t′) becomes

CRAH′
B

(t, t′) = CRAB(t− t′)f(t′). (C.9)

Insert Eq. C.9 to Eq. C.6, we have

δ〈A〉(t) = 〈A(t)〉 − 〈A〉0 =

∫ ∞
0

dt′CRAB(t− t′)f(t′). (C.10)
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D Appendix D: Kubo formula in conductivity

In this section we will show the derivation for Eqs. 4.4, 4.12 and 4.13; Consider our

system of charged particles, electrons, which is subjected to an external electronmagentic

field. We can write down the Hamiltonian;

H(t) = H0 +H ′(t), (D.1)

H ′(t) = −e
∫
drρ(r)φext(r, t) + e

∫
J(r)Aext(r, t). (D.2)

where H0 is kinetic energy, H ′ is the perturbation term. φext is external potential and

Aext vector potential, ρ(r) particles density operator and J(r) current operator. We can

choose a gauge transformation, let φext = 0. Then

H ′(t) = e

∫
J(r)Aext(r, t). (D.3)

Apply the Kubo formal(Eq. C.10), the linear relation between current and vector po-

tential is

〈J(r)〉(t) = e

∫
dr′
∫
dt′
∑
β

CRJ(r)J(r′)β (t− t′)Aβext(r′, t′). (D.4)

Fourier transform it

〈J(r)〉(ω) = e

∫
dr′
∑
β

CRJ(r)J(r′)β (ω)Aβext(r
′, ω), (D.5)

here the correlation function CR
J(r)J(r′)β

(ω) =
∫
e−iωt〈[J(r, t), J(r′, t′)β]〉 Then the total

current operator can be read as

Jtot(r, t) = J(r) + Jext(r) = J(r) +
e

m
Aext(r, t)ρ(r). (D.6)

The expection value Jtote = e〈Jtot〉, namely

Jtote (r, ω) = e2
∑
β

CRJ(r)J(r′)β (ω)Aβext(r
′, ω) +

∑
β

e2

m
Aβext(r, ω)ρ(r). (D.7)

Fourier transform it,

Jtote (q, ω) = e2
∑
β

CRJJβ (q, ω)Aβext(q, ω) +
∑
β

e2

m
Aβext(q, ω)〈ρ(q)〉, (D.8)
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Jtote,α(q, ω) = e2
∑
β

CRJαJβ (q, ω)Aβext(q, ω) +
∑
β

e2

m
Aβext(q, ω)〈ρ(q)〉δαβ

= −e2
∑
β

(−CRJαJβ (q, ω)− 1

m
〈ρ(q)〉δαβ)Aβext(q, ω),

(D.9)

here

δαβ =

{
1 for α = β

0 otherwise
. (D.10)

If we substitute it by τ , Eq. D.9 is exactly the same formula as Eq. 4.4. Now from Eqs.

4.4, 4.10 and 4.11, we have

Ds

πe2
(δxβ −

qxqβ
q2

)Aβ(q, ω) = [〈−Kx〉 − Λxx(q, iωn = 0)]Ax(q, ω), (D.11)

if qx = 0, qy → 0,

Ds

πe2
[(δxx −

qxqx
q2

)Ax(q, ω) + (δxy −
qxqy
q2

)Ay(q, ω)] = [〈−Kx〉 − Λxx(q, iωn = 0)]Ax(q, ω),

(D.12)
Ds

πe2
= 〈−Kx〉 − Λxx(qx = 0, qy → 0, iωn = 0). (D.13)

If qy = 0, qx → 0,

Ds

πe2
[(δxx −

qxqx
q2

)Ax(q, ω) + (δxy −
qxqy
q2

)Ay(q, ω)] = [〈−Kx〉 − Λxx(q, iωn = 0)]Ax(q, ω),

(D.14)

0 = 〈−Kx〉 − Λxx(qy = 0, qx → 0, iωn = 0). (D.15)
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