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Abstract Heavy neutral leptons (HNLs) are hypothetical particles able to ex-
plain several puzzles of fundamental physics, chiefly neutrino oscillations. Being
sterile with respect to Standard Model interactions, these particles admit Majorana
masses. This mass term allows for processes violating the Standard Model lepton
number. Hence, such processes become a “smoking gun” signature of HNLs, pursued
by many experiments. In this work we demonstrate that if HNLs are the sole origin
of neutrino masses, destructive interference between Majorana states suppresses the
same sign di-lepton signal at colliders. In the phenomenologically interesting case of
large HNL couplings, such a suppression stems from mutually cancelling contribu-
tions of several HNLs akin to their contributions to neutrino masses. Nevertheless,
the signal can be much larger than naively expected. We also identify parts of the
parameter space of such realistic HNL models where the lepton number violating sig-
nal is maximised at the Large Hadron Collider and Future Circular Collider (LHC)
in the hadron-hadron phase (FCC-hh). Our results are obtained within the effective
W approximation which allows for analytic treatment and gives clear dependence
on the model parameters. Subsequently, they are rescaled to detector level Monte-
carlo simulations. For the LHC, the parameter bounds on the HNL’s mixing to the
Standard Model leptonic sector expected from our results are not competitive with
Electroweak Precision Tests, improving only slightly on other collider based searches.
For the FCC-hh we find a potential improvement on indirect bounds for HNLs with
masses in the TeV range, with strong improvement on other collider based searches.
Although approximate, our results are expected to be good estimates of discovery
potential. Exact exclusion limits on HNL parameters warrant further investigation.
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1Introduction

At the time of writing this thesis, the Standard Model of particle physics is the most
fundamental well-established theory describing our universe on the smallest scales.
Despite the phenomenal success the Standard Model has had in predicting experi-
mentally confirmed high energy physics phenomena, there are a number of observed
phenomena that it can not explain. Among the most stark of these shortcomings are

1. Neutrino oscillations
2. Baryon asymmetry of the universe
3. Dark matter
4. Inflation of the early universe
5. Dark energy
6. Gravity

In order to explain these phenomena, many extensions to the Standard Model have
been forwarded. One of these with the potential to explain at least points 1–3 of the
shortcomings listed above is the introduction of heavy neutral leptons.1

There is currently a plethora of experimental efforts underway aiming at the dis-
covery of this class of particles. While there are some theoretical considerations at
what energy scales these ultra-weakly interacting particle could be produced, the
parameter space is fairly unrestricted. As direct detection experiments are restricted
in their maximal production energy, researchers are looking to processes in which
heavy neutral leptons contribute or interact virtually. In such processes they hope
to find traces of heavy neutral leptons with masses above the electroweak scale. One
of such indirect processes is the equivalent of the neutrinoless double beta decay at
high energy hadron colliders.

The goal of this thesis is to describe this process in a neutrino theory that can
be reconciled with existing experimental neutrino data. Furthermore, it aims at
highlighting the importance of assuming realistic neutrino scenarios when analysing
indirect processes in general.

1The νMSM discussed in Section 1.2.3 also promises to explain inflation with the Standard
Model Higgs as the inflaton.
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Introduction

1.1 Standard Model

Before diving into the theory behind heavy neutral leptons and how they fit into
the Standard Model, this section is meant to give a brief summary of the framework
in which this extension would be embedded. The following brief overview will take
inspiration from much more profound introductions to the topic [1, 2].

1.1.1 General Structure

The Standard Model of particle physics (SM, also known as the Glashow-Weinberg-
Salam model) was first formulated in the framework of quantum field theory in the
1960s [3–5]. With the discovery of the Higgs boson in 2011 [6, 7], all predicted
particles of the SM have been experimentally confirmed, and predicted values have
been met with exceptional accuracy.2 The SM is the result of decades of research
in particle physics culminating in this description of all known forces — with the
exception of gravity — in a quantum field gauge theory.

In a nutshell, the Standard Model can be divided into three subcategories:
• Fermionic matter content of quarks (q), leptons (`), neutrinos (ν(`))3

• Force mediating gauge bosons (gluon g, photon γ, weak force mediators W,Z)
• Higgs boson h responsible for generating SM masses through Higgs mechanism

The well known graphic representation of this is shown on the left panel of Fig. 1.2.

Standard Model Lagrangian

More fundamentally, the model is described by the non-abelian (Yang-Mills [10])
SU(3)c × SU(2)L × U(1)Y gauge group. The SU(3)c part describes quantum chro-
modynamics (QCD), while SU(2)L × U(1)Y describes the electroweak sector. The
interaction — and self interaction — of the associated gauge fields in this theory are
described by the Lagrangian

Lgauge = −1
4G

iµνGi
µν − 1

4W
jµνW j

µν − 1
4B

µνBµν , (1.1)

2However, a few notable anomalies — that we will not cover in detail in this work — have been
recently raised in the electroweak sector (namely (gµ − 2) at Fermilab [8] and W mass at CDF [9])
further highlighting the fact that the model is not yet complete beyond doubt.

3When necessary we will distinguish between up-like uα ↔ (up, charm, top) and down-like
dα ↔ (down, strange, bottom) quarks.
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Introduction Standard Model

with an implicit summation over i and j. Here, Giµν (SU(3)c), W iµν (SU(2)L) and
Bµν (U(1))Y) are the fields in the adjoint representation

Giµν = ∂µGiν − gsfijkG
jµGkν

W iµν = ∂µW iν − gεijkW
jµW kν

Bµν = ∂µBν − ∂νBµ

(1.2)

with Giµ , W iµ ,and Bµ being the fields in the fundamental representations, while
gs (f) and g (ε) are the respective coupling (structure) constants of strong (SU(3)c)
and electroweak (SU(2)L) interactions. In addition to this, we add the fermionic
matter content of

Lf =
∑

α=1,2,3

( ∑
F=QL,LL

F̄αi /DFα +
∑

f=uR,dR,`R

f̄αi /Dfα
)
, (1.3)

where the fermionic indices are implicit and α is used as a generation index. The
SU(2)L doublets QL = (uL, dL) and LL = (`L, νL) are the left-chiral projections
ψL = (1 − γ5)/2ψ, while the right chiral fields uR, dR, `R are singlets under this
transformation. We highlight, the absence of a right handed neutrino singlet νR in
this model. Further, we have used the covariant derivative

Dµ = ∂µ + igs
λi

2 G
i
µ + ig

σj

2 W
j
µ + ig′qYBµ, (1.4)

with g′ being the coupling constant associated with U(1)Y, qY being the hypercharge
and λi (σi) the Gell-Mann (Pauli) matrices.

So far we have established a functioning massless gauge theory, describing matter
content and interactions. In reality, however, particles are known to be massive.
This is a crucial point in the formulation of the SM as the introduction of masses
typically breaks gauge invariance. This problem is circumvented by the Higgs mech-
anism [11–13], which generates fermion and boson masses while preserving gauge
invariance. Here, a complex scalar field H is introduced transforming as a SU(2)L

doublet (H+, H0), so that we add

LH = (DµH)† DµH − V (H) (1.5)

to the SM Lagrangian, where V (H) = µ2H†H+λ(H†H)2 is a Higgs potential.4 This
4Note that only for µ2 < 0 there will be spontaneous symmetry breaking, while λ > 0 is required

by vacuum stability. We further note that this ad-hoc potential is often referred to as a tree level
potential, and indeed higher order terms might be significant (e.g. [14, 15]). Further, the presence
of heavy right-handed neutrinos can alter the shape of this potential in certain scenarios (see e.g.
[16] for a review).
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Introduction Standard Model

field couples to left-right fermion pairs (u, d, `) through Yukawa couplings F f
αβ

LYuk = −
∑
αβ

(
F u

αβ

(
Q†

LαH̃
)
u†

Rβ + F d
αβ

(
Q†

LαH
)
d†

Rβ + F `
αβ

(
L†

LαH
)
`†

Rβ

)
+ h.c. (1.6)

where H̃ = εH∗ and again α, β are generation indices. We note that since there is
no right chiral neutrino component in the SM, neutrinos cannot attain a Yukawa
coupling. Combining all the above Lagrangians, we can write out the full Standard
Model Lagrangian

LSM = Lgauge + Lf + LH + LYuk. (1.7)

Higgs Mechanism - Spontaneous Symmetry Breaking

As alluded to in the previous part, SM masses are generated by Spontaneous Sym-
metry Breaking of the electroweak sector (EWSB) — the Higgs Mechanism. In this
process, the gauge invariance of SU(2)L ×U(1)Y is broken spontaneously, where the
Higgs doublet assumes its non-zero vacuum expectation value (vev) 〈H〉. Formally,
there exists more than one possible vev, but as they can all be obtained from one
another by a suitable gauge transformation, choosing a particular vev corresponds
to fixing a gauge. Most commonly, the chosen vev corresponds to the unitary gauge,
where

H = 1√
2

(
0

v + h

)
. (1.8)

Here, v =
√

−µ2λ−1 and h being a hermitian field — the physical Higgs scalar as we
see it in detectors.

Under the above symmetry breaking we find

LH → m2
WW

+µ
W−

µ + 1
2m

2
zZ

µZµ + h-terms. (1.9)

Thus, EWSB successfully generates the massive gauge bosons W and Z with

mW = 1
2gWv, and mz = mW

cos θW

, (1.10)

where θW is the Weinberg angle tan−1(g′/gW ). Meanwhile, a third gauge field A

remains massless, describing the interactions of quantum electrodynamics. Further-
more, we have

LYuk → −
∑
α,β

∑
f=u,d,`

mf
αβ f̄LαfRβ + h-terms (1.11)

4



Introduction Standard Model

with — potentially non-diagonal — Dirac masses mf
αβ = v

2

(
F f

αβ

)∗
.5 In this way,

EWSB also generates the masses of the SM fermionic matter content.

1.1.2 Neutrinos

First proposed in Wolfgang Pauli’s famous 1930 letter to the “radioactive ladies and
gentlemen” [19], and later named and described more thoroughly by Enrico Fermi
in 1933 [20], it took until 1956 until the neutrino’s eventual discovery by Reines and
Cowan jr. [21].6 Shortly after Wu [22] experimentally showed parity violation in
the β-decay of 60CO. This, in combination with the consequent neutrino helicity
measurements by Goldhaber [23], led people to believe that neutrinos are massless
and left-helical.

It is for this reason that in the formulation of the SM neutrinos decidedly seem to
be the “odd-one-out”, lacking a right chiral component. As we saw in Section 1.1.1,
this means that in the Standard Model, neutrinos cannot attain mass through the
Higgs mechanism. Indeed, precision experiments on β-decays [24] and cosmological
bounds (see [25] and references therein) indicate that neutrino masses are smaller
than O(eV). However, there is reason to believe that they cannot be exactly 0, a
phenomenon known as neutrino oscillations.

Neutrino Oscillations

When the flux of solar electron neutrinos was first observed in 1968 by the Homestake
experiment [26], it was found that significantly fewer of them reached the earth
from the sun than predicted by the standard solar model at the time [27]. More
than 30 years later, the SNO experiment [28] definitively showed that the missing

5The fact that mass and flavour basis do not necessarily align is well-established for quarks
where the rotation between the bases is described by the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [17, 18]. In weak interactions this leads to a possible conversion of quark flavour. As we
will see in Section 1.1.2, this fact also plays an important role in our understanding of massive
neutrinos.

6Given that Pauli was concerned that he had “postulated a particle that could not be detected”,
20 years does not seem like an excessively long time. It should, however, give some perspective
on what time scales to expect before we discover the even more elusive heavy neutral leptons
experimentally.
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Introduction Standard Model

Figure 1.1: Schematic representation of neutrino mass splitting for normal (left) and
inverted (right) hierarchy taken from [36].

electron neutrinos had been transformed into muon and tau neutrinos.7 This, along
with measurements on atmospheric neutrinos by the Superkamiokande in 1998 [31],
provided experimental evidence for the phenomenon of neutrino oscillations, first
proposed by Pontecorvo [32, 33]. Since then, many more experiments have observed
neutrino flavour changes (see [16] for an overview), the common explanation for which
is the standard-3-scenario (S3S, see [34] for a review).

In the S3S, one assumes 3 massive neutrinos. Just like in the case of quarks,
the neutrino mass term is not diagonal in the basis of weak interactions that the
Standard Model neutrinos can undergo. Thus, these flavour eigenstates νL` (again
with ` = e, µ, τ) are superpositions of the mass eigenstates νi with masses mνi.
The rotation between the two bases is described by the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix Upmns [33, 35]. If such a neutrino flavour package propagates
with a given momentum, each non-degenerate mass eigenstate of its decomposition
will have different energy, causing the individual wave function to oscillate with
different frequencies. This causes a change in superposition of the mass eigenstates
in time and, thus, along the neutrino packages trajectory.

To account for the oscillations measured, one needs two mass splittings in the
neutrino mass basis. However (so far) experiments can only resolve the absolute value
of these mass differences giving rise to two possible hierarchies of neutrino masses [36].
The mass splittings measured from atmospheric (∆m2

atm) and solar (∆m2
sol) neutrinos

is shown schematically in Fig. 1.1 for normal and inverted hierarchy. Importantly,

7It should be noted that oscillation of freely propagating neutrinos does not account for this
deficit, but works hand in hand with the Mikheyev Smirnov Wolfenstein effect [29, 30] describing
resonant flavour transitions inside the sun — also requiring small neutrino masses.
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Introduction Standard Model

this also does not include information about the absolute mass scale of neutrinos.
Hence, it is imperative that neutrinos have mass to explain neutrino oscillations,

but as we saw in Section 1.1.1, this is not possible in the Standard Model. Hence,
in order to explain neutrino oscillations, the Standard Model has to be extended.8
One natural way to this is by including a Right chiral counterpart to the Standard
Model neutrino, giving rise to the theory of heavy neutral leptons.

1.2 Heavy Neutral Leptons

In the previous section we saw the necessity of extending the Standard Model to
accommodate light neutrino masses with a non-zero mass splitting. The arguably
simplest extension to the SM to allow for light neutrino masses is the introduction of
right handed singlet states — the heavy neutral leptons (HNLs). In this section, we
will discuss the mechanism responsible for light neutrino masses in such models — the
type-I seesaw mechansim — introduce certain theoretical considerations and present
some common models of the extended neutrino sector.9 Again, this introduction will
be inspired by previous works on the subject [34, 40–42], while keeping a consistent
naming convention throughout the thesis.

1.2.1 Type-I Seesaw Mechanism

We recall that the leptonic sector of the Standard Model contains three generations
of left chiral SU(2)L doublets LLα and right chiral SU(2)L singlets `Rα. In the
type-I seesaw [43–46] this is extended by a set of N right handed singlets νRI . For
these uncharged singlet states it is admissible to add Majorana mass terms MI [47],
where the mass scale is not fixed and can range from ∼ eV to 1015 GeV.10 The

8If light neutrinos are Majorana neutrinos one can also introduce them in an effective field
theory approach through a Weinberg operator [37] without introducing new degrees of freedom to
the Standard Model [34]. However, this does not yield a UV complete theory.

9Given the name, it is obvious that this is not the only mechanism of its kind to explain neutrino
masses. The type-II seesaw mechanism (c.f. [38]) considers the introduction of new scalars, while
the type-III seesaw (c.f. [39]) extends the SM by SU(2)L triplets.

10This term is not profoundly motivated other than — as a dimension 3 — being a relevant
term, and all other terms of this category being included in the Standard Model. It is arguably
following the logic of “what is not forbidden must occur”.
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Introduction Heavy Neutral Leptons

Lagrangian before electroweak symmetry breaking reads

Lseesaw = LSM + i

2ν
†
RI σ̄

µ∂µνRI − (FαI)∗
(
Lα · H̃

)†
νRI − MI

2 νT
RIνRI + h.c. (1.12)

Here, I = 1, . . . ,N , Lα =
(
να

lα

)
L, where α = e, µ, τ and H̃a = εabH

∗
b , where H is

the Higgs doublet. After EWSB, this can be written as H = 1√
2

(
0
v

)
, where v is the

Higgs’ vacuum expectation value. And so
(
Lα · H̃

)
= v√

2νLα after EWSB. The terms

LD = − (F ν
αI)∗ v√

2
ν†

LανRI + h.c. (1.13)

are equivalent to Dirac mass terms with (mD)αI = v√
2 (FαI)∗, resulting in the non-

diagonal, complex, symmetric Dirac-Majorana mass matrix

LDM = −1
2
(
ν̄L ν̄c

R

)( 0 mD

mT
D MM

)(
νc

L νR
)

+ h.c. , (1.14)

where MM = diag(M1, . . . ,MN ). In the seesaw limit mD � MM (in terms of their
eigenvalues), the mass matrix in Eq. (1.14) can be brought into approximate block
diagonal form with submatrices

mαβ = −
∑

I

(mD)αI (mD)βI

MI

, and

mIJ = MIδIJ .

(1.15)

Additionally diagonalising mαβ by unitary transformation and redefining fields, we
can rewrite Eq. (1.14) as

LDM = −mi

2
(
nini + n†

i n
†
i

)
, (1.16)

with i = 1, . . . 3 + N , showcasing the existence of 3 + N Majorana states in this
model — three light neutrino mass states νi with masses mνi and N heavy mass
states NI with masses mNI .11 It is, furthermore, useful to define the mixing angle

VαI = FαI
v

MI

= (mD)αI

mNI

(1.17)

11The relationship between mαβ and diag(mν1, mν2, mν3) is given exactly by the PMNS matrix,
which we use in writing out Eq. (1.18).
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Introduction Heavy Neutral Leptons

as small parameter.12 Combining the relations above we find the seesaw formula(
U †diag(mν1,mν2,mν3)U

)
αβ

=
∑

I

VαIVβImNI , (1.18)

with U being the PMNS matrix introduced in Section 1.1.2 and α = (e, µ, τ).
In this framework, the minimal number of HNLs required to generate the two

separate neutrino mass states necessary for neutrino oscillations is two [48].

Remarks on Parameter Space Bounds

Even though the seesaw relation in Eq. (1.18) is derived under the assumption

Type-I seesaw: |VαI | < 1, (1.19)

for large HNL masses, mNI
& v, the requirement of perturbativity of the model

described by Eq. (1.12), |FαI | < 1 becomes more restrictive than Eq. (1.19). Indeed,
owing to Eq. (1.17) we get:

Perturbativity: |VαI | < v

MI

. (1.20)

The conditions in Eqs. (1.19) and (1.20) were used in Chapter 3 when deriving the
maximal number of events produced at colliders Fig. 3.6.13

It should also be noted that a type-I seesaw model produces light neutrino masses
of the order m ∼ |V |2mN1 . This defines a minimal mixing angle, admissible for
an HNL generating neutrinos compatible with neutrino oscillation data, commonly
referred to as the seesaw line

|V |2seesaw =

√
|∆m2

atm|
mN

. (1.21)

1.2.2 Violation of Lepton Number

By introducing the Majorana mass term in Eq. (1.12), breaking the SM lepton num-
ber becomes possible. This is due to Majorana neutrinos (νR) being their own anti
particle (νc

R), and this term connecting the two at Lagrangian level. However, if there
12To make the notation more readable, we will sometimes write V`N instead of VαI .
13Notice that in a model as described in Section 2.2, this requirement will be imposed on the

heavier of the two HNLs and entail a limit on V`1 through Eq. (1.23).

9



Introduction Heavy Neutral Leptons

exists a correlation between the mixing of different NI with active neutrinos in order
to account for small neutrino masses, non-trivial cancellations may suppress lepton
number violating (LNV) with respect to lepton number conserving (LNC) processes
[49–51]. In such models with approximate HNL mass degeneracy, there exists an
approximate U(1) symmetry relating the individual mixings and naturally allowing
for mixing angles above the seesaw line [52–57]. In case of an exact symmetry (exact
mass degeneracy), lepton number is exactly conserved. However, accidental breaking
of this symmetry (potentially responsible for small neutrino masses14) may lead to
HNL oscillations, possibly implying significant fractions of LNV/LNC process rates
(see e.g. [59–61]).

In a degenerate two HNL model, one may realise such a symmetry by imposing

Vα1 = iVα2. (1.22)

In the limit of exact mass degeneracy (Dirac limit), the two HNLs will combine into a
single Dirac particle and as described above, lepton number is exactly conserved. For
a quasi-degenerate two HNL model (mN1 ' mN2) the combination of two HNLs still
behaves in many ways as a Dirac-particle and is hence known as a quasi-Dirac (or
pseudo-Dirac) pair [51]. Manifestly, this scenario results in small neutrino masses (by
virtue of the seesaw relation Eq. (1.18)). An exact cancellation can be parametrised
by a mass ratio rN with

mN2 = rNmN1 and Vα1 = ir
−1/2
N Vα2. (1.23)

We will refer to the class of models obeying this relation as quasi-Dirac-like (qDl).
We note that for large rN, radiative corrections to neutrino masses can be sizeable
[50, 62–64] and that such cancellations arguably involve a high degree of fine tuning
[63], making such models theoretically less appealing.

1.2.3 Neutrino Sector Models

In this section we will briefly introduce neutrino sector models established to ad-
dress the unexplained phenomena in the introduction of this chapter. As the seesaw
formula Eq. (1.18) leaves a great many degrees of freedom to the sterile neutrino
parameters, theories have been put forward to explain multiple of the Standard

14Other schemes include the classical low-scale seesaws (see Section 1.2.1) and neutrino masses
generated as radiative corrections (see e.g. [58]).
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Introduction Heavy Neutral Leptons

Figure 1.2: Particles of the Standard Model (left) and the νMSM (right). This graphic
was taken from Gninenko et al.’s motivation paper for the SHiP experiment[67] and
slightly altered to include the measured value of Higgs mass [68].

Models observational shortcomings at the same time.15 One phenomenon many of
these theories address is baryon asymmetry of the universe (BAU) — the fact that
astronomical searches see more baryonic matter than antibaryonic matter in the
observable universe.

Neutrino Minimal Standard Model

One such model of HNLs is the neutrino minimal standard model (νMSM [49, 65],
see [66] for a review), which features N = 3 sterile neutrinos. Arguably, introducing
three right chiral neutrinos reestablishes symmetry between the quark and leptonic
sector of the SM, which is shown in Fig. 1.2. As discussed above, three HNLs are
capable of describing neutrino oscillations.

The lightest of the HNLs N1 represents a dark matter candidate. The requirement
here, is that it must not be too light (must be keV range or above), as dictated by
the Tremaine-Gunn bound [69], and Pauli exclusion principle (applies to fermionic
dark matter). Simultaneously, it must not be too heavy or strongly coupled, so that
it can be stable — with respect to decays — on time scales comparable to the age of
the universe. This greatly suppresses N1s contribution in the seesaw of Eq. (1.18),
effectively decoupling it from this mechanism. In spite of its ultra weak coupling, N1

15In fact the number of free parameters in this theory are 7N − 3 (with N HNL generations),
only 3 + 2n (with 2 ≤ n ≤ 3 being the number of massive light neutrinos) are defined by the LHS.
Further, only five of these (two mass splittings and three neutrino mixing angles) can be constrained
with light neutrino oscillation data (see Fig. 1.1).
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Introduction Heavy Neutral Leptons

could have been generated resonantly [70] in sufficiently large quantities in the early
universe.

The two heavier neutrinos N2 and N3 generate the lion’s share of the light neutrino
masses similarly to a qDl pair Eq. (1.23). Their mixing angles are sizeable, so
that they decay quick enough not to undermine resonant dark matter production.16

The masses mN2,3 lie in a range of 1–100 GeV to allow BAU to originate at the
right temperatures which allow it to survive — i.e. circumventing washout [72].
Furthermore, these masses need to be highly degenerate in order to cause significant
enough CP -violation to explain BAU through leptogenesis.17

Akhmedov-Rubakov-Smirnov Models

If one drops the requirement of explaining dark matter through right handed neu-
trinos, the requirement on mass degeneracy of HNLs in order to explain BAU re-
laxes considerably. This class of models is commonly referred to as the Akhmedov-
Rubakov-Smirnov (ARS) model [73–75]. Similarly to the νMSM, HNL mass degen-
eracy resonantly enhances leptogenesis in the ARS as well. However, due to this
model being less restricted in terms of the exact sequence in which processes oc-
cur in the early universe, leptogenesis is also possible for non-degenerate HNLs [76].
Furthermore, such models can feature HNLs with masses up to 70 TeV [77].

1.3 Motivation for Same Sign Di-Lepton Searches

As discussed in Section 1.2.2, lepton number violation is possible if neutrinos (and/or
HNLs) are of Majorana nature, making LNV signals the smoking gun signature of
such models. Here, we will introduce one of the most extensively studied of such
signatures, the neutrinoless double-β decay (0νββ).

1.3.1 Decay Measurements

In atoms, this LNV decay mode emits two leptons of the same charge, while simul-
taneously converting two neutrons into two protons (see Fig. 1.3). By studying the
decay rate, one can draw conclusions on the Majorana particles, shown here with

16Indeed they can be seizable enough to be testable at LHC energies [71].
17In the language of Eq. (1.23) this corresponds to rN − 1 < 10−4 for mN2,3 = 100 GeV [65].

12
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d u
d
u

d
u

`+

`+

d u
d
u

d
u

W

W

n

Figure 1.3: Feynman diagram of the neutrinoless double beta decay. This process is
allowed exclusively by the Majorana fermion(s) n sitting at its heart.

n, enabling this process (see [78, 79] and [80, 81] for recent reviews). One of the
main appeals of investigating 0νββ is that it is fully reconstructible. That is to say,
there are no neutrinos in the final state, so that an event can be detected without
further assumptions. Experiments have to reject background due to cosmic rays,
environmental radioactivity and contamination of the potential 0νββ isotopes [82].
In principle, however, a single detection would manifest the Majorana nature of the
neutrino. To the author’s knowledge, as of publication of this thesis, no detection
has been reported, with measured lower bounds on half lives as large as 1026 yr. This
puts strong bounds on the HNL parameter spectrum [83–85].

1.3.2 At Hadron Colliders

At pp colliders, there exists a high energy equivalent to 0νββ, namely pp → `±`±jj

In this case the final QCD product is not stable and causes jet cascades in a detector.
In the direct equivalent, the LNV is mediated by a Majorana particle in the t (and u)
channel (shown in Fig. 1.4a) which we will refer to as W boson fusion (WBF). This
process has enjoyed some theoretical attention in the past [97–101], while it was only
recently investigated experimentally [86]. There also exists a (Drell-Yan) process
sharing the same pp → `±`±jj signature (see Fig. 1.4b and [102, 103]), which has
been studied quite thoroughly experimentally [87–96]. Despite their same collider
signature, the two processes do not add coherently as the quark initial and final
states are different.

Due to the higher energy at colliders, pp → `±`±jj would be able to resolve the
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u
du

d

u
d

`+

`+

u
du

d

u
d

W

W

n

(a) WBF process, reminiscent of 0νββ

decay, used to interpret same-sign
lepton searches in [86].

q

q′

`+

`+

q

q′

W
n

W

(b) Drell-Yan process, used to interpret same-
sign lepton searches in [87–96].

Figure 1.4: Two kinds of processes leading to same-sign leptons plus jets signatures in pp

collisions, where n represents both light and heavy Majorana states. Vector boson fusion
process with Majorana particles in t-channel is shown in panel (a). Drell-Yan process
with Majorana particles in s-channel is shown in panel (b). The contribution from
two processes add incoherently due to the antiquarks in the final state of process (b)
compared to (a).

effects of more massive HNLs than 0νββ-decay experiments. Furthermore, also these
processes do not have any missing energy and, thus, portray valuable candidates
for HNL collider searches — which manifests itself in a wealth of past works on
this subject. As in the Drell-Yan (DY) process, the HNL can go on-shell in the
narrow width approximation [104, 105] — hence, interference between Majorana
states does not occur at amplitude level — the results of such studies can admissibly
be performed in the phenomenological HNL model [40, 106] with free parameters
of a single HNL generation. In case of the WBF process, the Majorana states are
necessarily off-shell as they only exist in the t (u) channel of the process and thus,
will interfere at amplitude level. Therefore, it is necessary to employ a neutrino
sector model that is restricted by its predictions. In this study, we will be presenting
results for models with one or two HNLs that result in small (tree level) neutrino
masses. For one HNL, this corresponds to a mixing angle along the see-saw line and
for an HNL pair we invoke a model with symmetry protected small neutrino masses.
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Introduction Motivation for Same Sign Di-Lepton Searches

As we will see, the latter can be well approximated by an HNL pair obeying the qDl
conditions of Eq. (1.23).

1.4 Effective Vector Boson Approximation

In this thesis we will use the effective vector boson approximation (EVA) to gener-
alise vector boson scattering cross sections to the case of hadron-hadron collisions at
colliders. This is motivated by the fact that at interactions in the TeV range, the
(polarised) gauge bosons of the Standard Model (see Section 1.1.1) can be viewed
as part of a protons parton sea [107, 108]. In this way, the approximation is a gen-
eralisation of the well known parton distribution functions (PDFs) relying on the
asymptotic freedom of QCD [109–111] (see e.g. [112] for a review) and equivalent to
the better known effective photon (also known as Weizsäcker-Williams) approxima-
tion [113, 114]. We will give a brief sketch of the derivation and an overview here,
taking inspiration from literature on the subject [108, 115–117].

1.4.1 Quark Level

In analogy to the Weizsäcker-Williams Approximation which derives the effective
number of photons in an electron, we start by deriving the effective number of po-
larised vector bosons in a quark. To this effect, we consider the amplitude of a
polarised massive vector boson (MVB, V ) to scatter off a quark with energy Eq to
form a final state X. For transversal polarisation, this is

AT(VT + q → X) = εi ·M
√
Eq , with i = 1, 2 , (1.24)

the MVB polarisation vector εi
µ, Mµ describing the effective coupling of the V −q−X

vertex. In the lab frame of the quark, where kV 0 is the MVB energy, this leads to
the polarised differential cross section

dσT(VT + q → X) = 1
16kV 0η

2∑
i=1

|εi ·M |2dΓ, (1.25)

where dΓ is the Lorentz-invariant phase space element, and η =
√

1 −m2
V k

−2
V . Gen-

eralising this to the process

q1 + q2 → Vλ → q′
1 +X (1.26)
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Introduction Effective Vector Boson Approximation

with polarisation λ and neglecting the longitudinal contributions to this process leads
to

iAT(q1 + q2 → Vt → q′
1 + X)

=
2∑

i=1
ū (p′) (CV + CAγ5) εiu(p)εi ·M

√
Eq

(
1

(p− p′)2 −m2
V

)
,

(1.27)

where the p is the incoming momentum of q1 and p′ the outgoing momentum of q′.
For

V = W we have CV = −CA = g/2
√

2,

and for V = Z CV = (g/ cos θw)
(1

2T3L −Q sin2 θw

)
,

CA = − (g/ cos θw)
(1

2T3L

)
,

(1.28)

where θw is the Weinberg angle, g = α/ sin θw, T3L the third component of weak
isospin of q1, and α the electric charge.18

Averaging over spin and azimuthal angle, one can find the transversally polarised
cross section

σT(q1 + q2 → VT → q′ +X)

=
∫ d3p′

(2π)3
C2

V + C2
A

8EE ′
dΓ

(k−
V M

2
V )2

(
sin2 θ′E

2
qE

′2

|k|2
− k2

2

) 2∑
i=1

|εi ·M |2,
(1.29)

where E (E ′) denotes the energy of q1 (q′). The main approximation now consists
in replacing the transverse current |εi ·M |2 and the phase space element dΓ by their
values at k2

V → m2
V and θ′ → 0. This makes the EVA a small-angle approximation.

In this approximation we can rewrite Eq. (1.29) as

σT(q1 + q2 → VT → q′ +X) =
C2

V + C2
A

2π2

∫
dkV 0 dθ′ sin θ′ kV 0E

′η

E(k2 −m2
V )2σT(VT + q2 → X),

(1.30)

with k2 = 2EE ′(cos θ′ − 1), and σT(VT + q2 → X) from Eq. (1.25).
Now, Eq. (1.30) has the form of a parton folding function if we define the distri-

bution function fTrans.
V/q such that

σT(q1 + q2 → VT → q′ +X) =
∫ 1

xmin
dx fTrans.

V/q (x)σT(VT + q2 → X). (1.31)

18For a detailed explanation of these couplings and their relationships see section 21.4 of [118].
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Here, we have changed the integration variable to the Björken-x, which is the partonic
momentum fraction x = kV /p1. This quark level transversal distribution function is
written as

fTrans.
V/q (x) =C

2
V + C2

A
8π2x

 −x2

1 +m2
V /
(
4E2

q (1 − x)
) + 2x2(1 − x)

m2
V /E

2
q − x2

+

x2 + x4(1 − x)(
m2

V /E
2
q − x2

)2

(
2 + m2

V

E2
q (1 − x)

)
− x2(

m2
V /E

2
q − x2

)2
m4

V

2E4


× log

(
1 +

4E2
q (1 − x)
m2

V

)
+ x4

(
2 − x

mV /E2
q − x2

)2

log x

2 − x

η,
with η =

√√√√1 − m2
V

x2E2
q

,

(1.32)
quark sub-energy Eq, and coefficients CA, CV as given in Eq. (1.28).

Under the same approximations, one can analogously derive a quark level distri-
bution function for longitudinally polarised MVB

fLong.
V/q (x) =C

2
V + C2

A
π2

1 − x

x

η

(1 + η)2

×

1 − x−m2
V

(
8E2

q

)−1

1 − x+m2
V /
(
4E2

q

) − m2
V

4E2
q

1 + 2(1 − x)2

(1 − x) +m2
V

(
4E2

q

)−1
1

m2
V /E

2
q − x2

− m2
V

4E2
q

x2

2(1 − x)
(
x2 −m2

V /E
2
q

)2

(2 − x)2 log x

2 − x

−

(x− m2
V

E2
qx

)2

−
(
2(1 − x) + x2

) log
(

1 +
4E2

q (1 − x)
m2

V

)
− m2

V

8E2
q

x√
x2 −m2

V /E
2
q

(
2

x2 −m2
V /E

2
q

+ 1
1 − x

)

×

log
2 − x−

√
x2 −m2

V /E
2
q

2 − x+
√
x2 −m2

V /E
2
q

− log
x−

√
x2 −m2

V /E
2
q

x+
√
x2 −m2

V /E
2
q

,
(1.33)

using the same notation as in Eq. (1.32).
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1.4.2 Proton Level

Equipped with the polarised quark level distribution functions for the massive vector
bosons (VDF) as given in Eqs. (1.32) and (1.33), we can now extend this to find the
corresponding proton level parton distribution functions for MVB. To this end, we
fold the quark level VDFs with the PDFs fq/p of the relevant quarks qrel for the
MVB’s production, yielding

fλ
V/p(x) =

∑
qrel

∫ 1

ξmin

dξ
ξ
fq/p(ξ)fλ

V/q(x/ξ), (1.34)

where λ = L,T is the MVB polarisation.
Due to the approximations taken, the MVB in the EVAs are real particles. Thus,

we find a first limit on ξ, namely mVE
−1
q < ξ. As the MVB can, further, carry

maximally the full momentum of its mother-quark, another lower limit is given by
x < ξ. The maximum of these two limits determines ξmin in Eq. (1.34).

Factorisation Theorem

Let us consider pp a scattering sub-process

a+ b → X (1.35)

of two massive partons a, b with masses ma,mb. We will denote the centre of mass
energy as M2

ab = (pa + pb)2 and the minimal invariant mass for X to occur as m2
X .

As a is a parton of p, Process (1.35) can be generalised to

a+ p → X + Y. (1.36)

Given proton level PDFs fa/p we can write19

σap→X+Y =
∫

xmin
dx fa/p(x)σab→X . (1.37)

Since
M2

ab = (pa + pb)2 = m2
a +m2

b + xsap, (1.38)

we find a minimum value

xmin = M2
ab −m2

a −m2
b

sap

and smin
ap = m2

X +m2
Y . (1.39)

19Of course this is only valid in case pb → X + Y does not add coherently with other parton
channels.
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If the intermediate particles of the PDFs have to be allowed to go on shell we have
smin

ap = max(m2
X +m2

Y , 2m2
b).

Extending this again to
pp → X + Y + Z, (1.40)

we find the lower bounds

xmin
1 =

smin
ap

spp

= max(m2
X +m2

Y , 2m2
b)

spp

xmin
2 = max(m2

X ,m
2
a)

sbp

= max(m2
X +m2

Z , 2m2
a)

x1spp

,

(1.41)

assuming on-shell partons. As the assignment of the partons a, b to the individual
protons is arbitrary, we find

σpp→X+Y +Z(s) =
∫ 1

xmin
1

∫ 1

xmin
2

dx1 dx2 fa/p(x1)fb/p(x2)σab→X + (a ↔ b) (1.42)

which is known as the factorisation theorem.20 This theorem establishes a simple
way of calculating approximate pp-scattering cross sections from those of its partonic
subprocesses.

Parton Distribution Functions of the Effective W Approximation

As they will be of importance to this work, we present the parton distribution func-
tions for polarised W+ bosons at the relevant centre of mass energies in Fig. 1.5.
The underlying quark level WDFs are Eqs. (1.32) and (1.33). These are folded with
the quarks’ recommended PDFs for the LHC by Martin et al. [119] according to
Eq. (1.34).

20Note that this is a slightly adjusted version of the theorem presented by Ruiz [117], to accom-
modate parton masses ma,b.
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Figure 1.5: Parton distribution functions for polarised W + in the effective W approxi-
mation as prescribed by Dawson [108] at LHC (a) and expected FCC centre of mass
energy (b). The underlying quark parton distribution functions used were taken from
Martin et al. [119].
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2Same Sign WW Scattering

In order to study more complicated processes like W boson fusion in pp → `±`±jj

scattering, it is imperative to first understand the lepton number violating process
at its heart, W±W± → `±`± scattering. In the following we will study the interplay
of light and heavy contributions in this process for the case of one (Section 2.1)
and two (Section 2.3) heavy neutral leptons. We will also discuss the process in the
quasi-Dirac-like approximation of the two HNL case (Section 2.2), which we will rely
on for further analysis.

As a standard value for the centre of mass energy for this chapter, we will choose
the expectation value of the invariant mass of the WW system in WBF at LHC
energy √

slhc = 13 TeV. Using the parton distribution functions of the effective W
approximation (see Fig. 1.5). We find for the longitudinal case

E[M2
ww] =

slhc
∫ 1

0
∫ 1

0 dx1 dx2 (x1 + x2)2f long.
p/W (x1)f long.

p/W (x2)
4
∫ 1

0
∫ 1

0 dx1 dx2 f
long.
p/W (x1)f long.

p/W (x2)
= 4902 GeV2,

(2.1)

which is well in agreement with typical values for Mww in the Montecarlo simulation
of WBF by Fuks et al. [101]. At this energy, the results are applicable to all ` =
e, µ, τ , since for all generations the lepton masses m` will always be small compared
to the typical energies off the process (m2

` � |t|min,M
2
ww). The lepton mass can thus

safely be set to 0 for the following discussion.
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W+

W+

`+

`+

n

Figure 2.1: Feynman Diagram of the two same sign W -bosons to two same sign leptons
in the mass basis. Here n represents both heavy (N) and light (ν) mass eigenstates.

2.1 Single Heavy Neutral Lepton Model

A common model employed in phenomenological searches for HNLs is the phe-
nomenological type-I seesaw [106, 40]. This model features a single isolated HNL,
where mixing angle and HNL mass are treated as free parameters. In the following,
we will investigate what the single HNL case looks like in a model, where this HNL
is the generation mechanism of the light neutrino masses. This will occur inevitably
by the seesaw relation Eq. (1.18). To this end we will employ a toy model, where we
will approximate the light mass states as a single light mass state with PMNS-like
mixing of 1.1 As a requirement we set that the light neutrino mass be 1 eV, which is
roughly compatible with recent upper limits on neutrino masses from measurements
on β decays [24]. To this end, we set the mixing angle

∣∣∣V 2
`N

∣∣∣ =
∣∣∣∣mν

mN

∣∣∣∣ = 1 eV
mN

(2.2)

guaranteeing the above requirement through Eq. (1.18).

2.1.1 Amplitude Level

The Feynman diagram of the process W+W+ → `+`+ is given by Fig. 2.1. The
Feynman rules for lepton number violating processes involving Majorana fermions
are well documented [120–122]. According to the algorithmic process established
by Denner et al. [121], the partial amplitude associated with the Feynman diagram
shown in Fig. 2.1 is given by

iAn,p2 = − i

2g
2U2

`n

(
uf2γ

αPR
/p+mn

p2 −m2
n
γβPLvf1

)
εi1,αεi2,β, (2.3)

1In the single HNL case all generated light neutrino masses will be the same, so that we can
choose to use a PMNS-like mixing of 1 with a single light mass state without loss of generality.
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where p is the momentum associated with the Majorana propagator and i√
2gU`nPL

is the W`n vertex value. It is useful to define

Jαβ
(
p2,m

)
= γαPR

/p+m

p2 −m2γ
βPL

= γα m

p2 −m2γ
βPL,

(2.4)

where in the last step we used the configuration of chiral projectors cancelling /p in
the numerator. At tree level, this structure is universal to all lepton number violating
processes facilitated by a Majorana fermion and we will thus refer to it from now on
as the LNV current.

The full amplitude of the scattering process then is given by

iA = − i

2g
2εi1,αεi2,βuf2

(
V 2

`NJ
αβ(t,mN) + Jαβ(t,mν)

)
vf1

+ (t ↔ u, f1 ↔ f2)

= − i

2g
2εi1,αεi2,βuf2

(
V 2

`NJ
αβ(t,mN) + Jαβ(t,−V 2

`NmN)
)
vf1

+ (t ↔ u, f1 ↔ f2) .

(2.5)

In case V 4
`Nm

2
N � |p2|, we see that

V 2
`NJ

αβ(p2,mN) + Jαβ(p2,−V 2
`NmN)

= −V 2
`N
m2

N
p2

(
Jαβ(p2,mN) − γαγβPL

mN

∞∑
n=1

(
−V 4

`Nm
2
N

p2

)n)

= −V 2
`N
m2

N
p2 J

αβ(p2,mN) + O

(V 2
`Nm

2
N

p2

)2
 .

(2.6)

This approximation corresponds to the first order expansion in V`N in the flavour
basis (see Fig. E.2).

As it is explicitly proportional to the light neutrino mass according to the seesaw
relation Eq. (1.18), the amplitude disappears for vanishing light neutrino masses
as described by Kersten-Smirnov [50]. However, we see that there exists a regime
(V 4

`Nm
2
N � |p2| � m2

N), where the light neutrino contribution to the amplitude
dominates that of the HNL.
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For m2
N � |p2| we find

V 2
`NJ

αβ(p2,mN) + Jαβ(p2,−V 2
`NmN)

= −V 2
`N
mN

p2 γ
αγβPL

∞∑
n=1

(1 +
(
−V 4

`N

)n
)
(
m2

N
p2

)n

= −V 2
`NmN

m2
N

(
m2

N
p2

)2

γαγβPL + O

(m2
N
p2

)3

, V 6
`N

 ,
(2.7)

which vanishes significantly faster for large p2 than the isolated HNL

V 2
`NJ

αβ(p2,mN) = V 2
`NmN

m2
N

m2
N
p2 γ

αγβPL + O

(m2
N
p2

)2
 . (2.8)

This means that at large p2 the LNV current Jαβ is suppressed by the cancellation
of light and heavy mass states.2 As shown in Appendix C this inherent cancellation
does not occur for lepton flavour violating processes.

2.1.2 Observables

To better understand what this means in practice, let us now look at the physical
observables of this process. To avoid ambiguity, we will limit ourselves to the case
of W+W+ → e+e+ scattering. However, the results should be applicable to all
combinations of `+`′+ final states given that the relevant parameters (m`, mν`

) are
negligible when compared to the other parameters of the process (mN, Mww, t).

It should be noted here that we will be using the first flavour basis expansion (see
Eq. (2.7)) to calculate the observables of the full theory. This is motivated by the
fact that the assumed light neutrino mass will fulfil the requirement of m2

ν � |p2| in
all cases, since

1 eV2 & m2
ν � |t|min = m4

W

M2
ww

+ O

( m2
W

M2
ww

)2


= 132 GeV2 for
√
M2

ww = 490 GeV.
(2.9)

We stress that this approximation needs to be handled with care, as it produces
unphysical results when the expansion in Eq. (2.6) does not hold.

2This seems to suggest that it is impossible to observe LNV processes in the s-channel at
high energies. However as mentioned in Section 1.2.2, HNL oscillations of a quasi-Dirac HNL pair
potentially allow for sizeable lepton number violation.
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Differential Cross Section

Figure 2.2 shows the differential cross section of W±W± → `±`± scattering as a
function of the Mandelstam variable −t formN = 150 GeV (for other HNL masses find
Fig. E.3). In the logarithmic representation it is not easy to see, but all differential
cross section contributions are symmetric under t 7→ tmax − t, as this corresponds to
an exchange from t- to u-channel.

In this simple model, for any mN the light mass state contribution (green dash-
dotted) is larger than that of the heavy mass state (orange dashed).3 This is because
in this simple model the amplitudes of light and heavy neutrino are identical safe
for an extra suppression of t/(|t| + m2

N) for the latter. The blue solid line shows
the full differential cross section in the approximation of Eq. (2.7). As can be seen,
the combined differential cross section follows the light neutrino divergence towards
small values of t (u). Toward the centre of the t-range, the cancellation between the
two contributions is the strongest, as here t ' u, so that simultaneously both the t
and u channel propagator denominators are dominated by t or u respectively. From a
phenomenological point of view it is interesting to note that unlike the more evenly
distributed differential cross section of the single heavy mass state, the combined
differential cross section in this model shows a clear tendency toward back-to-back
scattering. On this note it should be mentioned that for m2

N < 1
4(1 +

√
5)m2

W

the gradient of the HNL contribution itself flips sign and we get a convex shaped
differential cross section approaching that of the light neutrino for decreasing mN

(see for example Figs. E.3b and E.3c).
With increasing mN, the heavy state contribution is suppressed by m2

N in the LNV
current denominator (see Fig. E.3d). This means that the differential cross section
of the isolated heavy mass state vanishes and the combined differential cross section
converges toward that of the isolated light mass state. With decreasing mN the HNL
propagator becomes divergent in the limit of (−t)min (umin), cancelling that of the
light neutrino, so that the divergence in the combined cross section becomes less
prominent.

Cross Section

Integrating the differential cross section with respect to t we find the total cross
section. This is shown as a function of the HNL mass mN at a center of mass energy

3Strictly speaking this is only true for mν < mN, but in this limit the seesaw expansion is
already invalid.
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N ν combined
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Figure 2.2: Differential cross section of W ±W ± → `±`± scattering in the case of a
single HNL as a function the Mandelstam variable

√
−t at a centre of mass energy of√

M2
ww = 490 GeV and for HNL mass mN = 100 GeV. The mixing angle here is a

function of the HNL mass as well, such that |V 2
`NmN| = 1 eV & mνe . The orange dashed

(green dash-dotted) line represents the differential cross section if only the heavy (light)
mass states contributed to the process. The blue solid line shows the full differential
cross section in the approximation of Eq. (2.7).

√
M2

W W = 490 GeV. The mixing angle V`N in this plot is a function of mN to keep
the generated light mass state (shown in dash-dotted green) constant.

We see that the cross section of the isolated heavy mass state (shown in dashed
orange) for mN ∼ few GeV is indistinguishable from that of the light mass state on
the scales of the plot. As can also be seen in Fig. E.3, the differential cross section
only starts to differ from that of the light mass state, when mN becomes comparable
to
√

(−t)min ' 13 GeV at Mww = 490 GeV. For
√

(−t)min < mN <
√

1
2M

2
ww we

see that the cross section of the isolated heavy mass state drops as m−2
N . This is

because for increasingly large parts of the phase space the LNV current denominator
is dominated by m2

N, so that the cross section scales to leading order as |V`N|4m0
N.

Under the condition of Eq. (2.2) this yields a dependence of m−2
N as observed. For

M2
ww � m2

N the LNV current denominator is dominated by m2
N for the entirety

of the available phase space. Following a similar reasoning as above, we observe a
dependence of the isolated heavy state cross section as m−6

N .
The full cross section (shown in blue) is described by the destructive interference

between heavy and light mass state. Thus, we see a nearly mirrored dependence on
the HNL mass mN when compared to the isolated heavy mass state, where the cross
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N ν combined
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Figure 2.3: Cross section of W ±W ± → `±`± scattering in the case of a single HNL as a
function of the HNL mass at a centre of mass energy of 490 GeV. The mixing angle here
is a function of the HNL mass as well, such that |V 2

`NmN| = 1 eV & mνe . The orange
dashed (green dash-dotted) line represents the cross section if only the heavy (light)
mass states contributed to the process. The blue solid line shows the full cross section
in the approximation of Eq. (2.7).

section vanishes for mN → 0 and asymptotically approaches the numerical value of
the isolated light state for Mww � m2

N.
We note that mν = 1 eV is only an upper bound, while realistic mixing angles

could be as low as the seesaw line (see Section 1.2.1). As the scale of the observables
shown is determined by mν , they could be even smaller than shown here.

2.2 Quasi-Dirac-Like Heavy Neutral Lepton Pair

In a model with at least two HNLs it is possible to arrange the mixing angles in such
a way that the individual contributions to the light neutrino masses cancel

0 != m``′ =
N∑

I=1
V`IV`′ImNI . (2.10)
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In the context of two HNLs this can be achieved under the prescription of Eq. (1.23)
with a real V`1, without loss of generality.4 If we require our two HNLs to fulfil
Eq. (1.23), we can allow ourselves to be agnostic about the origin of light neutrino
masses. If on top of that we require the light neutrinos to be Dirac particles, we can
attribute the observation of Majorana effects solely to the HNLs.

In the following we will discuss, what effects the condition Eq. (1.23) has on
W±W± → `±`± and LNV processes in general.

2.2.1 Amplitude Level

In the above described scenario, using the LNV current Jαβ (p2,m) as defined in
Eq. (2.4), we can write the amplitude of W±W± → `±`± in the mass basis (see
Fig. 2.1) as

iA = − i

2g
2εi1,αεi2,βuf2

(
V 2

`1J
αβ(t,mN1) + V 2

`2J
αβ(t,mN2)

)
vf1

+ (t ↔ u, f1 ↔ f2) .
(2.11)

We notice that under Eq. (1.23)

V 2
`1J

αβ(t,mN1) + V 2
`2J

αβ(t,mN2) = V 2
`1J

αβ(t,mN1)
(

1 − t−m2
N1

t− r2
Nm

2
N1

)
, (2.12)

where rN = mN2
mN1

is the mass ratio. From now on we will drop the index on NI , where
N is implicitly the lighter mass state N1 unless stated explicitly.
As mentioned in Section 1.2.2, in case of rN ' 1 the two Majorana HNLs combine to
form a quasi Dirac pair. We see that in the exact limit, the LNV current and thus
all off-shell LNV processes, vanish.

In case of large rN so that |t|max � r2
Nm

2
N1, the second term is suppressed as r−2

N and
we reach a decoupling limit.5 In this limit the amplitude reduces to that of a single
HNL while the light neutrino masses, and thus their contribution to LNV effects,
remain exactly cancelled. This converging behaviour can be seen in the (differential)

4In the most general case the only requirement is that the complex phases between V`1 and V`2
be orthogonal. But since in this study any complex phases would cancel out in the final observables,
we can choose the most simple case of "+" and a real V`1 without loss of generality. Generally, such
phases could also be absorbed in the definition of fields in Eq. (1.14).

5This corresponds to M2
ww � m2

N2, so that we can treat the second HNL by means of effective
field theory. As explained in II.E of Kersten-Smirnov’s symmetry discussions [50], this results in
significant running of light neutrino masses.
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cross section in (Fig. 2.4) Fig. 2.5 of the W±W± → `±`± process. However, it is
important to note that rN → ∞ is not a physical limit. Not only do concerns like the
running of light neutrino masses play a role here, but under Eq. (1.23) the heavier
HNL will breach a perturbativity limit in the Yukawa couplings (see Section 1.2.1),
thus breaking the assumption of weak Yukawa coupling in the deduction of the
theory.

2.2.2 Observables

Differential Cross Section

In the limit of M2
ww � m2

N, the t (u) dependence of the amplitude will always be
overshadowed by the HNL masses. This results in differential cross sections which
are essentially constant with respect to t. For larger mass ratios rN the cancellation
between the two HNL contributions becomes less significant. Hence, the numerical
value of the differential cross section goes from 0 in the fully degenerate case to that
of a single HNL with growing rN. This behaviour is shown in Figs. E.4c and E.4d.

More interesting effects can be observed, when both m2
N1,m

2
N2 . M2

ww. We will
investigate only a region around small values of |t|. The rest of the curve follows
mainly from mirror symmetry and absence of divergences. In order to investigate
this region we will parametrise −t around its minimal value as

t = λ(−t)min = −λ%W/Nm
2
N, (2.13)

with 1 ≤ λ ∼ few as a dimensionless parameter, and %W/N = m4
W

m2
NM2

ww
� 1 as a small

parameter.6 The differential cross section can be expanded as

dσ
dt = |V`N|4G2

F

9π
(r2

N − 1)2%W/N

r4
N

+ O
(
%2

W/N

)
. (2.14)

Close to the Dirac-limit rN → 1, the differential cross section vanishes as dσ/dt ∝
(rN − 1)2. Further, we notice that all λ dependence is at least suppressed as %2

W/N,
resulting in slowly varying functions. Taking the gradient with respect to λ we find
this suppression more explicitly as

∂

∂λ

dσ
dt = |V`N|4G2

F

9πm2
W

(r2
N − 1)2

r4
N

(
m2

N − 2m2
W

(
1 + r−2

N

))
%2

W/N + O
(
%3

W/N

)
. (2.15)

6Formally, this could be extended to 1 ≤ λ ≤ M4
W W

m4
W

, but we will limit the discussion here to
the extreme point of λ → 1.
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As expected from the amplitude discussion above, the t-dependence is strongly sup-
pressed for large mN. However, from this explicit form we can see that the mN

suppression already takes place for m2
W � m2

N rather than only from M2
ww � m2

N.
We also find that the gradient flips sign at

rN,crit. =
√

2mW√
m2

N − 2m2
W

. (2.16)

This can be observed in Fig. 2.4, which shows the differential cross section of the
W±W± → `±`± process as a function of the Mandelstam variable

√
−t for the lighter

HNL mass mN = 150 GeV (Fig. 2.4a), and mN = 1500 GeV (Fig. 2.4b) for different
mass ratios rN.
For mN = 150 GeV we find at leading order rN,crit. = 1.16, which agrees with the
numerical values shown in the plot, where the extremal gradient flips sign between
rN = 1.1 and rN = 2. However, the plot importantly also shows that higher order
corrections flip the gradient for larger values of λ, resulting in a non-trivial angular
distribution.
For mN = 1500 GeV there is no solution rN,crit. > 1, so that the cross section is
concave for all rN. We furthermore note that any angular dependence is strongly
suppressed, just as Eq. (2.14) suggests.

For small mN (∼ 13 GeV for Mww = 490 GeV) the above expansion breaks down.
Expanding instead in %−1

W/N we find

dσ
dt = |V`N|4G2

F

9π
(r2

N − 1)2m12
N (m2

N (r2
N + 1) − 2m2

W )2
%−3

W/N

λ4m16
W

+ O
(
%−4

W/N

)
, (2.17)

with a gradient of

dσ
dt = −4|V`N|4G2

F

9π
(r2

N − 1)2m12
N (m2

N (r2
N + 1) − 2m2

W )2
%−3

W/N

λ5m16
W

+ O
(
%−4

W/N

)
. (2.18)

Importantly, in this expansion, there is no possible sign flip of the gradient, so that
the curves for all rN follow the λ−4 shape. An example for this can be seen for
mN = 10 GeV in Fig. E.4a.

Cross Section

Figure 2.5 shows the total cross section of W±W± → `±`± as a function of mN1

for different mass ratios rN at a center of mass energy
√
M2

ww = 490 GeV. We see
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(a) mN1 = 150 GeV
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(b) mN1 = 1500 GeV

N1

rN=1000

rN=100

rN=10

rN=2

rN=1.1

rN=1.01

rN=1.001

Figure 2.4: Total differential cross section of W ±W ± → `±`± for a qDl HNL pair with
a mass ratio rN = mN2

mN1
. The mixing angle of the first HNL V`1 factors out of the

observable, while V`2 is adjusted to account for the exact cancellation. The lighter of
the two HNL masses mN1 = 150 GeV (a), and mN1 = 1500 GeV (b). The centre of mass
energy is 490 GeV.

that the (rN − 1)2 dependence of the differential cross section directly translates to
the total cross section, in that for rN ' 1, the numerical value increases by about
two orders of magnitude for every order of magnitude we move away from 1. All of
the curves tend toward 0 for mN → 0 in accordance with the indistinguishability-
theorem. As expected from the amplitude level, and as can be seen from Eq. (2.14),
for M2

ww � m2
N the cross section vanishes as m−2

N . With growing rN, the maximum of
the curve shifts from around mN =

√
M2

ww toward
√

1
2M

2
ww. In the limit of rN → ∞,
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Figure 2.5: Total cross section of W ±W ± → `±`± scattering for a qDl HNL pair with
a mass ratio rN = mN2

mN1
. The mixing angle of the first HNL V`1 factors out of the

observable, while V`2 is adjusted to account for the exact cancellation. The centre of
mass energy is 490 GeV.

we find the completely decoupled case of a single HNL (shown in dashed orange),
where already for rN = 100 the two curves become indistinguishable at the scales
shown.

2.3 Full Four Majorana State Model

A very convenient formulation to ensure that mixing angles V generate light neutrino
mass states compatible with neutrino oscillation data for any choice of mN is the
Casas-Ibarra parametrisation [123, 124]

V CI = iUdiag(mν1,mν2,mν3)1/2Ωdiag(mN1, ...,mNN )−1/2. (2.19)

Here Ω is an orthogonal 3 × N matrix holding all degrees of freedom of the model
that are not fixed by the PMNS matrix U , the heavy mass states mνi, and the light
mass states mνi. To account for neutrino oscillations with two HNLs, we require the
lightest neutrino mass state to be massless. The most general explicit form of Ω in
case of normal hierarchy (NH) or inverted hierarchy (IH) is given by

Ω =


0 0

cosω sinω
−ξ sinω ξ cosω

 (NH),


cosω sinω

−ξ sinω ξ cosω
0 0

 (IH), (2.20)
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with ξ = ±1, and ω ∈ C. The parity ξ can be chosen by simultaneous redefinition
of the fields and ω so that we will choose ξ = +1 without loss of generality. Given
that recent data indicates a preference for normal ordering (νFIT at 2.7σ [125], see
[126] for discussion), in the following we present the case of normal hierarchy.

In the case of two HNLs and NH, we can write the two mixing angles of this
parametrisation explicitly as

V CI
`1 = i

U`2
√
mν2 cosω − U`3

√
mν3 sinω

√
mN1

V CI
`2 = i

U`2
√
mν2 sinω + U`3

√
mν3 cosω

√
mN2

.

(2.21)

For a small discussion of what changes when considering the inverted hierarchy
case see Appendix B.

2.3.1 Amplitude Level

In this scenario, the amplitude of the W±W± → `±`± t-channel will be proportional
to

iAt ∝
∑

I

V 2
`IJ

αβ (t,mNI) +
∑

i

U2
`iJ

αβ (t,mνi) , (2.22)

where V`I are the mixing angles, U`i is the PMNS matrix, and Jαβ the LNV current
(see Eq. (2.4)). Using the Casas-Ibarra parametrisation we get

iAt ∝

(
U`2

√
mν2 cosω − U`3

√
mν3 sinω

)2

mN1
Jαβ (t,mN1)

+

(
U`2

√
mν2 sinω + U`3

√
mν3 cosω

)2

mN2
Jαβ (t,mN2)

− U2
`2J

αβ (t,mν2) − U2
`2J

αβ (t,mν3) .

(2.23)

In the limit of m2
νi � |t|min and after some tedious algebra, we again find an expres-

sion like we get from the first flavour basis expansion (see Fig. E.2)

iAt ∝m2
N1
t

(
U`2

√
mν2 cosω − U`3

√
mν3 sinω

)2

mN1
Jαβ (t,mN1)

+ m2
N2
t

(
U`2

√
mν2 sinω + U`3

√
mν3 cosω

)2

mN2
Jαβ (t,mN2) .

(2.24)
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As we operate in the normal hierarchy and set the smallest neutrino mass to 0, we
have mν1 = 8.6 meV and mν1 = 50 meV [125], so that the expansion condition is even
better met than in the case discussed in Eq. (2.7).

Reintroducing the mass ratio rN and dropping indices on mNI with mN = mN1,
this reads

iAt ∝ mN

t

(
(U`2

√
mν2 cosω − U`3

√
mν3 sinω)2

+ (U`2
√
mν2 sinω + U`3

√
mν3 cosω)2 t−m2

N
r−2

N t−m2
N

)
Jαβ (t,mN) .

(2.25)

In the degeneracy limit of rN → 1 this becomes

iAt ∝ mN

t

mν2U
2
`2 +mν3U

2
`3

+
2(rN − 1)t

(√
mν2U`2 sinω + √

mν3U`3 cosω
)2

t−m2
N

+ O
(
(rN − 1)2

) Jαβ (t,mN) ,

(2.26)

so that any possible enhancement of the amplitude is suppressed as O(rN − 1).
However, we note that unlike in the quasi-Dirac limit (see 2.2.1), in the degeneracy
limit of the Casas-Ibarra parametrisation we do not obtain a necessarily vanishing
amplitude. Rather, it reduces to the case of a single HNL (see Eq. (2.6)) with a
mixing angle of (

V CI,rN→1
`N

)2
= mν2U

2
`2 +mν3U

2
`3

mN
, (2.27)

at the seesaw line, similar to the condition used in our single HNL analysis in Sec-
tion 2.1.

In the strongly hierarchical limit of rN → ∞ this becomes

iAt ∝ mN

t

(
(U`2

√
mν2 cosω − U`3

√
mν3 sinω)2

− (U`2
√
mν2 sinω + U`3

√
mν3 cosω)2 t−m2

N
m2

N

+ O
(
r−2

N

) )
Jαβ (t,mN) .

(2.28)
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This corresponds to the case of a single, potentially enhanced HNL and the two
light mass states, the contribution of which can also be enhanced. We note that for
M2

ww � m2
N this becomes

iAt ∝ mN

t

(
mν2U

2
`2 +mν3U

2
`3

)
Jαβ(t,m2

N) + O
(
r−2

N ,
M2

ww
m2

N

)
, (2.29)

where all possible enhancement Imω is suppressed as well.

2.3.2 Observables

Using νFIT data [127, 125] for the numerical values of the PMNS matrix U , as well
as the light neutrino mass splitting, we can now numerically evaluate the physical
observables. The exact numerical values used will again be those W+W+ → e+e+,
while we stress that the numerical values for other leptons ` will yield the same
results up to ratios of their PMNS entries (U`i/Uei)4.

Differential Cross Section

In the same parametrisation of t as used above (Eq. (2.13)), we again expand the
differential cross section in %W/N = m4

W

m2
NM2

ww
. In order to shorten the notation, we

define mν = U2
`2mν2 + U2

`3mν3 and ∆mν = U2
`2mν2 − U2

`3mν3. Assuming a purely
imaginary ω this yields7

dσ
dt =G

2
F

9π
m2

ν

%W/Nλ2m2
N

+ G2
F (m2

ν ((λ+ 3) r2
Nm

2
N − λ (r2

N + 1)m2
W ))

9πλ2r2
Nm

2
Nm

2
W

− G2
F (r2

N − 1) ∆mνmν cosh(2 Imω)
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2
N

+ O
(
%W/N

)
.

(2.30)

We note that the dependence at λ → 1 is quadratic in t−1 at leading order. Mean-
while, for large values of Imω last term in Eq. (2.30) becomes dominant, yielding a
constant t dependence. The effect of this is more evident when taking the gradient

7As explained above, Im ω controls the scale of the mixing angle, so that effects caused by Re(ω)
become secondary for large Im ω.
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with respect to λ at the lower extremal value of |t|, which yields

∂

∂λ

dσ
dt = − 2G2

Fm
2
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)
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(2.31)

We, thus, expect the gradient to flip for a mass ratio of

r2
N

r2
N − 1 ' cosh(Imω)λ%W/N

∆mν

mν

. (2.32)

We note that this can only be fulfilled for 1 < cosh(Imω)λ%W/N
∆mν

mν
, resulting in a

minimal enhancement Imω required to observe this effect (see for example Fig. E.6).
In the limit of %−1

W/N � 1 this becomes instead

dσ
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N G
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+ O
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)−4
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(2.33)

which is manifestly convex for any Imω or rN. An example of this can be seen in
Fig. E.5a, where also the N1-contribution is convex as explained above.

Figure 2.6a shows the differential cross section of W±W± → `±`± in the Casas-
Ibarra parametrisation of the Mixing angles as a function of the Mandelstam variable
t for different mass ratios rN at ω = 0, mN1 = 150 GeV and

√
M2

W W = 490 GeV. As
expected from the discussion above, for all mass ratios rN (shown in dark purple
to yellow) the differential cross section is divergent towards the extremal values of
t. Furthermore, in the absence of any enhancement Imω the process is dominated
by the contribution of the light neutrino mass states (dash-dotted in dark green).
The share of U`νi

√
mνi are assigned to the NI depend on the choice of Re(ω) (see

Eq. (2.19)). Thus, the two graphs for N1 and N2 (dashed orange and dashed red
respectively) should be understood as extremal values of a band in which to expect
the individual contribution of the lighter of the two heavy mass states.

Figure 2.6b also shows the differential cross section of W±W± → `±`± in the
Casas-Ibarra parametrisation, but with a mixing enhancement of ω = 5i. We see
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Figure 2.6: Total differential cross section of W ±W ± → `±`± scattering using the Casas-
Ibarra parametrisation of the HNL mixing angles with ω = 0 (a) and ω = 5i (b). Here
rN = mN2

mN1
is the mass ratio. The lighter of the two HNL masses mN1 = 150 GeV and

the centre of mass energy is 490 GeV.

that for almost degenerate HNLs the differential cross section is convex, while for
more hierarchical HNLs (from rN ' 2) the curve approaches that of the single HNL
case. The differences between N1 and N2 due to the choice of Re(ω) are vanishingly
small on the scales shown here.

For even stronger enhancement, the effects due to light neutrinos become negligible
and the curves become qualitatively similar to those of the qDl case (c.f. Section 2.2
and Fig. 2.4a).
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Figure 2.7: Total cross section of W ±W ± → `±`± scattering using the Casas-Ibarra
parametrisation of the HNL mixing angles for different real (a) and imaginary (b) Casas-
Iabarra parameters. The mass ratio rN = mN2

mN1
= 2 and the centre of mass energy is

490 GeV.

Cross Section

Figure 2.7a shows the total cross section of W±W± → `±`± using the Casas-Ibarra
parametrisation (Eq. (2.19)) for a mass ratio of rN = 2, varying the Casas-Ibarra
parameter ω for a range of real values. For all values of ω, we observe a convergence
with the numerical value determined by the light mass states for large masses (mN >

1000 ' 2Mww). Furthermore, we note a cancellation between light and heavy mass
states for small mN similar to the case of a single HNL (see Fig. 2.3). The splitting
for smaller values of mN is due to the way ω distributes the U`ν

√
mν in the mixing of

non-degenerate (rN = 2) HNLs, giving smaller or larger weight to the heavier — and
therefore more suppressed — N2. However, for mN → mν the cross section vanishes
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Figure 2.8: Comparison of W ±W ± → `±`± cross sections between qDl and fully realistic
two HNL neutrino sector model. The data is shown at a maximally admissible mixing
angle V`1 according to Section 1.2.1.

for all values of ω. The portrayed dependence on Re(ω) is π-periodic, as can also be
seen from Eq. (2.19).

By contrast, Fig. 2.7b shows the total cross section of W±W± → `±`± for a
range of purely imaginary ωs permitted by the limit of |V`N| < 1. Again all curves
will eventually meet the numerical value determined by the light mass states for
large values of mN1. However, the range at which the heavy mass states dominate
is greatly extended depending on the enhancement factor Imω. This behaviour
is due to the constant enhancement by Imω becoming suppressed by very large
mN as prescribed by the Casas-Ibarra parametrisation (see Eq. (2.19)). We can also
observe some non-trivial interference between the enhanced HNL contributions for
mN1 ' mW = 80 GeV. The interference is especially non trivial, as mN2 is right at
the minimum centre of mass energy 2mW due to the chosen mass ratio rN, potentially
making terms significant that can otherwise be neglected.

In the limit of large V`1, the cross sections of the qDl model and in Casas-Ibarra
parametrisation become indistinguishable (see Fig. 2.8) to the precision of this anal-
ysis. This means that for large mixing angles, mN1m

−1
ν � cosh(2 Imω), the qDl

model is a good approximation of a more realistic neutrino sector model.
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3Extension to Same Sign
Di-Lepton Signal at
Colliders

In this chapter we will translate our findings from Chapter 2 to the specific case of
W boson fusion in pp → `±`±jj scattering (see Fig. 1.4a). To mark the pp level
cross sections we will mark them with pp → `±`±jj. However, this does not include
contributions coming from the Drell-Yan process, which shares the same signature
(see Fig. 1.4b). Unlike in Chapter 2, where the ± in W±W± → `±`± signified that
both possibilities lead to equally sized cross sections, pp → `±`±jj will denote that
we add both contributions to a combined cross section. This does not correspond to
a simple factor of 2, as the parton structure of the proton favours the “++” over the
“−−” process.

After explaining the methodology of obtaining our proton-proton level cross sec-
tions (Section 3.1), we will analyse the detection prospects at current (Large Hadron
Collider, LHC, Section 3.2) and future (Future Circular Collider in the hadron-
hadron stage, FCC-hh, Section 3.3) colliders. Both of these colliders are/will be
circular synchrotron accelerators capable of high energy pp collisions. The exper-
imental parameters of these machines constitute the best chance for the potential
observation of pp → `±`±jj for the foreseeable future.1

1The current timeline predicts that after the high luminosity upgrade to the LHC, it will reach
its target integrated luminosity some time around 2040 [128]. Meanwhile the FCC-hh is scheduled
to become operational in 2062, reaching its predicted integrated luminosity after 25 years [129].
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3.1 Methodology

As already mentioned in Section 1.3.2, the W boson fusion (Fig. 1.4a) process is
distinct from the Drell-Yan process (Fig. 1.4b), due to the antiquarks in initial and
final state of DY. We can thus safely ignore DY in our calculations, even though they
share the same collider signature pp → `±`±jj.

As we saw in Section 2.3, a qDl model becomes a good approximation of a neu-
trino sector model involving light neutrino masses compatible with oscillation and
cosmological data for large mixing angles (mN1m

−1
ν � cosh(2 Imω)). As we will see,

at currently proposed hadron colliders only those mixing angles are within reach.
Therefore, we will limit ourselves to the qDl model for the following estimates, as it
is inherently numerically simpler. For pp level cross sections in the case of one HNL
and two HNLs in the Casas-Ibarra parametrisation find Appendices A and B.

An accurate description of QCD effects involved in the WBF process is beyond
the scope of this thesis. Instead we will use the effective W approximation (see
Section 1.4).

In order to use this approximation, the cross section has to be decomposed into
longitudinal and transversal components. This is implemented at amplitude level
using the corresponding sum relations on the polarisation vectors. Subsequently,
the polarised cross sections are folded with effective PDFs fλ

W/p as described in Sec-
tion 1.4. These relate a W ’s energy to that of its respective mother-proton in the pp
collision through the momentum fraction x(i).

In the case of WBF we have (in the notation of Section 1.4.2)

ma = mb = mW , and m2
X +m2

Y +m2
Z = 4m2

` +
∑

i

m2
ji

min
, (3.1)

with m2
ji

min being the minimal invariant mass of of the ith jet. If we do not apply
any cuts on the jets minimal invariant mass, we have 4m2

W > 4m2
` +m2

j1
min +m2

j2
min

for all lepton generations `.2 Under a change of variables (x1x2 → τ ,x1 → ξ) and
summing over the polarisation states described in Section 1.4.1, we write Eq. (1.42)
for WBF in the simple form

σpp→`±`±jj(s) = 2
∑

λ,λ′={T,L}
κ=±

∫ 1

τmin
dτ
∫ 1

τ

dξ
ξ
fλ1

W κ/p

(
τ

ξ

)
fλ2

W κ/p(ξ)σW κW κ→`κ`κ(τs), (3.2)

2Indeed the cuts Eq. (3.5) imposed on in the detector simulation demand that the transverse
momentum pj

T > 20 GeV, so that this relation still holds.
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where the sum over polarisations λ includes longitudinal (L) and transversal (T)
polarisations, the sum over W electric charges κ includes + and −, and τmin =
4m2

W s
−1
pp .

In Section 3.1.1 we show a decomposition by polarisation as mentioned in the
paragraphs above, along with a discussion of the EWA. We show that the EWA can
only be safely applied for mN1 & several 100 GeV.

We then compare the resulting pp level cross sections for the case of a single HNL
in the phenomenological type-I seesaw model to those derived in MadGraph5_aMC
at NLO (MG5aMC) analogously to the NLO study of WBF in this framework by
Fuks et al. [101]. We find good agreement for HNL masses mN & few TeV, but larger
discrepancies for smaller masses in the 100 GeV range. To extend the meaningful
range of our results, we will use this comparison to rescale the EWA results. This
has the added benefit of applying detector motivated cuts on the jets of the signal,
excluding too large pseudorapidities.

Using the thus derived pp level cross sections, we will give an estimate for maximal
collider event rates and parameter reach in the qDl framework.

This workflow employed in calculating pp level quantities can be summarised in
the following way:

Polarised amplitudes

Polarised cross sections

Folding with EWA PDFs

Rescaling with MG5aMC
detector level results

Event rate and param-
eter reach estimates

3.1.1 Effective W Approximation

Polarisation Decomposition of a quasi-Dirac-like HNL pair

In this section, we present the polarised cross sections of W±W± → `±`± that go
into the effective W approximation. The decompositions were performed using the
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polarisation sum relations (in unitary gauge)∑
λ

εα
kε

∗β
k = −ηαβ (transversal) (3.3a)

∑
λ

εα
kε

∗β
k = kαkβ

m2
W

(longitudinal) (3.3b)

for the W polarisation vectors εk with momentum k to obtain polarised squared
amplitudes.

Using this decomposition, we can identify the interaction of the two HNLs in a
qDl pair at polarised WW cross section level. This is shown in Fig. 3.1 for a mass
ratio rN = 2 with the lighter HNL N1 having a mass mN1 = 150 GeV (Figs. 3.1a
and 3.1b) and mN1 = 1500 GeV (Figs. 3.1c and 3.1d) as a function of WW centre of
mass energy

√
M2

ww. The individual cases NI are polarised single HNL cross sections
with parameters corresponding to their values in the qDl pair. The combined case
is the polarised cross section of this same qDl pair.

We see that in the transversally polarised case (Figs. 3.1a and 3.1c), the individual
HNL contributions drop with increasing

√
M2

ww. Furthermore, the mass ratio causes
a split between the cross sections for all centre of mass energies. This split is more
significant when the HNL masses are comparable to

√
M2

ww and approaches a con-
stant factor (∼ 1 order of magnitude difference for rN = 2) between the individual
contributions, as

√
M2

ww becomes large compared to the HNL masses. As the com-
bined qDl cross section is generated by negative interference between the two mass
states — and the N2 contribution is suppressed by the mixing angle as prescribed
by Eq. (1.23) — the N1 curve always lies above the combined case. For hierarchi-
cal HNLs, this suppression is strong enough for the combined cross section to be
larger than the N2 contribution (see also Figs. E.7e and E.7g for rN = 10, where
the combined cross sections is in good approximation equal to that of the lighter
single HNL). This is not the case for degenerate HNLs (see Figs. E.7a and E.7c
for rN = 1.1), where the negative interference is much stronger due to comparable
individual contributions.

In the longitudinal case (Figs. 3.1b and 3.1d), the individual HNL contributions
grow with increasing

√
M2

ww. Contrary to the transversal case, there is a constant
factor between individual contributions when the centre of mass energy is small or of
comparable size to the HNL masses. This split vanishes when

√
M2

ww becomes large
compared to mNI . As the N2 contribution approaches that of N1, the negative inter-
ference between the two causes the combined cross section to drop. This behaviour
is reproduced both in the more degenerate (rN = 1.1, Figs. E.7b and E.7d) and more

43



Extension to Same Sign Di-Lepton Signal at Colliders Methodology

N1

N2

combined

500 1000 5000 104

1

10

100

1000

104

105

MWW
2 in GeV

σ
(W

±
W

±


ℓ±
ℓ±
)
V
ℓ
1

-
4
in
fb

(a) Transversal, mN1 = 150 GeV
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(c) Transversal, mN1 = 1500 GeV
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(d) Longitudinal, mN1 = 1500 GeV

Figure 3.1: Polarised cross sections of W ±W ± → `±`± scattering as decompositions in the
WW polarisations as Transversal ↔ σTT and Longitudinal ↔ σLL. The cross sections
are given as a function of the centre of mass energy

√
M2

ww. The data is given for the
lighter HNL mass mN1 = 150 GeV (upper) and mN1 = 1500 GeV (lower) with the second
HNL having a mass according to the mass ratio rN = 2. For different values of rN see
Fig. E.7.

hierarchical case (rN = 10, Figs. E.7f and E.7h). Here, the splitting is also smaller
in the degenerate and larger in the hierarchical case, due to the same reasoning as
in the transversal case.

We note that at smallWW centre of mass energies, the transversal and longitudinal
contributions are comparable, while at large

√
M2

ww the longitudinal contributions
dominate.
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Validity of the Effective W Approximation

In the deduction of the effective W approximation’s PDFs, one formally assumes
decoherence between the polarisation states of individual W “partons" (see Sec-
tion 1.4.1). This means that if contributions due to different polarisation states are
on a similar scale — and thus the decoherence assumption is no longer valid — the
results at pp level potentially underestimate by a factor of few2.3

To investigate the validity of the approximation we will thus compare the doubly
longitudinally polarised (LL) WW cross section to the doubly transversally polarised
(TT) case. As the folding with PDFs involves an integration over different energy
regimes, this is important at all relevant centre of mass energies determined by the
PDFs in Fig. 1.5. Figure 3.2 shows this for a centre of mass energy on the lower
end of the PDF spectrum (M2

ww = 16m2
W , Figs. 3.2a and 3.2b), on the upper end of

LHC energies (M2
ww = slhc/100, Figs. 3.2c and 3.2d), and upper end of FCC energies

(M2
ww = sfcc/100, Figs. 3.2e and 3.2f). We note that for low end energies, the LL

cross section becomes comparable with the TT cross section for mN1 & 100–200 GeV,
while at larger energies this is the case for mN1 & 10–100 GeV. As pp level validity
is determined by validity at all relevant sub energies, only a region of general LL
dominance fully meets the assumptions of the effective W approximation. Hence, we
expect the results to become more accurate for larger HNL masses, while we expect
to underestimate the pp level cross section for smaller mN1. Validity due to this
restriction is expected to be reached for mN1 & several 100 GeV.

It has been, furthermore, pointed out in past literature that in order to achieve
numerical stability, the lower limit of the integration has to be set above a certain
threshold, rather than to account for minimal production energy [130]. We investi-
gate this by varying the lower limit on τmin (see Eq. (3.2)). This is shown in Fig. 3.3,
where we have plotted the cross section of a single isolated HNL for different values
of Mmin

W W =
√
Mmin

W W
2 at √

slhc = 13 TeV. For small HNL masses mN . 100 GeV,
there is a noticeable dependence on the lower cut-off. We note that the cross sec-
tion for Mmin

W W = 320–500 GeV is largest in this regime, even though we removed
part of the integration interval for positive definite functions with respect to e.g.
Mmin

W W = 200 GeV. The lines of Mmin
W W = 320 GeV and Mmin

W W = 500 GeV coincide for
all mass values mN1 . For mN & several 100 GeV, the numerical values are identical
for all Mmin

W W < 750 GeV, while the curve of Mmin
W W = 750 GeV lies slightly below the

others. The curve representing Mmin
W W = 1 TeV lies below the others by a factor of

O(10 %) for lower mN converging with the rest at mN ' few TeV.
3This is due to the error occurring in both p involved in the pp → `±`±jj process.
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(c) λ1, λ2 = L, L; M2
ww = slhc/100
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(e) λ1, λ2 = L, L; M2
ww = sfcc/100
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Figure 3.2: Polarised cross sections of W ±W ± → `±`±. The polarisation λ1, λ2 are both
longitudinal (L, L, left panels) or transversal (T, T, right panels), while the centre of
mass energy is 4mW = 225 GeV (top panels), √

sfcc/10 = 1.3 TeV (middle panels) and
√

sfcc/10 = 10 TeV (bottom panels). We assume a qDl model with mass ratio rN.

Overall the effect of the cut-off is only significant in the regime of mN . 100 GeV.
As the focus of this work lies on the regime of mN ' several 100–few 1000 GeV, the
influence is marginal. Nevertheless, we set the lower limit Mmin

W W = 4mW ' 320 GeV
as a benchmark for this work, which corresponds to twice the minimal production
energy and is already in a numerically stable regime according to Fig. 3.3.
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Figure 3.3: Single isolated HNL pp level WBF cross section at √
slhc = 13 TeV as a

function of HNL mass mN. This is shown for different lower bounds on the integration
parameters of the effective W approximation determined by Mww (according to τmin =
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Figure 3.4: WBF at pp level cross section for a single isolated HNL (W ±W ± combined).
Comparison of MG5aMC detector simulation prescribed by Fuks et al. [101] (dashed
orange) and effective W approximation (purple), shown at LHC (a) and FCC (b) centre
of mass energy.

3.1.2 Rescaling for Small Heavy Neutral Lepton Masses

For the case of a single HNL in a phenomenological type-I seesaw, Fig. 3.4 compares
the WBF cross section deduced using the EWA without any detector motivated
cuts with that including such cuts on the jets using the Montecarlo event generator
MG5aMC.
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As prescribed by Fuks et al., we employ generator level cuts for the LHC on the
jets’ transverse momentum pj

T and pseudorapidities ηj

pj
T > 20 GeV and |ηj| < 5.5. (3.4)

As the FCC is expected to have a larger pseudorapidity acceptance [131], we adjust
the cuts to

pj
T > 20 GeV and |ηj| < 6. (3.5)

In both cases we impose the restriction on QCD partons to be sequentially clustered
according to the anti-kT algorithm [132] with R = 0.4, and the standard Delphes
ATLAS parameter card [133] for all other values. The MG5aMC simulations were
performed only at LO in QCD, due to unknown errors occurring in the NLO simu-
lation and time restriction on this thesis.

For LHC centre of mass energy (see Fig. 3.4a), we see that in the EWA applicability
regime according to Section 3.1.1, the two curves differ by a factor of ∼ 1.8, while
the difference is significant at smaller mN (∼ 20). This discrepancy could be due to
neglecting terms scaling as O

(
p2

TM
−2
W W

)
,O

(
m2

WM
−2
W W

)
, as the EWA is formulated

as a small angle approximation (see Section 1.4). These are known shortcomings of
the EWA [130] usually resulting in errors up to order 1.

For FCC centre of mass energy (see Fig. 3.4b), we see a similar behaviour to the
LHC case. In the low mass regime of mN1 < 1 TeV we find a large discrepancy
∼ 20, which vanishes in the large mass regime. Here, we find that the EWA slightly
overestimates the detector cross section. This is because — as larger centre of mass
energy leads to larger pseudorapidities — even the FCC adjusted cuts likely decrease
the overall cross section more significantly than in the LHC case. Meanwhile in the
EWA, we do not consider any cuts on the signal, leading to a slight overestimation.
As the terms mentioned in the paragraph above scale with M−2

W W , we expect the
EWA to be more accurate in this regard for the FCC case.

By comparing the two curves, we can generate a rescaling function for our pp level
cross sections derived in the EWA for a given centre of mass energy. This approach
allows us to investigate the effect of complex mixing angles — as demanded by
Eq. (1.23), and which is not yet possible in MG5aMC — for an extended range
of HNL masses mN1, while respecting detector geometries as given by Eqs. (3.4)
and (3.5). We expect this scaling to be directly translatable to all rN showing the
same WW level differential cross section. According to Eq. (2.16) this is the case for
all rN if mN1 > 2mW = 160 GeV.
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Figure 3.5: Cross section of pp → `±`±jj as calculated in the effective W approximation
in the model with two HNLs whose mass ratio is equal to rN. The mass of the lighter
HNL is shown as the x-axis, while another one is rN times heavier. Notations are
the same as in Fig. 2.5. The dependence on the mixing angle |V`1|4 is factored out.
Contribution of the light neutrinos is neglected (see Section 2.3 for details). The centre
of mass energy is assumed to be √

slhc = 13 TeV.

3.2 Large Hadron Collider

3.2.1 pp Level Cross Section

Figure 3.5 shows the expected total cross section of pp → `+`+ + jj for a centre of
mass energy √

slhc = 13 TeV. We see that the polarisation decomposition, folding
with PDFs, and subsequent rescaling increases the difference in relative maximum
with respect to the mass ratio rN. The highly hierarchical case approaches that
of the independent single HNL at mN1 ∼ 450 GeV, while for the degenerate case
the maximum shifts from around mN1 ∼ 600 TeV at WW level to mN1 ∼ 1 TeV.
Importantly, the pp cross section is about four orders of magnitude smaller than the
WW cross section at MW W = 490 GeV. Beyond this, the general characteristics of
the WW -scattering case directly translate into the pp case.

3.2.2 Theoretically Accessible Mass Ranges

Using the pp cross sections in Fig. 3.5, we can estimate how many events could be
expected at the LHC. To this end, we multiply the cross section by the maximal
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Figure 3.6: The maximal number of WBF events as calculated in the effective W approx-
imation in the model with two HNLs with mass ratio rN. The mixing angle |V`I |4 is
maximised, according to Eq. (3.6). Notice that for mN2 = rNmN1 > v, it is the condition
on the mixing angle |V`2| that dominates. Efficiency of the detector is assumed 100%.
The centre of mass energy is √

slhc = 13 TeV and the luminosity 3 ab−1.

theoretically admissible values of the mixing angles |V`I | (see Eq. (3.6) for details).
This means that both V`1 and V`2 should obey the condition

∣∣∣V`I

∣∣∣ ≤


1, mNI < v

v

mNI

, mNI > v
(3.6)

for their respective masses.4 Here, v is the Higgs’ vacuum expectation value. Notice
that formN2 > v and rN > 1, the perturbativity condition of the HNL N2 provides the
most stringent theoretical upper bound on |V`1| (under the assumption of Eq. (1.23)).5

Figure 3.6 shows the expected maximal amount of events Nmax at the HL-LHC
with an integrated luminosity of 3000 fb−1 ≡ 3 ab−1 [134] as a function of the lighter
of two HNL masses mN1 for different mass ratios rN, as well as for a single HNL case
(dashed orange). The number of events reaches its maximum at mN1 ∼ r

−1/2
N vev.

For models with mN1 < 100 GeV, Nmax is the largest for rN & O (10), while for
mN1 > 100 GeV, Nmax is largest for rN ∼ few. Notice that for rN ≥ 2 — and for

4Strictly speaking, the actual perturbativity limit is of course � 1. However, setting a limit of
exactly 1 arguably removes a degree of arbitrariness.

5This, in particular, demonstrates that decoupling of one of the HNLs, while keeping neu-
trino masses small, is not possible. The condition for the theory to remain perturbative imposes
constraints on the mixings of non-decoupled lighter HNLs.
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Figure 3.7: Optimistic exclusion limits on the N1 parameters via WBF-mediated pp →
`±`±jj events in the model with two HNLs with mass ratio rN. The exclusions limits
are 95 % CL assuming zero background. The centre of mass energy is √

slhc = 13 TeV
and the luminosity 3 ab−1.

masses mN1 & few 100 GeV in general — the differential cross section predicted for
a qDl HNL pair looks similar to that of the free parameter single HNL. Therefore,
efficiencies of cuts will be similar to those estimated in [101]. We stress that, for all
mass ratios mN1 ≥ 2 TeV, Nmax < 1. As the actual perturbativity limit would be
smaller than F = 1, this means that the process pp → `±`±jj is not suitable for
probing HNLs in the TeV mass range at the LHC.

3.2.3 Mixing-Mass Exclusion Regions

Nevertheless, using the cross sections shown in Fig. 3.5, we can give an estimate
95 % CL exclusion in the (V`N, rN,mN) parameter space. We present our results
for rN = 2 and rN = 10, as they represent the most promising mass ratio regime
of O (few–several) according to Fig. 3.6. Bounds for rN < 2 become an order of
magnitude weaker for every order of magnitude in |rN − 1| → 0. For rN > 10 the
bounds remain the same, while the Yukawa excluded region grows. This can be
observed in Fig. E.8 where we compare exclusion regions for rN ∈ {1.1, 2, 10, 100}.
The mass ratios rN = 2 and rN = 10 are chosen, as only in this rN range any signal
could be expected in the mN1 ∼ TeV range interesting for indirect searches.

In a model with rN ∼ few (Fig. 3.7a), for a near perfect detector and negligible
background (ε ∼ 1, yellow), we find that a WBF search at the HL-LHC can probe
HNL masses mN1 up to 1.5 TeV. This mass range is limited to mN1 . 850 GeV for
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a lower detector efficiency (ε ∼ 0.1, dashed-dotted grey), and mN1 . 450 GeV for a
low efficiency (ε ∼ 0.01, dashed blue).

In a model with rN ∼ O (10) (Fig. 3.7b) the cross section per |V`1|4 is higher,
but the range of accessible masses is smaller due to the perturbativity condition of
Eq. (3.6). As a result the maximally probed HNL mass is mN1 . 850 GeV. This
limit drops to mN1 . several 100 GeV for more realistic efficiencies.6

3.3 Future Circular Collider

Sensitivity of the WBF process is maximal for
√
M2

ww ∼ mN1. With larger centre of
mass energy of pp collisions, this factor increases accordingly. Therefore, the process
under consideration can be expected to be more efficient at Future Circular Collider
(FCC-hh), where the anticipated collision centre of mass energy √

sfcc = 100 TeV
[135]. To the authors best knowledge, a WBF investigation with FCC-hh parameters
has not yet been performed in past literature.

3.3.1 pp Level Cross Section

Using the projected centre of mass energy and machinery developed in this work, we
can estimate the WBF cross section of the pp → `±`±jj process, shown in Fig. 3.8.
We find that the cross section reaches its maximum at mN1 ' 1.5 TeV for a highly
hierarchical qDl pair and at up to mN1 ' 5 TeV in the highly degenerate case. It
is, furthermore, about two orders of magnitude larger at FCC compared to LHC
energies and reaches ∼ 1 pb for a hierarchical HNL pair.

3.3.2 Theoretically Accessible Mass Ranges

With a target integrated luminosity 30 ab−1[131], this corresponds to a maximal
theoretically admissible event number Nmax as shown in Fig. 3.9. Again, we see that
for mN1 > r

−1/2
N vev Yukawa perturbativity becomes the main theoretical constraint

on the mixing angle V`1, resulting in rN ∼ few to yield the largest Nmax. Nevertheless,
at FCC parameters, the mass range for mN1 in a qDl pair with 1.01 < rN < 100
extends into the TeV range.

6Fuks et al. report a maximal efficiency of around 40 % for mN ∼ O (TeV) for the free parameter
single HNL case, which drops for smaller masses.
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Figure 3.8: Cross section of pp → `±`±jj as calculated in the effective W approximation
in the model with two HNLs whose mass ratio is equal to rN. The mass of the lighter
HNL is shown as the x-axis, while another one is rN times heavier. Notations are
the same as in Fig. 2.5. The dependence on the mixing angle |V`1|4 is factored out.
Contribution of the light neutrinos is neglected (see Section 2.3 for details). The centre
of mass energy is assumed to be √

sfcc = 100 TeV.
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Figure 3.9: The maximal number of WBF events as calculated in the effective W ap-
proximation in the model with two HNLs with mass ratio rN. The mixing angle |V`1|4

is maximised, according to Eq. (3.6). Efficiency of the detector is assumed 100 %. The
centre of mass energy is √

sfcc = 100 TeV and the luminosity 30 ab−1.

3.3.3 Mixing-Mass Exclusion Regions

Due to the significantly larger cross section and higher integrated luminosity, the
relevant (V`N, rN,mN) parameter space covered by pp → `±`±jj at the FCC-hh opens
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Figure 3.10: The exclusion limits on the N1 parameters by WBF events as calculated in
the effective W approximation in the model with two HNLs with mass ratio rN. The
limits are obtained for 95 % CL exclusions assuming zero background. The assumed
detector efficiency is ε, the centre of mass energy √

sfcc = 100 TeV and the luminosity
30 ab−1.

up as seen in the previous section. For both rN = 2 and rN = 10 (see Figs. 3.10a
and 3.10b respectively), physically relevant mixing angles V`N are within reach for
a qDl HNL pair with mN1 ∼ few TeV and mN1 ∼ few TeV assuming a detection
efficiency ε ≥ 0.1. See Fig. E.8 for exclusion plots for further values of rN, where we
find that for rN = 1.1 and rN = 100 the detection of a qDl pair with mN1 in the TeV
range is only possible for a highly efficient detector. The relative difference between
different values of rN are as discussed in the LHC case in Section 3.2.
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4.1 Discussion

4.1.1 W W Level Results

The results derived at WW level are fully analytical. Therefore, the numerical values
and expansions presented in Chapter 2 are effectual barring the following caveats.

As mentioned in Section 2.1, the chosen light neutrino mass scale in case of the
single HNL model corresponds to an experimental upper bound. As the actual light
neutrino mass scale can be anywhere between the

√
∆m2

atm and this upper bound
(see Section 1.1.2), the numerical values presented for this model are very optimistic.

As mentioned in Section 2.3, the exact results in the Casas-Ibarra parametrisation
Eq. (2.21) are strictly only valid for W±W± → e±e± scattering for a normal neu-
trino mass hierarchy, as they rely on direct input of the PMNS matrix entries and
light neutrino masses. However, this matters only if the light mass states contribute
significantly to the cross section. For mixing angles with significant Imω enhance-
ment (where this is not the case), the same cross sections can be recovered in other
scenarios by adjusting Imω to the corresponding U2

`imi ratios (c.f. Appendix B).

4.1.2 pp Level Results

In the deduction of pp level results we employed the effective W approximation (see
Sections 1.4 and 3.1.1 for details). As we saw in Section 3.1.1, we expected the EWA
results to be less reliable for mN1 . few 100 GeV. This was confirmed by the direct
comparison of EWA results with a full 2 → 4 simulation for a phenomenological
type-I seesaw HNL in Fig. 3.4. The consequent rescaling remedies this mismatch for
qDl pairs with large mass ratios rN, as the WW level differential cross sections —
and consequently the WW system behaviour in the 2 → 4 process — are very similar
(see Fig. E.4). In the case of near degeneracy with masses mN1 < few 100 GeV this is
not the case. Here we expect that deviations in this regime should be expected when
considering a full Montecarlo simulation. However, as this parameter combination
will unlikely lead to WBF detector discovery even at FCC energies (see Fig. E.8e),
giving only a rough estimate for that parameter space is justified.
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The rescaling cross sections in this thesis were derived at LO in QCD due to
unknown errors occurring in the NLO simulations and time restrictions. At the LHC
the k factor k = σNLOσ

−1
LO lies in the range 1–1.4. Due to higher energies at the

FCC we expect the influence of NLO QCD to be even stronger. Therefore, our cross
section and subsequent bounds on HNL parameters likely underestimate the actual
detector signal strength.

On the other hand, all pp level results in this thesis were derived without consid-
ering background motivated detector cuts, so that no cuts were applied on the signal
outside of the bounds on the jets. Fuks et al. report a relatively stable 40 % efficiency
for a phenomenological type-I seesaw HNL with mN1 ∼ few TeV. However, due to
the higher centre of mass energy — and associated forward shift in signal — these
efficiencies are not easily translated to the FCC. This leads to an overestimation of
the signal strength.

At the LHC, these two effects nearly compensate one another in the mass range of
interest (mN1 ' 1 TeV), however without a full detector level study, it is not possible
to predict how this translates to FCC energies. Therefore, we will limit ourselves
to giving an estimate on the potential reach on the HNL parameters of the process
for a given centre of mass energy, rather than actual exclusion limits by a potential
detector experiment.

4.2 Conclusion

In this work we analysed the collider probe for Majorana particles with masses rang-
ing from ∼ 50 GeV to ∼ 5 TeV. The process that we considered is a direct analog of
the 0νββ decay — pp → `±`±jj (Section 1.3.2). Compared to previous works on the
subject (c.f. [97–101]) we concentrated on models where HNLs are solely responsible
for generating neutrino masses. All Majorana particles — HNLs and active neutri-
nos — contribute to the process in question and we analysed their interference. We
demonstrated that such an interference is necessarily destructive as a consequence of
smallness of neutrino masses compared to other relevant energy scales. There are two
regimes determined by whether HNLs’ mixing angles |V`N| are comparable or much
larger than the naive “seesaw limit” |V |2seesaw = mνm

−1
N (see text around Eq. (1.21)).

1. For |V`N| ∼ |V |seesaw and HNL masses comparable to the sub process energy
scale, cancellation between light states and heavy mass states occurs. For
heavy HNL masses (above the sub process energy scale) the HNL contribution
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can become suppressed with respect to that of the light neutrino states. In
both cases the cross section is limited by its proportionality to m2

νi
.

2. For |V`N| � |V |seesaw (while still keeping neutrino masses small, as experi-
mentally observed) the situation is quite different. The contribution of active
neutrinos is negligible, but cancellation occurs between HNL states (similarly
to the way it happens in the neutrino mass matrix). On one hand, the cross
section is always smaller than that of an isolated single HNL with the same
mixing. On the other hand, the cross section can become enhanced compared
to the naive scaling of σ ∝ m2

ν which would be suggested by the Weinberg op-
erator per se (c.f. [136]). This enhancement corresponds roughly to a factor of
|V`N|4|V |−4

seesaw and occurs only if HNLs are sufficiently far from the quasi-Dirac
limit and was found to be most effective for mN2m

−1
N1 = rN & few.

3. Lastly, large mass splitting rN � 1 allows to recovering the limit of a single
HNL (as considered, e.g. in [101]) only with considerable limitations. Naively,
in this case the heavier HNL N2 and its contribution to pp → `±`±jj dis-
appears. This is not necessarily the case in our realistic (and UV-complete)
model (type-I seesaw with 2 HNLs), as perturbativity demands that all Yukawa
couplings are smaller than 1. For HNLs heavier than the Higgs’ vacuum expec-
tation value, this condition together with the requirement of the neutrino mass
smallness caps not only the value of the mixing angle |V`2| but by extension
also |V`1|.

As a result, the largest sensitivity occurs in models with rN ∼ few at mN1 ∼
0.5–1 TeV.1 Even in this case, the cross section for the process pp → `±`±jj is
about 1 order of magnitude smaller than that of a single HNL with the same mixing
angle. Figure 4.1 compares the single event sensitivity for these parameters to other
searches for the case of Vµ1 mixing. The solid thick lines correspond to a mass ratio
rN = 2, and the dashed thick lines to rN = 10. We present this for Vµ1 mixing, as the
µ±µ± final state involves a smaller implicit background than e±e± [101], and unlike
τ±τ± does not require decay reconstruction.

At the HL-LHC, the best exclusion limit obtainable for such mass ratios reaches
|V`1|2 ∼ 0.01–0.03 (assuming a background-free search, 100 % detector efficiency and
a luminosity of 3 ab−1). These limits are not competitive with those coming from
the electroweak precision tests (EWPT) [137] or from non-observations of charged
lepton flavour violating (cLFV) processes involving charged leptons [138] coming
from non-observation of µ → 3e decays or µ− e conversions under the assumption

1Contributions of hierarchical HNLs to the 0νββ process have been studied recently [83–85].
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Figure 4.1: Single event sensitivity to the HNL mixing parameter Vµ1 from W boson fu-
sion in pp → `±`±jj at future collider experiments for an HNL pair with selected mass
ratios rN for an assumed detector efficiency of 100 %. The Wγ + CCDY limits are an
extrapolation of a previous CMS tri-lepton search [140] based on the findings of [141]
(light blue) and a MG5aMC simulation at FCC energy [139] (yellow-grey). Indirect
limits come from electroweak precision tests [137] (light grey), and non-observation of
charged Lepton Flavour Violation [138] (light pink). The end points of these curves
correspond to a Yukawa coupling reaching a non-perturbative limit, in the theory em-
ployed for deriving the V 2-bounds. For further information see Chapters 2 and 3.

of |Ve1|2 : |Vµ1|2 : |Vτ1|2 ≡ 0.06 : 0.46 : 0.48.
At the FCC-hh (again assuming a background-free search and 100 % detector

efficiency, but at a luminosity of 30 ab−1) the exclusion limit could be as low as
|V`1|2 ∼ (3–5) × 10−4 for rN ∼ few in a mass range of mN1 ∼ few TeV. These bounds
are competitive with EWPT exclusion. Further, in the TeV range, they are expected
to improve on bounds by DY + Wγ [139]. The exclusion coming from cLFV is ex-
pected to be stronger for all masses mN1. Nevertheless, exclusions derived from cLFV
necessarily assume a hierarchy between an HNL’s mixing angles to different leptons.
Therefore, comparable mixing exclusions from searches like WBF are important as
they serve as a more direct way of accessing this parameter space.

We note again that the Fuks et al. analysis [101] for a phenomenological type-
I seesaw HNL showed large implicit backgrounds for mN < 1 TeV, while giving a
signal efficiency of ∼ 40 % in the TeV range. This corresponds to a correction factor
of (0.4)−0.5 = 1.6 to the effective reach concerning |V`1|2.
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4.2.1 Perspective of W Boson Fusion Detector Discovery

In this thesis, we explored the potential of the W Boson Fusion at high energy proton-
proton colliders. We concluded that — for the planed HL-LHC parameters — it can
only contribute meaningful mixing bounds in a quasi-Dirac-like HNL model with
HNL mass mN1 < 1 TeV and mass mN2 corresponding to a mass ratio rN ∼ 2–10.
For FCC parameters, the mass range can be extended to mN1 ∼ few TeV yielding
competitive limits for such mass ratios (see Fig. 4.1).

The already existing bounds derived from the WBF process [86] can be reinter-
preted as bounds on a two HNL model in the highly hierarchical limit.2 It is impor-
tant to note that this does not correspond to a decoupling in the traditional sense,
as the “decoupled” and “non-decoupled” HNLs’ mixing angles are explicitly related
by the requirement that neutrino masses remain as observed experimentally.3

Many theoretical considerations point to neutrino sector models featuring degener-
ate HNL (see Section 1.2). As shown in Figs. E.8a and E.8e, WBF — unlike its decay
experiment equivalent 0νββ [142, 143] — could not contribute any meaningful exclu-
sion on mixing bounds.4 However, in models such as the ARS (see Section 1.2.3), the
relevant parameter space considered in this work is compatible with HNL induced
leptogenesis.

For an HNL pair with mixing angles at the “seesaw line”, there is little hope of
detector discovery in the foreseeable future Appendices A and B, as the cross sections
are ∼ 20 orders of magnitude below those with mixings near 1.

4.2.2 General Implications

The general considerations of cancellations in the lepton number violating current
(see Chapter 2) apply to all indirect LNV searches. This means that if an HNL is not
allowed to go on-shell — resulting in HNL oscillations in degenerate models [60, 61]
— such an amplitude level suppression will occur. As the requirement of on-shell
HNLs greatly limits the accessible HNL mass range by the experiments energy, it

2With the caveat of the perturbativity bound (Eq. (1.20)) for heavy HNLs limiting the applicable
mass range.

3Unless motivated more fundamentally, such a requirement presents the “theoretical impurity”
of large fine tuning between parameters.

4For even stronger degeneracy the plot would look the same but with an order of magnitude
weaker bounds per order of magnitude in degeneracy according to Eq. (2.14).
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is unlikely that lepton number violating processes will be observable at colliders for
HNLs with masses above few TeV.

We saw that it is imperative for indirect searches to be conducted in a meaningful
neutrino sector model in order to obtain meaningful observables. The quasi-Dirac-like
model (see Section 2.2) prooved to be a good approximation of the minimal neutrino
model required to explain neutrino oscillations (see Section 2.3). Therefore, and due
to its easy implementation — even compared to the Casas-Ibarra parametrisation
— such a model would be a natural choice for searches with HNL mixings above the
“seesaw line” |V 2| = mνm

−1
N .

4.3 Outlook

A natural next step in furthering this analysis would be to consider the case of three
HNLs. As this greatly opens up the available parameter space, the single HNL case
would not hold as an upper limit. One parameterisation for the mixing angles V`I

inspired by the qDl condition (Eq. (1.23)) could for example be

V`1 = √
rN12V`2 = i

√
rN13

2 V`3, (4.1)

with mass ratios rNIJ . Such a parametrisation would increase the cross section by a
factor of eight in the limit of rN12 = 1, rN13 � 1. To restrict the available parameter
space, one could conduct the search respecting bounds set by baryon asymmetry of
the universe (see Section 1.2.3).

It has been pointed out in past literature [50] that unlike lepton number violating
processes, lepton number conserving but lepton flavour violating processes (LFV)
do not suffer from intrinsic amplitude level suppression. However, it is known that a
degenerate HNL pair combines to form a Dirac particle (c.f. [144] and Appendix C).
Therefore, when considering models relying on a degenerate HNL pair (see Sec-
tion 1.2.3), also LFV searches — at least when considered as an indirect search —
are not likely going to lead to collider based HNL discovery.5 We note that this
cancellation does not generalise to the three HNL case.

It will also be worthwhile to consider a similar analysis to the one conducted
here 2 → 4 in a MG5aMC simulation. One important aspect to investigate is the
question of how a tendency toward front-back scattering in the WW system for
smaller mass ratios translates into angular distributions of the full pp scattering.

5This is especially true as larger implicit backgrounds have to be considered for such a study.

60



Discussion and Conclusion Outlook

This will need to be investigated in a full 2 → 4 simulation of the process as this
phenomenon only occurs for mN1 regime outside the full validity of the EWA, while
all angular dependence is strongly suppressed for HNLs with mN1 & few TeV. If
indeed front-to-back scattering translates into large lepton pseudorapidities at pp
level, the drop off for smaller rN with respect to realistic detection prospects could
be even more severe than anticipated. However, due to the detection limits at the
(HL-)LHC, this question is more relevant for searches at FCC energy. To this end,
existing HeavyN UFO libraries would have to be extended to accommodate complex
mixing angles, which, unfortunately, was not possible due to time restrictions.6

As, demonstrated by Fuks et. al, NLO effects in QCD can have an impact on the
exact numerical values O(10 %). It remains to be seen if loop-order corrections to the
W±W± → `±`± system could potentially alter the expected signal more significantly.
Especially penguin corrections to the WN` vertices (see Fig. E.1b), which have been
shown to contribute for large HNL masses [138], and corrections to the Majorana
propagator — similar to those responsible for running of light neutrino masses shown
in Fig. E.1d — could be of interest here.

6If such a library were implemented, this would also greatly facilitate a three HNL study of the
process.

61



Bibliography

[1] P. Langacker, Introduction to the Standard Model and Electroweak Physics, in
Theoretical Advanced Study Institute in Elementary Particle Physics: The Dawn of
the LHC Era, pp. 3–48, 2010, 0901.0241, DOI.

[2] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge
University Press, 3, 2014.

[3] S. L. Glashow, Partial-symmetries of weak interactions, Nuclear Physics 22 (1961)
579.

[4] S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264.

[5] A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519 (1968)
367.

[6] ATLAS collaboration, G. Aad et al., Observation of a new particle in the search
for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys.
Lett. B 716 (2012) 1 [1207.7214].

[7] CMS collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of
125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30
[1207.7235].

[8] Muon g − 2 Collaboration collaboration, B. Abi, T. Albahri, S. Al-Kilani,
D. Allspach, L. P. Alonzi, A. Anastasi et al., Measurement of the positive muon
anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801.

[9] T. Aaltonen, S. Amerio, D. Amidei, A. Anastassov, A. Annovi, J. Antos et al.,
High-precision measurement of the w boson mass with the cdf ii detector, Science
376 (2022) 170.

[10] C. N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic gauge
invariance, Phys. Rev. 96 (1954) 191.

[11] F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons,
Phys. Rev. Lett. 13 (1964) 321.

[12] P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.
13 (1964) 508.

[13] P. W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev.
145 (1966) 1156.

62

https://arxiv.org/abs/0901.0241
https://doi.org/10.1142/9789812838360_0001
https://doi.org/https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1126/science.abk1781
https://doi.org/10.1126/science.abk1781
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRev.145.1156


Bibliography

[14] S. Coleman and E. Weinberg, Radiative corrections as the origin of spontaneous
symmetry breaking, Phys. Rev. D 7 (1973) 1888.

[15] M. Sher, Electroweak Higgs Potentials and Vacuum Stability, Phys. Rept. 179
(1989) 273.

[16] A. Strumia and F. Vissani, Neutrino masses and mixings and . . . , arXiv e-prints
(2006) [hep-ph/0606054].

[17] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531.

[18] M. Kobayashi and T. Maskawa, CP-Violation in the Renormalizable Theory of
Weak Interaction, Progress of Theoretical Physics 49 (1973) 652.

[19] W. Pauli, Aufsätze und Vorträge über Physik und Erkenntnistheorie, Die
Wissenschaft. Vieweg+teubner Verlag, Jan., 1961.

[20] E. Fermi, Tentativo di una teoria dei raggi β, Il Nuovo Cimento (1924-1942) 11
(1934) 1.

[21] F. Reines and C. L. Cowan jr., The neutrino, Nature 178 (1956) 446.

[22] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson,
Experimental test of parity conservation in beta decay, Phys. Rev. 105 (1957) 1413.

[23] M. Goldhaber, L. Grodzins and A. W. Sunyar, Helicity of neutrinos, Phys. Rev.
109 (1958) 1015.

[24] M. Aker, A. Beglarian, J. Behrens, A. Berlev, U. Besserer, B. Bieringer et al.,
Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Physics
18 (2022) 160.

[25] C. Dvorkin et al., Neutrino Mass from Cosmology: Probing Physics Beyond the
Standard Model, 1903.03689.

[26] R. Davis, D. S. Harmer and K. C. Hoffman, Search for neutrinos from the sun,
Phys. Rev. Lett. 20 (1968) 1205.

[27] J. N. Bahcall, Solar models: An Historical overview, AAPPS Bull. 12 (2002) 12
[astro-ph/0209080].

[28] SNO collaboration, Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin,
G. Bühler, J. C. Barton et al., Measurement of the rate of νe + d → p + p + e−

interactions produced by 8b solar neutrinos at the sudbury neutrino observatory,
Phys. Rev. Lett. 87 (2001) 071301.

63

https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1016/0370-1573(89)90061-6
https://doi.org/10.1016/0370-1573(89)90061-6
https://arxiv.org/abs/hep-ph/0606054
https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1007/BF02959820
https://doi.org/10.1007/BF02959820
https://doi.org/10.1038/178446a0
https://doi.org/10.1103/PhysRev.105.1413
https://doi.org/10.1103/PhysRev.109.1015
https://doi.org/10.1103/PhysRev.109.1015
https://doi.org/10.1038/s41567-021-01463-1
https://doi.org/10.1038/s41567-021-01463-1
https://arxiv.org/abs/1903.03689
https://doi.org/10.1103/PhysRevLett.20.1205
https://doi.org/10.1016/S0920-5632(03)01306-9
https://arxiv.org/abs/astro-ph/0209080
https://doi.org/10.1103/PhysRevLett.87.071301


Bibliography

[29] S. P. Mikheyev and A. Y. Smirnov, Resonance Amplification of Oscillations in
Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913.

[30] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369.

[31] Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of
atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003].

[32] B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429.

[33] B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic
Charge, Zh. Eksp. Teor. Fiz. 53 (1967) 1717.

[34] M. Drewes, The Phenomenology of Right Handed Neutrinos, Int. J. Mod. Phys.
E22 (2013) 1330019 [1303.6912].

[35] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary
particles, Prog. Theor. Phys. 28 (1962) 870.

[36] S. Adrián-Martínez, M. Ageron, F. Aharonian, S. Aiello, A. Albert, F. Ameli et al.,
Letter of intent for KM3net 2.0, Journal of Physics G: Nuclear and Particle
Physics 43 (2016) 084001.

[37] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43
(1979) 1566.

[38] S. Antusch, O. Fischer, A. Hammad and C. Scherb, Low scale type ii seesaw:
present constraints and prospects for displaced vertex searches, Journal of High
Energy Physics 2019 (2019) 157.

[39] R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev.
D 78 (2008) 033002 [0805.1613].

[40] A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy majorana
neutrinos, Journal of High Energy Physics 2009 (2009) 030.

[41] S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the
SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [1504.04855].

[42] A. M. Abdullahi et al., The Present and Future Status of Heavy Neutral Leptons, in
2022 Snowmass Summer Study, 3, 2022, 2203.08039.

[43] P. Minkowski, µ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B
67 (1977) 421.

64

https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
https://doi.org/10.1142/S0218301313300191
https://doi.org/10.1142/S0218301313300191
https://arxiv.org/abs/1303.6912
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1007/JHEP02(2019)157
https://doi.org/10.1007/JHEP02(2019)157
https://doi.org/10.1103/PhysRevD.78.033002
https://doi.org/10.1103/PhysRevD.78.033002
https://arxiv.org/abs/0805.1613
https://doi.org/10.1088/1126-6708/2009/05/030
https://doi.org/10.1088/0034-4885/79/12/124201
https://arxiv.org/abs/1504.04855
https://arxiv.org/abs/2203.08039
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1016/0370-2693(77)90435-X


Bibliography

[44] P. Ramond, The Family Group in Grand Unified Theories, in International
Symposium on Fundamentals of Quantum Theory and Quantum Field Theory, 2,
1979, hep-ph/9809459.

[45] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity
Nonconservation, Phys. Rev. Lett. 44 (1980) 912.

[46] T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64
(1980) 1103.

[47] SINDRUM II collaboration, J. Kaulard et al., Improved limit on the branching
ratio of mu- –> e+ conversion on titanium, Phys. Lett. B 422 (1998) 334.

[48] T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and
neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065].

[49] M. Shaposhnikov, A Possible symmetry of the nuMSM, Nucl. Phys. B 763 (2007)
49 [hep-ph/0605047].

[50] J. Kersten and A. Yu. Smirnov, Right-Handed Neutrinos at CERN LHC and the
Mechanism of Neutrino Mass Generation, Phys. Rev. D76 (2007) 073005
[0705.3221].

[51] E. Akhmedov, Majorana neutrinos and other Majorana particles:Theory and
experiment. 12, 2014. 1412.3320.

[52] R. N. Mohapatra and J. W. F. Valle, Neutrino mass and baryon-number
nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642.

[53] D. Wyler and L. Wolfenstein, Massless neutrinos in left-hand symmetric models,
Nuclear Physics B 218 (1983) 205.

[54] G. Branco, W. Grimus and L. Lavoura, The seesaw mechanism in the presence of a
conserved lepton number, Nuclear Physics B 312 (1989) 492.

[55] M. Gonzalez-Garcia and J. Valle, Fast decaying neutrinos and observable flavour
violation in a new class of majoron models, Physics Letters B 216 (1989) 360.

[56] A. Roy and M. Shaposhnikov, Resonant production of the sterile neutrino dark
matter and fine-tunings in the nuMSM, Phys. Rev. D 82 (2010) 056014
[1006.4008].

[57] M. B. Gavela, T. Hambye, D. Hernandez and P. Hernandez, Minimal Flavour
Seesaw Models, JHEP 09 (2009) 038 [0906.1461].

65

https://arxiv.org/abs/hep-ph/9809459
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1143/PTP.64.1103
https://doi.org/10.1143/PTP.64.1103
https://doi.org/10.1016/S0370-2693(97)01423-8
https://doi.org/10.1016/j.physletb.2005.09.070
https://arxiv.org/abs/hep-ph/0503065
https://doi.org/10.1016/j.nuclphysb.2006.11.003
https://doi.org/10.1016/j.nuclphysb.2006.11.003
https://arxiv.org/abs/hep-ph/0605047
https://doi.org/10.1103/PhysRevD.76.073005
https://arxiv.org/abs/0705.3221
https://arxiv.org/abs/1412.3320
https://doi.org/10.1103/PhysRevD.34.1642
https://doi.org/https://doi.org/10.1016/0550-3213(83)90482-0
https://doi.org/https://doi.org/10.1016/0550-3213(89)90304-0
https://doi.org/https://doi.org/10.1016/0370-2693(89)91131-3
https://doi.org/10.1103/PhysRevD.82.056014
https://arxiv.org/abs/1006.4008
https://doi.org/10.1088/1126-6708/2009/09/038
https://arxiv.org/abs/0906.1461


Bibliography

[58] A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings
in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275
[hep-ph/9901206].

[59] M. Drewes, J. Klarić and P. Klose, On lepton number violation in heavy neutrino
decays at colliders, JHEP 11 (2019) 032 [1907.13034].

[60] J.-L. Tastet and I. Timiryasov, Dirac vs. Majorana HNLs (and their oscillations) at
SHiP, JHEP 04 (2020) 005 [1912.05520].

[61] J.-L. Tastet, O. Ruchayskiy and I. Timiryasov, Reinterpreting the ATLAS bounds
on heavy neutral leptons in a realistic neutrino oscillation model, JHEP 12 (2021)
182 [2107.12980].

[62] D. Aristizabal Sierra and C. E. Yaguna, On the importance of the 1-loop finite
corrections to seesaw neutrino masses, JHEP 08 (2011) 013 [1106.3587].

[63] J. Lopez-Pavon, E. Molinaro and S. T. Petcov, Radiative Corrections to Light
Neutrino Masses in Low Scale Type I Seesaw Scenarios and Neutrinoless Double
Beta Decay, JHEP 11 (2015) 030 [1506.05296].

[64] E. H. Aeikens, P. M. Ferreira, W. Grimus, D. Jurčiukonis and L. Lavoura, Radiative
seesaw corrections and charged-lepton decays in a model with soft flavour violation,
JHEP 12 (2020) 122 [2009.13479].

[65] T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of
the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013].

[66] A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The Role of sterile neutrinos in
cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [0901.0011].

[67] G. L. Fogli, S. N. Gninenko, D. S. Gorbunov and M. E. Shaposhnikov, Search for
gev-scale sterile neutrinos responsible for active neutrino oscillations and baryon
asymmetry of the universe, Advances in High Energy Physics 2012 (2012) 718259.

[68] CMS Collaboration, A measurement of the Higgs boson mass in the diphoton decay
channel, arXiv e-prints (2020) [2002.06398].

[69] S. Tremaine and J. E. Gunn, Dynamical Role of Light Neutral Leptons in
Cosmology, Phys. Rev. Lett. 42 (1979) 407.

[70] X.-D. Shi and G. M. Fuller, A New dark matter candidate: Nonthermal sterile
neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076].

66

https://doi.org/10.1007/BF01482590
https://arxiv.org/abs/hep-ph/9901206
https://doi.org/10.1007/JHEP11(2019)032
https://arxiv.org/abs/1907.13034
https://doi.org/10.1007/JHEP04(2020)005
https://arxiv.org/abs/1912.05520
https://doi.org/10.1007/JHEP12(2021)182
https://doi.org/10.1007/JHEP12(2021)182
https://arxiv.org/abs/2107.12980
https://doi.org/10.1007/JHEP08(2011)013
https://arxiv.org/abs/1106.3587
https://doi.org/10.1007/JHEP11(2015)030
https://arxiv.org/abs/1506.05296
https://doi.org/10.1007/JHEP12(2020)122
https://arxiv.org/abs/2009.13479
https://doi.org/10.1016/j.physletb.2005.06.020
https://arxiv.org/abs/hep-ph/0505013
https://doi.org/10.1146/annurev.nucl.010909.083654
https://arxiv.org/abs/0901.0011
https://doi.org/10.1155/2012/718259
https://arxiv.org/abs/2002.06398
https://doi.org/10.1103/PhysRevLett.42.407
https://doi.org/10.1103/PhysRevLett.82.2832
https://arxiv.org/abs/astro-ph/9810076


Bibliography

[71] X.-G. He, T. Li and W. Liao, Symmetry, dark matter, and LHC phenomenology of
the minimal νSM, prd 81 (2010) 033006 [0911.1598].

[72] M. Shaposhnikov, The nuMSM, leptonic asymmetries, and properties of singlet
fermions, JHEP 08 (2008) 008 [0804.4542].

[73] E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, Baryogenesis via neutrino
oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255].

[74] M. Drewes, B. Garbrecht, P. Hernandez, M. Kekic, J. Lopez-Pavon, J. Racker
et al., ARS Leptogenesis, Int. J. Mod. Phys. A33 (2018) 1842002 [1711.02862].

[75] A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, Low-scale
leptogenesis with three heavy neutrinos, JHEP 01 (2019) 164 [1810.12463].

[76] M. Drewes and B. Garbrecht, Leptogenesis from a GeV Seesaw without Mass
Degeneracy, JHEP 03 (2013) 096 [1206.5537].

[77] M. Drewes, Y. Georis and J. Klarić, Mapping the Viable Parameter Space for
Testable Leptogenesis, Phys. Rev. Lett. 128 (2022) 051801 [2106.16226].

[78] M. Goeppert-Mayer, Double beta-disintegration, Phys. Rev. 48 (1935) 512.

[79] B. Pontecorvo, Superweak interactions and double beta decay, Phys. Lett. B 26
(1968) 630.

[80] M. J. Dolinski, A. W. P. Poon and W. Rodejohann, Neutrinoless Double-Beta
Decay: Status and Prospects, Ann. Rev. Nucl. Part. Sci. 69 (2019) 219
[1902.04097].

[81] V. Cirigliano et al., Neutrinoless Double-Beta Decay: A Roadmap for Matching
Theory to Experiment, 2203.12169.

[82] L. Cardani, Neutrinoless Double Beta Decay Overview, SciPost Phys. Proc. 1
(2019) 024 [1810.12828].

[83] T. Asaka, H. Ishida and K. Tanaka, Neutrinoless double beta decays tell nature of
right-handed neutrinos, 2101.12498.

[84] T. Asaka, H. Ishida and K. Tanaka, What if a specific neutrinoless double beta
decay is absent?, PTEP 2021 (2021) 063B01 [2012.13186].

[85] T. Asaka, H. Ishida and K. Tanaka, Hiding neutrinoless double beta decay in the
minimal seesaw mechanism, Phys. Rev. D 103 (2021) 015014 [2012.12564].

67

https://doi.org/10.1103/PhysRevD.81.033006
https://arxiv.org/abs/0911.1598
https://doi.org/10.1088/1126-6708/2008/08/008
https://arxiv.org/abs/0804.4542
https://doi.org/10.1103/PhysRevLett.81.1359
https://arxiv.org/abs/hep-ph/9803255
https://doi.org/10.1142/S0217751X18420022
https://arxiv.org/abs/1711.02862
https://doi.org/10.1007/JHEP01(2019)164
https://arxiv.org/abs/1810.12463
https://doi.org/10.1007/JHEP03(2013)096
https://arxiv.org/abs/1206.5537
https://doi.org/10.1103/PhysRevLett.128.051801
https://arxiv.org/abs/2106.16226
https://doi.org/10.1103/PhysRev.48.512
https://doi.org/10.1016/0370-2693(68)90437-1
https://doi.org/10.1016/0370-2693(68)90437-1
https://doi.org/10.1146/annurev-nucl-101918-023407
https://arxiv.org/abs/1902.04097
https://arxiv.org/abs/2203.12169
https://doi.org/10.21468/SciPostPhysProc.1.024
https://doi.org/10.21468/SciPostPhysProc.1.024
https://arxiv.org/abs/1810.12828
https://arxiv.org/abs/2101.12498
https://doi.org/10.1093/ptep/ptab046
https://arxiv.org/abs/2012.13186
https://doi.org/10.1103/PhysRevD.103.015014
https://arxiv.org/abs/2012.12564


Bibliography

[86] CMS collaboration, Probing heavy Majorana neutrinos and the Weinberg operator
through vector boson fusion processes in proton-proton collisions at

√
s = 13 TeV,

2206.08956.

[87] ATLAS collaboration, G. Aad et al., Inclusive search for same-sign dilepton
signatures in pp collisions at

√
s = 7 TeV with the ATLAS detector, JHEP 10

(2011) 107 [1108.0366].

[88] ATLAS collaboration, G. Aad et al., Search for heavy neutrinos and right-handed
W bosons in events with two leptons and jets in pp collisions at

√
s = 7 TeV with

the ATLAS detector, Eur. Phys. J. C 72 (2012) 2056 [1203.5420].

[89] CMS collaboration, S. Chatrchyan et al., Search for heavy Majorana Neutrinos in
µ±µ±+ Jets and e±e±+ Jets Events in pp Collisions at

√
s = 7 TeV, Phys. Lett. B

717 (2012) 109 [1207.6079].

[90] ATLAS collaboration, G. Aad et al., Search for heavy Majorana neutrinos with the
ATLAS detector in pp collisions at

√
s = 8 TeV, JHEP 07 (2015) 162 [1506.06020].

[91] CMS collaboration, V. Khachatryan et al., Search for heavy Majorana neutrinos in
µ±µ±+ jets events in proton-proton collisions at

√
s = 8 TeV, Phys. Lett. B 748

(2015) 144 [1501.05566].

[92] CMS collaboration, V. Khachatryan et al., Search for heavy Majorana neutrinos in
e±e±+ jets and e± µ±+ jets events in proton-proton collisions at

√
s = 8 TeV,

JHEP 04 (2016) 169 [1603.02248].

[93] ATLAS collaboration, M. Aaboud et al., Search for heavy Majorana or Dirac
neutrinos and right-handed W gauge bosons in final states with two charged leptons
and two jets at

√
s = 13 TeV with the ATLAS detector, JHEP 01 (2019) 016

[1809.11105].

[94] CMS collaboration, A. M. Sirunyan et al., Search for a heavy right-handed W boson
and a heavy neutrino in events with two same-flavor leptons and two jets at

√
s =

13 TeV, JHEP 05 (2018) 148 [1803.11116].

[95] CMS collaboration, A. M. Sirunyan et al., Search for heavy Majorana neutrinos in
same-sign dilepton channels in proton-proton collisions at

√
s = 13 TeV, JHEP 01

(2019) 122 [1806.10905].

[96] CMS collaboration, A. M. Sirunyan et al., Search for heavy neutrinos and
third-generation leptoquarks in hadronic states of two τ leptons and two jets in
proton-proton collisions at

√
s = 13 TeV, JHEP 03 (2019) 170 [1811.00806].

68

https://arxiv.org/abs/2206.08956
https://doi.org/10.1007/JHEP10(2011)107
https://doi.org/10.1007/JHEP10(2011)107
https://arxiv.org/abs/1108.0366
https://doi.org/10.1140/epjc/s10052-012-2056-4
https://arxiv.org/abs/1203.5420
https://doi.org/10.1016/j.physletb.2012.09.012
https://doi.org/10.1016/j.physletb.2012.09.012
https://arxiv.org/abs/1207.6079
https://doi.org/10.1007/JHEP07(2015)162
https://arxiv.org/abs/1506.06020
https://doi.org/10.1016/j.physletb.2015.06.070
https://doi.org/10.1016/j.physletb.2015.06.070
https://arxiv.org/abs/1501.05566
https://doi.org/10.1007/JHEP04(2016)169
https://arxiv.org/abs/1603.02248
https://doi.org/10.1007/JHEP01(2019)016
https://arxiv.org/abs/1809.11105
https://doi.org/10.1007/JHEP05(2018)148
https://arxiv.org/abs/1803.11116
https://doi.org/10.1007/JHEP01(2019)122
https://doi.org/10.1007/JHEP01(2019)122
https://arxiv.org/abs/1806.10905
https://doi.org/10.1007/JHEP03(2019)170
https://arxiv.org/abs/1811.00806


Bibliography

[97] D. A. Dicus, D. D. Karatas and P. Roy, Lepton nonconservation at supercollider
energies, Phys. Rev. D 44 (1991) 2033.

[98] A. Ali, A. V. Borisov and N. B. Zamorin, Same-sign Dilepton Production via Heavy
Majorana Neutrinos in Proton–proton Collisions, in 10th Lomonosov Conference on
Elementary Particle Physics, pp. 74–79, 2003, hep-ph/0112043, DOI.

[99] O. Panella, M. Cannoni, C. Carimalo and Y. N. Srivastava, Signals of heavy
Majorana neutrinos at hadron colliders, Phys. Rev. D 65 (2002) 035005
[hep-ph/0107308].

[100] J. N. Ng, A. de la Puente and B. W.-P. Pan, Search for Heavy Right-Handed
Neutrinos at the LHC and Beyond in the Same-Sign Same-Flavor Leptons Final
State, JHEP 12 (2015) 172 [1505.01934].

[101] B. Fuks, J. Neundorf, K. Peters, R. Ruiz and M. Saimpert, Majorana neutrinos in
same-sign W ±W ± scattering at the LHC: Breaking the TeV barrier, Phys. Rev. D
103 (2021) 055005 [2011.02547].

[102] F. del Aguila, J. A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large
hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261].

[103] C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully-Automated Precision
Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders, Phys.
Rev. D 94 (2016) 053002 [1602.06957].

[104] D. Berdine, N. Kauer and D. Rainwater, Breakdown of the narrow width
approximation for new physics, Phys. Rev. Lett. 99 (2007) 111601.

[105] E. Fuchs, S. Thewes and G. Weiglein, Interference effects in BSM processes with a
generalised narrow-width approximation, Eur. Phys. J. C 75 (2015) 254
[1411.4652].

[106] A. Datta, M. Guchait and A. Pilaftsis, Probing lepton number violation via
majorana neutrinos at hadron supercolliders, Phys. Rev. D 50 (1994) 3195
[hep-ph/9311257].

[107] G. L. Kane, WINDOWS FOR NEW PHYSICS AT SUPER COLLIDERS, in The
Physics of the 21st Century, 12, 1983.

[108] S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42.

[109] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories,
Phys. Rev. Lett. 30 (1973) 1343.

69

https://doi.org/10.1103/PhysRevD.44.2033
https://arxiv.org/abs/hep-ph/0112043
https://doi.org/10.1142/9789812704948_0009
https://doi.org/10.1103/PhysRevD.65.035005
https://arxiv.org/abs/hep-ph/0107308
https://doi.org/10.1007/JHEP12(2015)172
https://arxiv.org/abs/1505.01934
https://doi.org/10.1103/PhysRevD.103.055005
https://doi.org/10.1103/PhysRevD.103.055005
https://arxiv.org/abs/2011.02547
https://doi.org/10.1088/1126-6708/2007/10/047
https://arxiv.org/abs/hep-ph/0703261
https://doi.org/10.1103/PhysRevD.94.053002
https://doi.org/10.1103/PhysRevD.94.053002
https://arxiv.org/abs/1602.06957
https://doi.org/10.1103/PhysRevLett.99.111601
https://doi.org/10.1140/epjc/s10052-015-3472-z
https://arxiv.org/abs/1411.4652
https://doi.org/10.1103/PhysRevD.50.3195
https://arxiv.org/abs/hep-ph/9311257
https://doi.org/10.1016/0550-3213(85)90038-0
https://doi.org/10.1103/PhysRevLett.30.1343


Bibliography

[110] H. D. Politzer, Asymptotic Freedom: An Approach to Strong Interactions, Phys.
Rept. 14 (1974) 129.

[111] J. D. Bjorken and E. A. Paschos, Inelastic Electron Proton and gamma Proton
Scattering, and the Structure of the Nucleon, Phys. Rev. 185 (1969) 1975.

[112] J. J. Ethier and E. R. Nocera, Parton Distributions in Nucleons and Nuclei, Ann.
Rev. Nucl. Part. Sci. 70 (2020) 43 [2001.07722].

[113] C. v. Weizsäcker, Ausstrahlung bei stößen sehr schneller elektronen, Zeitschrift für
Physik 88 (1934) 612.

[114] S. J. Brodsky, T. Kinoshita and H. Terazawa, Two-photon mechanism of particle
production by high-energy colliding beams, Phys. Rev. D 4 (1971) 1532.

[115] Z. Kunszt and D. E. Soper, On the Validity of the Effective W Approximation,
Nucl. Phys. B 296 (1988) 253.

[116] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate
of hints: updated global analysis of three-flavor neutrino oscillations, Journal of
High Energy Physics 2020 (2020) 178.

[117] R. E. Ruiz, Hadron Collider Tests of Neutrino Mass-Generating Mechanisms,
Ph.D. thesis, Pittsburgh U., 2015. 1509.06375.

[118] L. B. Okun, Leptons and Quarks. North-Holland, Amsterdam, Netherlands, 1982,
10.1142/9162.

[119] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Parton distributions for
the lhc, The European Physical Journal C 63 (2009) 189.

[120] A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number
violating interactions, Nucl. Phys. B 387 (1992) 467.

[121] A. Denner, H. Eck, O. Hahn and J. Kublbeck, Compact Feynman rules for
Majorana fermions, Phys. Lett. B 291 (1992) 278.

[122] J. Gluza and M. Zraek, Feynman rules for majorana-neutrino interactions, Phys.
Rev. D 45 (1992) 1693.

[123] J. A. Casas and A. Ibarra, Oscillating neutrinos and µ → e, γ, Nucl. Phys. B 618
(2001) 171 [hep-ph/0103065].

[124] Z.-z. Xing, Casas-Ibarra Parametrization and Unflavored Leptogenesis, Chin. Phys.
C 34 (2010) 1 [0902.2469].

70

https://doi.org/10.1016/0370-1573(74)90014-3
https://doi.org/10.1016/0370-1573(74)90014-3
https://doi.org/10.1103/PhysRev.185.1975
https://doi.org/10.1146/annurev-nucl-011720-042725
https://doi.org/10.1146/annurev-nucl-011720-042725
https://arxiv.org/abs/2001.07722
https://doi.org/10.1103/PhysRevD.4.1532
https://doi.org/10.1016/0550-3213(88)90673-6
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1007/JHEP09(2020)178
https://arxiv.org/abs/1509.06375
https://doi.org/10.1142/9162
https://doi.org/10.1140/epjc/s10052-009-1072-5
https://doi.org/10.1016/0550-3213(92)90169-C
https://doi.org/10.1016/0370-2693(92)91045-B
https://doi.org/10.1103/PhysRevD.45.1693
https://doi.org/10.1103/PhysRevD.45.1693
https://doi.org/10.1016/S0550-3213(01)00475-8
https://doi.org/10.1016/S0550-3213(01)00475-8
https://arxiv.org/abs/hep-ph/0103065
https://doi.org/10.1088/1674-1137/34/1/001
https://doi.org/10.1088/1674-1137/34/1/001
https://arxiv.org/abs/0902.2469


Bibliography

[125] Nufit 5.1, 2021.

[126] A. Cabrera, Y. Han, M. Obolensky, F. Cavalier, J. Coelho, D. Navas-Nicolás et al.,
Synergies and prospects for early resolution of the neutrino mass ordering, Scientific
Reports 12 (2022) 5393.

[127] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate
of hints: updated global analysis of three-flavor neutrino oscillations, Journal of
High Energy Physics 2020 (2020) 178.

[128] Ls3 schedule change, Mar, 2022.

[129] A. Bastianin and M. Florio, Initial guidelines for a social cost-benefit analysis of the
FCC programme, tech. rep., CERN, Geneva, Mar, 2019.

[130] R. Ruiz, A. Costantini, F. Maltoni and O. Mattelaer, The Effective Vector Boson
Approximation in high-energy muon collisions, JHEP 06 (2022) 114 [2111.02442].

[131] M. Aleksa et al., Calorimeters for the FCC-hh, 1912.09962.

[132] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP
04 (2008) 063 [0802.1189].

[133] DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco,
V. Lemaître, A. Mertens et al., DELPHES 3, A modular framework for fast
simulation of a generic collider experiment, JHEP 02 (2014) 057 [1307.6346].

[134] O. Aberle, I. Béjar Alonso, O. Brüning, P. Fessia, L. Rossi, L. Tavian et al.,
High-Luminosity Large Hadron Collider (HL-LHC): Technical design report, CERN
Yellow Reports: Monographs. CERN, Geneva, 2020, 10.23731/CYRM-2020-0010.

[135] FCC collaboration, A. Abada et al., FCC Physics Opportunities: Future Circular
Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474.

[136] B. Fuks, J. Neundorf, K. Peters, R. Ruiz and M. Saimpert, Probing the Weinberg
operator at colliders, Phys. Rev. D 103 (2021) 115014 [2012.09882].

[137] E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, Global
constraints on heavy neutrino mixing, JHEP 08 (2016) 033 [1605.08774].

[138] K. A. Urquía Calderón, I. Timiryasov and O. Ruchayskiy, Improved constraints and
the prospects of detecting TeV to PeV scale Heavy Neutral Leptons, 2206.04540.

[139] S. Pascoli, R. Ruiz and C. Weiland, Heavy neutrinos with dynamic jet vetoes:
multilepton searches at

√
s = 14 , 27, and 100 TeV, JHEP 06 (2019) 049

[1812.08750].

71

https://doi.org/10.1038/s41598-022-09111-1
https://doi.org/10.1038/s41598-022-09111-1
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1007/JHEP06(2022)114
https://arxiv.org/abs/2111.02442
https://arxiv.org/abs/1912.09962
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.1140/epjc/s10052-019-6904-3
https://doi.org/10.1103/PhysRevD.103.115014
https://arxiv.org/abs/2012.09882
https://doi.org/10.1007/JHEP08(2016)033
https://arxiv.org/abs/1605.08774
https://arxiv.org/abs/2206.04540
https://doi.org/10.1007/JHEP06(2019)049
https://arxiv.org/abs/1812.08750


Bibliography

[140] CMS Collaboration collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam,
F. Ambrogi, E. Asilar, T. Bergauer et al., Search for heavy neutral leptons in events
with three charged leptons in proton-proton collisions at

√
s = 13 TeV, Phys. Rev.

Lett. 120 (2018) 221801.

[141] D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from Wγ fusion at hadron
colliders, JHEP 02 (2015) 072 [1411.7305].

[142] M. Drewes and S. Eijima, Neutrinoless double β decay and low scale leptogenesis,
Phys. Lett. B 763 (2016) 72 [1606.06221].

[143] P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable
Baryogenesis in Seesaw Models, JHEP 08 (2016) 157 [1606.06719].

[144] S. Eijima, M. Shaposhnikov and I. Timiryasov, Parameter space of baryogenesis in
the νMSM, JHEP 07 (2019) 077 [1808.10833].

[145] C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully automated precision
predictions for heavy neutrino production mechanisms at hadron colliders, Physical
Review D 94 (2016) .

[146] D. Alva, T. Han and R. Ruiz, Heavy majorana neutrinos from wγ fusion at hadron
colliders, Journal of High Energy Physics 2015 (2015) .

[147] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 a
complete toolbox for tree-level phenomenology, Computer Physics Communications
185 (2014) 2250.

[148] R. Mertig, M. Böhm and A. Denner, Feyn calc - computer-algebraic calculation of
feynman amplitudes, Computer Physics Communications 64 (1991) 345.

[149] V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0,
Computer Physics Communications 207 (2016) 432.

[150] V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and
improvements, Computer Physics Communications 256 (2020) 107478.

[151] T. Stelzer and W. F. Long, Automatic generation of tree level helicity amplitudes,
Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258].

[152] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The
automated computation of tree-level and next-to-leading order differential cross
sections, and their matching to parton shower simulations, JHEP 07 (2014) 079
[1405.0301].

72

https://doi.org/10.1103/PhysRevLett.120.221801
https://doi.org/10.1103/PhysRevLett.120.221801
https://doi.org/10.1007/JHEP02(2015)072
https://arxiv.org/abs/1411.7305
https://doi.org/10.1016/j.physletb.2016.09.054
https://arxiv.org/abs/1606.06221
https://doi.org/10.1007/JHEP08(2016)157
https://arxiv.org/abs/1606.06719
https://doi.org/10.1007/JHEP07(2019)077
https://arxiv.org/abs/1808.10833
https://doi.org/10.1103/physrevd.94.053002
https://doi.org/10.1103/physrevd.94.053002
https://doi.org/10.1007/jhep02(2015)072
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/0010-4655(94)90084-1
https://arxiv.org/abs/hep-ph/9401258
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301


Bibliography

[153] J. P. Ellis, Tikz-feynman: Feynman diagrams with tikz, Computer Physics
Communications 210 (2017) 103.

73

https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019


Appendix

A More on the Single Heavy Neutral Lepton Model

Polarisation Decomposition

All data presented in this section is generated for the case of a single HNL with a mass
of mN = 150 GeV with a mixing angle V`N such that |V 2

`NmN| = 1 eV ' mνe,upper (see
Section 2.1). The resulting cross section decompositions are presented in Fig. A.1.
They are shown as generated considering only contributions of the heavy mass state
(Fig. A.1a), the light mass state (Fig. A.1b), and the combined contributions in the
first flavour expansion (Fig. A.1c). The coincidence of the cross section generated
with full polarisation vector summation rules and the sum of all polarised cross
sections verifies the decomposition factors.

We see that for the heavy mass state contribution, the transversally polarised cross
section dominates for very small centre of mass energies

√
M2

ww ∼ 2mW , but dies out
quickly with growing

√
M2

ww. Meanwhile, the longitudinal polarisation grows with
increasing

√
M2

ww, quickly dominating the overall cross section. For the light mass
state contribution, the transversally polarised cross section is always the dominant
contribution. Both transversal and longitudinal cross section become constant for
large

√
M2

ww. The combined cross section is the result of destructive interference
between heavy and light mass state. This can be easily seen from Fig. A.2, which
shows the same data as presented in Fig. A.1, but ordered by polarisations. Here,
Fig. A.2a compares the transversal cross sections of the light and heavy mass state
in isolation and that of the combined cross section, while Fig. A.1c does the same
for the longitudinal cross sections.
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Figure A.1: Cross sections of W ±W ± → `±`± scattering as decompositions in the WW

polarisations as Transversal ↔ σTT, Mixed ↔ σLT, and Longitudinal ↔ σLL. The cross
sections are given as a function of the centre of mass energy

√
M2

ww for an HNL of
mass 150 GeV. The average curve represents the cross section derived from the square
amplitude with full massive vector boson polarisation sum rules, while the combined
cross section is the sum of all polarised cross sections.
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Figure A.2: Polarised cross sections of W ±W ± → `±`± scattering as decompositions
in the WW polarisations as Transversal ↔ σTT and Longitudinal ↔ σLL. The cross
sections are given as a function of the centre of mass energy

√
M2

ww for an HNL of mass
150 GeV.
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Figure A.3: Total cross section of pp → l+l+jj scattering as calculated in the effective
W approximation. The mixing angle V`N here is a function of the HNL mass as well,
such that |V 2

`NmN| = 1 eV ∼ mνe .

In this representation, it is easy to see that for large
√
M2

ww the longitudinal com-
ponents of the light and heavy mass state cancel so that the combined longitudinal
cross section vanishes. The transversal cross section of the heavy mass state vanishes
for large

√
M2

ww while that of the light mass state remains constant. Therefore, the
combined transversal cross section becomes asymptotically constant for large

√
M2

ww
as it approaches the value of the light mass state.

pp Level Cross Section

Figure A.3 shows the total cross section of pp → `±`±jj as calculated in the effective
W approximation. The underlying neutrino sector model is that of a single HNL
generating a light neutrino mass of 1 eV (see Section 2.1). We will not apply any
rescaling to these cross sections as

i. the differential cross sections of this model compared to the phenomenological
N1 are substantially different (compare N Fig. E.3 and N2 in Fig. E.4),

ii. the absolute value of this cross section would not change greatly — which is
the main point of this plot.

The relative differences between the individual contributions are analogous to those
of the W±W± → `±`± case (shown in Fig. 2.3). We see that also in the pp scattering
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case the full cross section (shown in blue) is always smaller than that of the light
neutrino contribution (dash-dotted green). The most significant difference occurs
for the single HNL case (dashed orange) for mN ∼ 101–102.5 GeV, where the curve
describes a dent before eventually falling for growing mN. This behaviour is due
to the transversally polarised cross section (which dominates for small mN) falling
quicker for growing mN than the longitudinally polarised cross section (dominant at
larger mN).7 Since the numerical values in the PDF of the transversally polarised
cross section are larger than that of the longitudinal equivalent, the regime in which
the dominant polarisation changes presents itself as a dent in the curve. The absolute
value of the cross section has decreased by about 4 orders of magnitude with respect
to the W±W± → `±`± case.
Given the scale of 10−23–10−21 fb of this cross section, there is no hope for detector
discovery — assuming a single N model reconciled with light neutrino mass scales —
in the foreseeable future.

B More on the Four Majorana State Model

Inverted hierarchy

In case of inverted hierarchy among the light neutrino mass states, the Casas-Ibarra
Parametrisation (see Eq. (2.20)) for two HNLs yields

V CI
`1 = i

U`1
√
mν1 cosω − U`2

√
mν2 sinω

√
mN1

V CI
`2 = i

U`1
√
mν1 sinω + U`2

√
mν2 cosω

√
mN2

.

(B.1)

Here we have assumed the third neutrino mass state to be massless. With ν-fit
data [125], this yields U2

e1mν1 = 33 meV and U2
e2mν2 = 12 meV. If we compare this to

U2
e2mν2 = 2.5 meV and U2

e3mν3 = 1.1 meV in the normal hierarchy case, we expect the
observables to be qualitatively the same, and the absolute scale being separated by a
factor of 332/2.52 = 175. This conversion factor stems from the fact that observables
scale as V 4 ∝ U4m2

ν .
Figure B.1 compares the differential cross sections derived for normal and inverted

hierarchy (NH and IH respectively) at the seesaw line (ω = 0i) and in the case of
strong enhancement (ω = 9i). We se, that the above naive scaling translates into

7For a brief discussion of this find Section 3.1.1.
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Figure B.1: Cross Section of W ±W ± → `±`± in case of normal (NH) and inverted (IH)
light neutrino mass state hierarchy with two HNLs with mass ratio rN. The mixing
angles V`N are given in the Casas-Ibarra parametrisation with ω as indicated. The
centre of mass energy is 490 TeV. In case ω = 9i, the νs curve is orders of magnitude
below the combined curves, and was left out for illustration purposes.

the observables, where all curves in the IH values are larger by about a factor of
∼ 175, while the relative differences within the plots are the same in very good ap-
proximation. Importantly, in the large Imω limit, relevant for collider searches, only
the absolute scale changes with Imω, while the qualitative details of the differential
cross section remain the same (see Fig. E.6). In this limit, the cross section scales
with cosh(2 Imω) ' 1

2 exp(2 Imω), so that the IH case can be recovered from the NH
by appropriate rescaling

ImωNH ' ImωIH + 1
2 log(175) = ImωIH + 1.1 . (B.2)

pp Level Cross Section

The Figures in this section show the pp → `±`±jj cross section in a neutrino model
where light neutrino masses are generated as perturbation of an HNL internal sym-
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Figure B.2: Cross Section of pp → `±`±jj as calculated in the effective W approximation
propagated by two HNLs with mass ratio rN. The mixing angles V`N are given in
the Casas-Ibarra parametrisation with ω as indicated. The centre of mass energy is√

s = 13 TeV. In case ω = 0 (ω = 9i), the NI curves (νs curve) are orders of magnitude
below the combined curves, and were left out for illustration purposes.

metry (see Section 2.3). In this section we will also not include any rescaling of the
EWA results, due to analogous arguments presented in Appendix A.

Figure B.2 compares the cross section as a function of the lighter HNL mass mN

for different enhancement factors Imω. As in the WW case, for no enhancement
the cross section is always dominated by the light neutrino contributions (Fig. B.2a).
Here, the combined cross section converges with the light state cross section for very
heavy Ns from below.
In the case of strong enhancement (Figs. B.2c and B.2d), the combined cross section
is dominated by the heavy mass state contributions for significant parts of the shown
mN-range. For all shown mass ratios rN we find that the combined cross section
lies above the light mass state line with an upper limit determined by the heavy
mass states, which is reached by highly hierarchical HNLs (rN ∼ 10). As can be
seen explicitly in Fig. B.2c, for any ω there exists a critical mass mN, where the
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Figure B.3: Cross Section of pp → `±`±jj as calculated in the effective W approximation
propagated by two HNLs with mass ratio rN. The mixing angles V`N are given in the
Casas-Ibarra parametrisation with ω = 15i. The centre of mass energy is

√
s = 13 TeV.

heavy mass state contribution falls below the light mass states’. For a constant ω,
the cross section will consequently always converge with the light mass state line
for very mν . In case of light enhancement (Fig. B.2b) we note that the combined
cross section lies above the single HNL case (N1,2) and the light neutrino case (νs)
for mN1 = 35TeV , which is likely due to non-trivial cancellations between all four
Majorana states involved. However, due to this only happening for mixings at the
seesaw line, this curiosity is not relevant for the WBF process.

In Fig. B.3 we see the same cross section for an enhancement factor of Im(ω) = 15.
On the mN scales shown here, the plot looks exactly identical to Fig. B.2d, while the
absolute scale is about 10 orders of magnitude higher in the ω = 15i case.

All cases presented in Fig. B.2 have cross sections orders of magnitude below what
would be observable at the HL-LHC (L = 3 ab−1) or indeed at the FCC (L =
30 ab−1). Only a strongly enhanced and sufficiently hierarchical HNL pair in the
Casas-Ibarra parametrisation (see Fig. B.3) shows detection prospects. However, as
described in Section 2.3, in this limit we enter the regime of the qDl approximation,
the analysis of which is presented in Chapter 3.
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C Lepton Flavour Violating Amplitudes

As highlighted in this work, lepton number conserving (LNC) but lepton flavour
violating (LFV) — unlike lepton number violating (LNV) — processes do not suffer
form an intrinsic amplitude suppression. The LFV case, corresponding to the LNV
process W±W± → `±`±, would be W±W∓ → `±`′∓. We will briefly present the
argument in the following.

Case of a Single Heavy Neutral Lepton

For a single HNL, and single light mass state, the LNC current analog to Jαβ in
Section 2.1 is

Kαβ
(
p,m2

)
= γαPL

/p+m

p2 −m2γ
βPL

=
γα/pγβPL

p2 −m2 .

(C.1)

Which for LFV in the scenario including the neutrino with mass −V`NV`′NmN be-
comes
V`NV

∗
`′NK

αβ
(
/p,mN

)
+Kαβ

(
/p,−V`NV`′NmN

)
= γα /p

m2
N
γβPL

 V`NV
∗

`′N

1 −
(

p
mN

)2 − 1
1 −

(
V`NV ∗

`′N
p

mN

)2


= γα /p

m2
N
γβPL

−1 + V`NV
∗

`′N

1 −
(

p
mN

)2

+ O

(V 2
(
p

mN

)2
)2
 .
(C.2)

To first order, such a process is, thus, independent of even the mixing angle, as the
numerator of the light neutrino contribution is not suppressed by the light neutrino
mass. An HNL around p2 ' m2

N could become the dominant contribution to this
process. Furthermore, for an appropriate complex phase of π between V`N and V`′N,
the two terms in the last line of Eq. (C.2) add constructively. On the downside,
one cannot easily factor out the mixing angle — as commonly done in literature and
also in this work — due to non-trivial scaling with V V ′ (not necessarily clear order
between 0, 1, 2 in |M|2). It is important to note, that for very large p this expansion
breaks down, so that the amplitude does not grow indefinitely as Eq. (C.2) naively
suggests.
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Case of a Quasi-Dirac-Like Heavy Neutral Lepton Pair

In the case of a qDl HNL pair, the LNC current is

V`NV
∗

`′NK
αβ
(
/p,mN

)
+ V`NV

∗
`′N

rN
Kαβ

(
/p, rNmN

)

= γα /p

m2
N
γβPLV`NV

∗
`′N

 1(
p

mN

)2
− 1

+ 1

rN

((
p

mN

)2
− r2

N

)


→ isolated 1 HNL case, for rN � 1
→ 2 × isolated 1 HNL case, for rN ' 1.

(C.3)

Naively, this seems to suggest that in the Dirac-limit, LFV is allowed. However, it is
a well known fact that in this limit SM lepton flavour is conserved due to more subtle
cancellations. This can for example be derived by rewriting the seesaw Lagrangian
combining the degenerate HNL pair into Dirac particles (c.f. [144]). This means that
SM lepton flavour is conserved and deviations can be expected similarly to those in
the LNV case.

D Software Usage

The physical observables in this thesis were calculated using the following workflow.
The HeavyN package [145, 146] was used as an input for FeynRules [147]. The
underlying Lagrangian was then translated into the relevant Feynman diagrams by
the FeynArts Mathematica application and translated into an amplitude using the
FeynCalc [148–150] application. The consequent manipulations of the amplitude
were performed using Mathematica.

The reference cross sections for pp level rescaling were generated using the standard
HeavyN FeynRules UFO libraries for MadGraph5_aMC at NLO [151, 152].

The Feynman diagrams in this thesis were drawn using the Feynman Diagrams
with TikZ package [153].
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E Extra Plots

Suplementary Feynman Diagrams
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Figure E.1: Feynman diagrams of W ±W ± → `±`± in the mass basis at 1-loop order. Here
we have omitted trivial symmetry variations of the given diagrams. The fermion number
directionality on the black plain lines is implicit. Further, all Z-boson propagators can
also be mediated by a higgs.



Appendix E - Extra Plots 84

W+

W+

`+

`+

νL

νL

νR

Figure E.2: Feynman Diagram of the two same sign W -bosons to two same sign leptons
in the flavour basis to first order in V 2. The crosses mark an oscillation from standard
model neutrino to right handed heavy neutral lepton, where the coupling is the Dirac
mass (mD)`N.
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Figure E.3: Differential cross section of W ±W ± → `±`± scattering in the case of a single
HNL at a centre of mass energy of

√
M2

ww = 490 GeV and for HNL masses mN. The
mixing angle here is a function of the HNL mass as well, such that |V 2

`NmN| = 1 eV. For
further information see Section 2.1.
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Figure E.4: Total differential cross section of W ±W ± → `±`± scattering with qDl HNL
pair with mass ratio rN. at a centre of mass energy is 490 GeV. For further information
see Section 2.2.
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Figure E.5: Total differential cross section of W ±W ± → `±`± scattering, using Casas-
Ibarra parametrisation of the mixing angle in case of two HNLs with mass ratio rN
for different lighter masses mN1. Th centre of mass energy is 490 TeV. For further
information see Section 2.2.
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Figure E.6: Total differential cross section of W ±W ± → `±`± scattering, using Casas-
Ibarra parametrisation of the mixing angle in case of two HNLs with mass ratio rN for
different Casas-Ibarra parameters Im(ω). The lighter HNL mass mN1 = 150 GeV, and
centre of mass energy 490 TeV. For further information see Section 2.2.
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Figure E.7: Polarised cross sections of W ±W ± → `±`± scattering as decompositions in
the WW polarisations as Trans. ↔ σTT and Long. ↔ σLL. The cross sections are given
as a function of the centre of mass energy

√
M2

ww. The data is given for the lighter HNL
mass mN1 = 150 GeV (upper) and mN1 = 1500 GeV (lower) with the second HNL having
a mass according to the mass ratios rN.
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(h) rN = 100, √
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Figure E.8: Optimistic exclusion limits on the N1 parameters via VBF-mediated pp →
`±`±jj events in the model with two HNLs with mass ratio rN. The exclusion limits
are 95 % CL assuming zero background. In the upper (lower) plots, the centre of mass
energy is √

slhc = 13 TeV (√sfcc = 100 TeV) and the luminosity 3 ab−1 (30 ab−1).
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