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1 Abstract

Fault-tolerant quantum computing requires fast high-fidelity gates.
Additionally, these gates should be insensitive to the dominating
fluctuations of the physical system, thereby exhibiting robustness.
Finding controls that realize all of this is the topic of Quantum Opti-
mal Control and finding solutions to these problem remain elusive.
This thesis concerns itself with finding approximate solutions through
the use of sophisticated numerical methods. The presented methods
are agnostic to the qubit platform and the results are exemplified by
considering a superconducting qubit with multiple control lines. To
faithfully represent the quantum system numerically a large number
of basis states (∼ 300) is required. The dynamics is simulated using
adaptive algorithms that contain the error to a specified tolerance.
The gradient-based optimization algorithm BFGS is employed and the
derivatives of the objective function are efficiently calculated using
the continuous adjoint method. Using this prescription both fast
and high-fidelity gates are realized in simulation for different gate
schemes. Problem formulations that promote robust controls that
are insensitive to slowly varying offsets in the model parameters are
treated by two different methods, the most efficient of which relies on
a derived second order adjoint method. We find a robust X-gate that
is insensitive to the specific value of the external flux, which display
an infidelity below 3 · 10−5 over a range of 10−3Φ0 for the external
flux value.
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3 Introduction

3.1 Outline of the thesis

In section 3, we provide a reminder of what quantum mechanics
is and how it can be used for computation. This includes a brief
overview of a handful the qubit platforms along with their respective
challenges.

In section 4, superconducting qubits are presented more in depth.
We explain how superconducting circuits form the Hamiltonian of
a quantum system, and what the essential ideas are.This is capped
off with a look into a subset of the possible superconducting qubits,
namely the flux-qubit and its variations, with a final presentation of
the superconducting qubit that is used in the rest of the thesis.

In section 5, we look into how quantum systems can be simulated
in relation to the thesis topic. The essential aspects are choosing a
basis for the representation and how to integrate the Schrödinger
equation, both of which are discussed.

In section 6 we will describe what optimal control is and how it
can be applied in the context of quantum dynamics. An overview of
different definitions for the loss functions and pulse parametrizations
is given and discussed. This is followed by an introduction to robust
optimal control.

In section 7 the adjoint method is introduced. The optimizers
used in this project are gradient based, and the adjoint method is the
method for calculating gradients that is employed in this thesis. This
method is extended to calculating second order derivatives and this
is used in order to find robust solutions.

In section 8 the results are summarized and discussed, followed by
an outlook into how these results can be realized in physical qubits.

3.2 Quantum Mechanics

Classically an object can be described by its position r⃗ and its momen-
tum p⃗ and other properties such as mass m, charge and so on. Both r⃗
and p⃗ are usually parametrized wrt. the ever forward-propagating
variable, time t. The rate of change in the position and the momentum
is given by:

˙⃗r =
1
m

p⃗ and ˙⃗p = F⃗ (3.1)

5



CHAPTER 3. INTRODUCTION 6

where F is the force on the object in accordance with Newton’s second
law of motion. When considering conservative forces F⃗ can be written
as the gradient to a scalar function, denoted the potential energy
function F⃗ = −∇V (⃗r). These dynamical laws can be rewritten in
different ways, one of which is the Hamilton formalism [1]. Withing
this framework, the dynamics are governed by the Hamiltonian which
is the sum of the kinetic and potential energy:

H(⃗q, p⃗) = ∑
i

p2
i

2m
+ V(qi) (3.2)

The qi and pi are generalized coordinates, but can be regarded as
momentum and position in the Newton sense. Then one can define
the phase-space as the space spanned by the generalized coordinates.
The point is that the object can then be said to exist at a point in phase-
space and the dynamics are modelled as a flow given by Hamiltons
equations. An example is that of the pendulum, which is visualized
in figure 3.1

Figure 3.1: The dynamics of the
planar pendulum, visualized in
phase-space, with q and p be-
ing the x and y axis, respectively.
The figure is from [2]. The vec-
tor field of the flow is given by
Hamiltons equations:

q̇ ∝ p and ṗ ∝ sin q

To summarize, classical mechanics can quite generally be mod-
elled as a point in phase-space that flows about, where the flow
is determined by the kinetic plus the potential energy of the sys-
tem. Quantum mechanics is not much different and this will now be
fleshed out.

In Quantum Mechanics, an object is described by its quantum
state, which in Dirac notation looks like |ψ⟩ and are called kets. This
state exists in what is called Hilbert space, which is a vector space
with an inner product. The dynamics of these states are governed by
Schrödingers equation [3]:

ih̄
d
dt
|ψ⟩ = Ĥ|ψ⟩ (3.3)

Ĥ is the hermitian operator associated with the energy of the system,
ie. the Hamiltonian.1 Mathematically, once you have a vector space, 1 The " ˆ " (hat) denotes that it is an

operator.you also have a dual space which itself is a vector space. In Dirac
notation these are referred to as ⟨ψ| and are called bras. The inner
product is then simply a "bracket" ⟨ψ|ψ⟩ > 0 (except for the zero
vector) and can be regarded as the length of the state |ψ⟩. We can
relate these two spaces through the use of the "adjoint": (|ψ⟩)† = ⟨ψ|.
Hermiticity is then defined as Ĥ† = Ĥ. The fact that Ĥ is hermitian
means that the evolution is unitary. Unitarity means that Û† = Û−1,
which in turn means that the "length" of the state remains unchanged:

d
dt
⟨ψ(t)|ψ(t)⟩ = 0 (3.4)

Figure 3.2: Dynamics in Quan-
tum Mechanics are thought of
as rotations in Hilbert which for
a 2-dimensional Hilbert space
can be visualized as a trajectory
on the sphere. Figure from [4].

Already, one can understand how a quantum mechanical state can
be regarded as a vector, in the appropriate Hilbert space, and that
the dynamics are reduced to rotations within this space. For a two-
dimensional Hilbert space this can be visualized on the Bloch-sphere,
which is described in section 3.3 and visualized for a generic example
in figure 3.2 and for a specific example in fig. 8.5.
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Continuing the comparison of classical and quantum mechanics,
in order for Ĥ(⃗q, p⃗) to be an operator, the conjugate variables qi and
pi themselves need to be promoted to operators. This is done by pro-
moting the poisson bracket2, where {qi, pj} = δij, to the commutator 2 { f , g} = ∑i

∂ f
∂qi

∂g
∂pi

− ∂g
∂pi

∂ f
∂qi

and multiplying by ih̄:

[q̂i, p̂j] = q̂i p̂j − p̂j q̂i = ih̄δij (3.5)

The Schrödinger equation being a linear differential equation also
means that any superposition of solutions is also a solution. This has
far reaching consequences and in quantum computation it is used to
parallelize computations in what is denoted Quantum Parallelism [5].
This concept will be explored further in section 3.4. Another important
quantum phenomena with no classical counterpart is entanglement,
which will be discussed in section 3.4.3.

3.3 Two level quantum systems and the Bloch Sphere

Before qubits and quantum computation is introduced, we first need
to consider two level quantum systems, since a qubit is essentially
any 2-level quantum system. The two levels, which is denoted the
computational basis, can be a subspace of a larger Hilbert space with
Hamiltonian Ĥ. Written in terms of the two logical states |0⟩, |1⟩ the
effective Hamiltonian can be written in terms of Pauli-matrices, and
has the general form:(

⟨0|Ĥ|0⟩ ⟨0|Ĥ|1⟩
⟨1|Ĥ|0⟩ ⟨1|Ĥ|1⟩

)
= E0(t)1 + h̄w⃗(t) · σ⃗ (3.6)

Since any hermitian 2 × 2 matrix can be written as a linear combina-
tion of the pauli-matrices, with real coefficients. The pauli-matrices
written in the basis of the σz eigenstates, are:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
(3.7)

3.3.1 The Bloch sphere

Figure 3.3: Visualization of the
Bloch-sphere parametrized in
spherical coordinates. Figure
from [6].

The subscripts x, y and z are no coincidence since the operator3:

3 Here σ⃗ is a cartesian vector of opera-
tors and n̂ is a cartesian unit vector.

n̂ · σ⃗ with n̂ = sin θ cos ϕx̂ + sin θ sin ϕŷ + cos θẑ (3.8)

will have eigenstates (up to a choice of gauge or overall complex
phase):

|+⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ and |−⟩ = sin

θ

2
|0⟩ − eiϕ cos

θ

2
|1⟩
(3.9)

with eigenvalues +1 and −1 respectively. It is thus advantageous
to represent this state as a point on a unit sphere with the usual
spherical coordinates as defined in eq. 3.8
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Because now, as stated earlier, the time evolution of the state consist
of rotations around on this Bloch sphere. A rotation about the axis r̂
by an angle α can be written as:

Rr̂(α) = exp(−iαr̂ · σ⃗/2) = cos
α

2
1̂ + i⃗r · σ⃗ sin

α

2
(3.10)

3.3.2 Physical examples and Rabi-oscillation

It is instructive to consider a physical system which is already a two
level system. This could be a spin-½ particle in a magnetic field.
The Hamiltonian is of the form of eq. 3.6 (as it must be). The spin
operators are Si =

h̄
2 σ̂i and it is easy to show that they would have

the following equations of motion:

˙⃗S = ω⃗(t)× S⃗ (3.11)

In accordance with the well known Larmor precession of spin in a
magnetic field [7]. That is, the spin precess about the vector w⃗(t)
which can be directly translated to rotations of the state on the Bloch
sphere.

A simple model for generating unitary evolution on the Bloch-
sphere is to consider a two-level system with |1⟩ having the highest
energy and an operator coupling to an external oscillating pulse. Tt
could be spin coupling to a B-field or a dipole-moment coupling to
an electric field. Let us assume the latter, and that the moment and
the field is parallel, such that:

Ĥ = Ĥ0 − d⃗ · E⃗(t) = Ĥ0 − d̂E0 cos(ω0t + ϕ) (3.12)

If, in the computational basis, the operator d̂ assumes the form:(
⟨0|d̂|0⟩ ⟨0|d̂|1⟩
⟨1|d̂|0⟩ ⟨1|d̂|1⟩

)
= dxσx + dyσy (3.13)

where both dx and dy are real and ⟨1|d̂|0⟩ = dx + idy

The two-level Hamiltonian can be written as:

H =
h̄
2

(
−ωq Ω̃∗

(
ei(ω0t+ϕ) + e−i(ω0tϕ)

)
C.C. ωq

)
(3.14)

Where Ω̃ = −E0(dx + idy) = −E0|d|eiφ

It is then advantageous to go into the rotating frame of the σz-basis
but with the frequency of the pulse, namely:

|ψ̃⟩ = U†|ψ⟩ = e−i ω0
2 tσz |ψ⟩ (3.15)

Such that in this rotating frame, the Schrödinger equation is:

ih̄
d
dt
|ψ̃⟩ = h̄

2

(
−(ωq − ω0) Ω̃∗

(
ei(2ω0t+ϕ) + e−iϕ

)
C.C. ωq − ω0

)
|ψ̃⟩ (3.16)
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With the rotating-wave approximation, ie. discarding the fast-oscillating
e±i2ω0t terms, the above Hamiltonian becomes of the form:

H̃ ≈ h̄
2

−E0|d| cos(ϕ + φ)

−E0|d| sin(ϕ + φ)

−(ωq − ω0)

 · σ⃗ (3.17)

So the computational state rotates around this vector, such that any
simple unitary evolution is possible, and is given by the applied
electric-field. With no detuning (ω0 = ωq) the direction of the vector
in the xy-plane is determined by the phase of the matrix element of
the coupling operator and the phase of the pulse. In the case of zero
detuning it is also easy to show that:

|⟨0|0(t)⟩|2 = cos2
(

E0|d|
2

t
)

(3.18)

Such that for a so called π-pulse, the state |0(t)⟩ will transition to the
state |1⟩. The relation between the amplitude of the pulse E0 and the
time of the pulse T is E0 = π

|d|T , or rather, that the area under the
envelope function of the pulse integrates to π

|d| during the time of the
pulse. [5] [8]
It is also clear that this methodology breaks-down if there is no
overlap of the two states, ie. |d| ≪ 1, in that case one can make use of
intermediate states. [9]

With this brief description of two level quantum systems and
unitary evolution thereof, it is now possible to consider how these
systems may be used for computation. This will be presented in the
following section.

3.4 Quantum Computation

A classical computer stores information in bits which can be in one
of two states, 0 or 1. These bits can be manipulated by logical gates.
Gates act on one or more bits and produce a single output, an example
could be the NOT-gate which simply flips the bit 0/1 → 1/0. All
classical programmable computation consists of applying gates on
bits.

Quantum digital computation4 is not much different in that it also 4 As opposed to analog computing
which will not be considered. For an
example see [10]

stores information in what is now called qubits, and apply gates on
these qubits in an effort to achieve universal quantum computing
power. Qubits are build from any two orthogonal quantum states.
These states can be picked out from a zoo of states or they could
simply be the two lowest lying states of some Hamiltonian. Different
qubit platforms will be discussed in section 3.4.5. Applying a gate
on one or more qubits consists of engineering the hamiltonians such
that the resulting unitary evolution resembles the wanted logical gate.
Consider eq. the pi-pulse with no detuning in section 3.3.2 if the
phases are zero the unitary evolution will be:

exp(iπσx/2) = −iσx ∝

(
0 1
1 0

)
(3.19)
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which is equivalent to the NOT-gate in quantum logic, or more col-
loquially the X-gate. In general, the unitary evolution U(t) will not
match the target unitary gate Utarget exactly. A measure for how well
the two match is the gate fidelity, wich can be defined as [11]:

Fgate =
1
d2 |(U

†
targetU(Tgate))|2 (3.20)

where d is the dimensionality of the matrix representation and Tgate

is the gate time. This thesis concerns itself with realizing gates by
finding the appropriate control pulses that maximizes the match
between the unitary evolution and the desired gate.

In order to motivate the demand for a quantum computer the next
section will present and disucss the strengths of a quantum computer
compared to a classical computer.

3.4.1 Quantum Parallelism and readout

The differences between classical and quantum computation are in
large part due to the superposition principle. The classical memory
can only exist in one configuration of zeros and ones, whereas the
quantum memory can essentially exist in all configurations at once:

1
N

(|0, 0, . . . , 0⟩+ |1, 0, . . . , 0⟩+ . . . + |1, 1, . . . , 1⟩) (3.21)

or in any other linear combination thereof. Thus an algorithm can
in essence be cast on every classical input at once. This is denoted
quantum parallelism and it is one of the main reasons for the compu-
tational power of a quantum computer [5]. However, trouble arises
when one wants to readout the answer for each of these queries to the
algorithm, since measuring the quantum memory will collapse it to
only a single configuration. It would then seem that next to nothing
is gained, if it is necessary perform the computation many times in
order to get statistics enough to describe the measurements. This is
where the design of ingenious quantum algorithms become important.
Because it is possible to encode the solution through constructive in-
terference whilst suppressing the other results through destructive
interference [12]. What this exactly means is best described by an ex-
ample, eg. Grover’s algorithm, which will also highlight the strength
of quantum parallelism.

3.4.2 Example: Grover’s algorithm

Grover’s algorithm [13] is a database search algorithm. Consider
the problem of finding an entry x0 in an unsorted list of N = 2n

entries. Classically, half the list need to be examined on average
O(N/2). We will now show that Grover’s algorithm only requires
O(

√
N). Prepare the memory in an equal superposition of every

number which corresponds to indices of the database:

|ψ⟩ = 1√
2n

N

∑
x
|x⟩ (3.22)
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This can be done using the Hadamard gate:

|ψ⟩ = H
⊗

n|0⟩
⊗

n where H =
1√
2

(
1 1
1 1

)
(3.23)

and the resulting state is visualized in fig. 3.4 in a manner that makes
the following operations easy to understand. There are different ways
to do the following, but the simplified way is to say, that the database
is represented by the following unitary gate:

Ux0 = 1 − 2|x0⟩⟨x0| (3.24)

The only effect Ux0 has when applied to the |ψ⟩ state, is that the sign
of the |x0⟩ state, contained in the superposition of |ψ⟩, is flipped (as
seen in fig. 3.5). After the Ux0 operator has been applied, the Grover
operator is applied:5 5 Constructing this gate may seem

implausible since it contains the state
|ψ⟩, but it can be build out of O(log N)
elementary gates [5].

Uψ = 2|ψ⟩⟨ψ| − 1 (3.25)

This operator inverts all the coeffecients of |ψ⟩ around the mean value
as seen in fig. 3.6

Figure 3.4: Initialization of the
memory (this and subsequent
figures are from [14])

Figure 3.5: Flip the sign of the
coefficient of |x0⟩ in |ψ⟩

Figure 3.6: Inversion about the
mean.

In this manner the spectral weight in |ψ⟩ will accumulate around
|x0⟩ by applying the operator UψUx0 an appropriate amount of times.

(UψUx0)
k|ψ⟩ ≃ |x0⟩ (3.26)

The number of times these operators should be applied, denoted k,
can be found by the following. Write the state as:

|ψ⟩ =
√

N − 1√
N

(
1√

N − 1 ∑
x ̸=x0

|x⟩
)
+

1√
N
|x0⟩ (3.27)

= cos(ϕ)|x ̸= x0⟩+ sin(ϕ)|x0⟩ (3.28)

Where sin(ϕ) = 1/
√

N. This merits a geometrical representation
where |x ̸= x0⟩ is the x-axis unit vector and |x0⟩ is the y-axis unit
vector in a 2-dimensional cartesian coordinate system. The state |ψ⟩
starts out pointing almost parallel to the x-axis but at an angle ϕ

and we want it to end up pointing along the y-axis. Applying Ux0

reflects the state in the x-axis, and it can then be shown that applying
Uψ reflects the state about the original state |ψ⟩. So applying UψUx0

rotates the state by angle 2ϕ and applying it k times yields:

(UψUx0)
k|ψ⟩ = cos((2k + 1)ϕ)|x ̸= x0⟩+ sin((2k + 1)ϕ)|x0⟩ (3.29)

For large N the starting angle is ϕ ≃ 1/
√

N and the appropriate
amount of rotations is then approximately k ≃ π

4

√
N such that only

O(
√

N) "look ups" in the database is necessary. [12] [5]
However, if the state does not perfectly align with |x0⟩ there is a

finite chance that the algorithm returns the wrong answer. Therefore,
the classical algorithm should also be allowed to trade-off accuracy
with speed which is done in probabilistic algorithms. Often the quan-
tum advantage disappears once the quantum and classical algorithms
are put on equal footing [15], especially for the contemporary noisy-
intermediate scale quantum computers [16]. This only means that
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finding a problem that exhibit the possibility of a quantum advantage
remains non-trivial [17], while incentivizing the need for fault-tolerant
quantum computation and analog quantum simulators [18].

Nevertheless, other applications of quantum computers may be
mentioned, such as the algorithm due to Shor [19], which factorizes
primes in polynomial-time, rendering many contemporary encryption
schemes broken.

Of greater importance to the physicist and the life-sciences dealing
with the molecular level, is the possibility of simulating Quantum
systems on a quantum computer, which, even for modestly sized
systems is infeasible on classical computers.6 6 Of course under certain conditions,

approximations can be made and
simulation of quantum systems on
supercomputers remain an integral
part of drug design in industry [20].

The problem of simulating quantum systems arises due to the
sheer size of the Hilbert spaces. In many respects the Hilbert space is
infinite but can be confined to a relevant finite subspace. However,
still the Hilbert space grows exponentially in the number of degrees
of freedom, since the resulting Hilbert space is a product of the indi-
vidual Hilbert spaces. This means, that even just a quantum system
containing 100 two-level DoF would require a classical memory able
to contain a billion times the world’s total current digital data. 7 7 The collective amount of digital data

is on the order of Zettabytes (1021) [21]
whereas 100 two-level systems amount
to a Hilbert space with dimension
2100 = 10100/ log2 10 ≃ 1030

Whereas, with a quantum computer, this would simply require 100

logical qubits8.

8 As stated in [22]: "Logical qubit: a
redundantly encoded qubit in which
quantum errors can be identified
and corrected without corrupting the
encoded qubit."

However, it remains difficult to manipulate quantum systems to
the level necessary for realizing a universal quantum computer. This
is due to the other novel phenomena in quantum mechanics, namely
entanglement. Entanglement describes the fact that two seemingly in-
dividual quantum systems can only be precisely described, if they are
entangled, by a combination of both systems. For an entangled state,
the measurements in one system is correlated with measurements
in the other. The information about the state exists, loosely spoken,
between the two systems, such that only having access to one of the
systems yields you next to no information about the state, depending
on the degree of entanglement.

This leads to the paradoxical nature of creating qubits, in which
one wants to isolate the quantum system from the environment in
order to reduce it’s entanglement to the environment and limit the
resulting decoherence of the state. But at the same time the system
needs to be coupled to the outside world in order to manipulate the
qubit and make use of it. How coupling between the qubit and the
environment leads to decoherence of the qubit, is described more
precisely in the following section.

3.4.3 Density matrices

A quantum mechanical state that exists in a superposition of eigen-
states wrt. some operator, will still yield different results for the
corresponding observable, when prepared in the same initial state
before each measurement. This means that measurement results for a
single quantum system is already inherently probabilistic, and it is
not immediately clear how to talk about the measurement results of
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an ensemble of quantum systems.
The useful formalism for considering ensembles of quantum states

is through the use of density matrices. For density matrices ρ, the
trace is always equal to 1 and if the density matrix is diagonal, the
entries along the diagonal can be interpreted as the percentage of the
ensemble existing in the corresponding basis state.

So called pure states are when the whole ensemble consists of
the same state and in these cases there is no big difference between
using density matrices or state-vectors. However, for mixed states,
density matrices provide a superior description. An example of a
density matrix for a 2-state system could be an ensemble consisting
of 0 < p < 1 in the |0⟩ state and therefore 1 − p in the |1⟩ state, then:

ρ = p|0⟩⟨0|+ (1 − p)|1⟩⟨1| .
=

(
p 0
0 1 − p

)
(3.30)

In general a 2 × 2 density matrix can be described by a 3 dimensional
vector p⃗ with length | p⃗| ≤ 1

ρ =
1
2
(1 + p⃗ · σ⃗) (3.31)

That is to say, p⃗ can also be visualized together with the Bloch-sphere,
where pure states still exist at the surface, but now mixed states exist
in the bulk of the sphere, with the maximally mixed state existing at
the origin with | p⃗| = 0

Density matrices also work well for describing entangled states
and the decoherence it might entail. Consider eg. the entangled state:

|Ψ+⟩ = 1√
2
(|0⟩qubit ⊗ |1⟩environment + |1⟩qubit ⊗ |0⟩environment) (3.32)

It’s density matrix is found by:9 9 In the |00⟩, |01⟩, |10⟩, |11⟩ basis.

ρ = |Ψ+⟩⟨Ψ+| .
=


0 0 0 0
0 ½ ½ 0
0 ½ ½ 0
0 0 0 0

 (3.33)

It is then possible to reduce this representation to only the subsystem
that we can control. This is done in a sensible way, by tracing out the
environment. More concretely, we can reverse the product Hilbert
space into just the qubit Hilbert space, by doing a partial trace wrt.
the environment. 10 10

a b c d
e f g h
i j k l
m n o p

→
(

a + f c + h
i + n k + p

)

Example of how to trace out the
environment in eq. 3.33 using the
partial trace.

ρqubit = Trenvironmentρ
.
=

(
½ 0
0 ½

)
(3.34)

We see that by disregarding the correlation between the two systems,
because we only have control of one, we end up with a complete mix
of 50% |0⟩ states and 50% |1⟩ states. This is to showcase the fact that
entanglement with the environment is what causes decoherence. The
reason for tracing out the environment is because we do not control
it or atleast the part that would be described as being stochastic,
therefore one will also say noise is what decoheres the qubit.
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3.4.4 Noise and decoherence

The dynamics of a pure state is simply derived from the Schrödinger
equation, and is referred to as the Liouville-von Neumann equation:

ρ̇pure = − i
h̄
[H, ρpure] (3.35)

However, when tracing out the environment new terms are introduced
to the equations of motion and this is what accounts for decoherence
of the state. The equation of motion for such an open quantum
system, under suitable conditions such as markovianity11, is called 11 That is to say the probabilities of

something happening is not correlated
with the past.

the Lindblad master equation:

ρ̇ = − i
h̄
[H, ρ] + ∑

i

(
LiρL†

i −
1
2

(
L†

i Liρ + ρL†
i Li

))
(3.36)

where Li are so called jump operators [23]. In the Bloch-Redfield
picture of system noise, the decoherence can be thought of as the
result of two processes, relaxation and dephasing. Relaxation is decay
from the excited to the ground state and is due to so called transverse
noise that couples as σx and σy in the Hamiltonian of the qubit. Pure
dephasing comes from fluctuations in the qubit frequency and is due
to longitudinal noise that couples as σz in the Hamiltonian. In section
5.3 decoherence will be modeled, through the use of the following
jump operators:

Relaxation: L1 =
√

Γ1|0⟩⟨1| (3.37)

Pure dephasing: Lφ =
√

2Γφ|1⟩⟨1| (3.38)

For a derivation of jump operators from a microscopic model, see [24].
An example of a density matrix that describes the decoherence of a
qubit in the Bloch-Redfield model, is the following ρBR. If the system
start out in a pure state |ψ⟩ = α|0⟩+ β|1⟩ the ρBR density matrix is
written as:

ρBR(t) =

 1 +
(
|α|2 − 1

)
e−Γ1t αβ∗ei(ωq−ω0)te−

(
Γ1
2 +Γφ

)
t

α∗βe−i(ωq−ω0)te−
(

Γ1
2 +Γφ

)
t |β|2e−Γ1t


(3.39)

Where h̄ωq = E1 − E0 is the qubit frequency and ω0 is due to the
rotating frame as in 3.15. For sufficiently large times the system has
decayed to the |0⟩ state since excitations are ignored when working
at sufficiently low temperatures due to the suppressing Boltzmann
factor for the excitation rate:12 Γexcitation = exp(−h̄ωq/kBT)Γ1

12 However, in experiment, the pop-
ulace of the first excited state does
not follow Boltzmann statistics at low
enough temperature, where a mea-
sured residual population of around
1% is found [23][25]

The coherence time T2 is defined from the transverse decay function:

T2 =
1

Γ1
2 + Γφ

(3.40)

and is used as the metric of the lifetime of the qubit. T2 can be
measured from Hahn echo experiments which refocuses slow noise
whereas, if a Ramsey experiment is used, the coherence time is quoted
as T∗

2 which has no refocus such that T∗
2 ≤ T2 [26]. It should be noted
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that the transverse decay function may not only be of exponential
form. It is dependent of the noise spectra defined later in sec. 5.3,
such that for eg. 1/ f noise, the transverse decay function assumes a
gaussian form [27]:

e−
Γ1
2 te

−( t
Tφ,1/ f

)2

(3.41)

Nevertheless T2 and T∗
2 are found from fitting exponential decay

functions in the Hahn echo and Ramsey experiment respectively [27].
Relaxation is an irreversible error due to exchange of energy with

the environment, but in principle, pure dephasing is a coherent error.
Therefore, there exists procedures to combat the longitudinal noise
by sequentially applying pi-pulses, which is known as a CPMG pulse
sequence [28][29]. In general, combating pure dephasing is denoted
dynamical error suppression.

There can be multiple noise sources which would have their own
error rates Γ1 and Γφ and with possibly different noise spectra. Di-
agnosing and classifying the different error contributions is key for
developing good qubits since this can inform the material considera-
tions and qubit design when developing qubits. [27] [30] [31]

Having established some of the essential theory around qubits,
an overview of the different qubit platforms will be provided in the
following.

3.4.5 Brief overview of qubit platforms

The following is a brief discussion13 of de Leon et. al [30] in which 13 Only gate based quantum computers
are considered. An example of a mea-
surement based quantum computer
are those based on photonics [32]

they acknowledge 5 qubit platforms. A summary is given in figure 3.7.

Figure 3.7: This table is taken
from [30]. A collection of the
gate fidelities and coherence
times realized in experiment,
that is quoted in the source, can
be found in the appendix 10.1
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Superconducting qubits are the focus of this thesis even though
the methods, as will be apparent, extend to all qubit platforms. Meso-
scopic14 superconducting circuits give rise to quantum systems where 14 Mesoscopic refer to the intermediate

scale between microscopic (nanome-
ters) and macriscopic (millimeters).

the Hamiltonian is defined from the circuit elements, as shown in
sec. 4.1. The wavefunctions of the energy states are superpositions
of the flux in the system and thus the current in the system, or in
the conjugate picture, a superposition of the number of cooper-pairs
in the superconductors. The computational basis is usually the two
lowest lying energy states of the system. In order to stay in the
computational basis the energy difference to higher levels need to be
different. This necessitates so called non-linear circuit elements that
can provide an anharmonicity to the energy spectrum. This is usu-
ally done through Josephson junctions that add a cosine term to the
hamiltonian as opposed to the quadratic term for conventional induc-
tors. Gates are implemented by sending microwave pulses through
a capacitive coupling. Superconducting qubits are one of the most
mature platforms with up to 65 fully programmable qubits on one
chip [33] and the implementation of a distance 5 surface code15 [34]. 15 Surface codes refer to the paradigm

of encoding a logical qubit in a 2d
configuration of physical qubits, for
which error correction can be made.Quantum dots are confined quantum mechanical degrees of free-

dom. For gate-defined quantum dots the two-dimensional electron
gas of a semiconductor can be confined to potential wells defined
by the voltage in a series of electrodes. Electrons or holes will then
occupy the discrete energy levels that exist in the potential well. The
quantum mechanical degrees of freedom for this type of qubit is
generally either spin-type or charge-type. For charge-type the com-
putational states are the positional states of an electron in a double
quantum dot. However, due to strong coupling with environmental
noise these exhibit very short coherence times of ∼ 2ns [35]. For
spin-types the information is stored in the spin states of electrons
which can be separated by Zeeman-splitting. This in turn means the
gate-times are generally longer since spin flip is usually slow due
to the weak coupling [35]. However, effort have been made to make
more sophisticated qubit schemes by mixing the different degrees of
freedom.

Color centers refer to high purity crystals that host a single or
few-atom impurities, whose states can be interacted with optically.
The computational state typically consists of electron orbitals and spin
eigenstates of the impurity. The most widely studied system is the
nitrogen vacancy center in diamond, due to its high coherence time
of several milliseconds [36] [37]. Gates can be applied through mi-
crowave pulses allowing gate times similar to superconducting qubits.

Trapped ions are atomic ions held in place by dynamical elec-
tric fields. The computational basis consists of the electronic states
within each ion. Single qubit gates can thus be applied through lasers
whereas two-qubit gates involve mediating the interaction through
the motion of the ions. [38] [39] The conventional trapping geometry
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consists of four rods placed in 3D, trapping the ions between them.
However, 2D trapping geometries have been developed and would
allow for better scaling capabilities. [40]

Topological qubits are build from quasi-particles that have yet to
be experimentally verified unambiguously. However, the theoretical
predictions for a quantum device comprised of such a system are
quite promising. The quasi-particle are so called anyons that obey
non-abelian statistic that is neither bosonic nor fermionic. If done
correctly, the computational basis would be topologically protected
from local perturbations which would mean extremely high coherence
times. Likewise, the gate operations are implemented through the
use of the non-abelian statistics in what is called "braiding", and is
not victim to the same gate-infidelity sources as the other platforms,
hopefully leading to perfect fidelities that would enable fault-tolerant
quantum computation. A candidate for such an anyon is the Majorana
zero mode in topological superconductors. [41] [42] However, even
after extensive search no Majorana zero mode have conclusively been
observed [43][44], and topological quantum computing remain a
vision for now.

3.4.6 Measuring the qubit

To finally give an idea of how the qubit state is measured, an exam-
ple of readout within superconducting qubits is given. In fact, this
example is also related to how ion trap qubits can be measured. The
method is called dispersive readout and it relies on weakly-coupling
a resonator to the qubit. [27] That is, in the dispersive limit, where the
qubit frequency ωq and resonator frequency ωr is far from each other
compared to the coupling strength g, the qubit-resonator hamiltonian
can be written to second order in g/|ωq − ωr| and in the limit of only
a few photons in the resonator, it becomes:

Hdisp =

(
ωr +

g2

∆
σz

)(
a†a +

1
2

)
+

ωq + g2/∆
2

σz (3.42)

where ∆ = |ωq −ωr| is the qubit-resonator detuning. So the resonator
frequency is shifted by a so-called dispersive shift that is dependent
on the qubit state.16 Measuring the qubit then simply constitutes 16 Ie. ωr → ωr +

g2

∆ σz where σz
is the z-pauli matrix acting on the
computational basis of the qubit.

measuring at which of the two frequencies ωr ± g2/∆ the resonator
is resonant. This is the simplified version. There exists better ways
to do this, eg. information is kept in the phase of the resonator
probing signal, which can be mapped to a quantum trajectory of the
continuous measurement of the qubit state. [27] [45]



4 Superconducting Quantum Bits

The superconducting qubit platform is one of the more mature quan-
tum information processing platforms [30]. It utilizes mesoscopic
superconducting circuits as hosts for quantum states. The existence
of a quantum system at this intermediate scale as opposed to the
microscopic scale is due to the bosonic nature of the cooper pairs
which make up almost all of the electronic states in the superconduct-
ing phase.1 Similar macroscopic quantum behaviour is observed in 1 For Bose-Einstein statistics a conden-

sate phase appears below some critical
temperature TC with a fractional
occupation of 1 − ( T

TC
)3/2 [46]

superfluids and bosonic encoded qubits, which encode information
in the electromagnetic modes of a 3D microwave cavity [22]. The
hamiltonian that governs the dynamics of the resulting quantum sys-
tem of the superconducting circuit is defined by the circuit elements.
These can be engineered and tuned to create different energy spectra
and matrix elements, thus these systems, as many other systems, are
referred to as artificial atoms.

4.1 Circuit quantum electrodynamics

4.1.1 Quantization of electronic circuits

Following [47] and [48] the general procedure for quantizing elec-
tronic circuits will now be introduced.

An electric circuit is schematically defined by branches with dif-
ferent circuit elements which are joined together at nodes in a closed
form as seen in figure 4.1 (b). A branch is characterized by the current
running through it Ib(t) and the voltage across it Vb(t) (see fig. 4.1
(a).

(a) (b)

Figure 4.1: (a) Example of a
branch with a circuit element b
displaying the sign convention
of the voltage and current associ-
ated with the branch. (b) Exam-
ple of a generic circuit. Figures
from [47]

Circuit elements largely consists of dispersive and dissipative ele-
ments. Dissipative elements such as resistance will not be accounted
for here, which can be justified by only considering the mesoscopic
devices consisting of superconducting materials at sufficiently low
temperatures. However, dissipative elements can be included and
affect the fluctutations of the quantum degrees of freedom, through
the fluctuation-dissipation theorem [47].

Purely dispersive elements store energy in the electric and magnetic
fields. With the following definition of branch fluxes and branch

18
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charges:

Φb(t) =
∫ t

−∞
Vb(t′)dt′ (4.1)

Qb(t) =
∫ t

−∞
Ib(t′)dt′ (4.2)

one can talk about capacitive and inductive elements. A capacitive
(inductive) element is a dispersive element for which the voltage Vb(t)
(current Ib(t)) can be written solely in terms of Qb(t) (Φb(t)). The
energy associated to the two types of linear dispersive elements are
then:2 2 For examples of the diagrammatic

notation used for the linear capacitive
and inductive elements, see figure 4.2εC(t) =

∫ t

−∞
V(t′)I(t′)dt′ =

1
2C

(Q(t)− Qoffset)
2 (4.3)

εL(t) =
1

2L
(Φ(t)− Φoffset)

2 (4.4)

Figure 4.2: Examples of disper-
sive circuit elements encoun-
tered in this thesis. From left
to right is the capacitor, induc-
tor and the Josephson junction
which is first introduced in sec-
tion 4.2

The offsets are included for generality and arise from the fact that
the circuit elements are integrated in a circuit. The offsets are contin-
uous variables and may be due to applied external electromagnetic
fields or simply from coupling to environmental degrees of freedom
in which case they are considered noise terms.

If our goal is to find a Hamiltionian for the relevant degrees of free-
dom, which we can then quantize, we first have to find the Lagrangian
and then Legendre transform it into the Hamiltonian. In order to
choose phase-space variables for our Lagrangian, we recognize that if
we assume we only consider electronic circuits with linear capacitive
elements V = Q/C, we can rewrite eq. 4.3, through the use of eq. 4.1
as:

εC(t) =
C
2

Φ̇2(t) (4.5)

such that the flux can be regarded as the position variable with the
linear capacitive elements providing the kinetic terms.

However, when writing up the Lagrangian one must remember the
constraints set by Kirchoff’s laws. There exists procedures for writing
up the Lagrangian while satisfying Kirchoff’s laws, which in the case
of linear capacitive elements, is denoted the method of nodes [23].

However, for the circuits in this work, it’s enough to simply figure
out how to write the last variable in terms of the others, while satis-
fying Kirchoff’s laws. The law relevant for the circuits considered in
this thesis is the so called fluxoid quantization condition:

∑
b

Φb + Φext = Φ0k (4.6)

where Φ0 = h/2e is the flux quantum and k is an integer. That is,
the sum of the branch fluxes (Φb) plus the external flux (Φext) that is
enclosed by the loop of the branches, must together equal an integer
number of flux quantum.

After writing up the Lagrangian the Legendre transformation is
done by first defining the conjugate momentum:

qb =
dL
dΦ̇b

(4.7)
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with Poisson bracket value:

{Φn, qm} = ∑
i

∂Φn

∂Φi

∂qm

∂qi
− ∂Φn

∂qi

∂qm

∂Φi
= δnm (4.8)

which, once the conjugate variable pair is promoted to operators, is
changed to the commutation relation.

[Φ̂n, q̂m] = ih̄δnm (4.9)

The Hamiltonian is found by:

H = ∑
i

qiΦ̇i −L (4.10)

which is then quantized via eq. 4.9
As usual it can be advantageous to work with dimensionless variables,
such that:

ϕ̂ ≡ 2π

h/2e
Φ̂ =

2π

Φ0
Φ̂ (4.11)

n̂ ≡ q̂
2e

(4.12)

[ϕ̂, n̂] = i (4.13)

where e is the electron charge, such that n is the number of cooper
pairs and the flux is in terms of the reduced flux quantum Φ0/2π.
Generally Φ̂ play the role of position and q̂ the role of momentum.

The above introduction describe a general approach to the quantiza-
tion of electronic circuits. A simple example will now be considered.

4.1.2 The LC-circuit: a Quantum Harmonic Oscillator

A simple dispersive circuit is that of the LC-circuit which contain a
linear capacitance and a linear inductance (see fig. 4.3 (a)).
The Lagrangian for the LC-circuit is:

L = εC − εL =
C
2

Φ̇2 − Φ2

2L
(4.14)

which in a straightforward manner yields the quantized Hamiltonian:

H =
q̂2

2C
+

Φ̂2

2L
(4.15)

(a) (b)

Figure 4.3: (a) Schematic of an
LC-circuit from [48]. (b) The cor-
responding quantum mechani-
cal description, in this case a
Quantum Harmonic Oscillator.
Figure from [27]

This is reminiscent of the Quantum Harmonic Oscillator with
frequency ω = 1/

√
LC and mass C. It is a recurrent theme that the

capacitance is related to the inertia of the quantum mechanical system.
It is a well-known result that the QHO exhibit an energy spectra
with equal level spacing, as visualized in figure 4.3 (b). This has the
consequence that is it impossible to have a well-defined computational
basis, because any attempt at making transitions within this basis
would also drive any other transition. This is best quantified by the
anharmonicity αω = ω12 − ω01 = (E2 − E1 − (E1 − E0))/h̄ which in
the case of the LC-circuit is zero.

Therefore, it is of interest to consider a non-linear dispersive el-
ement which can induce different spacings between energy levels
and thus a finite anharmonicity. To this end, the Josephson junction
element will now be considered.
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4.2 The Josephson junction and the Transmon

4.2.1 The Josephson junction

A Josephson junction circuit element usually consists of a supercon-
ducting - insulator - superconducting interface. A difference in the
phases of the superconducting states is expressed as a tunneling of
cooper pairs across the insulating interface. A key property of a
Josephson junction is it’s Current-Phase-Relation (CPR) which can
take many forms depending on the physics of the junction [49]. For
this thesis, only junctions in the so-called ballistic limit are consid-
ered [50]. This is when the coherence length is much larger than the
junction length. In this case the relation between energy and phase
takes the form:

ε J = −∆ ∑
i

√
1 − Ti sin2(ϕ/2) (4.16)

where ∆ is the superconducting gap and Ti is the transmission coeffi-
cient of the i-th conduction channel. For insulators the transmissions
are small Ti ≪ 1 and the energy can be expanded [51]:

ε J ≃ −∆ ∑
i

(
1 − Ti

2
sin2(ϕ/2)

)
(4.17)

≃ −∆ ∑
i

Ti
4

cos(ϕ) + ∆ ∑
i

Ti
4
− ∆ ∑

i
1 (4.18)

The last two terms only provide a shift in the zero-point energy so
with the identification of the Josephson energy:

EJ =
∆
4 ∑

i
Ti (4.19)

The non-linear dispersive circuit element used in this thesis is:

ε J = −EJ cos
(

2π
Φ
Φ0

)
(4.20)

We will now consider how this circuit element may help introduce a
non-zero anharmonicity.

4.2.2 The Transmon

The simplest anharmonic circuit consists of a linear capacitor and a
Josephson junction. This is visualized schematically in figure 4.4 (a)
and the top node is referred to as a cooper pair island since it consists
of an isolated superconducting material. The quantization of this
circuit is rather straight forward and results in the Hamiltonian:

(a) (b)

Figure 4.4: (a) Schematic of a
cooper pair box with a tuneable
charge offset noffset [50]. (b) En-
ergy spectrum of the now anhar-
monic system [27]

H =
(q̂ − qoffset)

2

2C
− EJ cos

(
2π

Φ̂
Φ0

)
(4.21)

= 4EC(n̂ − noffset)
2 − EJ cos(ϕ̂) (4.22)

with EC = e2

2C . The charge offset noffset is a continuous variable
and can be thought of as consisting of two contributions noffset =
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nG + δn. A gate voltage can be applied by a capactive coupling to
the superconducting island, resulting in the tuneable nG = −CGVG

2e
contribution [50]. The δn comes from capacitive coupling to the
environment and should be regarded as a noise term.

The charge offset will affect the value of the energy levels as can
be seen in figure 4.5. The sensitivity of the energies on noffset is
also clearly dependent on EJ/EC. A larger ratio is interpretable as
a larger mass of the system which coincides with less sensitivity
to charge noise. This is important because as mentioned in sec-
tion 3.4.4, uncontrolled changes in the qubit frequency ω01 causes
dephasing. Therefore a large EJ/EC is desirable. However, the anhar-

Figure 4.5: The energy of the
three lowest lying states as a
function of the charge noffset for
different ratios of EJ/EC. A
high EJ/EC make the qubit in-
sensitive to charge noise. Figure
from [48]

monicity also decreases with the lowering of EC, namely αω ≃ −EC

[50], which would minimize the chances for successful qubit oper-
ations. Therefore there exists a trade-off between charge sensitivity
and anharmonicity, but as it turns out both can be accommodated if
20 ≤ EJ/EC ≪ 5 · 104 These considerations provide the distinction
between the first iterations of charge qubits EJ/EC ≤ 1 and the im-
provement, the Transmon qubit EJ/EC ∼ 100 [52] which has become
the workhorse of the superconducting qubit platform scene.

However, considerations towards protection against relaxation can
also be made. As will be stated more precisely in section 5.3, the T1

time is estimated by Fermi’s Golden rule and is thus loosely related to
the overlap between the first and excited state, which for the Transmon
is large, since the two states live in the same potential "valley". A
way to decrease this overlap would be to let these states live in two
distinct valleys, which is explored in the next section in the form of
the flux qubit.

4.3 The flux-qubit and its variations.

There exists many variations of qubits based on superconducting
circuits. They all rely on the Josephson circuit element to introduce
anharmonicity to have a well defined computational subspace. There
are thus two energy scales whos ratio help classify the different qubits,
namely the charging energy EC which may be due to a capacitor
or the Josephson junctions capacitance, and the Josephson energy
EJ . EC is inversely proportional to the "mass" of the system, such
that EJ/EC ≫ 1 usually means the system is insensitive to charge
noise as seen in section 4.2.2. The ratio EJ/EC distinguishes between
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three types of superconducting qubits [53]. The charge qubit3 with 3 The transmon, however, is an ex-
ample of a charge qubit with large
EJ /EC

EJ/EC < 1, the flux qubit with EJ/EC ∼ 100 and the phase qubit
with EJ/EC ∼ 106. Furthermore, charge and phase qubits generally
exhibit single-well potentials, while flux qubits exhibit double well
potentials. In order to realize the double well potential in a flux qubit
with a single Josephson junction a large inductance is needed. This
could necessitate a large loop size and unwanted sensitivity to flux
noise [53]. Instead, if the circuit consists of three Josephson junctions,
two with Josephson energy EJ and one with αEJ , the loop size can be
reduced while a double well potential is realized for α > 0.5. [54] [55]

Figure 4.6: The contours show
the potential landscape of the
PCQ. The wavefunction of the
ground state is colored in red
while the first excited state is
colored in blue. For this visu-
alization EJ/EC = 100

The persistent current qubit [56] (PCQ) is one such system, with
α = 0.8. The resulting potential is two-dimensional V(ϕ1, ϕ2) with
the double well being explicit along the ϕ = (ϕ1 − ϕ2)/2 mode, as
seen in fig. 4.6.

It can be hard to realize the large EJ/EC, necessary for charge
insensitivity, using Josephson junction capacitances alone since these
also produce larger sensitivity to flux noise [57].

Figure 4.7: Compared to the
PCQ, large Josephson junctions
have been discarded in favour of
a shunting capacitor on the αEJ

junction, which results in a light
θ mode. Additionally α = 0.4

The capactively shunted flux qubit [57] (CSFQ) circumvents this
by using small Josephson junctions and adding a large capacitor in
parallel with the αEJ Josephson junction, which is results in a heavy ϕ

mode and a light θ = (ϕ1 + ϕ2)/2 mode, as seen by the delocalization
in the θ direction in fig. 4.7. However, the CSFQ is operated at
α = 0.4 and is thus more reminiscent of the transmon but with larger
anharmonicity due to the approximately quartic potential.

4.3.1 The double-shunted flux qubit

The double shunted flux qubit (DSFQ) [58] is based on ideas from
both the PCQ and CSFQ. Both the ϕ and θ modes are made heavy by
having a large capacitance in parallel with the two EJ junctions, as
seen in fig. 4.8 (a). Furthermore, the α parameter is assumed tuneable,
which can be realized as described in section 4.3.2. Such that the
DSFQ can interpolate between the potentials of the PCQ and CSFQ.

The idea behind the DSFQ is that the states can live in a pro-
tected regime of α = 1, where the |0⟩ and the |1⟩ are localized away
from each other, realizing long T1 times, and once gates are to be
executed, they can be brought together by lowering the potential
barrier separating them by decreasing α. Following the procedure of

(a) (b)

Figure 4.8: (a) Schematic of the
DSFQ [58]. The tuneability of
α is discussed in section 4.3.2,
but here it is drawn as either a
SQUID or a SSmS junction. (b)
The potential landscape of the
DSFQ. It is reminiscent of the
PCQ but now the heavy modes
are due to shunting capacitors
instead of large Josephson ca-
pacitances.



CHAPTER 4. SUPERCONDUCTING QUANTUM BITS 24

4.1 with the assumption of small Josephson capacitances, yields the
Hamiltonian:4,5 4 The last term can be though of as

−αEJ cos ϕα, where ϕα is found from
the fluxoid quantization condition:
∑b ϕb + ϕext = 2πk = Φ1 + Φα −
Φ2 + ϕext. It is important that the signs
adhere to the convention set by the
circuit diagram.
5 For a derivation, see [48]

H = 4EC(n̂2
1 + n̂2

2)− EJ
(
cos ϕ̂1 + cos ϕ̂2 + α cos(ϕ̂1 − ϕ̂2 + ϕext)

)
(4.23)

The model values used throughout the thesis is a Jospehson energy of
EJ = 2πh̄ · 10GHz with EJ/EC = 100. The external flux ϕext = 2π Φext

Φ0

affect the asymmetry between the two valleys6, where an external 6 Think of it as a seesaw, where the
bottom of the potential valleys exist
at each of their end of the seesaw.
The qubit frequency is then largely
determined by the height difference
between the two ends of the seesaw.

flux of half a flux quantum is at the symmetry point. This means
the computational basis is degenerate and will shield the qubit from
dephasing, to first order. However, this is an artificial sweet spot
since the insensitivity is only realized at this specific point. Therefore,
the artificial sweet spot is avoided by choosing ϕext = 0.995π. For a
discussion of the coherence times of the DSFQ see section 5.3.

The control line for gate pulses consists of a small capacitive cou-
pling to the superconducting islands. Throughout this thesis, only a
single drive Hamiltonian of

Hd =
2eCd

C + Cd
Vd(t)n̂1 ≡ u(t)n̂1 (4.24)

was considered, in addition to the α(t) ∈ [0.5, 1] control line. But
nothing prevents the addition of an extra drive line coupling to n̂2,
however, for simplicity, this was not investigated. The effect of the
drive Hamiltonian on the system can be regarded as a change of the
origin in momentum space, since:

4ECn̂2
1 + u(t)n̂1 = 4EC

(
n̂1 +

u(t)
8EC

)2

− u2(t)
16E2

C
(4.25)

which results in shifts of the origin on the order of ∼ 0.2. This is to
say that, even when undergoing dynamics, the state remain in a part
of Hilbert space captured by the eigenstates of the n̂i operators with
eigenvalues ranging from ∼ −10 to ∼ 10.7 7 Where these numbers come from,

will be apparent in the next chapter
and when pulse values are encoun-
tered in fig. 8.1

The wavefunctions of the lowest lying energy states of eq. 4.23

are visualized in figure 4.9. The value of α have a large impact on
the energy eigenstates and the tuneability of this parameter is a key
aspect of the DSFQ. Potential ways of tuning the Josephson energy
will now be discussed.

4.3.2 Tuneable Josephson junction elements.

One way to achieve a tuneable EJ is through a circuit nicknamed the
"DC SQUID" [47]. It consists of a loop of two Josephson junctions,
tuned by an external flux ΦSQUID that threads the loop. The energy
of such a circuit element (while discarding the linear inductance of
the loop) is:

εSQUID = −EJ1 cos ϕ1 − EJ2 cos ϕ2 (4.26)

which can be rewritten as:

εSQUID = −EJΣ

√
cos2

(
ΦSQUID

2Φ0

)
+ d2 sin2

(
ΦSQUID

2Φ0

)
cos ϕ (4.27)
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Figure 4.9: Visualization of the
amplitude of the wavefunctions
of the nine lowest lying energy
states of the DSFQ eq. 4.23.
They are shown both in the rep-
resentation of the ϕ̂ eigenstates
and the n̂ eigenstates, denoted
the ϕ an nQ space respectively.
Also shown is the effect of the
α tuneable parameter on the po-
tential and the resulting eigen-
states. The domain of the ϕ

space is [−π, π] while for the
nQ space this is been restricted
to {−8,−7, . . . , 7, 8} which still
captures all the detail of the
states. See section 5.1 for a dis-
cussion on the choice of basis.

Where EJΣ = EJ1 +EJ2 , d =
EJ1−EJ2

EJΣ
and ϕ = (ϕ1 +ϕ2)/2− tan−1

(
d tan ΦSQUID

2Φ0

)
is the reparametrized mode of the junction. This device behaves as a
single Josephson junction but with a tuneable Josephson energy [59].

Note that using this approach for a tuneable EJ in eq. 4.23 would

result in Φext → Φext − tan−1
(

d tan ΦSQUID
2Φ0

)
. So when changing α

by changing ΦSQUID one should also take care to adjust Φext if it is
desired to stay at a fixed flux-bias.

Another approach is a Superconductor Semiconductor Supercon-
ductor (SSmS) Junction. For Josephson junctions with insulating layers
between the superconductors, eq. 4.20 describes well the energy-phase
relation of the junction, due to the occurence of only low-transmission
channels. For SSmS we may assume this is also the case, except now,
the transmission coefficients Ti of eq. 4.19 are tuneable through a
voltage applied to the junction [60]. The derivation of eq. 4.20 led to
an expression ε J ≃ −EJ cos ϕ + EJ such that the shift in the zero-point
energy may vary. However, even any time-dependent shift in energy
scale may be gauged away since the gauge |ψ⟩ → eiφ(t)|ψ⟩ brings a
−φ̇ term to the Hamiltonian which may cancel this change.

An SSmS junction therefore allows for gate tuneable Ti which leads
to a tuneable junction:

ε J = −∆
4 ∑

i
Ti cos ϕ (4.28)

This concludes the presentation of the theoretical considerations
behind the quantum system considered throughout the rest of the
thesis. In the following chapter the practical aspects of representing
and simulating a quantum system numerically, will be discussed.



5 Simulating Quantum Systems

5.1 Choice of Basis

The math of quantum mechanics relies largely on Linear Algebra,
this means that whenever we want to implement an operator or a
state into the computer, we first have to pick a basis. A basis is just
a set of orthonormal states that span your Hilbert space. They can
be time-dependent which amount to viewing the Hilbert space in
a rotating frame. The choice of basis have a large impact on the
computation time and possibly also on the accuracy of the simulation.

The different choices and approximations available, while not being
exhaustive, will now be discussed.

5.1.1 Canonical conjugate variables

The Hamiltonian can be written up as a function of two conjugate
variables, such as position and momentum. In the context of supercon-
ducting qubits the operators n̂ and ϕ̂ can be regarded as momentum
and position, respectively. They each have corresponding eigenstates,
which can be used as a basis. Using the n̂ eigenstates is denoted the
"charge basis" whereas utilizing the ϕ̂ eigenstates is called the "flux
basis". In order to implement these bases, the spectrum of possible
eigenvalues need to be discretized in some manner. When the Hamil-
tonian is periodic in the continuous variable ϕ, the charge counting
operator will have a discretized spectrum, with an eigenvalue spacing
given by 2π divided by the period. Therefore, in the context of eq.
4.23, the operator n̂ will take on integer values which are interpreted
as the number of cooper pairs on the corresponding island. Utilizing
the natural discretization of n̂ makes the charge basis a good choice
of basis for periodic Hamiltonians, since the representation will be
efficient in that a higher accuracy is reached with fewer number of
basis states as compared to the flux basis.

In the charge basis, the matrix representation for n̂ is simply a
diagonal matrix with the eigenvalues along the diagonal. These are
integers and we can define them in relation to the charge offset, such
that the domain is around 0. Sorted from lowest to highest this

26
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becomes:

n̂ .
=


−nmax

−nmax + 1
. . .

nmax

 ≡ Q (5.1)

It is then of interest to find the matrix representation of the operator

cos ϕ̂ =
1
2
(eiϕ̂ + e−iϕ̂) (5.2)

From almost any Quantum Mechanics textbook such as [3], we know
that:

⟨ϕ|n⟩ = 1√
2π

eiϕn (5.3)

the matrix elements are then evaluated as:

⟨m|e−iϕ̂|n⟩ = 1
2π

∫ π

−π
⟨m|e−iϕ̂|ϕ⟩⟨ϕ|n⟩dϕ =

1
2π

∫ π

−π
e−iϕ(m−n+1)dϕ = δm,n−1

(5.4)
such that we can define the matrix:

|m⟩⟨m|e−iϕ̂|n⟩⟨n| = δm,n−1|m⟩⟨n| .
=


0 1

. . . . . .
. . . 1

0

 ≡ A† (5.5)

A† is used to denote this matrix since the matrix is similar to a raising
operator.

Now it is possible to write the operators of the Hamilton in eq.
4.23 in a matrix representation of the charge basis. Because there are
two sets of canonical variables, the full Hilbert space is a product of
two Hilbert spaces, such that:

n̂2
1

.
= Q2 ⊗ 1 (5.6)

n̂2
2

.
= 1 ⊗ Q2 (5.7)

cos ϕ̂1
.
=

1
2

(
A ⊗ 1 + A† ⊗ 1

)
(5.8)

cos ϕ̂2
.
=

1
2

(
1 ⊗ A + 1 ⊗ A†

)
(5.9)

cos(ϕ̂1 − ϕ̂2 + ϕext) =
1
2

(
eiϕ1 e−iϕ2 eiϕext + e−iϕ1 eiϕ2 e−iϕext

)
(5.10)

.
=

1
2

(
eiϕext A ⊗ A† + e−iϕext A† ⊗ A

)
(5.11)

In the flux basis, the matrix representation of ϕ̂ is diagonal and
easily exponentiated. The n̂ is then proportional to the derivative wrt.
ϕ. This is approximated by finite differences such as:

f ′(xn) ≈
f (xn+1)− f (xn−1)

2∆x
+O(∆x2) (5.12)

f ′(xn) ≈ ± f (xn±1)− f (xn)

∆x
+O(∆x) (5.13)

f ′′(xn) ≈
f (xn+1)− 2 f (xn) + f (xn−1)

∆x2 +O(∆x2) (5.14)
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The reason for mentioning eq. 5.13 even though eq. 5.12 has better
scaling with ∆x is that the latter possess the caveat that it only com-
pare pairs of points within two different subdomains, that is to say eg.
the sequence {a, b, a, b, a, ...} would have a constant first derivative of
zero, even though that’s clearly not the case. So in some contexts, eq.
5.13 might be advantageous. However, using eq. 5.12 and 5.14 yields:

n̂ .
=

−i
2∆ϕ


0 1
−1 0 1

. . .
−1 0 1

−1 0

 (5.15)

n̂2 .
=

−1
∆ϕ2


−2 1
1 −2 1

. . .
1 −2 1

1 −2

 (5.16)

in the flux basis.

5.1.2 Instantaneous Basis

The Hamiltonian is readily written up in either the charge or the flux
basis, with the charge basis being the superior choice for periodic
potentials. As indicated in section1

4.3.1 a charge cutoff on the order of 1 Further evidence is provided in
appendix figure 10.1nmax ∼ 10 is sufficient to model the system to many significant digits,

which would equal a Hilbert space dimension of2 (2 · 10 + 1)2 = 441. 2 A single mode is in the represen-
tation of 2nmax + 1 basis states and
with two modes the Hilbert space
dimensionality becomes (2nmax + 1)2

Therefore, it may be that these bases are not optimal in the sense
that the dynamics may just as accurately be described by a smaller
Hilbert space, which would greatly improve the simulation efforts.
One informed guess of such a subset could be the eigenstates of the
Hamiltonian, where it may be that perhaps only the ∼ 30 lowest
lying energy states are necessary to model the system to just as
many significant digits. However, with the α parameter changing,
the eigenstates of the qubit Hamiltonian is also changing. Therefor,
a time dependent basis is needed to stay in the description spanned
by the energy eigenstates at each instant, denoted the instantaneous
basis.

This can be formulated as the following: In the context of the DSFQ
Hamiltonian eq. 4.23, the Hamiltonian consists of three terms:

H(t) = H0 + Hαα(t) + Vu(t) (5.17)

Which for brevity and generalizability can be collected into a term
defining the qubit H(t) = H0 + Hαα(t) and a (not necessarily small)
perturbation to this hamiltonian Vu(t). We can then define the collec-
tion of eigenstates that diagonalizes H(t) at the instant t as:

D(t) = U†(t)(H0 + Hαα(t))U(t) (5.18)
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Where D is diagonal with the energies as entrances. A basis change
of:

ψ̃ = U†(t)ψ (5.19)

then yields the Hamiltonian:

H̃ = D(t) + iU̇†(t)U(t) + U†(t)VU(t)u(t) (5.20)

Where the centrifugal term iU̇†U is acquired from the time dependent
basis not being an "inertial frame of reference".

It is worthwhile to clarify the construction of this representation. At
any instant t̃ the α(t) parameter takes the value α(t̃) = α̃. There exists
then a set of eigenstates for the Hamiltonian H0 + Hαα̃. Each column
of U(t̃) is equal to one of these eigenstates and the corresponding
entry in D(t̃) is equal to the eigenvalue (ie. the energy). So with
(H0 + Hαα̃)|nα̃⟩ = En,α̃|nα̃⟩ one may write:

U(t̃) =
(
|0α̃⟩ |1α̃⟩ . . . |Ncolumns

α̃ ⟩
)

(5.21)

Where each ket is a column vector and Ncolumns would be the dimen-
sionality of the Hilbert space representation. However, it remains
unclear how to utilize this in practice, the U̇†U term especially seems
a bit elusive, so in order to appreciate this description we have to
consider:

Ḋ =
d
dt
(U† HU) (5.22)

which yields the equations:

Ḋii = (U† ḢU)ii (5.23)

(U̇†U)ij =
(U†ḢU)ij

Dii − Djj
for i ̸= j (5.24)

This shifts the time dependence of the matrices onto the scalar func-
tion of H(t) namely α(t), since Ḣ = Hαα̇. Evidently, equations for the
diagonal of U̇†U are missing. This is due to the "Gauge Freedom"
when diagonalizing H, since each eigenvector (present as columns
in U) has a U (1) symmetry. It is possible to pick a gauge by specify-
ing U̇†U along the diagonal, as will now be derived. The idea is to
consider the consistency relation:

1̇ = 0 = ˙(U†U) = U̇†U + U†U̇ (5.25)

Everywhere but the diagonal this is automatically given from eq. 5.24

since the expression is anti-hermitian. However, along the diagonal,
it is clear that:

Re((U̇†U)ii) = 0 (5.26)

So the diagonal has to be imaginary, which also simply follows from
the statement that the centrifugal term present in the Hamiltonian
need be Hermitian. One choice is (U̇†U)nn = iω0 which would
effectively decrease the eigenvalues of D(t), ie. this constitutes going
to the rotating frame.3 3 It can also be understood as the

extension of the basis change in eq.
5.19 to U†(t) → eiω0tU†(t).

Another fine choice of gauge is simply (U̇†U)ii = 0.
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The idea is then that the NH × NH system4 of H can be described 4 NH refer to the dimension of the
Hilbert space representation such that
H is an NH by NH matrix.

in the instantenous basis by using only a subset N of eg. the lowest
lying instantaneous energy states. That is to say, the square matrix U
of eq. 5.21 becomes a rectangular matrix, by decreasing the number
of columns from NH to N such that the dimensionality of U is now
NH × N with N < NH

In practice this means that for a fixed dynamics of H(t), if we
want to simulate many different instants of u(t)5, it is only necessary 5 Ie. trying out many different pulses

on our qubit.to determine U(t) once. Then it is possible, using the basis change
discussed above, to simulate the dynamics using the small N × N
matrices rather than the large NH × NH matrices. It is examined later
whether this approach also keeps the accuracy of the simulation. It
could be that using this subset of Hilbert space is not sufficient at
describing the dynamics.

Finding U(t) is done either by using eq. 5.24 to evolve it forwards
in time. That is, using the notation of the Hadamard product6 we 6 This is simply element-wise matrix

multiplication, ie. (A ◦ B)ij = AijBijmay define Fij = 1/(Dii − Djj) with the choice of gauge Fii = 0, such
that:

U̇† = F ◦ (U† ḢU)U† (5.27)

which is to be solved for U(t).
In the case of discrete time, we may diagonalize H at each time

step and store the result. Care then needs to be taken to fix the gauge
and reorder the columns of U if a level crossing is traversed. However,
even for just a two-qubit system NH = (2nmax + 1)4 ∼ O(105) it
can already be cumbersome to find the rectangular U matrices with
dimension NH × N, even though it only has to be done once.
Furthermore, it is quite restrictive to only have to consider a single
instance of H(t). That is to say, so far it is only possible to specify
α(t) and then derive the rectangular matrices U(t) of which it is then
possible to efficiently simulate many different pulses. It would be
more useful if the savings could also be done for different α(t) which
includes only having to diagonalize big matrices once.
To this end, we can do the following. Define:

Uα(t) = U†(t)HαU(t) (5.28)

UV(t) = U†(t)VU(t) (5.29)

These are N × N matrices, with equations of motion:

U̇α/V = U̇†UUα/V − Uα/VU̇†U (5.30)

The diagonal part of the hamiltonian simply obey the equation of
motion:

Ḋii = (Uα)iiα̇(t) (5.31)

whereas the centrifugal term is simply7: 7 For the particular choice of gauge:
(U̇†U)ii = 0

U̇†U = F ◦ Uαα̇ (5.32)

That is, the system can be described in the instantaneous basis by N ×
N matrices alone, with only having to revert to the NH dimensions for
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the initial conditions. This is thus a promising avenue for simulating
eg. two-qubit gates in the context of quantum optimal control, where
you want to be able to simulate the system many times effectively.

However, the question remains, how large should N be in order
to accurately describe the dynamics, if N is not much smaller than
NH nothing is gained. To this end, different instants of α(t) and u(t)
for a single-qubit gate was simulated using this approach and the
dynamics were compared to a slow but accurate simulation using
the charge basis. The comparisons were made by comparing the
spectral weight as a function of time between the simulations made
by the charge basis and the instantaneous basis, but for all intents and
purposes, just think of it as the simulation error accrued when using
the instantaneous basis. The simulation error as a function of the
number of lowest lying energy states used (ie. the number of columns
of U) are shown in figure 5.1. Increasing N decreases the simulation
error, as it should. However, the two figures (a) and (b) are for two
different sets of scalar functions α(t) and u(t), which corresponds to
different dynamics. As it turns out, it is not simple to say whether
the lowest lying energy states properly describe the dynamics to the
wanted accuracy since this is dependent on the dynamics. For one
set of α(t) and u(t), N ∼ 30 yields a somewhat acceptable simulation
error of around 10−7 while yielding a massive speedup in simulation
time. However, for another set of dynamics, the simulation error
for N ∼ 30 would be on the order of 10−2. Therefore, in generality
this approach would not work since there is no clear bound on the
simulation error. It would be interesting to investigate the interplay
between the dynamics and the subset of the energy eigenstates that are
needed to describe the dynamics. However, the instantaneous basis
was no longer considered for this thesis as soon as it was apparent
that it does not capture the dynamics in general.

(a) (b)

Figure 5.1: The simulation error
accrued when using the instan-
taneous basis compared to the
charge basis as a function of N.
The dynamics for (a) was given
by αa(t) and ua(t) whereas for
(b) another set of dynamics was
simulated (αb(t) and ub(t)). It
is clear that the simulation er-
ror decreases when increasing
N but the simulation error is
also dependent on the dynam-
ics. The two points of increased
simulation error in (b) are from
simulations that returned error
messages and should be disre-
garded.

5.1.3 Shift in eigenvalues

The eigenvalues of any Hamiltonian which ends up being used in
the simulation can have a large impact on the simulation time. This
is because, loosely speaking, a large eigenvalue h̄ωfast will bring a
e−iωfastt contribution to the dynamics. This constitute fast oscillations
and therefore any "integration scheme" (as will be discussed in section
5.2) will have to sample the Schrödinger equation at many more points
compared to if the dynamics did not contain these fast oscillations.
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Therefore, it may be advantageous to shift the energy spectra of
the Hamiltonian by the usual transformation |ψ⟩ → eiω0t|ψ⟩. Good
choices for ω0 will either be the mean of the energies, ie. ω0 =

Ē/h̄ = 1
NH h̄ ∑i Ei or in the context of simulating the dynamics of a

computational basis, simply use ω0 = (E0 + E1)/(2h̄)
There is no reason not to use the rotating frame when simulating

the dynamics since this eases the simulation efforts and practically,
the implementation is simply H → H− h̄ω01

5.1.4 Learned representation

A different approach was also investigated when trying to find the
minimal basis that in general could accurately describe the dynamics.
As in the case of section 5.1.2, the approach that will be described
now, ended up not being able to describe the dynamics to the accu-
racy necessary for this thesis. However, the underlying idea seems
interesting and it is still worth including here.

The idea is, that if we know which parts of Hilbert space the
state will be contained in, we can sample these parts and then use
optimization techniques to find a fewer set of states that can account
for approximately all the spectral weight for each sample. The relevant
parts of Hilbert space was presumed to be described by the lowest
lying energy states of the Hamiltonian8: 8 Which in view of the conclusion of

section 5.1.2 is not the case.

H|n, α⟩ = (H0 + Hαα)|nα⟩ = En,α|nα⟩ (5.33)

where α is a scalar, just as before. The goal is to find a matrix
U(θ), parametrized by a set of parameters {θ}, which when used as
a projection operator over the subspace of interest, get as close as
possible to the identity. That is:9 9 This expressions assumes that U(θ) is

unitary.

Find θ such that U(θ)U†(θ)|nα⟩ ≃ |nα⟩ for n ∈ [1, . . . nmax] and α ∈ [0.5, 1]
(5.34)

The idea hinges on the dimensionality of U(θ) being NH × N with N
much smaller than NH , such that when eq. 5.17 is to be simulated
many times, the N-dimensional system10: 10 This whole construction is much like

the instantaneous basis of section 5.1.2,
but instead of analytically deriving
a set of basis states, we now employ
machine learning to find the "best"
basis states.

−i
d
dt
(U†(θ∗)|ψ⟩) = U†(θ∗)H(t)U(θ∗)(U†(θ∗)|ψ⟩) (5.35)

is much more effective to simulate and to approximately the same
accuracy (hopefully). The θ∗ is the solution of eq. 5.34.

The simplest approach for parametrizing U(θ) that was employed,
was to simply let the θ’s be the entrances of U.11 Unitarity is then

11 U =


θ00 θ01 . . . θ0N

θ10
. . .

...
. . .

θNH 0 θNH N


ensured by simply normalizing each column of U and then apply
the Gram-Schmidt orthogonalization procedure [61]. The projection
operator can also be defined as (U†(θ))−1U†(θ) where the pseudo-
inverse is used. This works out to yield the same results but the
second option is more readily implemented through eg. PyTorchs
linear algebra library12 while also being optimized for the ensuing 12 The "pseudo" in pseudo-inverse is

necessary because U is not square.
The python function employed was
torch.linalg.pinverse

backpropagation.
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Stated more clearly, equation 5.34 can be solved as an optimization
problem, as the following. Gather a "dataset" of the relevant wave-
functions that we want to represent, in this case {|nα⟩}. The objective
is, that these states, when described in terms of the basis defined by
U(θ)

|ψ̃n,α⟩ = (U†(θ))−1U†(θ)|nα⟩ (5.36)

remain the same.
Therefore, a suitable objective function, could be:13 13 Notice that the global phase survives

the projection, so it is not necessary to
make any considerations regarding the
gauge.

L = ∑
n,α

[Re(|ψ̃n,α⟩ − |nα⟩)]2 + [Im(|ψ̃n,α⟩ − |nα⟩)]2 (5.37)

The objective function eq. 5.37 simply describes how well the states
|nα⟩, sampled from the relevant parts of Hilbert space, survives the
transformation of eq. 5.36. If (U†(θ))−1U†(θ) is the identity over all
the different |nα⟩, this approach will have been successful and the
objective will have reached the global minimum L = 0

Any optimization technique can then be employed to find the θ∗

that minimizes L. To this end, U(θ) was implemented using the
python machine learning library PyTorch, such that the automatic
differentiation could be used for the gradient based optimizer, ADAM
(for a clarification of these terms, see section 6)

Such a minimization procedure was done with 30 basis states to
be learned, ie. N = 30, with the dataset consisting of the14 nmax = 19 14 nmax of eq. 5.34 not eq. 5.1

lowest lying energy states for 85 different α ranging from 0.5 to 1. So
the double-sum of eq. 5.37 consists of 19 · 85 = 1615 summands.15 15 Excluding the factor 2 from the real

part and the imaginary part.After the optimization terminated, the resulting infidelity, as mea-
sured by the missing spectral weight when projecting onto U†(θ∗),
can be seen in figure 5.2. The method does a perhaps surprisingly

Figure 5.2: Infidelity when pro-
jecting onto U†(θ∗) as a func-
tion of α, each line represents an
energy state, with orange being
the lowest and blue the highest
energy state. The discontinuities
in the plot stem from level cross-
ings. See figure 10.2 in the ap-
pendix for a visualization of the
learned basis states.good job, but the infidelities are too high for the ensuing simulations

to be accurate enough to the number of significant digits wanted for
this thesis. Therefore, no further work was done in this direction.
However, it does seem like a viable option in other contexts.

The takeaway of this section is that despite the efforts of finding
a non-trivial efficient and accurate representation, the charge basis
remain the most faithful representation. The charge basis is therefore
the necessary choice for the rest of the thesis since accurate simula-
tions are desired. The next section will treat the question of whether
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it is feasible to simulate the dynamics to the wanted accuracy in
a sufficiently short time such that the trial-and-error nature of the
optimization techniques remain unprohibited.

5.2 Integrating the Schrödinger equation

Integrating the Schrödinger equation means finding a solution to
the initial value problem defined by the generally time dependent
Hamiltonian. This can not be done in general and we revert to
numerical methods in order to approximate these solutions. In the
following two methods will be laid out and discussed. These may be
regarded as a discrete (Trotter) and a continuous method (ODESolver).

5.2.1 Trotter decomposition

Formally, the solution to Schrödingers equation can be written in
closed form, through the use of the time-ordering operator16 T . 16 T orders the operators according

to time while disregarding their
commutation relations: T A(t1)B(t2) =
B(t2)A(t1) for t1 < t2 and any A and B

(However, care should be made
of fermionic operators in second
quantization.)

The time evolution operator is then given by:

U (t) = T e−
i
h̄
∫ t

0 H(t′)dt′ (5.38)

Using the Lie-Trotter product formula [62], this can be written as:

U (t) = lim
N→∞

N

∏
n=0

e−
i
h̄ H( t

N n) t
N (5.39)

The idea is that if we go to high enough finite N the product will still
aptly describe the time evolution operator:

U (t) ≃
N

∏
n=0

e−
i
h̄ H( t

N n) t
N (5.40)

One way to view the approximation is that, it is a truncation
of the Baker-Campbell-Hausdorff formula (or more precisely the
Zassenhaus formula) [63]:

et(X+Y) = etXetYe−
t2
2 [X,Y]e

t3
6 (2[Y,[X,Y]]+[X,[X,Y]])eO(t4) (5.41)

This yields one avenue to estimate the size of N as is explored in
appendix 10.2.3 .

In practice the implementation of eq. 5.40 goes as the following.
The time axis is divvied up into N evenly spaced pieces t → tn =

∆tn. The time-dependent Hamiltonian is evaluated at each of the N
times and represented as some matrix H(∆tn) → Hn. Each of these
matrices are multiplied by −i∆t (with h̄ = 1) and then exponentiated
either analytically or using numerical methods for exponentiation of
matrices. A cumulative product of the resulting matrices is then done
in order to approximate the time-evolution operator at each time step,
ie:

U (∆tm) → Um =
m

∏
n=0

exp(−i∆tHn) (5.42)
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Most of the computational effort is spent exponentiating matrices and
doing matrix multiplication, the last of which can be done efficiently
on a Graphics Processing Unit (GPU).

The strength of this method is that it is readily implemented and
easily used for quantum optimal control17. That is because, as an 17 Quantum Optimal Control is de-

scribed later in section 6example, the python Machine Learning module Pytorch can handle
complex numbers and exponentiate matrices whilst being able to
calculate gradients of objective functions via backpropagation.

The trouble, however, lies in two complementary aspects related
to the hyperparameter N. The fact that N needs to be sufficiently
large for the simulation to converge necessitates a larger memory to
store the all function evaluations that are needed for the gradient
calculation, when done with backpropagation, as will be explained
in section 6.3. Furthermore, if each matrix exponentiation is approxi-
mated numerically, a large N means that errors will accumulate to a
too large degree when they are combined in eq. 5.42.18 18 This was at least the experience

when using the matrix exponentiation
methods implemented in Python. In
the progamming language Julia, the
functions included a parameter that
could tune the tolerance to zero. When
this was done the effect of a worse
simulation when increasing N was no
longer present.

So, a small N means a mathematically bad convergence whilst
a large N introduces computational errors and large computation
times. Ie. this is seemingly not the way to go for precise and efficient
simulations. This was at least the experience in the context of this
thesis, where the normalization of the state decreased on the percent
level when using the Pytorch implementation of matrix exponentials.

Therefore, the use of this method was abandoned and the following
method was adopted instead.

5.2.2 Ordinary Differential Equation Solver

Solving differential equations numerically is done throughout a wide
range of fields. It is thus a well-studied field and an extensive
overview will not be provided. Instead, some of the schemes em-
ployed in this thesis will be mentioned and some of the terminology
explained, with the general reference being to a standard textbook on
the matter [64].

The objective simply stated is to approximate the solution y(t) of:

ẏ = f (t, y) (5.43)

Given an initial value y(0) = y0. Most methods propagate y0 forward,
using f in order to obtain y(t) at specific time-steps. The distribu-
tion of these time-steps may be dense in order to approximate the
continuous solution.

The first distinction to be made is between Linear multistep meth-
ods and Runge-Kutta methods. Linear multistep methods takes into
consideration the computed solutions at previous time steps when
approximating the solution at the next time step. Runge-Kutta (RK)
methods use only the current time-step and f [65]. RK methods
denote a large family of numerical methods and is the focus of the
following overview. In general, an RK-method generates a solution at
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the next time step by the following:

y(tn+1) = y(tn) + ∆t
s

∑
i=1

biki(tn) (5.44)

where ∆t is the step-size, s is the "stage" of the scheme and the ki are
given by:

ki(tn) = f (tn + ci∆t, y(tn) + ∆t
s

∑
j=1

aijk j(tn)) (5.45)

The scheme-dependent parameters a, b and c can be summarized
using a Butcher tableau, see fig. 5.3. Figure 5.3: Generic example

of a Butcher Tableau which
organizes the coefficients of
the Runge-Kutta scheme. The
coefficients ci, aij and bi fully
characterize a Runge-Kutta
method [66]. (The figure is
from the same source)

If aij = 0 for i ≤ j then the scheme is explicit (ERK) since the k j in
that case only depend on the previous ki’s. If this is not the case the
scheme is said to be implicit (IRK), and one needs to somehow solve
for the k j’s.

However, if aij = 0 for i < j it is said to be diagonally implicit
(DIRK)19 and if aii are the same for all i it is said to be singly diago-

19 or semi-implicit

nally implicit (SDIRK).
DIRK has the advantage of separating the problem of solving

for the ki’s into sub-problems and with the extra condition that all
eigenvalues of the aij matrix is the same (SDIRK), a set of these sub-
problems can be solved at once with a single eigenvalue-decomposition
[67].

Lastly, if an otherwise SDIRK method has a11 = 0 it is an ex-
plicit first stage, singly diagonally implicit method (ESDIRK), which
seemingly allows for higher convergence order [68].

For differential equations there exists a notion of "stiffness",20 20 Note, stiffness is an attribute of
the relation between the ODE and
the numerical schemes that seek to
approximate its solutions. It has no
relation to the solution itself.

which has no unambiguous definition but was allegedly21 described

21 [65] state it in "Stiff differential
equations" but the quote is not found
in [69]. Nonetheless, the sentiment is
sound [70].

by those who coined the term [69] as:

"stiff equations are equations where certain implicit methods perform
better, usually tremendously better, than explicit ones."

The order of an RK scheme refer to the exponent p of the term
O(∆tp+1) that is "ignored" in the expression of eq. 5.44, that is, a p-th
order RK method is accurate to O(∆tp) in ∆t.22 22 Furthermore, it is a theorem that

s ≥ p and for p ≥ 5 this changes to
s > p. For a proof see p. 187-188 in
[64]

When the ODE has a natural decomposition f = f0 + f1 + . . .,
where each f j is more simple than f and some of the terms are only
mildly stiff, splitting methods can be employed. The idea is that this
allows one to utilize the efficiency of an explicit scheme while only
having to use an implicit method for calculating corrections [71].

Embedded methods refer to the case where two RK-methods are
employed,23 which almost share a Butcher tableau. This means, that 23 usually one of order p and the other

of order p + 1through not much additional computational effort, it is possible to
estimate the error and vary the "stepsize" (∆t) accordingly. These
methods are therefore also known as adaptive methods. When the
lower order RK-method only differ in the last row of the Butcher-
tableau, with entries denoted by b∗i , the estimated error is given by:

e(tn+1) = y(tn+1)− y∗(tn+1) = ∆t
s

∑
i=1

(bi − b∗i )ki(tn) (5.46)
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Lastly, stability can be defined through different tests usually la-
belled by a capital latter but these will not be described here. [72]
[64]

Hopefully, it should now make sense to say, that the algorithm
used in this thesis, is a composite algorithm consisting of the two
Runge-Kutta methods:

• Vern9 [73]: Verner’s “Most Efficient” 9/8 Runge-Kutta method
[74].

• KenCarp47 [75]: An A-L stable stiffly-accurate 4th order seven-
stage ESDIRK method with splitting.

For practical considerations made with regards to the implementa-
tions used in this thesis, see appendix 10.2.4.

So far, only dynamics described by the Schrödinger equation have
been considered. This is also used throughout the rest of the thesis,
but since this description is insufficient at describing decoherence of
the qubit, the following chapter will estimate the decoherence of the
qubit before reverting back to the closed quantum system description
given by the Schrödinger equation.

5.3 Decoherence estimation

5.3.1 First order analytic expression

As mentioned in section 3.4.4 our control of the system is not exact and
it will always exhibit some decoherence. To estimate this decoherence
the density matrix formalism is used. It is assumed that the dynamics
are of the form of eq. 3.36, with the jump operators given by eq. 3.37

and 3.38.
There exists numerical procedures to simulate the dynamics of such

an open system (examples include [76] [77] [78] [79]) but these will
not be considered here. Instead an analytical perturbative approach
will be mentioned, which have been used in [80]. The idea is to
expand ρ(t) in terms of Γt = t/Tdecoherence where Γ is related to the
error rates of the open system:

ρ = ρ(0) + ρ(1) + . . . (5.47)

Such that:
ρ(0) = |ψ(t)⟩⟨ψ(t)| (5.48)

is the ideal system whose dynamics are purely given by the Schrödinger
equation. The first order correction on the other hand follows:

dρ(1)

dt
= −i[H, ρ(1)(t)] + Lρ(0)(t) (5.49)

which, for a time-independent system, has the solution:

ρ(1)(t) = e−iHt
∫ t

0
eiHt′Lρ(0)(t′)e−iHt′dt′eiHt (5.50)
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The decrease in fidelity due to decoherence can then be estimated by:

1 − Fψ = 1 − Tr[ρ(0)ρ(t)] ≃ −Tr[ρ(0)(t)ρ(1)(t)] (5.51)

For simplicity a surrogate model was used, namely a two-dimensional
system undergoing a sine pulse in the rotating-wave approximation
akin to eq. 3.17. The idea was then to study the effect of the model
parameters on the decoherence, but as it turns out, the resulting
decoherence is agnostic to the model parameters. That is, with ρ(0)

given as an arbitrary pure state on the bloch sphere, ρ(1)(t) could be
found from eq. 5.50. Both terms were put into eq. 5.51 which was
then averaged over the whole Bloch sphere, resulting in:

1 − ⟨Fψ⟩Bloch-Sphere ≃
Γ1 + Γφ

3
t (5.52)

which is obviously only dependent on the error rates and not the
model parameters. It should be noted that the cancellation happens
when averaging over the Bloch-sphere. As it turns out, this is the
same result that is achieved from the Bloch-Redfield density matrix
(eq. 3.39):

1 − FBR = 1 − |α|2(1 − e−Γ1t)− 2|α|2|β|2e−Γ2t − (|α|4 + |β|4)e−Γ1t

(5.53)
Since by averaging over the Bloch-sphere and only considering to first
order, we again retrieve:

1 − ⟨FBR⟩Bloch-Sphere ≃
Γ1 + Γφ

3
t (5.54)

In order to estimate the decrease in fidelity due to decoherence, it
is therefore necessary to estimate the error rates Γ1 and Γφ. This is
done in the following.

5.3.2 Calculation of error rates

Following the derivation found in [48] [58] and the sources found
within. The relaxation rate for a noisy channel λ is given by:24 24 h̄ = 1 in the following.

Γλ
1 = |⟨0|∂λH|1⟩|2Sλ(|ωq|) (5.55)

where
Sλ(ω) =

∫ ∞

−∞
e−iωt⟨δλ(t)δλ(0)⟩dt (5.56)

is the power spectral function of the associated noise channel, de-
fined as the fourier transform of the auto-correlation function of the
stochastic variable δλ.

For the DSFQ (section 4.3.1), the channels that limit the coherence
are dephasing due to the external flux Φext and relaxation due to
dielectric loss, the last of which has the power spectral function:25 25 The values used are, for the loss

tangent tan δdiel = 2 · 10−7 and a
temperature of T = 20mK

Sdiel(ω) =
ω2 tan δdiel

4EC

[
coth

ω

2kBT
+ 1
]

(5.57)
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Since dielectric loss is due to the large capacitances, the relevant
matrix element is related to the two capacitively shunted modes, such
that:

Γdiel
1 = (|⟨0|ϕ1|1⟩|2 + |⟨0|ϕ2|1⟩|2)Sλ(|ωq|) (5.58)

The dephasing rate is given by: 26 26 The product of the infrared cutoff
and characteristic time used is ωirt =
2π · 10−6 and for the external flux
AΦext = 10−6Φ0

Γλ
φ =

√
2Aλ|∂λωq|| ln(ωirt)| (5.59)

where the derivative can be found by:

∂λωq = ⟨∂λH⟩1 − ⟨∂λH⟩0 (5.60)

Such that in the case of dephasing due to external flux noise in the
DSFQ:

∂Φext ωq = EJα
(
⟨sin(ϕ̂1 − ϕ̂1 + ϕext)⟩1 − ⟨sin(ϕ̂1 − ϕ̂1 + ϕext)⟩0

)
(5.61)

The resulting coherence times are shown in figure 5.4 (a).

(a) (b) (c)
Figure 5.4: (a) show the limit-
ing relaxation time Tdiel

1 and de-
phasing time TΦext

φ and the re-
sulting coherence time as func-
tion of α for ϕext = 0.995π. The
coherence time for a range of
ϕext can be found in (b) and
(c) show the "infidelity rate" de-
fined by eq. 5.52 as: Γ1+Γφ

3 , ie.
it is approximately the fidelity
decrease due to decoherence per
nanosecond.

Firstly, it is noted that the coherence time is quite small (< 1µs).
Secondly, regarding T1, it is clear that the qubit will be in a protected
regime when the barrier is up, with T1 increasing 3 orders of mag-
nitude compared to the single well potential regime. Unfortunately
however, this is outweighed by the increased dephasing due to in-
creased sensitivity to external flux variations. Efforts can be done to
try and decrease this susceptibility such as the "Gradiometric DSFQ"
in [58] or since dephasing is essentially a coherent error, dynamical
error suppression techniques could be employed. However, using
eq. 5.58 and the same model parameters, but for the Transmon qubit,
yielded a relaxation time of T1 ≃ 4.3 · 10−8s which is very much lower
than what is realized in experiments. So perhaps a too low value is
used for the loss tangent. At any rate, this indicates that the DSFQ
does in fact exhibit protected behaviour, and the quoted coherence
times are a lower bound at best. Furthermore, the coherence times
are also dependent on the value of the external flux as seen in fig. 5.4
(b) with ΓΦext

φ completely disappearing at exactly Φext = Φ0/2, but
this is due to eq. 5.59 being a first order result, so one would have to
go to second order to retrieve a finite dephasing time. Figure 5.4 (c)
display the "infidelity rate" which is defined by the expressions of the
earlier section, namely Γ1+Γφ

3 . For short times this can be regarded as
the decrease in fidelity per nanosecond experienced by the qubit due
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to the estimated error rates. This is to say, that in later sections when
fidelities are quoted to many significant digits this is contradictory
to the result shown here since anything beyond the third digit can
be discarded due to decoherence effects. However, as already men-
tioned, these error rates may be larger than what is to be expected in
experiment, and it assumed that it is safe to only consider a closed
quantum system for the rest of the thesis.

This concludes the simulation concerns of the thesis and the focus
will now shift on to how these considerations can be applied in an
Optimal Control setting in what is called Quantum Optimal Control.



6 Quantum Optimal Control

Optimal Control encompasses the problem of optimization over dy-
namical variables. [81] [82] It pertains to dynamical systems for which
it is possible to affect the evolution of the variable through control
functions. Optimal control concerns itself with finding the control
function that yields an evolution such that the dynamical variable
optimizes some objective function.

It is a branch of mathematics and is thus accompanied by a rich the-
ory pertaining to the existence and reach-ability of optimal solutions.
However, this thesis is more focused on the numerics and application
of the ideas behind optimal control in a specific example rather than
the general theorems of the theory. Therefore, only an overview of
the practical aspects that one should consider is provided.

The first step in optimization is to define the optimization problem.
This is done by defining the objective function, also called the critical
function or the loss function. Without loss of generality one can
choose such that the goal is always to minimize this function. The
next step consists of actually finding this minima, and this is where all
the trouble lies. Firstly, the loss landscape will be described and then
the methods of navigating this landscape in order to find a suitable
minimum are presented.

6.1 Loss functions

Within the context of Machine Learning, one generally makes the
distinction between regression and classification problems. The usual
appropriate loss functions for each are L1 or L2 norm for regression1, 1 This is also called the vector p-norm

and referes to |⃗x|p = (∑i |xi |p)1/p [83]while cross entropy or the area of the receiver operator curve, proves
useful for classification [84]. However, in the context of Quantum
Optimal Control (QOC), these are not directly applicable. Instead
measures of fidelity are used.

For example, if it is desired to transfer the ground state |ψ(0)⟩ =
|ψ0⟩ to the first excited state, one could seek to minimize the infidelity:

L(|ψ(T)⟩) = 1 − F = 1 − |⟨ψ1|ψ(T)⟩|2 (6.1)

At the same time, one could have two initial values and define the
loss for a transfer of the two lowest lying states to the other, similar
to an x-gate. Ie. with |ψ(0)(0)⟩ = |ψ0⟩, |ψ(1)(0)⟩ = |ψ1⟩, define:2 2 It should be noted that the term

swap-gate will be used throughout to
refer to a gate that minimizes this loss
and is not to be confused with the two
qubit SWAP-gate found in litterature
[85] 41
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Lswap({|ψ(0)(T)⟩, |ψ(1)(T)⟩}) = 1
2

(
2 − |⟨ψ1|ψ(0)(T)⟩|2 − |⟨ψ0|ψ(1)(T)⟩|2

)
(6.2)

In the picture of the Bloch-sphere, this will at best yield a π rotation
about an axis in the xy-plane and is independent of the gauge and
thereby the orientation of the axes of the Bloch-sphere. If one is
interested in a specific rotation-axis for a specified gauge, the gate-
infidelity can be defined as eq. 3.20, namely:

Lgate(U(T)|Utarget) = 1 − 1
22 |Tr(U†

TargetU(T))|2 (6.3)

Where U(t) is the time-evolution operator for the computational basis.
This loss seeks to provide a rotation axis that is aligned with the
direction of UTarget, however it cannot discern between the r̂ and −r̂
of eq. 3.10, ie. the sign of the rotation axis.3 3 If for some reason distinction be-

tween r̂ and −r̂ is desired, one could
seek inspiration from eq. 3.10 for
devising a suitable loss function.

It can also be advantageous to define loss functions that seek to
maximize or minimize the occupation of some part of the Hilbert
space during the evolution. Ie. the following can be used to minimize
the gate time of a swap gate:

1 − 1
2T

∫ T

0
(|⟨ψ1|ψ(0)(t)⟩|2 + |⟨ψ0|ψ(1)(t)⟩|2)dt (6.4)

Since it seeks to maximize the time spent the in transitioned state.
This is an example of an objective functional since it not only depends
on the state at the final time T but also at all intermediate times.

One can also minimize the occupation in higher energy levels, such
as to minimize the decoherence since higher energy levels usually
have shorter coherence times.

Lcontain(ψ(t)|{ψ f }) =
1
T

∫ T

0
∑
f∈F

|⟨ψ f |ψ(t)⟩|2dt (6.5)

Where F are the forbidden states. In most cases, the subset of Hilbert
space you want the state to be contained to is small, and the loss
function is better written in terms of these allowed states:

Lcontain(ψ(t)|{ψa}) = 1 − 1
T

∫ T

0
∑

a∈A
|⟨ψa|ψ(t)⟩|2dt (6.6)

In addition to these loss functions, it is possible to include soft
constraints on the controls by including the parameters of the controls
in the loss function. This is analogous to regularization in deep
learning literature. Examples found in litterature include minimizing
the first and the second derivative of the pulse and the integral of
the absolute square of the pulse [86] [9]. Hard constraints can be
made manifest by choosing a proper parametrization of the pulse that
enforces the constraint. Pulse parametrization is discussed in section
6.4.

Now, some of the gradient-based algorithms that exists for finding
the minimum of such loss functions will be described.
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6.2 Minimization procedures

Once a loss landscape is defined, the problem consists of finding the
global minimum. Except for convex problems, this is usually infea-
sible due to the curse of dimensionality, with which the parameter
space that needs to be searched grows exponentially with the number
of parameters. Therefore, for high-dimensional problems, one often
relies on good initialization of parameters and derivative-informed
minimization procedures, in order to find the best local minimum.

6.2.1 Gradient Descent

Gradient Descent (GD) is the simplest gradient-based minimization
algorithm. It simply updates the parameters by:

p⃗t+1 = p⃗t − η∇L( p⃗t) (6.7)

where η is the learning-rate or stepsize, which doesn’t have to be con-
stant (see section 6.2.3). With its simplicity comes a lot of drawbacks,
such as slow convergence, stagnation in the presence of the numer-
ous saddle-points [87] and ultimately no ability to escape even very
sub-optimal local minima. The last point is mildly mitigated for prob-
lems where it is possible to partition the loss L into a sum of terms,
where an update is made for each term, separately. This is denoted
Stochastic Gradient Descent. Another augmentation is the addition of
momentum to the GD-algorithm. The name aptly describes the idea,
namely that the evaluation point can be prescribed some inertia, with
the gradient describing the instantenous acceleration instead of speed.
This results in a trajectory of the minimizer in parameter space, that
resembles that of an inertial mass that rolls downhill. This can help
the speed of convergence and the escape of flat regions or even small
minima, but with the introduction of an extra hyperparameter that
calls for new considerations [88]. Further improvements can be made
by considering adaptive algorithms and in a deep learning context
this culminates in the widely used ADAM algorithm [89] that uses
exponential moving averages of the gradient and its absolute value,
over the trajectory history, for each parameter. This results in an adap-
tive learning rate for each individual parameter and promotes steps
for parameters with low-variance gradients, whilst also including the
momentum extension. For this thesis ADAM was only used when
working with Python and the Trotter decomposition of sec. 5.2.1,
and despite the integration technique’s shortcomings, ADAM worked
well for all intents and purposes. However, when shifting to the Julia
programming language, the minimization algorithm BFGS was more
readily available and was thus used for all the results of the thesis.

6.2.2 BFGS

Much of the following is based on a standard textbook on the matter
[90].
The above mentioned algorithms are first order derivative methods.
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A well known second order method is Newton’s method for opti-
mization. Simply said, Newton’s method is a root finding algorithm,
ie. it finds the solution of f (x) = 0 using f ′(x). For optimization the
root of f ′(x) = 0 is wanted, thus it becomes a second order method.
Newton’s method is comparable to Gradient Descent (eq. 6.7) except
it utilizes the curvature of the loss landscape when taking a step:

p⃗t+1 = p⃗t − ηH−1
L ( p⃗t)∇L( p⃗t) (6.8)

Here HL is the Hessian of the loss with respect to the parameters.
However, if the Hessian is difficult to obtain, it is still possible to
approximate it using so called quasi-Newton methods. The Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm is one such algo-
rithm, where the gradient is now preconditioned by the matrix B
[90]:

p⃗t+1 = p⃗t − ηB−1
t ∇L( p⃗t) (6.9)

Where the update for the inverse approximate Hessian matrix B−1
t is:

B−1
t+1 =

(
1 − styT

t
yT

t st

)
B−1

t

(
1 − ytsT

t
yT

t st

)
+

stsT
t

yT
t st

(6.10)

with st = p⃗t+1 − p⃗t = −ηB−1
t ∇L( p⃗t) and yt = ∇L( p⃗t+1)−∇L( p⃗t)

and the arrows denoting vectors have been omitted for clarity. The
best initialization of B−1

0 depends on the problem at hand, but it is
possible to simply set it to be the identity matrix [90].

Utilizing more information about the loss landscape usually leads
to faster convergence and in some cases to lower minima, at least this
was the case for this thesis, where BFGS outperformed GD as seen
fig. 6.1

Figure 6.1: Loss history for
some of the experiments de-
scribed in sec. 8.5. Straight-out-
of-the-box More-Thuente line-
search was used in both cases,
and might bear some of the
blame of the bad performance
by GD since GD seemingly pre-
fer different hyper-parameter
settings.

The selection of the step length η remain a crucial part of any
minimization algorithm. Thus, sophisticated schemes for estimating
the optimal step length have been developed and the following will
provide a brief look into this research topic.

6.2.3 Linesearch

Updating the parameters eg. as in equation 6.9 relies on two parts.
An "update direction" which is based on derivative information and
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a step length denoted by η. In general η is not constant, and the
question arises of how to find the optimal step length given the
search direction. This is the subject of linesearch which estimates the
minimizer of:

ϕ(η) = L( p⃗t + ηSt) (6.11)

Figure 6.2: Example of generic
linesearch problem defined by
ϕ(η). Figure from [90]

Where St is the search direction, which in the case of BFGS is
St = −B−1

t ∇L( p⃗t). The global minimizer of ϕ(η) is usually too
costly to find and instead an inexact solution, which satisfy certain
conditions, is estimated. For quasi-newton methods and BFGS in
particular, certain conditions such as the curvature condition:4

4 This is related to the positive defi-
niteness of the approximate Hessian
matrix and is different from the curva-
ture condition of the Wolfe conditions
below.

( p⃗t+1 − p⃗t)
T(∇L( p⃗t+1)−∇L( p⃗t)) > 0 (6.12)

and the property that the gradients are sampled at points that allow
the model to capture appropriate curvature information, is ensured
by the Wolfe or strong Wolfe conditions [90]. The first condition is
that the step length should ensure "sufficient decrease" in the objective
function, stated as:

ϕ(η) ≤ ϕ(0) + c1ηϕ′(0) (6.13)

Where c1 ∈ [0, 1]. Just imposing a decrease, ie. c1 = 0 can lead to
convergence only in the limit of t → ∞ even for convex functions.
Conversely c1 = 1 would mean the function should be concave or
at least have an even greater slope at a later point. Practical values
for c1 can be quite small, eg. c1 = 10−4. Even very small η will
usually satisfy the sufficient decrease condition, so in order to ensure
sufficient progress is made a second condition is imposed, namely
the curvature condition:

ϕ′(η) ≥ c2ϕ′(0) (6.14)

With c2 ∈ [c1, 1], where for Newton or quasi-Newton methods a
typical value is c2 = 0.9.5 The intuition behind this condition is 5 This is the value that perhaps should

be tuned differently for the GD
algorithm in figure 6.1

that, since the slope ϕ′(0) is negative, the slope at η should be more
flat. Because if it was not, it would imply further progress could be
made by increasing η. A large positive slope at η would also satisfy
this condition, so in order to ensure that η lies in the vicinity of a
minimum an even stronger condition can be formulated:

|ϕ′(η)| ≥ c2|ϕ′(0)| (6.15)

Thereby narrowing the region of acceptable η to relatively flat regions
that simultaneously realize a sufficient decrease in the objective func-
tion. Equations 6.13 and 6.14 are the Wolfe conditions whereas 6.13

with 6.15 are the strong Wolfe conditions.
Sophisticated linesearch algorithms can be quite complicated and

will not be explained in depth here. That being said, the general
approach is to iteratively make new guesses for an appropriate η

based on the information accumulated by evaluations of ϕ and its
derivative. These pieces of information are used to create an inter-
polation which is analytically minimized. The procedure terminates
once the imposed conditions are satisfied.
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The linesearch algorithm found to work the best for this thesis, and
the one subsequently used, is the one by More and Thuente [91]. It
satisfies the Strong Wolfe conditions and is accompanied by quite an
extensive theoretical analysis.

With the loss landscape defined and the optimization techniques
presented, it remain to be answered how to calculate the gradients of
the loss function, necessary for the gradient based minimizers. In the
following, the Machine Learning approach is presented in order to
motivate the need for the alternative method actually employed for
the results of the thesis.

6.3 Automatic differentiation

Automatic differentiation (AD) is the workhorse behind many of the
impressive results coming out of Machine Learning. Below, it will
quickly be fleshed out what it entails, what the shortcomings are and
an example of an alternative that combats these shortcomings.

6.3.1 Forward and backward

The general idea behind AD is to leverage the chain-rule of differenti-
ation, such that it is only necessary to define the derivative for simple
mathematical operations and some constitutive functions from which
most other expressions consists of. Then it is possible for the program
to stitch together the wanted derivatives from the individual function
evaluations and their accompanying derivatives.

Much of the following is based on a standard textbook on numer-
ical optimization [90]. There exists two basic modes for stitching
together the final derivative from the constituent functions, namely
forward- and reverse mode. The names arise from the fact that for
each computation there exists a computational graph (an example is
visualized in figure 6.3) where reverse and forward refers to the way
the algorithm traverse the computational graph when building the
function derivative.

Figure 6.3: Example of a compu-
tational graph. The xi are the
input and f is the output. The
wi refer to intermediate stages
of the calculation. Here w4 is a
child of w1 and w1 is the parent
of w4 and so on. In this context,
the derivative of f wrt. xi is de-
sired.

The forward mode propagates the derivative forward in the com-
putational graph along with the calculation of the function. The idea
is rather simple in that, since the value of an intermediate node in the
computational graph is given as a function of all the parent nodes to
that node:

wi = wi({wj}) (6.16)

where the index j refer to the parents of the node i. The derivative of
this node value with regards to say the first input x1 is simply:

∂wi
∂x1

= ∑
j parents of i

∂wi
∂wj

∂wj

∂x1
(6.17)

This can be applied recurrently starting from w1 = x1 until wN =

f (x1) is reached and one has successfully calculated ∂ f
∂x1

. If f is
multivariate this has to be done multiple times with a different version
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of 6.17 for each xi. This means that for f : Rn → R the computational
overhead can be quite extensive compared to the reverse mode.

Reverse mode only forward propagates in order to store the node
values. The derivative is then found, starting from the ultimate child
node ∂ f

∂wN
= 1, by:

∂ f
∂wj

= ∑
i childs of j

∂ f
∂wi

∂wi
∂wj

(6.18)

until all the ∂ f
∂xi

can be calculated at once. The downside is the storage
of the node values, but this is manageable as is evident from the
effectiveness of the back-propagation (reverse mode) algorithm in
deep learning.

However, limitations still exists. In many cases such as using
piecewise rational functions in place for trigonometric functions or
when numerically approximating solutions to PDEs, a truncation error
occurs: f̂ (x) = f (x) + τ(x). The truncation error |τ(x)| is usually
small however its derivative need not be τ′(x) leading to a mismatch
between the AD-derivative and the true derivative f̂ ′(x) ̸= f ′(x)
Furthermore, the computational graph need to be properly defined
meaning that slight care need to be made when implementing the
function that needs to be differentiated.6 So, quoting the conclusion 6 Examples include omitting if state-

ments and random-sampled values. In
the latter case the reparameterization
trick can be used as a solution [92].

from [90]

In conclusion, automatic differentiation should be regarded as a set
of increasingly sophisticated techniques that enhances optimization
algorithms, allowing them to be applied successfully to many practical
problems involving complicated functions. [. . .] Automatic differen-
tiation should not be regarded as a panacea that absolves the user
altogether from the responsibility of thinking about derivative calcula-
tions.

6.3.2 The alternative

With respect to the concerns of this thesis, calculating derivatives for
the result of a numerical solution to a differential equation, is the most
important criteria. As it turns out, one can find differential equations
for the derivatives, in at least two different forms that are analoguous
to forward and reverse-mode. This results in no need for storage of
function evaluations and computational graphs and it is possible to
calculate the gradients to arbitrary accuracy (within bounds given by
the low computational errors). These methods will be explored in
section 7.

6.4 Pulse Parametrization

Pulse parametrization refers to how the pulse is expressed in terms
of the parameters and how it is realized in the code. It is thus
different from the physical realization of the pulse which is usually
created by Arbitrary Waveform Generators [93]. The first distinction
to be made is whether the pulse is in the discrete or continuous time
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scheme. In the discrete case of section 5.2.1 the value of the pulse
u(∆tn) → un is fixed during each timestep. Each un will then be the
tuneable parameter. However, even this parametrization can be made
continuous and it should be trivial to always revert back to discrete
parametrization, so in the following only continuous parametrizations
are considered.

The discrete parametrization is a piece-wise decomposition, for-
mally written as:

u(t, p⃗) = ∑
n

pnΘ(t − tn)Θ(tn+1 − t) (6.19)

Figure 6.4: Example of using a
piece-wise decomposition for
pulse parametrization.

It is understood as a bar chart with the height defining the pulse-
value during the corresponding time interval, as visualized in figure
6.4. It is therefore physically unrealizable but it has a trivial gradient
wrt. p⃗.

One way to accommodate the physical implementation of the signal
in the simulation, is to transform the signal via the convolution [94]:

ũ(t) =
∫ t

0
h(t − τ)u(τ)dτ with h(t) =

e−t/tr

tr
(6.20)

This results in an exponential rising edge from each pulse value to
the next, where tr determines the steepness of the rising edge. It
would then be advantageous to fit this parameter to the given AWG
used in the experiment, where one wants to implement the solutions
found by simulations. In general it would be best to parametrize the
signals such that they adhere to the experimental realizations, where
it would even be possible to fit to the equpiment at hand. However,
since this thesis was not coupled to an experiment, not much work
was done in this regard. Nevertheless, the physical realizability was
accommodated by only considering pulses that change at the time-
scale set by the sampling rate of the AWG, which is on the order of
2.4 to 8.5GHz and seemingly beyond [95].

Before mentioning the two pulse parametrizations actually em-
ployed in the thesis. The parametrization of the other time-dependent
scalar function, α(t, p⃗), will be defined.

6.4.1 Parametrization of α

The general idea as explained in section 4.3.1, is to lower the "barrier"
between the computational states and then apply the pulse. With
α = 1 the barrier is up and with α = 0.5 the barrier is down, thus,
unless else is stated, α(t, p⃗) is defined as7: 7 This is a rather simple definition

and it was exactly chosen due to its
simplicity. Other more complicated
parametrizations are just as valid. It
would be interesting to synthesize
gates using only α(t), but that ended
up outside the focus of this thesis.

α(t, p⃗) =


1 − (1 − αmin)

t
Ta

t ≤ Ta

αmin Ta ≤ t ≤ T − Ta

αmin + (1 − αmin)
t−(T−Ta)

Ta
T − Ta ≤ t

(6.21)

That is, α is lowered linearly from α = 1 to α = αmin in a time Ta,
where it is left for a period of time in which the pulse is applied.
The barrier is then raised linearly again, completely symmetric to the
lowering.
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T is the gate time and the pulse is applied in a time T − 2Ta. The
parametrizations of the pulse, will now be defined.

6.4.2 DRAG-pulse

The simplest realizable pulse for quantum-gates is a cosine pulse as
the one presented in section 3.3.2.

u(t, p⃗) = E(t)A cos(ωd(t − Ta) + φ) (6.22)

It is parametrized by an amplitude A, driving frequency ωd and a
phase φ. The envelope function E(t) provides a physical ramp up
and ramp down period towards the start and end of the pulse. The
time scale of the ramp is given by Tr and the shape used throughout
this thesis is ∝ sin2, formally written as:

E(t) =



sin2
(

π
2

t−Ta
Tr

)
if Ta ≤ t ≤ Ta + Tr

1 if Ta + Tr ≤ t ≤ Ta + Tp + Tr

sin2
(

π
2

Ta+Tp−t
Tr

)
if Ta + Tp + Tr ≤ t ≤ Ta + Tp + 2Tr

0 else
(6.23)

Where the time the pulse is applied is broken into two terms T − Ta =

Tp + 2Tr. This is only relevant for section 8.2
As noted in section 4.1.2 and 4.2 leakage out of the computational

basis can occur. For the simple cosine pulse, this can be combated by
adding a sine pulse with envelope Ė(t) and a scaling parameter λ as
described in [96]. So for this thesis, a DRAG pulse refer to:

u(t, p⃗) = E(t)A cos(ωd(t − Ta) + φ) + λĖ(t)A sin(ωd(t − Ta) + φ)

(6.24)
With the parameters A, ωd, φ, λ, Ta and Tr. The inclusion of Tr is
debatable, however it is included in order to investigate how it will
affect the minimization procedure. The total gate time T can also be
included as a parameter as will be described in section 7.1.5, which is
used to find a gate with minimized gate time as presented in sec. 8.2.

The DRAG pulse (eq. 6.24) and α(t) (eq. 6.21) are visualized in
figure 6.5 along with some of the tuneable parameters.

Figure 6.5: Visualization of
the DRAG-pulse and α(t, p⃗)
parametrizations. The defini-
tion of some of the parameters
is also shown. The envelope is

sketched as ±A
√

E2 +
(
λĖ
)2

This concludes the presentation of the simple parametrizations
used in this thesis, which are parametrized by only a handful of
parameters. In order to fully leverage the efficiency of the method to
be developed in section 7, more complicated parametrizations which
constitute the use of more parameters may be considered. This is
done in the following.
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6.4.3 Interpolation method

The advantage of the piece-wise decomposition is the flexibility to
approximate a general function. The downside is the rather non-
physical discrete nature of the parametrization. To accommodate a
realistic implementation of the pulse, while keeping the flexibility of
the parametrization, an extension of the piece-wise decomposition
is considered, for which a continuous interpolation is made between
each time-step.

Different methods exists for doing this. One way is the convolution
method mentioned in the beginning of 6.4. However, the approach
employed in this thesis is the following parametrization:

u(t, p⃗) =
1

∑k f (t − tk)
∑

i
f (t − ti)pi (6.25)

Figure 6.6: Example of using a
weighted sum of Gaussian dis-
tributions for pulse parametriza-
tion, with r = e−5 ≃ 0.67%.
This represents the value of r
used in the results section (sec.
8)

The function f is a ’weight’ function that is peaked around zero.
The idea is that, at an instant t, the pulse value is a weighted mean
of the surrounding ’pillars’ of the piece-wise decomposition, with
decreasing weights the further the time step is from t. The weight
function used is simply a gaussian:

f = e−x2 ln(1/r)
∆t2 (6.26)

Figure 6.7: Example of using a
weighted sum of Gaussian dis-
tributions for pulse parametriza-
tion, with r = e−50 ≃ 2 · 10−22

where r = f (∆t) is the hyper-parameter that describes how wide
in time the weights reach, ie. it affects the steepness of the rising edge.
The ∆t = tn+1 − tn assumes a constant separation of time steps for
simplicity. The sampling rate of the AWG determines how small ∆t
can be. An example for the value of r used in this thesis is shown in
figure 6.6 and when r is small enough the piece-wise decomposition
is retrieved as seen in figure 6.7.

The reason for denoting this method the interpolation method is
that when r is small enough, eq. 6.25 with eq. 6.26 can be viewed as:

u(tn + δt) ≃
(

pne−δt2 ln(1/r)
∆t2 + pn+1e−(δt−∆t)2 ln(1/r)

∆t2

)
(6.27)

with 0 < δt < ∆t and where N ≃ e−δt2 ln(1/r)
∆t2 + e−(δt−∆t)2 ln(1/r)

∆t2 is the
normalization constant. So, in between time steps, the pulse value is
an interpolation between the previous and the following parameter
value, with a Gaussian rising edge in both ends.

The interpolation method was used as the most general parametriza-
tion in a continuous-time context, when it was desired to restrict the
function space the least.

No constraints are put on the parameters wrt. the interpolation
method, but for the DRAG-pulse and the α parametrization, certain
constraints such as 0 ≤ Ta ≤ T/2 and αmin ∈ [0.5, 1] needed8 to be 8 The αmin ∈ [0.5, 1] is actually an

artificial constraint, which was not
posed by physical considerations.
It is enforced in order to keep the
interpretability as a lowering and
raising of the potential barrier simple.
Nonetheless, it was encoded as a hard
constraint.

enforced. How this was done is described in the following section.

6.4.4 Limiting functions

Often a parameter is bounded and needs to somehow be restricted
to lie within some interval. There are different ways to go about this,
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the easiest and often best of which, is to let the minimizer regard
the parameter as unbounded, but then always pre-apply a limiting
function to the parameter within the function calls. An example that
is used primarily in this thesis is:

σ( p̃|pmin, pmax) =
(pmax − pmin)

1 + e− p̃ + pmin (6.28)

Figure 6.8: Visualization of the
limiting function defined by eq.
6.28

with the inverse9:

9 The inverse is used for initialization
of the constrained parameter values.

σ−1(p|pmin, pmax) = − ln
(

pmax − pmin

p − pmin
+ 1
)

(6.29)

An example is the limiting of αmin ∈ [0.5, 1] in eq. 6.21 used through-
out this thesis, ie. αmin = σ(α̃min|0.5, 1) where α̃min ∈ (−∞, ∞) is
the parameter contained in p⃗ that a minimizer can freely adjust. For
binding a parameter to the positive real axis, the simple choice

p = p̃2 (6.30)

is used for this thesis.
This concludes the necessary considerations that need to be made

when implementing a parametrization of a continuous scalar function
wrt. this thesis.

The above sections constitute the necessary considerations for
treating an optimization problem and with all of the above it is now
possible to tackle a plethora of Quantum Optimal Control (QOC)
problems. However, a subset of QOC problems remain unmentioned,
namely those QOC problems that factor in model uncertainty, which
may promote solutions that are insensitive to uncertainty in the model
parameters. In this thesis, these problems are encompassed by the
term Robust Optimal Control and the formulation of Robust Optimal
Control problems will be formalized in the following section.

6.5 Robust Optimal Control

Practical implementations of exact solutions will always be impossible
to obtain. There will be noise in the system that can possibly create
a large discrepancy between the actual evolution and the desired
evolution.

In this section we will consider how to deal with the fact that
system and control parameters can not be known to infinite precision.

6.5.1 Problem formulation

In optimal control the problem consists of minimizing a cost function
while given the constraints set by the system dynamics. We will now
consider the presence of an uncertainty in some of the parameters
of the dynamics. Let p be the control parameters, then a denote the
parameters with uncertainty. The sets of a and p may overlap entirely,
only partially or not at all. Robust optimal control is then concerned
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with optimizing the cost function wrt. p over some region in a, such
as to promote solutions that are insensitive to the fluctuations in a.10 10 Ie. p could consist of the amplitude

and driving frequency of eq. 6.22,
while a may just contain ϕext of eq.
4.23, if there is noise in the external
flux. In this case there is said to be
no overlap between p and a. If one
also consider noise in the drive line
and thus uncertainty in the control
parameter related to the amplitude of
the pulse, p and a share a parameter
and would be said to have an overlap.

However, this region in a of the loss landscape still needs to be
boiled down to a single scalar. That is, the distribution of the value of
the loss in this region, needs to be summarized by summary statistics
and combined into a single number.

Formally, let a follow some probability density function, a ∼ P(a|p).
In general, the PDF can depend on the parameters p, eg. if some
external magnetic field which is used for control increases in value,
the variations in some otherwise ideally fixed external flux parameter
could increase.

For simplicity however, consider P(a|p) being a uniform distribu-
tion P(a|p) = U(Ωa) where Ωa describes the region for the possible
values of the uncertain parameters, which may still depend on p if
a and p share variables, but this complication is also disregarded in
the following. Then the loss would depend on a stochastic variable
a ∼ U(Ωa) and in order to have a well defined objective function it
would need to be reduced to summary statistics. For this, one can
invoke the law of the unconscious statistician11 which states that the 11 It gets its name from the fact that

most would not stop to consider
whether the relation is true but would
naively just apply it, since it is often
described as the definition of the
expectation value.

expectation value of some function of the stochastic variable a is:

g̃(p) = E [g(a)] =
∫

g(a)P(a|p)da (6.31)

with the understanding that a is a collection of variables to be inte-
grated over, ie. da is a volume element in the space that the vector a
lives in. With the above simplifications it is written as:

E [g(a)] =
1

|Ωa|

∫
Ωa

g(a)da (6.32)

where 1/|Ωa| is the normalization constant of the uniform distribu-
tion. It is worthwhile to decipher what is meant by this expression
with two examples. In the first example of figure 6.9 (a), the loss

(a) (b)

Figure 6.9: Visualization of a
loss landscape and the integra-
tion region Ωa of eq. 6.32 for
the two different cases of a = p
and a ∩ p = ∅, shown in (a)
and (b) respectively. A simple
Robust QOC problem can be
posed by seeking to find the
p that achieve the flattest and
lowest lying blue region, which
would constitute a low value for
the loss function, that does not
change much even when the un-
certain parameters of the model
fluctuate.

landscape of an objective function with two tuneable control parame-
ters is visualized. In this specific example a = p and the blue region
denoted Ωa is the integration region for the expectation value in eq.
6.32. The p of the figure refer to the parameter values assumed at
the given step of the minimization procedure, so in the case of a = p
the integration region Ωa moves about when the control parameters
assume different values. In the opposite case of fig. 6.9 (b) where
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there is only one tuneable parameter and one uncertain parameter,
which is not the same (ie. a ∩ p = ∅), the integration region remain
the same and is independent of the value of p. In this example the
point p can only move along the 1-dimensional manifold defined by
p1 and insensitivity of the loss function is only encouraged in the
orthogonal direction given by a.

An example of a meaningful objective function that promotes
robustness could consist of a weighted sum of two terms. One term
that seeks to minimize the expectation value of the loss:

L̃(p) = E [L(p, a)] (6.33)

and a second term that seeks to minimize deviations from this ex-
pectation value, which would mean a flat, and thus robust, loss
landscape:

Var(L(p, a)) = E
[(
L(p, a)− L̃(p)

)2
]

(6.34)

It’s usually not feasible to find the exact mean and variance, so
these are often approximated by sampling values of the loss within
this region:

L̃(p) ≈ 1
N

N

∑
i
L(p, ai) (6.35)

Var(L(p, a)) ≈ 1
N − 1

N

∑
i
(L(p, ai)− L̃(p))2 (6.36)

However, it scales poorly with the dimensionality of a since the
density of sampled points decreases exponentially with the dimen-
sionality. This is encompassed by the common term, the curse of
dimensionality. This leads to a trade-off between run-time and accu-
racy of the method, depending on the size of N.

Another choice for a summary characteristic could be the maxi-
mum of the distribution:

L̃(p) = max
a∈Ωa

L(p, a) (6.37)

Finding the maximum is in principle just as difficult as finding the
minimum (even though the former is bounded to a smaller region).
However, one can also approximate this approach which is referred
to as linearization of the worst-case scenario [97][98]. This scheme
assumes that the region in question is appropriately small, such that
the loss function has little to no curvature within that region. Then
an expansion in the deviation from the center of the region a0 yields:

max
a∈Ωa

L(p, a0 + (a − a0)) ≃ L(p, a0) + max
a∈Ωa

[
(∇aL(p, a0))

T(a − a0)
]

(6.38)
However, maximizing this is not quite straight forward, since it de-
pends on how the region Ωa is defined.

There are two trivial cases. If the limits of the parameters in a are
independent of each other, the boundary is a box, ie. (ai − (a0)i) =

δai ∈ [−mi, mi]. Then the maximum is reached when:

δai = sign(∂aiL(p, a0))mi (6.39)
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That is the vector δa goes to the corner of the box, that is nearest to
the direction of the gradient (see figure 6.10). The other easy case is
when the boundary is a sphere of radius m. Then the dot product
is maximized when δa lies parallel to the gradient and assumes it’s
maximal length m:

δai = m
∂aiL(p, a0)

|∂aL(p, a0)|
(6.40)

These results can be generalized to any interpolation between the
box and the sphere, that is, when the boundary is defined as:12 12 The box is realized in the limit of

n → ∞ and the sphere is realized
when n = 1 and mi = m

∑
i

(
δai
mi

)2n
− 1 = 0 (6.41)

where mi decides the elongation along the corresponding axis, and n
decides "how sharp the corners are". Then the optimum is found at :

δai = sign(∂aiL)
m

2n
2n−1
i |∂aiL|

1
2n−1(

∑j

(
mj|∂ajL|

) 2n
2n−1

) 1
2n

(6.42)

An example is visualized in figure 6.10.
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[( a (p, a0))T a]
2n = 2
2n = 4
2n =
Gradient Vector

Figure 6.10: Examples of maxi-
mization of the dot product in
eq. 6.38 for integration regions
Ωa defined by eq. 6.41. A two
dimensional a is considered
with the "elongations" given
as mx = 2 and my = 1. The
vectors are found by eq. 6.42

for different values of n in eq.
6.41

It has now been described how it is possible to construct opti-
mization problems that produces robust solutions by using summary
statistics of the loss function such as mean, variance and maximum
value. Focusing on the linearization of the worst-case scenario ap-
proach, it is instructive to discuss the effects of whether the sets of a
and p overlap. This is done in the following section.

6.5.2 Environment variables and control parameters

As previously stated, a denote the noisy parameters, whereas p denote
the parameters that are to be tuned until an optimum is found. We
will now examine what happens to the approach defined by eq. 6.38

in the two cases when a = p and when a ∩ p = ∅ (ie. they have no
overlap whatsoever), in two easy to visualize examples.

First we examine a = p. In order to get a sense of how this
augments the loss landscape, consider the problem where there are
only two parameters, and that Ωa is a circle with radius m (much like
figure 6.9 (a)). Then with the above linearization of the worst-case
scenario, the relevant loss function is:

L̃(p) = L(p) + m|∇pL(p)| (6.43)

A benign example is shown in figure 6.11. It is constructed by consid-
ering a loss landscape that consists of a slightly tilting plane with a
local minimum that has a ramp down to a large global minimum.

An optimization procedure is run on this loss landscape in order
to see if the robustness considerations can steer the minimizer around
the local minimum and into the global minimum. The optimization
procedure is initialized such that the gradient head towards the local
minimum and the algorithm employed is Gradient Descent with
decaying momentum.
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(a) m = 0 ie. no robustness consid-
erations. The trajectory ends up in
a local minima.

(b) m adequate. Steers the trajectory
around the local minima and into
the robust region.

(c) m too large. For this simple gra-
dient descent algorithm, the trajec-
tory is confined to a bad minima.
Figure 6.11: Constructed exam-
ple of how different values of m
affect the loss landscape and the
minimization procedure. The
trajectory of the minimizer is
shown in green. The optimiza-
tion algorithm consisted of Gra-
dient Descent with decaying mo-
mentum (see sec. 6.2.1)

In fig. 6.11 (a) the landscape and the trajectory of the minimizer is
visualized. With no robustness consideration and due to the initial-
ization point, the minimizer end up in the local minimum.

In (b) and (c) different values of m in eq. 6.43 are considered and
it is apparent how the regions with a slope are heightened. When m
is of adequate size, a barrier is raised around the local minima and
the minimizer is guided around it and out into the global minimum
region.

Conversely, when m is too large, the minimizer stagnates, since
it is, by construction, trapped in a cauldron. This is because any
region with slope is increased in loss value, rendering gradient-based
optimization techniques useless.

This is a very constructed example, and it just goes to show that,
so far, the linearization of the worst-case scenario approach does
not seem like a promising avenue for producing robustness against
fluctuations in the control parameters.

Consider now instead the case of a being a single parameter dif-
ferent from p which is also one-dimensional (much like the case of
fig. 6.9 (b)). The loss landscape is still two-dimensional, but now it
is only possible for the minimizer to move along the p-direction. We
seek a solution that, in addition to being a minima, is also flat in the
a-direction. Figure 6.12 (a) visualize such an example, with the red
line running along p and the black line being parallel to the a-axis.
The 1-dimensional manifold of these lines are plotted in (b) and (c)
respectively. The setup is constructed such that there are 3 minima
but two of them have some unwanted curvature, with regards to a,
associated to them. Fig. 6.12 (c) shows how the gradient information
is added to the loss, and fig. 6.12 (b) shows the original and the
augmented loss.

In this example, it is apparent that the two minima remain minima
but the flat minimum is promoted to a global minimum. So in the case
of a ∩ p = ∅ the linearization of the worst-case scenario approach
seem useful in helping sophisticated gradient-based optimization
techniques to find a robust solution. This will be investigated for
a specific example in section 8.6, where it is also compared to the
mean-value approach defined by equation 6.35. Therefore, it is helpful
to also sketch this approach in the case of figure 6.12 which is done
in the following.

The mean-value approach consists of calculating the loss at differ-
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(a)

p

(p, a0)
(p, a0) + m| a (p, a0)|

m| a (p, a0)|

(b)

a0 m a0

a

(p, a)
(p, a0) + a (p, a0) (a a0)
(p, a0) + m| a (p, a0)|

(c)
Figure 6.12: (a) shows the loss
landscape of a Robust QOC
problem with one tuneable pa-
rameter p that can take on val-
ues indicated by the red line
and one noisy parameter a that
fluctuate along the black line.
Therefore it is desired to find
a point on the red line that is si-
multaneously low-lying and flat
in the a direction, which in this
case would be the middle region.
The one dimensional manifolds
are shown in (b) and (c) with (b)
visualizing the augmented loss
function and (c) how this aug-
mentation can be interpreted.

ent points along a and taking the mean value as the objective function.
In the context of fig. 6.12 (c) let N points ai ∈ [a0 − m, a0 + m] be
equidistantly distributed along the a-axis. The loss is then evalu-
ated at each ai and the mean is taken, such that the augmented loss
becomes:

L̃(p) =
1
N ∑

i
L(p, ai) (6.44)

For a one-dimensional a this approach is feasible and employ more
information than the previous method, which only used derivative
information. A comparison of the results achieved by the two methods
is done in section 8.6.

This concludes the robustness considerations relevant for this the-
sis, but for a discussion of additional methods, see the appendix
section 10.3.3.

The time has finally come for a presentation of the adjoint method
that has been mentioned and motivated for earlier in the thesis. It
is the employed method for calculating derivatives of the objective
functions encountered in this thesis and with objective functions akin
to the one in eq. 6.43, a second order adjoint method will also be
derived. All the derivations and discussion of the adjoint method are
contained in the following chapter.



7 Adjoint Method

It has by now been made clear what Quantum Optimal Control is
and what the challenges are when simulating quantum systems. In
order to achieve results that will transfer from simulations to real
world experiments, precise simulations are necessary1. This contain 1 The term used here only includes

solving the Schrödinger equation,
and is therefore not sufficient for
the "transferability". Considerations
also need to be made towards model
correctness and open system effects.

two aspects. For one, sufficiently large Hilbert space representations
are necessary, in order to have a theoretical foundation for a precise
description. Next, a precise numerical solver of the dynamics imply a
method that can estimate and contain its errors. This usually means a
lot of evaluations of the Schrödinger equation at different times.

On top of this, it is desired to find the sensitivity of the dynamics
wrt. the parameters, such that gradient-based techniques can be used
to find estimate solutions to the control problems. In view of the
presentation of Automatic Differentiation in section 6.3, the otherwise
widely used Backpropagation algorithm is not the optimal approach
in this regard. Instead the adjoint method, which will be derived
below, is much better suited for this. This is in part due to its efficiency
and continuous time description as opposed to the discrete nature of
the backpropagation algorithm.

The adjoint method is also tightly linked to the established theory
of optimal control and is essentially the basis for standard Quan-
tum Optimal Control algorithms such as GRAPE [99].2 For further 2 However, the GRAPE-algorithm is

inherently discrete in time and an
approximation to first order in ∆t is
made during the derivation. Exten-
sions have been made to accomodate
this [100], but we will focus now on an
exact continuous time description.

discussion see appendix 10.3.1.
What is meant by the adjoint method will now be laid out in

a generic and continuous time context. But first, a clarification is
provided, regarding the use of notation for matrix calculus.

7.0.1 Preemptive note on matrix-calculus

This thesis assumes the "numerator layout" convention such that dif-
ferentiation wrt. a vector a with dimensions N × 1 is to be understood
as:

d
da


b1
...

bM

 =


db1
da1

. . . db1
daN

...
. . .

dbM
da1

dbM
daN

 (7.1)

ie. differentiation of a column vector by a column vector yields a
matrix. In the same vein, differentiation of a scalar L by a column
vector yields a row vector.

dL
da

=
(

dL
da1

. . . dL
daN

)
(7.2)

57
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This also means that the chain-rule is still given as: 3 3 eg. if f has dimensions K × 1, the
resulting dimensions are L × N =
(K × M)(M × N)d f (b(a))

da
=

∂ f
∂b

∂b
∂a

(7.3)

Derivatives and partial derivatives with respect to a vector (or scalar)
a is denoted da ≡ d

da and ∂a ≡ ∂
∂a throughout the following discussion.

Furthmore, the product rule applies as:

∂uT(x)v(x)
∂x

= uT ∂v
∂x

+ vT ∂u
∂x

(7.4)

However, in the following, complex valued entities are used, and
since the complex conjugate is a different variable, ie. ∂x∗

∂x = 0, the
relevant relation is:

∂u†(x)v(x)
∂x

= u† ∂v
∂x

(7.5)

The seemingly missing term from the new product rule is instead

introduced from x →
(

x
x∗

)
but x∗ will be trivially given from x so

this only needs to be accounted for in the end of the derivation.

7.1 Derivation of the adjoint method

Following the derivation in the Stanford adjoint tutorial [101], the
adjoint method will now be outlined.
The relevant objects are defined by the following:

• x is our state variable, ie. a vector of variables that each follow their
own differential equation. For complex state variables it should be
noted that x contain both xi and x∗i .4 4 In the context of Quantum Mechanics

x should be regarded the vector
representation of |ψ⟩• p are the parameters of the problem and therefor the variables with

respect to which we want to minimize some objective function.

• F(x, p) is the objective function or functional.

• h̃(x, ẋ, p, t) = 0 defines the dynamics, through the accompany-
ing first order differential equation. As it stands it is written in
generality, but for the purpose of clarity we will assume that:
h̃(x, ẋ, p, t) = ẋ − h(x, p, t) = 0 throughout the following.5 5 Again, h should be regarded as the

matrix representation of −ih̄H|ψ⟩ in
the context of Quantum Mechanics, ie.
the Schrödinger equation.

• g̃(x(0), p) = 0 defines the initial conditions, which may also de-
pend on the parameters, and again we assume that it takes the
simple form: g̃(x(0), p) = x(0)− g(p) = 0

The discussion is structured as follows. First, the adjoint method is
derived in the simplest case, which is when the objective function F is
only dependent on the final state x(T) and possibly the parameters p.
The general approach of implementing the adjoint method is outlined
and motivated for and then an example relevant for the thesis is
considered. Next the derivation is extended to include objective
functions that contain a functional term, ie. of the form

∫
f (x(t), p)dt.

Lastly, a derivation with the final time T included in the parameters
is considered and a closed form expression of the "adjoint state" is
found.
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7.1.1 The simplest case

The derivation relies on the idea of Lagrange multipliers and by
choosing constraints for these introduced lagrange multipliers it’s
possible to retrieve a useful expression for the gradient of the loss.
First define the full loss that includes the constraints defined by the
dynamics and initial conditions h and g:

L = L(x(T), p) +
∫ T

0
λ†(ẋ − h(x, p, t))dt + µ†(x(0)− g(p)) (7.6)

Then it is of interest to find the gradient:

dpL = ∂xLdpx(T)+ ∂pL+
∫ T

0
λ†(dp ẋ− ∂xhdpx− ∂ph)dt+µ†(dpx(0)− ∂pg)

(7.7)
The problem with this equation is that it is hard to evaluate6 dpx so it 6 This is not entirely true, as discussed

in sec. 7.1.2would be advantageous if these could somehow be eliminated, and
that is exactly what is possible by chossing suitable relations for the
adjoint state variables λ† and µ†. Firstly the term with dp ẋ is partially
integrated: ∫ T

0
λ†dp ẋdt = λ†dpx|T0 −

∫ T

0
λ̇†dpxdt (7.8)

Inserting this into eq. 7.7 and collecting terms with respect to the dpx:

dpL =(∂xL + λ†)|Tdpx(T)

+ (µ† − λ†)|0dpx(0)

+
∫ T

0
(−λ†∂xh − λ̇†)dpxdt

+ ∂pL −
∫ T

0
λ†∂phdt − µ†∂pg

It’s now possible to choose the following useful conditions:

λ†(T) = −∂xL(x(T), p) (7.9)

µ† = λ†(0) (7.10)

λ̇† = −λ†∂xh (7.11)

Because then the gradient becomes:

dpL = ∂pL −
∫ T

0
λ†∂phdt − λ†(0)∂pg (7.12)

In order to see how this works in practice, let us consider a simple
situation, wherein neither the loss or the initial conditions depend
explicitly on the parameters p, such that:

∂pL = 0

∂pg = 0

Then the gradient is determined by

dpL = −
∫ T

0
λ†∂phdt ≡ ∇(0) (7.13)

where the integral is written as a time-dependent entity7: 7 The symbol for nabla is chosen to
invoke the idea that it is a gradient
that is being calculated.
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∇(t) =
∫ t

T
λ†∂phdt (7.14)

such that the integral is a solution to the final value problem:

∇̇ = λ†∂ph with ∇(T) = 0 (7.15)

In order to solve for ∇(0) it is necessary to know λ†(t) and x(t) at
each point in time. The adjoint state λ† obey the final value problem:

λ̇† = −λ†∂xh with λ†(T) = −∂xL(x(T)) (7.16)

and the state x of course obey the initial value problem:

ẋ = h with x(0) = g (7.17)

One way to solve 7.15 be to store a dense output of the x(t) and
λ†(t) solutions and use these to evaluate 7.14. However, this would
diminish the ability of the numerical solver to adaptively increase the
precision by increasing the discretization, which would already be set
in stone. Additionally it would not be memory efficient.

Instead, the x, λ† and ∇ are propagated backwards in time si-
multaneously, giving rise to O(1) memory cost and allowing the
sophisticated numerical solvers to keep the precision to a decided
tolerance.

So in practice the calculation of the gradient looks like the follow-
ing:

• Use an ODEsolver to find x(T) from x(0) using ẋ = h

• Initiate the adjoint state by the final value condition: λ†(T) =

− ∂L(x(T))
∂x(T)

• Initiate the gradient calculation by ∇(T) = 0 (In a machine learning
context this is analogous to resetting the gradient before backwards
propagation)

• Define an "augmented" state which is a concatenation of x(t), λ†(t)
and ∇(t). The dynamics of the augmented state are given by the
above differential equations and can be written as:

dt

 x(t)
λ†(t)
∇(t)

 =

 h(x, p, t)
−λ†(t)∂xh(x, p, t)
λ†(t)∂ph(x, p, t)

 with

 x(T)
λ†(T)
∇(T)

 =

 x(T)
−∂xL(x(T))

0


(7.18)

• This augmented state is thus specified at t = T and can be evolved
backwards in time from t = T to t = 0 using an ODEsolver.

• The gradient can then be read-off as: dpL = ∇(0)

In view of section 6.3 on automatic differentiation, the adjoint method
is thus analogous to the backpropagation algorithm, in the sense that
"a forwards and a backwards call" is made. Ie. the system dynamics
are evolved forwards in time, and the gradient is found by evolving
the augmented state backwards in time. As it turns out, there is
also a continuous time method analogous to the forward automatic
differentiation method, which will now be discussed.
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7.1.2 Motivation for the adjoint method:

The logic behind the above derivation was to eliminate the expressions
that include dpx for the gradient of the loss. However, this is not
strictly necessary, since dpx is given by:8 8 For an example in the context of

quantum optimal control, consider
equation 10.15ẋ = h(x, p, t) with x(0) = g(p) (7.19)

dp ẋ = ∂xhdpx + ∂ph with dpx(0) = ∂pg(p) (7.20)

These two equations can be simultaneously evolved forwards in time,
such that the gradient of the objective function is given by the solution
to:

dpL(x(T), p) = ∂xLdpx(T) + ∂pL (7.21)

which is readily evaluated once x(T) and dpx(T) is found.
However, this method does not scale as well in complexity wrt.

the number of parameters as the adjoint method. This "forward
sensitivity" method only requires one forward integration but of the
following number of equations:

Forward: Nx × 1 + Nx × Np = Nx × (Np + 1) (7.22)

Whereas the adjoint method requires one forward evolution and a
backward evolution of:

Forward: Nx × 1 (7.23)

Backward: Nx × 1 + 1 × Nx + 1 × Np = 2Nx + Np (7.24)

ie. the adjoint method scales better with regards to the number of
parameters, especially for large state vectors.

Furthermore, as [102] puts it, the setting of the adjoint state
method offers mathematical flexiblity not realizable in conventional
approaches, which will become clearer in the following sections. This
does however, come at the cost of a mathematical and implemen-
tational overhead, but this thesis seeks to be an introductory guide
to the adjoint method in a QOC setting, such that this overhead is
diminished.

So in order to put the adjoint method in the context of Quantum
Optimal Control, the following example will now be considered.

7.1.3 Example for the simplest case

Consider a Hamiltonian with two time-dependent scalar functions:

H(p, t) = H0 + Hαα(p, t) + Vu(p, t) (7.25)

where
H(p, 0) = H(p, T) = H0 + Hα (7.26)

and
(H0 + Hα)ψi = Eiψi (7.27)

An objective function could then be to transfer the ground state to the
first excited state:

L(x(T)) = 1 − x(T)†ψ1ψ†
1 x(T) (7.28)
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with x(t) obeying the Schrödinger equation:

ẋ(t) = −iH(p, t)x(t) x(0) = ψ0 (7.29)

The final value problem for the adjoint state is then:

λ̇† = iλ†H with λ†(T) = x(T)†ψ1ψ†
1 (7.30)

Since the domain is complex the state variable x consists of a concate-
nation of ψ and ψ∗ which would also mean complimentary dynamics
and adjoint state for the complex conjugate. However as mentioned,
it is not necessary to explicitly keep track of this complication, since
one is trivially given from the other.

Instead it will be enough to consider the gradient given as:

dpL = −
∫ T

0

(
λ†(t) CC.

)
∂p

(
−iH(p, t)x(t)

CC.

)
dt (7.31)

= −
∫ T

0
[2Im(λ† Hαx)∂pα + 2Im(λ†Vx)∂pu]dt (7.32)

Which also explains how the gradient wrt. real parameters of a real
scalar end up being real as it should be.

By now it should be apparent how to evaluate this integral by
simultaneously simulating the state and the adjoint state dynamics.
So far, this example only considers an objective function which is de-
pendent on the dynamics of one initial value, but this is not sufficient
for qubit gate synthesis problem formulations, since both the dynam-
ics of ψ0 and ψ1 need be considered. However, this can easily be
accommodated by concatenating the initial value problems together,
such that the state vector becomes an entity with dimensions Cn×2

and initial value:
x(0) =

[
ψ0 ψ1

]
(7.33)

and in the case of the objective function eq. 6.2 the adjoint state also
has dimensions Cn×2 with final value:

λ†(T) =
1
2

[
x†

0(T)ψ1ψ†
1 x†

1(T)ψ0ψ†
0

]
(7.34)

The rest of the equations remain the same, except now, that the terms
in 7.31 are simply modified by:

λ†Ox → Tr
(

λ†Ox
)

(7.35)

This consideration of including multiple initial values, together with
the realization of a real-valued gradient, concludes the implementa-
tion techniques necessary for practical use of the adjoint method in a
QOC context.

We will now build upon this base understanding by considering
two extensions. Firstly, we consider an objective function which in
addition to the term dependent on x(T) also contain a functional
term dependent on x(t). Next, the inclusion of the gate-time T as a
parameter is treated and lastly a closed form of the adjoint state is
derived.
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7.1.4 The general case

Consider now an objective function that is both dependent on the
state vector at the final time but also at all the intermediate times.
That is, consider the addition of a functional to the case in section
7.1.1, namely:

F(x, p) = L(x(T), p) +
∫ T

0
f (x(t), p)dt (7.36)

The procedure is exactly the same, so writing up the objective function
with the constraints yields the lagrangian:

L = L(x(T), p)+
∫ T

0
( f (x(t), p)+λ†(ẋ− h))dt+µ†(x(0)− g) (7.37)

One is interested in the derivative, which is:

dpL =
∫ T

0
(∂x f − λ†∂xh − λ̇†)dpxdt

+ (∂xL + λ†)|Tdpx(T)

+ (−λ† + µ†)|0dpx(0)

+ ∂pL +
∫ T

0
(∂p f − λ†∂ph)dt − µ†∂pg

and choosing Lagrange multipliers such that the coefficient of the
first three lines equal zero, yields:

λ†(T) = −∂xL(x(T), p) (7.38)

λ̇† = ∂x f − λ†∂xh (7.39)

∂pL = ∂pL +
∫ T

0
(∂p f − λ†∂ph)dt − λ†(0)∂pg (7.40)

So the only complications of the addition of the functional term is the
new ∂x f term in the dynamics of the adjoint state and the ∂p f term
in the calculation of the gradient. 9 9 For completeness, it is noted that a

forward sensitivity method still exists
in this case, similar to eq. 7.21, namely
that the gradient can be calculated in a
forward propagation by:

dp F = ∂p L+ ∂x Ldpx(T)+
∫ T

0
(∂p f + ∂x f dpx)dt

7.1.5 Including the gate time as a parameter.

In the previous cases, it may be that the parameter vector p contained
different time scales10 Ti which may be individually tuneable, but

10 Such as Ta and Tr in the DRAG pulse
parametrization eq. 6.24

with the ensuing total time remaining constant, eg. by:

∑
i

Ti = T (fixed in the case of sec. 7.1.1 and 7.1.4) (7.41)

It is now of interest to relax this condition and include the total time
T as a parameter, which in the context of QOC would mean it is
possible to optimize wrt. the gate-time.11 11 What this exactly means will become

apparent in section 8.2, but simply
stated it allows one to optimize for fast
gates.

So, consider now a parameter vector p that contains the final time
as a parameter:

p =

(
p̃
T

)
(7.42)

Where it may be that p̃ still contain the Ti, but the inclusion of the total
time in the parameter vector p has become explicit. The procedure
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for deriving the adjoint method remains the same, so considering the
general Lagrangian of eq. 7.37, the gradient can be written as:

dpL =
(

d p̃L dTL
)

(7.43)

The d p̃L part simply follows the same derivation as before (sec. 7.1.4),
whereas the second part is:

dTL = dT L(x(T), p) + f (x(T), p) + λ†(T)h(x, ẋ, p, T)

= ∂xLdTx(T) + ∂pLdT p + f (x(T), p) + λ†(T)(ẋ(T)− h(x, p, T))

= (∂xL + λ†(T))dTx(T) + ∂pLdT p + f (x(T), p)− λ†(T)h(x, p, T)

ie. the only difference compared to not treating T as a parameter is to
just treat T as any other parameter, but with the extra term

−λ†(T)h(x(T), p, T) + f (x(T), p)

added to the gradient wrt. T
It should be noted that this is not unique to this formulation since

this extra term is simply:

dtF(x(t), p)|t=T = ∂xL(x(t), p)dtx(t)|t=T + f (x(T), p)

= −λ†(T)h(x(T), p, T) + f (x(T), p)

Since by definition dtx(t) = h and λ†(T) = −∂xL(x(T), p).
We may also relax the assumption that the total time is contained

explicitly in the parameters, and just consider a parameter vector p
that contain the different time scales Ti which make up the total time
T. Then it is allowed to let T not be fixed and the gradient of the
objective function is simply given by eq. 7.40 with the addition of the
extra term:

dpL(T not fixed) = dpL(T fixed) + (−λ†h + f )|t=T∂pT (7.44)

Hereby, it is straight forward to consider optimization problems
which do not rely on fixed total time. The employed ODEsolver
simply solves the dynamics till a given end time, which in this case is
the continuous variable T. The gradients necessary for gradient-based
optimization techniques are simply given by eq. 7.44.

The derivation of the adjoint method is concluded by deriving a
closed form of λ†(t), which is done in the following section.

7.1.6 Closed form of the adjoint state

It can be shown that, if λ†(t) is given as

λ†(t) =
∂

∂x(t)

[
−L(x(T), p) +

∫ t

T
f (x(t′), p)dt′

]
(7.45)

It will obey

λ̇† = −λ†∂xh + ∂x f with λ†(T) = − ∂L
∂x(T)

(7.46)
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Extending on the derivation in [103], it goes as follows. Consider the
definition of the time derivative:

λ̇† = lim
ε→0+

1
ε

[
λ†(t + ε)− λ†(t)

]
(7.47)

= lim
ε→0+

1
ε

[
∂

∂x(t + ε)

(
−L +

∫ t+ε

T
f dt
)
− ∂

∂x(t)

(
−L +

∫ t

T
f dt
)]

(7.48)

In order to reduce this expression, such that the limit can be done, it
is noticed that the definition of ẋ = h can be rewritten as:

x(t + ε) =
∫ t+ε

t
hdt + x(t) (7.49)

Which may be expanded in ε:

x(t + ε) = x(t) + εh +O(ε2) (7.50)

Such that it is possible to write the derivative of any entity A(t) wrt.
x(t) as:

∂A(t)
∂x(t)

=
∂A(t)

∂x(t + ε)

∂x(t + ε)

∂x(t)
=

∂A(t)
∂x(t + ε)

(
1 + ε∂xh +O(ε2)

)
(7.51)

Similarly, the integral in eq. 7.48 may be expanded as:∫ t+ε

T
f dt′ =

∫ t

T
f dt′ + ε f +O(ε2) (7.52)

Using eq. 7.51 and 7.52, equation 7.48 may be rewritten as:

λ̇† = lim
ε→0+

1
ε

[
−ε

∂(−L +
∫ t

T f dt′)
∂x(t + ε)

∂xh + ε
∂ f

∂x(t + ε)
+O(ε2)

]
(7.53)

= −λ†(t)∂xh + ∂x f (7.54)

Thus validating the claim made in the beginning of this section.

The closed form of λ†(t) was derived for completeness of the first
order adjoint method theory chapter. However, it remains unclear
how eq. 7.45 is to be interpreted due to the functional derivatives, so
the expression will now be deciphered.

First off, in the context of Quantum Mechanics, we may define the
propagator U (t, 0) of the system x(t) = U (t, 0)x(0) such that the first
term in eq. 7.45 becomes:

∂L(x(T), p)
∂x(t)

=
∂L(x(T), p)

∂x(T)
∂x(T)
∂x(t)

= −λ†(T)U (T, t) (7.55)

Secondly, since the limits of the integral in the second term do not
depend on x(t), it is possible to use the Leibniz integral rule for
differentiation under the integral sign as:

∂

∂x(t)

∫ t

T
f (x(t′), p)dt′ =

∫ t

T

∂ f (x(t′), p)
∂x(t′)

∂x(t′)
∂x(t)

dt′ =
∫ t

T
∂x f (x(t′), p)U (t′, t)dt′

(7.56)
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So the closed form in eq. 7.45 can be written as:

λ†(t) = λ†(T)U (T, t) +
∫ t

T
∂x f (x(t′), p)U (t′, t)dt′ (7.57)

This concludes the theoretical and practical discussion of the first
order adjoint method. It should be possible to tackle many different
QOC problems with the adjoint method and this is done in section 8.
In the following section a discussion of how the adjoint method can
be employed to estimate robust control solutions is provided. To this
end the second order adjoint method is derived.

7.2 Robust control within the adjoint method

We will now investigate how the adjoint method might help im-
plement any of the ideas put forward in section 6.5. Already, the
derivations in section 7.1 can be used to calculate the gradients of
eq.12

6.35 and 6.36 as efficiently as possible. However, in these cases, 12 These methods pose multiple QOC
problems, one for each sampled point
ai ∈ Ωa and try to solve them all at
once using the same control for each.

even if the number of uncertain parameters is more than just a few,
the curse of dimensionality indicates that you’d need an exponentially
large sampling of the hyper volume in order to approximate the mean
and variance truthfully.

One of the alternatives is eq.13
6.38 which relies on gradient 13 In this case, the objective function

contain a first order derivative, eg.
L̃ = L+ |∇aL|2, such that in order to
evaluate dpL̃ a second order derivative
method is necessary.

information to find a robust solution. This will be the subject of this
section where a second order adjoint method is fleshed out, in order
to evaluate the gradient of a loss that contains a first order derivative.
Furthermore, for an objective function that only contain zero order
terms, the 2nd order derivative information could still be used as the
hessian for a Newton-type optimization procedure.

As a reminder of the notation used so far, consider a set of param-
eters of the dynamics that undergo perturbations, these are denoted
by a. The parameters p and a may be identical or just share a subset
or be completely different, but p is the control parameters while a are
some parameters of the model that experience noise which we would
like the control solution to be insensitive to. 14 14 Eg. in the context of the QOC

problems encountered in the thesis,
the control parameters could be the
amplitude, driving frequency and

phase of some pulse, p =

 A
ωd
ϕ


whereas the noisy parameters could be
an external flux but also the amplitude
of the pulse due to noise in the drive

line, a =

(
Φext

A

)
, in which case they

would share the parameter A.

The problem statement is then to minimize:

F(x(t), p, a) = L(x(T), p, a) +
∫ T

0
f (x(t), p, a)dt (7.58)

over some region ωa with regards to p, subject to the dynamical
system:

ẋ = h(x, p, a, t) (7.59)

x(0) = g(p, a) (7.60)

And as also discussed in section 6.5 linearization of the worst-case
scenario yields:

F̃(x, p) = F(x, p, a0) + ∂aF(x, p, a0)δa (7.61)

Where the vector δa is found from a maximum condition. If the
uncertain parameters are independent and with different bounds
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δai ∈ [−mi, mi], then:

F̃(x, p) = F(x, p, a0) + ∑
i

mi|∂ai F(x, p, a0)| (7.62)

However, in generality we may just write it as some function R:

F̃(x, p) = F(x, p, a0) + R(∂aF(x, p, a0)) (7.63)

The problem consists now of finding the gradient of F̃ wrt. p:

dp F̃ = dpF(x, p, a) +
∂R(∂aF(x, p, a0))

∂(∂aF)
dp(∂aF)† (7.64)

The first term dpF is given by eq. 7.40 with the adjoint state subject to
eq. 7.38 and 7.39. The gradient wrt. the noisy parameters is simply
given by:15 15 Following the same procedure of

defining the Lagrangian, partially
integrating and choosing suitable
constraints in order to eliminate the
need to calculate dax one simply
recover the results of sec. 7.1.4 but
with a instead of p

∂aF = ∂aL +
∫ T

0
(∂a f − λ†∂ah)dt − λ†(0)∂ag (7.65)

Notice that it is the same λ†(t) for both dpF and ∂aF, which is a
testament to the efficiency of the adjoint method.

The second term contain the novel object of interest:16 16 It doesn’t matter whether it’s † or
simply transposing since the gradient
is real (∂aF)† = (∂a F)T = ∇a F. Note
that if a = p we retrieve the Hessian:

dp∇pF =


∂2 F
∂p2

1

∂2 F
∂p2∂p1

. . .
∂2 F

∂p1∂p2
∂2 F
∂p2

2
...

. . .



dp(∂aF)† (7.66)

The second order adjoint method will now be derived in order to
evaluate dp(∂aF)†.17

17 It should be noted that akin to the
discussion in section 7.1.2, the forward
sensitivity method is even worse in
this regard, since calculations of the
form dp(daxi)

† yields Na × Np × Nx
equations and therefore a poor scaling
towards the number of parameters of
the model.

7.2.1 Calculation of second order derivative

Firstly, it is wise to ease the notation of the adjoint of ∂aF in eq. 7.65,
namely:

(∂aF)† = (∂aL)† +
∫ T

0
((∂a f )† − (∂ah)†λ)dt − (∂ag)†λ(0) (7.67)

≡ La +
∫ T

0
( fa − haλ)dt − gaλ(0) (7.68)

Where the notation is simplified by (∂aL)† ≡ La and so on. Now, with
inspiration from [104] consider the Lagrangian:

Ga = La +
∫ T

0
( fa − haλ)dt− gaλ(0)+

∫ T

0
[ϕ†(ẋ− h)+ψ†(λ̇− fx + hxλ)]dt

(7.69)
Ie. we have added the constraints of the state dynamics and ad-
joint state dynamics with accompanying lagrange multipliers to the
gradient of F wrt. a (eq. 7.68). The second order adjoint method
will be swiftly derived and then the equations and implementation
considerations will be commented on.

The derivation simply follow the same approach used for the first
order method, namely that we consider the variation of Ga wrt. p:

dpGa =∂xLadpx(T) + ∂pLa +
∫ T

0
(∂x fadpx + ∂p fa − ∂x(haλ)dpx − ∂p(haλ)− hadpλ)dt

− ∂p(gaλ(0))− gadpλ(0)

+
∫ T

0
ϕ†(dp ẋ − ∂xhdpx − ∂ph)dt

+
∫ T

0
ψ†(dpλ̇ − ∂x fxdpx − ∂p fx + ∂x(hxλ)dpx + ∂p(hxλ) + hxdpλ)dt
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and18 partially integrate the terms with dp ẋ and dpλ̇: 18 Note that terms such as ∂x(haλ)
and ∂p(haλ) are written like this
even though the only explicit x and p
dependence exists in ha. The reason
for this is to keep the matrix calculus
notation where eg. ∂p(haλ) is a matrix
with dimensionality:

dp [(Na × Nx)(Nx × 1)] = Na × Np

and ∂p(ha)λ would not make sense
wrt. the matrix notation.

∫ T

0
ϕ†dp ẋdt = ϕ†dpx|T0 −

∫ T

0
ϕ̇†dpxdt∫ T

0
ψ†dpλ̇dt = ψ†dpλ|T0 −

∫ T

0
ψ̇†dpλdt

Collecting terms wrt. dpx and dpλ yields:

dpGa =(∂xLa + ϕ†)|Tdpx(T)

− ϕ†(0)dpx(0)

+ ψ†(T)dpλ(T)

+ (−ga − ψ†(0))dpλ(0)

+
∫ T

0
(∂x fa − ∂x(haλ)− ϕ̇† − ϕ†∂xh − ψ†∂x fx + ψ†∂x(hxλ))dpxdt

+
∫ T

0
(−ha − ψ̇† + ψ†hx)dpλdt

+
∫ T

0
(∂p fa − ∂p(haλ)− ϕ†∂ph − ψ†∂p fx + ψ†∂p(hxλ))dt + ∂pLa − ∂p(gaλ(0))

Where, by definition:

dpx(0) = ∂pg(p, a) (7.70)

dpλ(T) = −∂xLxdpx(T) (7.71)

Consequently, one can choose ϕ† to follow the final value problem:

ϕ̇† = ∂x fa − ∂x(haλ)− ϕ†∂xh − ψ†∂x fx + ψ†∂x(hxλ) (7.72)

ϕ†(T) = −∂xLa + ψ†(T)∂xLx (7.73)

and ψ† to follow the initial value problem:

ψ̇† = ψ†hx − ha (7.74)

ψ†(0) = −ga (7.75)

Such that the gradient is given by:

dpGa = ∂pLa − ∂p(gaλ(0))−ϕ†(0)∂pg+
∫ T

0
(∂p fa − ∂p(haλ)−ϕ†∂ph−ψ†∂p fx +ψ†∂p(hxλ))dt

(7.76)
This looks more complicated than it is in most cases because it is
written up in generality. The calculations will be simplified if eg.
f = 0 or ∂pg = ∂ag = 0 and so on. An example that is not too
complicated is considered in sec. 7.2.2.

The ψ(t) of eq. 7.74 and 7.75 is simply the forward sensitivity
method:

ψ(t) = −dax(t) (7.77)

The minus sign is due to the sign of the initial value constraint
x(0)− g(p, a) = 0 and it would be possible to absorb the minus sign
into ψ for it to be exactly equal to the forward sensitivity method.

This also means that ψ is a matrix of dimensionality Nx × Na,
which also applies to the ϕ of eq. 7.72 and 7.73.19 However, ϕ(t) 19 The dimensionality is already

apparent from when they were
introduced to the Lagrangian. Ie.
Na × 1 = (?×?)(Nx × 1) must mean ϕ†

and ψ† are of dimensionality Na × Nx
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is not as easily interpreted as ψ(t), instead it is instructive to focus
on how the equations are applied in practice. The thing to notice is
that ψ(t) is given by an initial value problem, where eq. 7.74 is only
dependent on ψ and x so it is possible to solve these simultaneously by
a forward evolution, in accordance with ψ simply being the forward
sensitivity method. Next, both ϕ and λ are given by final value
problems and can be solved simultaneously evolving backwards in
time. This means that second order derivative information is achieved
by a single forward and a single backwards evolution. The practical
implementation will now be summarized:

• The forward evolution is done simultaneously for x and ψ, so by
using an ODEsolver, x(T) and ψ(T) is found from:

dt

[
x(t)
ψ(t)

]
=

[
h(x, p, a, t)
∂xhψ − ∂ah

]
with

[
x(0) = g(p, a)

ψ(0) = −∂ag(p, a)

]
(7.78)

• Next, the final values of λ and ϕ are prepared:[
λ(T)
ϕ†(T)

]
=

[
−Lx

−∂xLa + ψ†(T)∂xLx

]
(7.79)

• Then it is possible to calculate both the first order and second order
derivatives by evolving everything backwards simultaneously. That
is, consider the evolution of the augmented state:

dt



x(t)
ψ(t)
λ(t)
ϕ†(t)
∇a(t)
∇p(t)
∇∇(t)


=



h
∂xhψ − ∂ah

fx − hxλ

∂x fa − ∂x(haλ)− ϕ†∂xh − ψ†∂x fx + ψ†∂x(hxλ)

∂a f − λ†∂ah
∂p f − λ†∂ph

∂p fa − ∂p(haλ)− ϕ†∂ph − ψ†∂p fx + ψ†∂p(hxλ)


(7.80)

with ∇a(T) = ∇p(T) = ∇∇(T) = 0 all the final values are given
and the augmented state is evolved backwards in time.

• The respective gradients are then found by:

dpF = ∂pL −∇p(0)− λ†(0)∂pg (7.81)

∂aF = ∂aL −∇a(0)− λ†(0)∂ag (7.82)

dp(∂aF)† = ∂pLa − ∂p(gaλ(0))− ϕ†(0)∂pg −∇∇(0) (7.83)

such that eq. 7.64 can be evaluated.

It is instructive to consider an example, and in the context of the
system considered in this thesis, namely the superconducting qubit
denoted the DSFQ (eq. 4.23), the following robust QOC problem is
posed.20 20 In the notation of this section,

the following example contain the
simplifications:

g(p, a) → g(a)

L(x(T), p, a) → L(x(T), a)

f (x(t), p, a) → 0

The f ̸= 0 case will also be treated in
the appendix 10.4.2
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7.2.2 Robustness against external flux noise.

Take the Hamiltonian of eq. 4.23 and consider noise in the external
flux parameter Φext → Φext + δΦext. Let p be an arbitrary set of
parameters excluding Φext while the only noisy environment variable
is the external flux a = Φext.21 In fact a should refer to the dimension- 21 It would be interesting and rather

simple to also add EJ and perhaps the
control parameter αmin to a, however,
this did not make it into the thesis.

less external flux ϕext = 2πΦext/Φ0 but to evoke the idea of magnetic
flux Φ is used in the following, where the subscript "ext" is omitted
for brevity. Write the Hamiltonian of eq. 4.23 as:

H(p, Φ, t) = H0 + Hα(Φ)α(p, t) + Vu(p, t) (7.84)

with Hα(Φ)
.
=

−EJ
2
(
eiΦ A ⊗ A† + e−iΦ A† ⊗ A

)
if working in the charge

basis as defined in section 5.1.1.
The transfer of |0⟩ to |1⟩ will be considered for simplification of

the derivation, but it is straight forward to expand the following to
consider a loss function dependent on both computational states, as
described in section 7.1.3. Again, the initial conditions are defined
from the eigenvalue equation:

(H0 + Hα(Φ))ψi(Φ) = Ei(Φ)ψi(Φ) (7.85)

Such that the initial conditions are dependent on Φ

x(0) = g(a) = ψ0(Φ) (7.86)

The dynamics are simply governed by the Schrödinger equation:

h(x, p, Φ, t) = −iH(p, Φ, t)x(t) (7.87)

The objective function is the infidelity of the state transfer:

F(x, p, Φ) = L(x(T), Φ) = 1 − x(T)†ψ1(Φ)ψ1(Φ)†x(T) (7.88)

The robust objective function is:

L̃ = L(x(T), Φ) + m|∂ΦL| (7.89)

The gradient of the first term dpL (along with ∂ΦL) is calculated by:22 22 The last two terms of eq. 7.93 are the
∂a L and −λ†(0)∂ag terms of eq. 7.82.

λ(T) = ψ1(Φ)ψ1(Φ)†x(T) (7.90)

λ̇ = −iHλ (7.91)

dpL = −2
∫ T

0

[
Im

(
λ† Hαx

)
∂pα + Im

(
λ†Vx

)
∂pu

]
dt (7.92)

dΦL = −2
∫ T

0
Im

(
λ†H′

αx
)

αdt + 2Re
(

x†(T)ψ′
1ψ†

1 x(T)
)
− 2Re

(
λ†(0)ψ′

0

)
(7.93)

Where23 H′
α

.
=

−iEJ
2
(
eiΦ A ⊗ A† − e−iΦ A† ⊗ A

)
in the charge basis 23 In operator form:

H′
α = EJ sin(ϕ̂1 − ϕ̂2 + ϕext)and ψ′

i is found from differentiating the Schrödinger equation:

ψ′
i = ∑

n ̸=i

ψ†
n H′

Φψi

Ei − En
ψn with ψ†

i ψ′
i = 0 (7.94)
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The gradient of the second term is found as:

dp (m|∂ΦL|) = sign(∂ΦL)mdp(∂ΦL) (7.95)

and calculated by:

ϕ(T) = (ψ1ψ′
1

† + ψ′
1ψ†

1)x(T)− ψ1ψ†
1ψ(T) (7.96)

ϕ̇ = −iHϕ − iαH′
αλ (7.97)

ψ(0) = −ψ′
0(Φ) (7.98)

ψ̇ = −iHψ + iαH′
αx (7.99)

dp(∂ΦL) = −2
∫ T

0

[
− Im

(
x† H′

αλ
)

∂pα

+ Im
(

ϕ† Hαx
)

∂pα + Im
(

ϕ†Vx
)

∂pu

+ Im
(

ψ†Hαλ
)

∂pα + Im
(

ψ†Vλ
)

∂pu
]

dt

(7.100)

This is the first example of an application of theory established in
section 7.2.1, so it instructive to clarify where each term comes from.
The two terms in eq. 7.96 are from −(∂xLa)† and (∂xLx)†ψ(T) respec-
tively.
The two terms in eq. 7.97 come from −hxϕ and −(∂x(haλ))†, the last
of which is calculated through the use of:

∂x(haλ) = ∂x(iαx†H′
αλ) = (iαH′

αλ)† (7.101)

The next equation is of course just −ψ′
0(Φ) = −∂ag with eq. 7.99

being the forward sensitivity method, up to a sign. The terms in eq.
7.100 are from −∂p(haλ), −ϕ†∂ph and ψ†∂p(hxλ) of eq. 7.83

With the approach of defining augmented states and evolving back
and forwards in time using ODEsolvers being described multiple
times, it should be apparent by now how to implement gradient-
based optimization techniques for solving QOC problems, where the
derivatives are calculated efficiently to second order by the adjoint
method.

In this thesis, several QOC problems are posed and treated with
this approach, the result of which are presented in the following
section.



8 Results

The foundation for actually carrying out the optimization of QOC
problems have been laid out in the previous chapters. We are now
at a point where we can consider different QOC problems each with
their own non-trivial aspect.

As previously stated, the system that is considered is the super-
conducting qubit denoted DSFQ (eq. 4.23). The system dynamics are
simulated to a high accuracy (with significant digits at the ∼ 10−8

level)1 using ODEsolvers 5.2.2 and a sufficiently precise representa- 1 Arguments for this statement is
provided in appendix 10.2.1tion, which in this case works out to be the charge basis 5.1.1 with

nmax = 8 resulting in (2nmax + 1)2 = 289 basis states. All the quoted
fidelities are for simulations of the closed quantum system. For a
discussion of how the openness would affect the fidelities see section
5.3.

The different QOC problems will now be presented and discussed
in a sequential manner.

8.1 Optimized DRAG swap-gate

As a first example of quantum optimal control, a simple optimization
problem is considered. We wish to construct a swap-gate in a finite
time T = 30ns for the system described in section 4.3.1. The objective
function is therefore given by eq. 6.2.

A rather high fidelity can be achieved by a pulse that comes from
analytical means and human tuning and this result will be considered
the baseline solution. The time dependence of α is given by eq. 6.21,
and in the case of the baseline solution, the pulse is parametrized as
eq. 6.22, with parameters given by p0 in table 8.1. The amplitude and
driving frequency is included as the following scaled parameters, in
order to be more interpretable:

Parameter p0 psemi-opt popt

Tr 2 2 1.8096
Ta 10 10 10.1514
αmin 0.7 0.7 0.726536
φ 0 0.5418 2.8197
f 0.9778 0.9763 0.9719
Ã 1 1.01556 1.0167
λ 0 0.05289 0.0357

Infidelity 9.722 · 10−5 2.905 · 10−5 4.049 · 10−6

Table 8.1: Table of param-
eter values. See sec. 6.4
and fig. 6.5 for a clarifica-
tion of the parameters. The
Tp found there is fixed by
2Ta + 2Tr + Tp = T = 30ns.
The green color refer to the fact
that the parameter has been
optimized. The infidelity refer
to the swap infidelity defined
by eq. 6.2.

Ã ≡ A
(

π

|⟨1αmin |n̂|0αmin⟩|(Tp − Tr)

)−1
(8.1)

f ≡ h̄ωd
E1,αmin − E0,αmin

=
ωd
ωq

(8.2)

where Ã = 1 is an analytical pi-pulse and f measures the driving
frequency ωd relative to the qubit frequency ωq. This is advanta-
geous because ωq is dependent on αmin, since (H0 + αminHα)|nαmin⟩ =
En,αmin |nαmin⟩.
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For the baseline only the parameter f is scanned rather crudely
and chosen to four digits. From this set of parameters an optimization
procedure is initialized, which can adjust the highlighted parameters
of table 8.1, yielding the psemi-opt column. The pulse is parametrized
as the DRAG-pulse given in eq. 6.24.

Lastly, a second optimization procedure with three additional
parameters is intialized from psemi-opt yielding popt. A comparison
between the baseline pulse and the optimized drag pulse popt is made
in figure 8.1. What is plotted in the top figures is the spectral weight

(a) Baseline swap gate (p0 of table 8.1) (b) Optimized DRAG pulse swap gate (popt)
Figure 8.1: Visualization of the
control functions α(t, p⃗) and
u(t, p⃗) (bottom row) and the re-
sulting dynamics expressed as
the spectral weight wrt. the in-
stantaneous basis of sec. 5.1.2
(top row) for p0 (a) and popt (b)
respectively. The fidelity refer
to the swap fidelity ie. 1− Lswap

with Lswap that of eq. 6.2.

of the state initialized as ψ(0) = |0α=1⟩ as a function of time. The
|ψ0|2 refer to the absolute square of the projection of ψ(t) on to the
zeroth eigenstate of the Hamiltonian H0 + α(t)Hα, that is the ground-
state of the Hamiltonian at that instant. Simply said, what is plotted
is the absolute square of the projection on to the instantaneous basis
(as defined in section 5.1.2). Leakage simply refers to the amount of
spectral weight that is not contained in the computational space.

The notable feature is that the gate-fidelity is largely determined
by the leakage at time T and clearly this is lower for the optimized
pulse, in accordance with the lower gate-infidelity as quoted in table
8.1. The reason that popt is not too different from p0 is because the
initialization p0 is already near a minimum.

A slightly less trivial QOC problem is that of finding a fast high-
fidelity gate. This problem is treated in the next section.

8.2 Fast DRAG swap gate

Firstly, one should define the desired toleration to the trade-off be-
tween the speed of the gate and the fidelity of the gate, since these are
mutually competing. To this end, one could define the QOC problem
as "find the fastest gate that is below some threshold infidelity", where
one would have to decide one a threshold.

Nevertheless, one way to go about solving this QOC problem,
would be to do an optimization procedure, as in section 8.1, for
different fixed T’s and thereafter choosing the fastest solution that is
also below the threshold in gate-infidelity. Another method, which
is straight forward in this "continuous time" framework, is to let the
optimizer minimize the gate time, which would then be a continuous
parameter, in addition to the gate-infidelity. The objective function
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will thereby consist of two terms. One term that minimizes the gate
infidelity, and a term that minimizes the gate time. Whenever multiple
terms are present in the objective function, it is important to give
each term suitable weights. These weights may depend on the value
of the terms themselves and this can be quite advantageous [105].
This is also done here, where the gate-time objective is weighted by
a function of the infidelity. The weight function is chosen such that
when the infidelity is large, the gate-time term is near zero and the
minimizer will focus on getting the infidelity low. Then, when the
infidelity is low enough this weight increases until reduction of the
gate-time is the most important objective. The weighting function can
be rather arbitrary, but the wanted attributes are accomplished with
the definition as seen in figure 8.2, namely:

Figure 8.2: Example of a suit-
able weighting function for the
QOC problem that consists of
minimizing the gate-time in
addition to the gate-infidelity.

w(L) =
ln(L)4

75 · 105 (8.3)

The total objective function with the gate-infidelity defined by eq. 6.2
is then:

L = Lswap + w(Lswap)T (8.4)

The calculation of the gradient of such an objective function is de-
scribed in section 7.1.5 and succinctly given by eq. 7.44.2 The op- 2 The only noteworthy effect is perhaps

that the final value of the adjoint state
is:

λ†(T) = −∂xL = (1+w′(Lswap)T)∂x Lswap

but this is simply given by the defini-
tion, so it is nothing new.

timization procedure was initialized from psemi-opt and yielded the
result stated in table 8.2. The pulse and the corresponding simulation
is visualized in figure 8.3.

Figure 8.3: Visualization of the
resulting control functions and
associated simulation of pfast,
when employing eq. 8.4 as a
loss function with an initializa-
tion from psemi-opt. The parame-
ter values of pfast can be found
in 8.2. Note the resulting gate
time of only 11.9157ns

Note the gate-time of T ∼ 11.9ns as opposed to the T = 30ns of
the pulses in sec. 8.1 while still achieving a gate fidelity of ∼ 99.8%.
This is of course a rather low fidelity and in practice the infidelity
threshold would be set a little lower, resulting in a longer gate but
with higher fidelity. However, it is not immmediately clear where the
choice of threshold infidelity was made, but it is somehow related to
the weighting function w(L).

Parameter pfast

Tr 1.517
Ta 1.7006
Tp 5.4799
T = 2Ta + 2Tr + Tp 11.9157
αmin 0.65459
φ 0.0326
f 0.928
Ã 1.285
λ −0.4366

Infidelity 1.69 · 10−3

Table 8.2: The optimized pa-
rameter values of pfast that is
visualized in fig. 8.3

In order to understand this threshold and investigate the usefulness
of optimizing for both gate-fidelity and gate-time simultaneously, a
scan was made across the gate-time. That is, for different fixed gate
times T, an optimization procedure akin to section 8.1 was made, just
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as the first method mentioned in the beginning of this section. This
yields the green dots in figure 10.4.

Then, for the objective function in eq. 8.4 to be near a minimum,
the following must hold:

Lswap ≃ w(Lswap)T (8.5)

because either w(Lswap) ≃ 0 which means the fidelity is too bad
and needs first to converge or w(Lswap) ≫ Lswap in which case it
would reduce the gate-fidelity by decreasing the gate-time. So, we
can regard:

Lswap + w(Lswap)T = O(Lswap) where O(L) ∈ [10−0.5L, 100.5L]
(8.6)

as a relation that gives the minima of Lswap as a function of T. This
is shown as the red-band in figure 10.4 for the w(L) given by eq. 8.3
and as grey bands for w → w(L)/10n for n ∈ {1, 2, 3, 4}

Figure 8.4: The green dots
correspond to 5 different QOC
problems akin to the one of
sec. 8.1 but with T fixed to
{10, 13, 15, 20, 30}ns respec-
tively. The dark blue dot corre-
sponds to a minimization of eq.
8.4 initialized from T = 30ns
but with T now tuneable. It is
argued that the minimization
procedure automatically finds
the crossing of the red band
and the interpolation between
the green dots, and therefore
the fastest possible gate for the
given infidelity threshold.

For a chosen weighting function, min(L) must then lie on the ac-
companying band. We see that the optimization procedure automati-
cally finds the shortest pulse that obey this relation, since it lies almost
directly at the cross-over between the red-band and the interpolation
between the closest green-dots, which indicate the best achievable
fidelity for that gate-time (and the given model-parameters/pulse-
parametrization). It is then clear, that if a lower gate-infidelity is
wanted, we could have chosen the weighting function w → w(L)/103

which probably would have yielded a gate time T ≈ 17ns with gate-
infidelity of ≈ 10−5. Ie. it is argued that one simply defines the
wanted gate-infidelity by choosing a suitable weighting function and
this optimization procedure will automatically find the shortest pulse
that achieves the wanted gate-infidelity.

8.3 Non-commuting swap gates

So far, only swap-gate synthesis has been considered through the
use of the objective function 6.2. To illustrate the capabilities of
synthesizing any single-qubit gate, the QOC problem of finding two
orthogonal swap-gates will now be treated.

The initial need to formalize the objective function as 6.2 instead
of as 6.3 with, say, Utarget = σx is because the latter is dependent on
the choice of gauge, ie. the orientation of the coordinate system of
the Bloch-sphere. One way to fix the gauge, is to first optimize for a
swap-gate. The energy-eigenstates are then determined numerically
once on the machine. This may yield an arbitrary gauge, such that the
resulting unitary evolution, in general, has small complex numbers
along the diagonal and two complex numbers, with different phases
along the off-diagonal:

Parameter pσy

Tr 2
Ta 10
αmin 0.7
φ 1.841
f 0.9985
Ã 1.040
λ −0.2772

Gate infidelity 4.235 · 10−5

Table 8.3: Parameter values for
pσy . The X-gate is given by
pσx = psemi-opt of table 8.1. Gate
fidelity refers to eq. 6.3 for
which 1 ≤ Lgate/Lswap. How-
ever, due to rounding of the
swap fidelity, this is not exam-
inable.

(
⟨0|ψ0(T)⟩ ⟨0|ψ1(T)⟩
⟨1|ψ0(T)⟩ ⟨1|ψ1(T)⟩

)
=

(
δ1 |z1|eiϕ1

|z2|eiϕ2 δ2

)
(8.7)
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The x- and y-axis of the coordinate system of the Bloch-sphere can
then be defined as:

σ̃x ≡
(

0 e−i ϕ2−ϕ1
2

ei ϕ2−ϕ1
2 0

)
, σ̃y ≡

(
0 −ie−i ϕ2−ϕ1

2

iei ϕ2−ϕ1
2 0

)
(8.8)

The objective function 6.3 together with σ̃y can be used to find a
swap-gate that is orthogonal the original swap-gate. The resulting
evolution on the Bloch-sphere of the two pulses is visualized in figure
8.5

Figure 8.5: Evolution on the
Bloch sphere in the rotating
frame, with the x-axis and the
red trajectory given by the evo-
lution with psemi-opt. The green
trajectory is evolution of the op-
timized Y-gate given by pσy

Evidently the two pulses constitute a rotation along the x- and
y-axis respectively. Coincidentally the y-rotation is along the negative
y-direction, this is due to the objective function still being agnostic
towards ±Utarget.3 The pulse parametrization is still given by the

3 This has no practical consequences,
and in this case one could simply let
−y → x and x → y in fig. 8.5 in order
to quote the swap-gates as rotations
along the positive x and y axis.

DRAG parametrization of eq. 6.24. The optimization procedure was
initialized from psemi-opt which also plays the role of the swap-gate
that fixes the gauge and thereby become the designated X-gate. The
resulting optimized parameters pσy for the Y-gate are listed in table
8.3. The pulses and the corresponding simulations are visualized in
figure 8.6

(a) X-gate (psemi-opt) (b) Y-gate (pσy )
Figure 8.6: Visualizations of the
control functions and accompa-
nying simulations for the X-gate
defined by psemi-opt and the Y-
gate (defined by pσy ) found by
optimization of eq. 6.3 with
Utarget = σ̃y initialized from
psemi-opt. The fidelities refer to
the swap-fidelity.

The gates implemented so far have relied on the lowering of α

which increases the overlap between the computational states and
allows for state transfer. In the next section a swap gate that relies on
higher lying states is treated, because the barrier will be kept in the
protected regime α(t) = 1 during the gate.

8.4 Swap gate for qubit in protected regime

As seen from the coherence times 5.4 the T1 time is greatly reduced
when lowering the barrier by decreasing α. Therefore, it could be in-
formative to investigate how well a pulse can send the computational
basis above and across the barrier and thus implement a swap gate
for a qubit in the protected regime. For this the interpolation method
pulse parametrization of section 6.4.3 is used.4 It was parametrized 4 The DRAG-pulse is too simple to

achieve this and also one of the key
motiviations of deriving the adjoint
method was so one would have the
ability to optimize for a lot of control
parameters.

by 200 parameters spaced evenly across the 30ns and a simple mecha-
nism5 to ensure that the pulse started and ended with a value of zero

5 It could either be an envelope func-
tion as in the case of eq. 6.23 or let the
tuneable parameters span the duration
[0 + ∆T, T − ∆T] with the outermost
parameters forced to stay zero.

(u(0) = u(T) = 0). An initialization of u(t) = 0 will be hard for the
optimizer to work with since the objective function would have next to
no dependence on the parameters. Other initializations are available,
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such as a u(t) = 1 or similar. Instead a random parametrization was
used with pi ∼ U(−0.5, 0.5), where U is the uniform distribution.

Figure 8.7: Optimized pulse for
a swap gate, parametrized by
the interpolation method of sec.
6.4.3 with a sampling rate of
200/30ns = 6.7GHz. The evolu-
tion of the computational states
can be seen as utilizing the 4th
and 5th excited state in order to
shoot over the barrier.

The objective function was simply Lswap of eq. 6.2 which yielded the
result seen in figure 8.7 The spectral weight of ψ4 and ψ5 is plotted
alongside the computational basis, because these are the lowest lying
states with non-negligible overlap wrt. the pulse-coupling operator
⟨i|n̂|j⟩ (see figure 8.8).

(a) Wavefunctions in ϕ basis. (b) Matrix ele-
ments

Figure 8.8: (a) The wavefunc-
tions of the DSFQ (eq. 4.23) for
α = 1 along the ϕ = (ϕ1 −ϕ2)/2
mode. (b) show why the 4th and
5th excited state is utilized.

The spectral weight as a function of time is easy to interpret. As
seen in fig. 8.7 the |0⟩ state is semi-transferred to a higher-lying state
in the same well. Then it is transferred across to the other well, and
then transferred to the |1⟩ state, loosely speaking.6 It also spends

6 See the appendix figure ?? for an
even clearer example.

some time outside these necessary states, with an average spectral
weight of 0.071 during the 30ns. This can be lowered to 0.015 as done
in appendix 10.4.2 by the addition of 6.6 to the objective function,
with the allowed states being the 4th and 5th states in addition to the
computational basis.

A fourier analysis of the pulse yields the spectrum seen in figure
8.9 which is compared to the transition frequencies ωij = (Ei − Ej)/h̄.
Evidently the ω41, ω40 and ω54 frequencies are largely present in the
pulse. Also shown in figure 8.9 is the time-averaged spectral weight

Figure 8.9: Top row: Fourier am-
plitudes of the pulse in figure
8.7 compared to the transition
frequencies ωij. Bottom row:
spectral weight distribution of
both the final state after the evo-
lution and the temporal mean
of the state during the evolu-
tion. This showcase the need for
a large Hilbert space in order to
capture the dynamics faithfully.

for the different energy levels and also the final spectral weight
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distribution of the state initialized as |0α=1⟩. This showcase the need
for rather large Hilbert spaces for faithful representations as argued
in section 5. For all the results presented a Hilbert space dimension
of at least 289 was chosen as a suitable compromise between speed
and accuracy. The spectral weight distribution also indicates that
this is adequate up to the number of significant digits quoted for the
fidelities.

Keeping with the idea of leveraging the capabilities of the adjoint
method to optimize more than a handful parameters, a less trivial
pulse will now be considered on the same QOC problem of sec. 8.1

8.5 Arbitrary Waveform Generated-pulse swap gate

In order to investigate the limit of the single qubit-gate fidelity of the
given qubit model, and simultaneously exploit the effectiveness of the
adjoint method, a pulse with more parameters was optimized. The
idea is the same as in sec. 8.1, in that the barrier is lowered linearly
and a pulse is applied. However, now the pulse is parametrized
just as in the case of section 8.4 described in section 6.4.3 but with
a time-varying α(t) (eq. 6.21). It was initialized from u(t) = 0
and αmin = 0.55 which, in contrast to sec. 8.4, is possible due to the
lowering of the barrier introducing a slight overlap and thus an adjoint
state different from zero, allowing for non-zero initial gradients. The
pulse is only applied during the time from 10ns to 20ns, ie. Ta = 10ns
was fixed during the optimization.7 So the only tuneable parameters 7 This was done for simplicity but

one could just as well have let Ta be a
parameter, which would have necessi-
tated even more pulse parameters and
thus a further showcase of the strength
of the adjoint method. Alas this was
not done.

was the 50 parameters of the interpolation method for the pulse and
αmin for α(t). The optimized pulse and accompanying simulation is
visualized in figure 8.10 (a). The pulse is rather non-trivial and the
fidelity of the swap-gate is again limited by the leakage at time T. In

(a) Optimized arbitrary pulse and accompanying evolution. (b) Robustness to ϕext
Figure 8.10: (a) Optimization of
an arbitrary pulse parametrized
as in sec. 6.4.3 with a sampling
rate of 50/10ns = 5GHz initial-
ized as u(t) = 0. The dura-
tion of the pulse was fixed to
10ns but the αmin parameter re-
mained tuneable and was initial-
ized with a value of 0.55. (b)
Shows the large sensitivity of
the swap fidelity to the value of
the external flux for this pulse.

anticipation to the next section, concerning robustness, the sensitivity
of the fidelity of the swap-gate to the external flux parameter is shown
in figure 8.10 (b). The sensitivity is measured by intializing a new
system for each ϕext and just applying the same scalar functions α(t)
and u(t) for each system and measuring the resulting swap-fidelity. It
is clearly optimized for the value ϕext = 0.995π that was used during
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optimization and the fidelity falls off quickly with deviations from
this value.8 A discrepancy in the external flux of only 5 · 10−4Φ0 8 It goes approximately as ∼ 104∆ϕ2

ext,
also recall that ϕext = 2πΦext/Φ0brings the fidelity down by 4 orders of magnitude. It should be noted

that this is at least just as bad for other parametrizations (see appendix
fig. 10.6). In experiment the flux noise amplitude [59] is on the order
of 1.4 ± 0.2µΦ0 ie. ∼ 1/500th of what is of concern here.

Nevertheless, it is useful to consider gates that will be insensitive
to the specific model parameters since these will fluctuate at some
level. This is done in the following section.

8.6 Robustness to external flux variation

There are several ways to go about producing robust pulses two of
which have been laid out in section 6.5. These methods pose QOC
problems that rely on information about the loss landscape wrt. the
noisy parameters in order to promote robust solutions. Both methods
will be applied in the following. The only noisy parameter for which
insensitivity is pursued is the external flux, but at least the first
method would be able to also consider insensitivity to eg. αmin and
EJ variations in addition to noise in ϕext. Noise in the external flux is
related to dephasing of the qubit as the qubit frequency is practically
linear in ϕext within reasonable ranges [58].

8.6.1 Derivative information method

The first method rely on the gradient information of the loss land-
scape, to approximate the sensitivity of the objective function wrt. the
fluctuating parameter, as described in section 6.5. To this end second
order derivatives are desired and the second order adjoint method
calculates these efficiently. The objective function employed consists
of the extension of the objective function in eq. 7.89 to consider the
evolution of both computational states:

L = Lswap + m|∂ϕext L
swap| (8.9)

Similarly, with the simple extensions described in sec. 7.1.3, the
gradient calculations can be done by eq. 7.90 - 7.100.

The parametrization is exactly the same as in sec 8.5 and with
the same initialization, the only difference is the objective function.
The optimization procedure yielded the result seen in figure 8.11

(a). An new curve is added to the plot for the pulse, which show
that the pulse is completely anti-symmetric u(t) = −u(−t). This
is in accordance with the results obtained in [106] for which anti-
symmetry of the pulse yields protection to second order in ∆ϕext.
The insensitivity of the gate9 is verified in fig. 8.11 (b) and it can be 9 It should be noted that the metric

used only verifies that the gate still
correspond to a rotation in the xy-
plane of the Bloch-sphere. It does
not say anything about whether
two originally orthogonal gates
remain orthogonal when subject to
fluctuations. If the angle between
them change this would diminish the
applicability of the gates. Therefore,
the quoted metric is not the end all
be all when it comes to assessing the
robustness of the gate.

shown that the pulse is in fact protected to second order since it scales
as a quartic away from the minima at ϕext = 0.995π (see appendix
figure 10.8). However, the robustness comes at the cost of the minima
being worse. So the derivative information method has helped the
optimizer find a flat but slightly higher lying minima.
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(a) Optimized derivative-informed robust arbitrary pulse (b) Robustness to ϕext
Figure 8.11: (a) Shows the re-
sult of a QOC problem akin to
sec. 8.5 but with the objective
function given by eq. 8.9 which
promotes robust solutions. Note
the pulse is completely assymet-
ric which protects the gate to
second order in dephasing noise
as stated in [106]. This is ver-
ified in (b) where the gate in-
fidelity goes quartically in the
dephasing noise caused by fluc-
tuations in the external flux (see
also fig. 10.8 in the appendix)

In order to investigate how well it is possible to retrieve both a
flat and low-lying minima, the other less efficient but more accurate
method will now be considered.

8.6.2 Sampling method

As established in section 6.5 eq. 6.35 can be used to develop robust
controls. It is an inefficient procedure wrt. the number of uncertain
parameters, but otherwise the procedure is accurate since it makes
use of direct information of the loss sensitivity. Since only Φext fluctu-
ations will be considered, this approach is doable and will represent
the best achievable gate insensitivity to external flux variations.

The implementation works as follows. A control pulse is initial-
ized as previously with Ta = 10ns (which is fixed), αmin = 0.55
(to be optimized) and u(t) = 0 (parametrized as the interpola-
tion method with 50 tuneable parameters). These controls are ap-
plied on five different systems characterized by the their value of
ϕext ∈ {0.994, 0.9945, 0.995, 0.9955, 0.996}π which are propagated for-
ward in order to evaluate the swap-infidelity for each system. The
objective function is the mean of these 5 infidelities.

L =
1
5

5

∑
i=0

Lswap
i (8.10)

Note that it is a single control pulse that is applied to five different
systems. The results are visualized in figure 8.12. The pulse is highly
non-trivial, with none of the symmetry exhibited by the derivative in-
formed robust pulse. It should be noted that during the optimization
procedure, the pulse in fig. 8.12 started out being anti-symmetric with
vanishing area under the cover and only began deforming to the pulse
shown once the mean infidelity had hit ∼ 10−4.10 Therefore, the pulse 10 These two regimes correspond to one

third and two thirds of the training
time, respectively. A video can be
found in [107]

seemingly went beyond the analytical results of [106] and instead of
raising the order of the error-suppression O(∆ϕn

ext) simply focused
on lowering the scaling constants.11 It would thus be interesting to 11 The derivate informed pulse yielded

a quartic scaling of the infidelity to
∆ϕext whereas this method yields a
quadratic scaling but with a lower
scaling constant of ∼ 10 as oppossed
to the ∼ 104 of the non-robust pulse.

study this pulse in order to understand how the insensitivity arises
and how it may be applied in other circumstances.

As seen in fig. 8.12 (b) it provides even better insensitivity to the
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(a) Optimized sample-informed robust arbitrary pulse (b) Robustness to ϕext
Figure 8.12: (a) Shows the re-
sult of a QOC problem akin to
sec. 8.5 but with the objective
function given by eq. 8.10. This
method is less efficient but uti-
lizes more direct information
than the method of sec. 8.6.1
and therefore achieves better in-
sensitivity to fluctuations in the
external flux, with a gate infi-
delity below 10−4 for a large
range of external flux values.

value of the external flux, and represents the best attainable high-
fidelity robust swap-gate. This means there is room for improvement
for the derivative information method. It would be interesting to
investigate whether a varying m eg. as a function of swap-infidelity
as in sec. 8.2 would help the derivative informed method to obtain
an even better optimum. Since this perhaps could help steer the
anti-symmetric pulse of figure 8.11 into the form of fig. 8.12 by
promoting the complicated shape of figure 8.10. A result in this
regard can be found in appendix figure 10.7, where an initialization of
p ∼ U(−0.5, 0.5) was used instead of u(t) = 0 for the procedure of sec.
8.6.1. This lead to an asymmetric pulse which still doesn’t obtain the
same profile as the sampling method. It would therefore be interesting
to consider methods that somehow leverage the efficiency of the
derivative information method, while utilizing the high-information
content of the sampling method. One such method could be to
use the derivative information method, but for a system, where at
each step of the minimzer, the noisy parameter takes on a randomly
selected value. This also introduces stochasticity into the optimization
algorithm, which is something that has seen great applicability within
the Machine Learning community. However, this is left as a research
subject for future projects.

The end of this discussion concludes the results section.



9 Conclusion and further work

9.1 Conclusion

The work of this thesis relies on accurate simulation of the dynamics
governed by the Schrödinger equation, in order to accommodate the
gap between experiment and theory, such that the results obtained in
simulation may also be exhibited in experiment. This necessitates the
use of a large number of basis states in order to faithfully represent
the quantum system numerically. The evolution of the quantum
system is simulated using adaptive Runge-Kutta methods. These
sophisticated integration schemes are able to assess the simulation
error and consequently suppress the error to a prespecified threshold
and together with the faithful representation, this realized a high
number of significant digits for the results.

Estimation of the solutions to the diverse Qauntum Optimal Con-
trol problems are found through the use of Gradient-based optimiza-
tion techniques. The gradients of the objective function are best
calculated with the adjoint method, which is both memory efficient
and scales well in the number of tuneable parameters. The calculation
of both first and second order derivatives from the adjoint method
are derived using Lagrange multipliers. The second order derivatives
were used to efficiently treat robust QOC problems. The methodology
of the thesis remain agnostic to the qubit platform, and was therefore
only applied on a single example, namely that of the superconducting
qubit denoted the DSFQ.

The overall methodology was successful at realizing the desired
gates in simulation. The parameters for a DRAG-pulse corresponding
to a high fidelity gate was found and from a single optimization proce-
dure the pulse for the fastest gate with a fidelity above some prespec-
ified threshold was found. Additionally, two pulses corresponding to
two different non-commuting operators wrt. the computational basis
was found.

Utilizing a different pulse parametrization, which was not of si-
nusoidal form, a gate which flips the qubit state was realized in the
protected regime of the DSFQ by employing higher lying energy
states during the evolution.

Lastly, pulses which correspond to high fidelity robust gates was
found, where robustness refer to the fact that the gate fidelity was
insensitive to the specific value of the external flux of the system,
within a range of 10−3Φ0. The robust solutions were found by two

82
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different methods, namely an efficient derivative informed method
and a brute force sampling method, both of which were successful
at reducing the sensitivity of the gate fidelity to the slow-varying
fluctuations in the external flux.

9.2 Further Work

9.2.1 Adjoint method for stochastic differential equations.

The system was only simulated as a closed system and the ensuing
Quantum Optimal Control solutions were only developed in this
context. However, any physical qubit is an open system and should
be modelled as thus. This can generally be done by describing the
dynamics by a stochastic Schrödinger equation or using the density
matrix formalism. Therefor it would be necessary to be able to calcu-
late gradients for stochastic ODEs in order to employ gradient based
optimization techniques. To this, an extension of the adjoint method
can be made to include sensitivity analysis for stochastic ODEs [108].
Nonetheless, experimental application of software-defined pulses (ie.
pulses found by simulation) has been made and resulted in a high
fidelity of 99.4% showcasing the practical applicability of the work of
this thesis [109].

9.2.2 Model free data driven gradient based quantum optimal control

A more speculative but nonetheless interesting approach, is to con-
sider the derivation of section 7.1.3 where for simplicity we will now
only consider the determination of the pulse parameters. The gradient
of the fidelity of the state transfer from |0⟩ to |1⟩ is then:

dpL = −2
∫ T

0
Im(λ†Vx)∂pudt (9.1)

The point now, is that since the objective function is only dependent
on x(T), the adjoint state is given by the simple form of eq. 7.57,
namely:

λ(t) = U(t, T)λ(T) = U(t, T)|1⟩⟨1|x(T) (9.2)

This means, that the integrand is given by:

λ†(t)Vx(t) = x†(T)|1⟩⟨1|U(T, t)VU(t, 0)x(0) (9.3)

The point is that if it is possible to measure these entities on an
actual quantum device, it would be possible to use gradient-based
optimization techniques on a system of which you do not have to
know the specific Hamiltonian. However, it is not immediately clear
how one would measure the imaginary part of the integrand and one
would most likely have to know how to apply the operator V.

An effort in this direction have already been made by the so called
data-driven GRAPE method with an accompanying succesful applica-
tion in experiment. [110] [94]
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In view of eq. 9.3 the data-driven GRAPE method seemingly consti-
tute measuring the x†(T)|1⟩ term on the device while still numerically
estimating ⟨1|U(T, t)VU(t, 0)x(0) by simulation.

Therefore, the data-driven GRAPE approach consitute the half-way
point between the work of this thesis and a fully model free data
driven approach. However, the adjoint method is what underlies it all,
when it comes to calculation of the gradients, which is also referred
to as sensitivity analysis.

9.2.3 Two qubit QOC with MPS representation

The naive approach for doing quantum optimal control for two-qubit
gates would constitute working with a Hilbert space representation of
dimension (2nmax + 1)4 ∼ O(105) which is impractical to say the least.
Methods such as the instantaneous basis (sec. 5.1.2) seem promising
on paper, but even for single qubit systems, the representation seized
to capture the dynamics faithfully. A more sophisticated method for
reducing the representation to its most important constituents is that
of Matrix Product State Representations [111], which have already
inspired algorithms in the Machine Learning community that to deal
with high-dimensional problems [112] [113] [114].

This is a promising avenue for dealing with the problem of simu-
lating the quantum system and would help make it possible to do
QOC on two-qubit gate synthesis.



10 Appendix

10.1 Introduction

10.1.1 Brief overview of qubit platforms

Qubit Platform FSingle gate FTwo qubit gate Freadout T1 T2 T2,Dynamical Decoupling

Superconducting
qubits

99.97% (47)
(∼ 10 − 100ns) (48,49,45)

99.5% (47) 99.8% (47) ∼ 100µs(45) - ∼ 20 − 100µs (8,45)

Gate-defined
quantum dots

99.6%
(∼ 100ns) (147,148)

98% (∼ 200ns) - - - > 300µs (164)

Color centers 99.9952% (∼ 50ns) (204) 99.2% (∼ 1µs) (205) - - 1.8ms (231) -
Ion traps 99.9999%

(10ns − 5µs) (269)
99.9%
(0.5 − 100µs) (272,273)

> 99.9%(269,274-276) Practically unlimited - ≥ 1hour (270)

Table 10.1: Collection of the gate
fidelities and coherence times
quoted in [33]. The numbers in
parenthesis refer to the number
for the citation found in [33].

10.2 Simulating Quantum Systems

10.2.1 Estimation of number of signifcant digits.

Figure 10.1: Estimation of the
impact the choice of nmax in eq.
5.1 has on the simulation accu-
racy. A comparison is made
that shows that even for the in-
fidelities at the 6 digit level the
relative simulation error is con-
tained at the percent level. This
is also the case for all quoted fi-
delities, for which there was no
discrepancy between nmax = 8
used during the optimization
and the nmax ≥ 10 that was used
for the presentation of the final
result.

10.2.2 Learned representation
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Figure 10.2: Visualization of the
columns in U(θ) after normal-
ization and Gram-Schmidt or-
thogonalization for which the
columns then correspond to
wavefunctions. The amplitude
of the wavefunctions projected
on to the charge basis is shown.

10.2.3 Trotter decomposition

A theory of Trotter error is no trivial task [115] especially for time-
dependent Hamiltonians. The following constitute an estimation
made by the author, that is not necessarily well-founded in theory. It
is included here as a simple (perhaps dubious) example for inspiration
to more well-founded estimations of Trotter error.

Therefore, if anyone are inspired by the following to do the same,
they should do so at their own discretion. That being said, the method
returned sensible estimations which will now be presented.

For the preliminary estimation of N in eq. 5.40 a one-dimensional
version of the DSFQ Hamiltonian (eq. 4.23) will be considered.

H = 4ECn2
Q − 2EJ cos ϕ + α(t)EJ cos(2ϕ − Φext) (10.1)

The commutator of the Hamilton evaluated at different times is
wanted and with a rudimentary Poisson bracket method, one ar-
rive at:

[H(t1), H(t2)] = −ih̄42ECEJ(α(t1)− α(t2)) sin(2ϕ − Φext)nQ (10.2)

For T = 30ns, EJ = 2π10GHz and EC =
EJ

400 and if one assume that
"much less than one" (≪ 1) means "equal to 0.03" (= 0.03) and if we
assume the largest change in α is 1

2 , then:

N =
4TEJ

2
√

400 · 0.03
≈ 6283 (10.3)

With a control pulse the Hamiltonian becomes:

H = 4ECn2
Q − 2EJ cos ϕ + α(t)EJ cos(2ϕ − Φext) + u(t)nQ (10.4)
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Which yields:

[H(t1), H(t2)] = ih̄[42ECEJ(α2 − α1) sin(2ϕ−Φext)nQ + 2EJ(u2 −u1) sin ϕ+ 2(α2 − α1)EJ(u1 +u2) sin(2ϕ−Φext)]

(10.5)
There are different ways to assess the magnitude of the resulting
operator and these are usually related to the eigenvalues of the op-
erator. One way could (perhaps) be to add the largest eigenvalue
in quadrature and if it is assumed that u is of the order O(EJ) then
|u2 − u1| ∼ 2EJ ∼ u1 + u2, resulting in

N =
T

0.03

[√
(42ECEJ

1
2
)2 + (4E2

J )
2 + (2E2

J )
2

]1/2

=
TEJ

0.03

[(
8

400

)2
+ 20

]1/4

≈ 132874

(10.6)
Another way could perhaps be:

N =
T

0.03

[
42ECEJ

1
2
+ 4E2

J + 2E2
J

]1/2
=

TEJ

0.03

[
8

400
+ 6
]1/2

≈ 154162

(10.7)
But these yield approximately the same order of magnitude.

10.2.4 Programming Language

As already noted the progamming language Python has been em-
ployed for this thesis. However, during the thesis it was realized that
the progamming language Julia offered better methods in that in that
some of the desired functions was already implemented and most
importantly because it is much faster than Python, without being
more complex.

This is succinctly described by a GitHub repository made by Chris
Rackauckas [116] in which the figure 10.3 is contained. It should be

Figure 10.3: Citing [116] "Shown
are the timings relative to the
fastest method (lower is bet-
ter). For approximately 1 mil-
lion ODEs and less, torchdif-
feq was more than an order of
magnitude slower than Differen-
tialEquations.jl on every tested
problem, and many times sub-
stantially slower. Though note
that the relative performance of
torchdiffeq does increase as the
number of ODEs increases. Ad-
ditionally, torchdiffeq either ex-
hibited slower gradient calcula-
tions or the gradient calculation
diverged."

noted this comparison is made for calculation of derivatives using
an implemented adjoint method. These methods were not used for
the calculation of derivatives in this method. The adjoint method
was implemented by the author and can be found in [117]. This
is both because the extension to complex ODEs (as is the case for
the Schrödinger equation) remained elusive (at least for the torchdif-
feq package) and also because it was certain a second order adjoint
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method was needed which is not found in these libraries. The take-
away is thus, that Julia offered much faster ODEsolvers than python
and the ODEsolvers of Julia [118] was subsequently used.

10.3 The Adjoint Method

10.3.1 In the context of Quantum Optimal Control

One of the celebrated results of Optimal Control Theory is Pontrya-
gin’s Maximum Principle (PMP) [82]. Stated crudely, it is based on for-
mulating the optimization problem with constraints as a Lagrangian
through the use of Lagrange Multipliers. However, instead the Hamil-
tonian formalism is used, which is related to the Lagrangian by the
usual Legendre transformation. The PMP then provides a necessary
(not sufficient) condition for the maximization of this Hamiltonian
(called the pre-Hamiltonian). In essence, this is done by relating the
optimal control to both the state, whose dynamics are governed by
the system model at hand, and to the lagrange multiplier (which is
called the adjoint state below) whose dynamics are given by the PMP
as a final value problem. This is of course only possible under a set
of suitable conditions, which will not be discussed here since this
is only a brief overview of the established theory. However, these
conditions include a constraint on the control function. The optimal
control problem can then be solved by finding the initial value of
the adjoint state, instead of having to search the infinite dimensional
space of control functions. Following [119], consider as an example
the quantum system:

ψ̇ = −i(H0 + Vu(t))ψ with ψ(0) = ψ0 (10.8)

and the quantum optimal control problem of maximizing

F = ⟨ψ(T)|Ô|ψ(T)⟩ − α
∫ T

0
u2(t)dt (10.9)

where the hermitian operator Ô could be the projection operator onto
a target state, and the second term is the minimization of the control
fluence, a necessary constraint for the straight-forward application of
the PMP. By introducing the time-dependent lagrange multiplier λ(t),
the lagrangian is formed:

L = ⟨ψ(T)|Ô|ψ(T)⟩+
∫ T

0

(
−αu2(t) + 2Re

[
λ†(ψ̇ − i(H0 + Vu(t))ψ)

])
dt

(10.10)
Applying the PMP then yields:

λ̇ = −i(H0 + Vu(t))ψ (10.11)

λ(T) = Ôψ(T) (10.12)

αu(t) = Im
[
λ†(t)Vψ(t)

]
(10.13)

such that finding the optimal control u(t) constitutes solving eq. 10.11

to 10.13 together with 10.8 for λ(0). However, as proven in [119], the
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inclusion of the constraint comes at the cost of complete controllability,
in the sense that α ̸= 0 means that a 100% overlap cannot be achieved
(in the case of O = |ψ1⟩⟨ψ1|)

Instead of using constrained controls, a weak-PMP can be formu-
lated, for which the optimum condition of the PMP is switched out
with an extremum condition instead. This leads to gradient-based
optimization techniques such as the GRAPE algorithm [99]. However,
GRAPE seems to be inherently discrete and only to first order, so
instead focus of this thesis is on the adjoint method in the continuous
context for which no ∆t approximation is needed.

10.3.2 The adjoint state as a term in the objective function

The first encounter by the author of the "linearization of the worst-
case scenario" approach (mentioned sec. 6.5) was in [120] and [121] in
which case the norm of the adjoint state itself is added to the objective
function. Since the adjoint state in the case of an objective function
(not functional, see eq. 7.45) this augmentation promotes insensitivity
of the loss to the initial state of the solution to Schrödingers equation
and in this sense, it seems insensible to adopt this strategy to robust
Quantum Optimal Control. Nonetheless, it is worthwhile mentioning,
since it may be that there exists sensible ways of augmenting the
objective function by the adjoint state, which would prove useful. At
any rate, it would be worthwhile to consider.

10.3.3 Robustness methods

Barnes et. al [106] describe an analytical tool for analyzing and
producing pulses that are robust with regards to dephasing. The
robustness is interpreted from complex-valued curves but to second
order they usually lead to anti-symmetric pulses or symmetric pulses
with zero area. In section 8.6 a noise in the external flux is considered
and this is related to dephasing of the system. Therefore, as already
mentioned, it is interesting to note that the resulting pulse in figure
8.11 is also anti-symmetric.

The derivative method described in [86] focus on also minimizing:∫ T

0
∑

i
|⟨∂ai ψ(t)|∂ai ψ(t)⟩|

2dt (10.14)

in order to produce robust pulses, where |∂aψ(t)⟩ is simply defined
by the partial derivative of the Schrödinger equation:

−i
h̄

d|∂ai ψ(t)⟩
dt

=
∂H
∂ai

|ψ(t)⟩+ H|∂ai ψ(t)⟩ (10.15)

ie. the forward method. It would be interesting and worthwhile to
consider how this may be implemented with the adjoint method.

(Since, loosely speaking, the above derivative method consists
of adding the ∂ax to the objective function, this may well just be
implemented by scaling the derivative informed method of eq. 6.38

by the adjoint state, since "∂ax = ∂aL/∂xL = ∂aL/λ")
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10.4 Results

10.4.1 Fast SWAP pulse

Figure 10.4: This figure shows
the relation between the swap
infidelity and the gate time dur-
ing the optimization procedure
which support the claim that the
minima of the augmented objec-
tive function is restricted to the
bands.

10.4.2 Swap gate for protected regime

The result shown in figure 10.5 are very much related to the QOC
problem of section 8.4, except the objective function is extended to
include a term that promote the constraint of the dynamics of the
state to an "allowed" subset of Hilbert space. That is, the objective
function is:

L = Lswap + 1 − 1
T

∫ T

0
∑

a∈{0,1,4,5}
|⟨ψa|ψ(t)⟩|2dt (10.16)

This results in the blue line of the top right figure of figure 10.5
(denoted "Rest") being suppressed, which is also clear from the distri-
bution of spectral weight shown in 10.5 (b).

(a) (b)
Figure 10.5: caption

10.4.3 Derivative informed robustness

The inclusion of f ̸= 0 to the derivative informed robust objective
function of eq. 6.38 was also tried out. However, this was only done
for the simple DRAG pulses and therefore the minimizer was not
quite able to both minimize the functional whilst finding a robust
solution. But the gradient calculation was sound, which validates the
derivation of sec. 7.2.1 with f ̸= 0. It would have been interesting
to have done the same for the more general interpolation method
parametrization.



CHAPTER 10. APPENDIX 91

However, robustness by itself was achieveable by the simple DRAG-
pulses as is evident from figure 10.6 (c)

(a) Control Pulse (b) Occupation (c) Robustness to Φext
Figure 10.6: Fidelity at Φext =

0.995π is 99.55%Figure 10.7 is achieved by posing almost exactly the same robust
QOC problem as in sec. 8.6.1, except in this case the pulse was initial-
ized from a uniform distribution as opposed to being initialized as
zero. That is, the parameters of the interpolation method used, was
intialized as p ∼ U(−0.5, 0.5). The insensitivity is shown in fig. 10.7
(b) and whilst being a little different from the case of sec. 8.6.1 it still
exhibits flatness and thereby robustness.

(a) Occupation (b) Robustness to Φext
Figure 10.7: Caption

This last figure (fig. 10.8) shows the scaling of the

Figure 10.8: This figure shows
that the sensitivity of the pulse
of fig. 8.11 scales quartically.
Likewise fits can done for all the
other sensitivity profiles, but in
those cases a quadratic scaling
is needed, and therefore they
are said to be sensitive to sec-
ond order. (However, in the
case of fig. 8.12 the scaling con-
stant is simply lowered, render-
ing a quadratic but less sensitive
sensitivity-profile.
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