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Chapter 1

Introduction

In the last few years an enormous attention has been drawn to a new emerging research
field, which has been named after the characteristic length scale: nanoscience. It deals
with fabrication and characterization of devices of the size of an atom, and the field in-
volves chemistry, biology, physics and the applied sciences. Electronic devices made of
single molecules have been produced and new revolutionary devices have been suggested,
but so far much is still on the level of fundamental research. Moreover, many of the effects
on the nanometer scale are still not well understood.

On the sub-micron scale a wealth of interesting phenomena exist. Many of them appear
in 2-dimensional electron gasses which arise on the interface between layers in semicon-
ductor structures, e.g. in GaAs-AlGaAs devices.

An example is the Aharanov-Bohm effect where a ring-shaped geometry lets the electrons
pass by on both sides of an enclosed magnetic flux. The electronic wave function get a
phase shift due to the magnetic flux, which depend on the size of the magnetic field and
even more important, it is different for the two paths. Therefore the interference between
wave functions from the two paths depend on the magnetic field, and oscillations in the
conductance occur when it is varied.

Another effect is seen in wave guide geometries in 2-dimensional electron gasses, where
the conductance is quantized in units of e?/h due to the finite size in one direction.!
Both effects belong to the field known as mesoscopic physics, where the size of the struc-
tures are comparable with the coherence length of the electrons. Mesoscopic physics is the
border between the classical physics and the true quantum world, and the analytic tools
are often taken from both classical and quantum mechanics.

The phenomena mentioned above can be described within a single-electron picture,
i.e. the electrons are considered as independent particles with no mutual interactions. For
structures on the nanometer scale this description is sometimes valid, e.g. for a chain of
a few gold atoms where the quantized conductance can be explained without treating the
electrons as interacting. But in some systems the picture becomes insufficient when the

iSee e.g. [1].
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electrons are confined on the nanometer scale due to the small distances between electrons.
New effects occur because of the interactions and they are named many-body effects.

An example is seen in quantum dot structures. When the gate voltage is shifted, so-called
Coulomb blockade oscillations appear in the conductance due to the filling of the quan-
tum dot. To complicate the picture even more there are systems were both coherence and
interactions have to be taken into account, for instance in a molecular electronic device
consisting of a single molecule, e.g. a benzene ring, contacted to metallic leads.

Another feature of nanodevices are the pronounced quantization of the energy levels, which
give rise to a step-like current as a function of bias voltage, e.g. in resonant tunnelling
devices.

The transport properties can also be strongly influenced by the spin of the electrons.

The study of spin-dependent transport forms a research field called spintronics, which
has both academic and technologic interest. A well described effect is seen in multilayer
structures of ferromagnetic metals, where a Giant Magnetoresistance (GMR) occurs due
to the different magnetizations of the layers.
So a natural question is: What happen when the Coulomb interaction and the spin-
dependent transport mechanisms are joined in a nanodevice? This question has gained a
great interest since it has been made possible to make such (nontrivial) structures, e.g. a
carbon nanotube contacted to ferromagnetic leads. Examples of possible effects are spin
pile-up on the dot and Kondo effect, which complicate the predictions of the transport
properties.l

In this thesis we investigate the electron transport through a small nanomagnetic sys-
tem. It includes an interesting interplay between energy quantization, magnetism, coher-
ence and interactions. Moreover, we present a way to experimentally determine whether
the interactions can be negleted or not.

Three different analytical tools are applied to give an understanding of the basic mecha-
nisms behind the quantum transport and illustrate the difficulties.

The thesis is organized as follows: In Chap. 2 the model we wish to study is introduced.
Chap. 3 gives an introduction to the nonequilibrium Green’s function formalism, which
forms a large part of the theoretical background for this thesis and is one of the applied
tools. In the following two chapters, it is applied to the model in two different cases
where the electrons are considered as noninteracting. Still within the Green’s function
formalism, we present an approximation scheme which makes it possible to deal with
interacting electrons (Chap. 6), and in Chap. 7 the approximation scheme is applied to
our model. Then we present another way of dealing with quantum transport and introduce
a method to derive a set of quantum rate equations for the model, see Chap. 8.

Finally, the model is solved using a scattering formalism (Chap. 9), and in Chap. 10 the
summary and the conclusion are found.i!

UFor an introduction to spin-dependent transport in nanostructures, see [22].
"'In App. B a list of symbols and abbreviations are found.



Chapter 2

The FAB model

Tunnelling junctions are very well studied nanodevices. These structures consist for in-
stance of a semiconductor quantum dot, a carbon nanotube or a single molecule contacted
to metallic leads. As mentioned in the introduction, the transport properties get even
more delicate in case of ferromagnetic leads, e.g. in a carbon nanotube suspended be-
tween two ferromagnetic contacts [2].
Another example of a spin dependent junction is presented in [3], where they fabricate
a tunnelling junction consisting of two ferromagnetic leads (Ni) and a barrier made of a
self-assembled-monolayer of the organic molecule octanethiol. The magnetizations of the
leads can be changed with an applied magnetic field, and the resistance of the junction is
measured when the magnetic field is swept from —0.6 T to 0.6 T at constant bias volt-
age, see Fig. 2.1(a). A sketch of the qualitative behaviour is shown in Fig. 2.1(b) and is
explained as follows:
For the full curve, where B is swept from negative to positive values, three phases are
encountered. For large negative values of B the magnetizations of both leads are parallel
to the field, and the magnetizations are kept when the applied field drop to zero. This
phase is P, on Fig. 2.1(b). When B is increased above zero, small domains in the leads
will start to align along the field. If the domains closest to the molecule on each side of
the junction are antiparallel we have an effective antiparallel configuration of the leads,
resulting in a higher resistance due to spin blockade. This corresponds to the phase AP
on Fig. 2.1(b). For even larger values of B the domains in both leads are aligned along
the field, and we end up in the parallel configuration P,. When B is swept in the opposite
direction the same phases are seen, shown as the dashed curve in Fig. 2.1(b).
In the experiment they find a change in resistance up to 16% between the parallel and
antiparallel configuration, so some knowledge about the configuration of the leads can be
achieved by measuring the resistance.!

The idea we present here is to study a single molecule (or a quantum dot) contacted to
two ferromagnetic leads.!' If the latter are very thin films the magnetizations will tend to
align in the plane of the leads, and with an applied in-plane magnetic field the configura-

‘A schematic drawing of the different configurations is shown in Fig. 2.2(a).
See also [20], [21] and [22] and references therein.

3
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Figure 2.1: Fig. 2.1(a) shows the resistance versus magnetic field B for the tunnelling
junction described in the text. The bias voltage is 5 mV and the temperature 4.2 K
[3]. The black curve is for increasing magnetic field and the other is for decreasing field.
Fig. 2.1(b) is a schematic drawing of the curves from Fig. 2.1(a) where the full curve is
for increasing magnetic field.

tion of the leads can be controlled.

Now a second magnetic field is applied out of the plane spanned by the leads, see Fig. 2.2(b).
Due to the strongly anisotropic magnetic susceptibility of the magnetic thin film this field
will not significantly change the magnetizations of the leads, but it will give rise to a
Zeeman splitting of the dot energy levels. How the conductance depends on the angle 6
between the magnetizations of the leads and the magnetic field is the subject for the rest
of this thesis.

2.1 Introducing the FAB model

To formalize the idea described above, we consider a quantum dot with an applied mag-
netic field contacted to two ferromagnetic leads, as shown schematically in Fig. 2.3(a).
The leads are assumed to be polarized, which means that the density of states for spin-1’
electrons' pT,(s) is different from the density of states for the spin-|’ electrons p It (e). If
there is only one kind of spin present the leads will be called fully polarized. In the rest
of this thesis, except Chap. 5 and Sec. 9.3, it will be assumed that the magnetizations of
the leads are parallel. This configuration is called the parallel geometry.

In equilibrium the chemical potentials of the leads are identical and equal to u, which is
set as the zero point of the energy scale. In case of an applied bias eV, it is assumed to be

symmetric around p = 0, so the chemical potentials of the left and right lead are p; = v

2
and pp = —%, respectively.

iThe prime on the spin is because we later on will introduce another spin basis.
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Antiparallel geometry
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Figure 2.2: Fig. 2.2(a) shows two ferromagnetic films with a molecule between them. On
the upper figure the magnetizations of the films are identical, but in the lower figure dif-
ferent domains occur. The domains closest to the molecule have opposite magnetizations,
so we have an effective antiparallel geometry. Fig. 2.2(b) shows a drawing of a molecule,
e.g. a carbon nanotube, between two thin films with in-plane magnetizations. A magnetic
field is applied out of the plane of the films.
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Figure 2.3: In 2.3(a) is shown a schematic drawing of a system with two ferromagnetic
leads coupled to a quantum dot with an applied magnetic field. Notice the different spin
bases for the leads and the dot. In 2.3(b) the definition of the angle 6 is shown.



6 CHAPTER 2. THE FAB MODEL

In absence of the applied magnetic field the quantum dot is assumed to have only a
single spin-degenerate level with energy ¢,, which can be changed by a nearby gate. That
the quantum dot contains only a single level is an approximation which is reasonable when
only a single electronic state takes part in the electron transport, meaning that the other
energy levels are far above or far below the chemical potentials of the contacts.

Due to the small size of the quantum dot, the dot electrons will interact through a Coulomb
potential which increases the energy of the double occupied state, so 5 = 2¢, + U.

The splitting of the energy levels are important for the effects we are interested in, so we
consider the regime where the splitting of the energy levels, A, is much larger than the
temperature and the applied bias. In the opposite limit (A < kT, eV) the effects we
discuss in this thesis are not important.

The applied magnetic field is assumed to interact only with the spin of the dot elec-
trons, leaving the leads unaffected as explained above. Choosing a coordinate system
were the magnetization of the leads is along the z-axis we let the magnetic field lie in the
xz-plane, as shown in Fig. 2.3(b). If 0 is the polar angle the magnetic field can now be
written as B = B (sin,0,cos ).

To model system we apply the famous Anderson Hamiltonian with an extra term
due to the magnetic field. The Anderson Hamiltonian was first introduced to describe a
magnetic impurities embedded in a sea of conducting electrons. Now it is also widely used
to study transport through quantum dots.

Our Hamiltonian reads

— T 1
H = Z €knoChnoChno T Z (tkmckwcda + h.c.)
kno kno (21)

+ ngcjiacdo + UnT,ni, —

S B.

&
m

where the first four terms are the original Anderson Hamiltonian in case of spin-independent
leads.

We will name our model the ”"Ferromagnetic Anderson model with an applied magnetic
field B”1V, and we will use the abbreviation the FAB model.

The first term in Eq. (2.1) is the Hamiltonian for the leads (n = L, R) and the second
describes tunnelling between the dot and leads, H . It should be emphasized that the
tunnelling does not change the spin of the electrons, meaning that no spin-flip occurs
in the tunnelling process. The next two terms are the for the isolated dot, where the
latter stems from the on-site Coulomb repulsion. The last term is due to the interaction
between the magnetic moment of the electrons and the magnetic field. S is the spin
(angular momentum) operator which in first quantization is given as[l] S = 47 where 7

VFerromagnetic stems from the ferromagnetic leads.
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is the vector containing the Pauli spin matrices

SEDEDEDE e

In second quantization S becomes
ha f ih (i i hof i
S, = B (Cdl’ch’ + CdT'Cdy> , Sy = ) ( d)Carr — CdT'Cdy) , S, = 3 (ch,ch, — Cdl’cd1'> .
(2.3)
With our choice of coordinate system the Hamiltonian is"

_ T i
H = Z €kno Chpo Crno + Z <tkwcknacda + h.c.)
kno kno (24)
_ T _ ; T 1
+ Z (€d ocB COSQ) CioCio T UnT,nl, Bsin6 CaprCayr F CaprCaps
g

with o = 1(—1) for spin-1'(]’).

2.2 Motivation for studying the FAB model

One source of inspiration for studying this system is that Jesper Q. Thomassen in his
master thesis [5] found an interesting behavior for the conductance G as a function of the
angle # under certain restrictions. First it is assumed that the leads are fully polarized
with only spin-1’ electrons and that the bare dot energy is situated at the equilibrium
chemical potential, ¢, = p = 0. For low temperatures and in linear response an exact
analytic expression can be found for U = 0 in case of fully polarized leads, and the result
isVi

R 4 cos?0

G(0) x TETE ,
(0) o T TZlequj%,cos?H

L, =TH+T7 (2.5)

where F?, is the coupling between the lead n and the dot.

The model is solved using nonequilibrium Green’s functions and the so-called equation of
motion technique. For U # 0 the equations of motion get very complicated. However,
in the limit U =~ oo, meaning that U is by far the biggest energy in the problem, the
equations cannot be solved exactly but simplified and solved numerically. In this limit the
conductance resembles G(6) o cos® g. A sketch of the behavior in the two limiting cases
can be seen in Fig. 2.4.

For U = 0 the conductance vanishes for § = § and 0 = 37’7, which is explained as a
interference phenomenon.V' For U ~ oo this feature has disappeared so the interactions
has enhanced the conductance. However, it would be interesting to explore how the
interactions influence the conductance for 0 < U < oo, which is the aim in this thesis.

fWe have redefined B, so %B — B which is an energy.
Y!The result will be derived in Sec. 4.1.
VA more through discussion we be left to Chap. 4
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ell)

(arb. units)

Figure 2.4: Sketch of the conductance G for U = 0 (full line) and U ~ oo (dashed line)
for B =0.2 and FT’ = 1. Both curves are normalized to unity in the endpoints.

2.3 Diagonalizing the Hamiltonian

One of the attempts to solve the system described in the previous section is done by
using the nonequilibrium Green’s function approach presented in Chap. 3. For U # 0
the retarded Green’s function is found using a method introduced in Chap. 6. The latter
requires that the eigenstates and eigenvalues of the central region are known, which in
this case is the dot with the applied magnetic field, so the last three terms in Eq. (2.4)
are named the dot Hamiltonian:

H, = Z (e, — oBcosb) cggcdo — Bsiné (CLT’Cdl’ + c;rwch,> +Unyn,. (2.6)

[

It is simple to write down the matrix for the first two terms in Eq. (2.6). The eigenvectors
form a new (unprimed) spin basis, denoted the dot basis, where the spin-1 state is parallel
to the magnetic field and has the energy € =64~ B. The other spin state is antiparallel
to the magnetic field and has the energy e | =€t B.

The four eigenstates of the dot Hamiltonian are now identified as |0), | 1) = CLT‘O>,
l[l) = czl 110} and [2) = c;rl lCI”|0) corresponding to the empty state, a single electron with
spin up, a single electron with spin down and the doubled occupied state. The eigenener-
gies are 0, g7, ) and ey = &7 +¢; + U.

A cautionary note: From now on there will be two different spin bases. The primed
spin basis is used for the leads and is defined by their magnetizations. The unprimed spin
basis is used for the dot electrons because the dot Hamiltonian is diagonal in this basis.
The direction is along the magnetic field.

In summations the indices referring to the primed (unprimed) basis will be labelled with

o (1)
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The matrix for changing from the primed to the unprimed basis is a standard change-
of-basis matrix R(#) for spin—% systems, and with our choice of coordinate system it is

rn D cosy sind
= = . 2.
R ( I D —sin§ cosd 27)
Using the normal transformation rule for operators in second quantization we write
Cao = 2op (0lm) ¢qy = 32, Roucy,- This is inserted in the tunnelling part of the Hamilto-
nian giving
H,= Z <tkawangcdu + h.c.) . (2.8)
knou

Now the full Hamiltonian is

_ T T
H= Z €kno Ckno Ckno + Z (ano,ucknacdu + h'C‘>
kno knou
+ Zsﬂcllucdu + UnTni
"

with V,

kno,u = tknaRUu'

Finally, it should be noted that all the dependence of the magnetic field (except for
the shift of the dot energies) is now put into the tunnelling Hamiltonian. This is found
to be useful when we consider a scattering formalism where the tunnelling Hamiltonian is
treated as a perturbation (see Chap. 9).
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Chapter 3

The nonequilibrium Green’s
function formalism

The Green’s function method is originally a way to solve differential equations by trans-
forming them to related solvable problems. In many-particle physics objects are introduced
which are related to physical quantities such as density of states, particle density, current
etc. They are solutions to a differential equation called the equation of motion and there-
fore named Green’s functions. Green’s functions are very studied objects because they
allow for applying perturbation theory even to infinite order.

We will distinguish between two different situations: equilibrium and nonequilibrium.
Within an equilibrium theory phenomena like impurity scattering in metals, pair interac-
tion in electron gasses and electron-phonon interactions can be studied, just to mention a
few. However, transport properties cannot be included in an equilibrium theory because
it is the nonequilibrium which drives the current in the system, e.g. due to an applied
bias. Dealing properly with transport requires a true nonequilibrium description.

First a short description of the different pictures in quantum mechanics is given. After-
wards a brief sketch of the equilibrium Green function formalism is presented because some
of the properties are needed later on. The nonequilibrium formalism is introduced and
the focus will be on the issues necessary in this thesis. It will be shown that the structural
form of the nonequilibrium Green’s functions are similar to those in equilibrium, but with
more complicated integrals. Then a way of transforming the complicated integrals are
presented, and finally a current formula in terms of the nonequilibrium Green’s functions
will be derived.

3.1 Pictures in quantum mechanics

When showing that the nonequilibrium and the equilibrium description are equivalent we
need to transform the operators between the different pictures in quantum mechanics.!

'This chapter is inspired by [13] and [1].

11
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In the following we consider a general Hamiltonian of the form
H(t)=H+V(t) (3.1)

where H is time-independent. V'(¢) may or may not be time-dependent and both cases
will be treated.

The Schrdinger picture

In the Schrdinger picture operators A, which can be time-dependent, are unchanged while
the states |1¢)) bear the time-dependence and evolve under the time-dependent Schrdinger
equation’!

10,1 (1)) = H(E)[¢ (). (3.2)

Performing the time-integral from ¢, to t gives the iterative solution

n!

() = [Z(‘) [ [CanT ) me | wa). 69

where the time-ordering operator has been introduced. It orders the product of operators
according to their time argument with the later times to the left, e.g.lil

TAV(E)V (E)V (E3)} = V(t3)V(E)V (L), ty <ty <ts. (3.4)
We now define the time-evolution operator U (t,t,) and write [1)(t)) as

(1)) = UL, ) |9 (), (3.5)

where

Uttito) = S [ty [ an T (o) e} = 7,

. rt ’ !
eilfto dt'H(t ) (36)

Because H(t) is a hermitian operator one has UTU = UUT = 1.

It is easily seen that U(t,t,) is a solution to the Schrdinger equation and in case of a

time-independent Hamiltonian we obtain U (t,t,) = e~"(t~t0).

The Heisenberg picture
In the Heisenberg picture all states are time-independent, so the states are defined as

9300 = Uy (t: L) [ (1)), (3.7)

where U, (t,t,) = U'(t,t,), with UT(t,¢,) defined through Eq. (3.6).
For a given operator the expectation value should be independent of the chosen picture,
so the operators in the Heisenberg picture fulfill

WOIAIY () = Wy A (D)]4), (3-8)

iiTn [25] the Schdinger equation is derived in analogy with classical mechanics.
" To familiarize with the time-ordering operator see e.g. [1].
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which gives the definition of the Heisenberg operators
Ay () = Uy, (, 1) AUL, (L, ). (3.9)

Exploiting that the time-evolution operator U,, satisfies the Schrdinger equation and con-
sequently that U;[l fulfills —i@tUL(t, ty) = U;{(t, ty,)H(t) we obtain the important equation
of motion for the operators in the Heisenberg picture'

10, A, (t) = [Ay, (£), H()] +i(8,A)(t). (3.10)

The interaction picture

In the Heisenberg picture time-evolution of states and operators is controlled by the com-
plicated Hamiltonian H. In the interaction (or Dirac) picture states and operators are
defined as

[ (1)) = (1)), (3.11)

and
Ay (t) = etlt=t) gemiHt=to), (3.12)

so the time-dependence is with respect to the time-independent part of the Hamiltonian,
H. Taking the derivative in Eq. (3.11) and using the Schrdinger equation (3.2) we obtain

Ol (1)) = Vg D)oy (1)), (3.13)

so the time-evolution of the states in the interaction picture is controlled solely by V().
From the definition of the operators in the Heisenberg and the interaction picture it is
seen that they are related through

Ag(8) = vl (t, 1) A (v (8, o), (3.14)

with
vyt tg) = UL (2, 10). (3.15)

When the relation between equilibrium and nonequilibrium is establish this relation will
become useful. Using the Schrdinger equation Eq. (3.2) it is seen that the derivative of
vy (t,tg) is

10,0 (t,ty) = V() vy (t, ty), (3.16)

with the solution

—i ftto dt'Vy (')

vyt tg) = The (3.17)

Writing out the expression for vy (t,t,) gives the famous Dyson series, which is used in
time-dependent perturbation theory [25].

“The commutator is defined as [A, B] = AB — BA.
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3.2 Equilibrium Green’s functions

In this section some of the basic relations in equlibrium Green’s functions theory are stated
and it is not meant as a general introduction to Green’s functions. The focus will be on the
aspects needed in the nonequlibrium Green’s functions theory and no proofs are included.
It is emphasized that in equilibrium is V' (¢t) = V and therefore is H time-independent.”

We define the following Green’s functions"!

G<(rot,r'o't) = i <\pj, ,(r’t’)\I/U(rt)>H (lesser),  (3.18)
G (rot,v'o't) = —i <\1:0(rt)\1:g,(r’t’)>H (greater),  (3.19)
Gl(rot,t'o't)) = —i <Tt [\Ilg(rt)\lli, ,(r’t’)} >H (time — ordered),  (3.20)
GR(rot,r'o't') = —if(t — t') <{\Ifg(rt), qzj_,(r/t/)}>H (retarded),  (3.21)
GA(rot,r'o't') = i0(t' — 1) <{\I/U(rt), vl (r’t’)}>H (advanced).  (3.22)

The operators \IJI,, (rt)[W_,(rt)] are the field operators for creating [annihilating] an electron

with spin o at the point r. Both operators are written in the Heisenberg picture. The
average values are defined as a thermal average*"

(A)y, = (pp A = ZlﬁTr[eﬁHA], Z,, = Trje ™), (3.23)

with py being the density operator with respect to H.
The Green’s functions are not independent and we note in particular the important relation

GE-gt =G> -G~ (3.24)

Using the general rule for changing basis in second quantization we can write the field
operator as U _(rt) = > ,(or)c,(t), where {|1,)} are a complete set of wave functions
satisfying the Schrdinger equation and ¢, (t) is the operator for annihilating an electron in
the state v, written in the Heisenberg picture. Consequently, the Green’s functions can
be expressed in an arbitrary basis.

Consider the Green’s functions written in the basis {|¢,)}, e.g. the retarded Green’s
functioniil

Gl (k1) = =0t — 1) ({e, (), ()} ), (3.25)

YFor a general introduction to equilibrium Green’s functions, see [1], which is also the basis for this
chapter.
ViThe anti-commutator is {A, B} = AB + BA.
viig — %%7 with T being the temperature.

VillThe spin label has been suppressed.
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and similarly for the other Green’s functions.

In equilibrium no reference is given to an initial time ¢, so the Green’s functions depend
only on the difference between the time arguments, ¢ — ¢/, so it is natural to perform a
Fourier transformation with respect to time.

In Fourier space holds the important fluctuation-dissipation theorem which relates the
occupation of the state v to the retarded Green’s function

(desy=i [ 5 [68w - (Eh )] 1), (3.26)

and it is proven in Sec. A.4.4. The proof requires a time-independent Hamiltonian and is
therefore only valid in equilibrium.

Perturbation series in equilibrium

When calculating the Green’s function we need to evaluate average values like

(A, (t) By (¢ )>H, where the operators are written in the Heisenberg picture. The trick
used to calculate these expectation values is to introduce the complex time 7 = 4, and
after the change of variable can the time-evolution operator in the interaction picture be
written as'®

Uy (r,7') = Z (-1)" /TT dry - /T,T dr, T [V () -+ Vi (1))

n' /
n=0

— TTG_ f:/ dT/VH(T/)'

(3.27)

Instead of using the Green’s functions introduced in Eq. (3.18)-(3.22), we introduce the
imaginary time Green’s function, also known as the Matsubara Green’s function,

T

G(orr,o'v't") = — <T [\I/H(O'FT)\I/;[_{(O'/I‘,T/)]>H. (3.28)

With the definition of the complex time-evolution operator it can be written as

/

Te[e "M T{U (B,0) ¥y (1) ¥y (7)}]
TT[G_BHUH(ﬂ, O)] ’

G(orr,o't't’) = — (3.29)
where we notice that the average value and time-evolution is with respect to H.

To proceed we need a tool for calculating expectation values of products of time ordered
operators like (T, [A; () A, (7,)]) ;- For a quadratic H Wick’s theorem can be applied
(see [1]). The resulting terms can be written on a diagrammatic form with the so-called
Feynman diagrams, see e.g. [1], which allows for simplifications of the infinite sums in
Eq. (3.29).

Finally, it can be shown that the retarded real-time Green’s function can be deduced from
the Matsubara Green’s function by analytic continuation.

XThe time-ordering operator on the complex axis is
T.[A(T)B(m")] = 0(t — 7")A(T)B(7') — (7' — ) B(T") A(7).
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Eventually we stress the importance of the relation between the occupancies and the
retarded Green’s functions in Eq. (3.26). The relation will be widely used when applying
the Green’s function technique in later chapters. Moreover, Eq. (3.29) should be noticed
because it serves as the link between the equilibrium an nonequilibrium theories as it will
be shown in the following section.

3.3 Nonequilibrium Green’s functions

*In nonequilibrium the Hamiltonian H is time-dependent and we write it as in Eq. (3.1)
with H being time-independent and V' (¢) carrying the time-dependence. As in the previous
section, we will need to calculate average values of time-ordered operators using Wick’s
theorem, so we assume that the Hamiltonian H can be split into two parts, where H? is
quadratic and H* accounts for the (complicated) interactions between the electrons.

The Hamiltonian H reads

H(t)=H+V({t)=H'+ H + V(). (3.30)

As the nonequilibrium counterpart of the equilibrium time-ordered Green’s function in
Eq. (3.28) we introduce the contour-ordered Green’s function™

GC(1,1') = —i <TC[\1/H(1)@;{(1')]>H, (3.31)
where C' is a contour along the real axis visiting ¢ and ' once, see Fig. 3.1. T, is the
contour-ordering operator placing later times to the left, where ”later” is in the contour
sense,

W, ()WL (1) fort, >ty

S (3.32)
—Wh (10, (1) fort, <g ty,.

ToWs (1) W}(1)] = {
Note that the average value is with respect to the density operator p; and not some
time-dependent operator. This allows us to calculate the average values with respect to
the eigenstates before the onset of V(¢), but the approach is only reasonable when the
applied perturbation V (¢) does not completely change the system e.g. by heating it up.*!

As in equilibrium we define lesser and greater correlation functions
G<(1,1') = <m;(1')mH(1)>H, (3.33)

G>(1,1) = —i <\IJH(1)\IJ;{(1/)>H7 (3.34)

and they are linked to the contour-ordered Green’s function by

G~ (1,1") fort; >, t,,

3.35
G<(1,1) fort; <. ty,. (8:35)

GY1,1) = {
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¢ ‘
o | R

Figure 3.1: The contour C used when defining the contour-ordered Green’s function, G€.
On the uppermost contour is t; <. t;, and t; <t,,. On the lower is t; > t,,, but t; <t

Before getting lost in technical details, we should be aware of the goal, which is to
write the contour-ordered nonequilibrium Green’s function on a form structurally equiv-
alent to the equilibrium expression Eq. (3.29). To do so, we proceed in two steps. First
we transform the operators from the Heisenberg picture where they evolve under the full
time-dependent Hamiltonian H, to the H-interaction picture where time-evolution is gov-
erned by the time-independent and quadratic part of the Hamiltonian, H°. This is done
because we, as in equilibrium, want to use Wick’s theorem which requires a quadratic
Hamiltonian. Afterwards, the density operator py is written as p,, times a contour-
ordered exponential. Eventually, the Green’s function in Eq. (3.31) is on the desired form,
but the integrals from 0 to 8 in Eq. (3.29) has been replaced by contour integrals.*iil

In Eq. (3.14) it was shown how the operators could be transformed from the Heisenberg
picture to the interaction picture. We want to apply Wick’s theorem, so we write the
operators in the H-interaction picture and by careful inspection of the contour C,, shown
in Fig. 3.2, it can be proven that*

—i [, dr[H! ,(T)+V,
Ap(t) = T e e 0@ ool g ). (3.36)
Now consider the situation where ¢; <, t,, (shown at the upper figure in Fig. 3.1).
According to Eq. (3.35) GY(1,1") is equal to G<(1,1’), so applying Eq. (3.36) on each
operator gives

i fo, ATl (Vo (7]
1

—i [ dr[H! o (T)+V, o (7)]
GC(]., 1/) — <TC [6 ’ \1’11‘—[0(1/)]1-,0 e Ctl HO o i

o)

(3.37)
A rearranging of the contours can be performed and the two exponentials can be gathered
in a single time-ordered exponential, where the ordering and the integral are with respect
to the contour C' shown in Fig. 3.1. Doing the same analysis for t; > t;, leads to the

t ty

*This section is based on [13] and [7].

*All the labels have been gathered in a single index 1 = (ort).
*iSee [7] and references therein.
*iThis section is mainly inspired by [13], but also by [7].
*VThe proof is found in Sec. A.1.1.
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: I
t t

Figure 3.2: The contour C, applied for changing from the Heisenberg picture to the H°-
interaction picture. The contour runs on the real axis but is for clarity drawn away from
it.

result®¥

. —i [ dr[H: (T)+V (T
G(1,1') = —i <TC[e Jo drlH 0 (7 + Vo )]\I/Ho(l)\I!LO(l’)]>H. (3.38)
Finally we rewrite the density operator p, by introducing the operator

v(t, ty) = HI"(t=to) gi(HO+H)(1—to) (3.39)

Proceeding as when deriving the time-evolution operator in the interaction picture (see
Egs. (3.16) and (3.17)) we take the derivative of Eq. (3.39) and solve the resulting differ-
ential equation with the boundary condition v(¢y,t,) = 1. The solution is

d 7
ot tg) = T Jio a0 @) (3.40)
Using the property e #H = e_ﬂHOU(tO —1f3,t,) the density operator becomes
etg =B i o
,ﬁHOT —i [0 T dt H; o (t)
e e o
Py = L t (341)

Tr [e‘ﬁHoTte_i ftoo—zﬂ dt/quO(t/):| .

The curve C is closed, so the integral [ dr[H},(T) 4+ Viyo(7)] = 0 because the integrand
is analytic. The denominator in Eq. (3.41) can then be transformed into

to— i3
t

e Py W o) _ —pHOT [Tte_ifc AW Hypo () =i fo dt'V,, ()], (3.42)

where the contour Cy, shown in Fig. 3.3 has been introduced. The exponentials have
been gathered in one single time-ordering operator because time-ordering on CY, and C' is
identical on the common part, and we also use that the part from ¢, to ¢, — ¢(3 is later on
the contour than the C-part.

Eventually, G can be written as

TI'{@_BHOTC [e—ifc dTHZ —zfchV 0(7’ (1)\1];{0(1/)]}

Vv

G9(1,1) = - (3.43)

Tr {e_ﬁHOTC |:€—i fcv drH? (T)e—i Jo dTVHO(T):| }

Vv

*¥See Sec. A.1.2.
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tO tl tl/

Figure 3.3: The contour Cj,.

The time-dependence of the operators and the average value are with respect to the
quadratic and time-independent part of the Hamiltonian. This allows us to use Wick’s
theorem just like in equilibrium. Moreover, if Eq. (3.43) is compared to the expression for
the equilibrium time-ordered Green’s functions in Eq. (3.29) it is seen that they have the
same structure, the only difference being

U, (8,0) = Toe~do 47V 1, [e_ifcv ArHy0(7) =i o drV, (7)]

v

| (3.44)
7, [e—i Jo, dr{Hiy (T>+ec<f>vHo<f>}] |
\%

where we in the last line have collected the exponentials and introduced the unit step
function 6 (7), which is 1 for 7 on the contour C' and 0 elsewhere.

From Egs. (3.43) and (3.44) it is clear the nonequilibrium Green’s function have the
same perturbation expansion as the equilibrium Green’s functions, so the nonequilibrium
Feynman diagrams are mapped onto their equilibrium counterparts, see Eq. (3.29). The
only difference is when evaluating the diagrams, because the equilibrium integrals from 0
to 8 have been replaced by contour integrals along the curve Cj,. Transforming them to
integrals on the real axis is done in the following section.

3.4 Analytic continuation in Keldysh space

We want to derive a way to change the integrals from contour integrals to real time in-
tegral. The process is called analytic continuation and an often used technique is due to
Langreth (see [15]), where a deformation of the contour is performed. However, we those
an approach due to Keldysh because in this framework the rules can be derived by simple
bookkeeping.*V!

We start with changing the contour Cj, from Fig. 3.3. If we let {; — —o0 and turn on
the time-dependent part V (t) very slowly (adiabatically), it can be shown that the integral
from ¢, to ¢, — i vanishes and that the information lost by doing so is the correlations
between the electrons before the onset of V(t). When calculating transport, we are most
often interested in the steady state behaviour, where the initial conditions are no longer

*ViThe derivation in this section is based on [13] and [14], but also [7].
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—00 t ty
C | — -
G
Ck ‘ ‘ >
—0 tl tl/ CQ [ee]

Figure 3.4: The contour C' is changed to the Keldysh contour Uy consisting of the two
branches, C; and C,. The contours run on the real axis but are for clarity drawn away
from it.

important. Without further arguments we will set £, = —oo and neglect the part from ¢,
to ty — i3, so in the rest of this section C' = C’V.X"ii

Moreover, we extend the curve C from the outermost point to infinity and back again.
The integral along the added piece vanishes because the extension forms a closed curve.
The resulting curve contains two branches where C'| runs from —oo to 0o on the real axis,
and C, runs in the opposite direction. This is the Keldysh contour C} shown in Fig. 3.4.

In the Keldysh formalism the contour-ordered Green’s function G¢(1,1’) is replaced
by the Keldysh contour-ordered Green’s function G“x (1, 1’), which is a 2 x 2 matrix. The
link between the contour-ordered Green’s function and the Keldysh Green’s function is
[13]

G11(LY) Gpp(1,1)

’ ’ . 4
Gor(11) G(1,1) (34
The indices on the matrix elements refer to which branch of the contour the time-arguments
belong to, i.e. Gij(l, 1') means t;, € C; and t;, € Cj. If we compare with the Green’s func-
tions defined in the previous section, we can write

Gk (1,1') — G(1,1) = <

G (1.1) = =i (Ge, e}, (3.46)
G12(1, 1/) - G<(17 1/)7 (3.47)
Gy (1,1) = G~ (1,1'), (3.48)
Cop(1,1) = =i (T, [ (1)), (3.49)

where T; is the anti-time-ordering operator.XViil

We also define the retarded and advanced Green’s functions like in Egs. (3.21) and (3.22),
and write them in terms of the lesser and greater Green’s functions
(t, —t,,)[G”(1,1") = G=(1,1')], (3.50)
(t, —t)[G=(1,1") — G=(1,1)]. (3.51)

*ViiFor a further discussion of the validity of the approach, see [14] and references therein.
*Y"Notice that when transforming the contour from C' — C the Green’s functions are unchanged whether
we choose the outermost point to be on C; or C,.
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They are all related to the elements of G, e.g. if both time labels are on the contour C;
then GT(1,1') = G{,(1,1') — G|,(1,1’) holds, and if both time labels are on C, one has
GP(1,1') = Gy, (1,1') — Goy(1,1'). Similar relations are derived for G4(1,1’),

GR(1,1) = G, (1, 1) — Gp(1,1") = Gy  (1,1') — Gop(1,17), (3.52)
GA(1,1) = G, (1,1") = Gy (1,1') = G5(1,17) — Gy (1,17). (3.53)

In the nonequilibrium formalism it is often necessary to evaluate a product of operators
on the form
D (1,1) = / dr A%k (1,7)B (1,1), (3.54)
CK
for instance when having derived a Dyson equation. The integration is along the contour
Cg, but instead we want to write it as a standard integral along the real axis.
We start by writing the (11)-element as

Dn(l,l’):/ thH(1,t)BH(t,1’)+/ dtA;5(1,t) By (t,1")
C

Gy

50 (3.55)
= / dt [A1(1,0) By (t,1') — Ajy(1,8) By (8,17)]
Relations for the other elements are derived in the same way and we obtain
Dy = Ay By — Ay By, Dyy = Ay Byy — A1y By, (3.56)
Dyy = Ag By — Ay By, Dyy = Ag) By — Agy By, (3.57)

where the integration over the internal variable has been suppressed.
Using the relations in Eqgs. (3.52) and (3.53) the rules for analytic continuation of the
function Dk can be written as

Df(1,1) :/thR(l,t)BR(t, 1), (3.58)
DA(1,1') :/thA(l,t)BA(t, 1), (3.59)
D<(1,1) = / dtA<(1,t)BA(t,1') + AR(1,t)B<(t,1'), (3.60)
D>(1,1)) = / QtA> (1,4 BA(L 1) + AR(L ) B> (£, 1), (3.61)

where also G, = G< and G,; = G~ have been applied.

The rules are central in the nonequilibrium formalism because they relate the complicated
contour integrals to integrals on the real axis, and they can easily be generalized to multiple
products of Green’s functions. The usefulness of the rules will come clear in the next
section when we derive the current formula.

Similar relations can be derived for functions of the type D¢ (1,1') = A%k (1,1')B%x (1,1')
and D% (1,1") = A%« (1,1')B%«(1’,1), but they are not needed in this thesis.*™

**The other rules for analytic continuation can be found in [7].
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3.5 Derivation of the current formula

It might not seem obvious how the formalism presented in the previous section can be
related to a tunnelling setup. In this section, we derive the famous current formula due
to Meir and Wingreen [16], but the derivation in [7] is used. Only a few proofs in the
derivation will be found here while the details are given in Sec. A.1.

As a starting point we consider three disconnected regions: two metallic leads and a
central region, each having its own chemical potential. At ¢ = —oo a coupling between
them onsets and the coupling is treated as a perturbation. No assumptions concerning
the size of the perturbation is done, so it has to be treated to all orders.

After some time the system reaches steady state, and we make the assumption that the
leads are sufficiently large such that they maintain their chemical potentials.

The aim is to write the current in terms of a nonequilibrium Green’s function for an
interacting central region contacted to two leads, and we consider the model Hamiltonian

H= > e chc,+ > endhd, +> (Vi el dy + hoc)
kn=L,R n knn (3.62)

—H,+H,, +H,.

ot

The first term is for the leads which are assumed noninteracting and k is a collection of
quantum numbers. The next term is for the central region (the quantum dot) where the
states {|n)} form a complete orthonormal basis. The last term is the tunnelling term with
an,n being the tunnelling amplitude for an electron leaving the quantum dot in the state
n and entering the lead 7 in state k.

Using the continuity equation, we obtain that the number of electrons leaving (or
entering) the left lead L plus the current flowing out from (into) it per unit time is equal
to zero. This gives )

. ie
J, =—e <NL> =~ ([H.N,), (3.63)
where N, =) CL 1.Ci, 1s the operator which counts the number of electrons in the lead
L. Unless explicitly otherwise stated, all operators in this section are written in the
Heisenberg picture and the average value is with respect to the full Hamiltonian H from
Eq. (3.62).
Calculating the commutator gives

e . )
TL=52 [VkL,n(GS,kL(t, t)) = Vipa(—iGip o (£,1))
kn

) (3.64)
(&
= T Re {Z Vit nGrr (8, t)} :

kn

where we have introduced the new Green’s functions

Grpn(t:t) =i <CZn(t’)dn(t)> ;o Gt =i <dL(t’)c,m(t)> (3.65)
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and used the property (G}, (t,t)]" = =G}, . (t,').
It is clear that we need an expression for the lesser current Green’s function G5 kn(t’ t).
We start from the contour-ordered Green’s function

Gy 7) = =i (To {du(7)e, ()} (3.66)

with C' being the contour shown in Fig. 3.1, and afterwards use the rules for analytic
continuation from Sec. 3.4 to obtain the lesser function.

In Sec. 3.3 it was shown that the nonequilibrium Green’s functions have the same form as
their equilibrium counterparts, so instead we consider the time-ordered equilibrium Green’s

function G;’kn(t, t') = —i <Tt {dn(t)c};n(t’)}>, where T, is the time-ordering operator.
Now we take the derivative with respect to ¢ and use the Heisenberg equation for time-

evolution of operators to find

_iat’an,lcn(t’ t/) = eknG?n,kn (t’ tl) + Z Vk*n,mG%m (t’ tl)’ (367)

where the new Green’s functions Gt (¢,t') = —i (T, {d,,(t)d,,(t')}) for the dot have been
introduced.

In case of no coupling between the leads and the dot we define the uncoupled time-
ordered Green’s function g,tm(tl,t’) = —1 <Tt {ckn(tl)czn(t’)}> for the lead 1. Because it
is the Green’s function for the lead in absence of tunnelling, the time-evolution of the lead

operators and the average value are with respect to the first term in Eq. (3.62). Again the
Heisenberg equation of motion is applied and we obtain

(10 — ey )ghn(t' 1) = 6(t; — ). (3.68)

After multiplication with the lead Green’s function g,’;n(t’ ,t1) on both sides and carrying
out a partial integration, Eq. (3.67) becomes™

Gfm,kn(t t/) = Z / dtlvk*n,mG;m(tv tl)gzn(tla t,)' (369)
m

To obtain the nonequilibrium expression for G¢ (7, 7') from Eq. (3.69) we have to replace

the integral along the real axis with a contour integral as showed in Sec. 3.3. We neglect
the initial correlations among the electrons and replace the appearance of the contour C',
with the contour C'. Afterwards it is changed into the Keldysh contour C} using the same
line of arguments as in Sec. 3.4.

Now the nonequilibrium version of Eq. (3.69) is

C * C C
G&mﬂ:ZLdmmﬁwmmﬁmﬂ. (3.70)
m K

**The details can be found in Sec. A.1.3.
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and using the analytic continuation rule from Eq. (3.60) we obtain
nkr] t t Z/dt anm (t t )gkn( 1 )+Gnm(t t )gkn(tht) : (371)

In steady state no reference is given to an initial time, so the Green’s functions depend
only on the difference between the time-arguments. Using the convolution theorems for
Fourier transforms® leads to

dw a iw(t—t'
n kn t t Z/ k'n, (w>glfq7(w) + Grfm(w)gkn(w)} € ® t)v (372)
and inserting G, (,t) in Eq. (3.64) gives

2e dw N a
=5 Y [ SR {Vin Vs, [CR @5 ) + Gt @]} (373
nmk

We want to replace the sum over kn with an integral, >, — fdsknDn(ekn), where
Dn(e,m) is the density of states in the lead 7. If we introduce the coupling parameter

FZ@n(e) = Dn(g)vk*n,mvkn,nv (374)
and insert the expressions for the lead Green’s functions, we can write J; as

dw
I = h o 1 {TH(w) (GZ (W) + f1(w) [GT(w) - G W)]) }, (3.75)
which is shown in Sec. A.1.5. It has been used that the lead Green’s functions are for the
isolated leads, and because they are treated as noninteracting the Green’s functions are
simple to find. The current entering the right lead, Jp, is of course given as in Eq. (3.75),
but with L replaced with R.

We are only interested in the steady state behaviour of the current and do not con-
sider time-dependent phenomena like an oscillatory applied bias or time-modified gate
signals.®" Due to current conservation in steady state holds J = J; = —Jp, and writing

the current as J = JL;JR we get from Eq. (3.75)

= dwTr{ T (w) - T(w)] G<(w)

+ [ @TH W) — fr@P )] [6R(w) - GA(w)] }.

As we will discover later on, it is more difficult to obtain an equation for the lesser Green’s
function than for the retarded, so we want to eliminate the G<-term from the current

(3.76)

**iGSee Sec. A.1.4
¥ A description of how to deal with time-dependent phenomena in the nonequilibrium Green’s function
formalism can be found in [7].
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expression. In case of proportionate couplings between the left and the right lead T'F(g) =
AI'R(¢), it is possible. Otherwise not, unfortunately.

We start by writing the current as J = zJ, +J, —xJ;, = xJ;, — (1 — x)Jp, where x is an
arbitrary parameter. From Eq. (3.75) we find that

J= ’;/g‘:ﬁ{(m 1+ )R (w) G (w)

(3.77)
+ afy (@) = (1= 2) fp()] PR(w) [GF(w) - GA(w)] }.

We chose x = 1%\, so Az — 1+ 2 = 0 and the G=-term vanishes. The final expression for
the steady state current in case of proportionate couplings is

J= Z}‘:HAA / Z—::Tr{I‘R(w) [GR(w) — GAW)] [f,(w) — fr(@)]}. (3.78)
Eq. (3.78) is a genuine nonequilibrium expression, because no assumptions concerning
the applied bias are made. Furthermore, it is valid for all values of the coupling parameter
I'" and therefore even for strong coupling between the leads and the dot.
Despite the simple appearance it contains some obstacles. The coupling parameter I' (w)
depends on energy and is in general very hard to find. In many practical calculations it
is assumed to be equal to a constant over the energy range of interest, as discussed in
Chap. 4. Moreover, the dot Green’s functions are full Green’s functions and have to be
calculated in presence of the tunnelling term in the Hamiltonian. They are in general not
exactly solvable and one has to apply an approximation scheme. We will return to these
issues in Chap. 6.

The derivation of the current formula ends the part concerning the theoretical back-

ground for the nonequilibrium Green’s function formalism. The most important things
to notice are the structural equivalence between equilibrium and nonequilibrium Green’s
functions and the current formula. The rules for analytic continuation will also show up
to be extremely useful.
In the following two chapters we apply the Green’s function formalism to the FAB model
in case of noninteracting electrons on the dot. The approximation scheme valid in presence
of interactions on the dot is introduced in Chap. 6, and in Chap. 7 the calculations for the
FAB model is presented.
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Chapter 4

The FAB model without
interactions (parallel)

As a first application of the Green’s function method, it will be shown how to solve the
FAB model in case of no electron-electron interactions on the dot, i.e. U = 0, and parallel
magnetizations of the leads. In this case the model can be solved exactly which is often
the case for non-interacting models. Due to the simplicity of the derivation it allows for
introducing and getting used to some of the concepts and the notation applied in the
chapters to follow, but where the calculations are more complicated.

If the interactions on the dot are neglected the Hamiltonian introduced in Eq. (2.9)
reduces to

— T T T
H = Z €noChnoCkno T Z (ana,ucknvcdu + h.c.> + Z €uCapuCap (4.1)
kno know ©
with V, . =1}, R, Recall that there are two different spin bases.

We are interested in calculating the dot Green’s functions

GE (1) = —if(t) <{cdu(t), czm,}> : (4.2)

with g =T, | being the spin in the dot basis and to do so we apply the equation of motion
technique. The operator c, u(t) in Eq. (4.2) is written in the Heisenberg picture of quantum
mechanics, so the time evolution of an operator A is given by the Heisenberg equation

A(t) =i [H, A(t)], (4.3)

when the operator has no explicit time dependence. The time derivative of Gﬁu’ (t) is
therefore

i0,GR,(t) = 6(1)5 ., — i6(t) <{ [cdu, H} (t), cjlu,}> . (4.4)
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The commutator between Cap and H is

[c,, Hl =¢€,¢, + Z Vino uCrno (4.5)
kno

so when inserted in Eq. (4.4) we get

(/Lat - g,LL) G;}Eu’ (t) = 6( + Z Vk?]o‘ ,U,Gk:'ryau ( ) (46)

kno

where the new Green’s function
Gl (t) = —i6(2) <{ckm,(t), czu,}> (4.7)

has been introduced. As for Gf“, (t) the equation of motion can be found
(iat Ekno Gkno,u Z kno,pq ,ulu ) (4'8)

and after a Fourier transformation and rearranging the terms we obtain'

Vk’

_ no,p R

Gk’no‘u( )_ E :w _gk —|1—ZO+GM1M( ) (49)
Hy

After a Fourier transformation of Eq. (4.6) the expression for G ko (@) can be inserted
and we get

Vk

N0, U k )

(@t OG0 = 0,0+ 3 SIIIGE ) (@10
kno,uy

Introducing the so-called retarded self-energy matrix X with the fpty entry

Kk:* [k
- § TR e (4.11)
ppt _ 0+’
1 o W= o + 0

we can write Eq. (4.10) on matrix form as
Gl (w)GF(w) =1+ ZFGH, (4.12)
where G(})% !(w) is the inverse Green’s function for the isolated dot (H; = 0) which is[1]

G (W) = (w — ¢, +i07)3

0,pp’ (413)

py'

'The term 07 is a factor to ensure convergence.
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In Eq. (4.12) we notice the Dyson equation structure known from time-dependent pertur-
bation theory, which gives the iterative form

Gl = Gl + GII=RGl = G + GII=RGl + GExzEGli=RGl + ... (4.14)

of the Green’s function. Due to this form scattering processes are included to all orders
through the self-energy. In case of no coupling between the dot and the leads the self-
energy vanishes and we find that the Green’s function is of course equal to the one for an
isolated dot.

To proceed we need to calculate the expression for the self-energy, where we after
splitting up the coupling matrix elements obtain

|t
R kna
=R, = Z R, R, Z Er— (4.15)
Applying the trick ), F = [de >, F(e)d(e — ¢,) and introducing the coupling pa-
rameter I'o(e) = 2w, |tk17cf’ d(e Ekno) we can write the self-energy as
»i e Ml —F——b(e — &4,,)
it = 2 BBy w —e+10t kno
(4.16)

= R
Z aH U'“/27Tw—€+20+

The coupling parameter I'4(g) can after a change from sum to integral be written as

I(e) = 2r / dey pyo () tno (20 [20(2 — 25)

= 27'('/)770. (E) ’t"70' (E) ’27

where p, ,(€) is the density of states for electron in the lead 7 with spin o.

In order to progress from Eq. (4.16) it is necessary to assume that T'¢.(¢) is independent of
energy, which from Eq. (4.17) implies that the density of states and the tunnelling matrix
elements are constant.

The approximation is known as the Wide Band Limit and it will be used several times in
the following chapters. To determine the size and energy dependence of I's requires more
involved calculations and is in particular difficult in nonequilibrium. One way to proceed
is to determine the electron structure for the leads and the molecule in equilibrium by a
Density Functional Theory (DFT) calculation, and then assume that the results also can
be applied to nonequilibrium in some cases, e.g. for low bias voltage or weak coupling.

(4.17)

In the Wide Band Limit and using — +§0+ P f —imd(w) (where P means principal
integral) the self-energy in Eq. (4.16) becomes

outtou!

R _ i *
S =5 > Rou B, Tl (4.18)
no
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or in matrix form

. n 20 N 20

R 1 I'Y, cos®s +1'/, sin” 3
zh=-2% ( ! AN
2

——T. 4.1
(F?, — Ff,) cos § sin § (4.19)

v
2

(F?, — FY,) coS g sin g
F’T7/ sin? g + T, cos? % ’

We notice that the coupling matrix =Tl +TFis nothing but the the coupling matrix
Foor = 0,1, expressed in the dot spin basis.

The expression Eq. (4.19) can be inserted in Eq. (4.12) an the Green’s function can be
determined, but instead we will exploit the assumption that the leads are fully polarized,

meaning that there is no spin- |’ electrons in the leads and consequently I' lL, =T fé =
The self-energy simplifies and we finally have an expression for the Green’s function
Gf(w) = (af - s7) " (4.20)
with . 20 0
== _% (FTL/ * Fﬁ) < cozogssiing COZiislgn : > ' (421)

4.1 Calculation of the current in linear response

After having derived the expression for Green’s function we are able to apply the general
current formula from Sec. 3.5
e A d -

= | 2 [F@) (GR@) - GAw) | ) ~ fa@)]  (422)
which is valid in case of proportionate couplings 'L = AT'E. Notice that the Green’s
functions and T'? are given in the same basis. !
In the Wide Band Limit I'® is assumed energy independent and the integral can be car-
ried out numerically. However, instead we derive the linear response result which in some
limits can be found analytically.

In linear response it is assumed that the bias voltage eV is small, so only the lowest
order term in the expansion of the Fermi functions needs to be kept. In Sec. 2.1 we have

defined the chemical potentials to be situated at p; = % and pp = —% so we obtain
f(@) — fr(w) = f (w - 2V> g <w ; 2V) ~ -y 2] (4.23)

At low temperatures the derivative of the Fermi function tends to d(w), which is inserted
in Eq. (4.22) to give™
—ie?V A
2th 1+ A
iTn the next chapter we will derive a current formula which is valid for arbitrary couplings in case of
noninteracting electrons on the dot, see Eq. (5.11).

The assumption of low temperatures is reasonable if the Green’s function can be considered as constant
in an interval of the size k,T" around p = 0.

Tr [fR (GR(0) - GA(O))} . (4.24)
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Figure 4.1: The conductance found from Eq. (4.25) is plotted for different values of the
magnetic field strength B.

If we furthermore assume that the dot energy level in case of no magnetic field, ¢, is fixed
at the equilibrium chemical potential of the leads p = 0, the energy levels of the dot with
the applied magnetic field are e L= 6 = B.

With these approximations an analytic expression for the Green’s function GR(O) can
be obtained after some algebra (see Sec. A.2). When we recall that G4 = (GF)T the trace
can be carried out and we finally arrive at

F%/Fﬁ 4 cos?0
orh 4B2 + I‘%, cos26’

_ 2 _ 1L R
J=eV FT’ =TIy + Iy (4.25)
which is the linear response result for the current in case of noninteracting electrons on
the dot, e, = 0, low temperature, fully polarized leads and proportionate couplings.”
In Fig. 4.3 the conductance G = % is plotted versus the angle 8 for various values of the
magnetic field strength B. Note that the maximum value of the conductance

2L TR
e FT’FT’ 4

= 4.2
Cmas 2rh  4B2 4+ 1%, (4.26)

decreases for increasing B because the dot levels are moved away from the chemical po-
tentials of the leads. Moreover, the angular dependence tends to cos?6 for B > FT” and
the conductance is almost independent of 8 for B <« '\, except for a small interval around
the angles /2 and 37 /2. Both limits are easily understood by considering Eq. (4.25).

The interesting feature in the angular dependence is the anti-resonances at 7/2 (and
3m/2). We interpret them as a resonance phenomenon which can be explained by consid-
ering the various conduction channels through the central region.

VThe result for €, # 0 is found in Sec. A.2.
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Figure 4.2: A schematic drawing of the tunnelling processes for three different angles. The
spin of the dot electrons are written in both the (unprimed) dot basis and the (primed)
lead basis. For § = 7/2 the superposition of lead spin states | —') = %ﬂ " +11")) and

| ') = %(—\ 1)y 4+ 1)) have been introduced.

We start with 6 = 0. In this case the spin basis for the dot is identical to the lead spin
basis. The electrons can tunnel through the central region only via the T=1’-level, because
the conduction channel through the |=|’-level is blocked (see Fig. 4.2(a)). For 6§ = 7 is
the 7=|’-level blocked and the current flows through the |=1"-level, see Fig. 4.2(c).

At 0 =T is | 1) = %(\ "4+ 11)) and | |) = %(—| "y 4+ |")) so the electrons can
tunnel through the dot via both levels as shown in Fig. 4.2(b). The superposition of the
tunnelling amplitude from the two paths give rise to the destructive interference resulting
in the anti-resonances at § and 37”

The resonance phenomenon will be further discussed in Chap. 9 where we consider the
co-tunnelling results for different values of the interaction on the dot, U.

The conductance is also calculated when the bare dot energy €, is away from resonance
using Eqgs. (4.20) and (4.24), see Fig. 4.3. For ¢, # 0 almost the same angular dependence
as for £, = 0 is observed but the conductance at the points § = 0 and 6 = 7 is changed,
because the energy of the open channel is moved relative to the chemical potentials of the
leads. Furthermore, the anti-resonance points are slightly shifted.

In [5] it is shown that the anti-resonances also exist in case of not fully polarized leads, but
the resonance effect gets smeared out, i.e. the conductance is finite at the anti-resonance
points. A finite temperature has the same effect.

For the case of noninteracting electrons on the dot a current formula can be derived
for arbitrary coupling to the leads, i.e. the current can be calculated with antiparallel
magnetizations of the leads [16]. The results are presented in the next chapter.
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Figure 4.3: Using Eqgs. (4.20) and (4.24) the conductance is plotted for various values of
the bare dot energy .
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Chapter 5

The FAB model without
interactions (antiparallel)

In the previous chapter we considered the FAB model in case of parallel magnetizations of
the leads and no interactions on the dot. The current was calculated with a current formula
which is valid only in case of proportionate couplings. However, in case of noninteracting
electrons on the dot (U = 0) the current formula in Eq. (3.76) can be simplified even for
arbitrary magnetizations of the leads, as we will show in this chapter. Afterwards, the
current is calculated for the noninteracting FAB model with antiparallel magnetizations
of the leads.

5.1 Current formula

We start by deriving a current formula which is valid when the electrons on the dot are
noninteracting.! The derivation is only sketched, but it is very similar to the derivation
of the current formula in Sec. 3.5, and the starting point is Eq. (3.76). We want to show
that for noninteracting electrons an expression for G< can be obtained in terms of the
advanced and retarded Green’s functions.

In Chap. 4 a Dyson equation for the retarded nonequilibrium Green’s function G was
obtained (see Eq. (4.14)). In equilibrium the same Dyson equation is found for a general
time-ordered dot Green’s function using the equation of motion technique,

G' =Gl + G{='G, (5.1)

where the integration over the internal time variables have been suppressed. G{ is the
time-ordered Green’ function in absence of tunnelling and the self-energy is

S (8,0) = S Vi Vi 8l (1), (5.2)
kn

'The current formula was first derived in [16]
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with gin(t,t’ ) being the time-ordered Green’s function for the isolated lead 7. The key
point in the derivation in case of noninteracting electrons on the dot is the explicit ex-
pression for the self-energy in Eq. (5.2). Unfortunately a similar one cannot be found for
interacting electrons.

Like when deriving the current formula in Sec. 3.5 we exploit that the contour-ordered
nonequilibrium Green’s function have the same form as G! and therefore satisfies the same
Dyson equation

GY =G§ + GixCaC. (5.3)

The curve C is showed in Fig. 3.1%, and with the same arguments as in Sec. 3.5 it is
transformed into the Keldysh contour C', see Fig. 3.4. Applying the rules for analytic
continuation from Sec. 3.4 on the previous equation gives

G< =G§ + GG~ + Gl'=<G”* + GF=1G4, (5.4)
which after iteration can be brought on the form'
G< = (1+GEEZRG5 (1 + 2G4 + GRZ<G™ (5.5)

From Eq. (5.3) an expression for the retarded Green’s function can also be found, and
after rearranging the terms we get 1+ XGT = GF(GJ)~!. For noninteracting electrons
on the isolated dot holds [(GF)™],.,,,, = 6nm(i0, — €,,), leading to (G¥) 1G5 = 0, which
is easily verified. So for U = 0 the first term in Eq. (5.5) vanishes and therefore

G< = GFfxm<GA. (5.6)

The expression for the greater Green’s function is found by interchanging ; with ;.

Recall that in Eq. (5.6) is the integration over the internal time variables suppressed.
In steady state do the Green’s functions only depend on the difference between the time-
arguments, so after performing a Fourier transformation and applying the convolution
theorem for Fourier transforms (see Sec. A.1.4) we find in Fourier space

G<(w) = GF(Ww)Z<(w)GA(w). (5.7)

The lesser self-energy in Fourier space is easily found using Eqs. (5.2) and (A.28), and
after introducing the coupling parameter I}, (w) from Eq. (3.74) we get

G (@) = if, (@) GR@TH (@) GAW) + ifp(@) GRWITH)GAW).  (5.8)

The lesser Green’s function is now expressed in terms of the retarded and advanced
Green’s functions, but the expression can be further simplified.
The greater Green’s function is found in the same way as the lesser function,

G” (W) = —i[l — f,(W)]GF ()T (W)GA (W) —i[l - fr(W)]GF(WITF(W)GA (W), (5.9)

IWith the same arguments as when deriving the current formula in Sec. 3.5 we neglect the initial
correlations between the electrons.
"Eq. (5.5) is called the Keldysh quantum kinetic equation.
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and using the property G> — G< = G — G4 we obtain from Eqs. (5.8) and (5.9)
G (w) - G (w) = —iGT(w) [TF(w) + T (w)] GA(w). (5.10)
The expressions in Egs. (5.8) and (5.10) is inserted in Eq. (3.76) and we finally arrive at

dw

J = 2/2WT1~ [GA(w)rR(w)GR(w)rL(w)} {fr(w) = frlw)} (5.11)

which is the current formula in case of noninteracting electrons on the dot and arbitrary
magnetizations of the leads.

5.2 Calculation of the current in linear response

In Chap. 4 an expression for the retarded Green’s function for the FAB model was obtained.
In case of arbitrary magnetization of the leads we found

-1
GR(w) = (Gﬁv—l - 2R> , (5.12)
with the self-energy
. 20 220 0 i 0
sR_ ¢ Z I cos?3 + T sin®5 (T, —T,)cos gsin 3 ' (5.13)
24 (T7, = T7)) cos %sinf ) sin? & +T7, cos? &

Now both leads are assumed fully polarized, but having the magnetizations in opposite
directions. We define that the left lead contains only spin-1" electrons and the right only
spin-|’ electrons, so the coupling matrices are in the lead spin basis

rt o 0 0
L 1 R
r_<0 0), F‘(orf,)' (5.14)

Transforming them to the dot spin basis using R(#) from Eq. (2.7) gives

f‘L:FTL < C(;SZg , cosgsieng > IN“R—Ff( sin;g ) —Cos%seing )
’ . . 5 = ’ . N
Cos 5 sin 5 sin“3 — cos 5 sin 5 cos“5
(5.15)
and the self-energy can now be expressed as
i /- -
== 2 (rL n FR) . (5.16)

Again we are only interested in the linear response result and replace f; (w) — fz(w) in

Eq. (5.11) with —eVagf:‘)), and finally we use G4(w) = [(}R(cu)rr to find the advanced
Green’s function.
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Figure 5.1: The Green’s function result for the conductance. (U = 0). The results are
plotted for €; = 0 and with different values for the coupling to the leads.

From the above equations the current can be calculated in the Wide Band Limit'
using Eq. (5.11). In linear response and at zero temperature we obtain
o TTTf 16 B2 sin2g

J(0) =eV oh X)) (5.17)

where Y is

Y(0) = 16B* + B*(8TH T — 32e7) + [de3 + (T])?][4e] + (T'}})?]

5.18
+4Bcos (', — T ) [2e,(TF + T10) + B(I'f, = T'fY) cos 4]. (5:18)
For €, = 0 the expression simplifies to
IRANY 1682 sin¢
J(0) = 2Vt o (5.19)

2rh (4B% +THTE)2 +4B2(T], —Tf)2cos? 0

The current expression for antiparallel magnetizations of the leads is far more compli-
cated than for parallel magnetizations.
If we assume ¢, = 0 and F%, = Ff, we get from Eq. (5.19) that J(0) o sin?6@. This can
be understood by considering Fig. 4.2, but with spin-|’ electrons in the right lead. For
6 = 0 (m) both conductance channels are closed because the leads have opposite magneti-
zations. For § = 7 is the dot spin state a superposition of spin-1" and spin-|’ which allows
tunnelling.
The same behaviour is seen for ¢, # 0 and FTL, # I‘fi.

A peculiar feature is the existence of an optimal value for the magnetic field strength
B which is different from zero. Consider €, = 0. For a given value of B is the maximum

VSee Chap. 4.
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Figure 5.2: The conductance calculated using Green’s functions (U = 0). The results are
plotted for ¢, = 0, F%, = Ff, = 1 and different values for the magnetic field strength B.

current (6 = %)
Erf 1682

J, :
2rh (4B2 +-THT )2

max

(B) = 2V (5.20)

Finding the maximum with respect to B gives the optimal value

rLrk
Bopt — T (521)

No such value was found in case of parallel magnetization of the leads, where the current
decreased monotonically when increasing B (see Eq. (4.26)). Moreover, for antiparallel
magnetizations the current vanishes for B = 0.

The feature can be explained as a competition between two different effects. The con-
ductance vanishes for B = 0 due to spin blockade because the spin states on the dot are
identical to the lead spin states, which excludes tunnelling. For large values of B the dot
energy levels are far from the chemical potentials of the leads which suppress tunnelling,
and the conductances decreases as % (see Eq. (5.20)).

Therefore is the optimal value a compromise between the two effects. It is not seen for
the parallel geometry where tunnelling is allowed even for B = 0 because of the equal
magnetizations of the leads.

We return to the antiparallel geometry in Sec. 9.3, where we using a scattering for-
malism can find the conductance in presence of interactions on the dot, but only if one
state is always occupied and the other always empty, i.e. B much larger than the coupling
strength.
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Chapter 6

Unified description of tunnelling
through QDs

In Chap. 4 it was shown how the retarded Green’s function for the dot and therefore the
current can be found for the FAB model, but only when the Coulomb repulsion on the dot
is neglected. In case of Coulomb repulsion the equation of motion generates an infinite
number of new Green’s functions, which is a well known problem when working with the
Anderson Hamiltonian'.

For the Anderson model one way to deal with this is to apply a mean-field approximation
as in [1], where the Coulomb repulsion term in the Hamiltonian is replaced with

Hg/m:U<"dT>”d1+U<nd1>"dT_U<ndl> <”dT>‘ (6.1)

The series of equations of motion close with this approximation and a result can be obtain.
However, this approach is not successful when dealing with a tunnelling setup like the FAB
model. In the Coulomb blockade regime where U is large, the probability for an electron
entering the dot depends on whether the dot is already occupied or not, and not on the
mean occupation of the dot [1].

Alternatively one can apply the original Anderson Hamiltonian and generate new

Green’s functions, and then use some physical insight in the problem to close the equa-
tions. This allows for a description which goes beyond the mean-field approximation.
In [5] it is shown how the series of equations for the FAB model could be closed for a finite
U using an approximation scheme as in the paper by Meir, Wingreen and Lee [8]. When
solving the equations the limit U — oo had to be taken because it allowed for considerable
simplifications.!.

In this chapter we present a general formalism for writing up the equation of motion for
the retarded Green’s function of a generic system consisting of a quantum dot contacted to

'The Anderson Hamiltonian is introduced in Sec. 2.1.
i here is still some discussion about the results obtained.
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two leads. The method will be referred to as the unified description. With this approach
an expression for the retarded dot Green’s function for the FAB model can be found, even
for a nonzero U. The derivation of the method is from [6], but here more details are added.

6.1 Derivation of the retarded Green’s function

The basic assumption in the the procedure is knowledge about the eigenstates and eigenen-
ergies of the central region. A similar approach is used in other branches of physics. An
example is high-T/, superconductors in the Hubbard model where new fermion- and boson-
like operators are introduced. These so-called ”slave”-operators or ”slave”-particles forms
a new algebra and are directly linked to the eigenstates of the atoms.!!

For our tunnelling model the aim is to find the equation of motion for the retarded
Green’s function of the dot by generating a series of coupled equations. At a certain
level in the calculations two particle Green’s functions occur, which generates new higher-
order Green’s functions. To close the equations an approximation scheme similar to Meir,
Wingreen and Lee [8] is invoked. It relies on weak dot-lead coupling which implies that
the leads can be considered as unaffected by the coupling to the dot and therefore treated
as non-interacting electron gasses. Furthermore, it is assumed that correlations between
the leads and the dot vanish. With these approximations rather compact expressions for
the Green’s functions are obtained.

If the eigenstates and eigenenergies of the molecule are known we can write the Hamil-
tonian of the molecule as

Hyp =Y cala)al (6.2)

where |a) is a many-particle state of the molecule. If the state |a) contains, lets say, N,
electrons it can be written on the form

@)= Y Cupro ...cija |0) (6.3)

LERRTILT

T

dn, is the operator for creating an electron in the single-particle state n; on the

where ¢
dot.
The part of the Hamiltonian which connects the leads and the molecule has the form

— Sl T
H, = Z (tk,mckncdn + tknncdnclm) ) (6.4)
knn

where 1 = L, R corresponds to the left and right lead, respectively. kn is supposed to be
a collection of quantum numbers for an electron in the lead 7.
The retarded Green’s function for the dot is a matrix, where the nn/-entry is

GE (t) = —i0(t) <{cdn(t), cgn/}> : (6.5)

HiSee for instance [17] and references therein.
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Now we take advantage of the knowledge about the eigenstates of the molecule, and
insert a complete set of dot eigenstates ) |a)«a| =1 into H. giving

knn,o.8

Also for the retarded Green’s function a complete set of dot states are inserted, and we

find
= Y FugnFig wGhs wp (), (6.7)
aﬂalﬁl

where the new auxiliary Green’s functions are defined as

Golg o (1) = —i6(t) ({(Ja)(B]) ( (1}) - (6.8)
If we take a closer look at |a)(/| it is seen that it is an annihilation operator. This is clear
because it stems from |aXald,|BX6| = F, 4, |a)XB|. Fagn is nonzero only if the many-

particle state |3) can be written on the form |3) = dIL|a), meaning that |3) is identical
to |a) except that it contains an extra n-electron. So the operator |a)(3| removes one
electron from the dot.

When dealing with operators like |y)(v| it is important to be aware of what type of operator
it is.

6.2 Equation of motion for G¥; 4

As when we calculated the retarded Green’s function for the FAB model in the limit
U = 0, we will apply the equation of motion technique. Recall that the time-development
of operators in the Heisenberg picture are given as

A(t) =i [H, A(t)] (6.9)

when the operator A has no explicit time-dependence.

We want to find the equation of motion for the auxiliary Green’s functions defined in
Eq. (6.8) and then insert the result in Eq. (6.7), where the Hamilton governing the time
evolution is

H = Zﬁknckncw > (tianclaladBIE s, + hc) + 3 Egla)al
k.8 o (6.10)

C + HT + Hdot’

After calculating the commutator [H, |a)(3]|] the time derivative of the Green’s function in
Eq. (6.8) is

(10, + ) GEs o (t) = 60) ({laXB1 18X }) = Ll s, (611)

where £ 5 =¢, — €5 and
LozRﬁ,oz’,B’(t) - _7’0( <{[ T ’Ct ﬂ” |}> (6.12)
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Writing out the commutator gives

[Hyp, [a)B]] = Zt;mnc,m( Fonlt¥Bl + Fy L la ><v\)
- (6.13)
> trneny (Frnlv X8I + Fig la)vl) |

knnv

and from the F' constants it is seen that |y)}3| and |a)(y| corresponds to creation and
annihilation of two dot electrons, respectively. Therefore they both commute with ClTvn and
¢y,,» Which has been used in Eq. (6.13). Likewise [v)(| and |a)(v| conserve the number of
dot electrons and therefore also commute with the lead operators.

Introducing the new Green’s functions

Df, oo (t) = =i6(8) ({ (el 181) (0, 18%e’ | }) (6.14)
EL, g () = =i6(8) ({ (e l)81) (). 18X 1}) (6.15)
the function Laﬂ o (1) becomes
R R

aﬂ a/ﬁ’ Z tknn ( Yo, nDkn,'yﬁa’ﬁ’( ) Fﬁfy nDkn,a'ya//g” (t)>
ki . . (6.16)

- Z tknn v, nEkn,V,Bo/ﬁ’(t) + F:ﬁ,nEkn,aua/ﬂ’ (t)) )

knnv

and inserting this into the equation of motion for Ggﬁa, 3 (t) gives

(10, + Eng) Glisor (1) = (2) ((laXe/) 855 + (I8XB1) b )

R
Z tknn < Yo, nka’Yﬁa/ﬁ/ (t) + Fﬂ’Y nDkn’o"yalﬁl(t)) (6 ].7)
knny '

§ R * R
+ tknn ’yl/ nEkn,l/ﬁa’ﬁ’ (t) + FVB,nEkn,aVa’B’ (t)) .
knnv

So far it is exact. Now we go one step further and find the equations of motion for the
new Green’s functions D¥ and E%.

6.2.1 Equation of motion for D? and E*

For DE we obtain

(10, + By + ) Dy (1) = 5(0) (el 110’1 855 + (18XBIcL, )
= LD oy acy ()

(6.18)
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where
LB sy (8) = =i6() ({ | Hp X8I S 18Xl }) (6.19)

and the commutator gives

Heochy X8I = 3 (oanFurn [cola X8 b, X8
nk.l,r]lallﬁ// (6.20)

-+ tkz’n’nFa”ﬁ”,n [|/8,/><all|ck’n’7 C]‘L'f]|fy><’8’i| >
The commutators in Eq. (6.20) can be written as
[ la" X081, by PXBI| = —clupyehyla BI85, + chychiy 1128”16 (6.21)
k'n 1 Crp Y k'n’ Ckn ey knCk/ny Y ] .

(187X ey el YNBI] = 18" KBl Ol + Sl 11K 1850 (6.22)

The signs in Eq. (6.21) can be determined by noticing that the dot operators correspond
to the annihilation of three dot electrons when inserted in the sum in Eq. (6.20). In the
same way, the operators in Eq. (6.22) are the annihilation of a single dot electron when
inserted in Eq. (6.20).

At this stage the important approximations are invoked in order to truncate the series
of equations. First we assume that the lead operators are almost equal to their mean
values at all times, which allows us to write

o= (el (k) + (L) = (). 6

c;rmck/n/ = <c;rmck,77/ - <c,tnck,n,>) + <Cank’n’> ~ <CL7707€/77/> . (6.24)
If the contacts are considered as non-interacting electron gasses we obtain <CL77’CZ77> =0
and <c,t,nck,n,> = 6kn,k’n’f77(€k)7 with f,(§,) being the Fermi function for the lead 7.

Furthermore, we assume that terms like <c£n]’y><o/ |> in Eq. (6.18) vanish. These terms

describe correlations between the dot and the leads and are therefore assumed small in
case of weak coupling.

The approach is exact in two limits. In case of non-interacting electrons on the dot (for
the FAB model U = 0) this point in the derivation of the equation of motion for G ,(¢) is
never reached, so the method is exact. Likewise if the coupling between the leads and the
dot vanishes. Then the term H, in the Hamiltonian can be neglected, and the Green’s
function of the dot can be determined without any approximations. In this limit it is also
exact.

In general one has to be careful when applying this approximation scheme to the Anderson
model. We will save this discussion to Sec. 7.5 where the method is applied to the FAB
model.
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After the approximations made Lg,kn'yﬁa/ g (t) becomes,

LD kn’yﬁa’ﬁ/ Z tk‘nn »y'y n’ f77 (ék)]G'}y?;,Ba’ﬁ’ (t)

(6.25)
+Zt’f’7n’ v B (gk) g (1),

and when inserted in Eq. (6.18) we finally arrive at the following equation in Fourier space

~1
R _ 2 : * R
Diapory (@) = Sy + By +107 2 <t’“7n’F v Ty Ekn) Gy ()

(6.26)
ot (1= €1 (@) )

Doing exactly the same kind of calculations and invoking the same approximations the
following expression for E,ﬁ; voorp (W) is found™

-1
R _ *

+ tltnn’ vy, n’f (51%,) v/ Ba’ B’ (w)> :

See Sec. A.3.
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6.3 Unified expression for GaRﬂ’a,ﬂ,

Now we can collect the pieces and insert the expressions for D® and E* in Eq. (6.17) and
in Fourier space the result reads

(@ + By +i0M)Gag 0 (@) = ()]} 855 + (16'XB) 6,
Z yo,n 'yy n' n ’(w—i_Eyﬁ)Gﬁ’ﬁ,a’ﬁ’(w)

¥y’
+ Z yo,n ’y’ﬁn’Kn (w+E )G—y'y o/ﬁ’( )
Bynn'
+ Z ,B'yn a'y n’ n (w+E )ny'yo/ﬁ’( )
yy/nn!
+ Z ﬁfyn 'yvn TeLn’(w+E )Ggy a’ﬁ’(w)
(6.28)
vy nn!
+ Z v Fry i N (0 + B, g) Gl ()
+ Z av,n ﬂy’ n’ (w—i_E )Guz/ a’,@’( )
+ Z Vﬂn via,n/ (W+E )Guya’ﬁ’( )
+ Z Vﬁn vv! ./ (w+E )Gou/’ ’ﬁ’(w)7
where we have introduced the functions
fo(&) ek
Kp(w) = o b (6.29)
%7: ( 1_f77(£k77) w+§kn+20+
fo(&) o kg
A (w) = o —n (6.30)
%’: 1- fn(ék;n) W= gkn + 40t

The task is to solve the equations for the auxiliary Green’s functions and insert the
results in Eq. (6.7). Eventually, a general expression for the retarded Green’s function has
been derived for a system consisting of a quantum dot coupled to two leads. It shall be
emphasized that the method is only supposed to work in the limit of weak coupling.

K. Flensberg showed in [6] that the method gives the same result for the model with a
singe spinful level with interactions, as the one obtained in [8]. Furthermore, it is proved
that the method is exact for non-interacting electrons.

The method was also applied in [9] where a model for a single level coupled to a vibrational
mode was considered.
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6.4 Discussion of the unified description

Even though the expression in Eq. (6.28) looks rather compact it hides some serious
complications, because it depends on expectation values like (Ja)(a/|). These expectation
values have to be calculated self-consistently, and we note that they are related to lesser
Green’s function. Consider for instance

(X )(#)) = =iGGar 0o (t:1)- (6.31)
In steady state ((Ja)a/|)(t)) is assumed constant, and we obtain

(Jaa'ly =~ [ 52

but we do not know how to determine the lesser Green’s functions. A tempting approach
would be to use the same equation of motion approach as for the retarded Green’s func-
tions. This gives an equation system identical to Eq. (6.28) except that the constant on
the right-hand side is zero,¥ so we have a homogeneous equation system for all w. However,
among the infinitely many solutions we do not know which to chose.

G 00 (W) (6.32)

To progress we have to assume a pesudo-equilibrium situation. An example is a setup
where the dot is strongly coupled to one of the leads, so they are in equilibrium. That
is in fact often the case in an experiment. In this situation the equilibrium fluctuation-
dissipation theorem can be applied, e.g. (see Eq. (3.26))

(Jaa'l) =i [ 52 [Gihena(w) = (G owl@))] £y, (6.3

where f, (w) is the Fermi function for the lead with the strong coupling to the molecule.
Egs. (6.28) and (6.33) then define a self-consistent equation system for the retarded Green’s
functions G§a70a, (w).

Another pseudo-equilibrium situation occurs when we are only interested in the linear
response result, i.e. we consider only a small bias voltage which can be treated to lowest
order. Therefore the fluctuation-dissipation theorem can be used to determine the occu-
pancies, but remember that calculating the current also requires proportionate couplings.
When applying Green’s functions to solve the FAB model for a finite U only the linear
response result will be considered, and therefore solely the parallel geometry.

For some models the lesser function can be determined through a diagrammatic ex-
pansion giving a true nonequilibrium expression, but determining the lesser function is
in general a problem when dealing with nonequilibrium Green’s functions. That was also
the reason for assuming proportionate couplings when we derived the current formula in
Sec. 3.5, because it eliminated the lesser function.

In Chap. 7 an attempt to apply the unified description on the FAB model is presented.
At that point a further discussion of the validity of the approach is also given (see Sec. 7.5).

YRecall that the constant on the right-hand side in Eq. (6.28) stems from the §-function in the definition
of the retarded Green’s function.



Chapter 7

Green’s function approach to the
FAB model

After the derivation of the unified description of tunnelling we can proceed and apply the
method to the FAB model.

At first we translate the FAB Hamiltonian into the notation used in the unified descrip-
tion, and from Eq. (6.28) we can write up an equation system for the auxiliary Green’s
functions. The next task is to determine self-consistently the occupancies entering the
expressions for the auxiliary Green’s functions and use them to find the original Green’s
functions. Finally the current is calculated in linear response and for low temperatures.

Already at this state it should be mentioned that we have only partially succeeded.
However, the unclear/uncorrect results give rise to a discussion of the validity of the
method and the approximations used. That will be found in the last section.

7.1 The FAB model in the unified description

We want to find the retarded Green’s function for the dot
GI(8) = =i0() ({eg, (1), ch}) (7.1)

where p and g is either 7 or |, using the method derived in the previous section.

When applying the unified description the first thing to do is to identify the eigenstates
of the dot. For the FAB model this has already been sorted out in Sec. 2.3, and the
eigenstates are |0), | 1), | |) and |2) = CLLCLT‘O% where the spin is in the dot spin basis.
With these eigenstates it is easy to see that only the following Foou= <a|cdu\ﬁ) coefficients
are non-vanishing !

Forp = Fopp = Fra ) = —Flap = L. (7.2)

iThe minus sign is due to order of the operators in the definition of the double occupied state.
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The tunnelling part of the Hamiltonian is with the degrees of freedom for the FAB model

HT - Z ang’#c};n0|a><ﬁ|Faﬂ:# + V/:;]J,MLBXQIF;@MCkno; (73)
kno,u,a8

which will be used in the definition of the K and A functions.

From the F 0 M—coefﬁcients and the definition of the Green’s function in terms of the
auxiliary Green’s functions', the Green’s functions Gﬁul (t) can be expressed as

GTy = Gt o1 = Glaor = Go iz + Gla o,
G| = Gl o) + Groo + Gl 2 + Gl o
GY| = G0, + G2 — Glho, — Glhgas
GTi =Gl op — Goj 12 + Glhor — Gy, 0.

(7.4)

Here the time-dependence of the Green’s functions has been suppressed.
The task is to calculate the 16 Green’s functions on the right-hand sides and then insert
the result into Eq. (7.4) in order to obtain G*(w).

From Eq. (6.28) and Eq. (7.2) we obtain the following expressions for the auxiliary
Green’s functions in Eq. (7.4)
[w + Ejp — K[| (w+ Eg2) — A (w) = Ay (w) — Al (w+ Epjp) | Glh s

= [01ar(18"X21) + d2(] 1 )a'])]
+ [Kf|(w+ Eo2) + A (w + E7)] G v (7.5)
(

+ [Kfr (w+ Epz) — Aj, W)} Gl
— [ (@ + Eoz) + A7 (0)] G g

and

o Eop = KCfy (w4 Ein) = A% () = A (@) = AT, (@ + Bip) | G
= [Goar (1T 1) + 81 (10X ])]
+ [Kﬁ (w + Eo2) + Al (w + Eu)} Glhwp (7.6)

+ [A?l(W) — KfT(w + Eoz)i| GORl,a’ﬁ/

+ [Kﬁ(w + EOQ) + A?i(W):| G%a/617

See Eq. (6.7) and Eq. (6.8)
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and
[+ Boy — Kfy(w + Foo) — Afy (@) = Ay (@) = A5 (@ + B)| G
= [doar{IB'XL ) + 0y (|0Xa])]
— [P @+ Bop) + A ()] Gl
+ [A?T(CU) — KTBL((U + E[)Q):| G(])%T,Ctlﬂ/’
and finally

[w + B — K4 (w+ Epz) — Af (w) — Al (w) = Al (w + By)) | G 0

= [S1a (18%21) + 82 (| TX])]
— [Kf(w + Eoz) + ATT w+ Ey)] G wp (7.8)

(
+ |:KT1((,(J =+ E02 (UJ):| GfQ,a’,ﬁ”
=+ [K (w + EOQ) + ALT(W)J G(I]%T,a/ﬁ/’

The constants K" and A®" are defined as in Eqgs. (6.29) and (6.30) with

Vi Vi
KoM (w) = Fo(Cino) Y _VhnouVnow' .
i (W) knzcr < 1- fn(gkna) W+ Ekpo + i0t+’ (7 9)
and v
ASM (W) = Fo(Cine) \ _VhnoyVenow 710
e (W) knza ( - fn(Ekno) W — Egpo + 70t ( )

The Eqgs. (7.5)-(7.8) look terrifying, but we note that according to Egs. (6.7) and (7.2)
there are only four possibilities for o/3. Moreover, the Green’s functions depend only on
other Green’s functions which have the same indices for o/, e.g. GézT o1 depends only on

R R R
Gororr Graop and G o
With this in mind, we put Egs. (7.5)-(7.8) on matrix form

3 ). (S

R\l 0,8 | _ 0o’ (18" + 0,/ (|0}’
(M) G | T | s (992 + g (| M) | (7.11)

i 10 1N2I) + b (| T

It is the same matrix for all o/’ because the matrix elements (depending on K eh peh
etc.) are independent of o/f3.
Furthermore, the matrix M can be split up into two parts as

M = (MH)t - MmE, (7.12)
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where MOR is the auxiliary Green’s function for the isolated quantum dot and Mg has the
form of a self-energy.

The equations defined through Eq. (7.11) can in principle be solved for any values of the
parameters.

From Eq. (7.4) and Eq. (7.11) it follows that
Gl = (Po+ Pp) (Mf = M3}) + (P + P)) (M — M) (713)
+ Py (M} — Mg — My + M)

where Pyg = (|a)f|) and Pao = Pa.

The occupancies, P, 5> are not independent, and because the eigenstates for the dot
Hamiltonian form a complete dot set we find Py + Py + P| + P, = 1. Moreover holds

P +P = <CICL> = (ny), which gives Py + P, = 1 — P, — P, = 1 — (n]). Finally,

P = <c¥cl> = (n4), which is seen by inserting a complete dot set in <c¥cl>.

So Eq. (7.13) becomes
GE = (M — ME) + (n)) (M8 — ME - ME + MJ)

+ (neg) (M — M3 — M+ ). e
For Gﬁ we find in the same way
Gl = (Po+ P) (Mgs + Mg5) + (Py + Pp) (My] + M)
+ Py (M3 + M+ ME + ME) (715)
= (Mg + M5) + (ny) (Myf + My — My — Myj) '
+ (nyp) (Mg} + My + My§ + My5) .
and for the off-diagonal Green’s functions we obtain
Gl = (Po+ P)) (M5 — Mg}) + (P + Py) (M} — M3})
+ Py (M + M M — M) -
= (M3 — M) + (ny) (M + Mgl — Myj — M{3)
+(nyp) (M35 — Mg} — Mg§ + M)
and
Gl = (Po+Py) (M3} + M) — (P + P) (Mgh + MS3)
&Py (M5 — M+ M — M) o

= (Mg} + Mf) — (n)) (Ms} + M35+ M + MS)
+ (nyp) (M35 — Mgs+ M — M) .

iThe explicit form of the matrix (M{;)fl can be found in Sec. A.4.3.
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The occupations appearing on the left-hand sides have to be calculated self-consistently
as discussed in Sec. 6.4.
We are interested in comparing the results found using the unified description with the
exact analytic result derived for U = 0 in linear response (see Sec. 4.1). So in the following
we will only be interested in the linear response result and therefore have to assume
proportionate couplings in order to calculate the current.V Applying the fluctuation-
dissipation theorem gives

(o) = 2t [ S2GT (@)f (@) (7.18)
() = =2t [ S26T (@)f @) (719)
=i [ 52 (6 @) - (G )] £) (7.20)
oy =i [ 52 (61 @) - [GT @) S, (7.21)

as derived in Sec. A.4.4, where f(w) is the Fermi distribution function in equilibrium.
Combing Eq. (7.14)-(7.17) and Eq. (7.18)-(7.21) it is possible to calculate the occupancies,
which will be done in the following section.

7.2 Numerical solution of the FAB model

At this point we have to use numerical methods in order to solve the equations for the
Green’s functions and the occupancies self-consistently.

We proceed in three steps. In Eq. (7.14)-(7.17) we see that the Green’s functions Gﬁu’
depend on the elements of the M matrix defined in Eq. (7.11). The occupancies are
related to the Green’s functions and therefore to the elements of M, see Eq. (7.18)-
(7.21). So the first step is to calculate the integral over M times the Fermi function, and
the second is to obtain the occupancies from Eqs. (7.18)-(7.21) by solving the resulting
matrix equation.” Finally, the occupancies are inserted in Eq. (7.14)-(7.17) and the Green’s
functions have been determined for all w.

7.2.1 Expressions for K and A

In order to find the integral over M’ times the Fermi function we need expressions for
the K" and A" functions from Egs. (7.9) and (7.10). As an example is shown how to
calculate A}, ,(w).

As in Chap. 4 we use the trick >, F(eg) = [de) . 0(c — e;)F(e) and introduce the

VSee Sec. 6.4.
YWhen writing down the equations for the occupancies it is advantageous to use that (n;),(n;) are
reals and (ny)) = (n;)".
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coupling parameter

(e) = 2m Z [t one*0 (€ = Ehne)- (7.22)

Recalling that Vi, = R, LI Where R is the change-of-basis matrix from Eq. (2.7),
we obtain with this definition that Af /(W) can be written as

A, Z I (ek —Vkm T
n(Ekno) -
kno = Eno F 107

f
_ I‘n
E Ry, Uﬂ/27w_5+10+ 7(e).

With the same line of arguments as in Chap. 4 we assume that 'y (g) is independent of
energy (the Wide Band Limit) and therefore can be pulled outside the integral. This
approximation gives the following expression for A°

~ d
S (724
n

where qu’ is the coupling matrix defined in the dot spin basis (see Eq. (4.19)). How to
calculate the integral is shown in Sec. A.4.1.
In the exact same way we obtain

de 1—-fy
7.25
Z ““/27rw—€—i—z()+7 (7.25)

Z uu/ <1_f77 )>_€1_Z,0+. (7.26)

7.2.2 Condition for M”

(7.23)

In the Wide Band Limit and after rewriting the expressions for K" and A" in the pre-
ceding section, it is, at least in principle, possible to solve the linear equation systems in
Eq. (7.11) for all 6, where 6 is the angle between the magnetization of the leads and the
applied magnetic field.

As already mentioned, calculating the occupations in Egs. (7.18)-(7.21) involves integra-
tion over all entries in the matrix M¥ = [(MF)~! — ME|~! from Eq. (7.11) times the
Fermi function. But before doing so we will show a condition which M has to fulfil, and
it might explain why the calculations fail for U # 0.

In the following section a method to obtain the occupations is presented.

Recall that the equation system in Eq. (7.11) has the form"!

_1 /R _ —R
(MOR) lGa/ﬁ’ = ’Ua/B, —+ MI;JGO/,@’? (727)

ViNotice that G is the vector defined on the right-hand side of Eq. (7.11), not to be confused with G
having the elements Gﬁul with p, p’ =1, |.
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where v, 5 is a vector containing the occupancies, MOR the retarded Green’s function for
the isolated quantum dot, MER the retarded self-energy and

~h R R R R
Ga’,@/ - (GOT,(X’,B” GO,L,O/ﬂ” Glla’ﬁ” GT27a/ﬁ/) (728)

is a vector containing the full auxiliary retarded Green’s functions.

Integration over éf/ g for all energies gives

[ 8T = [ o2 M@0 + MEIME )Gl ()

. (7.29)
1 _
— §/Ua/ﬁ/ 3
where the remaining term comes from"l
1
R —
[MO (w)]nm - 5”mw 4+ Ermoy0t

. 7.30

_P/w+Enm —imd(w + EM)0y, (7.30)

= —imd(w + E")0,,,,.
The second term cancels. éf/ﬁ/ (w), MEZ(w) and M{}(w) are retarded functions, so after
analytic continuation w + i0T™ — z they will have poles on same side of the real axis.
Moreover, M (2)Myg,(2) Gyp(2) < % for |z] — oo, with K being a constant. Using the
Residue Theorem by making a closed contour along the real axis closed in the pole free
half plane does the job.

From Eq. (7.11) we get @55/ (w) = MR(w)ﬁa,B,, SO

dw—R dw_ p 7 _
131 - M rpr — T = 131 . 1
[ 525Gk @) = [ SEM @, = T (7.31)
from which it follows g .
/w ME(w) = —21. (7.32)
2 2

When performing the integral over M? the condition was not fulfilled for all values of
the parameters'i! and angles. We assumed that this was due to numerical integration
problems because the entries in the Mf(w) matrix are very peaked and therefore difficult
to integrate. However, it might be because of problems caused by the approximations
used in the derivation of the unified description. The will be discussed in the last section
of this chapter.

ViiFor the explicit form of Mg (w) see Sec. A.4.3.

ViiThe parameters are the strength of the magnetic field B, U, T'” 1_‘1’, and temperature.

1
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7.2.3 Calculation of the occupations

Because we assumed that the condition in Eq. (7.32) was not satisfied due to numerical
problems, we now show how the integral over M?(w) f(w) can be carried out using the
Residue Theorem from complex analysis. This is a very elegant way of doing numerical
integrations because it involves summing over discrete values in the complex plane instead
of integration over a complicated function.

So the task in this section is to calculate the integral

[ 5 M), (73
and we start be writing M (w) as

M (w) = ([(MEF) () - MEW)] " = M) + M) = QR (w) + Mf(w). (7.34)

The integral over M&(w) f(w) can be calculated when we recall that ﬁ =P[L-
in§(w). The imaginary part of the integral gives'™

i [ 52 M) S @) = =5 -E (7.35)

and this diagonal matrix will be denoted ImM{f-

The principal integral is more cumbersome and no simple expression is found, but it can
be calculated using the same method as when calculating the integrals contained in the
K" and A®" functions, and the derivation is found in Sec. A.4.1. The resulting diagonal
matrix will be denoted ReMéa.

For Qf(w) we perform the analytic continuation w + i0* — 2. Q(z) has poles only
in the half plane below the real axis because M (w) and ME(w) are a retarded Green’s
function and a retarded self-energy, respectively. f(z) has poles for

_@n+ D)1 1
z= ziﬁ = ikp, g = T (7.36)

According to the Residue Theorem integration along the curve D shown in Fig. 7.1 will

o Lama@ie=-([+ [ )sEaemse - FL Al 051

XThe exact expression for M¥ is found in Sec. A.4.3.
*See e.g. [1].



7.2. NUMERICAL SOLUTION OF THE FAB MODEL o7
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Figure 7.1: The integration contour D=L+L’ (L running from -D to D along the real axis).

tend to zero. So the integral along I’ vanishes for D — oo.
Collecting the pieces gives

;L: M () f(w) ;' ij Qiky) + Impgg + Repge. (7.38)

To evaluate Q(ik,) requires KZ:, (ik, + E) and AZZL' (ikn, + E), where E is a (real val-
ued) energy, which is the arguments for K" and A®" in Egs. (7.5)-(7.8).

The value D on the integration contour D corresponds to half the energy band for
the lead electrons. So far we have considered the limit D — oo, i.e. the leads contain
electrons with all energies. Instead, we now assign a finite value to D, so the energy of
the lead electron are bound by the cut-off, —D < o < D. Moreover, it is assumed
symmetric around the equilibrium chemical potential u = 0, and only temperatures T ~ 0
are considered.

From Eq. (7.23) we get

e [P fale)
A¢ ik, + E) = _He de— 21\
i (in + ) o /D Eikn+E5]

~ PNM' _/O dE—ikn+E—€
2w ) (E—5)2+k?%

Y[l [(E+D)?+k2 E+D E
n . -1 -1
— ] 2“7‘: _211(1{ FT+R2 }—z(tan { k ]—tan [k])]




58 CHAPTER 7. GREEN’S FUNCTION APPROACH TO THE FAB MODEL

With the same approximation Aﬁu’(ikn + E) becomes

MRS E? + k2 E E-D
o . p n j -1 -
Niaelibn £ ) =3 57 [21n[(’E—1?)2+1c2L]_Z<tan [kn]‘m [ ko m

7.40)
and furthermore holds
. . ho -
K (iky + E) = A, (ik, + E), (7.41)
hos B )
Kuu/ (ik, + E) = Awl(zkn + E). (7.42)

From Eq. (7.38) and Eqs. (7.39)-(7.42) the integral over M*(w) f(w) can be obtained,
and then the occupancies can be found using Egs. (7.18)-(7.21). Finally, the Green’s
functions are determined from Eqs. (7.14)-(7.17).

7.3 Calculation of the current

With the occupancies calculated in the previous section, it is possible to find the Green’s

function
GE(w) GE(w)
GEw) = ] } , 7.43
@=( g arer ) i

If T(w) is independent of energy and it is used that GA(w) = (Gl'“j”(u)))T the current
formula from Eq. (3.78) can be written as*

I= | 5 (65w - (€"@)) i) - faw)] . ()

The chemical potentials for the leads are defined as

eV eV
pr = p+ —, HR =M — — (745)
2 2
where i is the chemical potential in equilibrium and eV is the applied bias. We could only
calculate the Green’s function in linear response, so the current calculation is also restricted
to linear response, and expanding to first order in eV gives fr(w) — fr(w) = —eVagi(w)

o
The current formula becomes

e’V A dw ( p R +\ Of(w)
S R [F/% <G (W)= (G (“’))> O ] (7.46)
and after introducing the constant
K = / GRw “) (7.47)

¥ fi(w) = f(w— u) , where p; is the chemical potential of the i-lead, and T is the coupling matrix in
the dot spin basis.
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we arrive at
ie2V o\
h 14+ A

J=- Tr [f(K - KT)} . (7.48)

Before calculating K, we note that it requires an integral over MR%&U) due to Egs. (7.14)-
(7.17). If this integral is calculated on the real axis, the same problems as when calcu-
lating the occupancies are encountered. Once again we perform the analytic continuation
w 4+ i — z and calculate K from a contour integral in the complex plane.

The function G(z) — Go(z) does not have poles in the upper half plane, while ag—f)
has poles of order two at z = ik, = ZW As in Sec. A.4.4 the Residue Theorem is
applied to obtain

K- [ 526" - Gl >] 8f<“)+ d“’Go< >8§Ej’>
©

dz e flw
- [ 516t - a / L (7.9
( ). Ry O (W)
= G
SO CORCIOIE S ()2
with the same contour as in Fig. 7.1.
The residues are*!
0 1
Res [(G(z) — Go(2)) ‘g(zz) ; zkn] = 3 (G (ikn) — Go(ikn)] (7.50)
and the derivative of the function G(z) at ik, is found numerically as
. G(iknt1) — G(ikp—1)
G/ (iky,) ~ 51
(ik) s, (751)
which is valid for large § as we have in our calculation.
The last term in Eq. (7.49) gives
dw df (w) i[9y 0
il @0t = — 2w\t .52
/271' 0 () ow PG(I):C 2 0 %(El) ’ (7:52)
where PG{} is the principal part of the integral X
Now K can be written as
- — G (ik N 1S 7.53
K=i) 1 st <P =5 (5w ) @

zkn

*iiThe derivation is in Sec. A.4.2.
*The principal integral over G gives a diagonal matrix with real-valued entries. From Eq. (7.48) it is
seen that this part drops out.
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and from this expression

2V o\

A T BV

Tr [f(K - KT)} . (7.54)

can be found.
The results are presented in the next section.

7.4 Results

Everything is ready for solving the equations for the Green’s functions and calculating the
current. The equations have been implemented in both Mathematica and Matlab, and the
results are identical.

In this section two different cases are considered. First we show that the unified descrip-
tion gives the exact solution in absence of Coulomb repulsion between the electrons on
the dot. Then we consider U # 0 and find some dubious results depending on the value
of the coupling strength FT"

We are restricted to low temperatures, i.e. that temperature is much smaller than the
other energies in the problem, due to the approximations used in Sec. 7.2.3 to obtain the
analytic expressions for K%"(ik,,) and A®"(ik,). The energy unit is chosen to be 200 kT
When the residue sums are evaluated to find the occupancies and the current, the number
of points in the sums are fixed such that the maximum n, n,,,, is the largest integer
satisfying

(2n+ 1)m
B

with D being the band width and 8 = 1/k,T.
The leads are assumed fully polarized, i.e. Fl’, = 0, and for simplicity they are also as-

<D, (7.55)

sumed identical, F%, = Fﬁ, soA=1.
All the results shown are for the bare dot energy fixed at resonance, ¢, = p = 0.4

Only a very brief interpretation of the results are given in this section. In Chap. 9,
where perturbation theory in the tunnelling Hamiltonian is considered, a more thorough
examination of the results are given.

7.4.1 No Coulomb repulsion on the dot

As already mentioned in Sec. 6.4, the unified description is exact in the noninteracting
limit, U = 0, so the results could be calculated directly from the equations in Chap. 4.
However, it offers a valuable check of the implementation.

*VThe implementation can also calculate the current in case of not fully polarized leads and the bare dot
energy away from resonance.
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Figure 7.2: The occupations of the dot levels for noninteracting electrons on the dot. The
band width is D = 20.

The unified description is only supposed to be valid in the weak coupling limit, but
for noninteracting electrons this restriction is not needed, so we assign FTL/ = Fﬁ, =1 and
set B=0.2and B =1.

Due to tunnelling, a broadening of the dot energy levels occurs and the width of the en-
ergy levels are equal to the imaginary part of the self-energy. For the FAB model the
self-energy depend on the angle 8, but for noninteracting electrons it is at most equal to
Iy = I‘%, + I‘f,, see Eq. (4.21). The value for the band width is unimportant as long as

the dot energy levels are well inside the band, i.e. |5u‘ + FT’ < D, and it is therefore fixed
at D = 20.

Fig. 7.2 shows the occupations of the dot levels, ny and n,. If B = 0.2 both energy

levels are close to resonance and for § = 0 the lower energy level, 1) is half-filled because
electrons tunnel through it (see Fig. 4.2). The other level is blocked due to spin blockade,
and because the energy is above the chemical potentials of the leads it is empty.
For 6§ = 7 the spin-1 level is blocked, but because the energy is below the chemical poten-
tials it is always occupied. Current flow through the spin-| state giving a half-filled level.
When B is increased the energy levels are moved further away from resonance and the
lower energy level gets more filled, while the spin-| level is emptied.

In Fig. 7.3 the results obtained with the unified description are compared with the
exact results derived in Chap. 4. For B = 1 perfect agreement is seen whereas for B = 0.2
the results also match, except in a very tiny region around the resonance points.

It can be concluded that the unified approach and the implementation gives the exact
result in the limit U = 0.
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I =TE=1,¢,=0

A B =1, unified

¢ B =0.2, unified
----- B =1, exact
— B =0.2, exact

Figure 7.3: The conductance for noninteracting electrons on the dot calculated with the
unified description of tunnelling and the exact expression, Eq. (4.25). The band width is
D = 20.

7.4.2 Interacting electrons on the dot

For interacting electrons on the dot the unified description should only be applied in the
weak tunnelling limit. In this section results are shown for different values of the coupling
parameter and the Coulomb repulsion. In the rest of this section B = 1.

For interacting electrons on the dot the level widths are unknown. However, in the
weak tunnelling limit they are assumed to be almost equal to their values in case of non-
interacting electrons on the dot. Values of U up to 15 is considered, giving €5 = 15, so the
band width is set to D = 50.

We start with FTL, = Ff, = 0.01. The energy levels are far from the chemical potentials
of the lead and the occupancies (not shown) are n, ~ 1 and n| ~ 0 for all 6.
The results for U = 0.1, 0.5 and 0.7 are shown in Fig. 7.4.
At the resonance points § = 5 and ¢ = 37” the conductance is enhanced, because the
destructive interference existing for U = 0 is destroyed (see Sec. 4.1). Moreover, the
conductance diminishes at # = 7 because the current has to flow through the doubled
occupied state, which has an increased energy.*”
For U = 0.1 and U = 0.5 the conductance appear to be slightly negative. This is of course
clearly unphysical, but might be due to numerical problems. It becomes even worse for
U =1, 1.2 and 2 where the results are obviously wrong, as shown in Fig. 7.5. The spin-|
level and the doubled occupied state are degenerate for U = 1 which could cause numerical
difficulties.
The conductance becomes positive if U is further increased (see Fig. 7.6) and the conduc-
tance is finite for all angles. For large values of U the current cannot flow through the
spin-| level due to the high energy of the doubled occupied state. A simple spin blockade

*VThe physical mechanism behind the new features for increasing U is explained in detail in Chap. 9.
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Figure 7.4: Conductance for small values of the magnetic field strength B. The band
width is D = 50.

behaviour is observed, where the conductance decreases monotonically from § = 0 to 7 as
the spin-T level is gradually closed.

The large U limit resembles the results found in Chap. 9, where the co-tunnelling results
are presented. However, they show that the conductance vanishes at 6§ = 7.

The results seems reasonable for U < ‘Eu , but are clearly wrong for U =~ B. In the

large U limits they are very doubtful.

Increasing FT’ by a factor of 10 gives almost the same results, as shown in Sec. A.4.5.

The only difference is the appearance of a considerable negative conductance even for
small values of U.
Eventually, results are plotted for I’TL, = F%, = 0.5, see Fig. 7.7. The unified description is
not supposed to hold for that strong couplings and the results show negative conductance
even for small values of U, and also for U = 10. Moreover, the occupation of the spin-|
level is negative for 8 ~ 0 and for the spin-T level the occupation is greater than one for
0 =~ 7. This is obviously not a valid result.

7.5 Discussion of the results

The doubtful results in the last section give rise to questioning the unified description and
the implementation of the model.

The approximation scheme applied to derive the unified description was also used by
LaCroix [18] for dealing with the Anderson Hamiltonian. She pointed out that cross-terms

like <cznh/><a’ |> in the equations of motion diverge for temperatures below a certain tem-

perature T%. So neglecting them, as we did in our derivation, is not correct for T < T7,.
The temperature T}, is the so-called Kondo temperature and the Kondo effect in quan-
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Figure 7.5: The conductance for various values of U =~ B. The results are clearly unphys-
ical because of the negative values for the conductance. The band width is D = 50.
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Figure 7.6: Increasing U gives positive conductance for U > 5. The band width is D = 50.
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Figure 7.7: Plot of the conductance outside the range of weak tunnelling. The band width
is D = 50.
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tum dots is a well known phenomenon. It appears due to the interactions between the
lead electrons and a localized spin on the dot, and it is described via the so-called Kondo
Hamiltonian.*¥! Studying the Kondo effect is a field of it own and an introduction to it
is not given here. It is just noticed that the effect gives rise to an enhanced conductance
below T, and in the same temperature limit a sharp peak in the density of states appear
at the chemical potentials of the leads because of logaritmic singularities. If the energy
level of the localized spin state is well below the chemical potentials of the leads, the
Anderson Hamiltonian can be mapped onto the Kondo Hamiltonian [19], so the Kondo
effect is present in the Anderson Hamiltonian.

In the Kondo problem the leads are not assumed fully polarized because the effect is due
to the presence of two different spins and there has been a debate concerning the influence
of ferromagnetic leads on the Kondo effect. Recent work has shown that the ferromagnetic
leads suppress the effect, but also the possibility of restoring it by applying an external
magnetic field. However, not for fully polarized leads. Vil

Our model contains both fully polarized leads and an applied magnetic field, but maybe
the possibility of having logaritmic divergences exists. The rotation of the magnetic field
introducing different spin bases complicates the problem and makes it even more difficult
to find the regime, where the approximation scheme can be safely applied.

In the implementation it was assumed that the temperature is low, which gave a sim-

ple analytic expression for the K®" and A®" on the imaginary axis. If temperature is
increased they have to be calculated numerically which requires more computer time and
no effect is observed in the low temperature limit.
When calculating the residue sums, the arc L’ in the complex plane is neglected in the
contour integral along D (see Fig. 7.1). When D is sufficiently large this approach is valid
because the integrand tends to zero faster than # An attempt to calculate the integral
along L’ has been done, but it is difficult for numerical reasons. Remember that the spac-
ing between the poles on the real axis are proportional to 1/, so the contour runs close
to the poles at low temperatures.

Solving the FAB model using the unified description have not given a clear answer to
the question of how the conductance changes for increasing U. It seems like the conduc-
tance is enhanced at the resonance angles and suppressed at § = m, as already explained.
The effect of increasing U is further discussed in Chap. 9.

*ViTt is same effect which gives the enhanced zero-temperature resistivity in metals with magnetic impu-
rities.
*ViSee [20] and [21].
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Chapter 8

Rate equation approach to a single
level with spin

In this chapter, we will introduce another way of dealing with quantum transport, known
as the quantum rate equation approach. It amounts to finding an expression for the time-
derivative of the elements of the density matrix. In steady state these equations can be
solved and an expression for the current can be obtained.

The reason for the name quantum rate equations is that they involve the non-diagonal
elements of the density matrix which is not the case for a classical rate equation. The non-
diagonal elements deal with the superposition of different quantum states and therefore
account for the coherence effects we are interested in. An example of the superposition
of states could be two coupled quantum dots, where the tunnelling between the dots will
create a bonding and an anti-bonding state. When an electron tunnels into the system,
it will ”see” these states rather than the states for the isolated dots. This gives rise to
interference effects which can be observed in the current.

There are several ways of deriving the rate equations. In [12] the equations are de-
rived from the classical rate equations for some specific systems and the method is used
in [11] to deal with two coupled quantum dots. A more rigorous approach is presented by
Gurvitz and Prager [10] where the quantum rate equations are derived from a microscopic
Hamiltonian for a general mesoscopic system. However, both methods are only valid in
case of a large bias voltage, and for the FAB model we are interested in the interference
effect, which takes place when the energy levels are close to the chemical potentials of the
leads. Therefore none of the two methods can be applied.

Instead an attempt to derive the rate equations for the FAB model is presented based
on an article by Bing Dong et al. [4]. They derive the rate equations for an Anderson
model using nonequilibrium Green’s functions, and with some modifications the result can
be applied to the FAB model. In the article they claim that the equations are valid for
arbitrary bias voltages and temperatures. We will show that it is not the case and that
the equations only hold in the large bias limit, and consequently it is not an extension of
the previously published results ([10],[12]). Moreover, we found several inconsistencies in

67
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the derivation which we have corrected or just pointed out.

That the approach could not be applied to the FAB model in linear response was first re-
alized after the calculations had been carried out. Nevertheless, this chapter is kept in the
thesis because the rate equation approach is widely used when treating quantum transport.

First we give a very brief introduction to the idea of rate equations, and afterwards
the ideas behind the derivation of the rate equations are presented. The mathematical
derivation is rather technical and lengthy but some of it is sketched in Sec. 8.3, and the
rest can be derived in exactly the same way. Finally, it is shown why the equations are
only valid for high temperatures or in the large bias limit.

8.1 Density matrix and rate equations

We start by considering the simple situation were we have a system in a state described by
the normalized wave function 1. The density operator p is defined through the relation’'

(4) = (W|Alp) = Tr | p4] (8.1)

where A is any operator for some physical observable A and (-) means expectation value.
If {|n)} is a complete set spanning the Hilbert space, we find

(A) = > (wln)n|Ajm)mlv)

where we have made the identification p = [¢))(|. It is simple to show that p fulfills
Tr[p] = 1.

(8.2)

Now we instead consider a system in a so-called mixed state, meaning that the prob-
ability of finding the system in the state 1), is given by a weight factor w,;. The weight
factors are classical probabilities, w, € [0, 1], and they obey the sum rule ) w, = 1.

An example of a mixed ensemble could be a system in thermal equilibrium. If the states |v/)
are eigenstates of the Hamiltonian with eigenenergies E,, them the probability of finding
the system in the state |v) is e #Fv /Z, with Z being the partition function Z = > e #%
and 8 = k,T. Another example could be spin—% particles where a certain fraction have
the spin along the x-axis, another fraction have along the y-axis and the remaining have
along the z-axis.!

For the mixed ensemble the expectation value (often called the ensemble average) of an
operator A is given as

(A) = ZwiAi — Zwi<¢i|‘4|¢i> = WPl Ay = Tr [(Zwmz> i

mnm

. (83)

IThis section is written on basis of [25], [24] and [1]. Solely in this section operators are marked with
a hat.
See [25].
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This leads to the following definition of the density operator for the mixed ensemble
p= Z wiﬁi = Z w; ¥ X, . (8.4)
i i
The elements of the density matrix are

Zw (ml; Xty |n) = Zw (iln)mly,;) = (|n)m]). (8.5)

So finally we have obtained that the elements of the density operator for the mixed ensem-
ble are the expectation values of the operators |n)(m|. This will be used in the following
sections.

Note that the trace is independent of basis, and therefore can the traces in Egs. (8.1)-(8.3)
be carried out in the most convenient basis.

We end this this section by pointing out that knowing the density matrix gives infor-
mation about any physical observable. This is often used in the branch of physics known
as quantum statistical mechanics, were the problems are so complex that the wave func-
tions are not known and one has to use statistical arguments instead.

In the next section we will show how the current can be found when the elements of the
density matrix are determined.

8.2 The idea behind the derivation of the rate equations

In this section it is presented how the rate equations are derived in [4], but also where we
have made necessary corrections. However, they consider the Hamiltonian

Z Enkacnkcr nko + Z ( no nkacdo + hC)

k.o (8.6)
+e, Z CirCio T Z Rgcdﬁcdo_ + Ungng,
g g

whereas we derive the rate equations for a system described by the model Hamiltonian
introduced in section Sec. 2.1

H = Z 5nkgci]kgcnkg + Z (Vnkgcgkgcdo + h.c.)
777]970 7770 (8.7)
+ Z(so — 0B cos H)C(Tiacdg - Z Bsin Gczacda + Ungyngyr,
g

In the beginning write the spin of the dot electrons in the lead spin basis.

The starting point is to realize that the dot annihilation operator can be written in
terms of the the four states [0), | 1), | |'), |2) = CIil’CtTiT’|O> corresponding to the empty
state, a single electron with spin up, a single electron with spin down and the double
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occupied state. By comparison when acting on the different dot states, it is seen that ¢,
can be written as™

¢ap = 00| +0lo)2]. (8.8)

The four states spans the dot Hilbert space, so the operators satisfy
0)0] + > ool +[2)2] = 1, (8.9)

and from the Dirac kets it is easy to check that the commutator relations for the operators
¢, are fulfilled. In terms of the new operators the Hamiltonian reads

H= E:wwmwm+ixlwmmUHﬂﬁw+hQ
e (8.10)
+Y (es —0Bcos)|o)o| — > Bsinb|a)o| + U[2)2|

Recall from Eq. (8.5) that the elements of the density matrix p,,,, in the lead spin
basis are the expectation values of the operators |n)m/| (with n,m =0 ,1",|’, 2) so we can
write!?

oYol) (8.11)
)ol). (8.12)

poo = (10X, poo =
paz = (I12)X2]),  (poa)

—~

The other non-diagonal elements of the density matrix are not calculated, because they
do not appear in the expression for the current.

The time evolution of the density matrix elements can be expressed in terms of the ex-
pectation values for the new operators. For instance,

ihoo = ig; <|0)<0|> ([l0)0, H]) . (8.13)

Now the setup is ready for deriving the rate equations. Using the Hamiltonian written
in terms of the new operators and the commutator rules for the pseudo-operators, we easily
find the commutators for the operators |0)0|, |o)c], |2)(2] and |o)| with H. Taking the
expectation values gives the equation of motion for the elements of the density matrix,

but expectation values like <( Cp i oN2])(E )> have to be calculated. This is where the

nonequilibrium Green’s functions (NGFs) come into play, because these expectation values

HiTn the article by Bing Dong et al. they introduce a slave-particle formlism inspired by the work in [17].
That is not needed and furthermore it is done incorrectly, because the commutator relations between the
operators defined in the article are wrong.

¥In the following the time dependence of the operators and the elements of the density matrix will be
suppressed.
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correspond to the time-diagonal parts of the NGFs

Gmnio(1:1) = 1 (o (1) (N2(D) ) (8.14)
G (1) = i (b (V10X (®)) (8.15)
nka’Oa,( ( > (8.16)

( ( (8.17)

) = i ((oX0N (el ()
< ) 8.17
They are named current Greens’s functions because they describe tunnelling between the
leads and and the dot. The theory for NGFs can be applied to get expressions for these
lesser and greater Green’s functions in terms of the lead and dot Green’s functions, exactly
as in Sec. 3.5. However, in [4] they do not derive the expressions for the time-ordered
Green’s function properly as we will show", because they neglect Green’s functions which
are of higher order in the coupling. It turns out that it does not change the final result
due to approximations made at some later stage.
As in Chap. 4 we take the Wide Band Limit, i.e. we assume that the density of states and
the transition matrix elements for tunnelling from the lead to the dot are constant for the
energies of interest. We end up with an expression for e.g. p,, which is

— o [ o 3 {T8, 0G50 @) + T2 [1 - £,(0)] Gionl)
n=L,R (818)

T2 £, (@)G3,0(w) = T2 [1 = £,(@)] G (@) } = iB5in0lps = pay)

The constant I'y = 21>, |Vike|26(e — €,ko) is the (energy independent) coupling param-
eter and f, (w) is the Fermi function for the n-lead. The coupling parameters 'Y are in
this formalism named (scattering) rates because they are related to the rate of change in
the occupancies of the dot states, see Egs. (8.55)-(8.58). Each term in the sum is the
probability per unit time for a transition where an electron in state nko leaves the lead 7
and enters the dot (or the opposite process). It is identical to Fermi’s Golden Rule, which
is often directly used when writing up rate equations for less complicated systems.

The new Green’s functions in Eq. (8.18) are dot Green’s functions defined as

Gopor(t,17) = i (|0 XON) () (|0Xa)(1)) , (8.19)
G (1) = Z<(!0><UD( (\U>< !)( 0 (8.20)
G5y (t,1) = a0’ ((12X' () (JoX2D)(1)) , (8.21)
Goper (t,1) = —ioa’ ((|o)2])(t )(|2>< NE)) - (8.22)

Again we use the assumption of weak coupling, but in a somewhat subtle way which
is not well explained in [4].
First we consider the Green’s function for the isolated dot, i.e. in absence of coupling.

YSee Sec. A.5.
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Bing Dong et al. use the approximation that the spin-flip term Rgc:rjacda, in Eq. (8.6) is
small, so the term is neglected when calculating the Green’s functions for the isolated dot.
As we will explain later this is clearly inconsistent, so instead we choose to diagonalize the
dot Hamiltonian and introduce a new spin basis. The diagonalization was already done
in Sec. 2.3, and in the diagonal basis the dot Green’s functions are easy to calculate, e.g.

G (8.1) = (YO @) (0 () = il (.23)

where the subscript indicates that the average is with respect to the dot Hamiltonian,
and g and g/ are spins in the diagonal basis. The Green’s functions in Eqgs. (8.19)-(8.22),
which are written in the nondiagonal basis, can of course be expressed in the terms of the
diagonal Green’s function (see Eq. (8.48)).

The Green’s function for the isolated dot depends only on the difference between the time

arguments, so after a Fourier transformation G0 (t,t") becomes

Opp!

<,0 )
Gy (W) = 2mipyd(w —€,), (8.24)
which means that the spin-u level is peaked right at €,,.

No we can invoke the assumption of weak coupling and assume that the Green’s function in
presence of tunnelling can be written on the same form as the decoupled Green’s function,
i.e.

G< (t, tl) _ Z-efiau(tft’)p

St t1), (8.25)

uu’<
where the Green’s function consists of a rapidly varying phase depending on the difference
between the time arguments, and an occupation which is local in time. The assumption
that the occupation is local in time is the so-called Markov approximation. It has the
physical meaning that the probability of a tunnelling event at a given time ¢ depend only
on the occupation at that particular time, i.e. there is no memory-structure in the system.
This is reasonable when tunnelling happens rarely and the system is in the same state at
each tunnelling event, i.e. when the coupling is weak. Moreover, it turns out that in order
to proceed in the calculations we have to assume that the occupations are constant. In
the end we are only interested in the steady state result, and there this approximation is
valid.
After a Fourier transformation we find

G(fw,(w) = 27 6(w — €,). (8.26)
It is seen that the assumptions imply that that no broadning of the energy level occurs
due to tunnelling, so the state is still peaked right at the energy ¢,. The approximation
is only valid when the coupling is much smaller than the temperature.
The Green’s function for the dot in presence of coupling is inserted in Eq. (8.18), and after
carrying out the trivial w integral we have obtained an expression for p,,. Remembering
that we have assumed steady state and the occupations therefore are constant, we have
that p,, is equal to zero.
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Finally, we end up with a matrix equation on the form

0=

[

12 (8.27)

where E is a coefficient matrix and p = (pgg, P11, £| |+ P22, P15 Py1)- The resulting homoge-
nous equation system can be solved using the normalization py, + pgs + > P = 1.

The current operator is defined in terms of the operator

Ny(t) => el (e, (1), (8.28)
ko

which counts the number of electrons in the lead 7 at time ¢. The current I, is the rate
of change in electrons in the n-lead, i.e.

I(t) = —e <dJ\Z;(t)> — _je < [H chkacn,w] > : (8.29)
ko

and the derivation of I, (t) is done in the same way as for the occupancies. We end up
with an expression for the current in terms of the elements of the density matrix.

We return to the corrections we have made when deriving the rate equations presented
in the article by Bing Dong et al..
First we note that the incorrect derivation of the current Green’s functions have no con-
sequences. The time-ordered Green’s function they have neglected are of the type

G ora(t:t') = =i (T [(I0Xe ) () (12X ) (#)]) - (8.30)

It is easily verified that Green’s functions of this type vanish if the dot is isolated. Again
we assume that the Green’s functions in presence of tunnelling resemble those for the iso-
lated dot, so therefore these Green’s functions are neglected even in presence of tunnelling.
This approximation is only valid in case of weak coupling between the leads and the dot.
Furthermore, when calculating G<>** they use in [4] the approximation that the spin-flip
term Rac:;gcda in Eq. (8.6) is small, so the term is neglected when calculating the Green’s
functions for the isolated dot. This assumption has the apparent advantage that the rate
equations becomes very simple and intuitive. Furthermore, the limit of strong Coulomb
repulsion or strong bias can be taken analytically, and the result can be compared to other
ways of deriving the rate equations for a system described by the model Hamiltonian H 5P
([10].[12)).

Although this way of handling the Green’s functions seems very appealing it is obviously
not consistent, because the term proportional to R, is kept in the expression for the rate
equations (for our model the term —iBsinf[p,; — ps,| in Eq. (8.18)). This term couples
the diagonal matrix elements with the non-diagonal parts of the density matrix. In order
to be consistent this term should also be treated as small, but that will destroy the coher-
ence effect we are interested in.

We go beyond this approximation by diagonalizing the dot Hamiltonian. The equations
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get more complicated, but they are valid for all values of the magnetic field.

In the next section the derivation will be presented.

8.3 Derivation of the rate equations

As already mentioned the derivation is rather long and cumbersome, and it will only be
shown how to calculate the equation for p,, in Eq. (8.27). The other equations are derived
in the exact same way and only the final results will be presented here.

The time-derivative of j,, is p,, = i [H,|o)o|]. Using the commutator rules for the
new operators we find

i [H, ool = i Y [Varothio |0No| = 7Vakach s 0)2] = Vi lo)X0le, 0, + 7Viis 20,5
nk
— iBsin0 (|o)o] — o)a])
(8.31)

Taking the expectation value on both sides and using Eqgs.(8.14)-(8.17) we obtain

pOU = Z [M?kUGga,nka (t7 t) - 5Vﬁk5G2<o,nk6 (t7 t) - n*kO'G;ka,Oa' (t7 t) + 6V7;kk6G1?k&,02 (t7 t)
nk
—iBsinf [py5 — pso)

(8.32)
where the NGFs from Egs. (8.19)-(8.22) have been inserted. Like when deriving the
current formula in Sec. 3.5 the lesser current Green’s functions can be found from the
contour-ordered Green’s functions using the rules for analytic continuation. In the article
the expressions for the current Green’s functions in Eqgs. (8.33)-(8.36) are stated as the
exact expressions, but they have neglected /forgotten the Green’s which couple the doubled
occupied and the empty state, as shown in Sec. A.5. It is consistent with the approximation
where the Green’s functions are on the same form as those for the isolated dot, so it does
not change their final result.

The approximated current Green’s functions are

égmkg,(t,t’): / dty {G(]fw,(t,tl)VnkU/g;kg,(tl,t’)+G(fw,(t,tl)Vnko/g;‘kg,(tl,t')], (8.33)

G oo (1) = U//dtl [Ggm;, (t,11) Vaho G (1, 8) + Gy (1 81) Voot G (L1, t/)]’
(8.34)
G0 (t, 1) = / At 95 (1) Vikor G (11,8) + G (1 1) Vit Gl (1, 8)| - (8.35)

G o, t) = 0 / dty [gfj;m, (6, 01) Vo G (11, ) + gj,w,(t,tl)Vnkaleg,o(tl,t')].
(8.36)



8.3. DERIVATION OF THE RATE EQUATIONS 75

Gogor and Gog,r are the NGF's for the dot, while g1, is the Green’s function for the n-lead
in absence of tunnelling. If it is assumed that the dot Green’s functions only depend on
the difference between the time arguments, meaning that the system is in steady state
with no initial effects present, the Fourier transformed Green’s functions can be found.
From the convolution theorem for Fourier transforms we get

/dtlA(ttl)B(tlt):/duA(u)B(u):/

and inserting the approximated current Green’s functions from Egs. (8.33)-(8.36) into
Eq. (8.32) and rearranging the terms gives

o = [ {52 > (Vo P (G0 () = Gloo ) 951 ()
Vo P (0780 (@) = 9530 (©)) G ()
+ ‘Vﬁk5|2 (G?O'U(w) - Ggaa(w))g:kc_r(w)

Voo P (953 (@) = 914 (@) G5 ()] }

—iBsinf [pys — pso) -

dw

%A(w)B(w), (8.37)

(8.38)

Using the general property for Green’s functions G — G< = GF — G4 the previous
equation becomes

. dw > < <

hor = [ {5 3 [t (G ) = G5 0
+ |V77k0|2 (g77<ka(w) - g;kU(w))G(faa(w)
+ |V7lk5|2 (G2<0'a (w) - G2>aa (w>)g;k5 (w)

+ Varo 2 (9726 (@) = 95 () G ()] }

—iBsinf [pys — pso) -

(8.39)

The lead Green’s functions are for the isolated leads, so the average and time evolution
are solely with respect to the contact part of the Hamiltonian, H . = Zn’k, - 877ko'cjykacnk0"

For the lesser Green’s function, we get"!

o (1) = <C,T7ko.cn,m(t)>

— ie—iankat <cj-7ko-cnko-> (8.40)

= je iankgtfn(enkg),

with f,(e) = f(e — py), where f(e) is the Fermi function.
Performing a Fourier transformation yields

g;kg(w) = 27T7;f17(577ka)5(w - 5r]k0)7 (8'41)

ViWithout loss of generality we can set t’ = 0.
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and similarly
g17>ka(w) = *27[-2.[1 - fn(snka)]é(w - 5nka)- (8.42)

As in Chap. 4 we introduce a coupling parameter I't(¢) = 27 >, [Vyko|*6(e — €pgo) and in
the WBL it is assumed to be independent of energy.

The new expressions for the contact NGFs and the coupling constants are inserted in
Eq. (8.39) and the result is

oo = 5 [ o 3 {TRA )G )+ T = 0G0

(8.43)
— Ty (@) G (@) + T = ()]G, o ()}
—iBsinf [py5 — pso) -
The other rate equations are derived in exactly the same manner and we obtain"!
b= 5 [ oS {T01 = [@IGE, (@) + THH WG, @)} (840

=3 | de L @GS ) + TH@IGEe @)} (8.)
= 5r | W T BIGE0) + 565010 = 1yl - 5651}

—FZ{f( Gl () ~ 5G75() — 3G + () Grp () }]

—1iB Sine[ﬁo‘o - pé’&]
(8.46)

Recall that the Green’s functions in Egs. (8.43)-(8.46) are the dot Green’s functions
defined in Egs. (8.19)-(8.22). As explained in Sec. 8.2, we assume that the dot Green’s
functions in Eqs. (8.43)-(8.46) are on the same form as the Green’s functions for the
isolated dot, so the latter have to be determined, e.g.

G<0()

Oco’

i (lo"}0[(J0Xa ) () » (8.47)

where the subscript indicates that the average and time-dependence are with respect to
the dot Hamiltonian.
The decoupled Green’s functions are easiest to calculate in the basis where Hyy is diago-

ViiTn [4] they have an expression for the non-diagonal elements which only depend on lesser and greater
Green’s functions for the dot. We have not been able to reproduce it. However, the advanced and retarded
Green’s functions for the isolated dot and leads are easy to find, and in the Wide Band Limit where the
coupling constant is independent of energy, we can obtain the same final result as in [4].
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nalvill| so the following change of basis is performed
,0 . s
G(faa’ (t) =1 Z RCT/,U/RU}L <‘M/><0’(’0><M‘)(t)>0
pp!
* <,0
= Ry R, G (1)
oy

where R = R(0) is the change-of-basis matrix defined in Sec. 2.3.
The decoupled lesser Green’s function in the diagonal basis is

G, (t) = i (| Ol (10X ) (1)),
= i (|u'}0]e Mot |0 puf e~ Hlaort)
=i (WXl

and in Fourier space

70 s
G(TW, (w) = 27r2p2“,5(w — &)

with p0 = (| Xul)o-

7

(8.48)

(8.49)

(8.50)

For the other decoupled Green’s functions, which correspond to the full Green’s functions
in Egs. (8.20)-(8.22) in absence of tunnelling, we obtain with the same change-of-basis the

following expressions

70 s

Gguu’ = —2mp805lm,5(w —€,),
70 y

G2<;m’ = 27m,082(5w,5(w — (e +U)),
70 9

G2>;w’ = —2mp2/M(5(w —(ex+U)).

The occupancies that enter are in the diagonal basis, but using the relation

P,Omf = Z Ralu’Rzzu <“71><‘72|>0

0102

they can be transformed to the non-diagonal basis if necessary.

(8.51)
(8.52)
(8.53)

(8.54)

Using the assumption that the Green’s functions in presence of coupling can be written
on the same form as those in Eqgs. (8.50)-(8.53), we obtain after inserting them in the rate

viliGee Sec. 2.3.
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equations (8.43)-(8.46) and performing the trivial integral that

poo = D Ry BT {1 = Jo(e)10y = JoE) 80000} (8.55)
no
paa Z {RJuR;kru’F |:f ( )6NH’pOO - [1 - fn(su)]p‘u#/}
nup
Ry B, T [1 = £+ UNo,00m — £y + Vo] } (8.56)
- zBsmGZ [Rop R — R Ry p

oa = 5 30 (C8+ T { Ry B [ £,(6)8,0m00 — 1~ F(E,010,0]

/

N
— Ry By | £y (e + U),w (U= fylen + U)]6,0m00] b (8.57)
—zBsmGZ RguR;M ’Rau] Pyt
> RWR;M/P (oo + Dby = 1= Fale + U8} (8.58)
nop’

In the derivation we have assumed the system to be in steady state, so the occupancies are
constant and the left-hand sides in Eqgs. (8.55)-(8.58) are equal to zero. We end up with
a homogenous linear equation system consisting of six equations plus a normalization™
Poo T 2M=T7 | Pup T P2o =1, and it can easily be solved numerically.* However, certain
reservations have to been taken to this approach and that will be the subject of the coming
section.

We end this section by stating the expression for the current. From Eq. (8.29) we
obtain after the same type of calculations leading to the expression for the occupancies
the following equation

I =e ZFH{RJMR;M ( )6#M/p00 + Ro/,L O'/,Lf (E + U)p#’u
s (8.59)
— Ry Ry[1 = £(&,010,0 + B R [L = Fy (5 + U)3,0002 )

where the current is given in terms of the occupancies in the diagonal basis.

8.4 Range of validity for the rate equations

To explore the limits of validity for the derived equations we use the following general
property for the density-matrix elements

e = (la'Nal)" = ((laNaD)') = (Ja)a']) = py (8.60)

>t stems from Y7, | |u)(ul 4+ [0)X0] + [2)2] = 1.
*Notice that it is the occupancies in the diagonal basis which are determined.
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which implies that the diagonal elements are real numbers.
For the element p;, in equation Eq. (8.55) the complex conjugate is

o= 3 BBy T {1 1(E )P — 15080 P00}
no

= Z R:‘}LIRUHFZ {[1 - fW(EH’)]IO#,U«/ - fn(gu)(suu’poo} 9
nopp’

(8.61)

which is not equal to p,, because of the energy argument in 1— f, (e u’)' The same problem
is encountered for the other rate equations, so the property in Eq. (8.60) is only fulfilled
in the large bias limit where 1 — fn(au,) is either 0 or 1, or for high temperatures where
fn(e u’) ~ fn(e,). Both limits are not relevant for the interesting regime of the FAB model
because the interference effect is washed out in these limits and the current becomes in-
dependent of the angle 6.

In summary, we have presented a rate equation description which is an alternative to
the Green’s functions approach when dealing with quantum transport. The rate equations
are derived rather elegantly from nonequilibrium Green’s functions, but they are only valid
in the large bias limit or for high temperatures, and not for arbitrary bias voltages and
temperatures as claimed in the article by Bing Dong et al. Therefore they do not have a
larger range of validity than those derived from e.g. the microscopic Hamiltonian, but the
results agree in the strong bias limit for the systems considered in the article. Moreover,
we cannot compare results found with the derived rate equations to the linear response
results from Chap. 4, 5 and 7.

The restricted validity is not found in the article, because they do not deal properly with
the central region Hamiltonian, i.e. diagonalize it and thereby treat the spin flip term R,
to all orders finding two different eigenenergies for the dot. In the limit of infinite bias
or high temperatures this error is unimportant, because the Fermi function then has the
same value at the eigenenergies.

Besides the limits of high temperature or high bias, the rate equations are also valid when
the off-diagonal elements in the density matrix vanish, i.e. we have the normal master
equations for states with no coupling between them.

The conclusion is that we are still not able to find a set of rate equations which include
the non-diagonal elements in the density matrix when the coupling is larger than both the

applied bias voltage and the temperature.

In the next section the FAB model is solved using a scattering formalism.
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Chapter 9

Scattering formalism

In the previous sections we have studied tunnelling through a single quantum dot with an
applied magnetic field using a Green’s function approach and a rate equation approach.
As a last example of how to find the conductance it will in this chapter be shown how to
calculate it in perturbation theory.

The derivation will be done for the parallel geometry and the results will be compared to
the results obtained with the Green’s function approach in order to illuminate the differ-
ences between the methods.

In Sec. 9.3 the results for the antiparallel geometry is presented.

The aim is to calculate the transition rate between an initial and a final state, where
in the process electrons have been moved across the quantum dot giving rise to a current.
We start by defining a Hamiltonian H = Hg + V where the eigenstates of Hy are known
and then treat V as a perturbation. To lowest order in V' this is Fermi’s Golden Rule,
but we have to go to higher orders introducing the so-called transition operator T, which
gives a generalization of the golden rule.

For the FAB model we will take the Hamiltonian for the isolated dot and leads as H, and
then treat the tunnelling Hamiltonian as a perturbation. To lowest order in H; no con-
tributing tunnelling processes occur, but second order processes give a contribution. These
processes include two subsequent tunnelling events and are therefore named cotunnelling.

~

9.1 The transition operator 7T

For many physical system one is interested in knowing the rate for transitions between
different states.

Consider a general Hamiltonian H, which has the eigenstates {|n)} with the corresponding
eigenenergies { £, }. At times before ¢, the system is assumed to be in an initial state |z). A
constant perturbation onsets at time ¢, and the system evolves under the influence of the
full Hamiltonian H = H,; + V. What is the probability per unit time I fi for a transition
from the initial state |i) to a final state |f)?

We use a mathematical trick and make V' time-dependent such that V — V(¢) = Ve

81



82 CHAPTER 9. SCATTERING FORMALISM

If ¢, is set equal to —oo and we let ¢ — 0 at the end of the calculation, it corresponds
to a constant perturbation at all times. Now time-dependent perturbation theory can be
applied to calculated the transition rate', and to lowest order in V' we obtain (h = 1)

) = 2 |(f|V]§) 2 6(E, — E,) (9.1)

which is nothing but Fermi’s Golden Rule."

The transition rate can be calculated to all order via the so-called transition operator
T, which is defined as

T=V+V—ru——T
+ E,— Hy+ic
1 1 1 (9.2)
=V+V—rou-u--=-V+V 1% V+...
+ E, — Hy+ie + E.—H,+ie E,—H,+ie T

where e — 0 in the end of the calculation. The transition operator replaces V' in Eq. (9.1)
such that the transition rate becomes

Ly, = 2x [T (B, — E,), (9.3)
and we notice that we indeed obtain Fermi’s Golden Rule when expanding to lowest order
in V.

To derive the transition operator properly is rather comprehensive and it will not be done
here, where we just notice that it can be done in different ways. A common way is via the
Lippmann-Schwinger equation which is often used when treating the interaction between
an incoming wave and a scattering potential.! A different approach based on propagators
is found in [23].

9.2 Applied to the FAB model (parallel geometry)

After introducing the transition operator and the transition rate we return to our problem
at hand.

Before calculating the transition rate we impose the following constraints. In this section,
the magnetizations of the leads will be assumed parallelV, and we consider fully polarized
leads containing only spin-1’ electrons, i.e. the spin label for the lead electrons can be
omitted. Furthermore, the spin-T level of the dot is assumed to be far below the chemical
potentials of the leads, implying that the level is always occupied. The spin-| level is on
the contrary always far above the chemical potential giving an always empty state.

In the weak coupling limit the leads are assumed unaffected by the coupling to the dot,
and therefore treated as non-interacting electron gasses as in the previous sections. At

iSee Eq. (3.17).

iSee e.g. [1] and [25].

HiSee e.g. [25].

VThe results for the antiparallel geometry is found in Sec. 9.3.
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zero temperature all single-particle states with an energy below the Fermi energy ¢, are
occupied. This corresponds to a filled Fermi sea (FS) and the corresponding many-particle
state is

Fs)={ ]I < |0, (9.4)

6k< €p

with |0) being the empty state.

Now we consider the system at a finite temperature 1T', where excitations in the filled

Fermi sea can occur creating new states e.g. with one single electron-hole pair |v) =
chk|F5’>, where e, <ep < &
W, is defined to be the probability to find the system in the state v, and the probabilities
fulfil the normalization ), W, = 1. The leads are assumed to be in thermal equilibrium,
so the probabilities are distributed such that the average occupation n, of the state |k) is
given by the Fermi-Dirac function, i.e.

ny, = ZWV<I/|C£C]€|V> = ZWV = f(e) (9.5)

kev

where the second sum is over all many-particle states v which have the single-particle state
|k) occupied. f(e) is the Fermi-Dirac distribution function at temperature 7'.

The initial states for the system consisting of the leads and the dot are now given as
the outer product of the lead and the dot states, i.e. |v;,vp,T) with the correspond-
ing probability W), ,, = W, W, _, because the leads are assumed uncorrelated and the
dot state with spin-1 is always occupied. The energy of this state is €, ,, =€, +&u, +e5.

Because we are interested in the conductance, we only consider final states where elec-
trons have been moved across the quantum dot leaving the system in the initial state,
except than one electron has been taken from one lead an put into the other. No such
process is possible to first order in H,,, but second order processes are. The current can
then be calculated as J = %(F(L%)% — Fg%), where F(L2])% is a sum over all transition rates for
processes which brings an electron from the left to the right lead.

First we calculate the transition rate F(LZI)%, so as final states we take |f,,,) = cZRck,L L, VR, 1),
with energy Efw =€y, v, + &g — Epp- This gives”

(2 1
FLJ)?, - 2”2 Z WVLVR‘<fkk”HTﬂHT|VL’ v DPo(epp — epp)- (9-6)

kk' vivg VLVR

In case of full polarization of the leads the lead spin index in the tunnelling Hamiltonian
in Eq. (2.9) can be omitted and it becomes

H. = Z (an,uclncdu + h.c.) ) (9.7)
knu

YThe ie has been omitted because we only consider processes where the energy difference between the
initial and intermediate state is nonzero.
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(a) (b)

Figure 9.1: Fig. 9.1(a) shows the process A, where an electron tunnel from the always
filled 7-level to the right lead and gets refilled from the left lead. In fig. 9.1(b) the B
process is shown. Here an electron tunnels from the left to the right lead via the doubled
occupied state.

which contains eight terms when the sums over n and p are written out. However only two
processes will contribute to I' (L2})%: (A) an electron leaving the dot entering the right lead
and afterwards an electron entering the dot from the left lead, and (B) an electron entering
and leaving the spin-| level, creating an intermediate doubled occupied state while going
from left to right. The two processes are shown in Fig. 9.1.

With this in mind the matrix element <fkk,|HTﬁHT|VL, Vg, 1) in Eq. (9.6) can be
split into two parts corresponding to the two contLri}f)uting processes

1

_ * y - - 1

MA - Z<fkk'|vk2L7TCchk2L€V - HO VklR,TckchdT|VL’VR’ T>, (9.8)

kle L”R

1
My = Z<fkk”Vk2R,icLQRcd17_ Fi VJR,chllck v Vg, 1) (9.9)

Ev v 0 1
keyky LYR
The matrix elements M , is
1

_ T T
My = Z VkZL,TVklR,T<fkk’|CdTCk2L c, CklRCdT|VL’ Ve 1)
L

k’le VR (EULUR B ET + EklR)

Vot Ve, r bt
= Z 7<fkk"ck2LckchchdT‘VL’ Vis 1)

Er — €&
kik, T TR
T (9.10)
_ koL Yy Ry t t
= - . vy, vp, 1 ’Ck’LCkRCkQLck1R|VL7VR7T>
kik, 1 kR

_ YeriVirg v

i T
¢ VR 1l (1 - CchkR> Vv 1),
T 7 %R
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where we at the third equality have used that the spin-T state is always occupied.
M, is calculated in the same way and the result is

ViV,
Mg = M<VL, Vpo 1 ’CITc’LCk/L (1 — CLR%R) v, vg, 1) (9.11)
€, €~ U
It is seen how the transition rate is controlled by the energy of the intermediate state
through the energy denominator like in standard second order perturbation theory.
The results for the matrix elements are inserted in Eq. (9.6), and after writing out the
expression for the coupling matrix elements we find

F(R - 27TZ Z W”L”R

kk' vivg

2
borythrr By g By orpterr By g By

€1 T &R e, €U (9.12)

2
’<VL7 Vi1 |CL’LCk’L (1 - CIJLRCI{R) v VR T>’ 6(exp — Eprr)-

The identity matrix I = 3 |V}, Vg, u) (v}, Vg, 1] is inserted and the sums over the many-
Vi VRl
particle states can be carried out
i f ?
Z WVLWVR ‘<VL’VR’T ler Lo plVE Vs TNV, VR T (1 - CkRCkR) VL, Vs T>‘

VLVR

(9.13)
ZWI/L<VL’CI]::’LCI€’L‘VL> ZW (gl < CkRCkR) V)

= fr(epr) [1 - fR(EkR)] :

It has been used that the matrix elements are either 0 or 1, so the square can be omitted.
The previous result is inserted in Eq. (9.12) and the trick ), F' = [de >, F(e)d(e,—¢)
is invoked twice to give

r® —on / de’ / de 3 [t Pltny 26y, — )00 — )
kk’

2

BrpBry  Biplyy . o
f(e') (1 = fr(€)) (e — &)
e,—e € —¢ U
! ! (9.14)
da/dsf FT’ €)
2
RTT/R RlT,R/

fo(e) (1= fr(e))d(e —¢€),

& —¢€ s—al—U

where the elastic coupling parameters I'/,(¢) = 27>, ]tknT,P(S(skn — ¢) have been intro-
duced.
As in the previous sections we take the Wide Band Limit and assume that the coupling
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parameters are independent of energy and can be pulled outside the integral. Recall that
this is reasonable when the density of states and the transmission matrix elements [
are almost constant. When we are only interested in the current in linear response this is a
good approximation because the energies of interest are situated in a small neighborhood
around the chemical potentials.

So in the Wide Band Limit T'?) is

LTR
LR 1t

2

R, ., R, R, R,
LI WL (e) (1= fr(e)) (9.15)

€ —¢ e—el—U

Because of the Fermi functions only energies in the interval of from 5 to p; will contribute
to the integral (at least for low temperatures). We have already supposed that the energy
levels of the dot were far from this interval, so the denominators inside the integral will
be dominated by these energies and can be considered as constants, giving

2
%~F§$Rﬂfﬁ+éﬁzi/%n@ﬁ&@y (9.16)
Using the relations [1]
Fe0) 1= F(e0)] = nple, — ) [F(es) — (o). (9.17)
| aelie - feru) = (9.18)

where ng(e) = W, the integral in Eq. (9.16) can be calculated and it gives"!

/ defu(€) [1 = fr(e)] = —eVny(—eV). (9.19)
Finally we obtain
TLTE |R, R, . R, . R, |
F(Q) _ "1 17717 L1771 V). 9.20
=V | ) (9:20)

The result for I‘g% is found by interchanging L < R in Eq. (9.16) and we find

2

r'trk |R, R, R R,
F(2) _ "1 1770 L1l 174 9.21
RL € I 5T + El + U TLB(B )’ ( )
which gives that the current J = £ (F(g})% — Fg%) is

LTR 2
L e N 0N I 099
= € 2 h 9 ( . )

T € €] +U

ViRemember that the chemical potentials are Wy, = % and pp = —%.
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G(0)

— U=0
-------- U=1
---- U =100

0 s
Figure 9.2: The figure shows the conductance G(f) for ¢, = 0, B = 1 and U =

0, 1, and 100. It is seen how the anti-resonances at § = n/2 and § = 37/2 disappear
for increasing U. The result for U = 1 resembles the results shown in Fig. 7.4.

where it has been used that [np(—z) + ng(z)] = —1.

It is now easy to find the conductance G = g—é as
LTR 2
(o) = 2 | Bt Rty (9.23)
21h € e+ U .

Inserting the matrix elements from the change-of-basis matrix defined in Eq. (2.7) the

result is
LTR 20 20 12
G(9> _ €2FT'PT' [COS 2 2

2mh € €+ U

sin

(9.24)

The Eq. (9.24) is the co-tunnelling result for the conductance to second order in the

coupling term H,.. It should be emphasized that the expression is only valid when the
energy of the spin-T level is always filled and the other always empty. This is the case
when the dot levels are much further away from the Fermi levels than the strength of the
coupling parameter I't, = I‘%, + Ff,. This can for instance be seen from the calculation of
the occupancies with the Green’s functions.
No temperature dependence is present in the conductance because the temperature k,7T" is
assumed much smaller than the spacing between the chemical potentials of the leads and
the energy levels of the dot. If the two energy scales are comparable temperature effects
become important and the above analysis breaks down because the T-level is not always
occupied.
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e

2rh
— U=0
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Figure 9.3: The figure shows the conductance G(f) for ¢, = 0.1, B = 1 and U =
0, 1, and 100. It is seen how the anti-resonances at § = /2 and § = 37 /2 still disap-
pear for increasing U when the bare dot energy level is no longer fixed at the equilibrium
chemical potential of the leads, but the symmetry around 7 /2 for U = 0 is broken.

So why not try to calculate the conductance to higher order in the coupling? This
is a difficult task. We are looking for processes which bring an electron from one lead
to the other and leave an electron in the spin-T level and no in the other. This is not
possible to third order in Hp, but to fourth order there are 32 possible processes! These
can be reduced to 8 in the limit of U ~ oo. Furthermore there is a technical problem
concerning the energy denominators because intermediate states with energies equal to
E; are possible. Therefore the limit i€ has to be taken correctly, and maybe higher order
processes have to be included.

9.2.1 Comparison with Green’s function approach

The results for the second order processes can be compared with the Green’s function
approach, and we start with considering the limiting cases U = 0 and U = oco.

For U = 0 Eq. (9.24) becomes

G(9)

LT R 2
_ 2FT/FT/ |:€d+BCOSH:| 7 (925)

2mh B2 — E?l
and if we furthermore assume that ¢ 4 18 zero the conductance becomes

TLETE 0520
_ 2 1tqrcos
GO) =e TR (9.26)
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For U = 0 the equations of motion for the dot Green’s functions could be solved exactly
(see Chap. 4). In linear response with zero temperature, £, = 0 and fully polarized leads
the conductance was for proportionate couplings
Ik I‘f, 4cos? 6

a ) — 2 1
exact () = € 21h 4BQ+F%/ cos? §’

L, =Tf+T7. (9.27)

In the limit where the co-tunnelling result is supposed to be valid I' < B, so we obtain

9 P%/Fﬁ cos? 6
Gexact(e) =€ 27Th B2 )

(9.28)

which is identical to the co-tunnelling result. An interpretation for of the result for U = 0
was already given in Chap. 4, but note that in Eq. (9.24) is the addition of the tunnelling
amplitudes for the two paths in Fig. 9.1 clearly seen.

The result in Eq. (9.28) could also be obtained directly from the Green’s function ap-
proach. In weak coupling limit I' v < B the Green’s function for the dot is almost equal
to the Green’s function for the isolated dot, see Eqs. (4.20) and (4.21). If we insert the
expression for G(I)% in the current formula Eq. (4.22) we get an expression for the current
to lowest order in the coupling and obtain Eq. (9.28).

In the limit of infinite U the second term in Eq. (9.24) vanishes and we get

PETE cos1l
G(G) — 62 =1 cos 2
21h 5%

(9.29)

The disappearance of the anti-resonance is caused by the blocking of the conducting chan-
nel through the |-level because of the infinite energy of the intermediate step (see Fig. 9.1).
In this case no destructive interference is possible. Instead, the angular dependence is
similar to a spin valve geometry, where electrons tunnel between materials with different
magnetizations. At 6§ = 7 the conduction vanishes because the spin-T channel is closed
due to spin blockade (see Fig. 4.2).

The limit is also named the correlated regime, because the electrons have to tunnel through
the structure one by one due to the infinite energy of the doubled occupied state.

In Fig. 9.2 the results are plotted for various values of the Coulomb energy U and the
bare dot energy ¢, = p = 0. It is seen how the anti-resonances existing at ¢ = 7/2 and
3m/2 disappear and the resonances moves towards each other when U is increased. At
infinite U only a single dip is seen.

For €, # p the same behavior is seen, but the curve is no longer symmetric around ¢ =
for U = 0.

™
2

The U dependence was what we hoped to study with the Green’s function approach
because it contains tunnelling events to all orders, and not only second order as the cotun-
nelling result. However, we have shown that the two methods agree in the weak coupling
limit for noninteracting electrons on the dot.
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9.3 Applied to the FAB model (antiparallel geometry)

The analysis for obtaining the cotunnelling result for antiparallel magnetizations of the
leads is identical to the parallel case presented in Sec. 9.2.

Again we calculate Fgl)% and find the same two contributing process as showed in Fig. 9.1,
and the only difference is when calculating the matrix elements M, and M, defined in
Egs. (9.8) and (9.9). After inserting the coupling matrix elements ana’ " for the antiparallel

case we arrive at

Vi Very
11 kRIST
MA = __—<VL7VR7T ’CL’LT’C’C’LT’ (1 — CLRL/CICRL> ‘Z/L, VR, T>, (930)
€ — €k R
Virrr Ve
MB = 6_’—W<VL7 VR?T ‘CL/LT/C]C/LT/ (1 — CLR‘L’C]CRJ,> |VL7 Vp, T> (931)
T

1

Continuing as in Sec. 9.2, the conductance can be found after inserting the definition of
kau and the result is

Gw>=e*§$f[‘cfj““g Cfﬁf332 (9.32)
Inserting the values for the energy levels gives
INANH 2
GMFWQ;;[%%_éi;fB+m]gﬁ& (9.33)
Fore; =U =0 we get
G(o) = LT s’ (9.34)

2nh B2

This can be compared with the Green’s function result in the limit B > FTL,, Ff, where the
cotunnelling result is supposed to hold. From Eq. (5.19) we get in the cotunnelling limit

TETF sin2

Gexact(a) = 62 I

o B2 (9.35)

vii

which is identical to the cotunnelling result in Eq. (9.34)

In the limit U ~ oo the second term in Eq. (9.32) vanishes because the conductance

channel through the spin-| level requires infinite energy, and we get
9 F%/Ff/ sinZ6
2rh 4e?

G)=e (9.36)
The interesting point is that the angular dependence is similar to the U = 0 behaviour
when ¢, = 0. This is very different from the case of parallel magnetizations of the leads
where a dramatic change of the angular dependence was seen in the two limits.

""The same calculation can be done for £, # 0 and the same conclusion is reached.
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Figure 9.4: The cotunnelling results plotted for ¢, = U = 0 with different values for the
magnetic field strength B. See Eq. (9.34).

9.4 Final remarks

The scattering formalism used in this section have given simple and intuitive analytical
results for both the parallel and the antiparallel geometry. We only considered scattering
processes to second order in the coupling, so we have to assume weak coupling. Moreover,
the results are also only valid when the temperature and the bias voltage is much smaller
than the distance between the chemical potentials of the leads and the energy levels of the
dot.

For the parallel geometry, the main point is the existence of a cross-over from a resonant
behavior in case of noninteracting electrons on the dot to a spin-valve effect in presence
of large interactions on the dot. Both limits have been explained.

For the antiparallel geometry no significant change in the angular dependence is observed
when the interactions on the dot are increased.
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Figure 9.5: The cotunnelling results plotted for €, = 0 and B = 1 with different values for
the Coulomb repulsion U (see Eq. (9.33)). Note how the conductance tends to
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Chapter 10

Summary and outlook

We have studied the quantum transport through a small nanomagnetic device consist-
ing of a quantum dot contacted to two ferromagnetic leads. An applied magnetic field
could interact with the spin of the electrons on the quantum dot. To model the system
an extended Anderson model was used and to calculate the conductance three different
analytical tools were applied.

First a brief introduction to the field of nonequilibrium Green’s functions was given. It
is considered a strong tool for dealing with quantum transport because it incorporates
tunnelling events to all orders, but technically it is difficult to work with in case of a
non-quadratic Hamiltonian. For that reason an approximation scheme was applied which
gave an expression for the retarded Green’s function in presence of interactions. The so-
lution for the current is restricted to the limit of weak and proportionate couplings, and it
requires that the eigenstates of the central region are known. However, for noninteracting
electrons on the dot exact analytical results could be obtained for fully polarized leads
and low temperature.

Then the method of quantum rate equations was presented. They form an extension to
(Pauli) master equations where the non-diagonal elements of the density matrix are also
included. These terms describes the superposition of different quantum state and are im-
portant when the coupling between the states are strong. That is the case in the FAB
model due to the large non-quadratic terms in the dot Hamiltonian. Quantum rate equa-
tions include tunnelling only to lowest order in the coupling and are often only valid in the
large bias limit or for high temperatures, but sometimes it offers a quick way to obtain a
result.

An attempt to derive a set of quantum rate equations for the FAB model based on an
article by Bing Dong et al. was presented [4]. The derivation was based on the nonequi-
librium Green’s function formalism and the resulting set of equations were claimed to be
valid for all bias voltages and temperatures. After having corrected a number of points
in the derivation, we have shown that they are in fact also only valid in the large bias
limit or for high temperatures. Consequently they cannot be applied to the FAB model
in the linear response limit where the results could be compared with the other methods
presented.

93
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Method ‘ Conditions ‘
Green’s functions, U = 0 | None. Analytic results for T = 0.
Green’s functions, Parallel geometry, I' < B,

unified description pseudo-equilibrium

Quantum rate equations | I' small (no broadning of levels).
max(k,T,eV) > B,U

OF Py 5uu’puu (B>T)
Scattering formalism kpT,eV,I' < B

(to second order in T")

Table 10.1: The table shows when the different approaches can be applied when dealing
with the FAB model. (¢, =0, i.e. ¢, =+B and e, =U.).

Finally, the conductance was calculated using a scattering formalism to second order in
the tunnelling Hamiltonian, where an electron is passed from one lead to the other via a
virtual transition. For the FAB model the conductance could only be calculated in the
limit where one state is always occupied and the other always empty, and it is difficult
to include higher order scattering processes. Nevertheless, for all values of the interaction
it offered an intuitive picture of the processes giving rise to the anti-resonances in the
conductance. For noninteracting electrons on the dot the results coincided with the exact
Green’s function results in the relevant limit.

The conditions for applying the methods to the FAB model is summarized in Ta-
ble (10.1). It is clearly seen that in case of interacting electrons on the dot no method is
available when the coupling is comparable to the other energies.

The exact results obtained with the Green’s function method for noninteracting elec-

trons on the dot have already been described in [5]. Under the condition of a bare dot
energy at resonance, fully polarized leads, low temperature and parallel magnetizations of
the leads anti-resonances in the conductance appear when 6 = 5 and 0 = %.i
When interactions are included the scattering formalism showed a cross-over to a simple
spin-valve behaviour with no anti-resonances. It could be explained as the blocking of
one of the conduction channels. The Green’s function approach gave no clear results for
strong interactions. Whether this is due to numerical problems or difficulties related to
the applied approximation scheme has not been sorted out.
In case of noninteracting electrons on the dot an exact result could be obtained with the
Green’s function method for antiparallel magnetizations of the leads, and with the scat-
tering formalism the conductance was found in presence of Coulomb repulsion on the dot.
The interesting point is that no qualitative difference in the angular dependence between
the noninteracting and the strongly correlated regime is observed. This is in contrast to
the parallel geometry where a clear difference between the two regimes occurred.

19 is the angle between the magnetizations of the leads and the applied magnetic field.
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In the previous chapters only parallel magnetizations and fully polarized leads were
considered. The effects described above remain in case of a mixture of spins in the leads
but are gradually washed out. The same will happen if temperature is increased.

Through out this thesis we have used assumptions which made it possible to perform
the calculations, but what is the relevance for an experiment? 1 Tesla gives a Zeeman
splitting of the energy levels corresponding to a temperature of 1 Kelvin, roughly speak-
ing, so the assumption of temperature being 200 times smaller than the magnetic field
is obviously not reasonable, and the approximation of fully polarized leads can also be
questioned. Nevertheless, the predicted angular dependence should persist even for higher
temperatures and non-ideal leads, even though it gets smeared somewhat. Hopefully some
experimental group will find it interesting to verify the predictions which are currently be-
ing written in the form of a research paper.

In conclusion, we have shown three different ways of dealing with quantum transport
and the difficulties and advantageous of the methods have been discussed via the appli-
cation on a relevant physical system. The inherent problem of treating the interactions
between electrons on the dot properly has shown to be a technically difficult task and
even more complicated models and sofisticated analytical tools are considered by other
groups. !

The complicated interplay between magnetism, coherence and interactions which exists in
nanostructures is a delicate problem, but are "unfortunately” highly relevant for possible
applications.

iSee [20], [21] and [22].
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Appendix A

Details

A.1 Nonequilibrium Green’s functions

A.1.1 Heisenberg operators as time-ordered exponentials

We show how operators in the Heisenberg picture can be transformed to a time-ordered
exponential along a contour times the operator in the interaction picture.
To shorten the notation we write the Hamiltonian as

H(t) = H +V(¢t) (A1)
where in our case V(t) = H* + V(t) and H = H°.

Now consider the operator A, (t). According to the Eqgs. (3.14) and (3.17) it can we
written as

Ay () = vl (6, t) A (v (), (A.2)
where
. et 17 /
v (tity) = Te oV, (A.3)

We want to show that A, (¢) can be transformed into

A (t) = Ty e e ™ 4w, (A.4)

with C, being the contour shown in Fig. 3.2, and proceed by transforming the right-hand
side into the left-hand side.

From the definition of the time-ordered exponential we obtain

T, [e—ifct dTVH(T)AH(t)] _ Z (—z’)n/C dr, - /C dr,Te, {Vg(ﬁ) . ..VH<Tn)AH(t)]

t n!
t
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First we consider nth order term. We split up the curve into two branches C, = C_, +C_,
where C_, (C_) runs from ¢, (t) to t (¢,). Using the same notation we write the integral

as fCt = [+ J and get

[ dn- / 47, To, [Vig(ry) -+ Vg (1) Ag (1)

/ /drl /+/d7n Te, [Vi(r) - V)4, (0]

Expanding the expression in Eq. (A.6) gives 2" terms, each containing n integrals.
Now consider a term where m of the integrals are of the type [, with 0 < m < n. After

bl
introducing contour-ordering operators on each branch this term can be written as

Zdﬁ.--ZTm ZdTmH---/Tn T, [v (ry) - vg(rn)Ag(t)}

—

/dT1 /T 1 [Vir) - Valma)] | 450 (A7)
/d7m+1 /7‘ TC [VH(Tm_H) e Vﬁ(Tn):|

where we have used that in the contour sense all times on the branch C_, are before the
times on C__, and the time ¢ is right in between.
Among the 2" terms in Eq. (A.6) there are m

J. They all give the same value because it is the same integral, with the only difference

terms with m integrals of the type

being the time labels.
If we introduce k = n — m we can write the nth order term from Eq. (A.6) as

/C dry- [ dn o, [Vy(n) - Vi(r) A (0)]

t Ct

:mZ:kZ lk;vnk+m /dTl / g Vig(m) - VH(T’”)} Ag(®) (A.8)
/dT1 /TkTC H ™) Vg(Tk)}
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and when we insert it in Eq. (A.5) we obtain

—1 drV_ (1)
T le o™ A (o)

S Jan [, [Vam) Vit | 450 (A.9)

Z(—k" /dTl /TkTC V(7)) Vﬁ(rk)]

k

It is easy to see that the k-sum can be written as

k:' / dry - / Tch V(1) Vg(%)]
k
i fl V()

(A.10)

=Tie (t to)

because the time-ordering operator TCTt’ is equal to T, on the interval [t,,].
The m-sum is more difficult. We first note that the time-ordering operator Te, = T, on

[t,t], where Tt is the anti-time-ordering operator on the real axis.
For the time-ordering operators hold

(1AM B = T,[AT () Bl ()] (A.11)

which follows from their definitions. Now the m-sum can be written as

dry--- [T TC V(1) Vﬁ(Tm)}
:Z (_ﬂ?‘ /t K dt) - /t at’ T, [V (th) Vﬁ(tin)}
m oty to - - f
= Zz'/t dt'l---/t dt!, T, [Vlg(t'l)--.vgl(t;n)}) (A-12)

—i [P arv_ ) f
<Tt [e fto H ]) :p}{(t,to),

where the integrals on the contour branch C_ have been changed to normal integrals
along the real axis, and it has been used that VH(t) is a hermitian operator.
Finally we have proven Eq. (A.4).
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t ty
Ccy —F : Y

,,,,,,,,,,,,,,,,,,,,,,,,,, S

Figure A.1: The "snake” contour Cg. Like the other contours it runs on the real axis but
is for clarity drawn away from it. The piece drawn above the real axis is equal to Ctl and
the lower is equal to C; , so we have Cg = C; +C; .

1/ 1/

A.1.2 Composition of operators

We show how a product of two contour-ordered operators can be gathered into a single
contour-ordered operator. As in Sec. A.1.1 we use the Hamiltonian H = H + V defined
in Eq. (A.1).

We consider the contour-ordered operators (T [A,,(t;)B;,(t;,)]) on the contour C,
shown at the upper figure in Fig. 3.1. We have chosen t; <. t,,, but the analysis and the
result are identical for t; > t,,.

Using the result from Eq. (A.4) we get

(TolAy (t) By (t1)]) = (B (t1) Ay (1))
—3 fct dTVg(T) —1 fC dTVfI (T)]
- <Tct1, e Bty e AH(t1)> .

(A.13)

where the contours C’t1 and Ctll are on the form shown in Fig. 3.2.

Now we introduce the ”snake” contour Cg = Cj + Ctlx with the direction shown in
Fig. A.1. We also introduce a contour-ordering operator TCS on Cyg, and it is identical to
T c,, and TCt1/ on the common parts. With the new contour we can write

(T[Ay(t) By, (t,)]) = <TCS e Hes Ve AH(tl)BH(tl,)]> : (A.14)

where the two exponentials have been joined. The integral along the dotted piece of Cg in
Fig. A.1 vanishes, because the dotted contour is an integral back an forth on the interval
[ty,t] with no operators on it. Therefore we can replace the contour Cg in Eq. (A.14) with
the contour C' from Fig. 3.1.

Doing the same for t; > t;, we finally arrive at

(TelAg (1) Byy(t,)]) = (Tole™ e a4, 1) B, (1,)]) (A.15)
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A.1.3 Partial integration for current Green’s functions

We start from Eq. (3.67). Multiplication with the lead Green’s function gin(t’ 1y

integration over ¢’ on both sides gives

/dt 7’8 Gn kn(t7 t/)]gltm(t/’ tl) = /dtlelmG;,kn(ta t/)glizn(t,a tl)

#30 [dt Vi Glnt gk (1),

Now we integrate by parts on the left-hand side and find

/dt[ 28 Gn kn(tat/)]gltm<t/7tl) [Gn kn(t t)]gkn(t t )]tlfoo

/ Aty G, oy (1) 10, 91y (V1))

The first term vanishes.! Inserting Eq. (A.17) in Eq. (A.16) leads to

/dth,m( t)[i0y — 4,9kt 1) Z/dtv,mm )Gk (1)
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) and

(A.16)

(A.17)

(A.18)

Using (0, — akn)g}in(t’, t;) = 6(t; —t') and carrying out the integral on the left-hand side

gives
G;,kn(t?tl) = Z/dt, Vk*n,me’Lm(t’t,)gltm(t,’tl)'
m

After renaming the arguments, ¢’ < ¢,, Eq. (3.69) have been obtained.

A.1.4 Convolution theorem for Fourier transforms

The first term in Eq. (3.71) is equal to

[ a6 - )t~ ¢)

where the indices on the Green’s functions have been suppressed.
The convolution theorem for Fourier transforms reads

[distge—i = [ 5@
so if we in Eq. (A.22) set x =t — t/ we obtain
/ dt, GE(t —t)g=(t, — t') = / dt, G (w)g< (w)e 1),
Doing the same for the other term we obtain

dw a dw(t—t'
Ganlt) = 3 [ 5 Vi [0+ Gl (9] 4

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

Tt is difficult to give a short argument, but it can be taken as a boundary condition that the Green’s
functions vanish when the difference between the time-arguments becomes infinite. Otherwise correlations

on infinite time-scales would exist, which is clearly unphysical.



102 APPENDIX A. DETAILS

A.1.5 Current formula

The starting point is
2e dw N a
@zhZ/%ﬁqwm%mw&M@wmewmmﬂ} (A.24)
nmk

Changing the k-sum to an integral we can write J; as

/ / kL Re (1L (e1) [GP (@05 (@) + (@)l (@)]} . (A.25)

where the level-width function is defined in Eq. (3.74).
The lead Green’s functions are defined as

g () =i <c,tn(t')ckn(t)> , (A.26)
g (tt) = 00 — 1) ({e, (0. e, (N }) (A.27)

and because they are Green’s function for the isolated leads, the time-evolution and average
value are with respect to first part of the Hamiltonian, H, = > e Eknanckn' The Fourier
transforms of the Green’s functions are easily found

g,jn(w) = 2mifp(eg,)0(w — €p,), (A.28)
1 P
A .
= = +imd(w — A2
Gin (W) ey T w2y imd(w — &p,), (A.29)

where P means the principal part of the integral.
We obtain for the first term in Eq. (A.25) that

/dSkLR {F GR ( )QEL(W)}
e {ZFL w)} (A.30)
= —fp(w)Im {F (@)}
= @) {Th, >—meww%wwy

where we have an implicit sum over n and m.
Using [TL,(w)]* = T'L (w) and the general property for Green’s functions [GE (w)]* =
G4 (w) we obtain

/%“R{r DGR @5 (0)} = 51 TE, () {GR, @) — @G, @)}, (A31)

where we in the last term have exchanged the sum indices n < m.
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The second term in Eq. (A.25) is more difficult. First we note the property of the
dot Green’s function [Gy,, (¢, t")]* = =G5, (t,1') and consequently [Gy,, (w)]* = =G5, (w),
where we have assumed that G5, (¢,t') only depend on the difference between the time
arguments. Now we get

/dakLR {Thn(en) [Grn@)gir (@)] }
- / AEhr g, {FL (€xr) [Pw TG ()d(w - %ﬁ] }

21 w—e&ur

(A.32)

Note that (w—¢,;)~! is real, and consider Re[l'},, (g, )G (w)], which can be written as
Re{T, (64 )Grm (W)} = {an €) Grom (@) + [Cr (1)) (G ()]}
S (T (600)Giin () = T (61 G} (A.33)
= 07

where we have used the implicit sum over n and m.

The second term in Eq. (A.32) gives

/d;erRe {in D} (€1) G (W) (w — £,,) }
= TR @)G5) — [T, @) (G )]} (.34
= 5 {Tha @G (@)}

where we in the last line again have used that the sum indices can be exchanged.

If we gather the pieces we find

> [ 5oThn) {Ginl) + £1(0) [Cn (@) — @Gibn@)]} . (A3
and put on matrix form we have the final expression for the current
d
Jp= 7 | 2T (O {G5 W) + f1(w) [67(w) - (@G @)]}). (A.36)

where the matrices are in the dot indices m, n.

A.2 The FAB model for U=0 (parallel geometry)

With the assumptions introduced in Sec. 4.1 the Green’s function G*(0) for noninteracting
electrons on the dot simplifies to (see Eq. (4.20))

-1 B —i/2Ty sin?Y i/4T sin @
R0y — T 2 7
G (O) 32 + i/QFT/B cos @ ( i/4FT/ sin9 -B— i/QFT/ COSQg ’ (A37)
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where I, = F%, + Ff, and g; = 0.
Using the property G4(w) = [GF(w)]T we obtain

-2, 1 ) —sinf
Riy _ (A — i + cos sin
GHO) =G0 = 1 +I'%, cos26 ( —sinf 1-—cosd > ' (4.38)
In the lead spin basis the coupling matrix I" is
r., o
r= T A.39
(v o) (A.39)
and in the dot spin basis it is
- 20 0ginf
=R 'TR=T, < 2, CPalie > , (A.40)
COS 5 S1n 5 S1n 5

where R is the change-of-basis matrix defined in Eq. (2.7).

Inserting the expression in the current formula Eq. (4.24) and carrying out the trace gives

after some trigonometric manipulations
IRARH 4 cos®0

v -1
© 2mh 4B2+F%, cos26’

L, =Tf+T7. (A.41)

This is the linear response result for the current in case of noninteracting electrons on
the dot, €, = 0, zero temperature and fully polarized leads with the same direction of
magnetization.

For €, # 0 we obtain

IRARY 4(e;+ Bcosf)?
2rh T%,(4+ Bcos)? + 4(B% —¢3)?’

G() = %V L, =ThH+T7. (A.42)

A.3 Unified description (derivation of EOM for ET)
The function ET from Sec. 6.2 is defined as
B, o () = =i0(t) ({ (e, )81 (1), 18Xa1}) (A.43)

The commutator [Hyp, ¢, [v)B]] gives

[HT’ Ckn|1/></8|] = Z t;;/n/n (CIT;Z’T]' |a”></6|ck’l]Fa”,3”,n5/B”V
nk'n’a’ 8"

T
— Ck,nck/n/|V><B//|Fa”[3”,n5ﬁ0//) <A44)
+ tk’n’n (‘ﬁ”><ﬁ‘Fct”ﬂ”,nck’nckn(sa”u

— Ckn ’VXO//|F;//ﬁ,/7"ckl77l555//) .
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Invoking the same approximations as for D and keeping track of the type of the dot
operators involved, it can be written as

[ g X1~ = (Ein oy G W NBIE sy + [ = L& NV ). (A45)

The commutators with H; , and H. are simple, and in after a Fourier transformation we
finally obtain

-1
Eﬁh”ﬁa'ﬁ'( ) = w— é.k 4 E +10+ Z <tknn BV \n ’[ f (fk;n):l v/ a’,@’( )

(A.46)
+tk:77n v/ l/n’fn(é-kn) ’ﬁa’ﬁ’(w))'

A.4 Solving the FAB model with interactions

A.4.1 Fermi function integral

We show how to calculate the integral
de  f(e)
—— A.47
/ 2rw —e + 10t ( )

from Sec. 7.2.1.
Consider the function!!

_p / df (<) L Ly i] (A.48)

We fix the the chemical potential at u = 0 and assume that the energy band is symmetric
around it with energies from —D to D. If D > |w| we can write the first term in (¢) as

[ o)

—79/ fletw) f(g_”)+7>/0Ddgl

3

(A.49)

Using f(—x) =1 — f(z), the second term in Eq. (A.48) is

77/ del=2 _—73/ de= +27>/ FRAC) (A.50)

/ g2E) = fetw) = fle=w) (A51)

9

which gives

The P has been dropped because the integrand is not divergent in any point (which can
be seen with standard function analysis) and the integral can be computed numerically.

i f is the Fermi function.
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Notice that ¥ (w) = ¥ (—w).
We still need the the integral

op = 7:/_[; dgf(;) (A.52)

to calculate the integral in Eq. (A.47). For D > kgT holds ¢p ~ In kBT

A.4.2 Residues

As mentioned in Sec. 7.3, the function of ( ) has a pole of order 2 at ik, = z% The
residues for [G(z) — Go(z)] 8@—(;) = G(z)af( %) at the poles ik, are
~ d
Res [G(z)aj(;f),zkn] = lim . [(z—zk:n) G(z )agi )]

~ i 4 [(z—ikn)zé(z)(e;f_igj)?}

z—ikn dz
ge?
(1- 6[35)2} ’

(A.53)

d 2
= lim — {5 G(iky, + 6)

where § = z — ik, and it has been used that e’ = —1.
Introducing x = 36 and performing the differentiation gives

= Res G(z) 8J(;(Zz) ; an}

o d | oa . x e’

[ a x z2e” - (. z\ ze® (e*(x —2) + x +2)
= ili% _BG (Z]Cn + B) 7(1 mprp +G (Uﬂn + ﬂ) (1 =)

By expanding the exponentials around x = 0 it is easy to see that the first term becomes

z—0

1~ x z2e” 1~
lim =G’ ik, + = | ———=| = =G’ (iky,) . A.55
lm[ﬂ (”*ﬂ)(l—ewﬁ] e 59
The second term vanishes. Expanding the nominator around = = 0 gives

1 1
xe® (e"(x —2) + x + 2) = ze” (((1—1—30—1—2x2+6x3+...)(x—2)+x+2>

= ze® (éx?’ +0 (x4)> (A.56)
L 4

6+(’)()



A.4. SOLVING THE FAB MODEL WITH INTERACTIONS 107

After expanding the denominator around x = 0 the second term in Eq. (A.54) is

i 6 (1 5) U200y (1, 7) b0

z—0 I] (1 — ex)3 z—0 I6] 3+ 0 (1‘4)
~ z\ 1 z+ 0 (2?)
_ T AR
) [G (Zk + ,3) 6 1+0 ()
=0.
(A.57)
Now we have obtained that
ZACINP N /i
Res | (G(z) — Go(2)) s ikn| = 3 (G/(ikn) — G (iky)) - (A.58)
A.4.3 Explicit form of [M[]~!
w + Egp 4907 0 0 0
R, -1 0 w+ Ep +i07" 0 0
Mg ()] = 0 0 w+ Ejy+i0* 0 ’
0 0 0 w + ETQ + 0"
(A.59)

with Fog = €4 — 3.

A.4.4 Occupancies

In this section the derivation of the equations (7.18)-(7.21) is presented. It is assumed that
the dot is in thermal equilibrium with the leads and therefore the equilibrium relations
hold.

For the diagonal Green’s functions the following relations hold [1]

iGq(w) = 2ImGgh (w) f(w), (A.60)
which gives

(ng) = —iGo,(t =0)
_ —21m/ W GR () F(w). (A.61)

where a =T, |.

The non-diagonal occupations are more cumbersome. The following relations can be
established with use of the Lehmann representation™

(GH ()" = Gh(w) (A.62)
G5w) = — [GE(w) - GAW)] fw), (A.63)

HiThe derivation also holds for the diagonal occupation numbers.



108 APPENDIX A. DETAILS

where a,b =T, |.
Using these relations we obtain

(nap) = <020b>
= —iGy,(t=0)

[ dw
= —Z/M%Gfa(w)

—i [ 52 et - (@) ] s

—0o0

A.4.5 Interacting electrons, more results

(A.64)

The following figures are plotted for FTL, = I‘TL, = 0.1 and the band width is fixed at D = 50,
where the energy unit is 200 £57". A discussion of the figures are given in Sec. 7.4.2.
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G(0) * 102
Doubtful!

L _TR _

'y =Ty =01

B=1¢,=0

_ U —
- U=10

---U=15

T T 0
T 2

A.5 Current Green’s functions for the rate equations

The current Green’s functions in Eqs. (8.14)-(8.17) can be calculated in the same way as
when deriving the current formula in Sec. 3.5. In this section we show that the current
Green’s functions presented in [4] are not exact, because they have neglected a term.

As an example we choose G, ko (t,t') from Eq. (8.15), and as in Sec. 3.5 we start from
the time-ordered Green’s function
Gl () = =i (T, | (10X0 ) (1)l ()] ) - (A.65)

The time-derivative with respect to ¢’ is found

=0y Gl (1) = =i (T, | (1K=l (}] ) (A.66)
and again we use the Heisenberg equation of motion to obtain

—idyc} o () = [H, (), (A.67)

where H is the full Hamiltonian (see Eq. (8.10)).
Calculating the commutator and inserting the result in Eq. (A.66) gives

—id, — sn,w,] Gl (1,1 = Vi (Ggw, (t.8) +0'GE L, t’)) . (A.68)
The Green’s functions on the right-side are

Gooor (1,1') = =i (T, [(10)Xe ) (1) 0Xe"I(#)]) (A.69)
G2 (t:t) = =i (T, [(I0)Xe ) (®)12)(e”|(#)]) - (A.70)

To derive the current Green’s function correctly requires that we keep the Green’s function
G6075,2(t,t’) in Eq. (A.66) when we proceed as in Sec. 3.5. However, later on we make
the assumption that the Green’s functions in presence of tunnelling are on the same form
as the decoupled Green’s functions (see Sec. 8.2), and the Green’s function Géa an(t:t')
is zero in absence of tunnelling. For ¢ > t' it corresponds to creating a doubled (;ccupied
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state at time ¢’ and leaving the dot empty at time ¢. This can only happen if the electrons
can tunnel out from the dot. The same argument holds for ¢ > ¢t. Therefore Ggg ooty t')
can be neglected in the in expression for the current Green’s function in case of weak
coupling between the leads and the dot. This is not stated in [4].

The rest of the calculation when deriving the expressions for the current Green’s functions
in Eqgs. (8.14)-(8.17) is identical to the procedure in Sec. 3.5. We end up with the Green’s
functions in Eqs. (8.33)-(8.36) when we neglect the dot Green’s functions which vanish in
absence of tunnelling.
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List of abbreviations and symbols

Some of the most important abbreviations and symbols.

NGF': Nonequilibrium Green’s function.

WBL: Wide Band Limit.

EOM: equation of motion

kp: Boltzmann’s constant.

T: temperature

b=

0: angle between the magnetic field and the magnetizations of the leads.

O(t): the unit step function (#(t) = 0 for ¢ < 0 and 1 elsewhere.)

B: strength of the magnetic field.

A: a matrix.

A: a vector.

[A, B] = AB — BA: the commutator.

{A,B} = AB + BA: the anti-commutator.

J: with no limits assigned it means from —oo to oco.

w: the equilibrium chemical potential of the leads (the zero point on the energy scale).
fty: the chemical potential of the lead n = L, R.

I'?: the coupling constant between the lead 1 and the dot for lead electrons with spin-o.!
e,: the energy of the dot levels in absence of an applied magnetic field.

£, the energy of the dot level with spin-p.

g45: the energy of the doubled occupied state.

Enko: energy of lead electron in lead 7 with spin-o and other quantum numbers k.
G!: retarded Green’s function.

GA: advanced Green’s function.

in = L, R for the left and right lead, respectively. Not to be confused with R on the Green’s functions
meaning retarded.
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