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Abstract
This thesis examines quantum teleportation between two quantum har-

monic oscillators, call them system 1 and 2, coupled to a traveling light field
in a cascaded setup from system 1 to 2 and measured using a homodyne mea-
suring scheme. The interaction between the light and systems is described
by a combination of beam-splitter and two-mode-squeezing interactions. The
teleportation will transfer the state from system 2 to 1, using the measured
homodyne signal to do a feedback on system 1. For purposes of characteriz-
ing and optimizing the protocol The initial state of system 2 is taken to be a
coherent state drawn from a Gaussian distribution with zero mean and finite
width, and the initial state of system 1 is assumed to be a thermal state. The
purpose of this thesis is to investigate how well this can be implemented in
a realistic setup in which noise and errors are present. This includes ther-
mal noise from the oscillators interacting with the environment and vacuum
noise arising from optical losses. This will be analyzed using the Heisenberg-
Langevin formalism to account for the quantum noise processes. To charac-
terize how well the teleportation protocol works, the concept of fidelity is
used. An analytical expression for the fidelity is found in terms of the feed-
back gain envelope and the drive pulses driving the systems. We then want
to maximize this expression in terms of the quantities mentioned, however
this is not possible analytically, so numerical methods are used instead. This
will be done by making an ansatz for the shape for the drive pulses and then
the optimal feedback gain will solved for numerically for a given set of exper-
imental parameters from the QUANTOP lab at NBI. We predict a fidelity of
0.79, which is above the corresponding classical fidelity of 0.56.
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Introduction

“ Do you just put the word "quantum" in front of everything?

Scott lang

- Ant-Man and the Wasp, Kevin Feige & Stephen Broussard

In recent years quantum technologies e.g. quantum- computers, commu-
nication and networks, have become a focus for many research groups and
technology companies. A key ingredient in many of these new technologies
is the ability to transfer quantum states without letting them decohere and
thereby destroying their quantum properties. This can be done by sending
the state through causal quantum channel, for example, sending a qubit en-
coded in a photon by using a fiber optics cable, however it can still decohere
or even be absorbed. This is why, quantum teleportation, which utilizes the
non-local properties of quantum entanglement is preferred. The first telepor-
tation protocol was proposed by Bennett et al. in 1993 [2], however this paper
deals only with a qubit-like state; in the article they use a spin-1

2 particle. In
1994 Vaidman [12] proposed a teleportation protocol for continuous variables,
such as the amplitude and phase quadrature of light. The first realization of
Bennett’s protocol was done in 1997 by Zeilinger’s group [3]. And the first
unconditional quantum teleportation of continuous variables was done in
1998 by Polzik’s group [6].

Quantum teleportation is a central elementary operation in quantum
networks, not just for sending states between, e.g, quantum computers. For
example, if one has made a complicated state to be stored for later use then
it could be teleported to a quantum memory system. It can also be used for
enabling the entanglement between two distant nodes by using quantum
repeaters. These are a series of intermediate subsystems between the nodes
where it is easier to generate entanglement between each neighboring re-
peater. Quantum teleportation can be used to teleport part of an entangled
state from one quantum repeater to the next one and thereby entangling the
prior one with the next one; this is called entanglement swapping.

Since quantum teleportation is a crucial component in many quantum
technologies, there is an interest in developing teleportation protocols which
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Chapter 1. Introduction 2

functions even when there is errors and noise presence, as in a realistic setup.
This thesis will investigate quantum teleportation between quantum har-
monic oscillators coupled to a traveling light field. The light first gets entan-
gled with the receiving system after which it interacts with the input system,
the system whose state we want to transfer, and then gets measured with a
homodyne detection. This is analyzed in the presence of thermal noise and
optical losses. The figure of merit used to quantify how well the teleporta-
tion protocol works, is a quantity called the fidelity, defined as the overlap
between to the state being teleported and the resulting state of the receiving
system. This is a useful measure since it tells you how on average how sim-
ilarly the resultant state at the receiving system is to the input state. More
specifically we are interested in the average fidelity after doing the telepor-
tation protocol many time, where each time the input state is a new random
coherent state selected from a Gaussian distribution with zero mean and with
width 𝑛. For an arbitrary input state, 𝑛 → ∞, if the fidelity is below 1

2 then the
transfer can be done be equally as well with just local operations and classical
communication, no need for entanglement. At above a half the protocol is
above the classical threshold and the closer the fidelity is to 1 the better. So
the goal is to maximize the fidelity of our teleportation protocol; this will be
done though both analytical and numerical means.

The thesis is structured as follows:

• In Chapter 2 we present the basic idea behind quantum teleportation
and show how this can be done for both discrete and continuous vari-
ables and define the fidelity used as a figure of merit for the protocol.

• Chapter 3 introduces the necessary theoretical framework for the rest
of the thesis. This includes: Heisenberg-Langevin formalism, input-
output formalism and the equations of motion for the systems.

• In Chapter 4 we derive an expression for the total added noise in terms
of the pulses driving the systems and the feedback gain for the mea-
sured signal, which will be further treated numerically in the next chap-
ter. This is done in the case where the state to be teleported comes from
a restricted family of states and the receiving system is in a known
thermal state, also in the presence of optical losses and thermal noise.
Finally we consider the ideal case of no losses and noise, and where
an arbitrary state is being teleported to an unknown state, which will
serve as inspiration in the next chapter.

• In Chapter 5 the expression for the total noise is discretized and the
optimal filter is solved for numerically by using ansatz function for the
drive pulses, after which the fidelity is calculated.

• In Chapter 6 we conclude on the results obtained in this thesis and
future paths are indicated.
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Theory ofQuantum
Teleportation

In this chapter, we start by giving a qualitative description of what quantum
teleportation is and how it works in principle. Next, we will give a more
detailed description of how the teleportation protocol can be performed, with
both discrete and continuous variables. Then we introduce the concept of
fidelity.

2.1 Quantum Teleportation: Discrete vs. Continuous

Quantum teleportation is the process of transferring an unknown quantum
state of one system to another, by using entanglement to a third, auxiliary
system and Bell measurement on the source and auxiliary systems. It is im-
portant that it is a unknown state being transferred or else the state could just
be conveyed over a classical channel (e.g. via telephone).The usual process
for the teleportation protocol, due to Bennett et al. [2], goes as follows (see
Fig. 2.1): We have three parties called, “Alice”, “Bob” and “Charlie”, each pos-
sessing a quantum system. Charlie wants to transfer his (unknown) state to
Bob with the help of Alice. It starts with Bob and Alice entangling their sys-
tems then Alice sends her system to Charlie, so that a joint, Bell measurement
can be made on Charlie’s and Alice’s systems. Then via a classical commu-
nication channel Charlie sends the result of this measurement to Bob, which
then, based on this information, performs a local operation on his system to
finish the transfer of Charlie’s initial state to his system. Charlie’s and Alice’s
systems are now in a mixed state. A necessary criterion for a perfect tele-
portation process (i.e. Bob’s state is identical to Charlie’s initial state) is, that
Alice and Bob need to share a maximally entangled state, which is basically
impossible in the real world. Also no information must leaks out, e.g., via
losses or no dissipation.
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Chapter 2. Theory of Quantum Teleportation 4
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Figure 2.1: Quantum Teleportation protocol. (a) Bob and Alice gets entangled (repre-
sented by the curly line). (b) Alice travels to Charlie. (c) a Bell measurement is made
on Alice and Charlie, the result is then communicated classically to Bob.

2.1.1 Discrete-variable Teleportation

We will give a mathematical derivation for the discrete case of teleportation
(this derivation is again due to Bennett et al.[2]) and we will do this in the
context of a two-level system with the basis {|0⟩ , |1⟩}. We take Charlie’s state
to be in an arbitrary superposition |𝜓 ⟩𝐶 = 𝛼 |0⟩𝐶 + 𝛽 |1⟩𝐶 , where 𝛼 and 𝛽 are
unknown coefficients. Alice and Bob then needs to share an entangled state,
we will assume that to be a maximally entangled state. For specificity we will
assume that they share the Bell state |𝛷+⟩𝐴𝐵 = 1√

2 ( |0⟩𝐴 |0⟩𝐵 + |1⟩𝐴 |1⟩𝐵). We
then have that the total state is

|𝜓 ⟩𝐶 ⊗ |𝛷⟩𝐴𝐵 = (𝛼 |0⟩𝐶 + 𝑏 |1⟩𝐶) ⊗
1
√

2
( |0⟩𝐴 |0⟩𝐵 + |1⟩𝐴 |1⟩𝐵) (2.1)

By using the fact that we can rewrite a 2-qubit state as a superposition of Bell
states using the relations:

|0⟩ |0⟩ = 1
√

2
(��𝛷+〉 + |𝛷−⟩

)
(2.2a)

|0⟩ |1⟩ = 1
√

2
(��𝛹+〉 + |𝛹−⟩

)
(2.2b)

|1⟩ |0⟩ = 1
√

2
(��𝛹+〉 − |𝛹−⟩

)
(2.2c)

|1⟩ |1⟩ = 1
√

2
(��𝛷+〉 − |𝛷−⟩

)
(2.2d)

We can then write the total state (Eq. (2.1)) as (1):

|𝜓 ⟩𝐶 ⊗ |𝛷⟩𝐴𝐵 =
1
2

[��𝛷+〉
𝐶𝐴

⊗ (𝛼 |0⟩𝐵 + 𝛽 |1⟩𝐵) + |𝛷−⟩𝐶𝐴 ⊗ (𝛼 |0⟩𝐵 − 𝛽 |1⟩𝐵)

(2.3)
+
��𝛹+〉

𝐶𝐴
⊗ (𝛼 |1⟩𝐵 + 𝛽 |0⟩𝐵) + |𝛹−⟩𝐶𝐴 ⊗ (𝛼 |1⟩𝐵 − 𝛽 |0⟩𝐵)

]
(1) Here is one of the terms |0⟩𝐶 ⊗ (|0⟩𝐴 |0⟩𝐵) = ( |0⟩𝐶 |0⟩𝐴) ⊗ |0⟩𝐵 = 1√

2 ( |𝛷+⟩𝐶𝐴 + |𝛷−⟩𝐶𝐴) ⊗
|0⟩𝐵 , the rest of the terms follows similarly.
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Chapter 2. Theory of Quantum Teleportation 5

So now we can easily see what happens when a, joint measurement is done
on Charlie and Alice in the Bell basis, they will become entangled instead, as
one of the four Bell states with equal probability. Bob’s state collapses into
either the state we wanted to teleport, namely 𝛼 |0⟩𝐵 + 𝛽 |1⟩𝐵 or a unitarily
transformed version of that state. This means that after the measurement,
Charlie can send the result to Bob allowing him to perform the necessary
inverse transformation, corresponding to Pauli-operations. Thus completing
the teleportation protocol.

The Bell measurement is an important step of the teleportation protocol
since it is here the teleportation happens. When making the Bell measure-
ment it is important to not be available to distinguish Alice’s and Charlie’s
states, or else that would violate the no cloning theorem. Since then we could
keep Charlie’s state and transfer it to Bob, thereby having made a copy of
an unknown quantum state(2) (for a proof of the no cloning theorem see Ap-
pendix A). Actually we are not even interested in Alice’s state itself but rather
the information she has on Bob.

Note that we didn’t put any restrictions on 𝛼 and 𝛽 , so suppose Charlie
shares an entangled state with Diana, |𝜓 ⟩𝐶 = 1√

2 ( |0⟩𝐷 |0⟩𝐶 + |1⟩𝐷 |1⟩𝐶) =

𝛼 |0⟩𝐶 + 𝛽 |1⟩𝐶 where 𝛼 = 1√
2 |0⟩𝐷 and 𝛽 = 1√

2 |1⟩𝐷 . Then after the teleportation
protocol Bob’s state is |𝜓 ⟩𝐵 = 𝛼 |0⟩𝐵 + 𝛽 |1⟩𝐵 = 1√

2 ( |0⟩𝐷 |0⟩𝐵 + |1⟩𝐷 |1⟩𝐵)
and now Bob shares an entangled state with Diana, this is the entanglement
swapping mentioned in the introduction.

2.1.2 Continuous-variable Teleportation

The first person to consider teleportation of continuous-variable states was
Lev Vaidman [12]. However, we will follow the approach from Ref. [10]. For
the Continuous case we will take; Alice, Bob and Charlies systems to have a
pair of conjugate continuous degrees of freedom (e.g. position and momen-
tum or amplitude and phase quadratures of light), 𝑞𝑖, 𝑝𝑖, 𝑖 ∈ {𝐴, 𝐵,𝐶}. Again
Bob and Alice, start by creating an entangled state so that the variables of
their systems are (anti-)correlated like this,

𝑞𝐴 − 𝑞𝐵 = 0, 𝑝𝐴 + 𝑝𝐵 = 0 (2.4)

Then a Bell measurement is performed on Charlie’s and Alice’s states, by first
mixing their quadratures with a balanced beam-splitter transformation:

𝑞± =
1
√

2
(𝑞𝐴 ± 𝑞𝐶) , 𝑝± =

1
√

2
(𝑝𝐴 ± 𝑝𝐶) (2.5)

Then using a homodyne detection to measure the conjugate pair 𝑞− and 𝑝+,
denoting the outcomes with (𝑞−, 𝑝+). Which causes the collapse of the quadra-
tures in Eq. (2.5) to

𝑞𝐴 = 𝑞𝐶 +
√

2 𝑞−, 𝑝𝐴 = −𝑝𝐶 +
√

2 𝑝+ (2.6)
(2) Although perfect cloning is impossible, imperfect cloning is possible with a fidelity (see
Section 2.1.3 for what fidelity is) up to 5/6 [4, p. 7 (A.(2))]
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Chapter 2. Theory of Quantum Teleportation 6

We can combine Eq. (2.4) and Eq. (2.6) to get that Bob’s state is now:

𝑞𝐵 = 𝑞𝐶 +
√

2 𝑞−, 𝑝𝐵 = 𝑝𝐶 −
√

2 𝑝+ (2.7)

Charlie can then communicate the outcomes of (𝑞−, 𝑝+) to Bob via a classical
channel and thereby Bob can do a feedback on his state to shift the quadra-
tures appropriately to match that of Charlie

𝑞′𝐵 = 𝑞𝐵 −
√

2 𝑞− = 𝑞𝐶, 𝑝′𝐵 = 𝑝𝐵 +
√

2 𝑝+ = 𝑝𝐶 . (2.8)

And thereby completing the teleportation protocol.

2.1.3 Fidelity

Fidelity is a concept used to quantify how different two quantum states are
or one can think of it as the probability of producing a desired state. This is a
useful concept when doing the teleportation protocol since there is going to
be noise or errors in the system, so after doing the feedback, Bob’s final state
might not be equal to Charlie’s initial state. The fidelity can then be used
to tell us how well the teleportation went. The fidelity 𝐹 ′ for two states is
defined so that 0 ≤ 𝐹 ′ ≤ 1, where a fidelity of 1 means they are the same state
and fidelity of 0 means they are completely different i.e. they are orthogonal.
Say, the state we want to have is |𝛹ideal⟩ and the state we actually produced is
|𝛹⟩ then fidelity can be defined as:

𝐹 ′ = |⟨𝛹ideal |𝛹⟩|2 (2.9)

or, more generally, if the state we made is described by a density matrix 𝜌 :

𝐹 ′ = ⟨𝛹ideal | 𝜌 |𝛹ideal⟩ (2.10)

In this project on continuous-variable teleportation the fidelity we are inter-
ested in is actually the average fidelity over many runs of the protocol, where
in each run Charlie “picks” a random state from a set of states described by a
Gaussian distribution. The fidelity here is the same as in Ref. [8, p.42, Eq.88]
with 𝛥𝑋 2

𝐴,out = 𝛥𝑃2
𝐴,out

𝐹 =

∫
d2𝛼𝑃𝑛 (𝛼) ⟨𝛼 | 𝜌𝐵 |𝛼⟩ =

1
1 + 𝑁 total

add
. (2.11)

Where |𝛼⟩ is Charlie’s coherent state of a single run of the protocol, 𝑃𝑛 (𝛼) =
1

𝑛
√

2𝜋 𝑒
−|𝛼 |2/(2𝑛2) is the probability distribution from which Charlie picks his

states, with a width 𝑛 and 𝜌𝐵 is the density matrix for Bob’s state. 𝑁 total
add is

the total added noise to the system, defined as the variance of the Bob’s state
after feedback state minus Charlie’s initial state and then averaged over the
(classical) Gaussian distribution.

In the classical limit, meaning we don’t utilize entanglement, then the
fidelity becomes [8, p. 30]:

𝐹cl =
1 + 𝑛
1 + 2𝑛 (2.12)
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Chapter 2. Theory of Quantum Teleportation 7

where 𝑛 is the width of the distribution of states Charlies can pick from. At
first sight one might think that perfect teleportation is possible since 𝐹cl = 1
for 𝑛 = 0. However, when 𝑛 = 0 means that the distribution has zero width
which means it is just a single state. Then it is correct, since if you know the
state, you can of course transfer the state by just sending what the state is
with a classical channel. We are more interested in the case for a completely
arbitrary state, 𝑛 → ∞, then we have 𝐹cl = 1/2, which is the best one can do
in the classical limit, meaning that half the time the teleportation protocol is
going to fail. So, when doing the analysis in the none classical limit we aim to
get at least a fidelity greater than a half.
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Hamiltonian, Eqations of
Motion and Input-Output

Relations

We are going to introduce a mathematical description for the systems which
are going to acts Alice, Bob and Charlie. We are considering a system for
two separate oscillators 1 and 2 with the same resonance frequency 𝛺 , in a
cascaded setup in which they will interact with a common traveling light
field with carrier frequency 𝜔𝐿 . Each oscillator also interacts with its own
thermal bath, which is uncorrelated from the input light field, meaning that
information can leak out and in turn noise leaks in. We will set ℏ = 1 for all
calculations.

First we will derive the quantum Langevin equation (QLE) for Markovian
reservoirs in a rotating wave approximating, which introduces the input noise
operator, from the QLE the Heisenberg-Langevin Equation of motion (EOM)
can easily be derived. We motivate the time-reversed quantum Langevin
equation by defining the output noise operator, which when combined with
the input noise operator the input-output relation can be derived. Then look-
ing at the case where the light interacts with a oscillator in a cavity and using
the the Heisenberg-Langevin EOM, together with the input-output relation
to derive the full input-output relations of the entire setup of the two systems
and a detector and the EOM of the oscillator.

3.1 Heisenberg-Langevin Eqation

Here we are going to introduce the Heisenberg-Langevin equation, which
is needed when modeling the dynamics of an open quantum system, i.e, a
quantum system interacting with an environment, here the environments are
thermal baths and the light field. The need for a new formalism comes from
the fact, that if one tried to just add a decay term to the equations of motion
for the system (as a result of interacting with the environment) then one find
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Chapter 3. Hamiltonian, Equations of Motion and Input-Output Relations 9

that the commutation relations are not preserved for all time. The derivation
of the Heisenberg-Langevin equation is usually done by assuming that our
system is interacting with a reservoir which is modeled as a large number
(approximately infinite) of bosonic harmonic oscillators. The interaction will
be assumed to be weak, meaning we can write it in a bilinear form, �̂�int ∼
𝑅𝑆† + 𝑆𝑅†, where 𝑆 and 𝑅 is the system and reservoir annihilation operators
respectively. We consider a Hamiltonian of the form [7, p.2-3]

�̂� = �̂�sys + �̂�res + �̂�sys-res (3.1a)

�̂�res =

∫ ∞

−∞
d𝜔𝜔𝑅†(𝜔)𝑅(𝜔) (3.1b)

�̂�int = 𝑖

∫ ∞

−∞
d𝜔^ (𝜔)

(
𝑅†(𝜔)𝑆 (𝑡) − 𝑆†(𝑡)𝑅(𝜔)

)
(3.1c)

Where �̂�sys is a general system Hamiltonian, �̂�res is the free evolution for
the reservoir and �̂�int is the interaction Hamiltonian and ^ (𝜔) is the cou-
pling strength between the system and reservoir. The variable 𝜔 indicates the
infinitely many reservoir operators spans all possible frequencies, and it is
assumed they are independent degrees of freedom. Therefore the reservoir
operator satisfies [

𝑅(𝜔), 𝑅†(𝜔′)
]
= 𝛿 (𝜔 − 𝜔′) (3.2)

This Hamiltonian is in a rotating frame with respect to one of the high fre-
quency �̃� reservoir modes compared to the system frequency 𝛺 , �̃� ≫ 𝛺 .
The lower bound of integration in Eq. (3.1b) and Eq. (3.1c) is −�̃� but is re-
place with −∞. We find the Heisenberg equations of motion (EOM) for the
reservoir 𝑅 and an arbitrary system operator �̂� from Eq. (3.1)

¤̂
𝑅(𝜔) = −𝑖𝜔𝑅(𝜔) + ^ (𝜔)𝑆 (𝑡) (3.3)
¤̂
𝑂 (𝑡) = −𝑖

[
�̂� (𝑡), �̂�sys

]
+

∫ ∞

−∞
d𝜔^ (𝜔)

(
𝑅†(𝜔)

[
�̂� (𝑡), 𝑆 (𝑡)

]
−

[
�̂� (𝑡), 𝑆†(𝑡)

]
𝑅(𝜔)

)
(3.4)

we can then solve Eq. (3.3)

𝑅(𝜔) = 𝑒−𝑖𝜔 (𝑡−𝑡0)𝑅0(𝜔) + ^ (𝜔)
∫ 𝑡

𝑡0

d𝑡 ′𝑒−𝑖𝜔 (𝑡−𝑡 ′)𝑆 (𝑡 ′), 𝑡 ≥ 𝑡0. (3.5)

Where 𝑅0(𝜔) is 𝑅(𝜔) at 𝑡 = 𝑡0. Inserting it back into Eq. (3.4) and making the
first Markov approximation ^ (𝜔) =

√︁
𝛾/𝜋 , where 𝛾 is the HWHM decay rate,

physically this means that the noise processes do not depend on what hap-
pened at previous times and this is often referred to as the reservoir having
no memory. Then using the properties of the Dirac-delta function∫ ∞

−∞
d𝜔𝑒−𝑖𝜔 (𝑡−𝑡 ′) = 2𝜋𝛿 (𝑡 − 𝑡 ′) (3.6)

and ∫ 𝑡

𝑡0

d𝑡 ′𝛿 (𝑡 − 𝑡 ′)𝑆 (𝑡 ′) = 1
2𝑆 (𝑡) (3.7)
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Chapter 3. Hamiltonian, Equations of Motion and Input-Output Relations 10

we get the RWA Markovian quantum Langevin equation:
¤̂
𝑂 (𝑡) = −𝑖

[
�̂� (𝑡), �̂�sys

]
−
[
�̂� (𝑡), 𝑆†(𝑡)

] (
𝛾𝑆 (𝑡) + √2𝛾 𝑅in(𝑡)

)
+
(
𝛾𝑆†(𝑡) + √2𝛾 𝑅†

in(𝑡)
) [

�̂� (𝑡), 𝑆 (𝑡)
]

(3.8)
where we have introduced the input field operator 𝑅in

𝑅in(𝑡) =
1

√
2𝜋

∫ ∞

−∞
d𝜔𝑒−𝑖𝜔 (𝑡−𝑡0)𝑅0(𝜔) (3.9)

that satisfies [
𝑅in(𝑡), 𝑅in(𝑡 ′)

]
=𝛿 (𝑡 − 𝑡 ′).

For our purposes it is enough to only look at the case where �̂� = 𝑆 ∈
{𝑏1, 𝑏2, 𝑎1, 𝑎2}, using this in Eq. (3.8) we then get the RWA Markovian Heisenberg-
Langevin equation:

¤̂
𝑆 (𝑡) = −𝑖

[
𝑆 (𝑡), �̂�sys

]
− 𝛾𝑆 (𝑡) − √2𝛾 𝑅in(𝑡). (3.10)

From this we see there is a decay term −𝛾𝑆 (𝑡) as one would expect, but there
is also a fluctuation term −√2𝛾 𝑅in(𝑡). 𝑅in(𝑡) can be interpreted as the influx
of noise associated with information leaking out, this is consistent with the
quantum fluctuation-dissipation theorem [9]. In the case, where it is an in-
coherent state e.g. thermal state it would correspond to thermal noise and if
𝑅in(𝑡) is a coherent state instead, this would correspond to vacuum fluctua-
tions.

In Section 3.1.2 we derive the relation between the in going noise 𝑅in and
the system 𝑆 with the outgoing noise 𝑅out, known as the input-output relation.
However, physically we will not have access to 𝑅out for all types of reservoir,
e.g. mechanical damping. But if the system couples to an optical reservoir
we do have access to 𝑅out, since we can measure the light going out, and this
is exactly how we will infer the motion of the oscillators. By doing a similar
derivation to Eq. (3.8) we can derive the time-reversed quantum Langevin
equation. We start by consider the solution to reservoir operator with the
boundary condition at the final time

𝑅(𝜔) = 𝑒−𝑖𝜔 (𝑡−𝑡1)𝑅1(𝜔) − ^ (𝜔)
∫ 𝑡1

𝑡

d𝑡 ′𝑒−𝑖𝜔 (𝑡−𝑡 ′)𝑆 (𝑡 ′), 𝑡 ≤ 𝑡1 (3.11)

and similarly to before 𝑅1(𝜔) = 𝑅(𝜔)
��
𝑡=𝑡1

. We also define the output field
operator

𝑅out(𝑡) =
1

√
𝜋

∫ ∞

−∞
d𝜔𝑒−𝑖𝜔 (𝑡−𝑡1)𝑅1(𝜔). (3.12)

Then following the same procedure as before, we get Eq. (3.8) but with 𝛾𝑆 (𝑡) →
−𝛾𝑆 (𝑡) and 𝑅in(𝑡) → 𝑅out(𝑡).

The input-output relation, which relates the input, output and system
operators, can be derived by integrating Eq. (3.5) and Eq. (3.11) separately
over all reservoir operators. Starting with forward evolving solution∫ ∞

−∞
d𝜔𝑅(𝜔) =

∫ ∞

−∞
d𝜔𝑒−𝑖𝜔 (𝑡−𝑡0)𝑅0(𝜔) +

√︂
𝛾

𝜋

∫ 𝑡

𝑡0

d𝑡 ′
∫ ∞

−∞
d𝜔𝑒−𝑖𝜔 (𝑡−𝑡 ′)𝑆 (𝑡 ′)

(3.13)
=
√

2𝜋 𝑅in(𝑡) +
√
𝛾𝜋 𝑆 (𝑡) (3.14)
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Chapter 3. Hamiltonian, Equations of Motion and Input-Output Relations 11

doing the same calculation, but for the backwards evolving solution∫ ∞

−∞
d𝜔𝑅(𝜔) =

∫ ∞

−∞
d𝜔𝑒−𝑖𝜔 (𝑡−𝑡1)𝑅1(𝜔) −

√︂
𝛾

𝜋

∫ 𝑡1

𝑡

d𝑡 ′
∫ ∞

−∞
d𝜔𝑒−𝑖𝜔 (𝑡−𝑡 ′)𝑆 (𝑡 ′)

(3.15)
=
√

2𝜋 𝑅out(𝑡) −
√
𝛾𝜋 𝑆 (𝑡) (3.16)

from which we can easily get the input-output relation

𝑅out(𝑡) = 𝑅in(𝑡) +
√2𝛾 𝑆 (𝑡). (3.17)

These results, Eq. (3.10) and Eq. (3.17), will be used the later sections to derive
the EOM of the oscillators and the input-output relation of the whole setup.
Which is going to give us the signal we need to measure in order to complete
the teleportation protocol by doing a feedback on Bob’s system.

3.1.1 Interaction Hamiltonian

Here we are going to give a qualitative description of the light-oscillator
interaction and later a more detailed description will be given. The local inter-
action between each of the oscillators and the local light field is described by
the effective bilinear Hamiltonian of the form

�̂�int,𝑖 ∼ `𝑖

(
𝑎
†
𝑖
𝑏𝑖 + 𝑎𝑖𝑏

†
𝑖

)
+ a𝑖

(
𝑎
†
𝑖
𝑏
†
𝑖
+ 𝑎𝑖𝑏𝑖

)
, 𝑖 ∈ {1, 2}. (3.18)

Where `𝑖, a𝑖 are non-negative real numbers characterizing the strength for
each interaction. 𝑏†

𝑖
, 𝑏𝑖 and 𝑎†𝑖 , 𝑎𝑖 are the creation and annihilation operators

for the oscillators and light field respectively. which all satisfies the canonical
commutation relations:[

𝑏 (𝑡), 𝑏†(𝑡)
]
= 1,

[
𝑎𝑖 (𝑡), 𝑎†𝑗 (𝑡

′)
]
= 𝛿𝑖 𝑗𝛿 (𝑡 − 𝑡 ′) (3.19a)[

𝑏𝑖, 𝑏 𝑗

]
=

[
𝑏
†
𝑖
, 𝑏

†
𝑗

]
=

[
𝑎𝑖, 𝑎 𝑗

]
=

[
𝑎
†
𝑖
, 𝑎

†
𝑗

]
= 0. (3.19b)

The first term in the Hamiltonian is a beam-splitter (BS) interaction and
express the energy transfer between the field and oscillator. The second
term two-mode squeezing (TMS) interaction and describes the joint (de-
)excitations of the oscillator and field modes, which can be used to generate
entanglement between the light and oscillator. This type of Hamiltonian can
be achieve by having the light couple to the oscillator with 𝑎†𝑎(𝑏 + 𝑏†) in
a rotating frame with respect to the laser light frequency 𝜔𝐿 . We can then
linearize the interaction by splitting the light into a classical coherent part 𝛼
and quantum fluctuations 𝛿𝑎 part, 𝑎 = 𝛼 + 𝛿𝑎. we get the interaction to be
the form 𝛿𝑎†𝑏 + 𝛿𝑎†𝑏† + H.C. Then we can get the BS or TMS interaction by
detuning the laser and doing a rotating wave approximation. Furthermore the
interaction Eq. (3.18) is characterized by the readout rate/drive pulse 𝛤𝑖 and
optical broadening parameter Z𝑖 ∈ [−1, 1] which also indicates if the inter-
action is red detuned (Z𝑖 > 0) or blue detuned (Z𝑖 < 0). The readout rate and
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Chapter 3. Hamiltonian, Equations of Motion and Input-Output Relations 12

broadening parameter can be expressed in terms of the interaction weights:

𝛤𝑖 =
(`𝑖 + a𝑖)2

2 , (3.20a)

Z𝑖 =
`𝑖 − a𝑖

`𝑖 + a𝑖
, (3.20b)

𝛾opt,𝑖 = Z𝑖𝛤𝑖 =
`2
𝑖 − a2

𝑖

2 (3.20c)

` 𝑗 =
√︁

2𝛤𝑗
1 + Z 𝑗

2 , a 𝑗 =
√︁

2𝛤𝑗
1 − Z 𝑗

2 (3.20d)

Since each oscillator is coupled to a thermal bath they will experience
damping denoted by the (HWHM) line width 𝛾𝑖 , the total decay rate of the
oscillators including the contribution from the optical broadening term, 𝛾𝑖 ≡
𝛾𝑖 + 𝛾opt,𝑖 = 𝛾𝑖 + Z𝑖𝛤𝑖 . All of the quantities defined above are time dependent
coming from 𝛼 (𝑡) being time dependent.

3.1.2 Input-Output Relations

Here we will go through the main steps to get to the input-output relation for
the quantum light that carries information about the oscillators, but not for
the carrier light. Instead we assume the interactions between the light and
oscillators will induce pairs of narrow sidebands that are well-separated and
centered at 𝜔𝐿 ± 𝛺 , defined for the oscillators resonance frequency 𝛺 . From
this we can define independent upper- and lower-sideband

𝑎in/out,±(𝑡) = 𝑒±𝑖𝛺𝑡𝑎in/out(𝑡) (3.21)

which satisfies [
𝑎in/out,±(𝑡), 𝑎†in/out,±(𝑡

′)
]
= 𝛿 (𝑡 − 𝑡 ′). (3.22)

In order to properly justify the input-output relations for the sidebands we
have to go back and linearize the optomechanical Hamiltonian as mentioned
in the previous section.

ˆ̃
𝐻 =

ˆ̃
𝐻 0 + ˆ̃

𝐻 int (3.23)
ˆ̃
𝐻 0 = 𝛺𝑏†𝑏 + 𝜔cav𝑎

†𝑎 (3.24)

ˆ̃
𝐻 int = 𝑔0 ˆ̃𝑎† ˆ̃𝑎

(
𝑏 + 𝑏†

)
(3.25)

→ 𝑔0𝛼
(
𝛿𝑎 + 𝛿𝑎†

) (
𝑏 + 𝑏†

)
(3.26)

where we have linearized the interaction Hamiltonian and assumed 𝛼 is real
and positive. Using the Heisenberg-Langevin EOM Eq. (3.10) for the case of
light interacting with an oscillator in a cavity, 𝑆 → 𝑎, �̂�sys → ˆ̃

𝐻, 𝑅in →
−𝑎in, 𝛾 → ^, we have the EOM of the intracavity field in a rotating frame with
respect to the cavity frequency 𝜔𝐿 , 𝛥 = 𝜔cav − 𝜔𝐿 is

¤̂𝑎 = (−𝑖𝛥 − ^)𝑎 − 𝑖𝑔0𝛼
(
𝑏𝐼𝑒

−𝑖𝛺𝑡 + 𝑏†
𝐼
𝑒𝑖𝛺𝑡

)
+
√

2^ 𝑎in (3.27)
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opt det

System 1 System 2

th th

Figure 3.1: Beam-splitter model for optical losses and detection inefficiency. As the
light field (red line) travels it interactions with the systems and along the way it
encounters virtual beam-splitter (with power transmission coefficient aopt and [det),
where some is lost (dash red line) and vacuum noise (black curves) enters. Also
depicted is the thermal noise 𝑓th,1/2 entering the systems. Adapted from [1].

where we have introduced the slowly varying variable 𝑏𝐼 = 𝑏𝑒𝑖𝛺𝑡 which is
slow compared to 1/^. Formally integrating this we find the solution to be

𝑎(𝑡) = 𝑒 (−𝑖𝛥−^) (𝑡−𝑡0)𝑎(𝑡0) +
∫ 𝑡

𝑡0

𝑑𝑡 ′𝑒 (−𝑖𝛥−^) (𝑡−𝑡
′)

[
−𝑖𝑔0𝛼

(
𝑏𝐼 (𝑡 ′)𝑒−𝑖𝛺𝑡

′ + 𝑏†
𝐼
(𝑡 ′)𝑒𝑖𝛺𝑡 ′

)
+
√

2^ 𝑎in(𝑡 ′)
]

(3.28)

≈ −𝑖𝑔0𝛼

(
𝑏𝐼 (𝑡)𝑒−𝑖𝛺𝑡

^ − 𝑖 [𝛺 − 𝛥] +
𝑏
†
𝐼
(𝑡)𝑒𝑖𝛺𝑡

^ − 𝑖 [−𝛺 − 𝛥]

)
+
√

2^
∫ 𝑡

−∞
𝑑𝑡 ′𝑒 (−𝑖𝛥−^) (𝑡−𝑡

′)𝑎in(𝑡 ′)

(3.29)

Where we have taking the limit 𝑡0 → ∞ and used the fact that 𝑏𝐼 varies
slowly to approximate it as 𝑏𝐼 (𝑡 ′) ≈ 𝑏𝐼 (𝑡), then 𝑎(𝑡) can be inserted into input-
output relation Eq. (3.37) with the appropriate quantities

𝑎out(𝑡) = −𝑎in(𝑡) +
√

2^ 𝑎(𝑡). (3.30)

After properly redefining the operators (see Appendix B) we get

𝑎out(𝑡) = −𝑎in(𝑡) − 𝑖 [` (𝑡)𝑏𝐼 (𝑡)𝑒−𝑖𝛺𝑡 + a (𝑡)𝑏†𝐼 (𝑡)𝑒
𝑖𝛺𝑡 ] (3.31)

multiplying it through with 𝑒±𝑖𝛺𝑡 in order to use the sidebands Eq. (3.21),
then using a rotating wave approximating (RWA) to discard terms with 𝑒±2𝑖𝛺𝑡

under the assumption that `2, a2 ≪ 𝛺 . We then arrive at the input-output
relations for the sideband annihilation operators are

𝑎out,+(𝑡) = −𝑎in,+(𝑡) − 𝑖` (𝑡)𝑏𝐼 (𝑡) (3.32a)
𝑎out,−(𝑡) = −𝑎in,−(𝑡) − 𝑖a (𝑡)𝑏†

𝐼
(𝑡). (3.32b)

Here we that the upper-sideband couples to 𝑏𝐼 (𝑡) and the lower-sideband
couples to 𝑏†

𝐼
(𝑡). However these input-output relations are only enough when

the light interacts with a single system. For the full setup we want to consider,
the light interacts with two systems and a detector with losses in between. To
model this, we use a virtual beam-splitter model, where virtual beam-splitters
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Chapter 3. Hamiltonian, Equations of Motion and Input-Output Relations 14

are placed between the systems and between the last system and the detector
see Fig. 3.1. When the input light field 𝑎(1)in,±(𝑡) reaches the first system we
have the upper-sideband 𝑎(1)in,+(𝑡) couples to 𝑏

(1)
𝐼

(𝑡) and the lower-sideband
𝑎
(1)
in,−(𝑡) couples to 𝑏

(1)†
𝐼

(𝑡) then use the input-output relations Eq. (3.32) we
the out going light from system 1 is

𝑎
(1)
out,+(𝑡) = −𝑎(1)in,+(𝑡) − 𝑖`1(𝑡)𝑏 (1)𝐼

(𝑡) (3.33a)

𝑎
(1)
out,−(𝑡) = −𝑎(1)in,−(𝑡) − 𝑖a1(𝑡)𝑏 (1)†𝐼

(𝑡). (3.33b)

Then before the light gets to the second system, some of the light is lost,
this is modeled by having the light passing through a beam-splitter with
a power transmission coefficient aopt together with vacuum fluctuations
𝑎vac,±(𝑡), the light that gets to the second system is then

𝑎
(2)
in,±(𝑡) = −√aopt 𝑎(1)out,±(𝑡) −

√1 − aopt 𝑎vac,±(𝑡). (3.34)

Where the minus sign on the RHS is a convenient. This is then the input light
for the second and the upper- and lower-sidebands 𝑎(2)in,±(𝑡) interacts with
𝑏
(2)
𝐼

(𝑡) and 𝑏 (2)†
𝐼

(𝑡) respectively , just like for the first system Eq. (3.33), and
the outgoing light becomes

𝑎
(2)
out,+(𝑡) = −𝑎(2)in,+(𝑡) − 𝑖`2(𝑡)𝑏 (2)𝐼

(𝑡) (3.35a)

𝑎
(2)
out,−(𝑡) = −𝑎(2)in,−(𝑡) − 𝑖a2(𝑡)𝑏 (2)†𝐼

(𝑡). (3.35b)

Then again before the light reaches the detector it encounters a virtual
beam-splitter with power transmission coefficient [det and vacuum fluctua-
tions 𝑎det,±(𝑡)

𝑎
(d)
in,±(𝑡) =

√
[det 𝑎

(2)
out,±(𝑡) +

√1 − [det 𝑎det,±(𝑡) (3.36)

Here we list most of the input-output relations which will be needed later on.

𝑎
(2)
in,±(𝑡) = −√aopt 𝑎(1)out,±(𝑡) −

√1 − aopt 𝑎vac,±(𝑡) (3.37a)

𝑎
( 𝑗)
out,+(𝑡) = −𝑎( 𝑗)in,+(𝑡) − 𝑖` 𝑗 (𝑡)𝑏 ( 𝑗)𝐼

(𝑡) (3.37b)

𝑎
( 𝑗)
out,−(𝑡) = −𝑎( 𝑗)in,−(𝑡) − 𝑖a 𝑗 (𝑡)𝑏 ( 𝑗)†𝐼

(𝑡) (3.37c)

3.1.3 Equations of Motion

To arrive at the correct equations of motion for the oscillators we again
start with the linearize optomechanical Hamiltonian Eq. (3.23) and using
the Heisenberg-Langevin EOM Eq. (3.10) with 𝑆 → 𝑏 and 𝑅in → −𝑓th

¤̂
𝑏 (𝑡) = [−𝑖𝛺 − 𝛾]𝑏 (𝑡) − 𝑖𝑔0 [𝛼∗𝑎(𝑡) + 𝛼𝑎†(𝑡)] + √2𝛾 𝑓th(𝑡) ⇒
¤̂
𝑏𝐼 (𝑡) = −𝛾𝑏𝐼 (𝑡) − 𝑖𝑔0𝑒

𝑖𝛺𝑡 [𝛼∗𝑎(𝑡) + 𝛼𝑎†(𝑡)] + √2𝛾 𝑓th(𝑡)
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Chapter 3. Hamiltonian, Equations of Motion and Input-Output Relations 15

and again we have switched to the slowly varying variable 𝑏𝐼 = 𝑏𝑒𝑖𝛺𝑡 . Then
inserting the solution for the light field 𝑎(𝑡) with the necessary assumption
Eq. (3.29) and doing a RWA to discard terms with 𝑒±2𝑖𝛺𝑡 we get

¤̂
𝑏𝐼 (𝑡) = −𝛾𝑏𝐼 (𝑡)−

(𝑔0𝛼)2

^

(
^

^ − 𝑖 [𝛺 − 𝛥] −
^

^ + 𝑖 [−𝛺 − 𝛥]

)
𝑏𝐼 (𝑡)+(opt. noise)+

√2𝛾 𝑓th(𝑡).

Where the real and imaginary part of(
^

^ − 𝑖 [𝛺 − 𝛥] −
^

^ + 𝑖 [−𝛺 − 𝛥]

)
,

are the optical boarding and optical spring shift respectively. We are only
going to focus on the optical boarding and assume the shift from the optical
spring effect is compensated by other means and/or absorbed in a redefined
𝛺 .

¤̂
𝑏𝐼 (𝑡) = −

[
𝛾 + `2 − a2

2

]
𝑏𝐼 (𝑡) + (opt. noise)+√2𝛾 𝑓th(t)

Then including the optical noise, making a RWA to approximate 𝑎in,±(𝑡 ′) ≈
𝑎in,±(𝑡) and making the proper redefinitions as before, we get the EOM for
oscillators are

¤̂
𝑏
( 𝑗)
𝐼

(𝑡) = −𝛾 𝑗 (𝑡)𝑏 ( 𝑗)𝐼
(𝑡) + 𝑖 [` 𝑗 (𝑡)𝑎( 𝑗)in,+(𝑡) + a 𝑗 (𝑡)𝑎

( 𝑗)†
in,− (𝑡)] +

√2𝛾 𝑗 𝑓 ( 𝑗)th (𝑡). (3.38)

The solution can be found by formal integration

𝑏
( 𝑗)
𝐼

(𝑡) = 𝑒
−

∫ 𝑡

𝑡0
d𝑡 ′𝛾 𝑗 (𝑡 ′)𝑏 ( 𝑗)

𝐼
(𝑡0) +

∫ 𝑡

𝑡0

d𝑡 ′𝑒−
∫ 𝑡

𝑡 ′ d𝑡 ′′𝛾 𝑗 (𝑡 ′′) 𝑓 𝑗 (𝑡 ′) (3.39)

𝑓 𝑗 (𝑡) = 𝑖 [` 𝑗 (𝑡)𝑎( 𝑗)in,+(𝑡) + a 𝑗 (𝑡)𝑎
( 𝑗)†
in,− (𝑡)] +

√2𝛾 𝑗 𝑓 ( 𝑗)th (𝑡) (3.40)

We choose two different boundary conditions of the two oscillators, for sys-
tem 1: 𝑡0 = 𝑇 and for system 2: 𝑡0 = 0

𝑏
(1)
𝐼

(𝑡) = 𝑒
∫ 𝑇

𝑡
d𝑡 ′𝛾1 (𝑡 ′)𝑏 (1)

𝐼
(𝑇 ) −

∫ 𝑇

𝑡

d𝑡 ′𝑒−
∫ 𝑡

𝑡 ′ d𝑡 ′′𝛾1 (𝑡 ′′) 𝑓1(𝑡 ′) (3.41)

𝑏
(2)
𝐼

(𝑡) = 𝑒−
∫ 𝑡

0 d𝑡 ′𝛾2 (𝑡 ′)𝑏 (2)
𝐼

(0) +
∫ 𝑡

0
d𝑡 ′𝑒−

∫ 𝑡

𝑡 ′ d𝑡 ′′𝛾2 (𝑡 ′′) 𝑓2(𝑡 ′) (3.42)

We do this since the initial state of system 2 is the state we want to teleport
and it will be teleported to system 1 at the end of the protocol.
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Continuous-variable
teleportation between two

cascaded systems

“ Mathematics is not just a language. Mathematics is a language
plus reasoning.

Richard Phillips Feynman

In this chapter we will see how the Bell measurement arises from the mea-
surement signal Eq. (3.36) and how it can be used for the feedback on Bob’s
system. Then in the general case for optical losses and thermal noise, and
where Charlie can only teleport states from a restricted set of sets and where
Bob’s state is in a known thermal initial state. An expression for the total
noise and an equation for the optimal filter is found. Since these equations
cannot be solved analytically, therefore they will need to be treated further
with numerical methods. To help facilitate this a treatment of a more ideal
case will be considered, where Charlie can any arbitrary state and Bob’s state
is initial in an unknown state.

4.1 Deriving the measurement signal with feedback

In this section, it will be shown how the measurement signal Eq. (3.36) that
has been obtained from the light after it as interacted with both oscillators, by
doing a homodyne measurement, corresponds to doing the Bell measurement
of the teleportation protocol. Where Alice’s state is the light emanating from
Bob’s system and Charlie’s state is the second oscillator. This signal is used
to do the necessary feedback on Bob’s state, the first oscillator, in order to
complete the protocol.

The complex measurement current operator from the homodyne detec-
tion is defined from the detection field Eq. (3.36) as:
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Chapter 4. Continuous-variable teleportation between two cascaded systems 17

M̂ (𝑡) = 1
√
[det

𝑎
(signal)
in,+ (𝑡) − 𝑎

†(signal)
in,− (𝑡)

√
2 𝑖

=
𝑎
(2)
out,+(𝑡) − 𝑎

(2)†
out,−(𝑡)√

2 𝑖
+
√︂ 1

[det
− 1

𝑎det,+(𝑡) − 𝑎
†
det,−(𝑡)√

2 𝑖
(4.1)

Which is the output phase quadrature from the second system with some loss
before the detector characterized by the detection efficiency [det see Fig. 3.1.
Note that it is non-hermitian, however M̂ and M̂† are related to the sine and
cosine component of the measurement current demodulated at, the oscillators
resonance frequency, 𝜔0, 𝐼𝑐 ∼ M̂ + M̂†, 𝐼 𝑠 ∼

(
M̂ − M̂†

)
/𝑖 . We have assumed

the sidebands are well separated and therefore can treat them as indepen-
dent variables, so they are uncorrelated and we assume they are both in the
ground state, so both have mean zero and the same variance. Therefore, we
only need to consider one of them. Using the input-output relation Eq. (3.37)
and the relation between 𝛤, `, a Eq. (3.20a) the measurement current can be
written in terms of the optical input fields and the oscillator readout as

M̂ (𝑡) = −
√︃
aopt𝛤1(𝑡) 𝑏 (1)𝐼

(𝑡) −
√︁
𝛤2(𝑡) 𝑏 (2)𝐼

(𝑡) − √
aopt

𝑎
(1)
in,+(𝑡) − 𝑎

(1)†
in,− (𝑡)√

2 𝑖

+ √1 − aopt
𝑎vac,+(𝑡) − 𝑎

†
vac,−(𝑡)√

2 𝑖
+
√︂ 1

[det
− 1

𝑎det,+(𝑡) − 𝑎
†
det,−(𝑡)√

2 𝑖
. (4.2)

The first two terms are the contribution from the dynamics of the oscillators.
The third term is the shot noise coming from the fluctuations of the traveling
light field. And the last two terms are the vacuum noises from optical losses.
The motion of the second oscillator Eq. (3.38) ( 𝑗 = 2) depends the on the
motion of the first oscillator by being driven by the readout signal from the
first oscillator. It turns out that the calculations can be made easier if one
uses a continuous, measurement-based feedback on the second oscillator
to eliminate the dependence of the first oscillator in Eq. (3.38) ( 𝑗 = 2). The
measurement current becomes:

M̂v(𝑡) = −
√︃
aopt𝛤1(𝑡) 𝑏 (1)𝐼

(𝑡) −
√︁
𝛤2(𝑡) 𝑏 (2v)𝐼

(𝑡) − √
aopt

𝑎
(1)
in,+(𝑡) − 𝑎

(1)†
in,− (𝑡)√

2 𝑖

+ √1 − aopt
𝑎vac,+(𝑡) − 𝑎

†
vac,−(𝑡)√

2 𝑖
+
√︁

1/[det − 1
𝑎det,+(𝑡) − 𝑎

†
det,−(𝑡)√

2 𝑖
(4.3)

where the superscript v indicates that the variable is altered by the presence
of feedback. The feedback on the second oscillator is conditioned on the new
measurement current M̂v(𝑡). Physically this would correspond to applying
a force to the oscillator thereby changing the motion and hence this would
change the measurement current. However it is more practical to just im-
plement this in the post processing. The EOM Eq. (3.38) with feedback then
becomes
¤̂
𝑏
(2v)
𝐼

(𝑡) = −𝛾2(𝑡)𝑏 (2v)𝐼
(𝑡)+𝑖 [`2(𝑡)𝑎(2)in,+(𝑡)+a2(𝑡)𝑎(2)†in,− (𝑡)]+

√2𝛾2 𝑓
(2)
th (𝑡)+𝐹v(𝑡)M̂v(𝑡)

(4.4)
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Chapter 4. Continuous-variable teleportation between two cascaded systems 18

Where 𝐹v is the feedback gain. using the input-output relation Eq. (3.37) we
have

¤̂
𝑏
(2v)
𝐼

(𝑡) = −𝛾2(𝑡)𝑏 (2v)𝐼
(𝑡) − √

aopt (`1(𝑡)`2(𝑡) − a1(𝑡)a2(𝑡)) 𝑏 (1)𝐼
(𝑡)

+ 𝑖
[√
aopt

(
`2(𝑡 ′)𝑎(1)in,+(𝑡

′) + a2(𝑡)𝑎(1)†in,− (𝑡
′)
)

−√1 − aopt
(
`2(𝑡 ′)𝑎(1)vac,+(𝑡 ′) + a2(𝑡 ′)𝑎(1)†vac,−(𝑡 ′)

)]
+ 𝐹v(𝑡)M̂v(𝑡) (4.5)

Where on the second term we now can see how the motion of the second
oscillator depends on the first. To figure out the feedback needed to cancel
this dependence. We insert the feedback measurement current Eq. (4.3), into
the equation for the second oscillator with feedback Eq. (4.4) and using ` 𝑗 , a 𝑗

in terms of 𝛤𝑗 and Z 𝑗 Eq. (3.20d)

¤̂
𝑏
(2v)
𝐼

(𝑡) = −
(
𝐹v(𝑡)

√︃
aopt𝛤1(𝑡) + √

aopt
√︁
𝛤1(𝑡)𝛤2(𝑡) (Z1 + Z2)

)
𝑏
(1)
𝐼

(𝑡)

−
(
𝐹v(𝑡)

√︁
𝛤2(𝑡) + 𝛾2(𝑡)

)
𝑏
(2v)
𝐼

(𝑡) + √2𝛾2 𝑓
(2)
th 𝑡)

+ 𝑖
√︃
aopt𝛤2(𝑡)

𝑎
(1)
in,+(𝑡) + 𝑎

(1)†
in,− (𝑡)√

2
−

(
Z2

√︃
aopt𝛤2(𝑡) + 𝐹v(𝑡)

√
aopt

)
𝑎
(1)
in,+(𝑡) − 𝑎

(1)†
in,− (𝑡)√

2 𝑖

+ 𝐹v(𝑡)
√︂ 1

[det
− 1

𝑎det,+(𝑡) − 𝑎
†
det,−(𝑡)√

2 𝑖
− 𝑖

√︃
(1 − aopt)𝛤2(𝑡)

𝑎vac,+(𝑡) + 𝑎
†
vac,−(𝑡)√

2

+
(
Z2

√︃
(1 − aopt)𝛤2(𝑡) + 𝐹v(𝑡)

√1 − aopt

)
𝑎vac,+(𝑡) − 𝑎

†
vac,−(𝑡)√

2 𝑖
. (4.6)

We see that is we choose 𝐹v(𝑡) to be
𝐹v(𝑡) = −

√︁
𝛤2(𝑡) (Z1 + Z2) (4.7)

the prefactor for the first oscillator 𝑏 (1)
𝐼

(𝑡) becomes zero. Then inserting this
choice for the gain function 𝐹v(𝑡) back into the equation of the second oscilla-
tor Eq. (4.6) we get the equation:

¤̂
𝑏
(2v)
𝐼

(𝑡) = −𝛾2v(𝑡)𝑏 (2v)𝐼
(𝑡) + 𝑓2v(𝑡) ⇒ (4.8)

𝑏
(2v)
𝐼

(𝑡) = 𝑒−
∫ 𝑡

0 d𝑡 ′𝛾2v (𝑡 ′)𝑏 (2v)
𝐼

(0) +
∫ 𝑡

0
d𝑡 ′𝑒−

∫ 𝑡

𝑡 ′ d𝑡 ′′𝛾2v (𝑡 ′′) 𝑓2v(𝑡 ′) (4.9)

Where
𝛾2v(𝑡) ≡ 𝐹v(𝑡)

√︁
𝛤2(𝑡) + 𝛾2(𝑡) = 𝛾2(𝑡) − 𝛤2(𝑡) (Z1 + Z2) = 𝛾2 − Z1𝛤2(𝑡) (4.10)

Is the new total decay rate, which interestingly does not depend on the
broadening parameter for the second system but rather the first and the new
Langevin force

𝑓2v(𝑡) ≡ 𝑖

√︃
aopt𝛤2(𝑡)

𝑎
(1)
in,+(𝑡) + 𝑎

(1)†
in,− (𝑡)√

2
+ Z1

√︃
aopt𝛤2(𝑡)

𝑎
(1)
in,+(𝑡) − 𝑎

(1)†
in,− (𝑡)√

2 𝑖

− 𝑖

√︃
(1 − aopt)𝛤2(𝑡)

𝑎vac,+(𝑡) + 𝑎
†
vac,−(𝑡)√

2
− Z1

√︃
(1 − aopt)𝛤2(𝑡)

𝑎vac,+(𝑡) − 𝑎
†
vac,−(𝑡)√

2 𝑖

+ √2𝛾2 𝑓
(2)
th (𝑡) −

√︁
𝛤2(𝑡) (Z1 + Z2)

√︂ 1
[det

− 1
𝑎det,+(𝑡) − 𝑎

†
det,−(𝑡)√

2 𝑖
(4.11)
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Chapter 4. Continuous-variable teleportation between two cascaded systems 19

which almost also does not depend on Z2 expect for the last term. The com-
plex measurement current M̂v Eq. (4.3) contains information about the oscil-
lators which we want to extract, but it also contains the optical noise from
the vacuum and thermal noise which we do not want. So to get as much in-
formation as possible from the measurement, we look at the measurement
currentMv(𝑡) Eq. (4.3) filtered by a mode function 𝑓v(𝑡). This is then going
to constitute the Bell measurement used to transfer the state from system 2
to system 1. Using the solutions Eq. (3.41) with the boundary condition at the
end of the protocol and Eq. (4.9) with boundary condition at the start of the
protocol

�̂� =

∫ 𝑇

0
d𝑡 𝑓v(𝑡)M̂v(𝑡) = 𝑀2𝑏

(2v)
𝐼

(0) −𝑀1𝑏
(1)
𝐼

(𝑇 ) + N̂ (4.12)

where the transfer coefficients𝑀1,2 are

𝑀2 ≡ −𝐴2v(0) (4.13a)
𝑀1 ≡

√
aopt �̃�1(𝑇 ) (4.13b)

𝐴2v(𝑡) ≡
∫ 𝑇

𝑡

d𝑡 ′𝑓v(𝑡 ′)
√︁
𝛤2(𝑡 ′) 𝑒−

∫ 𝑡 ′
𝑡

d𝜏𝛾2v (𝜏) (4.14a)

�̃�1(𝑡) ≡
∫ 𝑡

0
d𝑡 ′𝑓v(𝑡 ′)

√︁
𝛤1(𝑡 ′) 𝑒

∫ 𝑡

𝑡 ′ d𝜏𝛾1 (𝜏) (4.14b)

and we The optimal value of𝑀2 depends on the distribution of states that
can be teleported and the optimal value of𝑀1 depends on the state being
teleported to. N̂ is the total noise operator with all the input fields and it has
the form N̂ =

∑
𝑗 𝐻 𝑗 (𝑡)�̂�in, 𝑗 (𝑡). For the full expression of N̂ see Appendix C.

The filtered measurement signal Eq. (4.12) is what is used to transfer the
initial state of system 2 to the final state of system 1 by making a feedback
corresponding to �̂� (1), so after the teleportation protocol is done then system
1 is

𝑏
(1),Tele
𝐼

= 𝑏
(1)
𝐼

(𝑇 ) + �̂� (4.15)

= (1 −𝑀1) 𝑏 (1)𝐼
(𝑇 ) +𝑀2𝑏

(2)
𝐼

(0) + N̂ . (4.16)

Since we assumed the initial state of system 2 is picked from a Gaussian dis-
tribution of coherent states, we can write it as a classical part and a quantum
fluctuation part:

𝑏
(2)
𝐼

(0) = 𝑏
(2)
𝑛 + 𝛿𝑏

(2)
𝐼

(0). (4.17)

From Section 2.1.3 we defined the figure of merit for the teleportation proto-
col as

𝐹 =
1

1 + 𝑁 total
add

(4.18)

(1) Since the fidelity is defined as the average fidelity over running the teleportation protocol
many time, �̂� is a stochastic operator when looking at all the runs. However for a single run
of the protocol, one can think of �̂� has just being a complex number so that the feedback
corresponds to a displacement in phase space.
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Chapter 4. Continuous-variable teleportation between two cascaded systems 20

where the total added noise 𝑁 total
add is the variance of the difference between

the teleported state and original (classical) state. So we are averaging over
both quantum operators and a classical stochastic variable 𝑏 (2)𝑛 , since there
are two stochastic processes, the randomness from quantum mechanics i.e.
zero-point motion of the oscillators and the random selection of coherent
states. Then 𝑁 total

add basically tells you how much noise has been added during
the protocol.

𝑁 total
add = Var

[
𝑏
(1),Tele
𝐼

− 𝑏
(2)
𝑛√

2
+ H.c.

]
𝑛

− 1
2 (4.19)

where the variance is done with both a averaging of quantum states and of a
(classical) Gaussian distribution with width 𝑛.

Var
[
�̂�

]
𝑛
=

〈
�̂�2〉

𝑛
−

〈
�̂�

〉2
𝑛

(4.20)

However, we are working with operators of zero mean, so we just have

Var
[
�̂�

]
𝑛
=

〈
�̂�2〉

𝑛

4.2 Teleportation of a state from a restricted family to an
oscillator in a thermal initial state

The teleportation protocol here assumes that Charlie’s state, which is the
initial state of the second system, comes from a classical Gaussian distribution
in the 𝑥-𝑝 phase space exp[−(⟨𝑥⟩2 + ⟨𝑝⟩2)/(2𝑛)] with a width 𝑛. However
in the actual implementation of the teleportation protocol it is enough that
the state being teleported is from a finite family of states. Also if the state is
excited enough it might not behave as a harmonic oscillator. We also assume
that Bob’s state, the state of the first system is in a known thermal initial
state. Here we will be looking at the case, where the states being teleported
comes from a finite distribution i.e. finite width 𝑛, and the initial state of
the target oscillator also has a finite width given by the thermal occupation
number 𝑛1. We also allow𝑀1 ≠ 1 and𝑀2 ≠ 1, since in this case it is generally
not optimal to have them equal to one(2). It will also be in a realistic setup
(see Fig. 3.1) with optical losses, as characterized by the transmission and
detection efficiencies aopt < 1, [det < 1 and with thermal noise, decay rates
𝛾1 > 0, 𝛾2 > 0 and associated thermal bath occupancies 𝑛1 and 𝑛2.

For a given set of system parameters and drive pulses 𝛤1,2(𝑡) there is a
optimal filter function 𝑓v(𝑡). For Gaussian quantum system the filter function
can be obtained in a similar manner as, e.g., the Kalman filter for the predic-
tion/filtering of a classical signal based on a noisy, continuous measurement
over a finite time interval. By discretizing time this amounts then to solve a
linear system for the optimal filter 𝑓v, as we will see below. For drive pulses,
since in the general case it is not possible to analytically the determine 𝛤1,2(𝑡),
the method for finding the drive pulses will be to use an ansatz function with

(2) Expect for in the limit when
∫ 𝑇

0 d𝑡𝛤1 (𝑡) → ∞, then the optimal value for𝑀1 will approach
1. Independent on 𝑛1, since the variance of 𝑏 (1) (𝑇 ) + H.C. goes to infinity in this limit.
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Chapter 4. Continuous-variable teleportation between two cascaded systems 21

some adjustable parameters that will be determined numerically. The type of
ansatz function will be motivated by theoretical results from Section 4.2.3.

4.2.1 Deriving the Noise and Finding the Optimal Filter

The overall goal of this project is to maximize the fidelity Eq. (4.18), this is
equivalent to minimizing the total added noise 𝑁 total

add . To this end we will
seek a analytic expression for 𝑁 total

add in terms of the drive pulses 𝛤1,2(𝑡) and
the filter function 𝑓v(𝑡), in a form that lends itself to be optimized. Which we
then optimize analytically with respect to 𝑓v(𝑡) and get a expression for 𝑁 total

add
in terms of the optimal filter function 𝑓

opt
v (𝑡). However, solving the equation

for 𝑓 optv (𝑡) and minimizing 𝑁 total
add with respect to 𝛤1,2(𝑡) cannot be analytically

in this case and will have to be done numerically.
When finding an expression of the total noise Eq. (4.19) it is more conve-

nient to write the annihilation operator of system 1 appearing in Eq. (4.16)
in terms of it’s initial condition, so we can incorporate our knowledge of the
initial state of system 1

𝑏
(1)
𝐼

(𝑇 ) = 𝑒−
∫ 𝑇

0 d𝑡𝛾1 (𝑡)𝑏 (1)
𝐼

(0) +
∫ 𝑇

0
d𝑡𝑒−

∫ 𝑇

𝑡
d𝑡 ′𝛾1 (𝑡 ′) 𝑓1(𝑡) (4.21)

and the second term of the RHS is combined with the noise operator N̂ in
Eq. (4.16). This lead to the teleported state becoming

𝑏
(1),Tele
𝐼

= (1 −𝑀1) 𝑒−
∫ 𝑇

0 d𝑡𝛾1 (𝑡)𝑏 (1)
𝐼

(0) +𝑀2𝑏
(2)
𝑛 +𝑀2𝛿𝑏

(2)
𝐼

(0) + N̂ .

Which is used to determine the total added noise Eq. (4.19):

𝑁 total
add = Var

[
𝑏
(1),Tele
𝐼

− 𝑏
(2)
𝑛√

2
+ H.c.

]
𝑛

− 1
2

= (1 −𝑀1)2 𝑒−2
∫ 𝑇

0 d𝑡𝛾1 (𝑡)𝑏 (1)
𝐼

(0)Var
[
𝑏
(1)
𝐼

(0) + 𝑏 (1)†
𝐼

(0)
√

2

]
𝑛1

+ (1 −𝑀2)2 Var
[
𝑏
(2)
𝑛 + 𝑏 (2)†𝑛√

2

]
𝑛

(4.22)

+𝑀2
2Var

[
𝑏
(1)
𝐼

(0) + 𝑏 (1)†
𝐼

(0)
√

2

]
𝑛

+ Var
[
N̂ + N̂ †
√

2

]
− 1

2 (4.23)

= 𝑛 (1 −𝑀2)2 − 1
2

(
1 −𝑀2

2
)
+

(
𝑛1 +

1
2

)
(1 −𝑀1)2 𝑒−2

∫ 𝑇

0 d𝑡𝛾1 (𝑡) + 𝑁 add

(4.24)

where we have used for the thermal noise operators〈
𝑓
( 𝑗)
th,𝑥 (𝑡) 𝑓

( 𝑗)
th,𝑥 (𝑡

′)
〉
𝑛
=

(
𝑛 𝑗 +

1
2

)
𝛿 (𝑡 − 𝑡 ′), 𝑓 ( 𝑗)th,𝑥 (𝑡) =

𝑓th, 𝑗 (𝑡) + 𝑓
†
th, 𝑗 (𝑡)√

2
, 𝑗 ∈ {1, 2}

(4.25)
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where 𝑛 𝑗 is the occupancy for the thermal bath of the 𝑗 ’th oscillator, and for
the optical noise operators we have〈

𝑥
( 𝑗)
𝑘

(𝑡)𝑥 ( 𝑗)
𝑘

(𝑡 ′)
〉
𝑛
=

1
2𝛿 (𝑡 − 𝑡 ′), 𝑥 ( 𝑗)

𝑘
(𝑡) =

𝑎
( 𝑗)
𝑘,+(𝑡) + 𝑎

( 𝑗)†
𝑘,− (𝑡)

√
2 𝑖

+ H.c.〈
𝑝
( 𝑗)
𝑘

(𝑡)𝑝 ( 𝑗)
𝑘

(𝑡 ′)
〉
𝑛
=

1
2𝛿 (𝑡 − 𝑡 ′), 𝑝 ( 𝑗)

𝑘
(𝑡) =

𝑎
( 𝑗)
𝑘,+(𝑡) − 𝑎

( 𝑗)†
𝑘,− (𝑡)

√
2 𝑖

+ H.c.

Where 𝑘 ∈ {in} and 𝑗 ∈ {1, 2} or 𝑘 ∈ {vac, det} and 𝑗 ∈ ∅. And

𝑛 = Var
[
𝑏
(2)
𝑛 + 𝑏 (2)†𝑛√

2

]
𝑛

(4.26a)

𝑛1 +
1
2 = Var

[
𝑏
(1)
𝐼

(0) + 𝑏 (1)†
𝐼

(0)
√

2

]
𝑛1

(4.26b)

are the the width of the classical distribution of coherent input states for the
second and the full variance of first system (including ground-state fluctua-
tions) respectively. The last term in Eq. (4.19) is giving by

𝑁add = Var
[
N̂ + N̂ †
√

2

]
=

(
1

[det
− 1

)
1
2

∫ 𝑇

0
d𝑡𝐵2

12(𝑡) +
2∑︁
𝑗=1

∫ 𝑇

0
d𝑡𝐶2

𝑗 (𝑡) (4.27)

+ 2𝛾d,1
∫ 𝑇

0
d𝑡𝐷2

1 (𝑡) + 2𝛾d,2
∫ 𝑇

0
d𝑡𝐴2

2v(𝑡)

+
(
1 − aopt

) 1
2

∫ 𝑇

0
d𝑡𝐵2

1 (𝑡) +
(
1 − aopt

) 1
2

∫ 𝑇

0
d𝑡𝐴2

2v(𝑡)𝛤2(𝑡) (4.28)

and contains all of the noise from optical losses and thermal noise driving the
system during the protocol, 𝛾d, 𝑗 = 𝛾 𝑗

(
𝑛 𝑗 + 1/2

)
is the corresponding thermal

decoherence rate of oscillator 𝑗 . For the definitions of the temporal mode
functions 𝐵1, 𝐵12,𝐶 𝑗 and 𝐷1 in Eq. (4.28) see Appendix C.

The goal is to minimize the noise Eq. (4.24) with respect to filter 𝑓v and
the drive pulses 𝛤1,2. This is in general a hard problem, since the dependence
of the drive pulse is non-linear. However, one may notice that it is quadratic
in 𝑓v, which means it can be relatively easily minimized with respect to 𝑓v,
since the derivative will be linear in 𝑓v. If we reorganize this equation accord-
ing to its 𝑓v dependence, then the noise can be written as:

𝑁 total
add =

∫ 𝑇

0
d𝑡

∫ 𝑇

0
d𝑡 ′𝑓v(𝑡)Asym(𝑡, 𝑡 ′) 𝑓v(𝑡 ′) +

∫ 𝑇

0
d𝑡C(𝑡) 𝑓v(𝑡) + �̃� (4.29)

Where Asym(𝑡, 𝑡 ′) = Asym(𝑡 ′, 𝑡) is a symmetric function(3) under the exchange
𝑡 ↔ 𝑡 ′. Upon discretization of the time coordinates, the first term can be
viewed as a “sandwich” product with a vector ®𝑓 and matrixM, ®𝑓 𝑇M ®𝑓 . The
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second term is like a dot product between two vectors, ®𝑏 · ®𝑓 and the last term
is a constant with respect to ®𝑓 . We are going to figure out what Asym, C and
�̃� are in the next section, Section 4.2.2. Since the filter 𝑓v is “hidden” inside in-
tegrals with other functions, it is not so obvious how one would arrive at this
form, although it can be achieved using appropriate changes of integration
order. For now we will find the noise in terms of the optimal filter 𝑓 optv for
given drive pulse envelopes 𝛤𝑗 (𝑡). The optimal filter is defined as the one min-
imizing the total added noise 𝑁 total

add , so we can take the functional derivative
of the noise Eq. (4.29) with respect to 𝑓v

𝛿𝑁 total
add

𝛿 𝑓v(𝜏)

�����
𝑓
opt
v

= 2
∫ 𝑇

0
d𝑡 ′Asym(𝑡, 𝑡 ′) 𝑓 optv (𝑡 ′) + C(𝑡) = 0 (4.30)

Since Eq. (4.29) is quadratic in 𝑓v, its derivative Eq. (4.30) is linear in 𝑓vand
results in the discretized formM ®𝑓 = ®𝑏, so this is our equation for 𝑓 optv , which
can be solved using numerical methods. To find a convenient expression for
the total noise evaluated using the optimal filter 𝑓 optv we multiply Eq. (4.30) by
𝑓
opt
v (𝑡) and integrate with respect to 𝑡 from 0 to 𝑇 , leading to∫ 𝑇

0
d𝑡

∫ 𝑇

0
d𝑡 ′𝑓 optv (𝑡)Asym(𝑡, 𝑡 ′) 𝑓 optv (𝑡 ′) = −1

2

∫ 𝑇

0
d𝑡C(𝑡) 𝑓 optv (𝑡). (4.31)

Substituting 𝑓v = 𝑓
opt
v in Eq. (4.29) and using Eq. (4.31) we get the noise

𝑁 total
add =

∫ 𝑇

0
d𝑡

∫ 𝑇

0
d𝑡 ′𝑓 optv (𝑡)Asym(𝑡, 𝑡 ′) 𝑓 optv (𝑡 ′) +

∫ 𝑇

0
d𝑡C(𝑡) 𝑓 optv (𝑡) + �̃�

(4.32)

= −1
2

∫ 𝑇

0
d𝑡C(𝑡) 𝑓 optv (𝑡) +

∫ 𝑇

0
d𝑡C(𝑡) 𝑓 optv (𝑡) + �̃� (4.33)

=
1
2

∫ 𝑇

0
d𝑡C(𝑡) 𝑓 optv (𝑡) + �̃� (4.34)

We will use this expression in Chapter 5 to calculate the noise numerically
after having solved for 𝑓 optv (𝑡).

(3) We only need to consider a symmetric function since,∫ 𝑇

0
d𝑡

∫ 𝑇

0
d𝑡 ′ 𝑓v (𝑡)A (𝑡, 𝑡 ′) 𝑓v (𝑡 ′) =

1
2

(∫ 𝑇

0
d𝑡

∫ 𝑇

0
d𝑡 ′ 𝑓v (𝑡)A (𝑡, 𝑡 ′) 𝑓v (𝑡 ′) +

∫ 𝑇

0
d𝑡 ′

∫ 𝑇

0
d𝑡 𝑓v (𝑡 ′)A (𝑡 ′, 𝑡) 𝑓v (𝑡)

)
=

∫ 𝑇

0
d𝑡

∫ 𝑇

0
d𝑡 ′ 𝑓v (𝑡)

A (𝑡, 𝑡 ′) +A (𝑡 ′, 𝑡)
2 𝑓v (𝑡 ′)

.
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4.2.2 Deriving Asym, C and �̃� eriving A, C and N

In order to find Asym, C and �̃� we notice that Eq. (4.29) is a kind of (exact)
Taylor expansion of the noise:

�̃� = 𝑁 total
add

��
𝑓v=0 (4.35)

C(𝜏) =
𝛿𝑁 total

add
𝛿 𝑓v(𝜏)

�����
𝑓v=0

(4.36)

Asym(𝜏, 𝜏′) =
1
2

𝛿2𝑁 total
add

𝛿 𝑓v(𝜏′)𝛿 𝑓v(𝜏)

�����
𝑓v=0

(4.37)

We insert into these formulas the expression for the noise in Eq. (4.24) .
For the constant term we get:

�̃� = 𝑛− 1
2 +

(
𝑛1 +

1
2

)
𝑒−2

∫ 𝑇

0 d𝑡𝛾1 (𝑡) +
∫ 𝑇

0
𝑑𝑡

(
2𝛾d,1 +

1
2

(
1 + Z 2

1
)
𝛤1(𝑡)

)
𝑒−2

∫ 𝑇

𝑡
d𝑡 ′𝛾1 (𝑡 ′)

(4.38)
for the “vector” part we get:

C(𝑠) = −2𝑛𝛿𝐴2v(0)
𝛿 𝑓v(𝑠)

− 2√aopt
(
𝑛1 +

1
2

) 𝛿�̃�1(𝑇 )
𝛿 𝑓v(𝑠)

𝑒−2
∫ 𝑇

0 d𝑡𝛾1 (𝑡)

+
∫ 𝑇

0
𝑑𝑡

[√︁
𝛤1(𝑡)

{
𝛿𝐶1(𝑡)
𝛿 𝑓v(𝑠)

+ √
aopt Z1𝐴12(𝑡, 𝑠)

}
+ 4𝛾d,1

𝛿𝐷1(𝑡)
𝛿 𝑓v(𝑠)

]
𝑒−

∫ 𝑇

𝑡
d𝑡 ′𝛾1 (𝑡 ′)

+ Z1
√
aopt

√︁
𝛤1(𝑠) 𝑒−

∫ 𝑇

𝑠
d𝑡 ′𝛾1 (𝑡 ′) (4.39)

where

𝐴12(𝑡, 𝑠) = Z1

(√︁
𝛤1(𝑡)

{
𝛿�̃�1(𝑡)
𝛿 𝑓v(𝑠)

− 𝛿�̃�1(𝑇 )
𝛿 𝑓v(𝑠)

𝑒−
∫ 𝑇

𝑡
d𝑡 ′𝛾1 (𝑡 ′)

}
+
√︁
𝛤2(𝑡)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠)

)
(4.40)

and for the “matrix” part we get:

Asym(𝑠, 𝑠′) = aopt
(
𝑛1 +

1
2

)
𝑒−2

∫ 𝑇

0 d𝑡𝛾1 (𝑡) 𝛿�̃�1(𝑇 )
𝛿 𝑓v(𝑠)

𝛿�̃�1(𝑇 )
𝛿 𝑓v(𝑠′)

+ 1
2 (2𝑛 + 1) 𝛿𝐴2v(0)

𝛿 𝑓v(𝑠)
𝛿𝐴2v(0)
𝛿 𝑓v(𝑠′)

+ 1
2

∫ 𝑇

0
d𝑡

[(
1

[det
− 1

)
𝛿𝐵12(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐵12(𝑡)
𝛿 𝑓v(𝑠′)

+ 4𝛾d,2
𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠′)

+
(
1 − aopt

) 𝛿𝐵1(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐵1(𝑡)
𝛿 𝑓v(𝑠′)

+
(
1 − aopt

)
𝛤2(𝑡)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠′)

+𝛿𝐶1(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐶1(𝑡)
𝛿 𝑓v(𝑠′)

+ 𝛿𝐶2(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐶2(𝑡)
𝛿 𝑓v(𝑠′)

+ 4𝛾d,1
𝛿𝐷1(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐷1(𝑡)
𝛿 𝑓v(𝑠′)

]
. (4.41)

Some of the terms in the function Asym contains Dirac delta functions, which
will be a problem for the numerical calculations, the terms containing the
delta functions are:∫ 𝑇

0
d𝑡 𝛿𝐵12(𝑡)

𝛿 𝑓v(𝑠)
𝛿𝐵12(𝑡)
𝛿 𝑓v(𝑠′)

= 𝛿 (𝑠 − 𝑠′) − (Z1 + Z2)
(√︁

𝛤2(𝑠)
𝛿𝐴2v(𝑠)
𝛿 𝑓v(𝑠′)

+
√︁
𝛤2(𝑠′)

𝛿𝐴2v(𝑠′)
𝛿 𝑓v(𝑠)

)
+ (Z1 + Z2)2

∫ 𝑇

0
d𝑡𝛤2(𝑡)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠′)

(4.42)
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∫ 𝑇

0
d𝑡 𝛿𝐵1(𝑡)

𝛿 𝑓v(𝑠)
𝛿𝐵1(𝑡)
𝛿 𝑓v(𝑠′)

= 𝛿 (𝑠 − 𝑠′) + Z1

(√︁
𝛤2(𝑠)

𝛿𝐴2v(𝑠)
𝛿 𝑓v(𝑠′)

+
√︁
𝛤2(𝑠′)

𝛿𝐴2v(𝑠′)
𝛿 𝑓v(𝑠)

)
+ Z 2

1

∫ 𝑇

0
d𝑡𝛤2(𝑡)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠′)

(4.43)

∫ 𝑇

0
d𝑡 𝛿𝐶2(𝑡)

𝛿 𝑓v(𝑠)
𝛿𝐶2(𝑡)
𝛿 𝑓v(𝑠′)

= aopt

(
𝛿 (𝑠 − 𝑠′) +𝐴12(𝑠, 𝑠′) +𝐴12(𝑠′, 𝑠)

+
∫ 𝑇

0
d𝑡𝐴12(𝑡, 𝑠)𝐴12(𝑡, 𝑠′)

)
(4.44)

We can then separate out the delta functions and split the function up into
two parts

Asym(𝑠, 𝑠′) = Āsym(𝑠, 𝑠′) + 𝛿 (𝑠 − 𝑠′)A𝛿
sym(𝑠) (4.45)

where

Āsym(𝑠, 𝑠′) = aopt
(
𝑛1 +

1
2

)
𝑒−2

∫ 𝑇

0 d𝑡𝛾1 (𝑡) 𝛿�̃�1(𝑇 )
𝛿 𝑓v(𝑠)

𝛿�̃�1(𝑇 )
𝛿 𝑓v(𝑠′)

+ 1
2 (2𝑛 + 1) 𝛿𝐴2v(0)

𝛿 𝑓v(𝑠)
𝛿𝐴2v(0)
𝛿 𝑓v(𝑠′)

× 1
2

∫ 𝑇

0
d𝑡

[{(
1

[det
− 1

)
(Z1 + Z2)2 𝛤2(𝑡) +

(
1 + Z 2

1
) (

1 − aopt
)
𝛤2(𝑡) + 4𝛾d,2

}
𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐴2v(𝑡)
𝛿 𝑓v(𝑠′)

+𝛿𝐶1(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐶1(𝑡)
𝛿 𝑓v(𝑠′)

+ 4𝛾d,1
𝛿𝐷1(𝑡)
𝛿 𝑓v(𝑠)

𝛿𝐷1(𝑡)
𝛿 𝑓v(𝑠′)

+ aopt𝐴12(𝑡, 𝑠)𝐴12(𝑡, 𝑠′)
]

+ 1
2

( [ (
1 − aopt

)
Z1 −

(
1

[det
− 1

)
(Z1 + Z2)

] [√︁
𝛤2(𝑠)

𝛿𝐴2v(𝑠)
𝛿 𝑓v(𝑠′)

+
√︁
𝛤2(𝑠′)

𝛿𝐴2v(𝑠′)
𝛿 𝑓v(𝑠)

] )
+ 1

2aopt (𝐴12(𝑠, 𝑠′) +𝐴12(𝑠′, 𝑠)) (4.46)

and
A𝛿

sym(𝑠) =
1
2

[(
1

[det
− 1

)
+

(
1 − aopt

)
+ aopt

]
=

1
2[det

(4.47)

4.2.3 Teleportation between oscillators in completely unknown initial states

In this section we will take a quick look at a special case where Charlie can
teleport a completely arbitrary state and Bob’s initial is unknown. This is
an interesting case to look at since then the whole problem can be solved
analytically and the solutions could serve as inspiration when choosing the
ansatz for 𝛤1,2(𝑡). If Charlie wants to teleport any arbitrary state that means
the distribution becomes infinitely wide, 𝑛 → ∞, and forces𝑀2 = 1 so
that the noise Eq. (4.24) does not diverge. If the initial state of the oscillator
being teleported to is unknown means the corresponding distribution also
has an infinite width, 𝑛1 → ∞, (for a thermal initial state, it is also described
by a Gaussian) and forces𝑀1 = 1 so the noise again does not diverge. The
analysis of this limit was done in Ref. [5] in the ideal case of no optical losses(
aopt = [det = 1

)
and no thermal noise (𝛾1 = 𝛾2 = 0), and for a constant drive

pulse 𝛤1(𝑡) = 𝛤1 on the first system without loss of generality. This is possible
since if there are no noise processes, then the only processes to set the time
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scale are the drive pulses and only the relative time between them matters, so
we can set one of them to be the reference, meaning it is constant in is own
frame. With these assumption we get that the total noise Eq. (4.24) becomes

𝑁 total
add =

∫ 𝑇

0
𝑑𝑡 ′

𝐵2
𝑋
(𝑡 ′) + 𝐵2

𝑃
(𝑡 ′)

2 (4.48)

where

𝐵𝑃 (𝑡) = 𝑓v(𝑡) + Z1
{
𝐴2v(𝑡)

√︁
𝛤2(𝑡) + �̃�1(𝑡)

√︁
𝛤1

}
(4.49)

𝐵𝑋 (𝑡) = 𝐴2v(𝑡)
√︁
𝛤2(𝑡) − �̃�1(𝑡)

√︁
𝛤1 (4.50)

𝐴2v(𝑡) =
∫ 𝑇

𝑡

d𝑡 ′𝑓v(𝑡 ′)
√︁
𝛤2(𝑡 ′) 𝑒Z1

∫ 𝑡 ′
𝑡

d𝑡 ′′𝛤2 (𝑡 ′′) (4.51)

�̃�1(𝑡) =
∫ 𝑡

0
d𝑡 ′𝑓v(𝑡 ′)

√︁
𝛤1 𝑒

Z1𝛤1 (𝑡 ′−𝑡) . (4.52)

Then in order to enforce the constraint𝑀1 = 𝑀2 ≡ 𝑀 = 1 we use a Lagrange
multiplier _

I = 𝑁 total
add + _(𝑀 − 1) (4.53)

this can be minimized analytically with respect to 𝑓v and 𝛤2 using variational
calculus. The result they obtained was:

𝑓v(𝑡) = Z1
√︁
𝛤1

𝑒−Z1𝛤1𝑡

sinh (Z1𝛤1𝑇 )
(4.54)

𝛤2(𝑡) = 𝛤1
sinh2 [Z1𝛤1(𝑡 −𝑇 )]

sinh2(Z1𝛤1𝑇 ) − sinh2 [Z1𝛤1(𝑡 −𝑇 )] (4.55)

𝑁 total
add =

Z1

1 − 𝑒−2Z1𝛤1𝑇
(4.56)

We see that for the ideal case it is possible to solve the problem analytically,
and get that the filter is a decaying exponential and the drive pulse is also a
decaying function however it diverges as 𝑡 → 0. For the noise we see that
if the light-interaction type for the first system is an equal combination of
beamsplitter and two-mode-squeezing interactions, i.e. Z1 = 0, we see that the
noise 𝑁 total

add , after having used l’Hôpitals rule, is 𝑁 total
add = 1

2𝛤1𝑇
which goes to

zero as 𝛤1𝑇 → ∞. If it is blue detuned i.e. Z1 < 0, then again 𝑁 total
add → 0 as

𝛤1𝑇 → ∞. So for the ideal case it is possible to make a perfect teleportation
protocol. See that in the case where one of the drive pulses is constant (𝛤1
in this case), the other (𝛤2(𝑡)) is an decaying function. Although in the ideal
case here 𝛤2(𝑡) diverges at 𝑡 = 0 and therefore cannot be implemented neither
physically nor numerical. It can still serves as inspiration when analyzing the
problem numerically, like having one of the drive pulses be decaying, and if
the function is modified a bit can also be used as an ansatz.
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Numerical optimization of
teleportation

“ Beep-bee-bee-boop-bee-doo-weep.

R2-D2

- Star Wars, George Lucas

In order to analyze the problem further we need to use numerical meth-
ods, since the equation for the optimal filter, Eq. (4.30) and optimizing of
the drive pulses 𝛤1,2(𝑡), cannot be solved analytically. First, we are going to
take our equations for the total added noise 𝑁 total

add and optimal filter function
𝑓
opt
v derived in a previous section, Section 4.2, and discretize them. Then
we will be looking at numerically minimizing 𝑁 total

add by using four differ-
ent ansatz functions for 𝛤1,2(𝑡) and see how the fidelity changes. Since we
will not be searching the entire space of continuous functions, we are not
going to be finding the global optimum. The numerical calculations are
done in the programming language Python and the minimization is done
using the library SciPy. The run time of pair of ansatz is about 5-8 hours
starting with discretizing the time into 60 points. The code can be found on
https://github.com/yodaqwq/Quantum-teleportation.git

5.1 Discretizing the problem

In order to treat the problem with numerical methods, we will first make it
dimensionless and then make the dimensionless time discrete. Taking the
equation for the total noise Eq. (4.29) and making the substitution 𝑢 (′) = 𝑡 (′)

𝑇
,

d𝑡 (′) = 𝑇d𝑢 (′) we then get

𝑁 total
add =

∫ 1

0
d𝑢

∫ 1

0
d𝑢′𝑓v(𝑢)Ãsym(𝑢,𝑢′) 𝑓v(𝑢′) +

∫ 1

0
d𝑢C̃(𝑢) 𝑓v(𝑢) + �̃� (5.1)
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Where we have defined the dimensionless functions

𝑓v(𝑢) ≡
√
𝑇 𝑓v(𝑇𝑢) (5.2)

Ãsym(𝑢,𝑢′) ≡ 𝑇Asym(𝑇𝑢,𝑇𝑢′) (5.3)
C̃(𝑢) ≡

√
𝑇 C(𝑇𝑢) (5.4)

Then to find the optimal filter we use Eq. (4.30) in its dimensionless form

2
∫ 1

0
d𝑢′Ãsym(𝑢,𝑢′) 𝑓 optv (𝑢′) + C̃(𝑢) = 0 (5.5)

we then insert Ãsym Eq. (4.45) in it’s dimensionless form

Ã𝛿
sym(𝑢) 𝑓

opt
v (𝑢) +

∫ 1

0
d𝑢′ ˜̄Asym(𝑢,𝑢′) 𝑓 optv (𝑢′) = −1

2 C̃(𝑢) (5.6)

and discretize it with respect to the dimensionless time coordinate

Ã𝛿
sym(𝑢𝑖) 𝑓

opt
v (𝑢𝑖) +

𝑁∑︁
𝑗=0

ℎ 𝑗
˜̄Asym(𝑢𝑖, 𝑢 𝑗 ) 𝑓 optv (𝑢 𝑗 ) = −1

2 C̃(𝑢𝑖) (5.7)

where we have switched from continuous variables 𝑢 to discrete variables
𝑢𝑖 with 𝑖 ∈ {0, ..., 𝑁 } and converted the integral to a Riemann sum with a
(non-)uniform step-size ℎ 𝑗 . We can then rewrite is as:

𝑡ℎ𝑒Ã𝛿
sym(𝑢𝑖) (ℎ𝑖)−1

(
ℎ𝑖 𝑓

opt
v (𝑢𝑖)

)
+

𝑁∑︁
𝑗=0

˜̄Asym(𝑢𝑖, 𝑢 𝑗 )
(
ℎ 𝑗 𝑓

opt
v (𝑢 𝑗 )

)
= −1

2 C̃(𝑢𝑖) ⇔

(5.8)
𝑁∑︁
𝑗=0
Ã

sym,𝛿
𝑖 𝑗

𝑁∑︁
𝑙=0

[h−1] 𝑗𝑙
®̃
𝑓
opt
v,𝑙 +

𝑁∑︁
𝑗=0

˜̄Asym
𝑖 𝑗

®̃
𝑓
opt
v, 𝑗 =

®̃
C𝑖 ⇔ (5.9)(

Ã
sym,𝛿

h−1 + ˜̄Asym
)

︸                     ︷︷                     ︸
M

®̃
𝑓
opt
v =

®̃
C ⇔ (5.10)

®̃
𝑓
opt
v = M−1 ®̃C (5.11)

where the entries of the (discrete) matrices and vectors are

˜̄Asym
𝑖 𝑗

≡ ˜̄Asym(𝑢𝑖, 𝑢 𝑗 ) (5.12)

Ã
sym,𝛿
𝑖 𝑗 ≡ 𝛿𝑖 𝑗Ã

𝛿
sym(𝑢𝑖), (5.13)

h𝑖 𝑗 ≡ 𝛿𝑖 𝑗ℎ𝑖 (5.14)
®̃
C𝑖 ≡ −1

2 C̃(𝑢𝑖), (5.15)

®̃
𝑓
opt
v,𝑖 ≡

𝑁∑︁
𝑘=0

h𝑖𝑘 𝑓
opt
v (𝑢𝑘) = ℎ𝑖 𝑓

opt
v (𝑢 𝑗 ) (5.16)
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We can make Eq. (4.34) for the added noise resulting from applying the opti-
mal filter dimensionless and discretize it:

𝑁 total
add =

1
2

∫ 1

0
d𝑢C̃(𝑢) 𝑓 optv (𝑢) + �̃� (5.17)

=
1
2
®̃
C
®̃
𝑓
opt
v + �̃� (5.18)

We then have a method for a given pair of drive pulses 𝛤𝑗 (𝑡) and experimen-
tal parameters to find the optimal filter Eq. (5.11) and calculate the total noise
Eq. (5.18) and in turn the fidelity Eq. (4.18).

5.2 Numerical Results

We are now finally in a position to actually calculate the fidelity using the
results from the previous section. For a specific set of drive pulses 𝛤1,2(𝑡) and
experimental parameters, see Table 5.1 for all the different parameters. It
is assume the second system is in the thermal ground state and slightly red
detuned, the first system is in a very excited thermal state and is blue detuned
and the protocol takes a relative long amount of time compared to the drive
pulses. The optimal filter ®̃

𝑓
opt
v can be obtain using Eq. (5.11) and the total

added noise is then calculated using Eq. (5.18), from which one can easily get
the fidelity 𝐹 = 1

1+𝑁 total
add

. Here we will look at four pairs of ansatz for the drive
pulses 𝛤1,2 and using the same parameters in all four cases. The drive pulses
are subject to some physically constrains, e.g. the pulses has to be less that
the maximum value possible in the lab. First however, we will quickly look at
the physical system these calculations was inspired from.

5.2.1 Physical setup

This project is inspired by the experiment done in [11]. Here Bob corresponds
to an oscillating membrane in a optical cavity, with vibration modes as de-
grees of freedom. Charlie corresponds to an ensemble of cesium atoms in a
magnetic field with a collective spin as degrees of freedom and Alice is a trav-
eling light field with amplitude and phase quadratures as degrees of freedom.
See Fig. 5.1 for an idealized version of the setup.

5.2.2 Numerical calculations

The gist of the algorithm is to make ansatzes for the drive pulses of the two
systems 𝛤1,2(𝑡), with some number of adjustable parameters. Then opti-
mize those parameter by minimizing the noise. For the basic structure of
the program see the flowchart in Fig. 5.2. The program starts with defining
the parameters characterizes the problem and the ansatzes for 𝛤1,2(𝑡)(see
Table 5.1). An initial guess for the parameters of the ansatzes is made and
the dimensionless time variable is discretized either uniformly or not, and a
matrix h with the step-sizes on the diagonal is defined. Next the quantities
M = ˜̄Asym + Ãsym,𝛿

h−1, ®̃C and �̃� are calculated, see Section 5.1 and Sec-
tion 4.2.2 for how they are defined. This is used to calculate the optimal filter
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Figure 5.1: Setup of the physical system. From left to right: A laser light field, an
optomechanical cavity with a membrane in the middle, a glass cell with cesium
atoms, acting like a large collective spin, with a constant magnetic field over it and
finally a detector. Adapted from [1].

®̃
𝑓
opt
v = M−1 ®̃C. Then the program checks if the array containing the values of
®̃
𝑓
opt
v is “smooth” enough, by looking at adjacent values and calculating the
relative difference. If this is larger than a predefined tolerance more points
will be added to the discretized time array and the optimal filter is calculated
again. Then the total added noise, 𝑁 total

add = 1
2
®̃
C
®̃
𝑓
opt
v + �̃� is calculated and

checked if this is a minimum, if yes then the program is done and if not then
new a guess for the ansatz parameters is made and the optimal filter is cal-
culated again. The numerical calculations are done using the ansatzes and
values for the system parameters in Table 5.1.

For the first run, we took inspiration from the ideal case in Section 4.2.3
by having one of the drive pulses be constant in this case 𝛤2 and the other
be a decaying function. To start with the simplest decaying function, an ex-
ponential, was used as an ansatz (written in terms of suitable dimensionless
parameter combinations)

𝛤1(𝑡)𝑇 = (𝑎𝑇 ) 𝑒 (𝑟1𝑇 )( 𝑡
𝑇 ) . (5.19)

Here the amplitude was fixed to the maximum experimental value 𝑎𝑇 =

𝛤1,max𝑇 and the rate 𝑟1 < 0 was allowed to vary. Here a minimum was found
at 𝑟1𝑇 = −13.16 with a fidelity of 0.58 which is just above the classical limit of
5
9 ≈ 0.56 for 𝑛 = 4 see Eq. (2.12). See Fig. 5.3 for plots of the drive pulses and
filter.

For the second run, as an extension of the previous ansatz, we consider
for 𝛤1(𝑡) the combination of a decaying and a rising exponential.

𝛤1(𝑡)𝑇 = (𝑎𝑇 ) 𝑒 (𝑟1𝑇 )( 𝑡
𝑇 ) + (𝑏𝑇 ) 𝑒 (𝑟2𝑇 )( 𝑡

𝑇 ) (5.20)

and this time all four parameters were allowed to vary. However, with some
constrains:

0 < 𝛤1(𝑡) ≤ 𝛤1,max, ∀𝑡 ∈ [0,𝑇 ] (5.21a)
𝑟1 < 0 (5.21b)
𝑟2 > 0 (5.21c)
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Calculate:

sym sym,

Calculate the filter:

opt
v

Make an initial guess for ansatz parameters.

Discretize time and define a matrix with
the step-sizes on the diagonal.

Define parameters and

ansatz for and

Calculate the added noise:

opt
v

Calculate relative difference

for adjenct values of
opt
v

Check if they are
within tolerance

Yes

No Add more points where
the different is too large

Is it a minimum?

Yes

Done

NoNew guess for
ansatz parameters

Figure 5.2: Flowchart of the optimization algorithm of the program. For each new
guess of parameters for the ansatz the program finds the optimal ®̃𝑓 optv and it also
iterative refines the discretized time.
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Figure 5.3: Drive pulses and filter for the first run.

The solution found for this ansatz is basically the same as the previous one
with 𝑏 ≈ 0 , 𝑎𝑇 ≈ 𝛤1,max𝑇 and 𝑟1𝑇 = −13.38.

For the third run, we then tried an ansatz directly inspired by the ideal
case Eq. (4.55). However, it has been modified so it does not diverge at 𝑡 = 0

𝛤1(𝑡)𝑇 =
sinh2 (

𝑟1𝑇
(
1 − 𝑡

𝑇

) )
sinh2 (𝑟1𝑇 )

(
1 + 1

𝑎𝑇

)
− sinh2 (

𝑟1𝑇
(
1 − 𝑡

𝑇

) ) . (5.22)

With its maximum at 𝑡 = 0, 𝛤1(0)𝑇 = 𝑎𝑇 . Again the amplitude was fixed to
the maximum 𝑎𝑇 = 𝛤1,max𝑇 and the rate 𝑟1 was adjustable. Here the sign of 𝑟1
does not matter since sinh2(𝑥) is even. This ansatz turns out to be not quite
as good as the exponential ansatz, with a fidelity of 0.56 with 𝑟1𝑇 = 2.54. See
Fig. 5.4 for plots of the drive pulses and filter.

In the ideal case it was sufficient to only have one of the drive pulses to
be time dependent, since the only processes to set the time scale were the
drive pulses. However this is not the case when we include thermal noise
since it introduces a separate time scale and it is therefore not sufficient just
to optimize the relative time scale between the drive pulses.

So for the fourth run, both drive pulses was taken to be time dependent
and a single exponential function was used for both 𝛤1(𝑡) and 𝛤2(𝑡)

𝛤1(𝑡)𝑇 = (𝑎𝑇 ) 𝑒 (𝑟1𝑇 )( 𝑡
𝑇 ) (5.23a)

𝛤2(𝑡)𝑇 = (𝑏𝑇 ) 𝑒 (𝑟2𝑇 )( 𝑡
𝑇
−1) (5.23b)

0 < 𝛤𝑗 (𝑡) ≤ 𝛤𝑗,max, ∀𝑡 ∈ [0,𝑇 ], 𝑗 ∈ { 1, 2 } . (5.23c)
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Figure 5.4: Drive pulses and filter for the second run.

With 𝛤1(𝑡) taken to be decaying, 𝑟1 < 0 and 𝛤2(𝑡) to be growing, 𝑟2 > 0.
The amplitudes 𝑎 and 𝑏 where fixed to their maximum value consistent with
𝛤𝑗 (𝑡) ≤ 𝛤𝑗,max Eq. (5.23c), 𝑎𝑇 = 𝛤1,max𝑇 , 𝑏𝑇 = 𝛤2,max𝑇 . The reason for the
shift in 𝛤2(𝑡)𝑇 is so it reaches the value of 𝑏𝑇 at the end of the protocol. This
ansatz worked much better than the previous ansatzes, with a fidelity of 0.79
for 𝑟1𝑇 = −1.49 and 𝑟2𝑇 = 5.59, which is significantly above from the classical
limit of 0.56 for 𝑛 = 4. See Fig. 5.5 for plots of the drive pulses and filter.
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Figure 5.5: Drive pulses and filter for the fourth run.

I II III IV
𝛤1(𝑡) 𝑎𝑒𝑟1𝑡 𝑎𝑒𝑟1𝑡 + 𝑏𝑒𝑟2𝑡 1

𝑇

sinh2 (𝑟1 (𝑇−𝑡))
sinh2 (𝑟1𝑇 ) (1+1/𝑎𝑇 )−sinh2 (𝑟1 (𝑇−𝑡)) 𝑎𝑒𝑟1𝑡

𝛤2(𝑡) 𝛤2,max 𝛤2,max 𝛤2,max 𝑏𝑒𝑟2 (𝑡−𝑇 )

𝑟1 −13.16/𝑇 −13.38/𝑇 2.54/𝑇 −1.49/𝑇
𝑎 𝛤1,max = 6.79/𝑇 6.79/𝑇 𝛤1,max 6.79/𝑇
𝑟2 N/A 6.2/𝑇 N/A 5.59/𝑇
𝑏 N/A −2.4 × 10−14/𝑇 N/A 𝛤2,max = 10.18/𝑇
𝐹 0.58 0.58 0.56 0.79
𝐹cl 0.56 0.56 0.56 0.56

𝛤1,max 2𝜋 × 40kHz 2𝜋 × 40kHz 2𝜋 × 40kHz 2𝜋 × 40kHz
𝛤2,max 2𝜋 × 60kHz 2𝜋 × 60kHz 2𝜋 × 60kHz 2𝜋 × 60kHz
𝛾2 2𝜋 × 85Hz 2𝜋 × 85Hz 2𝜋 × 85Hz 2𝜋 × 85Hz
𝑛2 0 0 0 0
Z2 0.03 0.03 0.03 0.03
𝛾1 2𝜋 × 2.1mHz 2𝜋 × 2.1mHz 2𝜋 × 2.1mHz 2𝜋 × 2.1mHz
𝑛1 173 × 103 173 × 103 173 × 103 173 × 103

𝑛1 1/2 1/2 1/2 1/2
𝑛 4 4 4 4
Z1 −0.3 −0.3 −0.3 −0.3
aopt 75% 75% 75% 75%
[det 95% 95% 95% 95%
𝑇 27`s 27`s 27`s 27`s

Table 5.1: Table of parameters. The parameters are inspired by the experimental
parameters at QUANTOP NBI. All values are rounded to two decimal places.
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Conclusion & Outlook

“ The difference between screwing around and science is writing
it down.

Adam Savage

6.1 Conclusion

In this project we have examined quantum teleportation between two quan-
tum oscillators coupled to a unidirectional light field in the presence of ther-
mal noise and optical losses. This was done with a combination of analytical
and numerical methods. An analytical expression for the total added noise
was found and subsequently attempted minimized using numerical methods.
This involved using ansatzes for the drive pulses , whereas the corresponding
optimal filter function for determining the final feedback could be determined
exactly (within numerical precision). Four runs were done with different pairs
of ansatzes for the two systems. It was found that the last ansatz of two expo-
nentials gave the highest fidelity of 0.79, where the corresponding classical
fidelity bound is 0.56. Which bodes well for a future teleportation experi-
ment of QUANTOP’s macroscopic hybrid Fig. 5.1. In the future it is worth
trying more ansatzes and also different experimental parameters to see how
the fidelity will change as function of e.g. temperature or the duration 𝑇 of
the experiment. The program made here can serve as a useful tool for opti-
mizing drive-pulses of future teleportation experiments with the purpose of
maximizing the fidelity under the presence of the aforementioned sources of
noise.
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Proof of the No Cloning
Theorem

Suppose we have a arbitrary unknown state |𝜓 ⟩which we wish to make a
copy of. For simplicity we will do it for a two level system, so an arbitrary
state is |𝜓 ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ .To do so we suppose there exists a unitary operator
𝑈 such that𝑈

(
|𝜓 ⟩𝐴 |𝑒⟩𝐵

)
= |𝜓 ⟩𝐴 |𝜓 ⟩𝐵 . We can proof there exists no such

operator, start by using𝑈 first:

𝑈
(
|𝜓 ⟩𝐴 |𝑒⟩𝐵

)
= |𝜓 ⟩𝐴 |𝜓 ⟩𝐵 = (𝑎 |0⟩𝐴 + 𝑏 |1⟩𝐴) (𝑎 |0⟩𝐵 + 𝑏 |1⟩𝐵) (A.1)
= 𝑎2 |0⟩𝐴 |0⟩𝐵 + 𝑎𝑏 |0⟩𝐴 |1⟩𝐵 + 𝑏𝑎 |1⟩𝐴 |0⟩𝐵 + 𝑏2 |1⟩𝐴 |1⟩𝐵 (A.2)

Then write out |𝜓 ⟩𝐴before using𝑈 :

𝑈
(
|𝜓 ⟩𝐴 |𝑒⟩𝐵

)
= 𝑈 ((𝑎 |0⟩𝐴 + 𝑏 |1⟩𝐴) |𝑒⟩𝐵) = 𝑈 (𝑎 |0⟩𝐴 |𝑒⟩𝐵 + 𝑏 |1⟩𝐴 |𝑒⟩𝐵) (A.3)
= (𝑎 |0⟩𝐴 |0⟩𝐵 + 𝑏 |1⟩𝐴 |1⟩𝐵) (A.4)
≠ 𝑎2 |0⟩𝐴 |0⟩𝐵 + 𝑎𝑏 |0⟩𝐴 |1⟩𝐵 + 𝑏𝑎 |1⟩𝐴 |0⟩𝐵 + 𝑏2 |1⟩𝐴 |1⟩𝐵 (A.5)
= 𝑈

(
|𝜓 ⟩𝐴 |𝑒⟩𝐵

)
⇒ (A.6)

𝑈
(
|𝜓 ⟩𝐴 |𝑒⟩𝐵

)
≠ 𝑈

(
|𝜓 ⟩𝐴 |𝑒⟩𝐵

)
(A.7)

Which is an obvious contradiction.
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Adiabatic elimination of
light in a cavity

Using Eq. (3.10) for the case of light interacting with an oscillator in a cavity,
𝑆 = 𝑎, 𝑅in = 𝑎in, 𝛾 → ^ and

�̂�𝑖 = �̂�0,𝑖 + ˆ̃
𝐻int,𝑖 (B.1)

�̂�0,𝑖 = 𝛺𝑏
†
𝑖
𝑏𝑖 + 𝜔cav,𝑖𝑎

†
𝑖
𝑎𝑖 (B.2)

ˆ̃
𝐻 int = 𝑔0 ˆ̃𝑎† ˆ̃𝑎

(
𝑏 + 𝑏†

)
→ 𝑔0

(
𝛼∗𝑎 + 𝛼𝑎†

) (
𝑏 + 𝑏†

)
where we have linearized the interaction Hamiltonian. We have the EOM
of the light in rotating frame with respect to the laser frequency 𝜔𝐿 , 𝛥 =

𝜔cav − 𝜔𝐿 is

¤̂𝑎 = (−𝑖𝛥 − ^)𝑎 − 𝑖𝑔0𝛼
(
𝑏 + 𝑏†

)
+
√

2^ 𝑎in

= (−𝑖𝛥 − ^)𝑎 − 𝑖𝑔0𝛼
(
𝑏𝐼𝑒

−𝑖𝛺𝑡 + 𝑏†
𝐼
𝑒𝑖𝛺𝑡

)
+
√

2^ 𝑎in

where 𝑏𝐼 (𝑡) varies slowly compared to 1/^ the solution is then

𝑎(𝑡) = 𝑒 (−𝑖𝛥−^) (𝑡−𝑡0)𝑎(𝑡0) − 𝑖𝑔0𝛼𝑒
(−𝑖𝛥−^)𝑡

∫ 𝑡

𝑡0

𝑑𝑡 ′
(
𝑏𝐼 (𝑡 ′)𝑒 (𝑖 [𝛥−𝛺]+^)𝑡 ′ + 𝑏†

𝐼
(𝑡 ′)𝑒 (𝑖 [𝛥+𝛺]+^)𝑡 ′

)
+
√

2^
∫ 𝑡

𝑡0

𝑑𝑡 ′𝑒 (−𝑖𝛥−^) (𝑡−𝑡
′)𝑎in(𝑡 ′)

𝑡0→−∞ and 𝑏𝐼 (𝑡 ′)≈𝑏𝐼 (𝑡)−−−−−−−−−−−−−−−−−−→ − 𝑖𝑔0𝛼

(
𝑏𝐼 (𝑡)𝑒−𝑖𝛺𝑡

^ − 𝑖 [𝛺 − 𝛥] +
𝑏
†
𝐼
(𝑡)𝑒𝑖𝛺𝑡

^ − 𝑖 [−𝛺 − 𝛥]

)
+
√

2^
∫ 𝑡

−∞
𝑑𝑡 ′𝑒 (−𝑖𝛥−^) (𝑡−𝑡

′)𝑎in(𝑡 ′)

Then using the input-output relation Eq. (3.37)

𝑎out(𝑡) = −𝑎in(𝑡) +
√

2^ 𝑎(𝑡)

= −𝑎in(𝑡) + 2^
∫ 𝑡

−∞
𝑑𝑡 ′𝑒 (−𝑖𝛥−^) (𝑡−𝑡

′)𝑎in(𝑡 ′) − 𝑖
√

2^ 𝑔0𝛼

(
𝑏𝐼 (𝑡)𝑒−𝑖𝛺𝑡

^ − 𝑖 [𝛺 − 𝛥] +
𝑏
†
𝐼
(𝑡)𝑒𝑖𝛺𝑡

^ − 𝑖 [−𝛺 − 𝛥]

)
.
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Then we can the input-output relation for the sidebands by using

𝑎in/out,±(𝑡) = 𝑒±𝑖𝛺𝑡𝑎in/out(𝑡)

and doing a RWA (discarding terms with 𝑒±2𝑖𝛺𝑡 ) and assuming `2, a2 ≪ 𝛺 and
𝛼 is real and positive

𝑎out,+(𝑡) ≡ 𝑎out(𝑡)𝑒𝑖𝛺𝑡 = −𝑎in,+(𝑡) + 2^𝑒𝑖𝛺𝑡
∫ 𝑡

−∞
𝑑𝑡 ′𝑒 (−𝑖𝛥−^) (𝑡−𝑡

′)𝑎in(𝑡 ′)

− 𝑖
√

2^ 𝑔0𝛼

(
𝑏𝐼 (𝑡)

^ − 𝑖 [𝛺 − 𝛥] +
𝑏
†
𝐼
(𝑡)𝑒2𝑖𝛺𝑡

^ − 𝑖 [−𝛺 − 𝛥]

)

≈ 𝑒2𝑖\cav (𝛺)𝑎in,+(𝑡) − 𝑖

`≡︷            ︸︸            ︷���� √
2^ 𝑔0𝛼

^ − 𝑖 [𝛺 − 𝛥]

���� 𝑒𝑖\cav (𝛺)𝑏𝐼 (𝑡)

and similary

𝑎out,−(𝑡) ≡ 𝑎out(𝑡)𝑒−𝑖𝛺𝑡 = −𝑎in,−(𝑡) + 2^𝑒−𝑖𝛺𝑡
∫ 𝑡

−∞
𝑑𝑡 ′𝑒 (−𝑖𝛥−^) (𝑡−𝑡

′)𝑎in(𝑡 ′)

− 𝑖
√

2^ 𝑔0𝛼

(
𝑏𝐼 (𝑡)𝑒−2𝑖𝛺𝑡

^ − 𝑖 [𝛺 − 𝛥] +
𝑏
†
𝐼
(𝑡)

^ − 𝑖 [−𝛥 −𝛺]

)

≈ 𝑒2𝑖\cav (−𝛺)𝑎in,−(𝑡) − 𝑖

a≡︷              ︸︸              ︷���� √
2^ 𝑔0𝛼

^ − 𝑖 [−𝛺 − 𝛥]

���� 𝑒𝑖\cav (−𝛺)𝑏†
𝐼
(𝑡)

where
\cav(𝜔) ≡ Arg

[
^

^ − 𝑖 (𝜔 − 𝛥)

]
for now we have

𝑎out,+(𝑡) = 𝑒2𝑖\cav (𝛺)𝑎in,+(𝑡) − 𝑖`𝑒𝑖\cav (𝛺)𝑏𝐼 (𝑡)
𝑎out,−(𝑡) = 𝑒2𝑖\cav (−𝛺)𝑎in,−(𝑡) − 𝑖a𝑒𝑖\cav (−𝛺)𝑏†

𝐼
(𝑡)

Then the EOM of the oscillators is

¤̂
𝑏 (𝑡) = [−𝑖𝛺 − 𝛾]𝑏 (𝑡) − 𝑖𝑔0 [𝛼∗𝑎(𝑡) + 𝛼𝑎†(𝑡)] ⇒
¤̂
𝑏𝐼 (𝑡) = −𝛾𝑏𝐼 (𝑡) − 𝑖𝑔0𝑒

𝑖𝛺𝑡 [𝛼∗𝑎(𝑡) + 𝛼𝑎†(𝑡)]
RWA≈ −𝛾𝑏𝐼 (𝑡) −

𝑔0𝛼√
2^

𝑒𝑖𝛺𝑡 (`𝑒𝑖\cav (𝛺) − a𝑒−𝑖\cav (−𝛺))𝑏𝐼 (𝑡) + (opt. noise)

= −𝛾𝑏𝐼 (𝑡) −
(𝑔0𝛼)2

^

(
^

^ − 𝑖 [𝛺 − 𝛥] −
^

^ + 𝑖 [−𝛺 − 𝛥]

)
𝑏𝐼 (𝑡) + (opt. noise)

The optical broadening arises from the real part of(
^

^ − 𝑖 [𝛺 − 𝛥] −
^

^ + 𝑖 [−𝛺 − 𝛥]

)
,
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whereas its imaginary part gives the optical spring shift. We here focus on the
optical broadening and assume that the optical spring shift is compensated by
other means and/or absorbed in a redefined 𝛺 .

¤̂
𝑏𝐼 (𝑡) = −

[
𝛾 + `2 − a2

2

]
𝑏𝐼 (𝑡) − 𝑖𝑔0𝛼

√
2^

[∫ 𝑡

−∞
𝑑𝑡 ′𝑒 (𝑖 (𝛺−𝛥)−^) (𝑡−𝑡 ′)𝑎in,+(𝑡 ′)

+
∫ 𝑡

−∞
𝑑𝑡 ′𝑒 (𝑖 (𝛺+𝛥)−^) (𝑡−𝑡 ′)𝑎†in,−(𝑡

′)
]

[RWA]
𝑎in,± (𝑡 ′)≈𝑎in,± (𝑡)−−−−−−−−−−−−→ ≈ −

[
𝛾 + `2 − a2

2

]
𝑏𝐼 (𝑡) − 𝑖

[
𝑎in,+(𝑡)`𝑒𝑖\cav (𝛺) + 𝑎

†
in,−(𝑡)a𝑒

−𝑖\cav (−𝛺)
]

The phase factors 𝑒𝑖\cav (±𝛺) can be made to disappear by proper redefinition of
the light and oscillator operators.

𝑎′in,±(𝑡) ≡ 𝑒𝑖 [\cav (𝛺)+\cav (−𝛺)]/2𝑎in,±(𝑡)
𝑏′𝐼 (𝑡) ≡ 𝑒−𝑖 [\cav (𝛺)−\cav (−𝛺)]/2𝑏𝐼 (𝑡)

𝑎′out,+(𝑡) ≡ 𝑒−𝑖 [\cav (𝛺)+\cav (−𝛺)]/2𝑎out,+(𝑡)

Then we get

¤̂
𝑏′𝐼 (𝑡) = −

[
𝛾 + `2 − a2

2

]
𝑏′𝐼 (𝑡) − 𝑖

[
`𝑎′in,+(𝑡) + a𝑎

′†
in,−(𝑡)

]
= −𝛾 (𝑡)𝑏′𝐼 (𝑡) − 𝑖

[
` (𝑡)𝑎′in,+(𝑡) + a (𝑡)𝑎

′†
in,−(𝑡)

]
𝑎′out,+(𝑡) = 𝑒𝑖 [\cav (𝛺)−\cav (−𝛺)]

[
𝑎′in,+(𝑡) − 𝑖` (𝑡)𝑏′𝐼 (𝑡)

]
𝑎′out,−(𝑡) = 𝑒−𝑖 [\cav (𝛺)−\cav (−𝛺)]

[
𝑎′in,−(𝑡) − 𝑖a (𝑡)𝑏′†

𝐼
(𝑡)

]
The final phase factor can be absorbed into the (complex) measurement cur-
rent and in the main text the operators are renamed without the primes.
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Definitions of functions

𝑀1 =
√
aopt �̃�1(𝑇 ) (C.1)

𝑀2 = −𝐴2v(0) (C.2)

�̃�1(𝑡) =
∫ 𝑡

0
d𝑡 ′𝑓v(𝑡 ′)

√︁
𝛤1(𝑡 ′) 𝑒

∫ 𝑡

𝑡 ′ d𝜏𝛾1 (𝜏) (C.3)

𝐴2v(𝑡) =
∫ 𝑇

𝑡

d𝑡 ′𝑓v(𝑡 ′)
√︁
𝛤2(𝑡 ′) 𝑒−

∫ 𝑡 ′
𝑡

d𝜏𝛾2v (𝜏) (C.4)

𝐵12(𝑡) = 𝑓v(𝑡) − (Z1 + Z2)
√︁
𝛤2(𝑡) 𝐴2v(𝑡) (C.5)

𝐵1(𝑡) = 𝑓v(𝑡) + Z1
√︁
𝛤2(𝑡) 𝐴2v(𝑡) (C.6)

𝐵𝑃 (𝑡) = 𝑓v(𝑡) + Z1
{
𝐴2v(𝑡)

√︁
𝛤2(𝑡) + �̃�1(𝑡)

√︁
𝛤1(𝑡)

}
(C.7)

𝐵𝑋 (𝑡) = 𝐴2v(𝑡)
√︁
𝛤2(𝑡) − �̃�1(𝑡)

√︁
𝛤1(𝑡) (C.8)

𝐶1(𝑡) = (1 −𝑀1) 𝑒−
∫ 𝑇

𝑡
d𝑡 ′𝛾1 (𝑡 ′)

√︁
𝛤1(𝑡) + √

aopt 𝐵𝑋 (𝑡) (C.9)

𝐶2(𝑡) = Z1 (1 −𝑀1) 𝑒−
∫ 𝑇

𝑡
d𝑡 ′𝛾1 (𝑡 ′)

√︁
𝛤1(𝑡) + √

aopt 𝐵𝑃 (𝑡) (C.10)

𝐷1(𝑡) = (1 −𝑀1) 𝑒−
∫ 𝑇

𝑡
d𝑡 ′𝛾1 (𝑡 ′) + √

aopt �̃�1(𝑡) (C.11)

𝑁add =

(
1

[det
− 1

)
1
2

∫ 𝑇

0
d𝑡𝐵2

12(𝑡) +
2∑︁
𝑗=1

∫ 𝑇

0
d𝑡𝐶2

𝑗 (𝑡)

+ 2𝛾d,1
∫ 𝑇

0
d𝑡𝐷2

1 (𝑡) + 2𝛾d,2
∫ 𝑇

0
d𝑡𝐴2

2v(𝑡)

+
(
1 − aopt

) 1
2

∫ 𝑇

0
d𝑡𝐵2

1 (𝑡) +
(
1 − aopt

) 1
2

∫ 𝑇

0
d𝑡𝐴2

2v(𝑡)𝛤2(𝑡) (C.12)
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N̂ =

∫ 𝑇

0
d𝑡

√︂ 1
[det

− 1 𝐵12(𝑡)
𝑎
(2)
det,+(𝑡) − 𝑎

(2)†
det,−(𝑡)√

2 𝑖

−√2𝛾2

∫ 𝑇

0
d𝑡𝐴2v(𝑡) 𝑓 (2)th (𝑡) + √2𝛾1

∫ 𝑇

0
d𝑡𝐷1(𝑡) 𝑓 (1)th (𝑡)

+
∫ 𝑇

0
d𝑡𝐶1(𝑡)

𝑎
(1)
in,+(𝑡) + 𝑎

(1)†
in,− (𝑡)√

2 𝑖
−

∫ 𝑇

0
d𝑡𝐶2(𝑡)

𝑎
(1)
in,+(𝑡) − 𝑎

(1)†
in,− (𝑡)√

2 𝑖

+
∫ 𝑇

0
d𝑡√1 − aopt 𝐵1(𝑡)

𝑎
(1)
vac,+(𝑡) − 𝑎

(1)†
vac,−(𝑡)√

2 𝑖
−

∫ 𝑇

0
d𝑡√1 − aopt 𝐴2v(𝑡)

√︁
𝛤2(𝑡)

𝑎
(1)
vac,+(𝑡) + 𝑎

(1)†
vac,−(𝑡)√

2 𝑖
(C.13)
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