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Abstract

For superconducting qubits to be a viable platform for large-scale
quantum information processing, a high-fidelity readout is required.
This thesis investigates the underlying physics describing the sys-
tem and time evolution in an initialization and readout sequence in
order to study how different physical parameters contribute to the
State Preparation and Measurements (SPAM) errors. By calibrating a
single superconducting qubit, a simulation model is built using the
stochastic master equation to simulate the dispersive approximation
of a qubit-resonator system. The model is capable of producing re-
alistic plots of IQ measurements that have similar distributions and
SPAM fidelity as measured in the laboratory. The model is used to
estimate the contribution to the infidelity from three factors: non-
zero temperature, energy decay during measurement, and inefficient
measurement. We conclude that non-zero temperature is the biggest
contributor to the analyzed system. The model is further used to
simulate the system with marginal improvements. This serves as a
basis for discussing how to improve superconducting qubit readout.
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1 Introduction

The demand for power to run computational tasks is accelerating.
To overcome the increasing complexity, the transistors, which do the
heavy lifting of storing and computing the singular 0’s and 1’s, have
been stacked closer and closer. Now, they span only a few nanometers,
a size where they are susceptible to quantum effects, leading to new
challenges. [1]. The same quantum effects also provide hope since
they can be utilized in a new form of computing on different devices,
quantum computers.

By considering quantum bits with the ability to be in a superposi-
tion of 0 and 1, some large problems can be formulated compactly and
run efficiently [2]. That is, if one has a working quantum computer.
Many different implementations of quantum computers are well on
their way. They take many very different forms. Some promising can-
didates are singular atoms trapped in electric fields and controlled by
lasers [3], single photons capable of storing quantum information [4],
or superconducting circuits that are controlled by microwave pulses
at temperatures just above absolute zero [5]. The latter will be the
focus of this thesis.

Superconducting qubits are rapidly developing and have seen
multiple big accomplishments in the last few decades: the design and
fabrication of superconducting circuits capable of processing quantum
information [6, 7], microwave pulses that can control and measure it
with high precision [8, 9], and schemes to entangle qubits with their
neighbors [10]. Recent progress has significantly improved the ability
to do operations on single superconducting qubits [11] and multi qubit
gates have surpassed the 99.9 % fidelity mark [12]. Improvements
have also been made for qubit initialization and readout [9, 13], but
this is still a challenge. State Preparation and Measurement errors
(SPAM) are inherent parts of the quantum algorithm and hard, if not
impossible, to separate in tomography [14]. In this thesis, we will
instead examine the physics behind the measurement process. This
will allow us to build a model of our system in simulation, where we
investigate the effect physical parameters have on SPAM errors.

1.1 Outline of Thesis

The thesis is built up in the following way: The first few chapters
will mainly be theoretical. In the rest of Chapter 1, we will cover
some fundamentals of quantum mechanics, and in Chapter 2, we will

1



CHAPTER 1. INTRODUCTION 2

focus in particular on the theory of circuit Quantum Electrodynamics
(cQED). Chapter 3 will go into more depth on how superconducting
qubits can be connected with control hardware and resonators to allow
control and readout of the qubit. Furthermore, we will investigate
how interactions with the environment affect our qubit. This is
done by discussing open quantum systems in Chapter 4 and weak
continuous measurements in Chapter 5.

The second half of the thesis will focus on readout in experiment
and our efforts to recreate it in simulation. We will in Chapter 6

present the experiment to investigate the performance of readout in
our system. In Chapter 7, we will calibrate our device to determine the
necessary parameters for simulating it. The simulation is created and
discussed in Chapter 8. Finally, we will in Chapter 9 use our model
to investigate how different parameters contribute to the readout and
state preparation infidelity.

1.2 Qubits

Improving classical computer hardware can take many shapes: more
processing power, bigger memory size, or faster data transfers. Ulti-
mately, these improvements increase our capability of storing, trans-
ferring, or manipulating single entities, bits. Bits are the smallest piece
of information in classical computers, corresponding to an on/off
switch. Often, they are represented with binary numbers, such that
"1" is on and "0" is off. Combining billions or even trillions of bits, we
can store data, media, or even programs.

While most everyday computing tasks can easily be done using
classical computers, some problems scale exponentially and unfor-
givably when the size of the problem is increased. Among these
problems, we find prime factorization and simulation of quantum me-
chanical systems, a challenge that will hunt us throughout this thesis.
Instead of building classical computers of exponentially increasing
size, quantum mechanics provides hope to solve these problems by
replacing the bit with the quantum bit (qubit). The qubit is not bound
by the discreteness of the classical bit but can be in a superposition of
"0" and "1" at the same time [15].

1.2.1 A Quantum Mechanical State

In quantum mechanics, the properties of our system can be contin-
uous, like the position of a particle, or discrete, like the spin of an
electron, pointing either up or down. When considering a quantum
mechanical object, all possible physical configurations span a Hilbert
Space of finite or infinite dimensions. A set of configurations that
completely describe all the information one could measure about an
object is an element in the Hilbert Space and is called a quantum
mechanical state. Mathematically, we represent it with a ket: |ψ⟩,
where ψ is a label that could refer to some characteristic information
about the configuration [16].
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Observable information about the state of the system can be found
by applying operators to it. Applying an operator is represented as
multiplication from the left: A |ψ⟩, which illustrates the linearity of
quantum mechanics. Of special interest are eigenstates to an operator,
which are states satisfying A |a⟩ = a |a⟩, where a is the eigenvalue
and |a⟩ is the eigenstate. Most importantly, perhaps, is the energy of
the system and the corresponding energy eigenstates. These are states
associated with the Hamiltonian operator, which, like in classical
mechanics, is a generator of the equations of motion in quantum
mechanics [16].

1.2.2 The Two Level System

To create a qubit, one needs a quantum mechanical system with two
levels. There are multiple ways of achieving this. A straightforward
approach is by using an observable in a 2-dimensional Hilbert space
like the spin of an electron.

Another approach is to limit ourselves to only a subspace of a
larger Hilbert space. If the quantum mechanical states is connected
to an environment, they are subject to Boltzmann statistics 1 [17]. At 1 That is the relative probability of find-

ing a qubit in two different states (say
|1⟩ and |0⟩) can be found as the frac-
tion between their Boltzmann factor:
e−E1/kb T/e−E0/kb T .

low enough temperatures where the energy difference is much larger
than the temperature ∆E ≫ kbT, the system will occupy the ground
state unless we change it. By limiting our operation to the subspace
of "0" and "1", we will effectively have a qubit. After choosing a two
level system, the states of the system can be described with |0⟩ , |1⟩
and can be combined to construct superpositional states:

|ψ⟩ = a |0⟩+ b |1⟩ (1.1)

where a and b are complex numbers and |a|2, |b|2 are the respective
probabilities that the state will collapse to either |0⟩ or |1⟩ if measured.
Since the probabilities must sum to one, we have normalization con-
straint. We are also allowed to freely choose a global phase since only
phase differences have physical meaning[16]. These constraints allow
us to write a general state of the two level system:

|ψ⟩ = cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩ (1.2)

where our description have two angles θ and ϕ which determine
the relative occupation in these two states and a phase between
them. With these two angles, the state of a qubit can be visualized
geometrically [5].

1.2.3 The Bloch Sphere

x

y

|0

|1

Figure 1.1: Representation of a qubit
state on the Bloch sphere. The angles
ϕ and θ are displayed along with the
projection onto the x-y plane.

With two angles θ and ϕ and a vector with magnitude 1, the perfect
place for visualization is the unit sphere. The depiction of a qubit
state on a sphere is called a Bloch Sphere and an example can be
seen in 1.1. On the Bloch Sphere, the state |0⟩ will be on the north
(positive) pole along the z-axis and |1⟩ at the south pole (negative).
With this mapping the projection of the state vector unto the z-axis
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gives the probabilities of finding |0⟩ or |1⟩ respectively and the phase
difference is mapped unto the x-y plane [15].

1.3 Time Evolution of a Quantum System

Let us now take a look at the dynamics of a quantum system. A
process which transforms a state into another must leave the inner
product unchanged to keep the normalization. By applying unitary
transformation this is guaranteed2. Quantum dynamics can then be 2 For unitary transformations we have:

U−1 = U † or equally U †U = 1described by a unitary transformation taking a state at some time
t = t0 into a the state at a later time t = t0 + ∆t. At the later time the
inner product should be conserved:

⟨ψ; t0|ψ; t0⟩ = ⟨ψ; t0..∆t|ψ; t0..∆t⟩ = ⟨ψ; t0|U †(t0, t0 + ∆t)U (t0, t0 + ∆t)|ψ; t0⟩ (1.3)

which is satisfied since U is unitary. An additional requirement is that
the transformation should reduce to identity if no time has passed:
U (t0, t0 + ∆t) → 1 when ∆t → 0. Expanding the transformation to
first order in the infinitesimal timestep, dt, the unitary transformation
is described by:

U (dt) = 1 − iΩdt (1.4)

Where Ω is a hermitian operator with units of frequency3. The actual 3 To see why this keeps the normal-
ization, we write U †(dt)U (dt) = (1 +
iΩdt)(1 − iΩdt) = 1 + dt2Ω2 which
goes to identity in the limit of dt → 0 as
the dt2 term vanishes.

operator is proportional to the Hamiltonian operator and is given by :
Ω = H

h̄ . From eq. 1.4 and by defining d |ψ; t⟩ = |ψ; t..dt⟩ − |ψ; t⟩ we
find a differential equation for state evolution:

|ψ; t..dt⟩ = U (dt) |ψ; t⟩ =
(

1 − i
H
h̄

dt
)
|ψ⟩ (1.5)

|ψ; t..dt⟩ − |ψ; t⟩ = i
H
h̄

dt |ψ⟩ (1.6)

ih̄
d
dt

|ψ⟩ = H |ψ⟩ (1.7)

This is known as the Schrödinger’s equation and governs unitary
time evolution of quantum mechanical system given that it is closed
from the environment and is not measured [16]. We will return to
these two assumptions and relax them later.

Depending on the Hamiltonian, we can express the time-evolution
operator. If the Hamiltonian is independent of time, we can solve the
equation above to find:

U (t0, t0 + ∆t) = e−iH∆t/h̄ (1.8)

which entirely removes the time-dependence from the state such
that |ψ; t⟩ = U (t) |ψ; t = 0⟩. If on the contrary, the Hamiltonian is
dependent on time and commutes at different times, we can write it
as:

U (t0, t0 + ∆t) |ψ; t0⟩ = exp
(
− i

h̄

∫ t0+∆t

t0

dtH(t)
)
|ψ; t0⟩ (1.9)

If the Hamiltonian at different times do not commute with itself, one
could introduce the Dyson series[16]. Another approach is to solve
the differential equation numerically.
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1.3.1 Numerical Implementations

Schrödinger’s Equation gives a simple linear relation between the
time derivative of a state and the Hamiltonian. If we can represent
the states as vectors and the Hamiltonian as a matrix, we can naively
solve the differential equation by doing finite size step. With dt → ∆t
The state at t + ∆t will approximately be:

ψ⃗(t + ∆t) = ψ⃗(t)− i∆t
h̄

Hψ⃗(t) (1.10)

Of course this is a crude approximation which improves as ∆t is
reduced and the equation is repeated iteratively. While this method,
known as Euler integration [18], is simple to implement, it quickly
loses precision if the time steps become large (see example in figure
1.2). Instead of improving accuracy by increasing the amount of steps,
we instead look at a more sophisticated algorithm.

0.0 0.5 1.0
Time, t

1.0

1.5

2.0

2.5

Va
ria

bl
e,

 x

t

f(x(t)) t

Euler Integration
Euler integrated
ex

Figure 1.2: A visualized example of Eu-
ler integration for the differential equa-
tion x′(t) = x

In this thesis, integration will primarily be performed using the
Qutip Library[19], where the Schrödinger equation is integrated by
the Adams method. In this method the last n calculations are used in
order to approximate the higher order differentials of the function. If
we have a differential equation:

y′(t) = f (y(t)) (1.11)

We can approximate the point y(t+∆t) by a Taylor expanding around
t:

y(t) + ∆ty′(t) +
1
2

∆t2y′′(t) +
1
3!

∆t3y′′′(t) . . . (1.12)

The idea in the Adams algorithm is to approximate the differential
up to order n by using finite difference methods. The first and second
order derivative can then be approximated by:

y′(t) = f (t), y′′(t) =
f (y(t))− f (y(t − ∆t))

∆t
(1.13)

And the third order differential by:

y′′′(t) =
y′′(t)− y′′(t − ∆t)

∆t
=

f (y(t))− f (2y(t − ∆t)) + f (y(t − 2∆t))
∆t2

(1.14)

0.0 0.5 1.0
time, t

1.0

1.5

2.0

2.5

va
ria

bl
e,

 x

f(xi) t

f(xi 1) t

Adams Integration

f(xi) t

1
2 f ′(xi)( t)2Adams 2. Order

ex

Figure 1.3: A visualization of the sec-
ond order Adams algorithm. Here the
second order derivative is found by the
finite difference method to be f ′(xi) =
( f (xi)− f (xi−1))/∆t

and on wards. A visualization of the second order method can be
seen in Figure 1.3. The computation of the Adams algorithm is more
precise since it considers higher order terms and it runs fast since it
reuses the old calculations.

One challenge is that the algorithm requires n points to get started.
Until n points are calculated, we can assume no higher order differen-
tials, such that we effectively perform Euler integration for the first
step and a second order Adams for the second and so on. Alterna-
tively, we can use another algorithm which moves forward in time to
approximate the higher order differentials. An example of such an
algorithms is the Runge-Kutta method, which is used in most modern
solvers for ordinary differential equations [18].
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Figure 1.4: Module structure for the
code used in the thesis. It is divided into
Parent Classes and the Physics classes
which inherit attributes from their re-
spective parents.

1.4 Computational Framework of the Thesis

It is by no means a new idea to solve quantum mechanical problems
by numerical simulations, so multiple well-optimized and versatile
libraries exist. In this thesis, we base most of the calculations on the
integration methods present in the Qutip Library [19]. To make faster
progress and hopefully contribute to the software in the laboratory, a
module to make numerical superconducting qubit experiments was
developed during this project. The package is a wrapper around
the Qutip Library, but eases the setup of calculating Hamiltonians in
superconducting systems, running simulations and managing data.
The documentation for the module QuantumDeviceSimulation can
be found in Appnedix A.

An overview of the module is shown in Figure 1.4. In general, it is
built in three main parts:

• Devices are the physical devices placed in the system. This in-
cludes different qubits, resonators and pulses.

• Systems are combinations of devices along with descriptions of
how they interact.

• Experiments are organizing the different sweeps of parameters
and apply the proper integration technique.



2 Circuit Quantum Electrodynamics

While many platforms can be used as quantum processors, our focus
will be on circuits consisting of superconducting materials. In this
chapter, we will go through how these qubits are designed to create
qubits and how we can model them numerically.

2.1 Circuit QED

Figure 2.1: Circuit diagram for the LC
circuit.

Classically, we describe the dynamics of a circuit in terms of its current,
I(t), and its voltage drop, V(t). If we consider a simple circuit with
one capacitor and one inductor, we have an LC circuit. The energy and
subsequent equations of motion are found by summing the energy
contributions from each of its elements. The capacitor stores a charge
which gives an energy contribution:

Ecapacitor =
1
2

CV2 =
Q2

2C
(2.1)

where Q is the charge on the capacitor and C is the capacitance
related to the distance between two capacitance plates, the area and
the permittivity of the material. We can relate the charge in the
capacitor to the current by Q(t) = Q(t0) +

∫ t
t0

dt′ I(t′). The other
component is an inductor which can take many different form, one
example is a coil. The inductor stores energy in a magnetic flux
through it, giving an associated energy contribution:

Einductor =
Φ2

2L
(2.2)

Where Φ is the flux through the inductor and L is the impendance.
If the inductor was a coil, the inducatance would be related to the
amount of windings, the permability materials, and its length and
area. By using Faradays law, one find a relation between the current
drop over the inductor and its flux: Φ(t) = Φ(t0) +

∫ t
t0

V(t′)dt′. The
total energy of the LC circuit is now [20]:

H =
1

2C
Q2 +

1
2L

Φ2 (2.3)

Which is of particular interest since Q is a canonical momentum to
the coordinate Φ1.

1 To see this, we can rewrite the capacitor
energy in terms of the flux: 1

2 CΦ̇2 and
define the lagrangian as the difference
between kinetic and potential energy:
L = Ecapacitor − Einductor. Differentiating
the Lagrangian with respect to the time-
derivative of flux, we find ∂

∂Φ̇L = Q.
[5]

2.1.1 Going quantum

Usually, classical circuits exhibit energy loss due to the resistance
in the material. However, by utilizing the superconducting phase

7
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at cold temperatures, where electrons pair up as Cooper Pairs to
travel through materials with no loss, circuits can achieve no energy
dissipation2. This allows us to quantize the variables and use the 2 at least not through resistance. Many

other outside factors can still interact
with the qubit. The limited coherence is
still a big obstacle for superconducting
qubits.

superconducting circuit as a type of artificial atom. [21]
Since Φ and Q are conjugate variables, they satisfy the classical

Poisson bracket equation:

{Φ, Q} =
∂Φ
∂Φ

∂Q
∂Q

− ∂Φ
∂Q

∂Q
∂Φ

= 1 (2.4)

Quantizing these parameters are done by replacing the variables with
the corresponding operators: Q → Q̂ and Φ → ϕ, and applying the
correspondence principle. Here we replace the Poisson brackets with
the commutator {., .} → ih̄[., .], such that operators satisfy [5]:

[ϕ̂, Q̂] = ih̄ (2.5)

The rest of this thesis will concern quantum mechanics, so we drop the
hats from the operators and set h̄ = 1. We can reintroduce it later if we
need to determine physical quantities. However, we will often refer
to energies in terms of the associated frequency f = ω/2π = E/h.

2.1.2 Solving the LC Circuit

Since Q and Φ are conjugate variables like position x and momentum
p, we can equally choose to represent it in the flux basis or the charge
basis. If we picking the flux basis Q takes a differential form:

Q = i
∂

∂Φ
(2.6)

The LC circuit Hamiltonian becomes:

H |ψ⟩ = − 1
2C

∂2

∂Φ2 |ψ⟩+ 1
2L

Φ2 |ψ⟩ (2.7)

This is exactly the form of a particle in a harmonic potential and we
can follow the same procedure and introduce the ladder operators
a, a†. Such that the the Hamiltonian can be written as:

H = ω

(
a†a +

1
2

)
(2.8)

Where ω =
√

8ECEL can be found by comparing the Hamiltonian
with the one from the harmonic oscillator.

While the harmonic oscillator has many useful properties, a major
problem is its equidistant energy levels. When driving transitions
with a pulse of frequency ω, we will not only drive transitions in the
computational basis |0⟩ ↔ |1⟩, but also to the higher order states. To
find a circuit, we can control without going out of the computational
basis, we must search for an anharmonic potential [5].

2.2 Building Qubits

The solution lies in another component, which exists in the realm
of superconducting circuits. By separating two superconductors by
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a semiconducting material, the Cooper pairs3 will no longer travel 3 Superconductivity is often modelled by
creating electron pairs which then have
spin 1 and behave like bosons. These
pairs are called Cooper pairs. [21]

without resistance through the semi conductor but instead tunnel
through. The probability of tunneling is dependent on the distance,
the semi-conducting material and most importantly the phase differ-
ence between the two superconductors. The probability for tunneling
through the superconducting phase is given as sin(2eϕ(t)), where
ϕ(t) is the time-dependent difference in phase between the two su-
perconductors. Using the flux-quantum ϕ0 = h/2e and adding an
external flux, the current through the Josephson Junction is:

I(t) = I0 sin
(

ϕ(t) + ϕext

ϕ0

)
(2.9)

The energy of the Josephson Junction can now be found as[15]:

EJosephson Junction = −EJ cos
[

ϕ(t) + ϕext

ϕ0

]
(2.10)

up to a constant, which can be neglected by moving the zero point of
the energy. [22]

2.2.1 The Cooper Pair Island

Replacing the inductor in the LC circuit with a Josephson Junction,
we get a circuit with a non-quadratic potential. The Hamiltonian is
given by:

Figure 2.2: An example of a circuit with
a capacitor and a Josephson Junction

H(t) = 4EC(n − ng)
2 − EJ cos

[
ϕ(t) + ϕext

ϕ0

]
(2.11)

where n = Q/2e is a amount of cooper pairs on the "island" and
EC = e2/2C4. Like flux and charge, the Cooper Pair number n and the

4 The factor of 4 would disappear if we
counted electrons instead of pairs which
was historically done

superconducting phase difference ϕ form a canonical commutation
pair: [n, ϕ] = i. In the Cooper Pair Box the energy scales of the two
contributions are approximately equal EC ≈ EJ [20].

/2 0 /2
phase, ( 0)

1

0

1

En
er

gy
 E

(E
J)

E0

E1

E2

E3

E0 + 2E01

Potential and Energy Levels of CPB Figure 2.3: The flux-potential of the
cooper pair box along with the three
lowest energy eigenstates. The eigen-
states are shifted according to the their
energy and scaled to improve readabil-
ity. The energy level E0 + 2E01 is shown
for comparison. The anharmonicity will
be the difference between that line and
the E2

This allows us to think about ϕ as a coordinate where the Josephson
Junction energy defines a potential and the charge a kinetic energy.
Solving the eigenvaue problem Hψ(ϕ) = Eψ(ϕ), we can find the
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eigenenergies and the eigenvectors of the Cooper Pair Island in ϕ-
space. A solution to this problem with EC = EJ can be seen in Figure
2.3. Most importantly, we note that the that the energy E2 − E1 ̸=
E1 − E0. This difference is called anharmonicity and is defined by
α = (E2 − E1)− (E1 − E2) [15].

2.2.2 The Transmon

With EJ/EC ≈ 1 the circuit is susceptible to charge noise, where small
variations change the energy significantly. Charge noise is harder
to control than flux noise, so the superconducting community has
moved toward higher ratios for EJ/EC. Most commonly the Transmon
has a ratio somewhere between 50 and 100. By plotting the energy
levels of the cooper pair box and the Transmon as function of ng, we
can see the difference (see Figure 2.4). The insensitivity to charge
noise does not come for free but reduces the anharmonicity. With
lower anharmonicity, we need longer pulses to make sure, we do not
accidental have components of the E2 − E1 frequency in our pulse,
but the wide use of the Transmon indicates that it strikes a good
balance [6].

0

1

En
er

gy
 (E

C
)

EJ = EC
k = 0
k = 1
k = 2

2 0 2
ng

5

0

En
er

gy
 (E

C
)

EJ = 50EC

Figure 2.4: The energy levels of the
Transmon for different values of ng. We
compare two different settings of EJ /EC .

Multiple additions can be made to the Transmon to make its energy
tuneable. A possibility is to alter the Josephson Junction with a loop
of two. This creates a SQUID, where the flux through the loop can
adjust the energy levels of the circuit [20].

2.3 Numerical cQED

To simulate the devices considered in this thesis, we will in this
section introduce how the problems at hand can be represented in a
suitable way for solving numerically. As mentioned in the previous
sections, the Hamiltonian is made out of the two conjugate operators
ϕ and n satisfying the commutation relation [ϕ, n] = i. Like the
position and momentum, we now have a choice of which basis to
represent the system in. The two basis are related by the Fourier-like
transformations5 [23]: 5 This is very similar to the relation be-

tween x and p, but with the extra detail
that n is discrete and ϕ ∈ [0, 2π]

|ϕ⟩ =
∞

∑
n=−∞

einϕ |n⟩ (2.12)

|n⟩ = 1
2π

∫ 2π

0
dϕe−inϕ |ϕ⟩ (2.13)

Often the problem at hand is easier to formulate in one basis rather
than the other. For the transmon, the charge is often localized around
0 since higher n − ng values give high energies. Since the occupation
in the higher levels will be negligible if we control the system properly
and keep it at low temperatures, we can set a value for ncutoff to have
a finite size of the Hilbert Space. The charge basis is proportional to



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS 11

n, so we can use that as basis, where n becomes:

n̂ =



−ncutoff 0 . . .
0 −ncutoff + 1

. . .
... ncutoff − 1

ncutoff


(2.14)

To represent the full Hamiltonian we also need cos(ϕ/ϕ0) in the
charge basis. Here we will use that:

e±iϕ |n⟩ = 1
2π

∫ 2π

0
dϕ′e−inϕ′

e±iϕ ∣∣ϕ′〉
=

1
2π

∫ 2π

0
dϕ′e−iϕ′(n±1) ∣∣ϕ′〉 = |n ∓ 1⟩

Since it is true for all states that the operator eiϕ takes a state |n⟩ to
|n + 1⟩, we can write it in charge basis as:

eiϕ = ∑
n
|n⟩ ⟨n + 1| ; e−iϕ = ∑

n
|n⟩ ⟨n − 1| (2.15)

By writing cosine in terms of the complex exponentials, we now find:

cos(ϕ/ϕ0 + ϕext) =
1
2

(
e−i(ϕ/ϕ0+ϕext) + ei(ϕ/ϕ0+ϕext))

)
=

1
2

(
eiϕext eiϕ/ϕ0 + e−iϕext e−iϕ/ϕ0

)
=

1
2 ∑

n

(
eiϕext |n⟩ ⟨n + 1|+ e−iϕext |n⟩ ⟨n + 1|

)

=
1
2


0 e−iϕext 0 . . .

eiϕext 0 e−iϕext

0 eiϕext 0
...

. . .

 (2.16)

With no external flux, ϕext = 0, this reduces to a matrix with 1
2 on the

off-diagonals.
Some systems are more convenient to represent in the flux basis.

Again, we would need to find a discrete basis. One could take the
[−π, π] interval and split it in N smaller steps, such that the step size
is δ = 2π/N. This would give a diagonal representation of ϕ with the
elements from −π,−π + δ . . . , and we could represent the number
basis as a differential between the elements using the finite difference
method [24].

With a Hamiltonian represented in a discrete basis, we can calcu-
late the eigenvalues and eigenvectors numerically. We can further
reduce the size of the Hilbert space, by representing it in the energy
eigenbasis. Here we just include the few lowest energy levels, and
can recover the number generator in this basis by ⟨k|n̂|k⟩.



3 Computations and Readout

To control and do read out of a superconducting qubit, it is coupled
to a control line and a resonator. In this section, we will see how this
allows us to control the qubit and measure it by using the resonator
as a probe.

3.1 Qubit Control

The state of the qubit is modelled as a two level system and can be
visualized as a vector on the Bloch sphere. In this view, any qubit
operation can be thought of a rotation of the sphere. While we need
two angles to represent a state, we need three to describe an arbitrary
rotation.1 1 Since a rotation consist of an axis and

the angle of rotation. The vector is rep-
resented by two angles θ, ϕ and the ro-
tation amount is determined by a third
angle, ψ.

All possible rotations can be created by three linearly independent
generators and the identity. Together they are form a Universal Gate
Set for a single qubit. Every other rotation can then be made by
combining these. A common set of generators spanning a Universal
Gate Set is the Pauli matrices {1, σx, σy, σz}:

1 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy = i

(
0 −1
1 0

)
, σz =

(
1 0
0 −1

)
, (3.1)

these gates are also considered the generators, since rotations are
made by taking the exponential. An example is a π/2 rotation around
the x-axis which is made by:

Rπ/2
X = ei π

2 X̂ =
1√
2

(
1 −i
−i 1

)
(3.2)

which transforms the |0⟩ to 1√
2
(|0⟩ − i |1⟩), a state along the y-axis.

When Comparing this to the time evolution described in Section 1.3,
the gates correspond to the Hamiltonian and by adjusting the gate
duration and strength, the angle of the rotation can be adjusted.

If we were to further extend the scope to multi qubit gates, we
would also need one fully-entangling two qubit gate to have complete
the Universal Gate Set for two qubits. This could be the Control-Not
or a Control-phase gate, but in this thesis, we will only deal with one
qubit [5].

12
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3.1.1 Capacitive Coupling

By running a voltage line to the qubit and coupling it capacitively,
we add a term proportional to the charge in the qubit. We have
gVnV(t) to the Hamiltonian, where gV is the coupling strength and
is determined by capacitance of the device and the capacitor coupling
them.

In the energy eigenbasis of the LC-circuit, the charge can be written
in terms of the ladder operators n ∝ −i(a − a†) which couples the
different energy levels. While this is not exactly the case for the
Transmon, it is a good approximation2, and restricting ourselves to 2 And a perfect one, if we just consider

two energy levels. For higher level
terms, we calculate the n operator in
the energy basis and use that operator
instead of this approximation.

the computational basis, we can write n ∝ i(σ+ − σ−) for the qubit
as well. Here σ+ = |1⟩ ⟨0| and σ− = |0⟩ ⟨1| [5]. The applied voltage
gives a contributions to the Hamiltonian of the form:

HQD = −Ω(t)i (σ+ − σ−) = Ω(t)σy (3.3)

Where the factor of gV and the constants from the operators are
collected in Ω(t).

3.1.2 The Qubit in the Interaction Picture

A truncated qubit capacitively coupled to a control line has a Hamil-
tonian:

H =
1
2

ωqσz + Ω(t)σy (3.4)

where the ωq = ω01 = E1 − E0 (where we still omit the factor of
h̄). To go into the interaction picture, we consider H0 = 1

2 ωqσz and
Hd = ΩV(t)σy, such that the full Hamiltonian is H = H0 + Hd. We
now go into a rotating frame using:

|ψ⟩ → |ψ̃⟩ = U (t) |ψ⟩ , with U (t) = eiH0t (3.5)

In this basis, the Schrödinger equation becomes:

i∂t |ψ̃(t)⟩ = i∂t(U (t) |ψ(t)⟩) = iU̇ (t) |ψ(t)⟩+ iU (t)|ψ̇(t)⟩

And using the Schrödinger equation in the original basis: ∂t |ψ(t)⟩ =
iH |ψ⟩ and the transformed state |ψ(t)⟩ = U †(t) |ψ̃(t)⟩, we get:

i∂t |ψ̃(t)⟩ =
[
( ˙iU (t)U †(t) + U (t)HU †(t)

]
|ψ̃(t)⟩ (3.6)

Such that the effective Hamiltonian in the rotating frame is given as:

He f f = ˙iU (t)U †(t)) + U (t)HU †(t) (3.7)

By splitting the Hamilton in the two terms H = H0 + Hd, we arrive
at:

He f f = −H0 + H0 + U (t)HdU †(t) (3.8)

where we have used that the transformation is unitary U †U = 1 and
that it commutes with H0, [U , H0] = 0. Substituting HD and U (t) we
get [5]:
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He f f = ΩV(t)i exp
(

it
ωqσz

2

)
(|1⟩ ⟨0| − |0⟩ ⟨1|) exp

(
−it

ωqσz

2

)
(3.9)

= ΩV(t)i
(

e−itωq |0⟩ ⟨1| − e+itωq |1⟩ ⟨0|
)

(3.10)

= ΩV(t)i
((

cos
(
ωqt
)
− i sin

(
ωqt
))

|0⟩ ⟨1| −
(
cos
(
ωqt
)
+ i sin

(
ωqt
))

|1⟩ ⟨0|
)

(3.11)

= ΩV(t)
(
cos
(
ωqt
)
σy − sin

(
ωqt
)
σx
)

(3.12)

Here we see that in the rotating frame, the coupling from the control
line adds terms proportional to both σx and σy to the Hamiltonian.
[5].

3.1.3 X, Y and virtual Z

To arrive at the gates, we consider the qubit in its rotating frame.
Now we apply a pulse through the control line which consists of an
oscillating term and an envelope:

V(t) = s(t)(sin(ωdt + ϕ)) (3.13)

where s(t) is the envelope of our pulse with driving frequency ωd

and phase shift ϕ. By defining I = cos(ϕ), Q = sin(ϕ), the pulse can
be written as:

V(t) = s(t) (I cos(ωdt) + Q sin(ωdt)) (3.14)

Such that the effective driving Hamiltonian becomes:

He f f = Ωs(t) (I cos(ωdt) + Q sin(ωdt))
(
cos
(
ωqt
)
σy − sin

(
ωqt
)
σx
)

(3.15)

It is now time to perform the infamous rotating wave approximation
(RWA). The basic idea is to decompose our Hamiltonian into fast
and slow oscillating term H = Hslow(t) + H f ast(t). The fast part of
the Hamiltonian will oscillate quickly and will cancel in the time
evolution operator3 .

3 This works as the time-evolution opera-
tor is given by U = exp

(
i
∫

dtH
)

so fast
oscillating term will cancel if the time
interval is sufficiently large.Rewriting the Hamiltonian with the product to sum trigonometric

identities and applying the RWA, we get:

He f f = Ωs(t)
(
(I cos(ωdt) + Q sin(ωdt)) · cos

(
ωqt
)
σy − (I cos(ωdt) + Q sin(ωdt)) · sin

(
ωqt
)
σx
)

(3.16)

He f f ≈ Ωs(t)
(
(−I cos(δt) + Q sin(δt))σy + (I cos(δt)− Q sin(δt)) σx

)
(3.17)

where δ = ωq − ωd. The RWA was applied in the the second line
to eliminate fast oscillating terms of frequency ωq + ωd ≫ ωq − ωd.
In our driving hardware, we can control the driving frequency, the
phase ϕ and by extension I and Q. If we want to perform an x-gate,
we can set I = 1, Q = 0 and drive the qubit at the qubit frequency
δ = 0. The y-gate is done in the same way with a π/2 rotation, such
that I = 0, Q = 1.

To complete our 1-qubit universal gate set, we now just need the
σz gate. Since σy and σx pulses are defined in a rotating frame, we
can just virtually rotate the phases to make a "virtual" z-gate. Thus
a z-gate is not made by applying a gate, but by simply moving our
reference frame, and corresponds to us rotating I and Q into each
other. [5]
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3.2 Coupling to a Resonator

In order to do readout of the qubit, without altering its state, we
couple it to a resonator which will be used as a probe (see Figure
3.1). The resonator is an LC-circuit, so it has a harmonic potential. By
coupling the Qubit to an LC-circuit, the physics of the qubit closely
resembles that of an atom in a cavity.

In our model, the resonator has an energy given by 4 : 4 where we move the energy scale to ab-
sorb the zero point energy

Hr = ωr a†a (3.18)

The resonator can now be coupled to the qubit by connecting it
capacitively. This gives another interactive contribution: CgVrVt.
By using Vr/t = 2ent/r/Ct/r the additional term can be written as
4e2Cgntnr/CrCt or by collected the constants in a coupling strength g:

Figure 3.1: A schematic of a Transmon
coupled capacitatively to a resonator,
which again is coupled to a feed line.

Hint = gncnr (3.19)

By using that nc ∝ a + a† and nt ∝ σ+ + σ− we obtain the Jaymes
Cunning interaction:

Hint = g(a + a†)(σ− + σ+) (3.20)

Where the factors of nc, nt, C and the other constants are all absorbed
into the coupling strength g [5].

3.2.1 Rotating Wave Approximation

To optimize the computation time, it is beneficial to get rid of fast oscil-
lating terms. First we choose to go into the interaction picture, where
we cancel the time evolution of the non-interacting Hamiltonian.

H0 = ωr a†a + ωq
σz

2
(3.21)

where the associated time evolution operator will be:

U (t) = eiH0t (3.22)

In the interaction picture, we will now have: |ψ⟩ → U |ψ⟩ to coun-
teract the fast oscillations from the H0 term. The Hamiltonian will
transform as: H → U(t)H U†(t). This yields the effective interaction
Hamiltonian given by:

Hint(t) = H0 + g
(

eit(−ωr−ωq)aσ− + eit(ωr−ωq)a†σ−

eit(−ωr+ωq)aσ+ + eit(ωr+ωq)a†σ+
)

We now perform the rotating wave approximation, where we drop
fast oscillating terms:

Hint(t) ≈ H0 + g
(

eit∆a†σ− + e−it∆aσ+
)

(3.23)

Here ∆ = ωr − ωq is the detuning between the resonator and the
qubit. Transforming back to the Schödinger picture, we have [20]:

HS = H0 + g
(

a†σ− + aσ+
)

(3.24)
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3.2.2 Dispersive Regime

In most resonator-qubit systems, the coupling are designed to have a
dispersive interaction, that is:

λ =
g
∆

≪ 1 (3.25)

Here the system can be approximated to simple and interpretable
form. We can obtain a form of the Hamiltonian which is diagonal to
first order in λ by using the Schrieffer Wolff transformation. For a Hamil-
tonian of type H = H0 + λV, the idea is to apply a transformation
D = eλS to get5: 5 Here we use, that the exponential of

an operator is given by its power se-
ries: eλS = ∑n(λS)n/n! and e−λS =

∑n(−1)n(λS)n/n!
H′ = D†HD = e−λS(H0 + λV)eλS

= H0 + λV + [λS, H0 + λV] +
1
2!
[S, [S, H]] + . . .

By using λ ≪ 1, we want to approximate the system by neglecting
terms of second order or higher in λ. We diagonalize the Hamiltonian
to first order if we choose S such that V + [S, H0] = 0. We here use
the ansatz:

S = (aσ+ − a†σ−) (3.26)

Such that:6 6 Where we can use the commutator rela-
tion [AB, C] = A[B, C] + [A, B]C to find[
a†a, a†] = a† and

[
a†a, a

]
= −a. While

[σz, σ+] = −2σ+ and [σz, σ−] = 2σ−.
[H0, S] =

[
ωra†a + ωqσz/2, aσ+ − a†σ−

]
= −ωr

(
a†σ− + aσ+

)
− 1

2
ωq

(
2a†σ− + 2aσ+

)
= −(ωr + ωq)

(
a†σ− + aσ+

)
= −∆

(
a†σ− + aσ+

)
= − g

λ

(
a†σ− + aσ+

)
= −V

This exactly leads to:
V + [S, H0] = 0

While we get a new contribution to the Hamiltonian by:

[S, V] = λg
[

a†σ− − aσ+, a†σ− + aσ+
]

= λg
(

a†aσ−σ+ − aa†σ+σ−
)

= 2λg
(

a†aσz +
1
2

λgσ+σ−

)
= λ2g2 |1⟩ ⟨1|+ 2χa†aσz

Here we have defined χ = g2/∆ as the dispersive shift, which here is
a measure of how much the resonator frequency moves depending
on the state of the qubit. The λ2g2 |1⟩ ⟨1| is a contribution to the first
excited state of the qubit and will normally just be absorbed into a
new qubit frequency slightly shifted by resonator. The dispersive
Hamiltonian now reads:

H =
(

ω̃ra†a + χσza†a
)
+

1
2

ω̃01σz (3.27)

Where the qubit and resonator frequency are altered to include the
shift they impose on each other [25]. To see the effect, one could
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simulate driving the resonator at different frequencies and plot the
expected photon number ⟨n⟩ at the end of the simulation and repeat
for different qubit states. A result of such a simulation can be seen in
Figure 3.2. In this case, the width of the curves are dependent on the
drive time, often one will however see them Lorentzian shaped, with
a width determined by the lifetime of the photons in the resonator.
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Figure 3.2: Simulated driving of a qubit-
resonator system using the dispersive
approximation.

If we were to consider multiple levels of the qubit, the calculation
require a bit more work. This has been done in Appendix B and leads
to a general form of the Hamiltonian for a multi level qubit:

H′ =

(
ωr + ∑

k
χk |k⟩ ⟨k|

)
a†a + ∑

k
(ωk + δk) |k⟩ ⟨k| (3.28)

Where the quantities are derived from a coupling matrix with ele-
ments gij = g ⟨i|n|j⟩ and the qubit energies as:

χij = |gij|2
(

1
ωij − ωr

+
1

ωij + ωr

)
(3.29)

δij =
|gij|2

ωij − ωr
(3.30)

χi = ∑
j

χij (3.31)

δi = ∑
j

δij (3.32)

In this form, both the resonator frequency at the ground and first
excited state of the qubit is shifted by an amount. This alters the
effective dispersive shift between these two [5]:
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Figure 3.3: Same simulating driving as
Figure 3.2, but with a 3 and 5 level qubit
respectively.

χ ≈ χ01 + χ12/2 = −g2
01/∆

(
1

1 + ∆/α

)
(3.33)

The effect can be seen in Figure 3.3 where the second excited state
moves the frequency of the first much closer. This repeats when
adding a third, fourth or higher excited state.

When deriving the equations the dispersive model, we neglect
terms of order λ2 or above. If we were to keep this term, it would
have been multiplied with a a†a. If the mean photon number would
have more than order 1/λ2, it is no longer valid to throw the terms
out. To be sure the dispersive model is a good approximation, one
should therefore stay under a critical photon number, where ncrit =

∆2/4g2 [5]. When calibrating our qubit in chapter 7, we will find a
critical photon number of ncrit ≈ 81, and since we will be driving the
resonator to around ⟨n⟩ ≈ 21 ≈ ncrit/4, this is well below the critical
number. The dispersive approximation should therefore still provide
a good model [25].

3.2.3 Readout Drive in the Dispersive Approximation

When we perform a readout, we drive a capactively coupled line on
the resonator like what we did with the qubit in Section 3.1. Choosing
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a driving pulse with a rectangular envelope and phase 0, we have a
contribution to the Hamiltonian of the form:

Hdrive = ϵ cos(ωdt)(a + a†) =
ϵ

2

(
eiωdt + e−iωdt

)
(a + a†) (3.34)

where ϵ is the amplitude of the drive and ωd is the drive frequency.
As with the last few times we encountered fast rotations, we now
enter the rotating frame to cancel the rapidly oscillating terms. We
choose the time dependent transformation:

U (t) = exp

(
−it ∑

k
(ωk + δk) |k⟩ ⟨k|

)
⊗ exp

(
−itωd a†a

)
(3.35)

To find effective Hamiltoninan:

He f f = ˙iU (t)U †(t)) + U (t)HU †(t) (3.36)

We find the contribution from the "centrifugal" term as:

˙iU (t)U †(t)) = −it ∑
k
(ωk + δk) |k⟩ ⟨k| − itωd a†a (3.37)

The drive hamiltonian transforms as:

Hdrive → U (t)HU †t

=
1
2

ϵ(eiωdt + e−iωdt)
[
U (t)(a + a†)U †(t)

]
=

1
2

ϵ(eiωdt + e−iωdt)
[

aeiωdt + a†e−iωdt
]

Neglecting the fast rotating terms (∝ e±2iωdt), we get the effective
drive Hamiltonian:

Hd,e f f = ϵ(a + a†) (3.38)

Such that the total effictive Hamiltonian now becomes:

He f f =

(
ωr − ωd + ∑

k
χk |k⟩ ⟨k|

)
a†a + ϵ(a + a†) (3.39)

Which gives a nice time-independent Hamiltonian for an m-level qubit
resonator system which will prove ideal for simulation purposes. One
could have driven with a sine instead of a cosine and the form would
have been iϵ(a† − a).

3.3 I-Q Phase Space

In the last section, we showed how the resonator experiences a state
dependent shift of its frequency depending on the qubit. A valid way
of doing readout is to drive the resonator at the frequency associated
with |1⟩. If we experience photon absorption by the resonator, we
label the state "1". Often it is however beneficial to drive the resonators
in between the two frequencies [26]. In this section, we will built
up the tools for visualizing the two dimensional information in an
IQ-plane which will allow us to understand why this is the case.
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For a quantum harmonic oscillator, we represent the state by in-
troducing the raising and lowering operator from the position and
momentum: a ∝ x + ip and a† ∝ x − ip. We can of course always
measure x or p by representing them as x ∝ a + a† and p ∝ i(a† − a).
Because of Heisenberg’s uncertainty principle, we can however not
know both of them at once. This is summed up in the relation between
their uncertainties: σxσp ≥ 1/2. The same ideas can also be used to
think about the state of the resonator. Here we define the quadrature
operators which also obey Heisenberg’s uncertainty principle. They
are defined as[27]:

Q = a + a† I = i(a† − a) (3.40)

3.3.1 Coherent States

In a Harmonic Oscillator, the number states have expectation values
⟨x⟩ = ⟨p⟩ = 0. To get non-zero values of these expectation values, one
is required to have superposition states with adjacent components. An
example is cn |n⟩+ cn+1 |n + 1⟩, which would satisfy ⟨x⟩ ∝

〈
a + a†〉 ̸=

0. The more natural states would be the eigenstates to the lowering
operator:

a |α⟩ = α |α⟩ (3.41)

Where we can expand |α⟩ into the Fock basis. This gives us:

a ∑
n

Cn |n⟩ = ∑
n=1

Cn
√

n |n − 1⟩ = α ∑
n=0

Cn |n⟩ (3.42)

Here we can extract a relation between their coefficients:
√

nCn = αCn−1 (3.43)

If we know C0, we can now determine the rest of the series by:

CN =
αn
√

n!
C0 (3.44)

Ultimately, we can find an expression for the state |α⟩ in terms of the
raising operator.

|α⟩ = C0 ∑
n

αn
√

n!
(a†)n |0⟩ (3.45)

and C0 is found from the normalization to be C0 = e−|α|2/2. To
represent the coherent state in the Fock space, we now have:

|α⟩ = e−|α|2/2 ∑
n

αn
√

n!
|n⟩ (3.46)

Where each complex α corresponds to a coherent state. If α = 0, we
have the vacuum state which is the same as the vacuum Fock state
|α = 0⟩ = |n = 0⟩ [27].

3.3.2 Phase Space Representations

With the coherent states we have a set of states that span a two-
dimensional plane. We can use these to formulate a two dimensional
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pseudo-probability density function for values sets of the quadrature
components (I, Q). Such a distribution should take the Heisenberg
uncertainty principle into account, such that the vacuum state for
example should be a two dimensional Gaussian with standard devia-
tion 1

2 . Another desired property of this distribution should be the
ability to express expectation values, ⟨O⟩ = ⟨ψ|O|ψ⟩ in phase space.
If we were to represent an operator in a coherent basis, it would take
the form:

O =
∫

dα2O(α, α∗) |α⟩ ⟨α| (3.47)

The expectation value ⟨O⟩ will now take the form:

⟨O⟩ = ⟨ψ|O|ψ⟩

= ∑
n
⟨ψ|

∫
dα2O(α, α∗) |α⟩ ⟨α|ψ⟩

=
∫

dα2O(α, α∗)| ⟨ψ|α⟩ |2

Here | ⟨ψ|α⟩ | takes the role of a probability distribution in the co-
herent phase space. To further ensure that the function is properly
normalized, we must have the sum of all probabilities to equal 1. This
is enforced by demanding that the expectation value of the identity
is equal to 1. But since the set of coherent states are overcomplete
(the fact that the integral is two dimensional, should be a hint), the
identity has an extra factor of 1/π [27].

1 = ⟨1⟩ =
∫

dα2 1
π
| ⟨ψ|α⟩ |2

This gives us a pseudo-probability function given by:

Q(α) =
1
π
| ⟨ψ|α⟩ |2 (3.48)

This even works, when we have non-pure states represented by a
density matrix (as we will soon introduce in Section 4.1). Here it is
called the Husimi Q-function and is given by:

Q(α) =
1
π
⟨α|ρ|α⟩ (3.49)

The Q-function is a powerful tool, which allows us to visualize states
in the phase space. Some common states like the vacuum state, a
Fock state and a coherent state can be seen in Figure 3.4.

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Im
(

)

Vacuum State

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Im
(

)

Fock State with n = 3

6 4 2 0 2 4 6
Re( )

6

4

2

0

2

4

6

Im
(

)

Coherent State = 2 + 2i

Figure 3.4: Example of Different Q-
functions for vacuum state, Fock state
(n = 3) and a coherent state with α =
2 + 2i.

3.3.3 The Driven Resonator in the IQ Plane

With the new formulation of Q-functions, we can visualize the readout
drive as a separation in the IQ plane. Let us explore what happens,
when we drive the resonator while considering the qubit to be a two
level system subject to the Hamiltonian:

He f f = (ωr − ωd + χσz) a†a + ϵ(a + a†) (3.50)

We can find the equation of motion of the operator a in the Heisenberg
picture [16]:

ȧ(t) = i
[

He f f , a
]
= −i

[
(ωr − ωd + χσz) a†a + ϵ(a + a†), a

]
(3.51)
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And using the commutation relations, we find:

ȧ(t) = −i ((ωr − ωd + χσz) a(t)− ϵ) (3.52)

We now consider the resonator to be in a coherent state |α⟩ (initially
we consider α(t = 0) = 0) and the qubit is in |k⟩ with k = 0, 1. By
looking at the expectation value of the operator, which will be the
same in the Heisenberg and Schrödinger pictures, we get:

d
dt

⟨α, k| a |α, k⟩ = ⟨α, k| − i (ωr − ωd ± χ) a(t) + iϵ |α, k⟩

d
dt

α(t) = −i (ωr − ωd ± χ) α(t) + iϵ (3.53)

Which is a differential equation for the complex number describing
the coherent state α. Integrating this equation numerically for the
vacuum state coupled to a qubit in either the ground or excited state,
we get the results displayed in Figure 3.5. Notice how the phase
separation of the two coherent states are better a distinguishing them
than their respective distance to Origo.
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Figure 3.5: Driven resonator in the dis-
persive model where the qubit state is
either 1 or 0. We use the device pa-
rameters for the constants in Equation
4.53 which we will calibrate in Chap-
ter 7. The path of I, Q coordinates are
displayed along with the standard devi-
ation of a half, which we have for coher-
ent states in the IQ plane.



4 Dynamics of Open Quantum Systems

Up until now, we have considered the qubit and resonator as an
isolated system. When not interacting with the environment, the
system follows unitary time evolution described by the Schrödinger
equation. Ideally, the system would be isolated, but unfortunately, the
reality is that our devices interact with the environment. To properly
determine its dynamics, we have to consider open quantum systems.

4.1 Density Matrix Formalism

First, we need to reformulate our representation of a quantum state.
Up to now, a state has been represented by at state vector |ψ⟩, where
the state can be a superposition of states in some basis: |ψ⟩ = ∑i ci |i⟩,
where ci is the complex coefficient and the state is normalized such
that ∑ |ci|2 = 1. While this is a great formalism when you have knowl-
edge about the entire system, it is not great at handling interactions
with an unknown environment. In the density matrix formalism, we
represent a single state of a quantum system, not as a vector, but by a
matrix. We will here follow the introduction in [28].

To describe an open system, we introduce the formalism of density
matrices. In this formalism, a classical ket state would be rewritten as:

ρpure = |ψ⟩ ⟨ψ| = ∑
i

pi |i⟩ ⟨i| (4.1)

where pi = |ci|2 is the probability of finding the state |i⟩ on mea-
surement. A ket state is also called a pure state, since there exists
some basis, where px = 1 and pi = 0 for i ̸= x. Since the trace is
independent of basis, a pure state is characterized by the condition:

Tr
(

ρ2
pure

)
= 1 (4.2)

In general, we can however expand the formalism to include more
states than pure states. For a density matrix in general, the conditions
are that the probabilities must sum to 1 and they should be positive:

Tr(ρ) = 1 (4.3)

pi ≥ 0 (4.4)

Within these conditions we can also formulate non-pure states. An
example of such can occur if we have two coupled two level systems
and an unknown observer measures one of the systems. Before the
measurement, we have an entangled state1:

1 The ⊗ references to the product state
of two Hilbert spaces: H2 ⊗H2. Some-
times the ⊗ will be omitted and the state
|11⟩ will represent |1⟩ ⊗ |1⟩.

22
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|ϕ+⟩ =
1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) (4.5)

which in density matrix formalism with respect to the basis |00⟩, |01⟩,
|10⟩, |11⟩ will be described by:

ρϕ+ =


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

 (4.6)

Here the entanglement between the states give us off-diagonal ele-
ments. These are called coherences since they refer to the entangle-
ment for the two states. If the unknown observer were to measure the
state of the second two level system, but not share the outcome, we
would have 50 percent chance of getting |00⟩ and 50 for |11⟩, but the
systems would no longer be in a superposition. This fact is described
by the density matrix:

ρ =


1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

 (4.7)

where the coherences are 0. Without the coherence elements, this
is not an entangled superposition, but rather mean that half of an
ensemble of this state would in |00⟩ and the other half in |11⟩. This is
known as a mixed state, and has Tr

(
ρ2) < 1. 2 In general, we write 2 This fact can not be represented in the

bra-ket notation that we are used to, and
here lies the true power of the density
matrix formalism: we quantify entangle-
ment versus a fraction of populations.

the full density matrix as:

ρ = ∑
ij

ρij |i⟩ ⟨j| (4.8)

4.1.1 Expectation Values

The expectation value, ⟨ψ⟩ = ⟨ψ|A|ψ⟩, is in the density matrix for-
malism calculated by:

⟨A⟩ = Tr (Aρ) (4.9)

From this expression, we can recover the expectation value for pure
state by:

⟨A⟩ = Tr (ρA) = Tr

(
∑
ij

ρij |i⟩ ⟨j| A

)
(4.10)

= ∑
k
⟨k|
(

∑
ij

ρij |i⟩ ⟨j| A

)
|k⟩ (4.11)

= ∑
i
|ci|2 ⟨i|A|i⟩ (4.12)

where the sum is over a basis {ψi}.
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4.1.2 Interactions with the Environment

The properties of the of the density matrix allows us describe inter-
action with the environment. Start with considering the combined
Hilbert space of two systems:

H = H1 ⊗H2 (4.13)

A measurement in the second system will now have affect the state
of both systems. By measuring system 2 it collapses to |i⟩ ⟨i| with
probability pi = ρ2,ii. If we however, have no knowledge of the
second system, we would have to average over all the outcomes. This
procedure is done by doing a partial trace of the second system. If we
define the whole density matrix as ρtotal = ∑ijkl ρijkl |i⟩ ⟨j| ⊗ |k⟩ ⟨l| 3, 3 Often we will represent the four-index

density matrix as a two dimensional by
concatenating the dimensions. In this
representation the four indices can be
understood as indexes for block matri-
ces. The i, k indexes block matrices and
j, l takes the element from the given
block matrix.

tracing out system 2 would be written:

Tr2(ρtotal) = Tr2

(
∑
ijkl

ρijkl |i⟩ ⟨j| ⊗ |k⟩ ⟨l|
)

= ∑
ij

∑
kl

ρijkl |i⟩ ⟨j| ⊗ ∑
m
⟨m|k⟩ ⟨l|m⟩

= ∑
ijm

ρijmm |i⟩ ⟨j| (4.14)

If we again consider the state |ρ+⟩ from Equation 4.5 but only have
control of the first two level system, then our effective density matrix,
would be found as:4 4 effectively we keep all the terms of the

first part of the Hilbert space where the
second part is the sameρ1,e f f = Tr2

(
1
2
(|00⟩ ⟨00|+ |00⟩ ⟨11|+ |11⟩ ⟨00|+ |11⟩ ⟨11|)

)
(4.15)

=
1
2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) (4.16)

Which is exactly the totally mixed density matrix, we had in the
previous subsection [28].

4.1.3 Quantum Maps

Allowing for loss of entanglement in a quantum process, we can
relax the unitary requirement which came from conserving the inner
product of our state vector. Instead we require the mapping of a
density matrix to take it into another density matrix:

Λ(ρ) → ρ′ (4.17)

For it to be physical, we need it to fulfill the following two require-
ments. First, it should be a complete positive (CP) map, such that
ρii ≥ 0 for all i. This requirement ensures that a map can not map a
density matrix to something with negative probabilities. A CP map
can be shown to have a representation of the type [29]:

Λ(ρ) = ∑
α

KαρK†
α (4.18)

where Kα is an operator acting on states in the Hilbert space of
interest5. This representation is called the Kraus representation and 5 Which does not have to be Hermitian,

Unitary or invertible.
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Kα are called the Kraus operators. A further requirement is that
mappings should preserve the trace of density matrices, Tr(ρ) =

Tr(ρ′) = 1. This condition is called to be Trace Preserving (TP). This
is fulfilled if6: 6 This is seen when writing 1 = Tr(ρ′) =

Tr
(
∑α KαρK†

α

)
= ∑α Tr

(
KαρK†

α

)
=

∑α Tr
(
K†

αKαρ
)
= Tr

(
∑α K†

αKαρ
)

which
is true if ∑α K†

αKα = 1.

∑
α

K†
αKα = 1 (4.19)

To summarize, a physical quantum map is a complete positive and
trace preserving (CPTP) mapping of a density matrix into another
[29].

4.2 Time Evolution of Density Matrices

As mentioned in Section 1.3, the time-evolution of a quantum state
follows the Schrödinger equation: i∂t |ψ(t)⟩ = H |ψ(t)⟩. This equation
can7 be solved with the time evolution operator U (t) = exp(−iHt) 7 for a time independent Hamiltonian

to get |ψ(t)⟩ = U (t) |ψ(0)⟩. Applying this to the density matrices to
find the time-dependence gives us:

ρ(t) = ∑
ij

ρij |ψi(t)⟩
〈
ψj(t)

∣∣ = ∑
ij

ρij U (t) |ψi(0)⟩
〈
ψj(0)

∣∣U †(t)

= U (t)ρ(0)U †(t) (4.20)

And the derivative:

∂tρ(t) = (∂tU (t))ρ(0)U †(t) + U (t)ρ(0)(∂tU †)

= −iHρ(t) + iρ(t)H

= −i[H, ρ(t)] (4.21)

is the differential equation for unitary evolution of a density matrix
and is equivalent to Schödinger’s equation. We can however extend
this to include interactions [28].

4.2.1 Random Unitary Transformation

Before going into the general derivation, we will consider an example
where we have an interaction with the environment that alters the
dynamics of our system. In this example, the environment can be
modelled as randomly adding a white noise term to the Hamilton in
form of some hermitian operator θG where θ is a normally distributed
variable with variance λ∆t and mean 0. This leads to a unitary
transformation of e−iθG over a small time step . When taking the limit
to an infinitesimal time step, ∆t → dt, the probability density function
of θ is given by:

P(θ)dθ =
dθ√

4πλdt
exp

(
− θ2

4λdt

)
(4.22)

Since the contribution is random, we average over all the possibilities.
To first order in dt, this leads to the following mapping:
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ρ(t + dt) =
∫ ∞

∞
dθP(θ)e−iGθρ(t)eiGθ

=
∫ ∞

∞
dθP(θ)(1 − iGθ − 1

2
G2θ2 . . . )ρ(t)(1 + iGθ − 1

2
G2θ2 . . . )

=
∫ ∞

∞
dθP(θ)

(
ρt −

1
2

θ2(G2ρ(t) + ρ(t)G2 − 2Gρ(t)G
)
+O(dt3/2)

dρ(t) = −λdt
2

(
G2ρ(t) + ρ(t)G2 − 2Gρ(t)G

)
(4.23)

where we in the third line used, that θP(θ) is odd and its integral
0 while the integral of

∫
dθP(θ)θ2 = λdt. Equation 4.23 is our first

encounter with a time evolution of a Lindblad form. In Section 4.3 we
will look at qubit-environment interactions taking exactly this form,
but first we will do a more formal derivation of the Lindblad Master
Equation [30].

4.2.2 Lindblad Master Equation

In the above examples, we have shown how unitary or a random
unitary transformation looks in density matrix formalism. The Lind-
blad Master Equation generalizes both of these examples. We will
here assume that the Lindblad equation follows a CPTP map, and by
doing a Markovian assumption, a proper choice of Kraus operators
will lead us to the form. The derivation here follows the methods
described by Preskill in [31].

To model this system, we assume that the interact weakly with
an environment, such that the information in and out of the system
happens at a much slower rate than the environment resets itself. The
dynamics of our system is then said Markovian and only depend on
the current state of the system and some general parameters of the
environment. By using the markovian assumption, the time evolution
of a state in an infinitesimal time-interval dt is given by a CPTP map:

ρ(t + dt) = Λ[ρ(t)] (4.24)

For a small time step dt, we can consider the map to be linear in dt.

Λ(ρ) = ρ + dtL[ρ] (4.25)

Where the Lindbladian L[ρ] is the super-operator8 of interest since it 8 A super operator refers to a linear oper-
ator acting on a density matrix. It can be
some combination of applying operators
from both left and right.

gives us the differential equation:

dρ(t) = L[ρ(t)]dt (4.26)

To find a representation of L, we can write out the Λ in the Kraus
representation:

ρ(t + dt) = Λ[ρ(t)] = ρ(t) + dtL[ρ(t)] = ∑
α

Mαρ(t)M†
α (4.27)

where the Kraus operators in general can be time-dependent. To find
the set of operators that fulfill Equation 4.27 the mapping should be
linear in dt and reduce to identity for dt = 0. Any mapping linear
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in dt can be described by setting M0 = 1 + O(dt) and Mα = O(
√

dt).
We now define the mapping as:

M0 = 1 + (−iH + K)dt (4.28)

Mα =
√

dtLα α ≥ 0 (4.29)

Where we will assume H, K to be hermitian9 and H, K, Lα are all 9 Here we lose generality. We could have
kept them general through the whole
derivation, but only the hermitian part
would stay to the end

independent of dt. Further introducing the trace preserving condition
for the map and keeping terms to first order in dt, we find:

1 = ∑
α

Mα M†
α = (1 + (−iH + K)dt) (1 + (iH + K)dt) + dt ∑

α≥1
LαL†

α (4.30)

= 1 + dt

(
2K + ∑

α≥1
LαL†

α

)
+O(dt2) (4.31)

Which only holds for:

K = −1
2 ∑

a
LaL†

a (4.32)

where a is reindexing of α by a = α − 1. Introducing this back in
Equation 4.27:

ρ(t) + dtL = (1 + (−iH + K)dt) ρ(t) (1 + (iH + K)dt) + dt ∑
α≥1

Lαρ(t)L†
α (4.33)

= ρ(t) + dt (−iHρ(t) + iρ(t)H) + dt

(
∑
a

Laρ(t)L†
a + Kρ(t) + ρ(t)K

)
+O(dt2) (4.34)

= ρ(t)− idt[H, ρ(t)] + dt ∑
a

(
Laρ(t)L†

a −
1
2

LaL†
aρ(t)− 1

2
ρ(t)LaL†

a

)
+O(dt2) (4.35)

We now arrive at the final form of the Lindblad Master Equation:

ρ̇(t) = L[ρ] = −idt[H, ρ(t)] + dt ∑
a
D[La]ρ(t) (4.36)

where the dissipator, D is a superoperator defined by:

D[La]ρ(t) = Laρ(t)L†
a −

1
2

LaL†
aρ(t)− 1

2
ρ(t)LaL†

a (4.37)

While we assumed that H and K were hermitian this was not nec-
essary. If we were to have them general and decompose them into
a hermitian and anti-hermitian part H = 1

2 (H + H†) + 1
2 (H − H†),

the anti hermitian part would cancel out and not be relevant for the
dynamics.

With this CPTP map the operators are conveniently named to
illustrate the physics. H is of course the Hamiltonian and the equation
reduces to the unitary evolution if we set all Lα = 0. The Lα are
called Lindblad operators and can be interpreted as decoherence of
or dissipation from the system. If we were to set L0 =

√
λG and Lα

for α ̸= 0, we recover the random unitary transformation which we
saw in Section4.2.1 [31].
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4.2.3 Numerical Lindblad Master Equation

To solve the Lindblad equation numerically, we need it in a form
solveable by the methods covered in Section 1.3.1. To numerical
integrate the equation, the Qutip library reformulates the equations to
the super operator formalism [19]. The general idea is to represent a
density matrix as a vector by concatenating the axis. By representing
the density matrices as (very long) vectors, the super operators can be
represented as matrices10. With this formulation, we again achieve a 10 This is much deeper topic one could

use to look at the properties of quantum
maps. In this thesis, we just use it to
make suitable numerical contribution,
so the small introduction will have to
suffice.

linear differential equation with a matrix multiplied by vectors which
is convenient to implement. Since we also need to keep track of the
coherences of the density matrix, the size of the vectors are now n2

and matrices n2 × n2. In conclusion, the Lindblad Master Equation
can be solved just like the Schrödinger equation, but we will now
have a much larger space to keep track off.

4.2.4 Monte Carlo Approximation

While the Lindblad Equation is a very strong mathematical tool
for describing quantum mechanics, numerically simulating it scales
heavily with the size of our Hilbert space. To reduce the complexity
from n2 × n2 back to n × n, we can make use of a Monte Carlo
approach to simulating the Lindblad equations. In the Lindblad
equations, the Lindbladian terms can be split into an operator and
a scalar determining the rate which it is applied

√
γL, where γ is

the rate. Instead of simulating the full dynamics, we can instead
simulate using the Schrödinger equation and in each time step apply
the Lindblad operator with a probability determined by the rate and
the size of the time step, γ∆t. Repeating this multiple times, we can
estimate the expectation value or the density matrix at a given time
by taking averages over the outcomes11[19].

11 While this is the general idea, the
implementation is more sophisticated,
since it draws the time to next appli-
cation of the operator from the proper
distribution. Then the Schrödinger’s
equation can be integrated up until that
point.

4.3 Dissipation and Decoherence in Qubits

We will now take a look, at how coupling to the environment affects
the qubit and resonator. While a lot of interesting physics is associated
with the interaction with the environment, we will with the Lindblad
equation at hand only look at the qubit-resonator system as an open
system and consider the environment unchangeable. With this, we
will focus in particular on a few parameters describing the interaction:
the temperature τ, characteristic time of qubit decay T1 characteristic
time of qubit dephasing T2 and lastly the rate of photon decay from
the resonator κ.

4.3.1 Density Matrix of a Qubit

First, it will be beneficial to expand the representation of a qubit to its
density matrix. If we take an arbitrary two level state as described in
Section 1.2.2, we find an example of a pure state density matrix by just



CHAPTER 4. DYNAMICS OF OPEN QUANTUM SYSTEMS 29

taking its product with itself: |ψ⟩ = cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩

ρqubit = |ψ⟩ ⟨ψ| =
(

cos2(θ/2) e−iϕ cos(θ/2) sin(θ/2)
eiϕ cos(θ/2) sin(θ/2) sin2(θ/2)

)

=
1
2
+

(
cos(θ) e−iϕ sin(θ)

eiϕ sin(θ) − cos(θ)

)

=
1
2
(1 + a⃗ · σ⃗) (4.38)

Where σ⃗ = [σx, σy, σz] and a⃗ = [sin θ cos ϕ, sin θ sin ϕ, cos θ] is the
coefficients[5]. The resemblance to Cartesian coordinates allow us to
think about a⃗ as vector pointing to the state.

x

y

|0

|1

|a| = 1

x

y

|0

|1

|a| < 1

Figure 4.1: Pure state (top) and mixed
state (bottom) visualized on the Bloch
Sphere.

The representation in Equation 4.38 provides even more flexibility.
When we have a pure state, |⃗a| = 1, and the vector points to the unit
sphere. However ρ = 1

2 1 is also a valid density matrix, namely the
fully mixed matrix. Here |⃗a| = 0. In terms of the Bloch sphere, we
can think of pure states as living on the surface while mixed states
will have an associated vector pointing somewhere inside |⃗a| < 1 ⇔
Tr
(
ρ2) < 1.

4.3.2 The Temperature of the System

Even at low temperatures, one should expect to see the temperature
have an effect on the qubit. If we consider the qubit connected to
the environment as bath, we know from statistical physics that the
probability of finding the qubit in different energy states is determined
by Boltzmann statistics [17]. Limiting ourselves to a two level system,
we would find the qubit in |0⟩ with prob(|0⟩) = 1/(1 + e−βω01) and
prob(|1⟩) = e−βω01 /(1 + e−βω01). While the idea is to initialize the
qubit in |0⟩, this fact means that waiting until equilibrium our qubit
would be in:

ρequilibrium =
1

1 + e−βω01

(
1 0
0 e−βω01

)
(4.39)

4.3.3 Longitudinal Relaxation

If the qubit exchanges energy with the environment it could drive
transitions between the states |1⟩ ↔ |0⟩. The relaxation from |0⟩ → |1⟩
at a rate Γ↓ will in the Lindblad equation be described by the Lindblad
operator L↓ =

√
Γ↓ |0⟩ ⟨1| and correspondingly L↑ =

√
Γ↑ |1⟩ ⟨0|

will describe the excitement. A qubit which relaxes energy into the
environment will have time dynamics which follows12: 12 We use here the anti-commutator

{A, B} = AB + BA to write the Lind-
bladian a bit more compactlyρ̇(t) = D[L↓]ρ(t))

ρ̇(t) = Γ↓

(
|0⟩ ⟨1| ρ(t) |1⟩ ⟨0| − 1

2
{|1⟩ ⟨0|0⟩ ⟨1| , ρ(t)}

)
ρ̇(t) = Γ↓

(
ρ11 |0⟩ ⟨0| − ρ11 |1⟩ ⟨1| −

1
2
(ρ01 |1⟩ ⟨0|+ ρ10 |0⟩ ⟨1|)

)
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By looking at the individual components of the density matrix, we
find:

ρ̇00(t) = Γ↓ρ11(t) ρ̇10(t) = −1
2

Γ↓ρ10(t)

ρ̇01(t) =
1
2

Γ↓ρ01(t) ρ̇11(t) = −Γ↓ρ11(t)

When adding the contribution from D[L↑]ρ(t) and introducing Γ1 =

Γ↓ + Γ↑, we find the diagonal elements to:

ρ̇00(t) = Γ↓ρ11(t)− Γ↑ρ00(t), ρ̇11(t) = Γ↑ρ00(t)− Γ↓ρ11(t) (4.40)

and the off-diagonal to:

ρ̇01(t) = −1
2

Γ1ρ01(t), ρ̇10(t) = −1
2

Γ1ρ10(t) (4.41)

The diagonal elements make up a set of coupled differential equation,
solving for these two13 and using Tr(ρ) = ρ00 + ρ11 = 1 gives: 13 This is done by writing the differen-

tial equation in matrix representation,
by diagonalizing the coefficient we find
a basis were the differential equation are
decoupled. Solving here and transform-
ing back gives the solution.

ρ00(t) =
Γ↓

Γ↑ + Γ↓
+

(
ρ00(t = 0)−

Γ↓
Γ↑ + Γ↓

)
e−t(Γ↑+Γ↓) (4.42)

and

ρ11(t) =
Γ↑

Γ↑ + Γ↓
+

(
ρ11(t = 0)−

Γ↑
Γ↑ + Γ↓

)
e−t(Γ↑+Γ↓) (4.43)

while the off-diagonals are simply solved by exponential decay:

ρ01(t) = e−Γ1t/2ρ01(t = 0), ρ10(t) = e−Γ1t/2ρ10(t = 0) (4.44)

From this we see the effects of energy exchange: excitations and
relaxations affect the occupation of |0⟩ and |1⟩ until they are in an
equilibrium. Further, the energy exchange also leads to decoherence
on the diagonal with a rate of Γ1/2. The dynamics are visualized in
Figure 4.2.
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Figure 4.2: Evolution of the diagonal
density elements if the qubit is initial-
ized in |0⟩ or |1⟩ respectively.

We can also compare the equilibrium position t → ∞ with the
equilibrium state described by the Boltzmann statistics in Equation
4.39. Here we find that the rates should satisfy:

Γ↓
Γ↑ + Γ↓

=
1

1 + e−βω01
⇒

Γ↑
Γ↓

= e−βω01 (4.45)

For low temperatures βω01 ≪ 1, this means that Γ1 ≈ Γ↓. The
characteristic time of the decay from an arbitrary density matrix to
the equilibrium is described by the characteristic time T1 = 1

Γ1
.

4.3.4 Dephasing

If the environment couples to σz it can alter the eigenenergy. This
will lead to dephasing since the rotating frame of the qubit will be
different from the one we expect. We can split this interaction in two
parts:

A slow part that compared to the experiment we run, such that we
can consider it a constant shift of the qubit frequency ω → ω + δω . We
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can look at the consequences of this by simply evolving the equations
unitarily.

A faster part which changes multiple times during the experiment.
If we consider this a normal distributed contribution to σz at each
small timestep (as white noise), we can model this like the random
unitary example, we considered in Section 4.2.1 in which we would
have the operator Lϕ =

√
Γϕσz. If we apply this Lindblad operator,

the time evolution would look like:

ρ̇(t) = D[Lϕ]ρ(t)) = Γϕ

(
σzρ(t)σz −

1
2
(σ2

z ρ(t) + ρ(t)σ2
z )

)
(4.46)

Since σ2
z = 1 and σzρ(t)σz flips the sign of the off-diagonals, we get:

ρ̇(t) = −Γϕ (|0⟩ ⟨1| ρ01 − |1⟩ ⟨0| ρ10) (4.47)

This gives us an extra contribution to the coherence terms, which are
simply solved by:

ρ01(t) = e−Γϕtρ01(t = 0), ρ10(t) = e−Γϕtρ10(t = 0) (4.48)

So if were to combine the decays from this section and the last, the
total dephasing rate would come out to be:

Γ2 = Γϕ +
1
2

Γ1 (4.49)

This is often described by the characteristic time of dephasing:

T2 =
1
Γ2

=
1

Γϕ + 1
2 Γ1

(4.50)

4.3.5 Resonator Decays

The coupled resonator also leaks photon to the environment. This
happens with a much higher rate since it is coupled to the feed line.
The output of photon also consist of two parts, unwanted dissipation
to the environment and leakage to the feed line which we are able to
detect. For photon loss the Lindbladian operator is given by L =

√
κa,

where kappa is the rate of dissipation.
In Section 3.3.3, we found a differential equation for the pointer

state of a coherent state, when we drive the resonator. If we also
consider the Lindbladian term, we get a further addition to the time
dependence of a in the Heisenberg picture . The time dependent
a(t) takes the form of d

dt a(t) = i[He f f , a(t)] + D[
√

κa](a)14. Here 14 While we only discussed the equa-
tions of motion the Heisenberg picture
above, operators take almost exactly the
same form. However, it comes with a
changed sign of the commutator. One
could check this by writing out the ex-
pectation values.

D[
√

κa](a) is given by:

D[
√

κa](a) = κ

(
a†aa − 1

2

(
a†aa + aa†a

))
(4.51)

Using the commutator relation
[
a, a†] = 1, this can be reduced to

D[
√

κa](a) = −1
2

κa (4.52)
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If we reintroduce this into the equations of motion, we find an addi-
tional term in the differential equation for the pointer states:

d
dt

α(t) = −i (ωr − ωd ± χ) α(t) + iϵ − κ

2
α(t) (4.53)

This dissipative term takes the effect of pushing the coherent state
towards the origin. If we were to repeat the driving of the resonator
with the dissipation, we see that driving off resonance gives a spiral
instead of circle towards some steady state. These steady state values
can also be found by solving for the steady state equation with
α̇(t) = 0. We find:

αss =
−ϵ

(ωr − ωd ± χ)− iκ/2
(4.54)

From which we can extract the steady state amplitude from Equation
4.55:

|αss| =
ϵ√

(ωr − ωd ± χ)2 + κ2/4
(4.55)

An example of driving the resonator with dissipation can be seen in
Figure 4.3.
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Figure 4.3: Driving of the resonator with
the qubit in ground and excited state.
The trajectories of the pointer states are
shown together with the steady state
amplitude.



5 Measurements

In the previous section, we described the effects of a system coupled
to its environment. In most cases the interactions of our system is
unwanted, but in one case it is necessary: readout. Without interacting
with the system, there is no way to gather information about it. Often
measurements are portrayed as instantaneous and projective, but the
reality is more complicated.

In this chapter, we will introduce the idea of a generalized measure-
ment using a Positive Operator-Value Measure. This will allow us to
modify the master equation to include terms representing backaction
and measurements. Most of this chapter is based on the excellent
introduction to continuous quantum measurements by Jacobs and
Steck [32].

5.1 Generalized Measurement

When one first encounter quantum mechanics, a measurement is an
instantaneous and complete projection of a state onto the measured
quantity. Measuring an observable given by the hermitian operator
in its eigenbasis, O = ∑n On |n⟩ ⟨n| (with |n⟩ the eigenstates of O)
would result in a projection of a state |ψ⟩ onto the state |n⟩ with
probability | ⟨n|ψ⟩ |2. In our measurement record, we would find the
corresponding value On. 1 This is indeed a possible measurement, but 1 In the formalism of density matrices

the probability is ⟨n|ρ|n⟩ and the pro-
jected state would be |n⟩ ⟨n|.

this von Neumann measurement is just a small set of possibilities which
can not explain what happens if we only extract partial information
from the system. We will here describe a more general description of
measurements.

5.1.1 Positive Operator-Valued Measure (POVM)

If we were to start with a state ρ and perform a von Neumann
measurement with the projection operator Pn = |n⟩ ⟨n|, we will get:

ρ f = |n⟩ ⟨n| = PnρPn

Tr(PnρPn)
, with probability: Tr(PnρPn) = ρnn (5.1)

In describing this projection, we often consider the output n with
probability ρnn but not always recognize that it equally gives us a
different value ̸= n with probability 1 − ρnn. In this case the state will
be proportional to ρ f ∝ ρ − ρnn |n⟩ ⟨n|. If we were to also represent
this with an operator Pnot n = 1 − Pn, we could think of the measure-

33
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ment as applying a set of the operators {Pn, Pnot n} and applying the
operator depending on the outcome.

By expanding this set from two to more operators, we can gener-
alize measurements. The generalization comes as a set of operators
{Ωm} that satisfy:

∑
m

Ω†
mΩm = 1 (5.2)

Applying an operator from this set alter the state according to (gener-
alizing Equation 5.1):

ρ f =
ΩmρΩ†

m
Tr(ΩmρΩ†

m)
, with probability: Tr

(
ΩmρΩ†

m

)
(5.3)

Here we are allowed to combine multiple measurements into single
questions. An example could be: what is the probability of measuring
the operator in an interval m ∈ [a, b]? This will be sum of probabilities:

P(m ∈ [a, b]) =
b

∑
m=a

Tr
(

ΩmρΩ†
m

)
(5.4)

Or rearranging by using linearity and cyclic properties of the trace:

P(m ∈ [a, b]) = Tr

(
b

∑
m=a

Ω†
mΩmρ

)
= Tr(Mρ) (5.5)

where the operator M = ∑b
m=a Ω†

mΩm is the Positive Operator Value
Measure (POVM). In this formalism, we can define an M on any
subset of {Ωm} [32].

5.1.2 Continuous set of Gaussian POVMs

We can further extend this from a finite set of operators, to operators
measuring a continuous variable. If we imagine a continuous variable,
x, that we can measure with a Gaussian precision, then we can
formulate the set of POVMS by creating a set of Gaussian measures
{Ωα} with width σ and mean α. The operators take the form:

Ω(α) =
1
N

∫ ∞

−∞
dx exp

(
− (x − α)2

2σ2

)
|x⟩ ⟨x| (5.6)

Where N is a constant such that the set satisfies Equation 5.2. We can
find the normalization by:

1 =
1
N 2

∫
dα
∫

dx exp
(
− (x − α)2

2σ2

)
|x⟩ ⟨x|

∫
dx′ exp

(
− (x′ − α)2

2σ2

) ∣∣x′〉 〈x′
∣∣

=
1
N 2

∫
dα
∫

dx exp
(
− (x − α)2

σ2

)
|x⟩ ⟨x|

=

√
πσ

N 2

∫
dx |x⟩ ⟨x| =

√
πσ

N 1

which is true with N = (σ2π)
1
4 . The set of operators now take the

form:

Ω(α) =
1

(σ2π)
1
4

∫ ∞

−∞
dx exp

(
− (x − α)2

2σ2

)
|x⟩ ⟨x| (5.7)



CHAPTER 5. MEASUREMENTS 35

To get some intuition, we can think about the two limiting examples.
First a pure state localized in space, ρ = |x0⟩ ⟨x0|. If we measure this
state with the of operators Ω(α) and get α, we find the final state, ρ f

is proportional to:

Ω(α) |x0⟩ ⟨x0|Ω†(α) =
1√
σ2π

∫
dx exp

(
− (x − m)2

2σ2

) ∫
dx′ exp

(
− (x′ − α)2

2σ2

)
|x⟩ ⟨x|x0⟩

〈
x0
∣∣x′〉 〈x′

∣∣
=

1√
σ2π

exp
(
− (x0 − α)2

σ2

)
|x0⟩ ⟨x0| (5.8)

Which when normalized is simply the same state, as we would expect
when measuring in the same basis. The probability of getting the
outcome α can also be found as

Tr
(

Ω(α) |x0⟩ ⟨x0|Ω†(α)
)
=

1√
σ2π

exp
(
− (x0 − α)2

σ2

)
(5.9)

We find that the probability density of a measurement outcome α is
normally distributed around x0. This probability is also the exact
normalization, we need in the above. Repeating the measurement, we
could come with a more confident estimate of x0.

If we started with the completely mixed state ρ = 1
N
∫

dx |x⟩ ⟨x|
with N a normalization constant2. The outcome after a measurement, 2 In this there would be some factor of in-

finity which we would normally remove
by considering á finite interval

α, would be proportional to:

Ω(α)ρΩ†(α) =
1√
σ2π

∫
dx′ exp

(
− (x′ − α)2

2σ2

) ∣∣x′〉 〈x′
∣∣ ∫ dx

1
N |x⟩ ⟨x|

∫
dx′′ exp

(
− (x′′ − α)2

2σ2

) ∣∣x′′〉 〈x′′
∣∣

=
1

N
√

σ2π

∫
dx exp

(
− (x − α)2

σ2

)
|x⟩ ⟨x| (5.10)

Narrowing the state to be Gaussian around the measured variable
and the probability of measuring α will be the same for all values of α

Tr
(

Ω(α)ρΩ†(α)
)
=

1
N (5.11)

since it is completely mixed.

5.1.3 Continuous Weak Measurement

We will in this section lay the foundation for making the continuous
weak measurement, where information is extracted from the system
at some rate. We can construct this process by dividing the time into
multiple steps of ∆t and applying the Gaussian POVM at each time
interval. We wish to formulate this in a way, where no information
should be extracted from the system if the duration goes to 0. At
small times, we assume the strength of the measurement3 to be linear 3 We can think off the strength as the con-

centration of the gaussian proportional
to 1/σ2.

in ∆t, such that the strength is determined by k∆t, where k is the rate
with which we extract the information. The operator applied in one
time step will then be of the form:

Ω(α) =

(
4k∆t

π

) 1
4
∫

dxe−2k∆t(x−α)2 |x⟩ ⟨x| (5.12)
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where α is the continuous label. If the state of the system is ρ the proba-
bility of measuring the operator Ωα is then: P(α) = Tr

(
Ω†(α)Ω(α)ρ

)
.

We find

P(α) =

√
4k∆t

π

∫ ∞

−∞
dx|ψ(x)|2e−4k∆t(x−α)2

(5.13)

We will now let the amount of sub-intervals go to ∞ such that ∆t → dt
while keeping the product constant. In this limit, the Gaussian will
be much wider than the wave function4. Under the integral, we can 4 If we assume the wave function to be

somewhat localized such that the vari-
ance of position is much smaller than
the variance of an infinitesimal measure-
ment

〈
X2〉− ⟨X⟩2 ≪ 1/kdt

the approximate the wave function as being localized |ψ(x)|2 ≈ δ(x −
⟨x⟩), such that the probability of the instantaneous measurement
yielding a specific α gives:

P(α) =

√
4k∆t

π
e−4k∆t(⟨X⟩−α)2

(5.14)

Now this means that at each instant, a value for α is drawn from this
distribution. The exact value for α also determines which operator
in the set Ω(α) is applied to the state according to Equation 5.3. The
measurement introduces stochasticity into the dynamics since there
will be drawn a stochastic variable at each time step. Drawing a
sequence of these variables and following the dynamics is called
unraveling the dynamics, and the corresponding list of variables will
make up our measurement record.

In anticipation for the next section, we will write an α drawn from
the distribution in Equation 5.14 as a stochastic variable:

αs = ⟨X⟩+ ∆W
∆t

√
8k

(5.15)

Where ∆W is a Wiener process which produces a normal distributed
parameter with variance ∆t and mean 0. This formulation often
appears in random walks like in Brownian motion[32].

5.2 Stochastic Master Equation

Before arriving at the stochastic master equation, we will introduce
some basics of stochastic calculus.

5.2.1 Ito’s Rules

In stochastic calculus, we do not only have the limit of ∆t → dt,
but we also need to consider what happens for ∆W. While the
properties come from a large field of stochastic calculus which is used
in fields from finance to diffusive processes, we will just cover some
fundamental rules from Ito calculus. The first rule comes from regular
calculus, which states that in the limit of ∆t → dt we ignore terms of
order dt2 or higher.

Secondly, if we have a time interval of some duration t2 − t1,
where some dynamical variable W changes. We split the interval in
n = (t2 − t1)/∆t substeps and sum the contributions from ∆W. This
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gives us:
n

∑
i=1

∆W (5.16)

Here we sum an identical variables from a Gaussian distribution
with mean 0 and variance ∆t. By the central limit theorem, the
distribution of the sum will converge to a normal distribution with
mean 0 and variance n∆t = t2 − t1. In taking the limit for n → ∞ and
correspondingly ∆t → dt such that their product is constant, this will
not only approximate the Gaussian but will be:

lim
n→∞

n

∑
i=1

∆W =
∫ t=t2

t=t1

dW = N (µ = 0, Var = t2 − t1) (5.17)

Which will also mean that integrating the dW2 or the variance for an
infinitesimal random variable would yield:

∫ t=t2

t=t1

dW2 = lim
n→∞

n

∑
i=1

∆W2 = t2 − t1 =
∫ t=t2

t=t1

dt (5.18)

Meaning that the variance of the random process will not itself be
random but be dt when integrated over any finite time interval:

dW2 = dt (5.19)

The last thing to remark is that we now also neglect terms of dWdt.
One way to think about this, is that a normal distributed variable
will be of the order given by the standard deviation. In a maybe
exploitative notation, this can be written as

√
dt meaning that dWdt

is of order dt
3
2 and in the infinitesimal limit be much smaller than

terms of order dW, dt and dW2 [33].

5.2.2 Stochastic Evolution of a Pure State

With Ito’s rules, we are now ready to see how a quantum state evolves
while we extract information from it. We will do this in two steps, first
we will look how a pure state evolves ρ = |ψ(t)⟩ ⟨ψ(t)| → ρ(t + dt),
if its subject to the continuous Gaussian measurement of a hermitian
operator X described in Section 5.1.3. To generalize this form, we
will try to derive it using the Kraus operators but inevitable fail
since measurements are not linear and we will instead force trace
preservation.

We will here consider a state |ψ(x)⟩ ⟨ψ(x)| which is pure. We split
the process of extracting information out in many substeps and let
them be infinitesimal ∆t → dt. This will correspond to applying
the POVM based on Ω(α) with ∆t → dt. At each application the
process will be stochastic, and will correspond to picking a stochastic
variable αs = ⟨X⟩ + dW/dt

√
8k determining which operator and

thereby which trajectory to follow. After a step of dt, the state will
then be:

ρ(t + dt) =
Ω(αs)ρ(t)Ω†(αs)

P(αs)
=

Ω(αs) |ψ⟩ ⟨ψ|Ω†(αs)

P(αs)
(5.20)
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The probability of αs was calculated above in Equation 5.14. Applying
the operator Ω(αs) gives:

Ω(αs) |ψ(t)⟩ =
(

4k∆t
π

) 1
4
∫

dxe−2kdt(αs−x)2 |x⟩ ⟨x|ψ(t)⟩

=

(
4k∆t

π

) 1
4

e−2k dt(αs−X)2 |ψ(t)⟩

Here capital X is an operator, which in its diagonal form is given by
X
∫

dx x |x⟩ ⟨x|. We can now write ρ(t + dt) as:

ρ(t + dt) =

√
4k∆t

π e−2k dt(αs−X)2 |ψ(t)⟩ ⟨ψ(t)| e−2kdt(αs−X)2√
4k∆t

π e−4k∆t(⟨X⟩−α)2
(5.21)

Canceling the constants and splitting the exponential in the denomi-
nator into both exponentials in the numerator, we have:

ρ(t + dt) = e−2kdt((αs−X)2−(αs−⟨X⟩)2) |ψ(t)⟩ ⟨ψ(t)| e−2kdt(αs−X)2−(αs−⟨X⟩)2)

= e−2kdt(X2−⟨X2⟩−2αs(X−⟨X⟩)) |ψ(t)⟩ ⟨ψ(t)| e−2kdt(X2−⟨X2⟩−2αs(X−⟨X⟩))

By substituting αs = ⟨X⟩+ dW/dt
√

8k, we can find:

− 2kdt(X2 − ⟨X⟩2 − 2(X − ⟨X⟩)(⟨X⟩+ dW/dt
√

8k))

=− 2kdt(X2 + ⟨X⟩2 − 2X ⟨X⟩)− 2
√

k(X − ⟨X⟩)dW

=− 2k(X − ⟨X⟩)2dt + 2
√

k(⟨X⟩ − X)dW

By substituting this back into the exponential, we can expand them
while only keeping terms of dt, dW and dW2:

ρ(t + dt) = ρ(t)− 2k
[
(X − ⟨X⟩)2ρ + ρ(X − ⟨X⟩)2

]
dt

+ 2
√

k((X − ⟨X⟩)ρ + ρ(X − ⟨X⟩))dW

+ 4k(X − ⟨X⟩)ρ(X − ⟨X⟩)dW2 +O(dt3/2)

By using dW2 = dt and writing ρ(t + dt) = ρ(t) + dρ(t) we find the
differential form of the stochastic differential equation:

dρ(t) = 2k
(

2XρX − X2ρ − ρX2
)

dt (5.22)

+ 2
√

k(Xρ + ρX − 2 ⟨X⟩ ρ)dW (5.23)

Comparing this equation with the Lindblad Equation (Equation 4.36)
we see, that the first term is exactly D[

√
kX]. Thus, a continuous

measurement gives a contribution which dissipates the system with
the applied operator. Further, there is a stochastic contribution, which
is dependent on the stochastic variable at each time step. The state is
changed by H[

√
k(X)] = 2

√
k(Xρ + ρX − 2 ⟨X⟩ ρ) and the measure-

ment record of drawn variables will be:

dX = ⟨X⟩ dt +
dW√

8k
(5.24)
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5.2.3 Stochastic Master Equation

In Section 4.2.2, we derived the Lindblad Master Equation by choosing
a set of Kraus operators. In this section, we will follow the same
heuristic, however, measurements are not a linear process since we
have to renormalize the state after measuring. We will have to enforce
normalization of the state by adding an additional term.

If we were to insist on a Linear map in dt we would also have
stochastic term according to dW such that we take one Kraus operators
of the form:

M = 1 − (iH − K)dt + cdW (5.25)

where we again have H and K hermitian and H, K, c independent of
dW and dt. Here we have for convenience only included one Kraus
operators, but we could have extended c to be a sum like we did in
the derivation for the Lindblad Equation or added other Lindbladian
terms with another Kraus operator. The trace preserving condition
for Kraus operators, now give

1 = Tr
(

Mρ(t)M†
)
= Tr

(
M† Mρ(t)

)
(5.26)

Expanding:

M† M = 1 + 2Kdt + (c† + c)dW + c†cdW2 (5.27)

By setting dW2 = dt, we get two constraints, one for dt and one for
dW. The first can easily be solved by determining K as:

2K = −c†c ⇒ K = −1
2

c†c (5.28)

If we were to do the same for the dW expression, we would have:

0 = c + c† (5.29)

To preserve the trace, we would need to have c + c† = 0. We could see
this as a condition on c, where c is taken to be anti-hermitian [34], or
we can do as [32] and accept the non-linearity in the re-normalization
step, and actively renormalize at each time step to preserve the trace
by subtracting

〈
c + c†〉 dW. If we do this, we write the mapping from

ρ(t) into ρ(t + dt):

ρ(t + dt) = Mρ(t)M† (5.30)

=
(
−i[H, ρ(t)] + Kρ(t) + ρ(t)K + cρ(t)c†

)
dt (5.31)

+
(

cρ(t) + ρ(t)c†
)

dW −
〈

c + c†
〉

ρdW (5.32)

Or writing everything in terms of the operator c, we find:

dρ = −i[H, ρ]dt +D[c]ρdt +H[c]ρdW (5.33)

with:

D[c]ρ = cρc† − 1
2

(
c†cρ + ρc†c

)
(5.34)

H[c]ρ = cρ + ρc† −
〈

c + c†
〉

ρ (5.35)
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The D[c] is exactly the one we found in the Lindblad equation and
describes some dissipation or backaction from measuring the system5. 5 In the Lindblad equation, we allowed

for multiple dissipation operators, this
could also easily introduced here by hav-
ing multiple cα and a corresponding Lα

for each. The we would just get a set of
D and H for each cα

The second term is defined by our current trajectory and is how the
system changes based on what we learn about it. When comparing
with the pure state from above, we see that it can be retrieved by set-
ting c =

√
2kX in the general form. If we generalize the measurement

record from this, we have[32]:

dr(t) =
〈
c + c†〉

2
dt +

dW√
4

(5.36)

5.2.4 Multiple Observers and Inefficient Measurement

If we consider two observers of a system measuring one operator each
cA and cB then the full stochastic master equation gets contributions
from each:

dρ(t) = −i[H, ρ] +D[cA]ρ(t)dt +H[cA]ρ(t)dW

+D[cB]ρ(t)dt +H[cB]ρ(t)dW

But observer A has no knowledge about the measurements from
observer B. Therefore she must average over them. Averaging over
all dW gives 0, and observer A will just see the backaction term:
D[cB]ρ(t)dt.

Inefficient measurements leads to similar results. If an observer
were to apply some measurement c, but only receive a fraction of
the information η ∈ [0, 1]. The system would still exhibit the full
backaction but less information will go into the stochastic update
of the density matrix. With inefficient measurement, the stochastic
master equation takes the form:

dρ = −i[H, ρ]dt +D[c]ρdt + ηH[c]ρdW (5.37)

And the record will have its signal scaled by a factor
√

η. If we instead
normalize the record such that it averages to the expectation value,
then we get the scaling on the noise term:

dr(t) =
〈
c + c†〉

2
dt +

dW√
4η

(5.38)

5.2.5 Numerical Integration of Stochastic Differential Equations

We are now set with a stochastic differential equation describing the
evolution of a quantum system subject to continuous measurement.
However, solving this and finding a closed-form expression for ρ(t)
analytically is as good as hopeless. Instead, we will perform a numeri-
cal integration, where the stochasticity will be a Monte Carlo element.
Repeating (or unraveling) the simulation multiple times, will each
give multiple trajectories and density matrices associated with our
knowledge of the system.

With a stochastic differential equation of the type

dX(t) = f (X(t))dt + g(X(t))dW(t) (5.39)



CHAPTER 5. MEASUREMENTS 41

In the simplest scheme, one can do a type of Euler integration, by
picking a small number ∆t and drawing a number ∆W from a normal
distribution with standard deviation

√
∆t, we can then calculate the

evolution of X in increments:

X(t + ∆t) = f (X(t))∆t + g(X(t))∆W (5.40)

In the limit of ∆t → dt, we had dW2 = dt, but with a finite step,
this will not be entirely true, and we need a small correction. This is
called the Milstein method [35] and we update according to:

X(t + ∆t) = f (X(t))∆t + g(X(t))∆W +
1
2

g(X(t))g′(X(t))
(

∆W2 − ∆t
)

(5.41)

To improve this method further, it is also possible multiple terms in
the Ito-Taylor expansion of the stochastic variable like we did with
the Adams method in Section 1.3.1. In the Qutip library which is
used to simulate the Stochastic Master Equation a Taylor 1.5 method
is used with the Milstein correction. This also includes a term propor-
tional to ∆W∆t from the Taylor-Ito expansion. Compared to the 12th
order implementation of the regular integration, this is however very
imprecise, and we will have to significantly reduce the timesteps to
make sure it is reliable. This also makes the trajectories expensive to
simulate [19].

5.3 Measurement of a Qubit

With the stochastic master equation, we can look at how the qubit
is actually measured. This is not an instantaneous process, but one
where the resonator is driven for hundreds of nanosecond while
its leakage back into the feed line is monitored. In the formulation
of this chapter, this means that we measure with the operator

√
κa.

However, the measurement is not perfect, and we both have a decay
of photon which do not reenter the feed line but instead leak out in
the environment. In addition, the signal from the feed line has to
be amplified multiple times for us to detect it at room temperature.
These amplification also blur our signal. Together, this leads to an
inefficient measurement, where we measure

√
κηa while the back

action term is given by
√

κa.
In the experiment, we can choose to measure one or both of the

quadratues. These methods are called homodyne where only one is
measured, or if we measure both, we have a hetereodyne measure-
ment. This is done by sending the signal into an IQ mixer, and we
can split the signal in an I and a Q component, measuring both a half
strength.

The corresponding operators to this process, can be thought of by
splitting the Heterodyne measurement in two Homodyne processes
with half the signal each. Such that we have

c0 =

√
κ

2
a, c π

2
= i
√

κ

2
a (5.42)
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We can model this as two inefficient observers, where we keep the
information of both of them. Combining the two records into a
complex number leads to

drheterodyne(t) = (⟨I⟩+ i ⟨Q⟩) dt +
1√
2ηκ

(dWI + idWQ) (5.43)

Where we have associated the two quadratures with I and Q. Both
of which come with a noise process. However, we should still notice
that D[a] = D[ia] such that applying the hetereodyne measurement
leads to the same dissipation as in the homodyne case. Physically,
this should also make sense since it is the same signal we look at, we
just split it in two [36].

5.4 Measurement Induced Backaction on the Qubit

The section above, does not directly measure the qubit, but is indi-
rectly measuring it by determining the state of the resonator. It is
however possible6 to see how the measurements interact with the 6 but difficult

qubit, if we trace the out the resonator. In Section 3.3.3, we considered
how the resonator coherent states: αg, αe associated with |0⟩ and |1⟩
behaves under dispersive readout.

The idea is to use the transformation P = |g⟩ ⟨g| D(αg)+ |e⟩ ⟨e| D(αe)

where D(α) is the displacement operator moving the coherent state
with an amount α in phase space. By applying this transformation,
the dynamics are moved from the resonator and unto the qubit such
that we can trace out the resonator and see how the qubit is affected
[37]. By transforming the Hamiltonian, and tracing out the resonator,
before doing the inverse transformation of the qubit. Gambetta et al.
finds that the qubit experiences an effective frequency shift by:

ωQ → ωQ + 2χ Re[αg(t)α∗e (t)] (5.44)

In addition, the resonator decay also affects the qubit with a dephasing
term. D[a]ρ will in this transformation lead to a qubit interaction
according to:

κD(a) → 2χ Im[αg(t)α∗e (t)]D[σz] (5.45)

Where the corresponding backaction from the measurement will take
the form of [36]:

ηH(
√

κa) → η
√

2χ Im[αg(t)α∗e (t)]H[σz] (5.46)

The equation allow us to see how the qubit is dephased by our
measurements. Further, we get an additional approximation, where
we can average out the resonator in the dispersive limit, under the
further assumption that both the state of the resonator will be coherent
when starting from a both |0⟩ and |1⟩. While this significantly reduces
the complexity of the simulation since the resonator accounts for the
largest part of the Hilbert Space, some of the assumption are very
restrictive. An example is that T1-decay is not modelled well by these
equations 7. 7 In [37] the transformation is done with

the assumption that T1 ≫ 1/κ



6 Readout Experiment

We will now determine how well readout can be done on our exper-
imental setup. In this chapter, we will first present the setup, then
describe the metric we use for determining the quality of a readout
before doing an experiment to determine it.

6.1 Experimental Setup

We will first provide an overview of the experimental setup consisting
of three main parts: the quantum device, the control hardware at
room temperature, and the cooling stages in the fridge.

6.1.1 Soprano Chip

The experiments are run on the Soprano Chip with 6 qubits. We run
all experiment on qubit 2 (see Figure 6.1) and will effectively think of
the whole system as a one qubit system. Qubit 2 is a flux tuneable
transmon which is connected to a resonator, a control line and flux
line used to tune the frequency. The resonator is connected to a feed
line which is further connected to the five other resonators. The qubit
is flux tuneable and will throughout all experiments be set at the
sweet spot, where it the least sensitive to flux noise.

Figure 6.1: The Soprano Chip layout
with indicated feed lines and couplings
to qubit 2 which is used.

43
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6.1.2 Control Hardware

In order to control the qubit and drive the resonator, we need to be
able to create pulses with the right frequency and envelope. For this,
we use an arbitrary waveform generator and data processing device.
In this experiment, this is done with an OPX [38]. The OPX has two
output signals to drive the qubit, two to drive the readout line and
two input channels for readout signal. These channels correspond for
each to the I and Q signal. The envelope of the pulses can be made
with a resolution of 1 GS/s and can process waves with a frequency
of 400 MHz. In addition, it has an on-board Field-Programmable Gate
Array (FPGA) which is used to compile pulses and demodulate the
signal.

Since the signal needed for qubit and resonator control is of order
5-10 GHz, another device for up- and down-conversion is needed. In
our experiment, we make use of the Octave [39]. The Octave has three
local oscillators for down converting signal, one of which support
up conversion. The up conversion is used for the readout line while
another local oscillator is used to generate pulses for qubit control.
A schematic of the control hardware setup can be seen to the left in
Figure 6.2.

The two control devices are controlled by using QUA, a Python
API used to write code to be compiled and executed on the hardware
[40]. For this thesis, the in-house module OPX_Control[41] was used
which significantly simplifies writing and running experiment using
the OPX and Octave

In addition to the driving lines, a line from the OPX is also coupled
directly to the fridge which is used to adjust the flux in the qubit and
thereby its frequency. This will be constant for all experiments at the
qubit sweet spot, so we will for the most part ignore it.

6.1.3 Cooling and Amplification

To keep the soprano chip as close to the absolute zero as possible, it
is placed in a cryostat capable of cooling to ≈ 30mK. In the right side
of Figure 6.2, we have illustrated the qubit and resonator drive lines
from room temperature to the chip and the returning signal from the
resonator and back to room temperature. For simplicity, we have only
illustrated one microwave control line, one readout input line and
one readout output line1. 1 There are many others which share sim-

ilar ideas. These consists of other qubit
control lines, flux lines and a line for a
local oscillator to drive the TWPA

The input lines are cooled at multiple stages from room tempera-
ture to approximately 30 mK. This happens in multiple stages and
the amplitude of the signal is reduced in each stage by attenuators. At
the coldest stage, the signal is filtered with a low-pass filter and goes
through a directional filter before entering the lines on the Soprano
chip.

Since the output signal is of order 10-100 photons, it is a high
risk to be lost to thermal noise in the up-conversion line. Therefore,
multiple highly sophisticated amplifications are needed. The first
of which is Traveling Wave Parametric Amplifier (TWPA) [42]. The
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Figure 6.2: A crude schematic of the
setup. Qubit control and resonator lines
are sent through the octave where they
are up converted before going to T5. In
the other direction, the signal is down
converted and mixed in the IQ mixer
before reentering the OPX where it gets
demodulated.

TWPA amplifies at low temperature and adds noise close to that of
theoretical minimum. After the TWPA two other amplification are
performed before the signal exits the fridge and reenters the octave
for IQ mixing.

6.1.4 Demodulation of Readout Signal

To do a readout of the resonator, a pulse is send at an intermediate
frequency, ωIF from the waveform generator to the octave where it
is mixed with a local oscillator signal, ωLO. This results in a high
frequency pulse send to the fridge at the readout frequency.

After interacting with the resonator it is amplified and it enters the
Octave with the form:

s(t) = A cos(ωROt + θRO) (6.1)

In the heterodyne measurement scheme, the signal is again mixed
in an IQ-mixer with a local oscillator. By delaying one part of local
oscillator pulse with a phase of π/2, it is possible to measure two
quadratures simultaneously. The signals become:

V0 = ARO ALO cos(ωIFt + θRO) (6.2)

Vπ
2
= ARO ALO sin(ωIFt + θRO) (6.3)

Which is at frequency slow enough that we can digitize the values.
To perform the readout2, we now combine the two signals into a 2 The following can either be done live

on the FPGA or in post processing by
storing the data

complex number and demodulate it by multiplying with e−iωIFt:

V(t) = e−iωIFt(V0 + iVπ
2
) = AROeiθRO (6.4)
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At each timestep, we will now have a value pair for (I(t), Q(t)) =

(Re{V(t)}, Im{V(t)}) which can be integrated to get a more precise
point in the IQ plane [5]:.

6.2 Readout Fidelity

Before determining the performance of our readout, we should define
what a good metric for readout is. To help we try to refine the goal of
it.

• Given a quantum state ρ a readout process is a scheme that predicts
a state σ, such that σ is on average as close to ρ as possible.

While this is a bit easier to work with, we still need to find a quantity
for "closeness" between a density matrix and our prediction. Mathe-
matically, we can achieve this by defining a formal distance, such as
the trace-norm on the vector space of 2 × 2 matrices: M2 [43]:

||ρ − σ|| = Tr
[√

(ρ − σ)† (ρ − σ)

]
(6.5)

which has the desired properties like ||ρpred − ρtrue|| = 0, if our
prediction is correct. While the trace-norm is an excellent tool, often
a related quantity will be used in quantum physics. We instead use
the fidelity, which has a general form defined by[43]:

F(σ, ρ) =

(
Tr
√√

ρσ
√

ρ

)2
(6.6)

Here
√

ρ is the matrix, which satisfies (
√

ρ)2 = ρ. The relation to the
trace norm is by bounds of the Fidelity 3. It also has other beneficial 3 both upper and lower bound by 1 −√

F(ρ, σ) ≤ 1
2 ||ρ − σ|| ≤

√
1 − F(ρ, σ)

[43]
properties like being symmetric in σ ↔ ρ and it reduces significantly
if one of the states are pure. In our schemes the readout will be
always be pure since we predict either |1⟩ ⟨1| or |0⟩ ⟨0|. In this case
σ = |k⟩ ⟨k| and the full equation can be written as:

F(σ, ρ) = F(ρ, σ) =

(
Tr
√√

σρ
√

σ

)2

=
(

Tr (|k⟩ ⟨k|ρ|k⟩ ⟨k|)
)2

= ⟨k|ρ|k⟩

Because of the stochastic nature of quantum mechanics, estimating
this quantity takes multiple measurements. We repeat it N times and
take the average over the process.

E [F(σ, ρ)] =
1
N

N

∑
i

F(σi, ρi) (6.7)

In the full readout scheme, we should be able to properly measure
both ρ = |1⟩ ⟨1| and |0⟩ ⟨0|. For this reason, we also average over the
initialization of the qubit.

1
2
(E [F(σ(ρ0), ρ0)] + E [F(σ(ρ1), ρ1)]) (6.8)
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Here ρk refers to the best initialization of |k⟩ ⟨k|, we can make and
σ(ρi) the prediction our readout scheme produces given that state.
It is important to note, that if we are not capable of initializing the
qubit in a desired pure state4, the initialization and the readout are 4 which we are not

both factors in the fidelity measure. Together these two factors are
referred to as the State Preparation and Measurement errors or SPAM
for short.

One drawback of this fidelity scheme is that it is 1
2 for a completely

random classification5. For this reason, most definitions of the SPAM 5 And a classification scheme with F <
1
2 can be better by just swapping the
output labels

fidelity [20, 44] is re-scaled such that the fidelity score lies between 0
and 1:

FSPAM = E[F(σ(ρ1), ρ1)] + E[F(σ(ρ0), ρ0)]− 1 (6.9)

Which is the definition we will be using to define the "goodness" of
a readout (and initialization). Over many repetitions and with pure
state predictions, the expectation value of the fidelity, can be found
by probability of classifying correctly:

E[F(σ(ρk), ρk)] = P(ro = ”k”| init = k) (6.10)

where "ro" is short for readout and "init" for initialization. Or writing
it in terms of the infidelities P(ro = ”0”| init = 0) = 1 − P(ro =

”1”| init = 0), we get the estimate as:

FSPAM = 1 − P(ro = ”0”| init = 1)− P(ro = ”1”| init = 0) (6.11)

6.3 Determining the Readout Fidelity

To determine the readout fidelity of our superconducting qubit, we
will now do the following experiment. The scheme is visualized in
Figure 6.3 and goes as:

Figure 6.3: Circuit displaying the pro-
cess of making a readout test. In half
the initialization, an X gate is applied to
excite the qubit to |1⟩. This is followed
by a readout pulse on the resonator.

1. The Qubit is initialized by waiting a duration of 10 times the T1

such that it is effectively in its equilibrium state. This will be the
initialization ρ0.

2. In half the experiments, we apply an Xπ pulse to excite the qubit
into the first excited state. This gives us our ρ1.

3. We now apply a rectangular6 resonator pulse at frequency fd = fr 6 We have a 10 ns ramp-up and ramp-
down period to avoid "kicking" the sys-
tem. This is neglected in our analysis
and later in simulations

(in between the two states shift) lasting 600ns. This starts move-
ment in the IQ plane analogous to what was described in Section
4.3.5. The feed line output signal is monitored using a heterodyne
measurement-scheme. This leads to I and Q signal which is tracked
and digitized every ns and stored for post processing.

4. Steps 1-3 are repeated 1000 times for initialization ρ0 and for
initialization ρ1.

In the post processing (which is visualized in the top row of Figure
6.4), we have the initialization label and the I and Q trajectories
of the readout pulse. By demodulating them at the intermediate
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Figure 6.4: Visualization of the Fidelity
calculation for no weights (top) and opti-
mal weights (bottom). The top left panel
shows an example trajectory along with
the mean trajectories. While the bottom
left panel are the optimal weights calcu-
lated to separate the two distributions.
The middle panels are the IQ distribu-
tions shown in scatter plots. In the right
panels the IQ distributions are projected
unto the axis with the biggest separa-
tion. Here the Fidelity as a function of
threshold is plotted and the optimal is
marked.

frequency and integrating the signal we arrive at one value set for
(I, Q). Plotting the distribution, we can find the projection line with
the largest separation using Linear Discriminant Analysis. This is
done by using the implementation in SKLearn [45]. All points are
projected onto this axis and summarized in a 1D histogram. By
picking the threshold which maximizes the fidelity, we have a measure
for the fidelity of this readout protocol. In our experiment this leads
to the fidelity.

FSPAM = 0.613 ± 0.018 (6.12)

It is worth noting that this is not the best optimized readout signal,
we can achieve. The amplitude of the resonator pulse is here lower
than optimal. The goal is however not to do optimal readout but
instead study the contribution to the SPAM infidelity, and a stronger
pulse would require a bigger Hilbert space in our simulations. We
will return to this challenge later.

6.4 Filtering and Weights

Summing the points to get a better classification works well if the
points are from a steady distribution. In reality, we might have
different other attributes in the readout signal, that we want to weigh
differently. A typical example, is that the qubit ramp-up interval will
have less separation than in the steady state. Further, the qubit will
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also experience energy decay from |1⟩ → |0⟩7 or we might even want 7 Or absorb energy to go the other way

to include signal during resonator depletion. A solution to this is by
applying different integration weighs at different times.

6.4.1 Weighting of the Input

Under the assumption that the measured signal from the resonator
will be Gaussian in the IQ plane and that points at different times
are uncorrelated [46], it is possible to derive optimal linear weights.
To do this, we first allow for a weighting parameters at each time
step in each quadrature. The integration now takes the form of
∑x=I,Q ∑t kx,t · xt. If we define the signal as the difference between
the integrated signal from the trajectories of |0⟩ and |1⟩, we have:

∆S = ∑
X

∑
t

kx,t(⟨X0 − X1⟩+ ξt) (6.13)

Where we have collected the noise terms from both trajectories into
one parameter ξt. The Signal to Noise Ratio (SNR) is defined by:

SNR2 =
| ⟨∆S⟩ |2
Var(∆S)

(6.14)

where we can find the mean and variance of the signal as:

⟨∆S⟩ = ∑
X

∑
t

kx,t(⟨X0 − X1⟩ (6.15)

Var(∆S) = ∑
X

∑
t

k2
x,t (Var(⟨X0 − X1⟩) + Var(ξ)) (6.16)

The SNR can be maximized by differentiating with respect to the
weights and setting the derivative equal to ∂kx,t SNR = 0. The weights
that maximize the signal is found by setting:

kx,t =
⟨X0 − X1⟩
Var(∆S)

(6.17)

Where we will determine the variance and average expected difference
experimentally by performing a set of measurement and calculating
the mean difference and variance to determine the weights [47].

In the lower row in Figure 6.4 the same experiment as last section
was classified using optimal weights. With these weights, we improve
the readout fidelity to:

Freadout = 0.620 ± 0.017 (6.18)

This is very close to readout fidelity of the simple weights. While
it appears that these weights are only a marginal improvement, we
should still notice that the two IQ distributions become narrower. In
quantifying this, we can calculate the Signal to Noise ratio for the
two example. We see that SNR = 2.54 goes to SNR = 2.19 when
we apply the weights. This corresponds to reduce the overlap from
the distributions from 1.43% to 0.55%. With 2000 samples (1000

|0⟩ and 1000 |1⟩), we would win around 10-20 additional correct
classifications8, but if the distributions were to be closer, the increase 8 In the actual experiment, we find 7, but

this is subject to some randomness and
still a lot smaller than the uncertainties.

in SNR by 0.25 would have had an even bigger impact on the fidelity.
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6.4.2 Non-Linear Classification Schemes

Classifying with optimal weights is common since it can be com-
bined with the demodulation in one operation (they are both linear
operations) and it can be run live on the FPGA. This allows for fast
executions and easy calibrations. However, the assumptions are not
entirely realistic and the signal is both non-Gaussian and are not
uncorrelated at different times.

One example is relaxation during the readout. If the qubit state
halfway through the process changes from |1⟩ → |0⟩ our measure-
ment record will then start to follow the trajectory of the ground state.
In this case, we should weigh the points differently depending on the
information provided by the rest of the trajectories. We can do such a
generalization either by allowing for a covariant weights [44] or by
applying machine learning methods like neural networks [48].

6.5 Postselection

In some instances, we do not mind running with a large overhead
in order to increase our readout fidelity. In these cases, we can
instead associate a probability of a given trajectory belonging to the
0 or 1 group and then pick the fraction f with the most certain
classifications. Since T1 decay tends to happen somewhere during the
measurement, the points will often be placed in some tail going from
1 → 0. Furthermore, the overlap between the two distributions will
be in between them. By sacrificing points in the middle, we suspect
the leftover errors are mainly due to inseparable distributions.

Wrong initialization gives a mixed state, which will lead to a certain
part of "ground state" measurement following the distribution of the
excited state. For this reason, the state initialization fidelity can be
crudely approximated by taking the fidelity from SPAM in the limit
where f → 0. In Figure 6.5, we have done the post-selection with
the trajectories from the readout experiment. By fitting a polynomial,
here 3rd order, we can approximate the limit for the fraction of data
going to 0 as:

Finit ≈ lim
f→0

FSPAM = 0.82 ± 0.02 (6.19)

Since the errors on the lower included fractions are large and the
points are not uncorrelated, this should just be seen an estimate of
the initialization fidelity, but not much weight should be put on it.
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Figure 6.5: The Fidelity of an initialize
and measure experiment depending on
the fraction of most certain points, we
include. The curve is fitted with a sec-
ond order polynomial to estimate the
limit for the fraction going to 0.



7 Calibration Methods

To simulate qubit-resonator trajectories of a readout, we will have
to create a model of our system. Throughout chapter 2-5, we intro-
duced theory to describe the system, however, this also came with
many parameters, we are still left to determine. Estimating these
parameters from the qubit in the laboratory will be the focus in this
chapter. Throughout the process, we will perform multiple fits and
only present the important outcomes in the main text. A list of fit
parameters and goodness of fit metrics can be found in Appendix C.

7.1 Qubit Calibration

We will start with a calibration of the Transmon. While we could solve
the system by finding the values of EC and EJ , we will instead model
the Transmon as a three level system and simulate the charge matrix
as ⟨k|n|k⟩ = a + a†1. This leaves us to determine the frequency f01

1 This gives us the right correlation be-
tween |0⟩ ↔ |1⟩ and a close to correct
connection from |1⟩ ↔ |2⟩

and the anharmonicity α. Furthermore, in order to perform gates, we
will calibrate a Rabi pulse from Equation 3.17. In addition to these
parameters, we will determine the characteristic time for energy decay
and dephasing T1 and T2.

7.1.1 Spectroscopy

To control the qubit and to simulate its Hamiltonian, perhaps the
most important quantity is the frequency. The frequency is found
by doing spectroscopy, where a pulse is sent to the qubit at different
frequencies. The qubit is then measured to see if it has changed
states. The qubit frequency f01 will now be the center of a Lorentzian
distribution [49]. Thus, we can determine f01 by fitting such a curve.
This is done in the left panel in Figure 7.1.

Since the design of the transmon gives a negative anharmonicty, we
can extend the qubit spectroscopy, to also look for a transition from
|0⟩ → |2⟩. This can be done either with f02 or to stay in the frequency
regime, we can instead look for a transition from absorption of two
photons, where the photon will will have frequency f02/2. We can
write it in terms of the anharmonicity at f01 − α/2. A fit with two
Lorenzians can be found in the right panel in Figure 7.1.

From the two experiments, we can extract the qubit frequency and
from the difference of the two, we get the anharmonicity. We extract

51
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Figure 7.1: Qubit spectroscopy for the
f01 transition frequency to the left. On
the right is an extended scan where
another peak is seen, this is the f02/2
where two photons are absorbed to go
from 0 → 2. The fits are Lorentzian for
one peak and the sum of two Lorenzian
for the two peak spectroscopy.

the qubit frequency

f01 = (5.98203 ± 0.00008) GHz (7.1)

And the anharmonicity is calculated as:

α = f02 − 2 f01 = (−288.81 ± 0.15) MHz (7.2)

A comment worth making here is that the two-peak Lorentzian curve
is not a good fit χ2/ndof ≈ 2.5. This is largely due to an assumption
that the background is constant. In general one should not trust the
uncertainties of a poor fit, but to a large degree we do not need it here.
If the main purpose was to determine the quantities to the best of our
ability, we could have done more work here like fitting the two curves
separately or continuing with other experiments were we could get
even better estimates of the frequencies. In this thesis, we will suffice
with a value "close to" the real value to make a realistic model.

7.1.2 Rabi

In Section 3.1.3, we saw how one can make an x- and y-gates. With a
known transition frequency and a set duration and envelope, we just
lack the amplitude of the pulse to make sure the unitary evolution
exactly corresponds to an X or Y gate.

Figure 7.2: The pulse sequence to deter-
mine the rabi amplitude. By varying the
amplitude depicted with Ω and reading
out the signal, the optimal Ω can be de-
termined.

The amplitude is determined by an experiment, where we initialize
the qubit in state |0⟩ and do a pulse with a frequency ωd = ωq and
amplitude Ω before reading it out. We will see oscillations depending
on the area of the curve. Each top will correspond to a π + n2π

rotation around the x-axis, where the qubit will be in |1⟩ and the
bottoms will be at 2πn rotations, where the qubit is back in |0⟩. With
a cosine fit, we can pick the amplitude yielding us the π rotation. To
go from this pulse to a π/2 rotation, we can simply pick half of the
Xπ amplitude [50]. A schematic of the experiment is shown in Figure
7.2 and the results from the experiment can be seen along with the
cosine in Figure 7.3.

One could further improve the transition from |0⟩ → |2⟩ by ap-
plying envelopes derived from the DRAG scheme [8]. While these
experiments are necessary to create an X-pulse and initilize our qubit
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Figure 7.3: The outcome of a Rabi exper-
iment. By varying the amplitude we get
a cosine like behaviour which can be fit-
ted to determine the top of the first wave.
The curve is fitted with a function of the
type: y = A cos(2πx f + ϕ) + b where
x is the amplitude, y the outcome and
A, f , ϕ and B are the fitted parameters.

in the |1⟩ state, this calibration is not necessary for making the initial-
ization in simulation, since we can just apply the x-gate directly.

It is possible to determine the average fidelity of gates by a random-
ized benchmarking scheme [51]. Without going into much depth, this
was done to find an average gate fidelity of Fgate = 0.9913 ± 0.0003.
The infidelity contribution here will however be much lower than the
other contributions like temperature, so we will assume that we do a
perfect X-gate in experiment.

7.1.3 Decay Calibration

Figure 7.4: The pulse sequence used to
do the T1 calibration experiment.

In Section 4.3.3, we saw that the characteristic longitudinal decay time,
T1 determines the relationship between ρ00(t) and ρ11(t). For this
experiment, we will initialize the qubit in state |1⟩ since this state is
the furthest from the steady state. We then wait some time twait before
measuring the qubit. By repeating this experiment multiple times for
different waiting times (see Figure 7.4), we can approximate ρ00(t)
and ρ11(t) by taking the average at each time step. Now plotting the
occupation as a function of time, we will obtain a decaying function
going toward the steady state. The exponential coefficient of this
decay is given by 1/T1 [5].

Doing the experiment on our qubit, we obtain the results displayed
in Figure 7.5. The exponential fit gives the value for T1:

T1 = (4.30 ± 0.12) µs (7.3)

The T1 comes from interaction between qubit and environment
which unfortunately changes over time. This leads to a fluctuating T1

time, so even though one can determine the current T1 with a high
precision, it might change just few hours later. This experiment was
run just seconds before the readout sequence described in Chapter 6.
But in Section 7.3.1, we will see that an experiment done on the same
device just a few months before will have significantly higher T1. To
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Figure 7.5: Data from an experiment
determining the characteristic T1 decay
time. The fit is an exponential decay
given by: y = Ae−t/T1 + b where t is
the waiting time, y is the outcome of
the experiment and A, b and T1 are fit
parameters.

see an example of T1 fluctuations of our device over just a few hours,
see Figure 7.6.
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Figure 7.6: The results from repeated
T1-calibrations over a few hours.

7.1.4 Dephasing Calibration

Figure 7.7: Ramsey experiment
schematic. Two Xπ/2 pulses intention-
ally detuned from the qubit frequency
are applied with a wait time in between
them. Afterwards the qubit is measured
by performing a readout pulse on the
resonator.

The dephasing of the qubit is not as important a parameter when we
look at readout. For completeness and because we also make use of
dephasing in the efficiency calibration in Section 7.3.2, we will still
do a calibration. To measure T2, one does a Ramsey style experiment,
where a pulse with a frequency slightly offset from the qubit frequency
(in our case 5 MHz) is applied to perform an Xπ/2 pulse. This state
will now start to precess around the z-axis. After some time the pulse
is performed again. This leads to time-dependent oscillations which
are dependent on the state of the qubit when performing the second
pulse. In addition, the qubit will experience dephasing while at the
equator of the Bloch sphere, ultimately resulting in a mixed state.
This gives an almost exponential envelope of the oscillations where
the exponential coefficient is determined by the T2 time [5].

In Figure 7.8 two Ramsey experiments are shown. The left one was
done before the measurement and the right is a few weeks older. It
was run with the same parameters on the same device but this just
displays the sensitivity to changes in environment. In the left one,
we allowed for two cosine oscillation terms, since we suspect that
the system couples to another two level system leading to additional
oscillation. The envelope give us:

T2 = (1.65 ± 0.12) µs (7.4)

Which can further give us the dephasing time, by using Equation 4.50:

Tϕ =

(
1
T2

− 1
2T1

)−1
= (1.38 ± 0.08) µs (7.5)

Where we again should be careful about using this as more than an
estimate because of the data does not fit our initial model.
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Figure 7.8: Figures showing the T2 ex-
periment. The left shows the Ramsey
T2 while the right shows an older T2
experiment on the same device. Both
are fitted with a function of the type
y = A cos(2πt f + ϕ)e−t/T2 + b where t
is the waiting time, y is the outcome
and f , ϕ, A, b and T2 are fitting param-
eters. An additional cosine pulse is
added to the left one adding the param-
eters f1, ϕ1, A1.

7.2 Resonator Calibration

With the qubit calibrated, we will move on to the resonator. The
resonator is modelled as a quantum harmonic oscillator, so the non-
interacting Hamilton is completely determined by its frequency, fr.
However, the interaction with the qubit required us to calibrate the
dispersive shift and the coupling strength g. To model the coupling to
its environment we determine the photon dissipation rate κ, and lastly
we will estimate steady state photon number, n̄ss which is closely
related to the amplitude of the drive pulse, ϵ.

7.2.1 Spectroscopy

Like the qubit, we can perform resonator spectroscopy to find the
frequency. Because of the dispersive interaction, we will get a different
frequency when the qubit is in |0⟩ or in |1⟩ and we will have to
do the experiment with both initialization. Since the photons in
the resonator have an exponential lifetime, the frequency spectrum
will have Lorentzian curve around the resonance frequency. The
experiment and the associated fits can be seen in Figure 7.9. Since
|1⟩ decays to |0⟩ in many cases, we have added a second Lorentzian
to the fit of resonator when the qubit is excited state. In addition,
we have limited the fitting points to be around the peak, since the
background is not constant but also have some oscillations which
we contribute to a finite-size demodulation window [5]. The two
frequencies come out to be:

fr0 = 7.55590 GHz ± 3 KHz; fr1 = 7.55439 GHz ± 7 KHz (7.6)

For these parameters, we can extract the resonator frequency fr and
the dispersive shift χ. This can further be used together with the
resonator-qubit detuning and anharmonicity to calculate the coupling
between qubit and resonator in the dispersive approximation using
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Figure 7.9: Spectroscopy of the resonator
signal where the qubit is either in |0⟩
(purple) or in |1⟩ (light blue). Since 1 is
somewhat decayed into 0, the curve for
1 is fitted with two Lorentzians.

Equation 3.33:

fr = ( fr0 + fr1)/2 = 7.555130 GHz ± 4 KHz (7.7)

χ = ( fr0 − fr1)/2 = (763.5 ± 4) Khz (7.8)

g =

√
χ( fr − fq)

(
1 +

fr − fq

α

)
= (87.0 ± 0.4) MHz (7.9)

Such that we now can calculate both the resonator Hamiltonian and
the full interacting one.

7.2.2 Resonator Decay Rate

To model the resonator dissipation, we will now calibrate κ. We found
in Section 4.3.5 that the resonator will decay exponentially when not
driven. With this information, we can find κ by simply filling the
resonator and watching it deplete. By applying a pulse untill steady
state is reached and monitoring the I, Q signal during depletion, we
can get the trajectory of mean photon count2. An average of 10,000

2 Up to a factor which we is not needed
to determine the exponential factortrajectories are performed of this and the average trace is demodulated

and also course grained in 10 ns intervals to reduce the noise. The
results along with an exponential fit of the depletion can be seen in
Figure 7.10. The exponent factor is found to be:

κ = 3.8 ± 0.6 MHz (7.10)

We can also compare this to the width of the resonator dips. With
the Lorentzian distribution the width is given as 2πκ [5]. From the
fits above calibrating the resonator frequency, we find κ = (3.87 ±
0.08) MHz when the qubit is in |0⟩ and κ = (3.50 ± 0.07) MHz from
|1⟩. For |1⟩ some of the dynamics will however mix with T1 decay of
the qubit and is not as reliable.
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Figure 7.10: Traces from a short drive
and a following monitoring of the feed
line. In the top panel, the meaned
IQ traces are taken. In the lower, the
|I(t) + iQ(t)| values are plotted and av-
eraged over 10 ns intervals. The last part
(from t = 600 ns is fitted with an expo-
nential function: y = Ae−κt + b where t
is the time y is proportional to the mean
photon number and A, b and κ are fit-
ting parameters.

7.2.3 Photon Counting

To recreate the simulation, we will now need to calibrate the pulse as
well. In the experiment, it is determined by some voltage, which we
will have to convert to coupling operator going into the Hamiltonian
with units of energy. To do this, we will calibrate the amount of
photons present in the steady state. This will be done using the two
properties:

1. In Section 4.3.5, we described how the resonator goes into a steady
state when driven. In the IQ plot, the mean photon number was
proportional to the driving amplitude.

2. Like the qubit state shifts the resonator frequency, the qubit fre-
quency is also shifted if we were to fill the resonator with photons.
We can use this to rewrite Equation 3.27 to the convenient form:
H = ω̃ra†a +

(
1
2 ω̃01 + χa†a

)
σz

We can now calibrate the photon count in its steady state by driving
the resonator until the steady state is reached. Then we do a qubit
spectroscopy experiment like the one in Section 7.1.1 to determine the
effective qubit frequency. We then repeat the experiment at multiple
amplitudes of resonator pulse and multiple frequencies for the qubit
pulse. By fitting a second order polynomial we can interpolate the
shift at the driving strength ϵ and divide it with the dispersive shift to
estimate the mean photon number in the resonator steady state. The
experiment is visualized in Figure 7.11. The results for the scan can
be seen in the left panel of Figure 7.12, whereas the right panel shows
the calculation of mean photon number at different amplitudes.

Figure 7.11: An illustration of the pho-
ton counting experiment. A pulse is ap-
plied with the amplitude of the typical
readout pulse. When the steady state
is reached an X-gate with a a given fre-
quency is applied. A typical readout is
performed thereafter to see if the qubit
changed state.

From this analysis, we extract the mean photon number as:

n̄ss = 21 ± 1 (7.11)

Which we can use to extract the driving strength seen by the resonator
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Figure 7.12: Scan of readout-pulse-
amplitude and the frequency of qubit-
pulse in the left plot. The right shows
the calculated mean photon number.

from Equation 4.55

ϵ = n̄

√(κ

2

)2
+ (χ)2 = 6.4 MHz (7.12)

When driving the resonator at its frequency fr.

7.3 System Parameters

Lastly, the dynamics of the combined system are subject to two
additional outside forces: the temperature, τ, and the efficiency of
measurements, η.

7.3.1 Temperature and T1 Calibration in Continuous Time

In Section 4.3.3, we covered how T1 and τ affect the dynamics and
equilibrium positions of the density matrix. In this section, we do a
similar method to the T1 calibration, but instead use continuous time-
traces. It should be noted that the experiment run here is made a few
months before the other calibration schemes at a time where T1 was
significantly higher. The temperature is however still representative
of the state of the qubit when the readout experiment in Chapter 6

was made.
In this experiment, we will do a long continuous readout pulse of

the resonator. By splitting it up into small chunks, we will see the
state of the qubit at that given time. If we repeat this experiment n
times, then we can estimate ρ00(t) and ρ11(t) at a given time during
the readout. Since the readout primarily adds dephasing of the qubit,
this should not influence the diagonal components of the density
matrix. The time dependent elements of the density matrix can now
be fitted with the equations derived in Section 4.3.3. The data from a
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thousand trajectories of 50 µs classified by demodulating sections of
1 µs is shown in Figure 7.13 and the distributions and classifications
from demodulating the first microsecond is displayed in Figure 7.14.
By doing 1 µs intervals, we significantly reduce the overlap between
the two distributions, such that it can be neglected in the steady state
count.

Figure 7.13: The dynamics of our qubit
system from 50 µs readout split into
1 µs pieces which are all classified.
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Figure 7.14: The IQ distribution of
points from a 1 microsecond demodula-
tion window. The two distributions are
well separated, so we expect no overlap.

From the results of the fit, we can extract the decay time, the initial
fraction and the steady state fraction of occupancy in the excited state
|1⟩. We initialized both in |1⟩ and |0⟩, but since the ground state
initialization is already in steady state, we will not trust the fit from
the exponential model. While the idea of the method originally was to
determine T1 with a fast scheme, the important aspect for this thesis
is to extract the temperature from the steady state fraction. We find
the temperature from the Boltzmann factor in the steady state:

ρ00(t = ∞)

ρ11(t = ∞)
= e(E1−E0)/kbτ ⇒ τ = − h̄ω01

kb
/ log

(
ρ00(t = ∞)

ρ11(t = ∞)

)
= (0.13 ± 0.04) K (7.13)

One might compare the temperature of the superconducting qubit
with the temperature of the cryostat of around 30 mK. The difference
is suspected to come from electronic heating and other sources of
microwaves leaking out into the material. The first run of this analysis
gave τ = 147.5 mK which is the value used in simulation. This is
however well within the confidence interval.

7.3.2 Readout Efficiency

The amplification chain from the resonator signal and up to room-
temperature and digitization is by no means lossless. Each ampli-
fication and thermalization step adds noise to the coherent state of
the resonator state which we are trying to measure. This ultimately
gives us a state which is severely blurred if we compare it to the
crisp coherent states with widths of only 1/2. In this subsection, we
will estimate the efficiency parameter η. We will follow the method
developed by Bultink et al. [52] where they perform this calibration
in general for the whole amplification chain.
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The general idea can be found in the inefficient stochastic master
equation (see Section 5.2.4). Here the backaction term is applied no
matter the efficiency we measure with, such that the qubit is dephased.
By comparing the amount of extracted information with the amount
of dephasing, we can estimate the efficiency.

To use this method, one must first create a readout pulse with a
signal that is zero at start and end: S(t = 0) = S(t = T) = 0. To limit
decoherence during the readout, one would choose a short pulse and
readout during a cooldown of the resonator for ≈ 5/κ.3 The shape 3 One can optimzie this further by apply-

ing a stimulated depopulation pulse.and resonator signal in pulse is shown in Figure 7.15. With this pulse,
the method now consists of two parts:
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Figure 7.15: The signal in the resonator
during the readout pulse used for the
efficiency calibration.

1. Determine how the SNR changes when we increase the readout
amplitude. With a signal starting and ending at 0, this should
follow a linear relation: SNR(ϵ) = aϵ.

2. Investigate the backaction of the readout on the qubit. After a
pulse, the coherence is related to the readout amplitude by the
gaussian relation |ρ01(T, ϵ)| = |ρ01(T, 0)|e−ϵ2/2σ2

From these parameters, the readout efficiency can then be calculated
as [52]:

η = a2σ2 (7.14)

where our equation deviates from the one in [52] by a factor 2, since
they define SNR with respect to the variance of a single trajectory4. 4 assuming that the trajetory for the

ground and excited state has the same
variance.

We combine the two Var = Var|0⟩ + Var|0⟩ reducing the SNR with
1/

√
2 compared to their definition.

Amplitude Dependence of SNR To determine the Signal to Noise ratio
from the readout pulse, we do a readout experiment like the one in
Chapter 6: by initializing the qubit in |0⟩ and then performing an
X-gate to every other initialization before reading it out, one can see
determine the separation between |0⟩ and |1⟩. We make sure to use
optimal weights, to make sure all the available information is used.

By repeating the experiment for drives with different fractions of
the readout amplitude ϵ and calculating the SNR from the measure-
ment distributions, we obtain the results in the left panel of Figure
7.16. To the right, the histogram is shown for the I quadrature with

amplitude for ϵ/4. The SNR is calculated by taking
√

SNR2
I + SNR2

Q.
Fitting a linear equation to the results, we obtain a = (2.43 ± 0.15)/ϵ.

Dephasing from Readout Pulse For finding the relation between the
amplitude and dephasing, the qubit is initialized in |0⟩ and a Rx

π/2
pulse is performed to send the qubit into 1√

2
(|0⟩+ i |1⟩). With the

pulse in this state, the density matrix will be:

ρ(t = 0) =
1
2

(
1 −i
i 1

)
(7.15)

the readout drive will now be applied5. During the readout signal 5 while ignoring the output
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separated. The left figure displays the
result of this analysis for all values of ϵ
as well as a linear fit applied to it.

the off-diagonal elements will be reduced by two factors: inherent
dephasing by T2-processes and qubit back action by the signal. To
determine the amount of dephasing, we will perform a π/2 rotation
around an axis along the ϕ angle in the x-y-plane before reading out
the signal. The entire sequence is illustrated in Figure 7.17.

Figure 7.17: The dephasing experiment
circuit. First the qubit is rotated π/2
around the X-axis, where after it is sub-
ject to the readout pulse without demod-
ulating and saving the signal. Now the
qubit is rotated π around a vector ϕ in
the x − y−plane and finally readout.
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Figure 7.18: Results from the dephasing
experiment. The 2D scan is shown along
with the cosine-way for amplitude ϵ = 0
and ϵ = ϵmax . Fitting the cosine function
and plotting the amplitude as function
of the readout amplitude gives the last
figure, where they are are fitted by a
Gaussian distribution.

By comparing the readout signal for different angles of ϕ, we
expect a cosine shape: ⟨σz⟩ = 2|ρ01(t = T)| cos(ϕ + ϕ0). The phase
and frequency of the cosine shape is fitted in the case where most
signal is present (at 0 amplitude) and kept constant for all other
amplitudes.

By fitting the amplitude for different fractions of the readout ampli-
tude, we can fit a Gaussian distribution to determine σ. Here the T2

dephasing will just contribute to an overall dephasing, which will be
constant throughout all the experiment and will scale the amplitude
of the Gaussian. However, this does not affect the width, which we
are interested in. The outcome of the distributions can be seen in
Figure 7.18 where we find a value for σ = (7.42 ± 0.17) 10−2 ϵ.

We note that there is some problem along a specific rotation axis.
When using the OPX, there is sometimes an accumulation of phases,
which can give specific errors, so we will here ignore data along that
axis.
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Calculating the Efficiency In the last two experiment we have extracted
a and σ. By combining them, we can find the efficiency of the readout
chain:

η = a2σ2 = (3.3 ± 1.2)% (7.16)

Giving us a only around 1/30 of the information available. This leaves
huge opportunities for improvements in the amplification chain.

7.4 Overview of Device Parameters

In this chapter, we have calibrated the necessary values of the qubit,
resonator and system to be able to simulate the quantum system.
The parameters are summarized in Table 7.1. In determining some
parameters and uncertainities, the model was not a good fit for our
data. These parameters are marked with a star * to illustrate that not
much weight should be contributed to the listed value.

Qubit value error unit
Frequency f01 5.98203 0.00008* Ghz
Anharmonicity α −288.81 0.15* MHz
Decay Time T1 4.30 0.12 µs
Dephasing Time Tϕ 1.38* 0.08* µs

Resonator value error unit
Frequency fr 7.555130 0.000004* Ghz
Dispersive Shift χ 763.5 4* KHz
Decay rate κ 3.8 0.6 Mhz
Mean Photon Number n̄ 21 1 -

System value error unit
Coupling g 87.0 0.4 Mhz
Efficiency η 3.3 1.2 %
Temperature τ 0.13 0.04 K

Pulse value error unit
Duration Tdura 1000 - ns
Drive Frequency fdrive 7.555130 - GHz
Drive Amplitude ϵ 6.4 - MHz

Table 7.1: The outcome of calibrating
the qubit with the methods presented in
this chapter. A star * illustrates that a
value comes from a modified fit or that
the uncertainty is taken from a fit with
a very high or very low reduced χ2.



8 Building a Model of the System

With a set of parameters that describe our system, we will in this
chapter build the simulation. We will will present this simulation
work in three steps. First, we will take a look at four different
methods of simulating the system. Next, we will argue for the use of
the dispersive model compared to the full time-dependent Hamilton.
Finally, we will adjust some parameters of the simulation such as the
dimensions of our Hilbert Space and the size of the time steps.

8.1 Different Simulation Approaches

Throughout the first few chapter, we covered different ways of rep-
resenting and numerically integrating a quantum system. In this
section, we will summarize the few methods (see for example a quick
overview in Table 8.1. The four methods are:

• Unitary - This is a time evolution of the Schrödinger Equation
(presented in Section 1.3). In Qutip this is done by the Adams
algorithm which we covered in Section 1.3.1. This is the fastest
and simplest to run, but does not support interaction with the
environment.

• Lindblad Equation - The Lindblad equation simulates the den-
sity matrix and allows us to include dissipation terms. Like the
Schrödinger equation, the Lindblad Master Equation is also deter-
ministic, so it is only necessary to run it once for each configuration.
All dynamics can then be extracted from ρ.

• Monte Carlo - The Monte Carlo method is described in Section
4.2.4 and the main idea is that dissipation are applied stochastically
while the Schrödinger Equation describes the unitary evolution
in between application of the Lindblad operators. This allows
for faster simulation than the Lindblad Master Equation. How-
ever, multiple trajectories will have to be taken to make sure the
dynamics represent the full dynamics.

• Stochastic Master Equation - The Stochastic Master Equation is
described in Chapter 5 and the most complicated of the simulation
tools. This includes the dynamics of the Lindblad Equation, but in
addition also supports the weak measurement which is obtained
during a readout.

Table 8.1: Overview of what the
different simulation schemes support.
The abbreviations correspond to SE:
Schödingers Equation, ME: Master
Equation, MC: Monte Carlo, SME:
Stochastic Master Equation

SE ME MC SME
deterministic x x
dissipation x x x

mixed states x x
measurements x

state ψ ρ ψ ρ
state size n n2 n n2

63



CHAPTER 8. BUILDING A MODEL OF THE SYSTEM 64

1.5

1.0

0.5

Re
ad

ou
t S

ig
na

l I
 (a

. u
.) Experiment

1/4

1/2

3/4

1

Oc
cu

pa
tio

n,
 P

1

SE - Full MC - Full ME - Full

0 10
Time (µs)

0.05

0.00

0.05

Re
ad

ou
t S

ig
na

l I
 (a

. u
.) SME - Dispersive

0 10
Time (µs)

1/4

1/2

3/4

1

Oc
cu

pa
tio

n,
 P

1

SE - Dispersive

0 10
Time (µs)

MC - Dispersive

0 10
Time (µs)

ME - Dispersive

Figure 8.1: Illustration of the T1 experi-
ment run with different simulation tech-
niques. In the Schrödinger experiment,
a zoom-in is made to show the oscilla-
tions from qubit-resonator interaction
which are not present in the dispersive
model.

8.1.1 Comparing Simulations for T1 Calibration

Table 8.2: Running time of the different
simulation approaches to running the T1
calibration scheme. All numbers are in
seconds. The Monte Carlo and Stochas-
tic Master Equation was simulated with
100 trajectories parallelized such that 10-
12 trajectories were calculated at a time.

SE ME MC SME
Full 384 1022 7069 -

Dispersive 0.6 1.2 282 614

To illustrate the differences of the different simulations and compare
the simulation time, we have simulated the T1 calibration experiment.
We do this with the full interacting Hamiltonian in the lab frame
(Equation 3.20) without any drive. We run the simulation with the
Schrödinger, Monte Carlo and Lindblad approach. These simulations
can be seen along with the experimental results in the top panel of
Figure 8.1. In the lower panel, we see simulations run on the disper-
sive Hamiltonian in a rotating frame of the resonator. In addition, we
have also simulated the dispersive Hamiltonian with the Stochastic
Master Equation to simulate the readout process. Here it is necessary
to apply a resonator pulse1. All simulations were run in a finite

1 We did this at a fifth of the calibrated
value and upped the efficiency to 50% to
get a measurement for illustrating pur-
poses which can be run in the same size
Hilbert space.

Hilbert space with a 3-level qubit and 10-level resonator.
In Table 8.2, the running time2 of the simulations are noted. For

2 On a laptop with processor Intel i7-
1260P

the stochastic simulations, 100 trajectories were calculated to get
representative dynamics. The T1 experiment is however long (10 µs
and we run with a resolution of 0.5 ns, so this will also be a larger
experiment compared to the readout process.

The main takeaway from the simulations is the difference in run-
ning time for a full Hamiltonian simulation compared to the disper-
sive approximation3. Comparing the dispersive/full Hamiltonian, we 3 This is primarily because we omit the

fast oscillating terms, we could do simi-
lar transformations for the Jaynes Cum-
mings model if we were to study high
power readouts

see small oscillations in the qubit state of the Schrödinger equation.
These oscillations are however small to the dynamics, we introduce
with dissipation.
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8.1.2 Validity of the Dispersive Approximation

The full Hamiltonian, we simulated to get the results shown in Figure
8.1 are expensive to run. Even without calculating the time-dependent
pulses necessary for simulating the readout process. In Section 3.2.2,
we mentioned a critical photon number, which in our system is
≈ 80, approximately four times the steady state photon number
in our readout. We are far below this number and the dispersive
approximation should be fine.

To confirm, we have also done a simulation of a "weak" readout
pulse both in the dispersive limit and the full-time-dependent Hamil-
tonian. This was done with a Lindbladian simulation. The expectation
value of I and Q are displayed along with the Q-function at three
different times in Figure 8.2. Qualitatively, we see great correspon-
dence between the two figures. However, the full simulation has some
numerical artifacts in the Q-function from the simulation. This is
probably due to built up of small numerical errors in a fast rotating
basis. We conclude that we should not only use the dispersive model
because of its significant speed-up, but also to avoid these kind of
numerical errors.
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Full Simulation Figure 8.2: Simulated readout drive us-
ing the dispersive approximation and
full time-dependent Hamiltonian. The
expectation value for the I and Q quadra-
tures are shown along with the Q func-
tion at three different times.

8.1.3 Q Function and Trajectories

In Section 3.3, we introduced the Q-Function to determine the phase
space probability of finding the resonator with a specific I, Q value set.
With the speed-up and accuracy4 for the Lindblad simulation has over 4 Going from order 1.5 → 12 reduces

errors significantlythe Stochastic Master Equation, one might ask, why we went through
the trouble of introducing and coding it. To come with an answer, we
will compare the Q function to the measurement trajectories of the
Stochastic Master Equation.

As a start, we might have to revisit the interpretation of the density
matrix. In the example, we had in Section 4.1.2 the mixed state
came from someone (or something) measuring our state without our
knowledge. This left us with a state that if we repeat the experiment
would yield |0⟩ half of the time and |1⟩ in the other half. In the
Lindbladian formulation the density matrix can be formulated as an
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Figure 8.3: Comparison of the Q Func-
tion and the scatter plot for a 10 ns read-
out record. In the top plot the Q Func-
tion distribution is shown at t = 0, 200
and 400 ns. In the two lower rows
the the measurement record for 250 |0⟩
and |1⟩ trajectories are shown. Further-
more, the Q-Function is convolved by
a 2d Gaussian with covariance matrix
2∆t/η1 to match the error of the records.

ensemble average, that if we do it multiple times, we would arrive
at this outcome. For the SME, we measure it in the meantime. The
information here, would no longer be an ensemble average in the
same way, but slowly collapse to one of the states in the ensemble.
This is what we are calling unraveling.

Averaging over all possible trajectories reduces the Stochastic Mas-
ter Equation to the Lindblad Equation. And since we model the
distribution for trajectories with a Gaussian, we can somewhat find
the distribution of measurement records. If we were to assume that
the expectation value of I and Q does not change during a small
interval. We could use the Q function distribution and convolve it
with the expected Gaussian width of our measurement record. This
leads to the distribution of measurements records in that time interval.
This is illustrated in Figure 8.3.
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8.2 Timesteps and the Size of the Hilbert Space

To complete our simulation model, we still have to decide on the
proper size of the Hilbert Space and the size of the time steps.

To determine the size of the timestep, we utilize some functionality
in the Qutip library. One trick here is that the Adams algorithm
actually calculates a 13th order integration step. If the Taylor series
converges, then the difference between the 13. and 12. order term
will be larger than the leftover error and we can set a threshold on
the accuracy we accept [53]. Qutip allows for up to 2500 substeps per
timestep and if the error is still to large it terminates and raises an
error [19]. This means, we should just set the resolution low without
raising an error. A good choice of the 600 ns readout pulse was to
split it in 10 ns intervals (which then still could be subdivided in up
to 2500 substeps).

The Taylor Milstein 1.5 scheme also checks error bounds. With
the stochastic term it is however not as reliable and with a low time
resolution the measurement records can include NaN values. A
resolution which seems to work is running 2 ns when the efficiency is
low, and increasing the resolution to 1 ns when testing the efficiencies
η > 1

3 since the stochastic term is larger in this case.
The size of the Hilbert Space affects the complexity of the simula-

tion significantly, since the entries of the density matrix scales as n2

with n the dimension of the Hilbert Space. However, picking the size
is like most of these considerations a trade off between accuracy and
simulation time.

For the Qubit we need to have a two dimensional system but we
have include a third to be able to calculate the dispersive shift when
we are doing the full model. This would further allow for transitions
leakage to and from the excited state. This is however not fully
implemented in the models since the occupancy would be < 2% with
temperatures around 130 mK. Therefore, other parts of the simulation
had a higher priority.

For the resonator, we have to make sure, we do not miss any of
the dynamics. The size of the Hilbert space should therefore be
significantly larger than the maximum number of photon, we will
have at any point during the simulation. The coherent states are
decomposed into Fock space states near the mean photon number.
With the values of κ and χ in our system, the resonator does not
directly enter the steady state, but overshoots it by a bit5. When

5 We saw this when calculating the tra-
jectories in Section 4.3.5

we further add the stochastic nature in the SME, we had to increase
it even more to make sure, we do not get near the border. With
50 dimensions in our resonator Hilbert space the model included
the desired dynamics without too many errors. A few trajectories
with high η had some numerical problems which results in incorrect
movements in the IQ plane, one can for example see a couple of
points lying near Origo even without T1 and with well separated
distributions.
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8.3 Readout in Simulation

With calibrated device parameters, implemented simulations, trust
in the dispersive model and the numerical settings, we are ready to
do the readout simulations. By using the SME with the dispersive
model and the parameters calibrated and summarized in Section 7.4,
we recreate the readout experiment from Chapter 6. We create 500

trajectories for the equilibrium state calculated from the temperature
and 500 times with an x-gate applied to the equilibrium state.

The IQ trajectories were combined with optimal weights and the
maximum separating line was found. The process can be seen in
Figure 8.4. We remember that the phase of the IQ plot can be chosen
freely, so the rotation compared to experiment (which was shown in
Figure 6.4) is not alarming. The state initialization and measurement
error of our readout process in the simulated system is:

FSPAM = 0.654 ± 0.024 (8.1)

Which is close to the actual experiment. Comparing the two, we
find a z-score6 of 1.15. A fidelity from the same distribution as the 6 |Fe − Fs|/

√
σ2

s + σ2
e where subscript e

is the fidelity and error of the experi-
ment and s is for simulation

experiment would have probability of p = 24.8% of being further
away from than the estimate from the simulation. This is a good
indication that we are on the right track. Even though we still have
multiple additions left. This includes the ramp-up and down of the
experimental readout pulse, a realistic X-gate and proper inclusion of
the dynamics associated with the second excited state.

Table 8.3: The results of 2-Sample Kol-
mogorov Smirnov test.

KS-statistic pval
Full 0.036 0.367

Ground 0.075 0.046

Excited 0.072 0.062While the number is close, we can also compare the distributions.
In Figure 8.5, we compare the distribution for all trajectories and for
the ground and excited state separately. We can use these distributions
to calculate a 2 sample Kolmogorov Smirnov Test[54] to test the
probability, that the samples are drawn from the same distribution.
The results of this test is shown in Table 8.3.

We see great correspondence between the full distribution, but
the individual distribution are still not convincing (at 5% and 6%).
Specifically we see that the ground state peak in the excited state is a
bit to the right. While this could be a random artifact, we expect the
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mixed state to be more anti-symmetric since the X-gate is not perfect.
Furthermore, the inclusion of the second excited state, will end up
having around 1 − 2% of the trajectories following another path for
both of the initialization.

The data analysis to determine these distributions also include both
calculated weights and a linear discriminant analysis. Small random
effects in weights or in projection axis can also lead to differences in
the distribution. To achieve more stability the amount of trajectories
could be increased.
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lower panels the histograms for gronud
and excited state is displayed separately.



9 Readout Infidelity Budget

In this chapter, we will use the realistic simulation to estimate the
contributions to state initialization and measurement infidelities. We
will also estimate the fidelity gains by improving the superconducting
qubit and hardware through three physical parameters.

9.1 Turning off the Contributions

In this section, we hypothesize three contributions to our SPAM
fidelity. By turning them on and off in the model, we will try to
quantize the effect they have on the errors of our readout procedure.
The three effects we will investigate are.

1. A low readout efficiency, η, which results in an overlap between
the |0⟩ and |1⟩ distributions in the IQ plane. This results in readout
assignment error

2. The temperature, τ, contributes significantly to the initialization
error. At non-zero temperature, we will expect to see a mixed
state with non-zero elements for |1⟩ ⟨1|. These errors will not be
detected during readout.

3. Energy exchanges with the environment can give a low coherence
time T1. Since relaxation or excitation during the readout will alter
the trajectory and can lead to false classifications.

By using the simulation model, we can now turn off the different
contributions and see which resulting fidelity the readout sequence
achieves. As a start, we will model the perfect system. That is a
system where the qubit has infinite lifetime T1 = ∞, the system will
be zero temperature, τ = 0 and we detect all of the signal η = 1.
A comparison of the Fidelity of this perfect system and the realistic
one, which we also simulated in Section 8.3 can be seen in Table 9.1
and the corresponding IQ plot is found in Figure 9.1. To see weights,
histograms and other details, we refer to appendix D.
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Table 9.1: Results from running the sim-
ulation experiment for 500 samples with
a realistic set of parameters and a per-
fect set of parameters.

Parameters Set Fidelity
Realistic 0.654 ± 0.024

Perfect 1.000 ± 0.000
In the experiment with model with ideal parameters , we get

fidelity of FSPAM = 1. This supports our hypothesis where eliminating
all thre parameters give a perfect classification . In the IQ plot few
points can be seen near origo. They are suspected to come from
the effect, we described in Section 8.2 where the SME in a finite
dimensional Hilbert Space produces some unwanted dynamics when
efficiency is high1. 1 The suspicion comes from seeing many

more of these points with a lower di-
mensional Hilbert Space

In an attempt to single out the effect on readout fidelity from the
individual contributions, we can repeat the experiment with the dif-
ferent combinations of turning the effects on one after another. This
leads to six experiments. Starting from the realistic set of parameters,
we have three experiments with η = 1, T1 = ∞, τ = 0 respectively
(each which excludes one source of SPAM errors). This is repeated
with two out of three of the perfect parameters such that we exclu-
sively have one source of SPAM errors. The IQ plots can be seen in
Figure 9.2 and the associated fidelity scores in Table 9.6.
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Figure 9.2: The IQ results from turning
on the different sources of errors one by
one. The IQ scatter plots are displayed
along side the decision boundary and
the readout fidelity.

Another way of visualizing the infidelity from each parameter is by
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Contributions Temperature Energy Decay Inefficiency
Excluding 0.828 ± 0.018 0.702 ± 0.022 0.746 ± 0.021

Exclusively 0.734 ± 0.021 0.958 ± 0.009 0.900 ± 0.014

Table 9.2: The Fidelity results of run-
ning the simulation experiment with
1000 samples given parameters that sets
one or two of the three parameters to
the ideal setting.

placing them in a combination tree. We now add one contribution at a
time according to the possible permutations and register the increase
in infidelity. This will allow us to get a good idea of the contribution
from the individual sources. The combination tree can be seen in
Figure 9.3. With infidelity errors of around 2 − 3% (percent points)
the differences have errors of 3− 4% (percent points), so we should be
careful making conclusions from the specific values. We can, however,
analyse the overall pattern.

At a first glance, the errors does not seem to be independent. Decay
adds 7.2 % infidelity if we have inefficient measurements while the
infidelity goes down if we have non-zero temperature. While this
could be a 2 sigma outlier, we should be careful when separating the
contributions as it looks like there are some second order effects at
play as well. If we want to get a vague first order estimate, we can
take the simple average over infidelity contributions for the different
parameters in the combination tree. These averages are shown in
Table 9.3.

Table 9.3: Average contribution to infi-
delity when counting in the combination
tree seen in Figure 9.3

Parameter Avg Infidelity
Temperature 0.21

Decay 0.04

Efficiency 0.09

Figure 9.3: Visualizing the different
ways of combining the error sources
and watching their contributions at each
step.

For our system with a readout pulse defined in Section 7.4, the
FSPAM seems to be dominated by the temperature, followed by ineffi-
ciency and only slightly by the energy decay to the environment.

9.2 Improving the Readout

In this section, we will setup a use case for the developed model:
Given the device and the readout pulse parameters used throughout the
thesis, what increase in FSPAM can we the expect by improving the physical
device?. We will use the model to estimate answers and use this as
a basis to discuss how the parameters can be used to improve the
performance in other parts of the readout sequence by applying other
techniques.
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Figure 9.4: The Fidelities of the model
when the parameters are changed. In
each plot the two other parameters are
held constant at the realistic value.

9.2.1 Modifying the Parameters

In the previous section, we considered the parameters to be on (at
0) or off (at 100%) of the considered value. We will now try more
incremental improvements of one parameter while we keep the other
two fixed. Again, we will run the simulation for 600 ns and do 500

trajectories for both initialization. All the fidelities of the readout
sequence are summarized in Figure 9.4 and the IQ plots can be found
in Figure 9.6. We will in the next three subsections discuss the results
one parameter at a time. To see histogram distributions or weights,
we refer to Appendix D.

9.2.2 Temperature

In our model, the temperature has two roles: to determine the mixed
state in the beginning of the readout and the relation between energy
excitation and decays. Especially, the first of these two affects increases
the state initialization error significantly as the failed initialization
of |0⟩ will be indistinguishable to the proper initialization of |1⟩. In
Table 9.4, we have summarized the SPAM-fidelities for experiments
with a reduced temperature of −10, 0, 10, 25, 50 and a 100 percent.

Table 9.4: The outcome of calibrating the
qubit with the methods presented in this
chapter for different temperatures.

Reduction Temperature Fidelity (%)
-10 % 162.3 mK 58 ± 3
0 % 147.5 mK 65 ± 2
10 % 132.8 mK 69 ± 2
25 % 110.6 mK 75 ± 2
50 % 73.5 mK 82 ± 2
100 % 0.0 mK 83 ± 2

For our system, the temperature decreases the Fidelity dramatically,
since the equilibrium position will be around 88 percent |0⟩ ⟨0| and 12

percent of |1⟩ ⟨1|. Since a reduction of temperature would exponen-
tially suppress the excited part, a reduction of temperature by 50%
would reduce the state initialization error to mere e−2 ≈ 1/7 of the
current setup. This means that it should be highly prioritized to get
to around this point, but further reduction would lead to diminishing
returns.

Active Reset One way of artificially "cooling down" the qubit is by
initializing with readout. If the readout fidelity is larger than the
state preparation, it is beneficial to start with a readout and apply an
X-gate if the qubit is in state |1⟩. The qubit can the be read out and
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the X-gate reapplied until the outcome of the measurement is |0⟩ (see
Figure 9.5.

To gain an advantage from active reset, we require the qubit to have
long coherence time and high efficiency such that we are confident
in our readout. The long coherence time is necessary since a normal
readout would try to determine the state at the beginning of the pulse.
An x-gate should however only be performed if the qubit is in state
|1⟩ so many repetitions would be required if the qubit decays in the
meantime. In addition, a readout pulse leaves the resonator filled
resulting in a shifted qubit frequency. If one does not take this into
account when applying gates, the gate fidelity will be highly affected.
The easiest approach is to wait for the resonator to return to the
vacuum state, but this also requires the qubit to stay coherent during
the process.

Figure 9.5: Illustration of the active re-
set process. A readout is performed, if
it measures |1⟩ an X-gate and another
readout is applied. This is repeat till the
readout gives |0⟩.

9.2.3 Qubit Decay

Unwanted changes of the qubit between |0⟩ ↔ |1⟩ is another big
challenge when measuring the state of the qubit. If the qubit changes
state during the readout process, it will be difficult to classify as either
|0⟩ or |1⟩ and will often lead to points floating in between in the
regular distributions in the IQ plots. In Table 9.5, we see how small
reductions in the transition rate increase the readout fidelity.

Table 9.5: The outcome of calibrating the
qubit with the methods presented in this
chapter.

Reduction Γ1 T1 Fidelity (%)
-10 % 0.256 µs−1 3.91 µs 66 ± 2
0 % 0.232 µs−1 4.30 µs 65 ± 2
10 % 0.209 µs−1 4.78 µs 59 ± 3
25 % 0.175 µs−1 5.73 µs 64 ± 2
50 % 0.116 µs−1 8.60 µs 70 ± 2
100 % 0 ∞ 70 ± 2

In Section 6.5, we saw that we can remove most of the measurement
errors from this tail by repeating the experiment and only selecting
the most certain measurements. However, this will severely impact
the ability to run codes and will not be feasible in scenarios like error
correcting codes, where a readout is performed on 10s or 100s of
qubit in every cycle.

With a pulse of 600 ns, the contribution from the energy decay
during readout seems be less compared to that of efficiency and
temperature. Thus, we would probably gain a lot of benefit using
the active reset or increasing the pulse length a bit. If we want high-
fidelity readout (> 99 %), we should however find ways to decrease
the infidelity contribution from T1 either by improving the device or
applying one of the following two adjustments.

Shorter Readout Pulse One way of decreasing the effect of T1 on
readout fidelity by making a shorter readout pulse so the qubit has
less time to decay. This will however require a higher efficiency since
the distance between the two distributions should be at least 3-4
standard deviations to have sub-percent overlap. The width of the
distribution scales with 1/

√
ηtreadout, so a higher efficiency and a

shorter pulse could lead to the same results.

Further Excitement Another method for reducing the impact of qubit
decay in readout is by applying a qubit pulse at frequency f12 such
that we drive transitions |1⟩ → |2⟩. The |0⟩ will not be affected. And
we can choose our readout frequency such that we can draw a decision
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boundary separating |0⟩ or |not 0⟩ with high fidelity. Since the second
excited state |2⟩ primarily relaxes to |1⟩, this will effectively lead to a
higher lifetime since |2⟩ and |1⟩ will be classified similarly as |not 0⟩.
Unfortunately, this method can not be combined with active reset,
since we only want to apply and x-gate if the qubit is in state |1⟩ and
not in this case, the indistinguishable |2⟩. This could be solved with
good qutrit classification [55].

9.2.4 Efficiency

The efficiency plays a delicate role for reading out. Primarily, it scales
the standard deviations of the two Gaussian distributions in the IQ
plane with a factor of

√
η. The overlap between two Gaussians goes

rapidly down with smaller widths, and with a separation of only three
to four standard deviations, we are below the sub-percent overlap.
From this points onward, we will not see much more performance
gain. In Table 9.6, we see that a 4 time increase in η leads to approxi-
mately the same performance gain as by having a perfect efficiency. If
it is possible to increase the efficiency more, it will most likely be more
beneficial to decrease the pulse duration. Instead of improving the
efficiency directly, we can use the following two strategies to combat
infidelity effects from inefficiency.

Table 9.6: The outcome of calibrating the
qubit with the methods presented in this
chapter.

Increase Efficiency Fidelity (%)
-25 % 2.64 % 65 ± 2

0 % 3.30 % 65 ± 2
33 % 4.40 % 68 ± 2

100 % 6.60 % 68 ± 2
300 % 13.2 % 73 ± 2

max 100.0 % 75 ± 2

Longer Readout Pulse The duration of a pulse is a compromise be-
tween energy decay and readout efficiency. If the pulse is too short
the two distributions have a big overlap making it hard to classify
them, whereas a long pulse increases the probability of energy decay.
If we were to have a large T1 and a low efficiency. In future setups,
the optimal pulse length could be calibrated by doing an experiment
where SPAM fidelity is determined as a function of time.

High Power Readout - The efficiency helps reduce the overlap of the
two distribution by making the distributions narrower. However,
another approach is to move the distributions further away from each
other. In this thesis, we have been limited by the photon number for
numerical reasons. However, by driving the resonator with a larger
amplitude, the two distributions would move further away in the
IQ-space. One should however be aware of the increased shift of
the qubit frequency and to still be within the critical photon number
where the dispersive approximation is valid or venture into a new
realm of high power readouts.
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9.3 Further Path to Optimization

In the sections above, we have considered a first order optimization,
where all except one parameter were kept constant. This gives signifi-
cant improvements for reductions in temperature, less for increased
η and marginal increases from better T1. In addition to the improve-
ments from a colder, more coherent and more efficient setup, we also
discussed the possibility of "trading" a good performing parameter to
improvements in the others. Some of the trade-offs are illustrated in
Figure 9.7.

Figure 9.7: Illustration of how good co-
herence, low temperatures or efficient
measurement can be used to reduce
infidelity contribution from the other
sources.

The biggest factor in our SPAM errors was the temperature pro-
viding a mixed state from the beginning. Since the T1 seemed to
be less limiting, we would probably benefit from using the active
reset method in our approach. Furthermore, we saw that the con-
tribution from efficiency is larger than that of energy decay. This
indicates that we could win performance by using a longer pulse.
This consideration can be used in an experiment where an accumu-
lated demodulation gives a fidelity for each pulse duration. One can
now pick the duration with the highest fidelity.

Since all improvements would lead to an altered readout sequence,
the improvement gained by reducing the parameters in the section
above are not very representative of what would actually happen in
the laboratory. To increase performance, a changed parameter would
quickly start a search for the optimal readout duration, amplitude
and applying the tricks (like active reset) that would help with our
setup. In order to use the simulation model we have built up through
this thesis, the next steps would be to find ways of simulating these
strategies, so they can be applied when we do our forecasts. This will
also lead to second order effects like inefficiency contributing to the
state preparation error in active reset.

Another challenge is that a stronger pulse would definitely help
our readout fidelity. The increased amplitude will force us to use a
larger Hilbert space as well. And since the Lindblad Equation and the
Stochastic Master Equation both evolve the density matrix, we would
effectively get n2 differential equation to solve. Implementing active
reset in simulation is also not trivial. In the code-module built for
this thesis, the simulation of a trajectory is separate from the analysis
and classification from the trajectories. In active reset, we would
have to do a simulation, readout analysis and apply a conditional
x-gate before simulating again2. We would also need to take cool 2 And might even have to repeat multi-

ple times if the readout the second time
still gives |1⟩

down of the resonator into account along with the possibility of qubit
decay in the meantime. Ultimately, this would mean a 3-10 times
increase (at best) of simulation time and would require a rework of
the simulations module.



10 Conclusion

We have now reached the end of our journey into the theory, calibra-
tion, and simulation of readout in a superconducting system. To end
this thesis, we will summarize the key points before looking at some
possible next steps for this project.

To create a model of superconducting qubit readout, we have
reviewed the theory behind it in three stages. The unitary evolution
of the system, where we described how the coupling between qubit
and resonator allows us to measure the qubit by driving the resonator.
The interaction with the environment, where we have described the
challenges of a qubit and resonator that lose coherence or exchange
energy with the environment. And finally, the stochastic evolution,
which describes the unraveling of a single trajectory subject to weak
measurements. The review of theory has given us the tools for
simulating the dynamics and a list of parameters that we need to
determine to make a realistic model.

Following the list of parameters, we have performed a sequence
of calibrations, leading to a list of estimated parameters to enter the
simulation model. By running the model and comparing it to the
readout sequence experiment from the laboratory, we conclude that
we get similar state initialization and measurement fidelity. While
the distributions also look promising, they are not overwhelmingly
convincing. This hints that X-gate fidelity and the second excited
state should be included in the analysis.

By changing parameters to the ideal values, we used the realistic
model to estimate the contributions from three different sources to
the SPAM infidelity. We find that the primary contributor to infidelity
is a high temperature, followed by low efficiency and low coherence
time. Lastly, we have used the model to estimate the improvements to
SPAM fidelity by marginal improvements in efficiency, temperature,
or coherence time. These estimates were used to enter a discussion of
how different strategies for the initialization and readout sequence
can be used to reduce the impact of low efficiency, high temperature,
or low coherence, given that the other parameters are better.

10.1 Next Steps

During the learning, writing, and coding for this thesis, my overview
of the field and the methods have increased significantly. Of course,
there are many things I would have liked to do differently, in another

78



CHAPTER 10. CONCLUSION 79

order, or have shelved earlier, if I look back now. However, this
has also come with ideas for possible paths for continuing the work.
While some are straight-forward, like general model optimization and
inclusion of X-gate fidelity and qutrit dynamics, others require more
work. The last part of this thesis will cover a short presentation of
some possible continuations.

10.1.1 Fitting the Model to Trajectories

In this thesis, the model was made by calibrating the qubit using
different methods for each parameter. Instead, we could explore if
the model could be directly fitted to the data to retrieve the calibrated
parameters. We saw in Figure 8.1.3 that by convolving the q-function
with a Gaussian, we get a good estimate for the distribution of the
readout record at a given time. One could imagine using this to
calculate the log-likelihood of each point at each time, given a set of
parameters. If we consider this a cost function, we can leverage the
development of ODE integration techniques in deep learning libraries.
This allows us to maximize the likelihood by tuning the parameters,
where the gradients can be found by either autograd methods or the
adjoint state method. [56]

New libraries for minimizing stochastic differential equation mod-
els have also been developed and are now already used to calibrate
qubit parameters [57]. Here, the qubit is however modeled without
the resonator with the equations from Section 5.4. One could imagine
reintroducing the resonator with the models presented in this thesis
to get an even better representation of the dynamics.

10.1.2 Including Improved Strategies in Simulation

In Chapter 9, we discussed different strategies to swap good-performing
variables for others. It would definitely be beneficial to include these
strategies in simulation. First, the amplitude and duration of the
pulse should be optimized in the realistic setting before good esti-
mates for improved devices can be extracted. The next steps will be
to include |1⟩ → |2⟩ pulses as well as active reset. This would allow
for a more flexible model that does not slack a few steps behind what
is happening at the fridge.

10.1.3 Bigger Hilbert Space - High Power Simulations

Lastly, we have been limited in our readout power, not by the quantum
device in question but by the classical computation power used to run
the simulation. By having more computational resources (and time),
it would be possible to also drive the resonator to a mean photon
number of approximately 30 or maybe even higher. This would give
a better illustration of what is happening in the laboratory. Of course,
we will need to check the dispersive approximation thoroughly when
we start to add more photons.
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A Code Documentation

During this project as code bases was developed to ease the im-
plementation of simulating many different situations with different
simulation schemes. In this appendix, the documentation for the
code is a attached. The code can be found on GitHub at https:

//github.com/JohannSeverin/QuantumDeviceSimulation.
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Documentation - QuantumDeviceSimulation

Simulation

This is the documentation for a simulation tool created as part of my Master Thesis. Ultimately, this module is built
as a wrapper for QuTiP in an attempt to ease simulation of routine tasks in Superconducting Qubits.

The module is built up of three main parts: Devices, Simulation and Analysis which are working together to built,
simulate and analyze the desired superconducting system.

The complete content of this module:

Devices
To built up the devices and quantum chips, we have all statics in the device part of the module. The main goals
are to calculate and store:

Hamiltonians from calibrated or device parameters
Decoherence operators
Interaction between different devices in a so called Devices/System
Different pulses which can be send in to the devices to interact with them

Experiment
When devices are designed, the time evolution can be calculated at different degrees of complexity. These
simulation strategies are found in this part of the module. And currently support the following:

Unitary Evolutions using the Schrodinger Equation
Lindblad Evolution which also take decoherence into account by evolving the total density matrix and
collapse operators

Analysis
Lastly, we have a module to do common analysis of the simulation traces. This is still very much under
development. The hope is, however, that it should take xarrays of the same type support in OPX Control.
Hopefully this will decrease the distance between simulations and experiment to hopefully integrate the two
together.

This can be done by using the Lindblad Master Equation to do deterministically
Or by doing a Monte Carlo Style Experiment

The simulation is the module responsible for the time integration. Most of the functionality is collected in the
SimulationExperiment  - parent class which keeps track of sweeping, data storage, calculation of expectation



values etc.. The SimulationExperiment  is subclassed in order to provide a method for simulating. This allows us
to to simulate using different models like Unitary, Lindblad or Stochastic simulations.

The following subclasses are available:

Schrödinger Experiment allows unitary evolution without loss. This is however one dimensional and can go
very fast.
Lindblad Experiment is a deterministic evolution using the Lindblad Master Equation to take care of
decoherence and leakage due to interaction with the environment
Monte Carlo Experiment takes care of decoherence and losses to the environment by applying them
stochastically. This means that we can approximate the Lindblad solution by dialing up the number of
trajectories.
Stochastic Master Equation is used for simulating homodyne and heterodyne measurements of the system
and how it behaves under continuous monitoring.

Simulation Experiment Class

The SimulationExperiment  call the overwritten simulate  method to simulate a configuration. This now takes care
of looping over the swept parameters defined in the Systems simulated. At the moment it supports sweeps over 1
or 2 parameters as well as the possibility to save the state or density matrix at each time in the simulation.

Subclasses
Schrödinger Experiment
The simplest implemented experiment is the Schrödinger experiment which takes states and simply evolves them
using the Schrödinger equation:

d

dt
|ψ⟩ = −iℏĤ|ψ⟩

The Schrödinger equation is unitary evolutions and does not support decoherences, density matrices or
measurements.

Since the Schrödinger equation is unitary, it is not necessary to keep track of a whole density matrix and is for this
reason the fastest of the possible simulations.

To run an experiment it can be defined using:

Note

This class uses a Dataclass  to store data from simulation and save it. In the future this should be changed
such that it comes in the same way as from the ´OPX_control´ library which is used in the lab.

experiment = SchoedingerExperiment(
system: System,
states: Iterable[qutip.Qobj],
times: Iterable[float],
expectation_operators: list[qutip.Qobj] = [],
store_states: bool = False,
store_measurements: bool = False,
only_store_final: bool = False,
save_path: str = None,

)



And can then be run simply by:

The parameters of the SchroedingerExperiment  are as follows:

Parameter Function

system The System that should be simulated

states States or list of states to simulate

times List of times for simulation

expectation_operators List of operators for which an expectation value should be calculated

store_states Whether the states should be stored

only_store_final Whether only the final state should be considered in storing states and calculating
expectation vaues

save_path What path the final results should be saved to

Lindblad Experiment
To consider losses and decoherences from the system, one should use the Lindblad Master equation to simulate
the time evolution of a density matrix in contact with the environment. The master equation which is evolved is
given by:

ρ̇(t) = −idt[H, ρ(t)] +∑
a

(Laρ(t)L†
a −

1

2
LaL

†
aρ(t) −

1

2
ρ(t)LaL

†
a)

where Lα is dissipation operators.

The Lindblad Master Equation considers a linear equation for the density matrix and for this reason it scales
heavy with the size of the Hilbert Space. For this reason, it is significantly slower than the Schrödinger equation
for high dimensional problems.

To simulate the Lindblad Master equation the following experiment should be set up in exactly the same way as
the SchoedingerExperiment , but will consider dissipation operators of the system:

And can be run by:

The parameters are also the same as SchroedinerExperiment :

results = experient.run()

experiment = LindbladExperiment(
system: System,
states: Iterable[qutip.Qobj],
times: Iterable[float],
expectation_operators: list[qutip.Qobj] = [],
store_states: bool = False,
store_measurements: bool = False,
only_store_final: bool = False,
save_path: str = None,

)

experiment.run()



Parameter Function

system The System that should be simulated

states States or list of states to simulate

times List of times for simulation

expectation_operators List of operators for which an expectation value should be calculated

store_states Whether the states should be stored

only_store_final Whether only the final state should be considered in storing states and calculating
expectation vaues

save_path What path the final results should be saved to

Monte Carlo Experiment

For larger dimensions it can be beneficial to add the collapse operators stochastically by using the Monte Carlo
Simulation. This simulation will apply a collapse operator depending on the given rate and time step. By doing
this, the problem is still one dimensional and can be repeated multiple times to approximate the Lindblad
equation.

A Monte Carlo Experiment is setup using:

And is run by:

The parameters of the MonteCarloExperiment  are:

Parameter Function

system The System that should be simulated

states States or list of states to simulate

times List of times for simulation

expectation_operators List of operators for which an expectation value should be calculated

store_states Whether the states should be stored

Note

While the Monte Carlo method uses parallel processes, it is done at a python level and runs inefficient. This
method should instead be changed like the Stochastic Master Equation, where qutip handles the parallel
calls internally.

experiment = MonteCarloExperiment(
system: System,
states: Iterable[qutip.Qobj],
times: Iterable[float],
expectation_operators: list[qutip.Qobj] = [],
store_states: bool = False,
store_measurements: bool = False,
only_store_final: bool = False,
save_path: str = None,
ntraj: int = 1,
exp_val_method="average",

)

results = experiment.run()



Parameter Function

only_store_final Whether only the final state should be considered in storing states and calculating
expectation vaues

save_path What path the final results should be saved to

ntraj How many times to repeat each subexperiment

exp_val_method When set to "average" this will take the average of all trajectories other wise
expectation values for each trajectory is returened

Stochastic Master Equation
The most complex experiment is evolving the stochastic master equation. In addition, to including decoherence
and dissipation this also allows for measurement feedback and a measurement record.

The Stochastic Master Equation takes the form:

dρ = −i[H, ρ]dt + D[c]ρdt + H[c]ρdW

Where the superoperators refer to the Lindblad dissipator:

D[c]ρ(t) = cρ(t)c† −
1

2
cc

†
ρ(t) −

1

2
ρ(t)cc†

And a stochastic part given by:

H[c]ρ(t) = cρ(t) + ρ(t)c − ⟨c + c†⟩ρ(t)

Here dW  is a stochastic variable of the wiener process with variance dt.

Currently this is simulated either by using a homodyne or heterodyne setup of the collapse operator using the
method  keyword, depending on whether one or two quadratures should be measured.

When using StochasticMasterEquation  the system parameter system.stochastic_dissipators  will also be
considered and add the stochastic term with weighted by the efficiency of the system:
system.readout_efficiency .

The results of the StochasticMasterEquation  will include measurements . The measurements are the result of a
record of outcomes from the measurement at each timestep. In the heterodyne measurements (which is the only
one implemented), the measurement record takes the form of:

dr = η (⟨I⟩ + i⟨Q⟩)dt +
dWI + dWQ

√2

The experiment is defined using:

experiment = StochasticMasterEquation(
system: System,
states: Iterable[qutip.Qobj],
times: Iterable[float],
expectation_operators: list[qutip.Qobj] = [],
store_states: bool = False,
store_measurements: bool = False,
only_store_final: bool = False,
save_path: str = None,
ntraj: int = 1,
exp_val_method="average",
method: str =  "heterodyne",
store_measurements: bool = True,
nsubsteps: int = 1,

)



Devices

And run like the others by:

The parameters are:

Parameter Function

system The System that should be simulated

states States or list of states to simulate

times List of times for simulation

expectation_operators List of operators for which an expectation value should be calculated

store_states Whether the states should be stored

only_store_final Whether only the final state should be considered in storing states and calculating
expectation vaues

save_path What path the final results should be saved to

ntraj How many times to repeat each subexperiment

exp_val_method When set to "average" this will take the average of all trajectories other wise
expectation values for each trajectory is returened

method Set to "homodyne" or "heterodyne" depending on one or two quadrature
measurement

store_measurements whether to store the measurement record

nsubsteps If there should be substeps in the simulation between returned points

results = experiment.run()

All the physical devices and pulses are written as children to the Device -class.

All devices are collected in three main categories:

Device store the physical devices with Hamiltonian, decays and other parameters
Systems are connecting physical devices from the Device class. This can be to combine multiple qubits,
qubit and a resonator, or drive them with pulses.
Pulses are different time dependent functions which can be coupled at the appropriate keyword in a System.

List of Devices:
A running list of devices, systems and pulses are found here:

Device

Systems

Pulses

Simple Qubit
Transmon
Resonator

Qubit System
Qubit Resonator System
[Approximated Systems](Systems#Approximated Systems)

GaussianPulse



Device

Device Parent Class
The Device Parent Class:

is an abstract class made to keep track of static and sweepable parameters. It has the following methods. When
subclassed it should have a new version which creates a new init calling the parent and overwriting the
Device.set_operators  method.

The init(self)  should define a self.sweepable_parameters  a list with strings referring to the defined parameters
which should have the ability to be swept in an .md. Furthermore, it should also include
self.update_methods<//code>

An example could be the following:

SquareCosinePulse
CloakedPulse

Device(ABC):

def set_operators(self) -> None:
SHOULD BE OVERWRITTEN TO SET DEVICES OPERATORS GIVEN PARAMETERS

def NewDevice(Device):

def __init__(self, ...):
DEFINE NEW PARAMETERS HERE FOR THE CLASS
self.sweepable_parameters = ["PARAM1", "PARAM2"]
self.update_methods = [self.set_operators]
super().__init__()

def set_operators(self):
SET HAMILTONIAN AND OTHER OPERATORS HERE
self.hamiltonian = qutip.number(self.levels) # For Example a harmonic oscillator

Device is part of the Devices submodule which contains the different children classes to the [Device Parent Class]
(Devices#Device Parent Class).

Qubits
Simple Qubit

The most basic device is the simple qubit. This is simply defined from a qubit frequency given in GHz which
defines the energy gap between |0⟩ and |1⟩, along with the anharmonicity. If the anharmonicity is None, the Qubit
is a simple two-level system, but with it defined, there will be a third level |2⟩ with energy 2f01 + α where α is the
anharmonicity.

Furthermore, the qubit can be defined with a decay by defining a T1 ≠ 0.



The sweepable parameters of the SimpleQubit are:

Parameter Use Sweepable

frequency The energy spacing between the 0 and 1 level in GHz x

anharmonicity The difference in energy splitting between 2-1 and 1-0 . (Given in Ghz) x

T1 The characteristic time of qubit decay x

And the update methods calculates the following operators/dissipators:

Hamiltonian
Charge Matrix
Dissipators

Transmon

The Transmon qubit defines an n-level anharmonic system from the physical parameters Transmon Device. The
Hamiltonian and Charge Matrix are calculated numerically by diagonalizing the Hamiltonian in the charge basis of
the charge matrix. (see CircuitQ: an open-source toolbox for superconducting circuits)

To define the Transmon call the following:

The parameters of the Transmon qubit are:

Parameter Use Sweepable

EC Energy associated with capacitor in GHz x

EJ Energy assiciated with Josephson Junction in GHz x

n_cutoff Number of charges to include in calculations of hamiltnonian.

ng Charge offset in units of 2e x

levels Define how many energy levels of the Transmon should be considered.

T1 The characteristic time of qubit decay process x

And the update methods calculates the following operators/dissipators:

Hamiltonian

SimpleQubit(
frequency: float,
anharmonicity: float = None,
T1: float = 0.0,

):

Qubit Decay

SimpleQubit(
self,
EC: float,
EJ: float,
n_cutoff: int = 20,
ng: float = 0.0,
levels: int = 3,
T1: float = 0.0,

)



Systems

Charge Matrix
Dissipators

Resonator
The resonator is a defined as a quantum harmonic oscillator with energy levels (n + 1

2 )2πf with f the frequency
of the resonator. It further supports decay of the resonator given by the characteristic time κ.

To define a resonator use the following:

The sweepable parameters of the Resonator are:

Parameter Use Sweepable

frequency The energy spacing between levels in GHz x

levels The number of levels to consider

kappa The characteristic time of photon decay x

Which updates the following operators and dissipators:

Hamiltonian
Coupling Operator
Dissipators

Qubit Decay

Resonator(
frequency: float, 
levels=10, 
kappa: float = 0

)

Qubit Decay

In this module, a system is made to simulate the interaction between different devices such that different
interactions can be calculated. The system class also takes care of propagating updates directly to the devices
which it is built of while also maintaining its own sweepable parameters.

System Parent Class
The System parent class defines much of the logistics for the updating parameters in the overall system or in the
device which it is made of.

The parent class takes the following abstract form:

class System(ABC):
    @abstractmethod
    def set_operators(self):

WRITE THIS FUNCTION SUCH THAT IT UPDATES THE OPERATORS
DEVICE OPERATORS ARE UPDATED BEFORE THIS FUNCTION IS CALLED

    @abstractmethod



In addition to the new methods, the new init()  function should also define a self.sweepableparameters  and a
self.update_methods . _Maybe also even a self.dimensions?

An example for defining a new system can be seen here:

To get a state, one can call the following code with state being the integer of the desired level.

A few simple methods are defined to get common expectation value operators.

QubitResonatorSystem

    def get_states(self):
        THIS FUNCTION SHOULD BE USED TO GET THE BASIS STATES OF THE SYSTEM

class NewSystem(System):

def __init__(self, qubit, PARAM1, PARAM2):
CALCULATIONS HERE

self.sweepable_parameters = ["PARAM1"]
self.update_method = [self.update_operators, self.update_dissipators]

def set_operators(self):
CALCULATE HAMILTNONIAN FOR THE ENTIRE SYSTEM HERE

def set_dissipators(self):
CALCULATE THE DISSIPATORS HERE

def get_states(self, state_numbers):
states = FIND THE STATES HERE
return states

```

## Systems
Some simple systems are already defined in the module and are documented below. Some systems are 
approximation of these systems and will be found in the new section.

### QubitSystem
The simplest system connects a qubit to a pulse drive line. It can be defined by:

```python
QubitSystem(

self,
qubit: Device,
qubit_pulse: Pulse = None,

)

state = QubitSystem.get_states(state: int)

# An operator  for finding the number operator
QubitSystem.qubit_state_operator()

# Or the occupation for a specific state
QubitSystem.qubit_state_occupation_operator(state: int = 1)



The QubitResonatorSystem is made for combing one Device > Qubits class element with a Device > Resonator
along with pulses each.

The QubitResonatorSystem is called with the following syntax:

The qubit and resonator are connected with the g n̂ ⊗ (a + a†) where g is the coupling strength, n̂ is the charge
matrix of the qubit and a and a† are the lowering and raising operators of the resonator.

Initial states are found as |qubit state⟩ ⊗ |resonator state⟩ calling:

And the following operators can be found to calculate common expectation values:

Approximated Systems
As some system very complex to simulate. For this reason a few approximations are made and implemented in
order to get simpler simulations.

DispersiveQubitResonatorSystem

By taking the dispersive approximation of the QubitResonatorSystem subject to a Pulses > Square Cosine Pulse,
one can do the dispersive approximation. The dispersive approximation, is most easily calculated by using the
.dispersive_approximation()  when a QubitResonatorSystem is defined with a Square Cosine Pulse.

As an example, the system can be defined by:

QubitResonatorSystem(
qubit: Device,
resonator: Device,
coupling_strength: float,
resonator_pulse: Pulse = None,
qubit_pulse: Pulse = None,

)

QubitResonatorSystem.get_states(qubit_states: int = 0, resonator_states: int = 0)

# The photon number operator by tracing out the qubit
QubitResonatorSystem.photon_number_operator()

# The qubit number operator is found:
QubitResonatorSystem.qubit_state_operator()

# The occupation operator for a specifcic qubit state can be found  
QubitResonatorSystem.qubit_state_occupation_operator(state: int = 1)

# And the I and Q operator for measuring the quadratures of resonator can be found as
QubitResonatorSystem.resonator_I()
QubitResonatorSystem.resonator_Q()

QubitResonatorSystem(
qubit: Device,
resonator: Device,
coupling_strength: float,
resonator_pulse: Pulse = None,
qubit_pulse: Pulse = None,



Pulses

where the resonator_pulse must be a SquareCosinePulse and the qubit_pulse is ignored if defined. The
DispersiveQubitResonatorSystem inherits the dissipators and stochastic dissipators from the
QubitResonatorSystem, but redefines. One can give the function explicit dispersive shifts, otherwise it will be
calculated using the frequencies of the qubit and the resonator together with the coupling strength.

).dispersive_approximation(dispersive_shift: float = None)

Pulse Parent Class
At the moment the Pulse Parent class mostly serves a typing help. It just has single abstract method inheriting
most functionality from the [Device Parent Class](Devices#Device Parent Class). A Pulse class takes the
structure:

Square Cosine Pulse
The simplest pulse is the cosine pulse with a simple rectangular envelope. It is defined using the following:

Parameter Function Sweepable

frequency Set the frequency of the pulse x

amplitude The amplitude x

start_time When the pulse starts x

duration How long it lasts x

phase A phase to give to the oscillating term x

Gaussian Pulse
The simplest pulse is the square cosine pulse. It has the following arguments:

class Pulse(Device):

    @abstractmethod
    def set_pulse(self):

    A FUNCTION THAT DEFINES A PULSE AS
    self.pulse: callable(t, args) -> float

Note

With np.piecewise  it should be possible to write this in a vectorized form. This could hopefully help with
performance.

SquareCosinePulse(
frequency: float,
amplitude: float,
start_time: float = 0,
duration: float = None,
phase: float = 0,

)



Analysis

Where the parameters are given by the following:

Parameter Function Sweepable

frequency Set the frequency of the pulse x

amplitude The amplitude x

sigma The width of the pulse given as standard deviation of the gaussian envelope x

start_time When the pulse starts x

duration How long it lasts x

phase A phase to give to the oscillating term x

drag_alpha if DRAG should be applied to the pulse, this αDRAG ≠ 0 x

GaussianPulse(
frequency: float,
amplitude: float,
sigma: float,
start_time=0,
duration=0,
phase=0,
drag_alpha=0,

):

The analysis module serves as a convenient way for plotting results from the Simulations class. It is in a
preliminary stage and is mostly used for overview and debugging purposes. At the current stage, it is built of two
groups.

Sweep Analysis - Which serves as way of plotting different sweeps or time dependent behavior from a
simulation. The different sweep-analysis methods can be chosen automatically by using automatic_analysis
from analysis.auto .
Q Function Analysis - Is used to calculate and visualize the Q function for density matrices from simulations.

Sweep Analysis
At the moment, the sweep analysis have four functions which both support multiple initial states and multiple
expectation values, which will be shown in a grid.

plot_one_dimensional_sweep(results: SimulationResults, **kwargs) , which takes a SimulationResults
object with one sweep parameter and plots the expectation values against it.
plot_two_dimensional_sweep(results: SimulationResults, **kwargs) , which takes a SimulationResults
object with two sweep parameters and plot a heatmap with the expectation values as function of both.
plot_time_evolution(results: SimulationResults, **kwargs) , which takes a SimulationResults  object with
no sweep parameters, but with only_store_final = False  and plots the time-dependence of the expectation
values.
plot_time_evolution_with_single_sweep(results: SimulationResults, **kwargs) , which takes a
SimulationResults  object with one sweep parameter and only_store_final = False . It then plots the a
heatmap of the expectation values where the axis are the sweep parameter and time.

Instead of choosing, one can use the automatic analysis:



which automatically detects the amount of sweep parameters and if a time-axis is available to determine which of
the sweep plots above should be shown.

Q Function Analysis
The Q Function Analysis consists of one utility function:

Which takes a list of state along with a list of x, y coordinates where the q function should be calculated for these
states. To support demodulation behavior a rotation amount can be given in radians for each of the states. This
will rotate the x-y coordinate system with the desired amount.

And two plotting functions:

qfunc_plotter(results: SimulationResults, interval=10, resolution=100)  which takes a simulation result
and plots the Q function of the resonator after tracing out the qubit state.
qfunc_plotter_with_time_slider(results: SimulationResults, interval=10, resolution=100,

time_steps=1, demod_frequency=0)  which plots the time-dependent q function with slider which chooses at
what time the Q function should be displayed.

# With results from some experiment 
results = experiment.run()

from analysis.auto import automatic_analysis
automatic_analysis(results)

Q_of_rho(
 rhos: iterable[qutip.Qobj], 
 x: np.ndarray, 
 y: np.ndarray, 
 rotate: iterable[float] = 0

 )



B Generalization of Dispersive Model
for Multi Level Qubit

In section 3.2.2 the dispersive model was derived for 2-level-qubit.
In this appendix, we will expand this to general form where we
consider an m-level instead of the qubit. This derivation is based
on the exercise from a ph.d. course in superconducting Qubits at
the Niels Bohr Institute developed by Svend Krøjer [58]. As earlier,
we have energy for the resonator given by: Hres = ωra†a while the
energy for an M-level qubit can be written generally as:

Hq =
M−1

∑
k=0

ωk |k⟩ ⟨k| (B.1)

Where |k⟩ is the k’th energy eigenstate of the qubit with corresponding
energy of ωk. Allowing the M-level qubit to interact with the resonator
by the Generalized Jaynes-Cumming model:

H1 = ∑
i,j

gij |i⟩ ⟨j| (a + a†) (B.2)

Where the jump strength gij is related to the overlap of the eigenstates
with the charge operator and the coupling energy: gij = g ⟨i|n̂|j⟩. This
gives the full Hamiltonian:

H = H0 + H1 = ωra†a +
M−1

∑
k=0

ωk |k⟩ ⟨k|+ ∑
i,j

gij |i⟩ ⟨j| (a + a†) (B.3)

As in the two-level-system, we can make use of the Schrieffer-Wolff
transformation to diagonalize the Hamiltonian to second order in the
perturbation variable. We want to apply the transfomration:

H′ = eSHe−S = H + [S, H] +
1
2
[S, [S, H]] + . . .

= H0 + H1 + [S, H0 + H1] +
1
2
[S, [S, H0 + H1]] + . . . (B.4)

Where S has to be an anti-hermitian operator to make this a unitary
transformation. The goal is now to choose S such that the linear terms
in our perturbation disappear. This gives the condition [S, H0] = −H1.
If we were to choose:

S = ∑
ij

gij |i⟩ ⟨j|
(

1
ωij − ωr

a +
1

ωij + ωr
a†

)
(B.5)

with ωij = ωi − ωj. The commutator gives:
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[S, H0] = ∑
ijk

gij

[
|i⟩ ⟨j|

(
1

ωij − ωr
a +

1
ωij + ωr

a†

)
, ωra†a + ωk |k⟩ ⟨k|

]

= ∑
ij

gij |i⟩ ⟨j| (ωj − ωi)

(
1

ωij − ωr
a +

1
ωij + ωr

a†

)

+ ∑
ij

gij |i⟩ ⟨j|ωr

(
1

ωij − ωr

[
a, a†a

]
+

1
ωij + ωr

[
a†, a†a

])

And with
[
a†, a†a

]
= −a† and

[
a†, aa

]
= +a. We obtain:

= ∑
ij

gij |i⟩ ⟨j|
(

ωj − ωi − ωr

ωij + ωr
a +

ωj − ωi − ωr

ωij + ωr
a†

)
= −∑

ij
gij |i⟩ ⟨j| (a + a†) = −H1

With this result, our transformed Hamiltonian now becomes:

H′ = H0 + [S, H1] +
1
2
[S, [S, H0 + H1]] . . .

= H0 + [S, H1] +
1
2
(−[S, H1] + [S, [S, H1]]) . . . (B.6)

= H0 +
1
2
[S, H1] + . . . (B.7)

In the dispersive limit, the coupling strength is much weaker than
the detuning: gij ≪ wij. Since S contains gij/wij terms, we only go to
the linear term in the dispersive approximation, and drop everything
with higher orders of S.

In this transformed basis, we find the "pertubation" entirely from:
Hshi f t =

1
2 [S, H1] which can be calculated to:

2Hshi f t =

[
∑
ij

gij |i⟩ ⟨j|
(

1
ωij − ωr

a +
1

ωij + ωr
a†

)
, ∑

kl
gkl |k⟩ ⟨l| (a + a†)

]

= ∑
ijkl

gijgkl

[
|i⟩ δjk ⟨l|

(
1

ωij − ωr
a +

1
ωij + ωr

a†

)
(a + a†)

]

− ∑
ijkl

gijgkl

[
|k⟩ δli ⟨j| (a + a†)

(
1

ωij − ωr
a +

1
ωij + ωr

a†

)]

Going into the rotating frame terms proportional to aa or a†a† will
be negligible since they are not energy conserving. Furthermore,
the Scrieffer Wolf diagonalized to first order, so we will only keep
diagonal elements proportional to |i⟩ ⟨i|. We find:

2Hshi f t = ∑
ij
|gij|2 |i⟩ ⟨i|

[
1

ωij − ωr
aa† − 1

ωji + ωr
a†a +

1
ωij − ωr

a†a − 1
ωji + ωr

aa†

]

Using the commutation relation
[
a, a†] = 1, we can write it in the

following form:



APPENDIX B. GENERALIZATION OF DISPERSIVE MODEL FOR MULTI LEVEL QUBIT 102

Hshi f t = ∑
ij
|i⟩ ⟨i| |gij|2

(
1

ωij − ωr
+

(
1

ωij − ωr
+

1
ωij + ωr

)
a†a

)
(B.8)

And by defining the following quantities:

χij = |gij|2
(

1
ωij − ωr

+
1

ωij + ωr

)
(B.9)

δij =
|gij|2

ωij − ωr
(B.10)

χi = ∑
j

χij (B.11)

δi = ∑
j

δij (B.12)

The dispersive m-level qubit and resonator system can be written as:

H′ = ωra†a + ∑
k

ωk |k⟩ ⟨k|+ ∑
kl
|k⟩ ⟨k| (δkl + χkla†a) (B.13)

Or in a more interpretable manner:

H′ =

(
ωr + ∑

k
χk |k⟩ ⟨k|

)
a†a + ∑

k
(ωk + δk) |k⟩ ⟨k| (B.14)

This equation allows us to investigate the effect of the coupling be-
tween resonator and qubit. When coupled the qubit state shift the
resonator frequency with χk. While every qubit frequency is shifted
slightly y δk.

Or by considering reducing the multi-level system to only the two
lowest, we can write the equation in the simple form:

H = (ω̃r + χσz)a†a +
1
2

ω̃01σz (B.15)

where the shifts from the higher order terms have been absorbed into
the new redefined frequencies.



C Fit Parameters

During this project as code bases was developed to ease the im-
plementation of simulating many different situations with different
simulation schemes. In this appendix, the documentation for the code
is a attached.

C.1 Qubit

In the following tables, the fits for the qubit parameters are shown.

C.1.1 Qubit Spectroscopy

Qubit spectroscopy was fitted with

y = offset + Aγ2/(γ2 + (x − f0)
2) (C.1)

Parameter Value
Chi-squared 127.33 for 96 dof with p-value 0.018

f0 5.98203 × 109 ± 8.24256 × 104

A 6.63190 × 10−4 ± 1.44000 × 10−5

γ 3.93462 × 106 ± 1.40260 × 105

Offset 9.01520 × 10−5 ± 4.01262 × 10−6

Table C.1: The results from fitting the
qubit spectroscopy data.

and anharmonicity by:

y = offset + A1γ2
1/(γ2

1 + (x − f01)
2) + A2γ2

2/(γ2
2 + (x − ( f02/2)2) (C.2)

Parameter Value
Chi-squared 882.06 for 293 dof with p-value 0.000

f01 5.97946 × 109 ± 6.11718 × 104

A1 7.76935 × 10−4 ± 2.37875 × 10−5

γ1 1.96132 × 106 ± 8.54273 × 104

Offset 2.41042 × 10−4 ± 1.74947 × 10−6

f02 5.83506 × 109 ± 4.57718 × 104

A2 8.02353 × 10−4 ± 2.68230 × 10−5

γ2 1.30993 × 106 ± 6.32462 × 104

Anharmonicity −2.88806 × 108 ± 1.52801 × 105

Table C.2: Results from fitting the anhar-
monicity experiment.
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C.1.2 Rabi

Rabi was fitted with:

y = Offset + Amplitude · cos (2π · Frequency · x + Phase) (C.3)

Parameter Value
Chi-squared 85.54 for 96 dof with p-value 0.769

Amplitude −5.87664 × 10−4 ± 3.89923 × 10−6

Frequency 5.54590 ± 1.17750 × 10−2

Phase −4.06622 × 10−3 ± 7.75219 × 10−3

Offset 7.76880 × 10−4 ± 3.05453 × 10−6

Table C.3: Results from fitting the Rabi
experiment.

C.1.3 T1

T1 time was fitted with:

y = Offset + Amplitude · exp (−x/T1) (C.4)

Parameter Value
Chi-squared 95.49 for 72 dof with p-value 0.034

Amplitude 1.38798 × 10−3 ± 2.10499 × 10−5

Offset −1.65994 × 10−3 ± 5.65962 × 10−6

T1 4.30197 × 10−6 ± 1.23942 × 10−7

Table C.4: Results from fitting the T1

experiment.

C.1.4 T2

T2 was fitted with:

y = Offset + exp(−x/T2)∑
i

Amplitudei · cos (2π · Frequencyi · x + Phasei) (C.5)

where i ∈ {1, 2} for the new data and i = 1 for the old data.

Parameter Value
Chi-squared 621.01 for 179 dof with p-value 0.000

Amplitude1 2.52602 × 10−4 ± 1.15859 × 10−5

Frequency1 4.40050 × 106 ± 1.41730
Phase1 3.96978 × 10−1 ± 3.75929 × 10−2

Amplitude2 1.56321 × 10−4 ± 9.88497 × 10−6

Frequency2 5.00000 × 106 ± 1.41485
Phase2 3.98596 × 10−1 ± 5.71422 × 10−2

Offset −8.71766 × 10−4 ± 2.87661 × 10−6

T2 1.64514 × 10−6 ± 1.18271 × 10−7

Table C.5: Results from fitting the two
oscillating model to the new data in the
T2 model.
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Parameter Value
Chi-squared 188.50 for 161 dof with p-value 0.068

Amplitude 1.29900 × 10−4 ± 2.17201 × 10−6

Frequency 5.01652 × 106 ± 3.39729 × 103

Phase −1.00263 × 10−3 ± 1.67711 × 10−2

Offset −1.69752 × 10−4 ± 6.03841 × 10−7

T2 1.69875 × 10−6 ± 5.92495 × 10−8

Table C.6: Results from fitting the old
data with the proper model.

C.2 Resonator

And the resonator fits

C.2.1 Spectroscopy

Spectroscopy of the resonator in the ground state is fitted by:

y = offset + Aγ2/(γ2 + (x − f0)
2) (C.6)

and for the excited state:

y = offset + ∑
i∈0,1

Aiγ
2
i /(γ2

i + (x − f0)
2) (C.7)

Parameter Value
Ground State

Chi-squared 33.35 for 16 dof with p-value 0.007

f0 7.555893 × 109 ± 3.293863 × 103

A0 −1.853905 × 10−3 ± 1.942156 × 10−5

γ0 6.164246 × 105 ± 1.185079 × 104

Offset 3.480317 × 10−3 ± 2.088801 × 10−5

Excited State
Chi-squared 77.24 for 37 dof with p-value 0.000

f0 7.555801 × 109 ± 1.983607 × 104

A0 −7.907930 × 10−4 ± 1.692275 × 10−5

γ0 1.042611 × 106 ± 4.626130 × 104

Offset 3.689660 × 10−3 ± 1.987719 × 10−5

f1 7.554366 × 109 ± 6.967312 × 103

A1 −1.491251 × 10−3 ± 1.863746 × 10−5

γ1 5.562317 × 105 ± 1.150527 × 104

Table C.7: Fit Outcomes for Ground
and Excited States of the resonator spec-
troscopy.

C.2.2 Kappa

kappa was fitted with:

y = Offset + Amplitude · exp (−κx) (C.8)
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Parameter Value
New Set

Chi-squared 46.67 for 73 dof with p-value 0.993

Amplitude 6.45500 × 10−2 ± 2.40723 × 10−2

Offset 1.26682 × 10−3 ± 2.49725 × 10−4

κ 3.80033 × 106 ± 5.75194 × 105

Table C.8: Fit Outcomes from the model
to fit kappa.

C.2.3 Photon Counting

For the photon counting, the fit was done with a parabola:

y = ax2 + bx + c (C.9)

Parameter Value
Chi-squared 56.91 for 47.0 dof with p-value 0.153

a −1.89715 × 107 ± 3.78078 × 105

b 3.04349 × 106 ± 5.67926 × 105

c 5.97798 × 109 ± 1.75053 × 105

Table C.9: Results from fitting the pho-
ton counting experiment.



APPENDIX C. FIT PARAMETERS 107

C.3 System

Finally, fits used to extract temperature and efficiency.

C.3.1 Temperature

The temperature was extracted by fitting with the t1 decay in a
continuous measurement. For the ground, it was fitted with:

y = steady_state − (steady_state − initial_error) · exp(−x/decay_time) (C.10)

and for the excited state:

y = steady_state + (1 − (steady_state − initial_error)) · exp(−x/decay_time) (C.11)

Parameter Value
Ground State

Chi-squared 19.69 for 47 dof with p-value 1.000

Steady State 9.35013 × 102 ± 1.61621 × 102

Initial Error 8.75143 × 102 ± 3.71799 × 100

Decay Time 1.20234 × 102 ± 3.94611 × 102

Excited State
Chi-squared 54.26 for 47 dof with p-value 0.217

Steady State 1.01789 × 102 ± 3.24616 × 100

Initial Error −8.77383 × 102 ± 7.12052 × 100

Decay Time 1.07728 × 101 ± 2.22305 × 10−1

Table C.10: Results from fitting the con-
tinuous modeled data to determine tem-
perature.

C.3.2 Efficiency

The SNR was fitted by a linear fit:

y = ax + b (C.12)

and the dephasing experiment with a gaussian:

y = Ae−(x−µ)2/σ2
(C.13)

Parameter Value
Chi-squared 17.40 for 49 dof with p-value 1.000

a 2.43444 ± 1.45927 × 10−1

b 4.36653 × 10−2 ± 2.55083 × 10−2

Table C.11: Results from linear fit to de-
termine SNR as a function of amplitude
strength.

Parameter Value
Chi-squared 45.67 for 48 dof with p-value 0.569

A 1.24481 × 10−5 ± 2.36924 × 10−7

µ −8.97090 × 10−4 ± 1.52904 × 10−3

σ 6.93066 × 10−2 ± 1.51261 × 10−3

Table C.12: Results from gaussian fit to
determine the width of the dephasing
experiment for determining efficiency.



D Plots of Fidelity Calculations

In chapter 9 many IQ plots were displayed along with the fidelity.
In this appendix, we have collected the plots showing the full IQ
calculations.
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Figure D.1: The fidelity-analysis plots
with the isolated contributor to infi-
delity.
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Figure D.2: The fidelity-analysis plots
with contributors turned off.
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Figure D.3: The fidelity-analysis plots
with marginal changes to T1.
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Figure D.4: The fidelity-analysis plots
with marginal changes to temperature.
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Figure D.5: The fidelity-analysis plots
with marginal changes to η.


	Introduction
	Outline of Thesis
	Qubits
	Time Evolution of a Quantum System
	Computational Framework of the Thesis

	Circuit Quantum Electrodynamics
	Circuit QED
	Building Qubits
	Numerical cQED

	Computations and Readout
	Qubit Control
	Coupling to a Resonator
	I-Q Phase Space

	Dynamics of Open Quantum Systems
	Density Matrix Formalism
	Time Evolution of Density Matrices
	Dissipation and Decoherence in Qubits

	Measurements
	Generalized Measurement
	Stochastic Master Equation
	Measurement of a Qubit
	Measurement Induced Backaction on the Qubit

	Readout Experiment
	Experimental Setup
	Readout Fidelity
	Determining the Readout Fidelity
	Filtering and Weights
	Postselection

	Calibration Methods
	Qubit Calibration
	Resonator Calibration
	System Parameters
	Overview of Device Parameters

	Building a Model of the System
	Different Simulation Approaches
	Timesteps and the Size of the Hilbert Space
	Readout in Simulation

	Readout Infidelity Budget
	Turning off the Contributions
	Improving the Readout
	Further Path to Optimization

	Conclusion
	Next Steps

	Bibliography
	Code Documentation
	Generalization of Dispersive Model for Multi Level Qubit
	Fit Parameters
	Qubit
	Resonator
	System

	Plots of Fidelity Calculations

