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Scattering trajectories are of great importance in general relativistic gravitational studies. The
2016 observation of gravitational waves from binary black holes has increased interest in dynamics
of massive systems. Specifically, full two body dynamics are obtainable from an effective frame-
work which considers test particles. Such a theory has been established for non-spinning binary
objects. The work on spin is still ongoing.
This thesis presents a novel way of calculating test particle scattering angles of General Relativity.
It does so in a weak field expansion in Newtons constant G. The work directly generalizes
the previous result [1]. It does so by considering a wider class of integrals. Arbitrary planar
test particle scattering can be handled, both with spinning and non-spinning particles. The
resulting angle is provided as an expansion inG. It requires introducing special normal coordinates
applicable to any metric, and a nicely-behaved function hprq in terms of which the angle can be
expressed. The formalism is tested explicitly up to second order in test particle spin. Specific
calculations are provided for Kerr (up to OpG6q) and Schwarzschild metrics (up to OpG10q). These
cutoffs are arbitrary and higher orders can readily be calculated.
General features are discussed, both of the derivation and the obtained results. Because of its
mathematical nature, the formalism presented may have uses beyond test particle scattering.
It already naturally reproduces the general mass non-spinning binary result of [1]. Discussed
further is an EOB framework based on scattering angles and the possibility of an all-PM order
angle in a single expression.

In collaboration with Poul Henrik Damgaard, Andrés Luna Godoy and Justin Vines, an
article is in preparation with the findings described in this thesis. [2]
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1 Introduction

Humans have watched the heavens for thousands of years. Ever since the Assyro-Babylonians

in present day Iraq, people have meticulously observed the light from the heavens [4]. Their

still-existent clay tablets record the beginnings of the earliest natural science, astronomy.

Since these ancient times, light has been the only direct conduit for this research. The ancients

relied on their eyes, Newton had telescopes, and present day astronomy is both ground and space-

based.

In the beginning of the 20’th century, Einstein revolutionized this viewpoint. He discovered

General Relativity, a new theory of gravity. Binary systems, such as a planet orbiting a star, or

two black holes orbiting each other, were predicted to emit gravitational waves. First observed by

LIGO in 2016 [5], gravitational waves are completely different from light. They open the shutters

of a completely new window to the Universe.

The search with General Relativity to describe these waves has been intense. It relies heavily

on knowing the laws governing binary motion. This thesis is concentrated on a small part of this

field - we look specifically at scattering of small particles around a bigger central object. This

is called the test particle limit of a full binary problem. We consider scattering trajectories that

stay in a single plane. The derivation generalizes an amplitudes results of [1], presented in 3.2. It

does so by considering a wider class of integrations.

Before going into depth with this, we will present a general review of both the history and

current state of art in gravitational theory. Newtons theory of gravitation will be described, fol-

lowed by Einsteins general theory of relativity. We will discuss how binary dynamics in such a

theory might be found, before turning to gravitational waves. Last, we will describe a different

way of obtaining binary dynamics, called the Post Minkowskian expansion. We will work with

this method throughout the thesis.

All specific mathematics necessary for our work will be described in later chapters.

1.1 Newtonian theory of motion and gravity

Although the paths of celestial objects could be recorded meticulously by the ancients, predictions

as to their future development was largely fuelled by superstition. A proper theory behind the

dynamics was lacking. As observational techniques improved, specifically by the advent of the

telescope in 1608, so did the understanding of celestial dynamics. In 1609 Johannes Kepler

proposed the first mathematical description of the orbits of planets around the Sun. It introduced

mathematical methods to astronomy and was the simplest theory in agreement with observations.

The first actual physical principles governing this motion were introduced by Isaac Newton in

1687. The famous work Philosophiae Naturalis Principia Mathematica included the first actual law

of gravity. The attractive force F between objects of (gravitational) masses m and M separated

by distance r was predicted to be

F “
GmM

r2
(1)
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Bodies attracted by such a force, will orbit in a common plane. Such orbits include not only

bound, Keplerian trajectories, but eq. (1) allows for hyperbolic ones too. this is called a scattering

trajectory.

Figure 1: Scattering path of a small object (solid black sphere) orbiting a larger object (striped
black sphere). The scattering angle χ between asymptotical incoming and outgoing flight direc-
tions (dotted lines) is indicated with a dark triangle. All motion happens in the plane of the
paper

Imagine a large mass (perhaps a star) and a much smaller mass (perhaps a planet). The planet

flies with great velocity towards the star. If the velocity is large enough, the gravitational pull

of the star is not sufficient to capture the planet in a bound orbit. Instead, the planet will just

whisk past the star in a slightly bent orbit. The situation is depicted in figure 1. This is known

as gravitational scattering. The scattering will be in a single plane, called the scattering plane. 1.

The bending angle between incident and outgoing planet trajectories is known as the scattering

angle, χ.

Some effects however, were not explainable by Newtons theory. The orbit of mercury provided

a great puzzle. Its precession, caused by tidal interactions with the Sun and gravitational forces

of other planets, as calculated by Newtons theory deviated about 7% from the observed quantity.

The solution revolutionized physics as a whole.

1.2 General theory of relativity

During one of the most remarkable periods of modern physics, Albert Einstein proposed the

Special and General Theory of Relativity. Developed in the period 1905 to 1916 [6, 7, 8, 9],

Einstein revolutionized physics as a whole. Special Relativity concerns motion without gravity. It

topples Newtons idea of absolute time - the experience of time differs with relative velocities. For

a review, see appendix A. General relativity (GR) introduces gravity. Gravitational effects are

interpreted in a radial new way; gravity can be considered, not a force, but the bending of space

and time by matter such that straight lines be bent into orbits. Newtons 3 laws 2, underlying

1Situations where scattering is not in a plane are described in section 1.2.7
2
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the Newtonian theory of gravity, were completely revised. General relativity reduces only to

Newtonian gravity when velocities are small and gravity is weak.

General relativity has been very thoroughly tested. Early tests included the correction of the

precession of Mercury (to be discussed later), bending of light around massive objects and last

the gravitational Doppler effect. 4 [10, 11, 7] All were confirmed with unprecedented accuracy.

Figure 2: Spacetime being warped by matter. Different test particle trajectories are heading
into the paper, marked in green. A large object (blue sphere) warps spacetime (black-white grid),
such that the straight line paths followed by particles are bent into curved ones. This is the effect
of gravity. The leftmost path travels entirely through flat space. The middle, closer to the mass
is bent considerably more. The right trajectory is bent enough by gravity, that it collides with
the surface.

We will review the basic principles of General Relativity, based on the excellent treatment of the

subject by [12]. The dynamics of systems are discussed, and gravitational waves introduced. We

conclude by presenting the Post Minkowskian (PM) expansion of GR, appropriate for scattering.

Scattering discussed throughout this thesis, pertain to this PM expansion.

Based on the idea that all objects fall at the same rate, Einstein formulated the Equivalence

Principle

In small enough regions, and small enough time durations, the laws of physics reduce to those of

Special Relativity. Hence, it is impossible to detect the existence of a gravitational field by means

of local experiments.

This statement says that a person in a box freely falling by gravity is identical to a person in a box

experiencing no force at all. But the equivalence only holds locally, ie. for a closed box - as soon

1. An object will either remain at rest or continue moving at constant velocity if not acted upon by a force
2. The force on a body is equal to its (inertial) 3 mass times its acceleration (F “ ma)
3. Any object exerting a force on another object, feels an equal and opposite force itself

4Modern physics has a new problem. General relativity, although well in agreement with observations, is not
reconcilable with quantum field theory. This theory describes elementary particles. Thus General Relativity is
not thought to hold on small scales. Seeking a common theory to describe both elementary particles and gravity,
many theorists today seek a correction to General Relativity. We will not discuss further such efforts, and stick to
ordinary General Relativity throughout this thesis
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as we look outside it, we see a planet approaching rapidly! General Relativity has an intimate

connection with Special Relativity. Specifically, special relativity shows that frames of reference

traveling at different relative speed, experience different ideas of time. This notion is generalized

by the Equivalence Principle - not only time, but now also space is only a local notion. What one

observer experiences as time, another experiences as space, and vice versa. As Special Relativity

predicts, the speed of light c is still the absolute speed limit at which objects of mass can travel.
5

Following his Equivalence Principle, Einstein conjectured that gravity is a consequence not of

a force, but of the nature of space around us. One can describe the paths of objects affected by

gravity as straight lines through bent spacetime. See figure 2. This bending is described by the

metric gµν , describing the concept of length ds2 in General Relativity. The pythagorean theorem

in three dimensions states that x2 ` y2 ` z2 “ r2 where r is the total length, x, y, z being individ-

ual coordinate measurements. Applicable to Euclidean space, the same idea can be formulated

for other, warped spaces. In General Relativity time and space are treated on equal footing,

the combination (time+space) being denoted spacetime. Say we parametrize this spacetime in

some coordinates xµ “ pt, x, y, zq. We can choose any coordinates we like. Defining a vector

dxµ “ pdt, dx, dy, dzq as the difference in coordinates between two infinitesimally close points in

spacetime, General Relativity defines the length between them as

ds2 “
ÿ

µ“pt,x,y,zq

gµνpxqdxµdxν
“ gµνdx

µdxν (2)

where the last equality uses Einsteins summation convention of summing repeated indices without

writing summation signs 6The matrix gµνpxq, possibly varying in space, is a set of numbers

that encode how length differences dxµ are combined to form a valid length ds2 known as the

line-element. Depending on the coordinates used, this metric has different entries. Negative

components of gµν generally signify that the corresponding coordinate is interpreted as time. The

positive components are interpreted as a spatial direction. Of the coordinates xµ used, exactly

a single is ever interpreted as time. In the limit of no gravity, the metric gµν reduces to the

Minkowski metric in special relativity,

ηµν “

¨

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

(3)

written here in cartesian coordinates. Writing the same spacetime in different coordinates yields

5Throughout this section, we will implicitly adopt natural units of c “ 1, due to many appearances of this
quantity. It can be reinstated by dimensional analysis.

6The object gµν can be interpreted a 4x4 matrix and dxµ a vector. The last equation then denotes matrix
multiplication.
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a different structure. As an example, spherical coordinates xµ “ pt, r, θ, ϕq yield

ηµν “

¨

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2sin2θ

˛

‹

‹

‹

‚

(4)

with line-element ds2 “ ´dt2 ` dr2 ` r2dθ2 ` sin2θr2dϕ2.

In eq. (2), ds2 is specifically constructed to be invariant under rotations, translations and

coordinate reparametrisations, just like an everyday length. Generally, all kinds of coordinates

may be used to describe points in spacetime, and formulate the theory. ds2 can however be

negative, depending on what points you choose to measure length between. Say you have two

points with coordinate difference dxµ “ xµ
2 ´xµ

1 . Denote these points x1 and x2 for short. Compute

their distance apart by eq. (2). Depending on the sign of ds2,

ds2 ă 0: Points x1 and x2 are connected by a spacelike curve. They are not causally connected,

meaning no physical influence from x1 can reach x2 or vice versa

ds2 “ 0: Points x1 and x2 are connected by a lightlike curve. Only light can reach x2 from x1 or

vice versa

ds2 ” dτ ą 0: Points x1 and x2 are connected by a timelike curve. Influences such as a beam of

light or a plane can in principle reach x1 from x2 or vice versa. In this case, ds2 is also called the

proper time between events.

Turning back to gµν , in order for it to keep the interpretation as describing curvature, it has special

properties under coordinate transformations. Specifically, under a transformation xµ Ñ x̃µ, we

have

g̃µνpx̃q “
dxρ

dx̃µ

dxσ

dx̃ν
gρσpxq (5)

Formally, we say that gµν is a rank-2 oneform. One can generally construct quantities which

transform in ways such as to preserve their interpretation. They are generally called tensors and

include vectors V µ, oneforms Aµ and scalars ϕ. They transform like

Ṽ µ
px̃q “

dx̃µ

dxρ
V ρ

pxq Ãµpx̃q “
dxρ

dx̃µ
Aρpxq ϕ̃px̃q “ ϕpxq (6)

An example of a tensor is 4-velocity. They are generally denoted with upper, lower and no indices.

Contracting indices of a vector and a oneform, yields a scalar V µAµ Ñ transforms like a scalar.

This notation makes it clear in eq. (2) that the line-element is invariant under coordinate trans-

formations. A common operation is that of ’lowering/raising the index’ of a vector/oneform. It

is defined as Vµ “ gµνV
ν for lowering and Aµ “ gµνAν for raising. The object gµν is the inverse

metric defined by gµνg
µρ “ δρν .

There are now two questions: How do we know what metric to use? Given a metric, what

are the paths of objects herein?

5



1.2.1 Geodesic paths

Lets first consider how we get dynamical paths from a metric. This will serve as a direct connection

to the Newtonian theory. Suppose we know the metric gµν corresponding to some big star or other

large object 7, around which a small planet (or particle) orbits. How are we to find the motion

of the probe? We return to Einsteins Equivalence Principle: Objects affected by gravity are not

accelerated.

Thus one needs a notion of acceleration in a metric and set that equal to zero. This gives the

equations of motion of General Relativity. Another way to formulate this, is by an old principle

of mechanics,

Non-accelerated objects follow trajectories which minimize proper time

Given points A and B, an unaccelerated object will take the fastest route between these. In a flat

space, it is simply a straight line. In curved space, one could imagine it being something different.

What is the ’proper time’ between two events in General Relativity? It is nothing more than
?
ds2. One may write the total proper time of a trajectory xµrλs, parametrized by some arbitrary

parameter λ P r0, 1s as

∆τ “

ż

P
dτ “

ż

P

a

gµνdxµdxν “

ż 1

0

dλ

c

gµν
dxµrλs

dλ

dxνrλs

dλ
(7)

This equation holds for all imaginable trajectories P of the particle. Integrals are taken along this

trajectory. The actual physical path is found by minimizing the expression. This can be done by

a variational principle, often used in Lagrangian theory.

One finds that the minimum of proper time is reached, when the path xµ satisfies the geodesic

equation
d2xµ

dτ 2
` Γµ

νρ

dxν

dτ

dxρ

dτ
“ 0, Γµ

νρ “
1

2
gµρ

ˆ

Bgνσ
Bxρ

`
Bgρσ
Bxν

´
Bgνρ
Bxσ

˙

(8)

where τ denotes the time as measured by a clock following the trajectory. This is called proper

time. The appearance of the metric hides in the object Γµ
νρ, known as a Cristoffel symbol.

Coming back to our earlier interpretation, we can now identify the LHS as acceleration in gravity.

Specifically, setting Γ “ 0, corresponding to flat space without gravity (as we shall see), one finds

the familiar expression a “ d2x
d2τ

“ 0 describing straight line motion.

1.2.2 Determining the metric

Having figured out a way to describe trajectories of small objects (formally test particles or probes)

in a general metric, we can turn to the problem of actually determining the metric from a system

sourcing gravity. Lets start with the basic question: what sources gravity?

As can be imagined, the bending of spacetime happens because of the presence of massive

objects. After all, we are looking for a theory of gravity. In fact, all as stated by Einsteins

equivalence of mass and energy

E “ mc2 (9)

7How and what sourced a metric is treated in section 1.2.2
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we expect the curvature to come from the presence of energy. Specifically, one introduces the

energy momentum tensor T µν which describes both energy densities (00 component), momentum

densities (i0 components) and internal forces (ij components) in the system sourcing gravity.

Tµν satisfies the conservation equation ∇Tµν “ 0 which says that energy cannot be created or

destroyed.

This energy momentum tensor has to curve space. The curvature can be described very

precisely in two objects: The Ricci tensor Rµν and scalar R,

R “ Rµνg
µν , Rµν “ Rρ

µρν , Rρ
µσν “ BσΓ

ρ
νµ ´ BνΓ

ρ
σµ ` Γρ

ασΓ
α
νµ ´ Γρ

ανΓ
α
σµ (10)

They both have the interpretation of containing curvature through its dependence only on gµν

and derivatives of Γ.

We also know that the theory has to produce the same geodesics as Newtonian gravity, when

small speeds and weak gravity (the Newtonian limit) is considered. To this extent we can con-

sider a Newtonian limit of gravitation where we write gµν “ ηµν ` hµν where h ! 1 and ηµν is

Minkowski (flat) spacetime from special relativity. The Minkowskian metric describes the absence

of gravitational effects.

Based on the knowledge that

1. the energy momentum tensor should ’replace’ the notion of mass density in Newtonian

theory.

2. the energy momentum tensor should only be a function of R, Rµν and gµν only.

3. the energy momentum tensor should satisfy the conservation equation ∇Tµν “ 0.

4. the equation for gµν should reduce gµν to the form ηµν ` hµν in the Newtonian limit with

h00 “ ´2ϕ where ϕ is the gravitational potential

One can produce the anzats Rµν ´ αgµνR “ βTµν which has consistent indices and relates the

energy momentum tensor directly to curvature and the metric.

One finds α “ 1{2 by imposing the continuity equation and using a relation for the Ricci

tensor known as the Bianchi identity. Similarly, by imposing the newtonian limit gµν “ ηµν ` hµν

with h ! 1 and h00 “ ´2ϕ, one can determine β “ 8πG.

The result is known as Einsteins equations

Rµν ´
1

2
gµνR “ 8πGTµν (11)

These equations, with the geodesic equations (8), define the Theory of General Relativity. They

apply to all dynamics of all macroscopic gravitational systems in the Universe. Given a many-

body problem with multiple stars rotating around each other, Einsteins equations yield the metric

and the geodesics tell how objects are affected by these. The full dynamics of GR can be cast

into an action formalism

S “

ż

?
´g

„

R

16πG
´ gµνTµν

ȷ

d4x 8 (12)

8or in terms of a Lagrangian, S “
ş

dx4rLGR ` Lmatters where Tµν “ ´2 δLmatter

δgµν

7



Einsteins equations are found by a variational principle in the field gµν and the equations of motion

follow by a variational principle of dynamical quantities related to the source in Tµν .

Getting full dynamics of systems, however often proves difficult. One cannot simultaneously

solve Einsteins equations and the geodesics. Instead, approximations are used. The PN ap-

proximation, covered in section 1.2.5, is widely applied. Recent methods also include the Post

Minkowskian approximation, covered in section 1.2.7, which interprets eq. (12) from a quantum

field theory perspective.

Einsteins equations are exceedingly non-linear. In practice they are too difficult to solve

exactly, and approximations are necessary. However, metrics of large central objects with small,

negligible mass probes flying around them, can be found. We refer to this as the test particle limit

of binary motion. It will be the main regime considered by the thesis.

The following sections describe two stationary solutions to Einsteins equations, around which

such test particles can orbit. They are instrumental to the thesis.

1.2.3 Schwarzschild metric and black holes

First treated by Karl Schwarzschild in 1916, the simplest case to consider is the metric of a

spherically symmetric mass M . It is the first ever solution found to Einsteins equations (except

the Minkowski spacetime). For such a simple configuration, considering an appropriate ansatz

for the metric, Einsteins equations can be solved exactly. The dynamics of probe particles with

small mass, negligent in their contribution to the energy momentum tensor, can then be found.

Specifically, we assume a spherically symmetric metric of the form

ds2 “ ´e2αprqdt2 ` e2βprqdr2 ` r2dΩ2 (13)

where dΩ2 “ dθ2 `sin2θdϕ2 is the line element of a unit sphere. Assume it drops off to Minkowski

spacetime in spherical coordinates pt, r, θ, ϕq when r Ñ 8, under the assumption that gravitational

interactions are negligent in that limit. Coordinate choices will play an important role for the

results in this thesis. We will briefly review coordinate properties both in the bullet points below

and in the next treatment on the Kerr metric.

We are only interested in the solution to gµν outside the mass M . We can thus set Tµν “ 0,

which corresponds to Rµν “ 0. Readily computing Rµν and its associated Cristoffel symbols,

yields

ds2 “ ´

´

1 ´
rs
r

¯

dt2 `
dr2

1 ´ rs
r

` r2pdθ2 ` sin2θdϕ2
q (14)

which is known as the Schwarzschild metric in Schwarzschild coordinates. It describes the geom-

etry of spacetime outside any spherical mass M that does not rotate - stars, planets, moons, all

have gravitational pulls approximately described by this metric (neglecting rotation). The con-

stant rs “ 2GM has units of length and is known as the Schwarzschild radius. The Schwarzschild

metric has some crucial properties relevant for this thesis,

• The metric is only a function of r. It is spherically symmetric.

• The metric is diagonal. Each direction is just stretched relative to pure flat space in spherical

coordinates. Coordinates pt, r, ϕ, θq thus have general interpretations as warped spherical

8



coordinates.

• The metric becomes the Minkowskian spacetime when r Ñ 8. This is because gravitational

interactions vanish in the limit.

• Similarly, turning off gravity by setting G Ñ 0, recovers also the Minkowskian spacetime in

spherical coordinates. This is natural: no gravity corresponds to flat spacetime. The two

limits r Ñ 8 and G Ñ 0 are not generally identical, as the parametrization of Minkowski

spacetime need not automatically yield spherical coordinates. We will see how when treating

the Kerr metric.

• Last, and most importantly, consider the case when the mass M is compressed enough

to allow trajectories below r “ rs. For r Ñ rs the g00 metric component has a pole.

This singularity is purely an artifact of the coordinates used, and can be removed by a

coordinate transformation. Nevertheless, it signifies an important consequence: For r ă rm,

the coordinate t has g00 ą 0 and coordinate r has g11 ă 0. A time-like coordinate has turned

spacelike and a spacelike coordinate has turned timelike. The effects of this can be seen by

considering a radial beam of light for r ă rm. For two infinitesimal points on its trajectory,

consider a radial outgoing light ray within the black hole. Considering two infinitesimally

close points on its trajectory, we find by combining eqs. (2) and (14)

0 “ ´p1 ´
rs
r

qdt2 `
1

1 ´ rs
r

dr2 ñ
dr

dt
“

ˇ

ˇ

ˇ
1 ´

rs
r

ˇ

ˇ

ˇ
(15)

where dr{dt ě 0 has been imposed for outgoing light rays. This shows that dr{dt “ 0 when

the light ray reaches r “ rs. Light cannot escape the Schwarzschild radius, and because

nothing travels faster than light, neither can anything else. Instead, everything will be

pulled to r “ 0 until crunched up in a singular point.

The Schwarzschild metric describes a black hole and r “ rs is its event horizon.

Geodesics in the Schwarzschild metric are fully understood. Since the metric is spherically sym-

metry, any orbit will be confined to a plane, say the plane θ “ π{2. Simply invoking the geodesic

equations, one can formulate the evolution of (inverse) r in terms of ϕ,

d2X

d2τ
` X ´ 3X2

“
pGMq2

L2
(16)

where X “ GM{r, L “ r2 9ϕ is angular momentum of a particle of negligible mass orbiting in the

metric and E “ 9tp1 ´ rs
r

q is its energy. Dots denote derivatives with respect to proper time τ .

1.2.4 Kerr metric

Another exact solution to Einsteins equations first followed 1963, 57 years after the discovery of

the Schwarzschild solution. Named the Kerr metric, after its discoverer Roy Kerr [13], written in
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Boyer-Lindquist coordinates it reads

´

´

1 ´
rsr

Σ

¯

dt2 `
Σ

∆
dr2 ` Σdθ2 `

ˆ

r2 ` a2 `
rsra

2

Σ
sin2θ

˙

sin2θdϕ2
´

2rsrasin
2θ

Σ
dtdϕ

∆ “ r2 ` a2 ´ rsr, Σ “ r2 ` a2cos2θ

(17)

It describes an intrinsically spinning black hole, with spin parameter 0 ď a ď rs{2. Setting

a “ 0 recovers the Schwarzschild solution with Schwarzschild radius rs. Interestingly, the Kerr

metric can be generated from the Schwarzschild solution by a procedure known as the Newman

Janis Algorithm (NJA). See section D. Note that the Kerr metric is rotationally symmetric in

any plane, except that with θ “ π{2. This has implications later. Notice further a difference

with Schwarzschild. Consider the θ “ π{2 plane. Note the difference between letting r Ñ 8

and G Ñ 0 in the metric. For Schwarzschild, they yield the same Minkowski metric in spherical

coordinates. However for Kerr, we find

gµν
rÑ8
ÝÑ

¨

˚

˝

´1 0 0

0 1 0

0 0 r2

˛

‹

‚

gµν
GÑ0
ÝÑ

¨

˚

˝

´1 0 0

0 r2

r2`a2
0

0 0 r2 ` a2

˛

‹

‚

(18)

Letting G Ñ 0 does not recover the Minkowski metric in spherical coordinates. However, the

metric still describes flat space, which can be rendered in a Minkowski form simply by a coordinate

transformation

r2 Ñ ρ2 “ r2 ` a2 (19)

The same behavior can be expected for any metric: Letting G Ñ 0 should recover flat space, how-

ever it might not be expressed readily in spherical coordinates. This behavior plays a prominent

role later.

Like the Schwarzschild solution, the Kerr black hole has again a singular radius, beyond which

all trajectories tend to the centre. This justifies the ’black hole’ designation. However, the Kerr

black hole has two interesting radii. The inner, event horizon, behaves just like the Schwarzschild

event horizon. It is located at

r` “
rs
2

`
rs
2

d

1 ´
4a2

r2s
(20)

at which grr Ñ 8. This singularity is fake, just like the Schwarzschild event horizon. It is an

event horizon because light rays cannot escape the horizon from within. This might be shown by

an argument similar to that of the Schwarzschild metric.

The other interesting horizon is found by solving gtt “ 0. One finds two solutions, the larger

of which is of interest. It is

rergo “
rs
2

`
rs
2

d

1 ´
4a2

r2s
cos2θ (21)

It can be seen that r` ď rergo and that they meet up at θ “ 0, π, meaning perpendicular to the

10



equatorial plane. When r` ă r ă rergo, denoted the ergo region, something interesting happens.

Computing dϕ{dt of an arbitrary path inside the region, one finds

´gtϕ ´ sinθ
?
∆

gϕϕ
ď

dϕ

dt
ď

´gtϕ ` sinθ
?
∆

gϕϕ
(22)

But we have gtt ą 0, gϕt ă 0 and gϕϕ ą 0, thus both solutions are positive. The conclusion:

Inside the ergo-region, both massive and light trajectories can only move around the black hole

in a single rotational direction. No counter-rotational movement is possible - however hard you

try. For this reason, the Kerr metric is interpreted as having spin. In fact, this spin effect comes

precisely from the non-diagonal dtdϕ term in the line-element. Dividing the line element eq. (17)

by dt2 creates a term linear in dϕ{dt. The sign hereof is thus important, which is reflected by the

inequality.

Some advanced theories of gravitation go further in this notion. They propose black holes

as elementary particles, much like those of quantum field theory. [14] We will incorporate other

quantum field theory aspects in gravity shortly.

Other black hole solutions have also been uncovered. A charged, non-spinning black hole, the

Reissner Nordstroem solution, was discovered between 1916 and 1921 by Hans Reissner, Herman

Weyl, Gunnar Nordstroem and George Barker Jeffrey independently [15]. They have interest-

ing properties, involving the possibility of arranging multiple black holes in adiabatically moving

configurations through equalizing of charge repulsion and gravitational attraction.

The solution combining spin and charge, originated in 1965 [16], is the Kerr-Newman metric.

1.2.5 Post Newtonian approximation of General Relativity and Effective One-Body

theory - an example of finding dynamics

As mentioned Einsteins equations are practically impossible to solve exactly. We focus on finding

the dynamics of general binary systems, with general masses and rotation. This covers planets,

stars, black holes, and neutron stars. To tackle such a problem, one uses a plethora of approx-

imation techniques. One such technique, the assumption of weak fields, is central to this thesis.

Just assuming weak fields yields the Post Minkowskian expansion. Additionally imposing small

velocities, results in the Post Newtonian expansion. These techniques form the basis of many

groundbreaking modern results in gravitational physics.

We will first discuss the Post Newtonian (PN) approximation, including its applications. It

primarily concerns dynamics of bound orbits. Scattering orbits are treated in section 1.2.7, with

the Post Minkowskian expansion.

The Post Newtonian expansion was among the first approximation methods used in General

Relativity. It consists of an expansion in both velocities and weak gravity. Small velocities are

imposed by v{c ! 1. Weak fields means writing the metric gµν as

gµν “ ηµν ` hµν (23)

11



where h ” hµνη
µν ! 1. In the complete classical Newtonian limit, one has h00 “ ´2ϕ where ϕ is

the Newtonian gravitational potential.

In principle the Post Newtonian expansion is an iterative approach, only conceptually sketched

out here. It starts with gµν from above in the Newtonian limit. Dynamics are found from

the metric, from which a corresponding energy momentum tensor is constructed. This energy

momentum tensor is plugged into Einsteins Equations, assuming low velocities, which produces

a modified metric. This is the 1PN correction to the metric.

To find higher PN orders, one iteratively finds the dynamics in gµν to correct the low-velocity

energy momentum tensor, which then yields a corrected metric and so on. The end product is

often a Hamiltonian which encodes the equations of motion. This is just a conceptual sketch and

many intricacies exist. To see some of these difficulties, see eg. [17, 18]. One finds perturbatively

better and better solutions, around a Newtonian starting point. By this idea, although from a

point-particle point of view, corrections to the precession of Mercury were found in almost perfect

agreement with theory [10]. This calculation we will consider next.

Figure 3: Precession of
mercury (blue) in its or-
bit around the Run (yellow).
Notice how the point of clos-
est approach, or periapsis,
changes from orbit to orbit.
The shift in angle per orbit is
the periastronshift, given by
eq. (25).

We first consider the Post Newtonian correction to a probe orbiting

the Schwarzschild metric. It is easiest to consider directly eq. (16)

for the full Schwarzschild geodesic equations. Plugging the ansatz

X “ Xnewton ` XGR where XGR ! 1, into eq. (16), using that

Xnewton parametrizes an ellipse, one finds directly a solution for

the general relativistic correction XGR,

XGRpϕq “
pGMq4

L4

ˆ

3 `
2e2

2
´

e2

2
cosϕ ` 3eϕsinϕ

˙

(24)

where e is the eccentricity of the Newtonian elliptic orbit. The im-

portant part of this equation is the appearance of a non-periodic

term „ ϕsinϕ. It is not present in Newtons theory, and is responsi-

ble for a non-periodic precession of the orbit. It induces an angular

shifting of the periastron 9 between rotations. Defining the first

periastron to be at ϕ “ 0, the next should be at ϕ “ 2π ` ∆ϕ,

where ∆ϕ is the periastron shift

dX

dϕ

ˇ

ˇ

ˇ

ˇ

ϕ“2π`∆ϕ

ñ ∆ϕ “
6πGM

p1 ´ e2qac2
(25)

For Mercury, this fills in exactly the 43rad{orbit discrepancy between Newtons prediction and

observations. It constitutes one of the very earliest successes of General Relativity.

One of the modern applications to the Post Newtonian expansion, is computing geodesics of

many-body systems. Thibault Damour has been a pioneer in this field, contributing to the tech-

nique for more than 37 years [19].

9the highest furthest point Mercury reaches from the Sun
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Consider a binary system, eg. of black holes. A 5PN Hamiltonian 10 for such a system has

been found [20]. Even though the dynamics are technically obtainable from such an object, the

non-linearity of the problem often proves too much to handle.

One promising analytical way of addressing this problem is that of the Effective One-Body

Theory (EOB), presented by Thibault Damour [21, 22, 23, 24]. The idea is to map the full

dynamics of a binary system, ie. two black holes with masses m1 and m2, to an effective test

particle of reduced mass µ “ m1m2{pm1 ` m2q orbiting in some effective EOB metric geffµν .

Calculations in this effective formalism are much easier than the general problem. The idea is,

that knowing dynamics in the effective formalism, the dynamics in the real formalism can be

found. This is achieved through relating energy, angular momentum as well as coordinates used

in each formalism. A set of equations known as an EOB mapping define this map.

One effectively encodes the Hamiltonian of the full system in the EOB metric geffµν .

Thibault Damour first pioneered the formalism. geffµν is determined order by order in center

of mass (CM) velocities v [21]. The full energy of each formalism is given by the Hamiltonian

encoded in eq. (12) 11. The energy mapping was made based on quantum mechanical considera-

tions and the ansatz effective metric was supposed isotropic in form. PN expanded dynamics were

thus found. The EOB formalism has been tested against numerical methods for colliding black

holes (see section 1.2.6). Results provide both predictions and are in agreement with numerical

simulations of the problem [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. However, the natural

small velocity restriction of a PN formalism limits its applicability to slow moving events. For

the very final parts of black hole collision, one needs fully relativistic results.

To this extent, recent developments have been made towards an EOB approach based on

expansions only in hµν , equivalent to expansions in G. This is called a Post Minkowskian (PM)

expansion. It still assumes weak gravity, but is fully relativistic. Further details will be provided

in sections 1.2.7, 6.1 and C

We now discuss one of the main driving forces behind the modern need of precision dynamics

of binary systems: Gravitational waves.

1.2.6 Gravitational waves

Gravitational waves, first mentioned by Einstein in 1916 [38]12, are small ripples in spacetime

propagating at the speed of light. They are unique to Einsteins theory of gravity, and do not

appear in that of Newton. They originate from heavy, accelerating objects, according to the

quadrupole formula

h̄ij “
2

r
B
2
t Iij

ˇ

ˇ

ˇ

ˇ

t“tr

13 (26)

10corresponding to pv{cq10
11We will not further investigate the Hamiltonian here, however details necessary later will be presented in

section 2
12Einstein originally said, gravitational waves did not exsist, but changed his views multiple times during the next

40 years. Finally, around 1960, they were proven a real phenomenon by, among others, Felix Pirani. [38, 39, 40]
13Here hµν “ h̄µν ´ 1{2ηµνTrrh̄s. The time and radial coordinats t, r are spherical Minkowski coordinates. The

evaluation in retarded time tr “ t ´ r shows that the waves always travel at the speed of light.
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which says that an acceleration of matter (quadrupole Iµν) induces a wavelike perturbation (hµν)

such that initially flat spacetime becomes gµν “ ηµν ` hµν . For rotating systems, these waves will

have twice the orbital frequency.

All accelerated matter will emit gravitational waves. Subsequently, energy is carried away by

the waves. Thus a binary system of, say, two black holes will produce gravitational waves, and

will slowly spiral toward each other as they lose energy - eventually they will collide. Even though

many systems emit gravitational waves, only very violent events produce waves large enough for

observation. A collision between black holes is a good candidate.

Gravitational waves are very different from electromagnetic ones. Foremost, each wave con-

tains very detailed information about the source. Its shape, or waveform, directly reflects highly-

relativistic effects unique to General Relativity. Observation of such waves yields direct tests of

General Relativity.

Indirect effects were measured back in 1974 from the first discovery of a neutron star binary

[41, 42]. However gravitational waves themselves were only first observed in 2015 by the Laser

Interferometer Gravitational-wave Observatory (LIGO) [5]. This happened almost 100 years after

first predicted. LIGO observes the collision of very heavy objects, typically (spinning) black holes,

producing large gravitational waves. This is called a merger (see figure 6). More detail follows

below. First a discussion of LIGOs method.

LIGO did the following. The warping of spacetime can be measured as a change in proper time

of a trajectory. LIGO achieved this by measuring the relative difference in arrival of laserbeams

along two perpendicular arms (see figure 4) [43]. The beams are sent out, from a common point

of origin, back and forth through one arm each. When they return, differences in their arrival

time can be inferred from the interference pattern created between beams. The LIGO setup is

called a Dual Recycled, Fabry Perot Michelson interferometer. An initially 20W beam of light

enters the detector. It hits first a Power Recycling Mirror, which magnifies the beam to 750kW.

The beam is then split by a beamsplitter, into two beams. The beams then enter one arm each,

which are constructed as a Fabry Perot cavities. They consist of one mirror at each end. The

beam is thus reflected back and forth in the arm about 300 times. When it leaves the arm, the

beams are merged and create an interference pattern in the detector. Furthermore, the mirrors

at the far end of the arms are suspended by a very complicated system of dampened wires so as

to isolate them from any external oscillation transmitted through the ground (something like a

person walking in the nearby town).

Such an elaborate setup is needed in order to achieve enormous sensitivity. LIGO is currently

capable of resolving differences in traveltime corresponding to the width of a human hair relative

to the distance between earth and its nearest star (4.2 light years). [44]

On the 14th of September 2015 LIGO observed the first gravitational wave (see figure 5). It was

named GW150914 after its date of observation. LIGO measured a time difference corresponding

to about 2 ¨10´18 meters (a relative dilation of 1 in 100.000 billion-billion of the arms 14). Analysis

showed, that it came from two merging black holes with masses „ 36Md and „ 29Md.
15 They

merged to a single black hole with mass „ 62Md. The difference (p29` 36´ 62qMd “ 3Md), was

14100.000 billion-billion “ 1023
15Md is the mass of the sun.
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(a) Hanford observatory, a part of LIGO, located
in the Nothwest US. LIGO was established in
the 1970s and now consists of a collaboration of
4 detectors worldwide: LIGO Livingston (US),
LIGO Hanford (US), Virgo (Italy), and KAGRA
(Japan). Source: [45]

(b) Schematic of the LIGO interferometers. The
location and orientation of two American-based
LIGO observatories, Livingston and Hanford, can
be seen on the top-left insert. Figure adapted
from [46]

Figure 4: The Light Interferometer Gravitational-wave Observatory (LIGO) located in Europe
and the US. The left figure shows one of the three separate detectors making up the observatory.
The figure to the right shows a schematic of a single detector.

in an instant radiated away as gravitational waves 16. In this instant, the energy radiated was

more than all stars in the observable Universe combined!

Since then, numerous observations of gravitational waves have been made [48, 49, 50, 51, 52,

53, 54, 55, 56, 57]. All come from heavy objects like black holes merging. More exotic systems,

like the merger of a neutron star with a black hole, have also been observed [57].

Gravitational wave signatures are very sought-after. According to eq. (26), the waveform, ie.

the strain of figure 5 which hµν describes, is entirely defined by the dynamics of its source - the

black holes. In the past 5 years, theoretical physicists have gathered from all disciplines of physics

to address this problem. Many different techniques of analysing gravitational systems have been

proposed. We have already discussed the effective one-body theory as a specific example. It plays

a big role in determining waveforms. In fact, different techniques can be employed at different

stages of the merger. As indicated by figure 6, a merger can be classified in three stages

• Inspiral phase: This is the first phase of a merger. Heavy objects (think black holes) initially

rotating steadily around each other lose energy due to their accelerated paths to gravitational

waves. Velocities of the black holes are relatively low, and the gravitational waves weak in

amplitude, with low frequency.

They slowly move closer, as energy is radiated away, increasing the gravitational wave

amplitude and frequency. As a result, they accelerate. This phase can normally last anything

betwen years or days, depending on the system considered. It is the longest lasting phase

of the three.

• Merger phase: When the objects get closer and closer, their orbital periods become on the

16An interesting sidenote, the definition of energy in gravitational waves is much debated. For a recent reference,
see [47]
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Figure 5: [5] Figure showing the waveform of the first ever observed gravitational wave,
GW150914 as obesrved by Hanford (H1, left column) and Livingston (L1, right column). Top
row: The strain, a measure of the difference in lengths between the arms. An emerging periodic
behaviour can be seen (inspiral phase of binary). Then both the frequency and amplitude of the
strain increases (larger gravitational waves). At the maximum, the black holes merge (merger
phase). In the final 0.05 seconds, the merger has happened, and the gravitational wave signal
dies down (ringdown phase) Second row: Filtered observed strain (coloured) and predictions by
numerical relativity (dark grey). Lightgrey areas show 90% confidence interval of predictions.
Third row: Residuals between numerical and observed results, after filtering. Fourth row: A time-
frequency representation of the strain data. It shows an increase (chirp) in the frecuency leading
up to the merger.

order of seconds. For black holes several times the size of the sun, speeds become relativistic.

The objects collide, merging, within a few seconds. This is a very violent event. Often the

instantaneous energy radiated is on the order of that radiated by all stars in the Universe!

• Ringdown: After collision, the resulting object (typically a larger black hole) does not accel-

erate because of conservation of momentum. Therefore the gravitational waves experience

exponential ringdown, vanishing again within seconds.

Because velocities are low, the inspiral phase, can be considered very accurately in the framework

of EOB theory in the PN expansion. [58]

However, when velocities become higher, entering the merger phase, predictions from normal

PN expansions collapse. The current state of the art method is to consider numerical simulations

of the system, brute forcing the dynamics. Such a method is very accurate through all phases and

is only limited by the intrisic numerical uncertainties. It can however take months to generate

a single waveform. For a review, see [59]. One also has the opportunity to callibrate the EOB

formulation with numerical simulations, thus ’simulating’ the missing terms in the EOB expansion

[60]. This is denoted an EOBNR waveform, and has been widely used in subsequent analyses of
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Figure 6: Bottom: Figure showing the GW150914 data from LIGO Livingston and LIGO Han-
ford. The original signal was received at different times. This shift has been compensated for.
Top: A corresponding timeline of the event (top). The event consists of an inspiral, merger and
ringdown phase further described in the main text.

the GW150914 data [61, 37].

The ringdown can be modelled from pertubative considerations, modelling the final black

hole as a perturbed Kerr solution [62, 63], oscillating slightly with frequencies called quasinormal

modes. It encodes interesting properties of the final black hole state. Recent years have seen

massive interest to improve purely analytical waveform modelling.

Although numerical relativity is improving with great leaps, the speed of an analytical approach

is highly desired.

The next section will discuss a regime to gravity called the Post Minkowskian (PM) expansion.

Studying this limit based largely on quantum field theoretical tools, yields important input to both

the PN formalism, and itself provides information of complex binary systems. The PM expansion

is thus of utmost interest to the study of gravitational waves.
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1.2.7 Post Minkowskian expansion - scattering angles

We now introduce the Post Minkowskian expansion, principally used in calculating scattering

angles of complex systems in General Relativity. It provides relativistic corrections to the PN

expansion, order by order in G. 17

The PN expansion of gravity, although quite sucessfull in describing dynamics, has two major

drawbacks. First, it has natural limitations at high velocities. Second, it becomes very cum-

bersome at high PN orders. The Hamiltonians on which a mapping is based, have hundreds of

terms [20]. Damour proposed in 2016 to construct EOB metrics not in the Post Newtonian ex-

pansion, but in the Post Minkowskian expansion (PM). The already established methods in such

a framework would provide compact information for such an EOB formalism.

The expansion itself had been known since 1956, first introduced by Bruno Bertotti [65]. It

assumes a weak field, however does not assume small velocities,

gµν “ ηµν ` hµν , (no restriction on velocities) (27)

where h ” ηµνhµν ! 1. The PM approximation is constructed as an expansion in G, which

modulates the strength of gravity. Its method of constructing PM orders is quite different from

the PN method. The assumptions above apply principally to scattering trajectories (see figure

1). Accordingly, the main focus of the framework is calculating scattering angles of complicated

systems 18 in orders of G. It should be noted, the uses of a Post Minkowskian expansion are far

from limited to an EOB approach. Instead the expansion in itself is a vast subject of research,

the study of which simplifies certain computations in GR considerably. It is a flourishing field of

research. See [64] for a review.

Damour’s insight on an PM-based EOB framework was this. Imagine constructing an EOB

metric based on scattering angle data. Such a metric encodes the equations of motion of the sys-

tem. However, these equations of motion are identical for scattering and bound orbits. Therefore,

no difficulty arises in applying the EOB metric to bound orbits. Section 6.1 and appendix C

discusses the formulation of an EOB metric within the PM framework. The rest of the discussion

is devoted purely to the PM framework, with no consideration on the EOB formalism.

One can consider Post Minkowskian expansions of testparticle orbits, or the full dynamics of

systems. The generic case builds up dynamics from eq. (27), hence the name ”Post Minkowskian

expansion”. In the test particle limit, an ordinary Hamilton-Jacobi theory is sufficient for scat-

tering angle computations (see section 2.2). One simply takes a generic metric, ie. Kerr, compute

relevant quantities, and expand those in G assuming weak fields. In this sense, eq. (27) is not

used specifically to build up dynamics. The designation ”Post Minkowskian” can therefore be

debated when considering testparticles, although the assumptions of the theory are the same and

results are equal in approriate test particle limits. One can refer to the test particle limit as a

”weak field” limit, however we will furthermore refer to both as Post Minkowskian expansions.19

Binary objects can generally have spin in arbitrary directions. Depending on spin alignment,

17The formalism is not a fully relativistic version of Post Newtonian results in the sense that multiple orders in
G contribute to the Newtonian limit [64]. The PM expansion considers a single order in G at a time. However, it
provides relativistic corrections to these specific orders.

18Binary black holes, neutron stars and the like
19See footnote 27 for a further discussion on this fact in light of the thesis
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this can yield scattering angles not confined to a single plane. This thesis will focus solely on

the test particle case, where scattering happens in a single plane, meaning angular momentum is

conserved and spins are aligned. We will briefly discuss the non-spinning, arbitrary mass binary

below, before going to the test particle case in the bulk thesis.

Remarkably, studying the PM framework for general systems can succinctly described using quan-

tum field theory (QFT) methods. These are also referred to as amplitude methods (see [64] for

a review). The idea is to compute the scattering angle χ, order by order in the PM expansion

in G. This is exactly the aim of QFT methods: Compute scattering angles between elementary

particles (here our black holes), in perturbative expansions of some coupling constant (here G).

Getting into a bit more detail, consider the case of two interacting arbitrary masses, with no

spin. One may couple the action of gµν (first part of eq. (12)) to two massive non-spinning scalar

fields. This represents a non-spinning binary. The formalism may be generalised to a system with

spin as discussed by [66]. The associated action is [64, eq. (1)]

S “

ż

d4x

?
´gR

16πGN

´
1

2

ż

d4x
?

´g
ÿ

i“1,2

pgµνBµϕiBνϕi ` m2
iϕ

2
i q (28)

where g “ detpgµνq and we use eq. (27) for gµν expanded around flat space like gµνpxq “ ηµν `
?
32πGhµνpxq. ϕipxq are functions of spacetime that describe the exsistence of each black hole

(labelled i “ t1, 2u).

This action can be viewed through the glasses of quantum field theory; The fields hµν and ϕi

can be considered describing ’quantum fields’ of elementary particles known as gravitons (hµν)

and point particles (ϕi). The first term in (28) describes the propagation of gravitons (dynamics of

hµν). The last term describes free propagation of masses in such a gravitational field - it encodes

interactions between gravitons and masses. It is closely related to the energy momentum tensor

Tµν through eq. (12).

Masses ϕi thus scatter off each other through the exchange of gravitons (see figure 7). The

action (28) can be considered quantum mechanical and all methods of QFT may be applied to

compute the binary scattering angle.

One may construct a dictionary of Feynman rules of the field content tϕi, hµνu to calculate

the classical scattering amplitude order by order in Newtons gravitational constant G. From the

scattering amplitude, one can go to scattering angles by use of the impetus equation or the eikonal

formalism [67]. More details on the impetus equations are contained in sections 3.2

Figure 7: Single graviton exchange between two scalar particles. The squiggly line represents
the graviton, and the horizontal lines are the particles. Such a diagram will go like OpGq. Figure
adapted from [64].
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The PM expansion has seen vast interest in the past few years. Providing a rigorous way of

obtaining dynamics of systems, it is a focal point of the gravitational wave community. We pro-

vide an overview of recent developments. Binaries without spin have been treated extensively.

Scattering angles up to 3PM of a wide range of binary systems are fully understood and work

is being done at 4PM, and 5PM in the probe limit [68, 69]. Binary systems consisting of both

black holes and neutron stars have been investigated [70]. A worldline approach is also developed

with considerable success [71, 72, 73, 74]. Connections between PM scattering and gravitational

wave-forms have been established only for non-spinning bodies [3, 75].

Adding spin to binaries has been a major difficulty. There exist spin-spin couplings which distort

the motion. Trajectories are only confined to a plane, when all spins are aligned with the an-

gular momentum vector. This regime has thus received major attention. The direct connection

with wave-forms is still in its infancy. First Post-Minkowskian results have been established by

Justin Vines at all orders in spin from solving Einsteins field equations directly [76]. Additionally,

amplitude and worldline based approaches have contributed to various Post Minkowskian results

[77, 70].

1.3 Outline of Research in this Thesis

This thesis considers the Post Minkowskian expansion of General Relativity in the probe limit.

In this limit, we can employ the Hamilton-Jacobi formulation of GR (see section 2.2). We derive

a closed-form expression of the scattering angle of a, possibly spinning, probe in a general metric

gµν , in an expanded PM form to arbitrary high orders in G. The formalism treats cases where

the probe is confined to a single scattering plane.20 Our calculation generalises a previous result

[1] to a much wider range of systems. The aim is to provide insight and checks to amplitude

calculations, which often have nothing to compare with. The Schwarzschild and Kerr black holes

are treated specifically, the latter constrained to a θ “ π{2 plane in Boyer-Lindquist coordinates.

We first present scattering angles of non-spinning probes. Scattering angles are calculated for

the Schwarzschild metric up to 10PM and for Kerr up to 6PM for non-spinning probes. Higher

PM orders can readily be treated, but for brevity we have truncated at the chosen limits. Kerr

angles are naturally all order in Kerr spin a. We provide both results encompassed in literature,

and PM orders beyond that previously calculated. Literature on the probe-limit was found to

be primarily focused on light bending angles, given as an expansion in Kerr spin and G (see [78]

with references therein). To general order in Kerr spin, angles are compared to amplitude results

of which the probe limit is taken. [76] gives the 1PM scattering angle of two spinning black holes,

nicely structured to all orders in black hole spin. We show this structural dependence on Kerr-spin

is reproduced for non-spinning probes at higher PM orders. This might give input to higher PM

amplitude calculations involving aligned spinning binaries. Amplitude calculations are currently

perturbative in spin. All results are consistent with literature [66, 70, 78]. To the best of our

knowledge, orders beyond 4PM are not found in literature for non-spinning probes.

Adding spin to the probe is a considerable theoretical difficulty. Nevertheless, the scattering

angle formula readily encompasses this complexity, provided the probe stays in a fixed scattering

20This holds when spins are aligned and the metric is rotationally symmetric in this scattering plane.
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plane. We provide results up to 5PM and OpS2q in probe spin, in a Kerr metric with the spins

aligned. Higher PM orders can readily be found. Existing literature goes up to 3PM, as a probe

limit of the full binary scattering angle of two spinning black holes with aligned spin [70]. Our

results are fully consistent with literature [76, 66, 70]. Finally, we assume natural units with c “ 1,

unless otherwise specified.

Section 2 starts by discussing the types of scattering situations to which the results of this

thesis apply. A discussion of the application of a Post Minkowksian expansion and its validity

follows. Furthermore, all necessary background Hamilton-Jacobi theory underlying the calculation

of the scattering angle will be presented and justified, both for non-spinning and spinning test

particles.

Section 3 discusses existing scattering angle calculation schemes, including the method of

partie finie introduced by Jacques Hadamard in 1924. A more modern method, due to [1], will

also be presented. The scattering angle formula presented in this thesis is a generalisation hereof,

and the derivation is very similar.

Section 4 derives the scattering angle formula presented in this thesis. The derivation is

presented in full detail and parallels with [1] are pointed out.

Section 5 applies the scattering angle formula to the Kerr and Schwarzschild metrics with

(non)-spinning probes. Discussions of the results and structure herein is also presented. Validity

beyond the considered orders in test particle spin is postulated.

Section 6 considers further possible applications of the formalism. This includes, but is not

limited to, the Effective One Body formalism of binary motion and the possibility of a resummed

scattering angle valid to all PM orders.
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2 Theory of Post-Minkowskian Scattering

This section sets the scene for the scattering angle calculation presented in section 4. First we

will present the very general scattering system considered in this thesis and present the general

framework of Hamilton-Jacobi theory. Scattering angle formulae derived from Hamilton-Jacobi

theory for both scalar and spinning test particles will be presented last, and the general form

of the scattering angle discussed. This will provide all necessary setup to do scattering angle

computations in the sections below.

2.1 Scattering in Post-Minkowskian expansion

Assumptions presented here are used without further reference in all chapters below.

Setting the scene for the rest of the thesis, we consider a two-body problem consisting of a test

particle of mass m orbiting in a plane around a large central body of mass M . The gravitational

interaction is assumed small such that a Post-Minkowskian (PM) expansion is possible. Denoting

by Uprq the radial ’gravitational potential’ defined in eq. (35), one has

ˇ

ˇ

ˇ

ˇ

Uprq

p28

ˇ

ˇ

ˇ

ˇ

! 1 (29)

where p8 is the asymptotical momentum of the scattering particle. For typical problems, such as

scattering on a Schwarzschild black hole, this boils down to

GM

c2r ! 1 (30)

where r is a typical radial distance and M is a typical quantity of mass related to the bigger

body. Choises of r and M may vary depending on the exact problem at hand. Generally, the

Post-Minkowskian expansion can be regarded as an expansion in G.

Denote by gµν the metric of the bigger body. For the scattering probe to be contained in

the plane the metric is necessarily symmetric under rotations herein. It is sufficient to consider

coordinates pt, r, ϕq restricted to this plane, thus letting gµν have 3 ˆ 3 “ 9 components. For the

Kerr metric, it can only be the θ “ π{2 plane. For Schwarzschild, any plane passing through

r “ 0 can be chosen. We will set θ “ π{2 for simplicity.

Further, if the test particle has spin, this is perpendicular to the scattering plane, such that

no deformations of the orbit outside this plane occur. For the same reason, if the metric discussed

is the Kerr metric, we assume all spins are aligned. See figure 8 for a complete illustration of the

scattering.

Further general requirements on the behaviour of the scattering system can be made and only a

subset of possible coordinates need consideration. Impose the scattering system be localised, such

that coordinates reduce to spherical coordinates when r Ñ 8. Furthermore, assume grµ “ gµr “ 0,

for µ ‰ r (see footnote 23). Because of rotational symmetry, the metric may be expressed only

as a function of r.

The particle follows a path starting at r “ 8 with momentum p8 “ mγv, velocity v and

Lorentz contraction factor γ “ p1 ´ v2q´1{2. The particle approaches the black hole, reaches its
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minimum r “ rm, whereafter it moves away to r “ 8 again. It sweeps out the scattering angle

χ during this motion. This text applies to all scattering systems which conform to the above

description. In summarised form (see also figure 8),

(Coordinates) tt, r, ϕu

$

&

%

describe plane of rotational symmetry of gµν

when r Ñ 8, t is time and tr, ϕu are polar coordinates

(Scattering metric) gµν

$

’

’

’

’

’

&

’

’

’

’

’

%

gµν is restricted to a plane tt, r, ϕu with rotational symmetry

gµν “ gµνprq is a function only of r

grµ “ gµr “ 0, for µ ‰ r

gµν is diagonal when G Ñ 0

(31)

Figure 8: The general scattering setup considered in this thesis. A test particle (small black
sphere) follows a planar scattering trajectory around a bigger central object (large black sphere).
Both might have spin but are not required to (black arrows). Both spins must be perpendicular
to the scattering plane, if the particle is to stay herein. Note that the spins can also be aligned
opposite. The minimum radius rm " GM has also been indicated. The scattering trajectory curve
has been exadurated for display purposes. In reality χ ! 1 following assumptions (29) or (30)
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2.2 Hamilton-Jacobi Theory

The scattering angle can be constructed from Hamilton-Jacobi theory, based on ordinary General

Relativity. We will present the general principles, starting with a treatment of canonical momenta.

Consider the test particle canonical momentum Pµ “ p´E, piq, with E its energy and pi the spatial

canonical momentum components. It transforms as a one-form, as indicated by the subscript

index. Canonical momentum reduces to physical momentum p “ mv only in flat spacetime.

Writing out the conserved and coordinate-independent quantity P 2 yields the Hamilton-Jacobi

equation for test particles in GR

PµPνg
µν

“ ´m2 (32)

If translational symmetries are present, components of P are conserved by Noether’s theorem.

This gives them physical interpretation. Consider the general metric described in section 2. It

has time-translation symmetry and rotational symmetry in the ϕ direction, and thus

P0 “ ´E, Pϕ “ L (33)

for an asymptotically flat metric. L “
a

LµνLµν is the invariant angular momentum and E “ mγ

the energy of the test particle with γ “ p1 ´ v2q´1{2 its asymptotical Lorentz contraction factor

and v its velocity at r Ñ 8. We can readily set pθ “ 0, since the particle is confined to the

θ “ π{2 plane and the Hamiltonian therefore necessarily is independent of θ.

Pµ may then be written as

Pµ “ p´E, prprq, Lq (34)

where pr is the canonical radial momentum only dependent on r. Solving for p2r and writing the

result in G-(in)dependent parts T and U yields

p2rpr; b, ...q “ T pr; b, ..q ´ Upr; b, ..q (35)

introducing the asymptotical impact parameter b ” J{p8 as measured at infinity where b is the

impact parameter measured at r Ñ 8 and p8 is the asymptotical momentum of the particle at

r Ñ 8. The semi-colon separates coordinate dependency of pr from dependencies on b and any

other parameters in the theory (indicated by dots ...). Solving eq. (32) for pr often leaves the

natural structure pr “
?

¨ ¨ ¨. Therefore considering p2r is often simpler.

As we will see, the scattering angle can be written as an integral over pr, rendering it a vital

component in scattering angle computations.

2.3 Scattering angle from Hamilton-Jacobi Theory

The scattering angle of any, scalar or spinning, test particle can be written as

χ{2 “

ż 8

rm

dr
dϕ

dr
(36)

where rm is the distance of closest approach. If the Hamiltonian of the system H is quadratic

in canonical momentum pr, rm may be found from prprmq “ 0. The requirements of section 2.1
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assure this to be the case.

The appearance rm in eq. (36) on the lower integration boundary is only superficial, since

scattering angles don’t generally depend on this quantity. State-of-the-art methods for calculating

scattering test particle scattering angles will be treated in 3. It is the general motivation of this

work, to show how the dependence rm cancels, expressing χ as simple integrals with well-defined

boundaries. The techinque will be very similar to that presented in [1], which is covered in section

3.

2.3.1 Scalar probes

Considering scalar probes first, the scattering angle can be readily constructed from Hamilton-

Jacobi theory as presented in [75]. One may construct the abbreviated action S0 for the scattering

test particle 21

S0 “

ż

P
pi dqi (37)

where pi, qi are canonical 3-momenta and position-coordinates of the test particle and indexes

i are summed over. The integral runs over a specific paticle-path P . Similarly to Hamiltons

principle with action S “
ştf
ti
L, Maupertui’s principle states

δS0 “ 0 (38)

around the physical path of the particle. Varying S0 with respect to qi and pi as independent

variables, as with the modified Hamiltons Principle 22, obtains the shape of the path.

For the scattering system as described in the introduction of 2, the particle trajectory can be

written P P tr “ 8 Ñ r “ rm Ñ r “ 8u, which is symmetric around r “ rm due to rotational

symmetry. Furthermore rotational symmetry dictates pi “ ppr, pϕq “ ppr, Lq following eq. (34).

S0 can thus be written, considering only half the trajectory, ie. let P P tr “ rm Ñ 8u,

S0 “ Lχ{2 `

ż 8

rm

dr pr (39)

implicitly restricted to the actual path followed by the particle by considering L and pr as the

actual angular and radial momenta. Differentiate with respect to pϕ “ L and impose δS0 “ 0 to

obtain

χ{2 “ ´
B

BL

ˆ
ż 8

rm

pr dr

˙

´ π{2 ( where prprmq “ 0 ) (40)

where π{2 has been subtracted by convention to produce χ “ 0 when no interactions are present.

rm may be found by solving

9r|r“rm
“

BH

Bpr
“ 0 ñ prprmq “ 0 (41)

marking the periapsis. H “ E is the hamiltonian of the system, found from eq. (32). The

implication that prprmq describes the periapsis imposes the metric structure grµ “ gµr “ 0, for

µ ‰ r, discussed in section 2 23

21The abbreviated action may be defined for any system with canonical variables and momenta {q,p}
22See ”theoretical mechanics of particles and continua” page 177-178
23Note that the Hamiltonian H in eq. (41), is just the energy E because gµν , and thus the Lagrangian, carries
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Historically the B

BL
differentiation in eq. (40) has been moved inside integration by use of the

Leibnitz-integration rule. This is because
ş8

rm
dr pr diverges. We will do the same, writing

χ{2 “

ż 8

rm

dr
dϕ

dr
´ π{2 “ ´

ż 8

rm

dr
hprq

pr
´ π{2 (43)

where hprq is defined from hprq ” pr
dϕ
dr
. hprq is invariant under radial coordinate transformations.

For scalar probes in the Kerr metric written with Boyer-Lindquist coordinates, it is

hprq “ ´
rplr ´ 2GκMq

pa2 ` rpr ´ 2GMqq
2 (44)

As another important example, hprq “ ´ L
r2

in the Schwarzschild metric in isotropic coordinates.

The introduction of hprq hints at a derivative representation of the scattering angle. The introduc-

tion of hprq thus carries information beyond just being a simple rewriting. This is reflected in its

benine, non-diverging behaviour in the scattering domain r P rrm,8r. The functional behaviour

of hprq is very important for the viability of the scattering angle formula.

2.3.2 Spinning probe

Remarkably, the structure of eq. (55) can also be recovered for spinning test particles, with a

suitable function hprq appropriate for spin. This section derives its functional form and discusses

Hamilton-Jacobi theory with spin. We consider a test particle with spin S treated perturbatively

up to OpS2q. Higher orders can also be dealt with in a similar fashion.

The Hamilton-Jacobi theory with spin presented here is merely a review of an unpublished

note by Justin Vines 24. It will be referred to simply as ”Vines”. We will see how the calculation

above generalises by discussing the identification of canonical momentum and the subsequent

construction of the scattering angle for spinning probes.

Suppose we have a spinning probe of mass m and spin S 25 on a Kerr background with total

angular momentum J , including spin. We will treat the spin pertubatively, yielding expressions

up to OpS2q. Higher orders can be dealt with in a similar fashion. Before we do actual expansions

in S, the Hamilton-Jacobi equation in Boyer-Lindquist coordinates, written in terms of canonical

momentum pµ “ ppt, pϕ, prq is [eq. (244), Vines]

m̃2
“ ´p2 “ ´gµνpµpν “

rpr2 ` a2qpt ` apϕs2

r2∆
´

ppϕ ` aptq
2

r2
´

∆

r2
p2r (45)

valid to all orders in S. It has the exact same structure as the result without spin. Note the

appearance of what Vines calls ”the dynamical mass” m̃. We will talk about this in a moment.

no time-dependence. The Hamilton-Jacobi equation (32) provides H “ E as a function of pr. Eq. (41) is satisfied
when

9r “
BH

Bpr
9 pr (42)

which is the case for H “ Hpp2rq, meaning (32) only contains p2r terms. This is the case when gµr “ grµ “ 0
for µ ‰ r. Denote the periapsis by r “ rm. Here 9r|r“rm “ 0. Only when eq. (42) holds, does this imply
9r|r“rm “ 0 ñ prpr “ rmq “ 0.

24Accessed from Justin Vines through personal correspondence with Andrés Luna
25S{m is the associated Kerr spin parameter, were the test particle a Kerr black hole
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Apart from this difference with the non-spinning case, canonical momenta pt and pϕ are no longer

just test particle energy and angular momentum but contain spin as well. They can be determined

by constructing energy and angular as Dixon constants of motion, involving both pt, pϕ and the

Killing vectors tµ, ϕµ

E “ ´pat
a

´
1

2
Sab∇atb “ ´pt `

GMS

r3m̃
ppϕ ` aptq

J “ paϕ
a

`
1

2
Sab∇aϕb “ pϕ `

S

m̃

„

´pt `
GMa

r3
ppϕ ` aptq

ȷ (46)

again valid to all orders in S. Equation (46) can be solved for pt and pϕ as

pt “ ´

ˆ

E ´
GMS

r3m̃
pJ ´ aEq

˙ „

1 ´
GMS2

r3m̃2

ȷ´1

(47)

pϕ “

ˆ

J ´
S

m̃

„

E `
GMa

r3
pJ ´ aEq

ȷ˙ „

1 ´
GMS2

r3m̃2

ȷ´1

(48)

Coming back to the dynamical mass, it is listed up to S3 [eq. (250), Vines]

m̃2
´ m2

“ ´
GMS2

r3

„

1 ` 3
ppϕ ` aptq

2

r2m̃2

ȷ

´
GMS3

r5m

”

a `
pϕ ` apt

m̃2

´

2pt ` 5a
pϕ ` apt

r2

¯ı

` OpS4
q

(49)

On the RHS m̃ only gives OpS4q corrections, and one may thus let m̃ Ñ m. Eqs. (47), (48) and

(49) determine pϕ and pt in terms of m.

These equations can be solved up to OpS2q as follows. 26 Note that m̃ “ m`OpS2q generally.

Up to order S2, pt and pϕ may thus be written with m̃ “ m. Expanding to S2 yields

pt and pϕ up to OpS2q, all orders in G

pt “ ´e `
GMSpJ ´ aeq

mr3
´

eGMS2

m2r3
` O

`

S3
˘

(50a)

pϕ “ J ´

S
´

aGMpJ´aeq

r3
` e

¯

m
`

GJMS2

m2r3
` O

`

S3
˘

(50b)

m̃ however contains pt and pϕ itself. However, since it goes like m̃ “ m`GS2r...s `OpS3q with S-

independent content in the brackets, S Ñ 0 limits of pt and pϕ can be inserted to produce simply

m̃ up to OpS2q, all orders in G

m̃ “ m ´

GMS2
´

3pJ´aeq2

m2r2
` 1

¯

2mr3
` O

`

S3
˘

(51)

after expanding the square root appearing in eq. (49).

Having defined the Hamilton-Jacobi equation equivalent for spinning test bodies, we can now

construct the scattering angle. Naturally, it is still given by eq. (36). The integrand dϕ
dr

can be

26This is sufficient for calculating the scattering angle up to order S2, since pt, pϕ and m̃ all appear linear or
quadratic in eq. (45)
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written like [Vines, eq. (251)]

9xµ
“

1

m̃
gµνpν ` OpS3

q (52)

which yields dϕ
dr

written in Boyer-Lindquist coordinates

dϕ

dr
“

9ϕ

9r
“

r2pϕ ´ 2GMrppϕ ´ aptq

∆2pr
` OpS3

q (53)

Importantly, we see that the denominator is proportional to pr, exactly like eq. (43). We can

thus write χ{2 “
ş8

rm
dr dϕ

dr
“ ´

ş8

rm
dr hprq

pr
exactly like eq. (43), and identify the function hprq for

spinning particles as

hprq “ ´
rplr ´ 2GκMq

pa2 ` rpr ´ 2GMqq
2 `

aGκMS

mr pa2 ` rpr ´ 2GMqq
2 ´

GκMpr ´ 2GMqS2

m2r2 pa2 ` rpr ´ 2GMqq
2 ` OpS3

q

(54)

written with Boyer-Lindquist coordinates. Note that the spin-parts of hprq do not diverge in the

domain r P rrm,8r, exactly like the part without spin. Furthermore eq. (54) reduces trivially to

eq. (44) when S Ñ 0.

Sections (2.3.1) and (2.3.2), show that the scattering angle for both spinning and scalar test

particles can be written like

χ{2 “

ż 8

rm

dr
dϕ

dr
´ π{2 “ ´

ż 8

rm

dr
hprq

pr
´ π{2 (55)

at least up to second order in test particle spin S. hprq is a metric dependent function, invariant

under radial coordinate transformations. Eq. (54) gives its specific form for the Kerr metric up to

OpS2q. An at first glance trivial result, in fact anticipates a first order derivative representation

of χ, like the one in eq. (40). What this derivative representation should be in the case of spin is

still unclear. Remarkably, hprq is well-behaved at least up to OpS2q, rendering an at first trivial

rewriting into a useful tool.

The scattering angle formula derived in section 4 assumes only χ to be written like (55) and

hprq to obey the general conditions of (81). It renders the scattering angle in an order-by-order

form, writing χ “
ř8

n“1 χn as an expansion in Newtons gravitational constant G, a socalled Post-

Minkoswkian (PM) expansion. The formula is valid to all orders in G. Due to the very general

constraints on hprq, the calculation might generalise to situations beyond those considered in this

thesis, conceivably related to other fields of Physics.
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3 Existing scattering angle calculation schemes

Having established the necessary theory, we look for ways to evaluate integrals of the form (55).

Before presenting out own method, we will discuss other, existing methods. First the traditional

Hadamard Regularisation is treated. Then a method approriate for isotropic amplitude calcu-

lations is presented. Our derivation, given in section (4) is a direct generalisation of this last

method.

3.1 Partie Finie methods presented by Damour

A common problem in physics is that of evaluating improper integrals. As an example the

Feynman propagator for a photon in QED includes a regulating iϵ term where at the end of the

calculation ϵ Ñ 0.

One particular kind, Hadamard regularisation, may be used to evaluate PM expanded scat-

tering angles. The Hadamard partie finie method regularises divergent integrals, much like the

Cauchy principal value [79, 80]. First introduced by Hadamard in 1923 [79], it applies to integrals

of the form
ż b

a

dx
Apxq

pb ´ xqp`1{2
(56)

where p is a positive integer. Apxq is analytical and admits p derivatives of x in x “ b. Assume

also that Apxq obeys the Lipschitz condition |Apxq ´Apbq| ă L|x´ b| for some constant L and all

x P R.

Such an expression is meaningless, owing to the p ` 1{2 order pole at x “ b. Denote the

Hadamard partie finie as Pf[...]. For Apxq “ 1, we may define the Hadamard partie finie as

Pf

„
ż b

a

dx
1

pb ´ xqp`1{2

ȷ

”
1

p ´ 1{2

1

pb ´ aqp´1{2
(57)

ie. simply throwing away the divergent upper limit, only keeping the lower limit. Note in passing

that the p “ 0 integral is an ordinary improper integral evaluated by limyÑb`

şy

a
dx 1

pb´xq1{2 “ ´2
?
a.

We will see how ”throwing away the divergent terms” can be cast into a formal form with some

examples below.

To see the procedure, consider general Apxq satisfying the Lebesque condition with p “ 1.

We want to construct a way to get rid of the upper limit, which is consistent with (57). Write

Apxq “ Apxq ´ Apbq ` Apbq. We then find

ż b

a

dx
Apxq

pb ´ xq3{2
“

ż b

a

dx
rApxq ´ Apbqs ` Apbq

pb ´ xq3{2
(58)

The integral of the term in brackets is a well-defined improper integral, because |Apxq ´ Apbq| ă

L|x ´ b|. The second Apbq integral may be calculated readily from (57) with p “ 1,

Pf

„
ż b

a

dx
Apxq

pb ´ xq3{2

ȷ

“ lim
yÑb

„
ż y

a

dx
Apxq ´ Apbq

pb ´ xq3{2

ȷ

` Pf

„
ż b

a

dx
Apbq

pb ´ xq3{2

ȷ

(59)

Setting A “ 1 in eq. (59), the first integral is trivially 0 and the procedure is by definition
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equivalent to eq. (57).

The formalism can be extended to general p ą 1 in eq. (56). We write

Apxq “ rApxq ´ Tp´1rApxqss ` Tp´1rApxqs (60)

where Tp´1 denotes the p ´ 1’th order taylor expansion about x “ b. For reference

Tp´1rApxqs “

p´1
ÿ

n“0

App´1qpbqpb ´ xqn

n!
(61)

Assuming Apxq is analytical, the term in brackets goes at least like pb´xqp. Therefore, substituting

eq. (60) in eq. (56)

ż b

a

dx
Apxq

pb ´ xqp`1{2
“

ż b

a

Apxq ´ Tp´1rApxqs

pb ´ xqp`1{2
dx `

ż b

a

Tp´1rApxqs

pb ´ xqp`1{2
dx (62)

the first integral goes like pb´ xqq with q ě ´1{2. The first integral is thus an ordinary improper

integral, calculated by
şb

a
dx Apxq´Tp´1rApxqs

pb´xqp`1{2 “ limyÑb

”

şb

a
dxApxq´Tp´1rApxqs

pb´xqp`1{2

ı

. The second integral

consists only of terms „ 1
pb´xqq`1{2 for integer ´1 ď q ď p and can be calculated from eq. (57).

We may thus write

Pf

„
ż b

a

dx
Apxq

pb ´ xqp`1{2

ȷ

“ lim
yÑb

„
ż y

a

dx
Apxq ´ Tp´1rApxqs

pb ´ xqp`1{2

ȷ

` Pf

„
ż b

a

dx
Tp´1rApxqs

pb ´ xqp`1{2

ȷ

(63)

Note that we could have written eq. (57) as

Pf

„
ż b

a

dx
1

pb ´ xqp`1{2

ȷ

” lim
yÑb

ż y

a

1

pb ´ xqp`1{2
dx ´

1

p ´ 1{2

1

pb ´ yqp´1{2
(64)

where the last term absorbs all divergence when taking the limit of y in the first integral. We can

thus rewrite eq. (63) as

Pf

„
ż b

a

dx
Apxq

pb ´ xqp`1{2

ȷ

“ lim
yÑb

ż y

a

Apxq ´ Tp´1rApxqs

pb ´ xqp`1{2
dx `

ż y

a

Tp´1rApxqs

pb ´ xqp`1{2
dx ´

Bpyq

pb ´ yqp´1{2

“ lim
yÑb

ż y

a

Apxq

pb ´ xqp`1{2
dx ´

Bpyq

pb ´ yqp´1{2

(65)

with Bpxq “
Apbq

pp´1{2qpb´xqp´1{2 ´
A1pbq

pp´3{2qpb´xqp´3{2 ` ¨ ¨ ¨ `
p´1qp´1

pp´1q!
App´1qpbq
1
2

pb´xq1{2 . The function of Bpxq is just

to ensure divergencies are cancelled.

A similar method may be used to find partie finie expressions for other types of functions [79],

including
şb

a
Apxq

pb´xqq
where q is integer. We will not need such expressions in the present.

Although being mathematically interpreted as a memoprphic continuation of a convergent in-

tegral [81], the Hadamard partie finie method can be considered an arbitrary way of obtaining a

finite limit of an otherwise ill-defined integral.

A particular use hereof, the partie finie of a scattering angle integral turns out to reproduce
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the correct result [82]. Damour and Schaefer considered integrals of the type

χ “ BL

ż 8

rm

dr pr (66)

in a Post Newtonian expansion. Define ϵ “ v{c and expand perturbatively in ϵ. The integral

above takes the form
ż 8

rm

dr

g

f

f

eAprq `
2Bprq

r
`

Cprq

r2
` ϵ

8
ÿ

n“0

Dnprq

rn`2
(67)

in isotropic coordinates, with A, B, C and D being functions of r determined from the dynamics

of the theory. rm “ rmpϵq is a root of the full theory, with ϵ denoting the dependence on velocity.

Formally analytically continuing the integral to the complex plane and contour integrating on

contour C away from rm, one may directly expand this integral in powers of ϵ which yields terms

like

χ „

ż 8

rmp0q

dr

rm

ˆ

A `
2B

r
`

C

r2

˙1{2´q

(68)

Factorizing A ` 2B
r

` C
r2

“ r2
`

rr ´ rmp0qsrr ´ rp´qs
˘

in roots rmp0q and the smaller root rp´q,

χ „

ż 8

rmp0q

dr

rm`2q´1
rr ´ rmp0qs

1{2´q
¨ rr ´ rp´q

s
1{2´q (69)

we see that an identical expression to eq. (56) arises. Comparing this partie finie result with that

of exact contour integration around a contour C following rrmp0q,8s along the real axis and one

circular integral around r “ rmp0q, indeed shows that the partie finie of eq. (69) is equal to the

desired scattering angle.

Similarly, the partie finie method also yields the correct scattering angle in the Post-Minkowskian

expansion [83].

3.2 Amplitude calculations of scattering angles - a related problem

In the case of a binary system without spin, a closed form expression can be found for the scat-

tering angle. This section presents such an angle, as found by [1]. The approach is extremely

similar to our derivation below, so we will not go into detail, save present some points of interest.

We go back to section 1.2.7, and consider a binary of arbitrary masses m1,m2, both without

spin, in the center of mass (CM) coordinate system. As discussed there, the scattering angle of

such a setup can be found by considering an amplitude approach to General Relativity.

Only a short review will be given here. For more details, see [67, 66, 1]. One can model the

interaction of a non-spinning particle in a metric from the Einstein-Hilbert action coupled to a

massive scalar field ϕ, eq. (28).

From such a formalism, a classical intuitive way of describing the scattering may be found.

One may construct the associated position-space Hamiltonian as

Hpp, rq “

b

p2 ` m2
1 `

b

p2 ` m2
2 ` V pp, rq (70)
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where p is CM momentum and V pp, rq is the potential describing gravitational interaction between

the bodies. The potential V pp, rq can be expressed in terms of the position-space Mpp, rq from

the Lippmann-Schwinger equation,

Mpp, p1
q “ V pp, p1

q `

ż

d3k

p2πq34E1ppqE2ppq

V pp1, kqMpk, pq

Ep ´ Ek

(71)

Provided V pp, rq is quadratic in momentum p, eq. (70) can be solved for p2 to produce a remarkable

result known as the impetus equation,

p2 “ p28 ´ Veff prq, Veff prq ” 2Ep8
εpp8q ĂMpp8, rq (72a)

ñ p2r “ p28 ´
L2

r2
´ Veff prq (72b)

This is at least valid up to 3PM [3]. L is the total angular momentum of the system, pr is

the radial momentum in center-of-mass coordinates, Ep8
“ E is the total energy of the system,

ĂM “ M
4E1ppqE2ppq

is the non-relativistically normalised scattering amplitude and εppq ”
E1ppqE2ppq

E2
p

.

Equation (164) is completely identical to the momentum relation of a classical test particle

orbiting in some radial potential Veff prq. The scattering angle of the binary can thus be found

identically by eq. (40)

χ{2 “ ´BL

ż 8

rm

dr pr (73)

where p2r “ p2 ´ L2

r2
and r is the distance between the binary objects.

The construction above is only valid for non-spinning objects, ie. black holes. Introducing

spin, the fourier transformed amplitude Mpp, rq becomes dependent on the vector r [66]. Thus

the potential also carries vector dependence. The potential is no longer rotationally symmetric,

and the radial momentum can no longer be isolated directly from (70).

[1] provides a general way of evaluating the integral (73) provided eq. (72b) holds. This thesis

generalises the argument to a more general structure of pr. We will therefore refrain from going

into detail of the derivation in [1], suffice to provide the final result and its applications. The

scattering angle eq. (73) under the condition (72b) can be written [1]

χ “

8
ÿ

n“1

ż 8

0

du

ˆ

d

du2

˙n
2b

r2
V n
eff prqr2n

n!p2n8

, r2 “ u2
` b2 (74)

where b is the gauge-invariant impact parameter of the system. This form shows explicitly that

the scattering angle is independent of rm. The scattring angle may be calculated perturbatively

in G such that it acquires the form χ “
ř8

n“1 χnG
n.

As a special case, consider a potential of the form Veff “
ř8

n“1
fnGn

rn
. The scattering angle up

to 2PM becomes

χ “
b

p28

ż 8

0

du
BrVeff prq

r
(75)

using
`

d
du2

˘

Veff p
?
u2 ` b2q “ 1

r
BrVeff prq. Remarkably the 2PM correction from the n “ 2 term

in eq. (74) drops out. As noted in [1] this is the Bohm formula from [84] for the classical, 1PM,

bending angle around static massive sources in the non-relativisitic limit. Notably the result is
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here shown explicitly to hold up to 2PM and be fully relativistic in nature, facts only previously

noticed by accident.

As an example of the special case of two binary non-spinning black holes, one has up to 2PM in

isotropic coordinates [3]

f1 “ 2p2γ2
´ 1q

µ2M

E
, f2 “

3p5γ2 ´ 1q

2

µ2M

E
(76)

where M “ m1 ` m2 is the sum of the binary masses, E is the total energy of the system and

µ “ m1m2

M
is the reduced mass. The appropriate scattering angle from (75) is

χ “ 2p2γ2
´ 1q

µ2M

E

MG

bp28
`

3p5γ2 ´ 1qπ

4

µ2M

E

M2G2

b2p28
` OpG3

q (77)

The probe-limit m1 " m2 ” m ñ m1 Ñ M , E Ñ M and µ Ñ m recovers the Schwarzschild

scattering angle of a probe of mass m orbiting a Schwarzschild black hole of mass M .

We have presented a general formalism for calculating binary scattering angles in isotropic coor-

dinates, where pr is of some specific form. Equation (73) is identical in structure to a test-particle

scattering angle eq. (40). However, for the test-particle case, assumptions of isotropic coordinates

do not generally hold. The Kerr metric cannot be brought on isotropic form. Neither can we deal

with spinning test particles, because they do not follow eq. (40).

We lift these restrictions below. Considering integrals of the type (55), we can handle both the

amplitude calculations as described above and testparticle calculations in arbitrary rotationally

symmetric metrics. However, we will limit the discussion to test particle angles throughout the

thesis.

4 Scattering angle of test particle in arbitrary rotationally

symmetric metric

This section derives in full the main result of this thesis: The test particle scattering angle of

a rotationally symmetric metric, both for spinning and non-spinning probes. It applies to all

situations described in section 2.1. We generalise [1]. The procedure can be summarised as

follows:

We work with scattering angles written as eq. (55). Our general goal is to cancel the rm

dependence in a general way, assuming a PM approximation.

- Write pr like eq. (35) in special coordinates, such that eq. (55) takes a specific form.

- Assume a PM framework, meaning (29) holds. This allows a binomial expansion in potential

Uprq from eq. (35).

- The rm dependence drops out after using prprmq “ 0, and rewriting everything as a Taylor-

series.

One finds the scattering angle expressed as a sum without any explicit rm dependence.
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The scattering angle of a (spinning) test body orbiting a scattering centre in some metric gµν

is naturally written in terms of canonical radial momentum, as seen in eq. (55). We can choose

to write this momentum in normal coordinates, meaning that

p2r “ T prq ´ Upr, bq, where T prq “ p28 ´
L2

r2
(78)

and U contains all G-dependence. Upr, bq will generally depend on r, impact parameter b “ L
p8

and any other quantities related to the metric and test particle and is an analogous to the potential

presented in section 3. The defining property of normal coordinates is they reduce to flat spherical

coordinates when G Ñ 0

tt, r, ϕu are normal if gµν Ñ

¨

˚

˝

´1 0 0

0 1 0

0 0 r2

˛

‹

‚

when G Ñ 0 (79)

They can be found for any system, by setting G Ñ 0 and transforming the resulting necessarily

flat metric to Minkowskian form. An example of the construction of such coordinates will be

detailed in section 5. 27

As described in section 2, in normal coordinates, the scattering angle for (non)-spinning probes

can be written on the form

χ{2 “

ż 8

rm

dr
dϕ

dr
´ π{2 “ ´

ż 8

rm

dr
hprq

pr
´ π{2,

dϕ

dr
” ´

hprq

pr
(80)

where hprq is defined from dϕ
dr
. It is specific to the metric, but invariant under radial coordinate

transformations.

The scattering angle calculation presented below is of very general applicability and very

similar to [1]. We will consider a scattering angle as in eq. (80), and not use any specific form of

hprq, save require

hprq is analytical for r P rrm,8r

hprq Ñ 1{r when r Ñ 8
(81)

The final result may therefore conceivably be applicable to other systems beyond a spinning probe

in the Kerr metric, whatever they may be.

We start by considering eq. (80) in normal coordinates of eq. (78). It can be written like

χ{2 “

ż 8

rm

dr
hprq

p8

ˆ

1 ´ b2{r2 ´
Upr, bq

p28

˙´1{2

(82)

27Note that Upr, bq{p8 ! 1 assumed throughout. This expansion gains an explicit interpretation as being ”Post

Minkowskian”, because U is interpreted as a small correction to the Minkowskian radial momentum p2r “ p28 ´ L2

r2 .
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We may now rewrite b2{r2 by imposing prprmq “ 0,

p2rprmq{r2m “ 1 ´ b2{r2m ´ Uprm, bq{p28 “ 0 ñ b2{r2 “ r2m{r2 ´
r2m
r2

Uprm, bq{p28 (83)

which inserted in eq. (82),

χ{2 “

ż 8

rm

dr
hprq

p8

ˆ

1 ´ r2m{r2 `
r2m
r2

Uprm, bq

p28
´

Upr, bq

p28

˙´1{2

(84a)

“ ´

ż 8

rm

dr
hprq

p8

`

1 ´ r2m{r2 ´ W pr, bq
˘´1{2

´ π{2 (84b)

W pr, bq “
1

p28
rUpr, bq ´

r2m
r2

Uprm, bqs (84c)

Introducing integration variable u through r2 “ u2 ` r2m ñ rdr “ udu, one finds

χ{2 “ ´

ż 8

0

du
r

u

hprq

p8

`

1 ´ r2m{r2 ´ W pr, bq
˘´1{2

´π{2 “ ´

ż 8

0

du
hprq

p8

ˆ

1 ´
r2

u2
W pr, bq

˙´1{2

´π{2

(85)

after rearranging expresions slightly. This procedure removes the rm lower integration limit,

however rm dependence still apparently persists through the relation of r with u. If we now

assume a scattering regime where |
Upr,bq

p28
| ! 1 ñ ´1 ă r2

u2W pr, bq ă 1 28, we may consider the

binomial expansion

p1 ` xq
´1{2

“ 1 `

8
ÿ

n“0

˜

´1{2

n ` 1

¸

xn`1
“ 1 `

8
ÿ

n“0

p´1qn`1p2n ` 1q!!

2n`1pn ` 1q!
xn`1 (86)

of eq. (85) with x “ ´ r2

u2W pr, bq,

χ{2 “ F0prmq ´ π{2 ´

8
ÿ

n“0

p2n ` 1q!!

2n`1pn ` 1q!

ż 8

0

du
1

u2pn`1q
r
hprq

p8

r2pn`1qW n`1
pr, bqs (87)

where

F0prmq “ ´

ż 8

0

du hprq{p8, r2 “ u2
` r2m which we will deal with later. (88)

Note, because generally W pr, bq ă 0, a binomial expansion had been impossible, had we not

assumed r " G. Consider the integrand in eq. (87). For C8 functions fpuq which obey
1

u2n´1fpuq Ñ 0 at the integration borders, the following identity holds

ż 8

0

du

u2n
fpuq “

1

p2n ´ 1q!!

ż 8

0

du

ˆ

1

u

d

du

˙n

fpuq “
2n

p2n ´ 1q!!

ż 8

0

du

ˆ

d

du2

˙n

fpuq (89)

If hprq obeys requirements (81), the convergence properties of the integrand in (87) are those

28Note that either W pr, bq ă 0 or W pr, bq ą 0 for r P rrm,8s depending on the actual characteristics of Upr, bq.
W pr, bq ă 0 when Upr, bq „ 1{r for r Ñ 8.
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required by eq. (89). Applying (89) to eq. (87) with fpuq “
hprq

p8
r2pn`1qW n`1 one obtains

χ{2 “ F0prmq ´ π{2 ´

8
ÿ

n“0

p2n ` 1q!!

2n`1pn ` 1q!

2n`1

p2n ` 1q!!

ż 8

0

du

ˆ

d

du2

˙n`1
hprq

p8

r2pn`1qW n`1
pr, bq (90a)

“ F0prmq ´ π{2 ´

8
ÿ

n“0

1

pn ` 1q!

ż 8

0

du

ˆ

d

du2

˙n`1
hprq

p8

r2pn`1qW n`1
pr, bq (90b)

“ F0prmq ´ π{2 ´

8
ÿ

n“0

∆n (90c)

∆n “
1

pn ` 1q!

ż 8

0

du

ˆ

d

du2

˙n`1

r
hprq

p8

r2pn`1qW n`1
pr, bqs (90d)

where ∆n has been introduced to simplify notation and introduce an expanded form of the scat-

tering angle. Note the difference with the ∆’s defined in [1] - there is only a different function in

front of W pr, bq.

We now focus on rewriting ∆n. Write W pr, bqn`1 as

W n`1
pr, bq “

Un`1pr, bq

p
2pn`1q
8

p1 ´ xq
n`1 where x ” ´

r2m
r2

Uprm, bq

Upr, bq
(91)

and write p1 ´ xqn`1 “
řn`1

k“0
pn`1q!

pn´k`1q!k!
xk as a binomial expansion to obtain 29

∆n “
1

pn ` 1q!

ż 8

0

du

ˆ

d

du2

˙n`1
hprq

p8

r2pn`1qU
n`1pr, bq

p
2pn`1q
8

n`1
ÿ

k“0

pn ` 1q!

pn ´ k ` 1q!k!
p´1q

k r
2k
m

r2k
Ukprm, bq

Ukpr, bq

(92a)

“

ż 8

0

du

ˆ

d

du2

˙n`1 n`1
ÿ

k“0

1

pn ´ k ` 1q!k!

hprq

p8

r2pn`1qUn´k`1pr, bq

p
2pn`1q
8

„

´
r2m
r2

Uprm, bq

ȷk

(92b)

Once again use prprmq “ 0 to rewrite the term in square brackets. From eq. (83),

´
r2m
r2

Uprm, bq “ p28
b2 ´ r2m

r2
(93a)

∆n “

ż 8

0

du

ˆ

d

du2

˙n`1 n`1
ÿ

k“0

1

pn ´ k ` 1q!k!

hprq

p8

r2pn`1qUn´k`1pr, bq

p
2pn`1q
8

„

p28
b2 ´ r2m

r2

ȷk

“

n`1
ÿ

k“0

pb2 ´ r2mqk

k!

ż 8

0

du

ˆ

d

du2

˙n`1
hprq

p8

r2pn´k`1qUn´k`1pr, bq

pn ´ k ` 1q! p
2pn´k`1q
8

(93b)

where in the last equality terms are rearranged slightly, grouping terms in k outside the differ-

entiation, since b nor rm depend on u. Note furthermore that the only explicit rm dependence

in the integrand occurs in r “
a

u2 ` r2m. Since r is symmetric in r2m and u2, one may exchange

29Note that |x| is not necessarily smaller than 1. The exponent n` 1 is positive and the binomial expansion can
be used.
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derivatives in u2 for ones in r2m. Specifically, since k ď n ` 1,

ˆ

d

du2

˙n`1

“

ˆ

d

du2

˙k ˆ

d

du2

˙n´k`1

“

ˆ

d

dr2m

˙k ˆ

d

du2

˙n´k`1

(94)

χ of eq. (90c) can, as a result, be written in terms of a sum over k and n

χ{2 “ F0prmq ´ π{2 ´

8
ÿ

n“0

n`1
ÿ

k“0

∆n,kprmq (95a)

∆n,k “
pb2 ´ r2mqk

k!

ˆ

d

dr2m

˙k ż 8

0

du

ˆ

d

du2

˙n´k`1
hprq

p8

r2pn´k`1qUn´k`1pr, bq

pn ´ k ` 1q! p
2pn´k`1q
8

(95b)

We evaluate the k “ n ` 1 and F0prmq terms of eq. (90c) separately. Denote them ζ´1{2 ”

F0prmq ´
ř8

n“0 ∆̃n,n`1 with a conventional factor 1{2, for reasons clear in a moment.
ř8

n“0∆n,n`1

can be rewritten in terms of the Taylor-expansion of F0prmq about rm “ b

8
ÿ

n“0

∆n,n`1 “

8
ÿ

n“0

pb2 ´ r2mqn`1

pn ` 1q!

ˆ

d

dr2m

˙n`1 ż 8

0

du
hprq

p8

“

˜

8
ÿ

n“0

pb2 ´ r2mqn

pnq!

ˆ

d

dr2m

˙n ż 8

0

du
hprq

p8

¸

´

ż 8

0

du
hprq

p8

“ ´F0pbq ` F0prmq

(96)

where the first expression in the third equality is recognised as the Taylor-series F0pbq “ F0prm “

bq. As a result, ζ´1 is purely a function of impact parameter b and the rm dependence cancels,

ζ´1{2 “ F0pbq (97)

We now deal with the k ď n part of the sum in eq. (95a). The scattering angle can be written

like

χ´ζ´1`π “ ´2
8
ÿ

n“0

n
ÿ

k“0

pb2 ´ r2mqk

k!

ˆ

d

dr2m

˙k ż 8

0

du

ˆ

d

du2

˙n´k`1
hprq

p8

r2pn´k`1qUn´k`1pr, bq

pn ´ k ` 1q! p
2pn´k`1q
8

(98)

This expression can be simplified remarkably. Similar to the previous section, define the function

ζnpxq “ ´2

ż 8

0

du

ˆ

d

du2

˙n`1
hprq

p8

r2pn`1qUn`1pr, bq

pn ` 1q!p
2pn`1q
8

, r2 “ u2
` x2 (99)

where x P R. Consider ζnpxq as a definition of a function for arbitrary x. To be clear, r in eq.

(99) should be understood as nothing more than a placeholder for u2 ` x2. It is only the actual

radial coordinate from the metric when x “ rm, not otherwise.

The scattering angle now becomes

χ “

8
ÿ

n“0

n
ÿ

k“0

pb2 ´ r2mqk

k!

ˆ

d

dr2m

˙k

ζn´kprmq (100)
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Consider the double sum. Defining ñ “ n ´ k writes,

χ “

8
ÿ

n“0

n
ÿ

ñ“0

pb2 ´ r2mqn´ñ

pn ´ ñq!

ˆ

d

dr2m

˙n´ñ

ζñprmq (101)

Label the terms in this sum uniquely by pn, ñq. Now consider grouping the terms with ñ fixed.

Letting ñ P r0,8r, one can write the double sum as

χ “

8
ÿ

ñ“0

8
ÿ

n“ñ

pb2 ´ r2mqn´ñ

pn ´ ñq!

ˆ

d

dr2m

˙n´ñ

ζñprmq (102)

with the sums over n and ñ flipped in order. Defining m “ n ´ ñ, decouples the sum

χ “

8
ÿ

ñ“0

8
ÿ

m“0

pb2 ´ r2mqm

m!

ˆ

d

dr2m

˙m

ζñprmq (103)

The above is easily recognised as the Taylor-expansion of ζñp
a

r2mq about r2m “ b2. Remarkably,

this removes all rm dependence in χ.

One therefore can simply write, letting ñ Ñ n to alleviate notation

χ`π “

8
ÿ

n“0

ζnpbq`ζ´1 “

8
ÿ

n“´1

ζnpbq “

8
ÿ

n“´1

´2

ż 8

0

du

ˆ

d

du2

˙n`1

hprq
r2pn`1qUn`1pr, bq

pn ` 1q!p
2pn`2q´1
8

, r2 “ u2
`b2

(104)

As indicated by the second equality ζ´1 from eq. (97) is simply eq. (99) with n “ ´1 and

r2 “ u2 ` b2, ie. ζ´1 “ ζ´1pbq. This explains the notation in eq. (97). Simply shifting the sum

from n P r´1,8s to n P r0,8s recovers a very concise form of the scattering angle, independent

of rm,

χ ` π “ ´2
8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n

hprq
r2nUnpr, bq

n!p
2pn`1q´1
8

, r2 “ u2
` b2 (105)

Equation (105) holds whenever χ can be written like eq. (80) where hprq obeys eq. (81). It

it loosly interpreted as an infinite sum over „ r2

u2
U
p28

! 1 30, after noticing d
du2 „ 1

u2 from pure

dimensional arguments.

As such the derivation does not only apply to test particle scattering, but also to the full

isotropic binary problem formulated in eq. [1]. Other possible uses are discussed in 6.

Indeed, the [1] calculation is easily recovered as a special case of (105) where ζ´1 “ π and

hprq “ ´bp8{r2. In that case ζ´1 cancels the π on the LHS, and the rest reduces to the result

found in [1].

Remarkably, this result can be applied to both spinning and non-spinning probes for rotation-

ally symmetric metrics described in section 2.1. hprq is seen to obey the requirements of (81),

at least up to OpS2q in test particle spin. Interestingly, specifically for probes with and without

spin, further rewriting of eq. (105) is possible to an operator-form not involving hprq directly.

30This is the quantity we assume is small when performing the binomial expansion of (85)
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4.1 Scattering angle formula of a scalar test particle

This section derives an operator form of eq. (105) for a non-spinning test particle in an arbitrary

metric.

hprq for a (non)-spinning test particle explicitly obeys eq. (81) to OpS2q per eq. (54). As

such, eq. (105) can be directly used to calculate the approriate scattering angle. However, eq.

(105) can be rewritten using operators in neat way. In this context, we will first derive a special

case of eq. (105) for scalar particles, then continue to the case of a spinning probe.

Setting S “ 0, hprq from eq. (54) can be rewritten by using

dϕ

dr
“ ´

B

BJ
pr ñ hprq “ ´

ˆ

bp8

r2
`

1

2p8

BbUpr, bq

˙

(106)

We keep r2 Ñ u2 ` b2 implicit. Bb does not act on the b dependence in r. Inserting in eq. (105),

χ ` π “ 2
8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n

r
bp8

r2
`

1

2p8

BbUpr, bqs
r2nUnpr, bq

n!p
2pn`1q´1
8

“ π ` 2b
8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n`1
r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

`

8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n

BbrUpr, bqs
r2nUnpr, bq

n!p
2pn`1q
8

(107)

The π in the last equality comes from the n “ 0 term of the bp8

r2
part. As in [1] this term is respon-

sible for a vanishing zeroth order scattering angle. The last line can be rewritten significantly.

Denoting gpr, bq ” r2nUn`1pr, bq,

r2nUn
BbUpr, bq “

1

n ` 1
Bbgpr, bq (108)

which, in turn, can be rewritten in terms of the total derivative d
db
gpr, bq “ Bbgpr, bq ` Brgpr, bqdr

db

where dr
db

“ d
?
u2`b2

db
“ b

r
,

r2nUn
BbUpr, bq “

1

n ` 1
p
dgpr, bq

db
´

Bgpr, bq

Br

b

r
q “

1

n ` 1
p
dgpr, bq

db
´ 2b

Bgpr, bq

Br2
q (109)

where d{db denotes the full derivative of gpr, bq with b, including b dependence in r2 “ u2 ` b2.

Inserting (109) in (107), an important cancellation happens

χ “ 2b
8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n`1
r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

`

8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n
«

d

db

«

r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

ff

´ 2b
d

dr2
r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

ff (110)

The first line cancels the last term in the second line, after noticing d
dr2

“ d
du2 for a function only

of r. The derivative d
db

acts on both the explicit b dependence in U , and the implicit b dependence
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in r “
?
u2 ` b2. One therefore simply finds,

χ “

8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n
d

db

«

r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

ff

, r2 “ u2
` b2 (111)

Equation (111) only requires specifying Upr, bq in the chosen normal coordinate system, as opposed

to knowing both hprq and Upr, bq with eq. (105). Because of the easy determination of Upr, bq

from the metric, we have used eq. (111) specifically to compute scalar scattering angles below.

4.2 Scattering angle formula for a spinning test particle up to OpS2q

This section derives an operator form of eq. (105) for a spinning test particle with spin S up to

OpS2q, scattering in an arbitrary metric.

As seen from eq. (54), eq. (105) equally applies to a spinning test particle with spin-parameter

S. As with the non-spinning case, equation (105) including test particle spin can be rewritten to

an operator form.

To second order in S, one can modify the operator BL Ñ D
p8

in eq. (40),

dϕ

dr
”

Drprs

p8

, D “ Bb ` fSprqBS

ñ hprq “ ´

ˆ

bp8

r2
`

1

2p8

BbUpr, b, Sq `
fSprq

2p8

BSUpr, b, Sq

˙ (112)

To higher orders, the same structure, with a non-diverging hprq is expected. fSprq is determined

order by order in S, by imposing eq. (112). It is, to second order in S

fSprq “
p8S

mκ
`

p8 pa2r ` 2GM pκ2 ´ r2q ´ κlr ` r3qS2

m2κ2 pγr3 ´ aκrq
` OpS3

q (113)

As in eq. (54), κ “ l ´ γa, γ “ E{m and l “ L{m.

The first two terms have already been dealt with above. For the part with BS, there is no

subtlety with extra b-dependence on r. We thus simply find

fSprqr2nUn
BSUpr, bq “

fSprq

n ` 1

d

dS
r2nUn`1

pr, b, Sq (114)

Inserting eqs. (112) and (114) in eq. (105), the part with d
dS

becomes

2
8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n
fSprq

2p8

BSUpr, b, Sq
r2nUnpr, bq

n!p
2pn`1q´1
8

“

8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n

fSprq
d

dS

r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

(115)

Combining eqs. (115) and (111), one finds the spinning test particle scattering angle (105) in a

useful and very concise form,

χ “

8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n

D

«

r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

ff

, r2 “ u2
` b2 (116)
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where, importantly, D does not commute with d
du2 . Matching known expressions of dϕ

dr
with eq.

(112) provides a general order-by-order method of determining fSprq. We expect the The above

perscription, including the construction of D, only requires eqs. (80) and (81).

5 Scattering angle calculations

All scattering angle calculations are performed using the Mathematica code-files ((official)

proper math, optimised) Scattering angle proper math.nb, Scattering Angle pure v.nb

for test particle with and without spin respectively. To explain the general procedure, we walk

through some examples by hand below. A complete explanation of the code can be found in the

Appendix. Actual code is included as separately appended files.

5.1 Scattering angle in Schwarzschild metric with Schwarzschild co-

ordinates

As an instructive application of eq. (105), let us find the scattering angle to all PM orders of a

test particle in the Schwarzschild metric directly from Schwarzschild coordinates. Typically this

is done in isotropic coordinates [1], as this simplifies eq. (105). However, using eq. (105) the

calculation is just as easy in Schwarzschild coordinates. Doing the calculation in Schwarzschild

coordinates exemplifies that tt, r, ϕu for which T “ T0 are not unique.

As a reminder the Schwarzschild metric in Schwarzschild coordinates tt, r, θ, ϕu is

gµν “

¨

˚

˚

˚

˝

´p1 ´ rs
r

q 0 0 0

0 p1 ´ rs
r

q´1 0 0

0 0 r2 0

0 0 0 r2sin2θ

˛

‹

‹

‹

‚

(117)

where rs “ 2GM is the Schwarzschild radius with black hole mass M and G is Newtons gravita-

tional constant. Due to spherical symmetry, restrict the orbit to the θ “ π{2 plane without loss

of generality. Solving eq. (32) for the canonical radial momentum pr of a test particle with mass

m yields (to all orders in G)

p2r “
pE2 ´ m2qr3 ` m2r2rs ´ J2pr ´ rsq

rpr ´ rsq2
“ p28´

J2

r2
´

˜

rs
m2pr ´ rsq ´ E2p2r ´ rsq ` J2

r2
pr ´ rsq

pr ´ rsq2

¸

(118)

The last result writes the G-independent and G-dependent terms separately. The test particle

energy relation E2 ´ m2 “ p28 at infinite separation has been used to rewrite the zeroth-order

term slightly. One recognises the p2r form of eq. (78). Thus identify

Upr, bq “ rs
m2pr ´ rsq ´ E2p2r ´ rsq ` J2

r2
pr ´ rsq

pr ´ rsq2
(119)

where again b ” J
p8

. In order to find χ order-by-order in G from eq. (111), one needs a Taylor-
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expansion of Upr, bq in G. The result up to second order in G is listed below correct sign

Upr, bq “ U1pr, bq ` U2pr, bq ` OpG3
q “ ´

p2E2 ´ m2qr2 ´ J2

r3
rs ´

p3E2 ´ m2qr2 ´ J2

r4
r2s ` OpG3

q

(120)

The next section walks through the computation of χ up to 2PM explicitly.

5.1.1 1PM Schwarzschild scattering angle

Let’s begin by getting the first order Schwarzschild scattering angle, χ1. Only a single expression

contributes in eq. (105), namely the G1 part of Upr, bq in the n “ 0 term,

χ1 “

ż 8

0

du
B

Bb

1

p28
U1pr, bq “

2GMp2E2 ´ m2q

bp28
“

2p2γ2 ´ 1qGMm2

bp28
(121)

where E2 “ γ2m2 with γ2 “ 1
1´v2

the asymptotical Lorentz factor of the test particle at infinity

where its velocity is v. This result is the same found in literature with literature [1], [3].

5.1.2 2PM Schwarzschild scattering angle

Proceeding to 2PM produces two contributions from the sum over n in eq. (111)

$

&

%

U1 term from n “ 1

U2 term from n “ 0
.

The 2PM contribution to the scattering angle, χ2, may thus be written

χ2 “

ż 8

0

du
B

Bb

ˆ

d

du2

˙

r2U2
1 pr, bq

2p48
`

ż 8

0

du
B

Bb

U2pr, bq

p28

“ r2s

ˆ

πp6E2 ´ 2m2 ´ p28q

4p28b
2

´
πp8E2 ´ 4m2 ´ 3p28q

16b2p28

˙

“ 4G2M2m2π

ˆ

5γ2 ´ 1

4p28b
2

´
5γ2 ´ 1

16p28b
2

˙

“
3G2M2m2πp5γ2 ´ 1q

4p28b
2

(122)

using E2 ´ m2 “ p28 and E2 “ γ2m2 where γ2 “ 1
1´v2

is the asymptotical Lorentz factor of the

test particle at infinity where its velocity is v.

This result is again consistent with [1, 3]. We will discuss general features of these angles in

section 5.3.

5.2 Kerr scattering angle in Boyer-Lindquist coordinates in θ “ π{2

plane

The Kerr metric in Boyer-Lindquist coordinates x P tt, r, ϕu, restricted to θ “ π{2

gµν “

¨

˚

˝

´
`

1 ´ rs
r

˘

0 ´ rsa
r

0 r2

r2´rsr`a2
0

´ rsa
r

0 pr`rsqa2`r3

r

˛

‹

‚

(123)

is evidently rotationally symmetric. Letting a test particle orbit in the θ “ π{2 plane, it will have

conserved angular momentum L and stay in that plane. Fundamentally this allows the definition
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ď10PM Schwarzschild scattering angle for a non-spinning test particle

n χn{GnMn

bnv2n

1 2
`

v2 ` 1
˘

2 p3π{4qv2
`

v2 ` 4
˘

3 p2{3q
`

5v6 ` 45v4 ` 15v2 ´ 1
˘

4 p105π{64qv4
`

v4 ` 16v2 ` 16
˘

5 p2{5q
`

21v10 ` 525v8 ` 1050v6 ` 210v4 ´ 15v2 ` 1
˘

6 p1155π{256qv6
`

v6 ` 36v4 ` 120v2 ` 64
˘

7 p2{35q
`

429v14 ` 21021v12 ` 105105v10 ` 105105v8 ` 15015v6 ´ 1001v4 ` 91v2 ´ 5
˘

8 p45045π{16384qv8
`

5v8 ` 320v6 ` 2240v4 ` 3584v2 ` 1280
˘

9 p2{63qp2431v18 ` 196911v16 ` 1837836v14 ` 4288284v12

`2756754v10 ` 306306v8 ´ 18564v6 ` 1836v4 ´ 153v2 ` 7q

10 p2909907π{65536qv10
`

v10 ` 100v8 ` 1200v6 ` 3840v4 ` 3840v2 ` 1024
˘

Table 1: Scattering angle of a test particle in Schwarzschild spacetime up to 10PM, calculated
using Schwarzschild coordinates, expressed purely in asymptotical test particle velocity v. χn is
the Gn-order contribution to scattering angle χ “

ř

n χn. Up to 2PM, full results have been
checked with literature. Light-bending angles are checked with [85, eq. (25)] up to and including
6PM.

and calculation of scattering angle χ given by eq. (55).

pr is computed from eq. (32) to give

p2r “
rrp28r

3 ` m3r2rs ` pa2p28 ´ L2qr ` rspEa ´ Lq2s

pa2 ` r2 ´ rsrq2
“ T prq ´ Upr, L, aq (124a)

T prq “
r2

r2 ` a2

ˆ

p28 ´
L2

r2 ` a2

˙

(124b)

Upr, L, aq “ ´
rp2E2 ´ m2qr6 ` pm2 ´ E2qr5rs ` pp4E2 ´ m2qa4 ´ 4ELa3qr2s rrs

pa2 ` r2 ´ rsrq2pa2 ` r2q2

´
rpp5E2 ´ 2m2qa2 ´ 2ELa ´ L2qr4 ´ rsppE2 ´ m2qa2 ´ L2qr3 ` a4pEa ´ Lq2s rrs

pa2 ` r2 ´ rsrq2pa2 ` r2q2

(124c)

which is again written as the sum of a G-independent T term, and G-dependent, U term. However,

the coordinates considered here are not normal since T does not exhibit the structure of eq. (78).

This is exemplified by setting G “ 0 in the Boyer-Lindquist metric eq. (123). One finds

gp0q
µν “

¨

˚

˝

´1 0 0

0 r2

r2`a2
0

0 0 a2 ` r2

˛

‹

‚

(125)

which is not the Minkowski metric. However the Minkowski metric can be recovered by the radial

coordinate transformation r Ñ ρ “
?
r2 ´ a2. To this purpose, define x̃ P tt, ρ, ϕu in which

g̃p0q
µν “ ηµν “

¨

˚

˝

´1 0 0

0 1 0

0 0 ρ2

˛

‹

‚

, ρ2 “ r2 ` a2 (126)

43



From eq. (34), pr transforms like

pρ “
dr

dρ
pr (127)

for any transformation ρprq which only involves radial coordinates. Having made a transformation

from Boyer-Lindquist to normal coordinates r Ñ ρ, (111) does apply with transformed Ũpρ, L, aq “
´

dr
dρ

¯2

Upr, L, aq

χ “

8
ÿ

n“0

ż 8

0

du
B

Bb

ˆ

d

du2

˙n
ρ2nŨn`1pρ, bq

pn ` 1q!p
2pn`1q
8

, ρ2 “ u2
` b2 (128)

b and L are both coordinate-invariant. Calculating χ to 1PM, exactly like Schwarzschild, produces

χ1 “
2GM pγ2p2b ´ 2avq ´ bq

γ2v2 pb2 ´ a2q
(129)

v is the asymptotical velocity of the test particle. Simplifications are very important to be able

to do the integrals.

The result may be shown equivalent to test particle limits of [66] and [76] by rewriting γ in

these results in terms of v. The Kerr scattering angle is listed up to 6PM in table 2 below. The

results found agree with all literature considered; 1PM [66, 76], 2PM [70] and light-bending angle

up to 4PM [78].

ď 6PM Kerr scattering angle of a non-spinning test particle

n χn{ GnMn

v2npb2´a2qp3n´1q{2

1 2
“

´ 2av ` bp1 ` v2q
‰

2 pπ{2a2q

”

pb2 ´ a2q5{2v4 ` pa ´ bvq3
“

´ 4a2v ` 3ab ` b2v
‰

ı

3 p2{3q
“

2a5v
`

3v4 ´ 10v2 ´ 9
˘

´ 3a4b
`

v6 ´ 15v4 ´ 45v2 ´ 5
˘

´ 4a3b2v
`

15v4 ` 70v2 ` 27
˘

`2a2b3
`

11v6 ` 135v4 ` 105v2 ` 5
˘

´ 18ab4v
`

5v4 ` 10v2 ` 1
˘

` b5
`

5v6 ` 45v4 ` 15v2 ´ 1
˘ ‰

4 p3π{16a4q

”

2pb2 ´ a2q11{2v8 ` pa ´ bvq5
“

´ 8a6v
`

14v2 ` 5
˘

` 5a5b
`

72v2 ` 7
˘

`a4b2v
`

16v2 ´ 305
˘

´ 5a3b3
`

11v2 ´ 14
˘

´ a2b4v
`

11v2 ´ 30
˘

` 10ab5v2 ` 2b6v3
‰

ı

5 p2{15q
“

´ 2a9v
`

15v8 ´ 60v6 ` 378v4 ` 900v2 ` 175
˘

`15a8b
`

v10 ´ 15v8 ` 210v6 ` 1050v4 ` 525v2 ` 21
˘

` 8a7b2v
`

45v8 ´ 780v6 ´ 6426v4 ´ 6300v2 ´ 875
˘

´140a6b3
`

v10 ´ 45v8 ´ 630v6 ´ 1050v4 ´ 315v2 ´ 9
˘

´ 84a5b4v
`

45v8 ` 1020v6 ` 2814v4 ` 1500v2 ` 125
˘

`14a4b5
`

67v10 ` 3375v8 ` 15750v6 ` 14070v4 ` 2295v2 ` 27
˘

´1400a3b6v
`

9v8 ` 84v6 ` 126v4 ` 36v2 ` 1
˘

`36a2b7
`

29v10 ` 875v8 ` 2450v6 ` 1190v4 ` 65v2 ´ 1
˘

´ 50ab8v
`

63v8 ` 420v6 ` 378v4 ` 36v2 ´ 1
˘

`3b9
`

21v10 ` 525v8 ` 1050v6 ` 210v4 ´ 15v2 ` 1
˘ ‰

6 p5π{128a6q

”

8pb2 ´ a2q17{2v12 ` pa ´ bvq7
“

´ 4a10v
`

1584v4 ` 1540v2 ` 189
˘

`7a9b
`

5720v4 ` 2808v2 ` 99
˘

´ a8b2v
`

2200v4 ` 85232v2 ` 17829
˘

` 14a7b3
`

260v4 ` 5391v2 ` 330
˘

´2a6b4v
`

334v4 ´ 1491v2 ` 14070
˘

` 21a5b5
`

85v4 ´ 272v2 ` 176
˘

` a4b6v
`

255v4 ´ 1904v2 ` 1680
˘

´28a3b7v2
`

17v2 ´ 24
˘

´ 4a2b8v3
`

17v2 ´ 56
˘

` 56ab9v4 ` 8b10v5
‰

ı

Table 2: Scattering angle of a non-spinning test particle in Kerr spacetime up to 6PM.
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5.3 Spinning test particle in Kerr metric

The scattering angle of a spinning test particle, up to OpS2q in test particle spin, can be written

like

χ “

8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n

D

«

r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

ff

, r2 “ u2
` b2 (130)

D “ Bb ` fSprqBS, fSprq “
p8S

mκ
`

p8 pa2r ` 2GM pκ2 ´ r2q ´ κlr ` r3qS2

m2κ2 pγr3 ´ aκrq
` OpS3

q (131)

per equation (116) in section 4.2. As such, the method of calculation is exactly the same as that

without spin concerning eq. (111).

In Boyer-Lindquist coordinates, one finds the radial momentum pr from the modified Hamilton-

Jacobi equations (45) with pt and pϕ given by eq. (50)

p2r “ T prq ´ Upr, bq (132)

where

T prq “
r2

r2 ` a2

˜

p28 ´
pJ ´ ES

m
q2

r2 ` a2

¸

(133)

Upr, bq “

2GMr
”

´p2inf pa6 ` a4 pb2 ` 4r2q ` a2r3p5r ´ 2GMq ` b2r3p2GM ´ rq ` 2r5pr ´ GMqq

pa2 ` r2q2 pa2 ` rpr ´ 2GMqq
2

´
pa2 ` r2q

2
pa2m2 ´ 2abepinf ` m2r2q

pa2 ` r2q2 pa2 ` rpr ´ 2GMqq
2

ı

´
2GMS ra3m2 ` ap2inf pa2 ` b2 ` r2q ´ 2a2bepinf ` am2r2 ´ ber2pinfs

mr pa2 ` rpr ´ 2GMqq
2 (134)

`GMS2
”

´3a4m2 ` 6a3bepinf ` a2m2rpGM ´ 4rq ` p2inf p´3a4 ` a2 p´3b2 ` GMr ´ 3r2q ` b2rpGM ´ rqq

m2r3 pa2 ` rpr ´ 2GMqq
2

`
2aberpinfp2r ´ GMq ` m2r3p2GM ´ rq

m2r3 pa2 ` rpr ´ 2GMqq
2

ı

` OpS3
q

Notice that T prq is not of normal form, and has exactly the same structure as eq. (124b). The

radial coordinate transformation r2 Ñ ρ2 “ r2 `a2 still brings the Boyer-Lindquist Kerr metric to

normal form. This takes care of the r2

a2`r2
prefactor of T prq. Denoting the transformed quantity

with T̃ , whats left is something on the form

T̃ prq “ p28 ´
pJ ´ ES

m
q2

ρ2
(135)

It can be brought to the well-known form of eq. (78) by two arguments. Note that J is the total

angular momentum of the probe, including its spin. The orbital angular momentum L appearing

in eq. (78) is exactly J ´ ES
m
. This can be seen by requiring the G Ñ 0 dynamics of spinning and

non-spinning test particles to be equal, ie. straight line motion. This would require the T -terms
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to have exactly the same form. One therefore necessarily has the requirement

L “ J ´
ES

m
” bp8 (136)

Note how this also fixes the definition of impact parameter. The (134) expression for Upr, bq is

found by substituting eq. (136) in (50), solving the modified Hamilton-Jacobi equation (45) and

expanding to second order in test particle spin S.

The scattering angle calculation now proceeds as in 5.2, coordinate-transforming Upr, bq Ñ

Ũpρ, bq to ρ2 “ r2 ` a2 coordinates and plugging into eq. (116). The full 1PM scattering angle up

to OpS2q is then

χ1 “
2GM p´2av ` bv2 ` bq

v2 pb2 ´ a2q
`

4GMS pv p´a2 ´ b2q ` abv2 ` abq

mv2 pb2 ´ a2q2

`
2GMS2 p´2v pa3 ` 3ab2q ` v2 p3a2b ` b3q ` 3a2b ` b3q

m2v2 pb2 ´ a2q
3 ` OpS3

q

(137)

The spin contributions to the scattering angle up to OpS2q and OpG5q are listed in table 3

below. These have been checked against literature up to OpG3q [76, 66, 70]. Orders higher than

3PM are new results. Any PM order can readily be found from eq. (116), however we truncate

the table at 5PM for brevity. Note how individual components χn,k have the general structure

χn,k „
GnMnpS{mqk

v2npb2 ´ a2qp2n`2k´1q{2
(138)

and thus diverge when b Ñ a. This divergence is of no practical consequence, since we require

b " a from the Post Minkowskian assumption (30) implicit in expressions. We expect this

relationship to continue to higher orders in S and G, although this is beyond the scope of our

current treatment. We expect eq. (105) to be applicable to higher orders in S.
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ď 5PM Kerr scattering angle of a spinning test particle up to OpS2q

pn, kq χn,k{
GnMn

pS{mq
k

v2npb2´a2qp3n`2k´1q{2

p1, 1q ´4pav ´ bqpa ´ bvq

p1, 2q ´4a3v ` 6a2b
`

v2 ` 1
˘

´ 12ab2v ` 2b3
`

v2 ` 1
˘

p2, 1q p3π{2qpav ´ bqpa ´ bvq
“

a2
`

´2v2 ´ 3
˘

` 10abv ´ b2
`

3v2 ` 2
˘ ‰

p2, 2q p3π{4q
“

´ 10a5v
`

v2 ` 1
˘

` a4b
`

12v4 ` 71v2 ` 12
˘

´ 90a3b2v
`

v2 ` 1
˘

`a2b3
`

21v4 ` 128v2 ` 21
˘

´ 40ab4v
`

v2 ` 1
˘

` b5
`

2v4 ` 11v2 ` 2
˘ ‰

p3, 1q 8pav ´ bqpa ´ bvq
“

a4
`

´v4 ´ 10v2 ´ 5
˘

` 8a3bv
`

3v2 ` 5
˘

´2a2b2
`

5v4 ` 38v2 ` 5
˘

` 8ab3v
`

5v2 ` 3
˘

´ b4
`

5v4 ` 10v2 ` 1
˘ ‰

p3, 2q 4
“

´ 2a7v
`

7v4 ` 30v2 ` 11
˘

` 5a6b
`

3v6 ` 55v4 ` 65v2 ` 5
˘

´6a5b2v
`

51v4 ` 190v2 ` 63
˘

` 5a4b3
`

17v6 ` 265v4 ` 275v2 ` 19
˘

´10a3b4v
`

53v4 ` 170v2 ` 49
˘

` 3a2b5
`

19v6 ` 255v4 ` 225v2 ` 13
˘

´10ab6v
`

11v4 ` 30v2 ` 7
˘

` b7
`

3v6 ` 35v4 ` 25v2 ` 1
˘ ‰

p4, 1q p105π{16qpav ´ bqpa ´ bvq3
“

a4
`

´8v4 ´ 20v2 ´ 5
˘

` 12a3bv
`

6v2 ` 5
˘

´2a2b2
`

10v4 ` 79v2 ` 10
˘

` 12ab3v
`

5v2 ` 6
˘

´ b4
`

5v4 ` 20v2 ` 8
˘ ‰

p4, 2q p15π{32qpa ´ bvq
“

´ 2a8v
`

24v6 ` 320v4 ` 485v2 ` 95
˘

`7a7b
`

248v6 ` 1100v4 ` 635v2 ` 30
˘

´ a6b2v
`

760v6 ` 15808v4 ` 25345v2 ` 4980
˘

`105a5b3
`

92v6 ` 466v4 ` 276v2 ` 13
˘

´ 15a4b4v
`

106v6 ` 2272v4 ` 3860v2 ` 769
˘

`21a3b5
`

405v6 ` 2050v4 ` 1258v2 ` 60
˘

´a2b6v
`

585v6 ` 12140v4 ` 20270v2 ` 4196
˘

`7ab7
`

160v6 ` 775v4 ` 460v2 ` 24
˘

´ 5b8v
`

4v6 ` 79v4 ` 124v2 ` 24
˘ ‰

p5, 1q 4pav ´ bqpa ´ bvq
“

a8
`

v8 ´ 36v6 ´ 378v4 ´ 420v2 ´ 63
˘

`64a7bv
`

v6 ` 27v4 ` 63v2 ` 21
˘

´4a6b2
`

9v8 ` 668v6 ` 3222v4 ` 2268v2 ` 105
˘

`64a5b3v
`

27v6 ` 289v4 ` 405v2 ` 63
˘

´2a4b4
`

189v8 ` 6444v6 ` 18094v4 ` 6444v2 ` 189
˘

`64a3b5v
`

63v6 ` 405v4 ` 289v2 ` 27
˘

´4a2b6
`

105v8 ` 2268v6 ` 3222v4 ` 668v2 ` 9
˘

`64ab7v
`

21v6 ` 63v4 ` 27v2 ` 1
˘

´b8
`

63v8 ` 420v6 ` 378v4 ` 36v2 ´ 1
˘ ‰

p5, 2q ´2
“

2a11v
`

11v8 ` 500v6 ` 2114v4 ` 1652v2 ` 203
˘

´7a10b
`

3v10 ` 467v8 ` 4214v6 ` 6734v4 ` 2087v2 ` 63
˘

`2a9b2v
`

1665v8 ` 35036v6 ` 110726v4 ` 73052v2 ` 8001
˘

´21a8b3
`

51v10 ` 3491v8 ` 22358v6 ` 28910v4 ` 7703v2 ` 207
˘

`12a7b4v
`

2845v8 ` 41836v6 ` 103726v4 ` 56812v2 ` 5341
˘

´42a6b5
`

133v10 ` 6517v8 ` 32410v6 ` 33922v4 ` 7489v2 ` 169
˘

`84a5b6v
`

829v8 ` 9580v6 ` 19054v4 ` 8428v2 ` 637
˘

´6a4b7
`

1029v10 ` 40789v8 ` 164122v6 ` 137410v4 ` 23617v2 ` 393
˘

`42a3b8v
`

795v8 ` 7604v6 ` 12194v4 ` 4148v2 ` 219
˘

´a2b9
`

1449v10 ` 49049v8 ` 162722v6 ` 105770v4 ` 12437v2 ` 93
˘

`14ab10v
`

203v8 ` 1652v6 ` 2114v4 ` 500v2 ` 11
˘

´b11
`

35v10 ` 1043v8 ` 2870v6 ` 1358v4 ` 71v2 ´ 1
˘ ‰

Table 3: Scattering angle of a spinning probe in a Kerr background up to 5th order in G.
χn,k is the GnSk contribution to the full scattering angle χ “

ř

n,k χn,k.
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6 Further Possible Applications

Apart from the direct calculation of scattering angles, eq. (105) provides intriguing possibilities

for further insight into other related areas. Any calculation that can be brought on the form of

eq. (105), whether it might come from a test particle limit, from amplitudes or someplace else,

can be treated by the formalism. The derivation of [1] provided applications not only to the test

particle case, but also much wider amplitude calculations.

We discuss here further possible uses of (105). A full treatment of these subjects has been

beyond the scope of this project, and so we only conjecture as to the applicability of eq. (105).

6.1 Effective One-Body Theory of Binary Motion

Ever since the observation of gravitational waves (GWs) by LIGO in 2016 [5] and the many

subsequent observations [48, 49, 50, 51, 52, 53, 54, 55, 56, 57], detailed trajectories of dynamical

systems in General Relativity have been sought after.

The Effective One-Body approach to GR provides a way to achieve this. As an alternative

to the traditional PN formalism covered in section 1.2.5, recent developments have been made

towards an EOB formalism based on a Post-Minkowskian expansion in Newtons gravitational

constant G [75, 86, 83, 3]. First introduced by Thibault Damour [75], one considers a map

of not energy, but scattering angles in a PM expansion. The resulting EOB metric, although

constructed by considering scattering, can also be used for bound orbits - the metric encodes

equations of motion, and these are identical for scattering and bound orbits. A main advantage of

the PM expansion over the PN one, is the availability of scattering data from amplitude methods,

as described in section 1.2.7.

The case of two arbitrary mass, non-spinning black holes has been studied in detail [3]. Up

to 3PM, Damgaard et. al. showed that such a map cast geffµν into an energy dependent form

[3]. This is thought a natural artifact of the energy and momentum dependent non-linear back-

reactions between bodies outside the test body limit. The result was shown to be in agreement

with previous methods [75, 83], up to a canonical transformation. For a full treatment of [3], see

the Appendix.

For binary objects with aligned spin, a similar procedure might be envisioned. The motion

stays in a plane due to the lack of spin-spin interactions which would precess the orbit, and the

scattering angle is defined as usual. Scattering angle data for such systems is abundant from

amplitude methods [66, 87]. However, the effective side of the picture does need more work. A

general method for computing scattering angles in rotationally symmetric (EOB) metrics has not

been previously available.

Another difficulty, an ansatz of the EOB metric is not isotropic in form. This follows because

the test particle limit of geffµν , the Kerr metric, cannot be rendered isotropic. A general princi-

ple for the structure of the EOB metric does not yet exist. Such a principle might restrict the

problem in the way an isotropic form has completely determined the EOB metric without spin.

The analysis above lends partial insight to this problem. Imposing eq. (55) the EOB metric must

obey eq. (31). This reduces the degrees of freedom of geffµν from 6 to 4, setting geffrµ “ 0 for µ ‰ r.

48



Considering the 2 dofs of the isotropic metric, and the single undetermined function hprq used in

[3], this is not enough to fully determine the metric.

Equation (105) gives a tool to construct metrics which reproduce the scattering angle of sys-

tems described above as a perturbative expansion in G. An actual EOB interpretation is not

made, since such a metric is not unique. Suppose a scattering angle formula is given by ampli-

tudes. This formula should be turned into a potential calculation, like eq. (105), with well-defined

potential Veff prq. Specifically, Veff should only depend on radial coordiate r. If this is possible,

one can equate scattering angles

χeff “ χreal, ñ Veff “ U (139)

using eq. (105). A way of determining the potential U of the effective metric in eq. (105) is

thus established. Such a relation can then be used to determine the underlying EOB metric

components. Like [1], given only the single constraint of eq. (139), the metric should only contain

a single degree of freedom.

6.2 All order scattering angle in single expression?

The only drawback to eq. (105) is that the sum has to be evaluated manually to each order.

Although the procedure is valid to all orders in G, and a computer can readily do computations,

these can become quite lengthy.

In the light of this complication, the prospect of obtaining an all-PM order scattering angle

eq. (105) is very intriguing. In principle one could envision summing up the contributions from

eq. (105), ”collapsing the expansion” to a form without summation.

This is however not straight forward. First note that the structure of eq. (105) is somewhat

similar to that of eq. (89). One can thus imagine a procedure similar to applying the steps (85)-

(90a) in reverse to get a resummed version of eq. (105). However the equivalent of fpuq, namely
p2n´1q!!

2n
hprq

r2nUnpr,bq

n!p
2pn`1q´1
8

does not conform to the requirement of fpuq

u2n`1 Ñ 0 for u Ñ 0,8. Something

else is required.

49



7 Conclusion

We have provided a general Post Minkowskian formula for the evaluation of probe scattering

angles found from the Hamilton-Jacobi formula of GR. It generalises the derivation of [1]. Our

formula applies to all PM orders, both for spinning and non-spinning probes, provided angular

momentum is conserved and all spins aligned. This implies the scattering happens in a single

plane and that the metric is rotationally symmetric in this plane. When this is the case, tested

explicitly to OpS2q in probe spin, the scattering angle can be written

χ{2 “ ´

ż 8

rm

dr
hprq

pr
´ π{2 (140)

pr is canonical radial momentum, possibly carrying probe spin dependence, but only a function

of r. It comes from the Hamilton-Jacobi formulation of section 2. rm is the minimum distance

of approach between probe and scattering centre with prprmq “ 0. The formula found requires

nothing more than the function hprq to be well-behaved for r P rrm,8r. The coordinates used

to parametrise the problem should reduce to spherical Minkowski coordinates when G Ñ 0, such

that p2r “ p28 ´ L2

r2
´Upr, bq with arbitrary ’potential’ Upr, bq 31. Labelled normal coordinates, they

can be constructed from any metric by setting G “ 0.

Provided the scattering angle can be written like (140), the infinite sum in (105) yields this

angle to all PM orders.

This way, scattering angles of the Schwarzschild metric up to 10PM and of Kerr up to 6PM for

non-spinning probes are found. Additional orders are readily treated, but excluded to conserve

space. We also present scattering angles of spinning probes up to 5PM and OpS2q in probe spin.

To the best of our knowledge, literature covers up to 4PM without probe spin and 3PM including

probe spin. Excluding lightbending, all literature found provide full arbitrary mass two-body

scattering angles. Our results are checked against probe-limits hereof. Scattering of light in

the Kerr metric has been covered to 4PM. All scattering angles found in this thesis agree with

literature [76, 66, 70, 78].

Consider a spinning probe in a Kerr metric, aligned with the Kerr spin. Denoting by b the

asymptotical impact parameter, by S the rescaled probe spin and by a Kerr spin parameter, we

generally find a structure like

χn,k „
GnSk

pb2 ´ a2qp3n`2k´1q{2
(141)

at order n in G and order k in probe spin S. Additional b and a dependence is present. For

S “ 0, to all calculated PM orders, we reproduce the resummed spin dependence of [76]. We hope

this yields insight to future higher PM treatments of the full binary problem with aligned spin.

Currently, spin can only be handled perturbatively [70].

Finally, we have noted our derivation is mostly mathematical, presenting an integration tech-

nique of the wide class of integrals (140). It naturally also be applies to the full isotropic binary

problem stated in [1]. It is thus not unthinkable that the scattering angle formula might be use-

ful for other purposes. We have briefly discussed the possibility of applications within an EOB

formulation of GR, and the possibility of a resummed, all order in G scattering angle.

31p8 is asymptotical momentum and L is angular momentum of the testparticle
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8 Appendix

A Special theory of Relativity

First proposed by Albert Einstein in 1905 [6], the special theory of relativity revolutionised the

dynamics of kinematics without gravity. The word ”special relativity” has only been keyed after

the development of General Relativity, of which the former is a special case. Many key ideas

are common between the theories. The special theory of relativity does not consider gravitation,

but pertains to relations between inertial frames of reference related to each other by a constant

velocity. Replacing Newtons idea of absolute time, many implications about the very nature

of physics itself, can be derived from the special theory of relativity. Einstein did a famous

Gedankenexperiment; Consider a person standing on the platform of a trainstation. Consider now

the same person sitting in the train travelling at some constant velocity v relative to the platform.

Both systems are inertial, meaning not accellerated. Suppose the train has no windows. How

would the person know if the train is moving? They cannot. Any experiment he can do locally

inside the train, without gravity, produces exactly the same result as were it made on the platform:

Standing up feels the same, moving around feels the same. This also applies to the measurement

of the speed of light: Its speed as measured on the platform or in the train is exactly the same, c.

The constant of physical laws between inertial reference frames, is known as the first principle of

relativity first formulated by Einstein,

If an intertial system exists in which the physical laws hold in their most basic form, then in any

other inertial system related to the first by a relative, constant velocity, the same laws of physics

will also hold.

The resulting constant speed of light is in stark contrast to the Galilean point of view adopted

by Newtons 3 laws of motion. Newton considered the speed of light considered relative to the

emitting object, and can in principle be overtaken exactly like a car on the highway. Newtons

fallacy, as we shall see, is that he considered time as absolute. In fact, measurement of time: How

many times do I blink my eyes a second etc., can only be defined from a local perspective.

To see this, we turn back to our example of the train and station. We will see how the

constancy of speed of light has important implications for the relative experience of time between

these reference frames. Consider a set of mirrors in the train, between which a beam of light

travels (see figure 9). Each time the light bounces back and forth, a clock ticks in the train. The

mirrors are placed vertically a distance d apart. Ask now a deceptively simple question: What is

the time taken between the beam hitting mirrors in each reference?

In the train frame of reference, it is an easy question: The light is travelling at speed c, and the

mirrors are distance d apart. The time light takes to travel from one mirror to the next is thus

∆ttrain “ d{c.

As viewed from the platform, the situation is quite different. Because the train moves, the distance

travelled by the lightbeam between the mirrors is increased. This distance, as shown by figure 9 is

dplatform “

b

d2 ` v2∆t2platform where ∆tplatform is the time difference measured from the platform.

∆tplatform “
dplatform

c
then follows because the speed of light is invariant between formalisms. The
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Figure 9: Albert Einsteins famous Gedankenexperiment, of a lightbeam reflecting of mirrors in
a moving train. The train moves along the tracks to the right with velocity v, seen from the
station platform. It is depicted at two different times (black and grey train). The ’black train’
snapshot is taken when the lightbeam (yellow solid line) leaves the bottom mirror. The ’grey
train’ snapshot is taken when the lightbeam reaches the top mirror. These mirrors are a distance
d apart (red dotted line). The time measured from the platform of light passing from one mirror
to the next is denoted ∆tplatform. Because the train moves as observed from the platform, the
lightpath is slanted covering a total distance dplatform. Knowing that the train moves at velocity v,
the horizontal distance (green dotted line) covered between light hitting the mirrors is v∆tplatform.
The Pythagorean theorem applied to the right triangle red-green-yellow lines then yields

d2platform “ pgreen dotted lineq2 ` pred dotted lineq2 “ d2 ` pv∆tplatformq2

time beteween ticks of the clock measured from the platform is then

∆tplatform “

b

d2 ` v2∆t2platform

c
ñ ∆tplatform “ ∆ttrainγ (142)

where γ “ 1?
1´v2{c2

is the Lorentz contraction factor. Every single imaginable clock should tick

at the same rate as the light-clock imagined here. Equation (142) then says that

moving clocks run slower than stationary clocks

A different but similar argument of two events happing instantaneously in one reference frame,

gives the contraction of lengths in reference frame. If the train length is measured at L in the

train reference frame, it will be measured as

Lplatform “
L

γ
(143)

in the platform reference frame. The behaviour ∆tplatform Ñ 8 and Lplatform Ñ 0 when v Ñ c

signifies the impossibility of massive objects reaching velocities greater than that of light. c is

thus the absolute speed limit in the Universe.

A vital interpretation of the theory can be made by considering a coordinate system x P

tt, x, y, zu is laid on the platform and a coordinate system x1 P tt1, x1, y1, z1u is laid in the train.

Consider the difference in ∆x and ∆x1 of light hitting the mirrors. Denote the position of the
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mirror by subscript 1 and 2 for the lower and upper mirror. Because of the constancy of the speed

of light, one may write´cpt2 ´ t1q
2 ` px2 ´x1q

2 ` py2 ´ y1q
2 ` pz2 ´ z1q

2 “ 0 “ ´cpt1
2 ´ t1

1q
2 ` px1

2 ´

x1
1q

2 ` py1
2 ´ y1

1q2 ` pz1
2 ´ z1

1q
2. This relation is completely independent of the velocity between

frames of reference and the coordinates. The ”difference” ´c2δt2 ` δx2 ` δy2 ` δz2 between two

events is thus invariant in all possible reference frames. The above relation holds for event on a

light trajectory. For general events, on light trajectories or not, the quantity

ds2 “ ´c2δt2 ` δx2
` δy2 ` δz2 (144)

is still invariant. ds2 has different sign for different events: ds2 ą 0 for events that can be

considered simultaneous in some reference frame. ds2 ă 0 for events that happen at the same

spatial spot in some reference frame. ds2 “ 0 for light-like trajectories.

Because of the invariance of ds2, it reflects the idea of length in the traditional sense - length

of objects in Newtonian physics is invariant under rotations and translations. Similarly ’length’

between events in special relativity is invariant under Lorentz transformations: rotations, trans-

lations and boosts of reference frame velocity. Note that, without the time-term, ds2 is just the

traditional Galilean length. The realm in which this length is measured, time+space, is aptly

called spacetime. Note how time enters equally in eq. (144) compared to spatial directions, just

like an extra dimension tagged onto Galilean space. The spacetime interpretation of eq. (144)

can be made more explicit. Rewrite it like

ds2 “ ηµνdx
µdxν , ηµν “

¨

˚

˚

˚

˝

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

(145)

dxµ “ tdt, dx, dy, dzu denotes the infinitesimal difference in coordinates between two otherwise

arbitrary events. ηµν is a 4 ˆ 4 matrix known as the Minkowskian metric. The indices µ, ν P

t0, 1, 2, 3u indicate coordinates. Repeated indices are implicitly summed over and the above

equation thus implicitly ds2 “
ř3

µ“0

ř3
ν“0 ηµνdx

µdxν . The metric encodes how coordinates enter

in the definition of invariant lengths ds2 between events. As such, the metric encodes the geometry

of spacetime in special relativity. Because we consider the case of special relativity, excluding

gravity, the Minkowski metric is often associated with flat space. We will make this interpretation

more clear in a moment.

Special relativity provided solutions to many problems. Originally conceived to solve the

incompatibility of Newtonian mechanics with Maxwells laws of Electrodynamics, it turned out

completely in agreement herewith. From the generalisation of conservation of mass, it further

provided the perhaps most famous of all physical formulae, the equivalence between energy and

mass of particles

E “ mc2 (146)

As already discussed, it further established relativistic velocity addition, showing that no object

with mass can surpass the velocity of light. The relativistic Doppler effect of light was also

discovered, with important applications to precision measurements of cosmic Doppler effects.
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B Derivation of the dopplershift of light by gravity

We will follow the derivations of [12]. Consider first the case of two accelerating spacecraft a

constant distance L apart accelerating at rate a. We will only consider Newtonian mechanics,

thus neglecting special relativity for the moment. It is valid if the quantity aL{c2 is very small and

corresponds to both spacecraft being in the same reference frame. In the Newtonian framework,

we can consider both spacecraft in the same inertial system. Suppose now we send a lightbeam

from one spacecraft to the other. Because they are a distance L apart, observed form both, light

takes ∆t “ L{c to reach the other spacecraft. But in this time interval, they have gained the speed

∆v “ a∆t “ aL{c. Viewing the system from the Newtonian point of view 32, an accompanying

redhifted of emitted and received wavelengths of light is present,

∆λ ” λr ´ λe “
∆v

c
λe “

La

c2
λe (147)

where λe and λr are the wavelengths emitted and received by the spacecrafts. If light is sent from

the front to the back spacecraft, a redshift occurs. The other way around, a blueshift occurs.

Consider now the case of a tower from the top of which a light beam is emitted. Both the top

and bottom of the tower experience the force of gravity. According to the Equivalence Principle,

the situation is identical to the spaceships considered above. Define h as the height from Earths

surface (the bottom of the tower). Writing the gravitational potential as ϕ “ hg, we find

∆λ “
Lg

c2
λe ñ ∆λ{λ “

1

c2
∆ϕ (148)

where ∆ϕ is the potential difference between received and emitted locations and λe ” λ has

been renamed. The potential increases with height. Therefore, when a lightray is shot toward

Earth, its wavelength decreases. Contrary, when it is shot upward, its wavelength increases. Light

experiences red- and blue-shifts in gravitational fields.

C Review of the Effective One-Body approach from a Post-Minkowskian

expansion, following [3]

This short sketch seeks to find the effective one-body (EOB) metric of a spinning binary to first

Post-Minkowskian (1PM) order. It should be seen solely as a reproduction of the methods and

results obtained in [3].

Consider a binary system of pointlike particles (ie. black holes) with arbitrary masses m1,m2,

scattering on each other in a metric gµν in their center of mass (cm) frame. The dynamics of such

a system may be found by remodelling the binary in an effective one-body formalism. Such a

formalism reduces the binary motion to that of an effective testparticle scattering in an effective

metric geffµν . A minimal requirement on the EOB metric may be formulated as

pgµνqtestbody “ pgeffµν qtestbody in the testbody limit of both (149)

32neglecting time-dilation between the frames of reference
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The aim of this section is to present a mapping between real and EOB formalisms and find the

EOB metric to first Post-Minkowskian order, subsequently checking its consistency.

C.1 discusses the translation (mapping) between variables in effective and real formalisms.

C.2 presents the ansatz for the effective metric geffµν , parametrised by a single function to be de-

termined by enforcing the mapping.

C.3 calculates the metric up to first Post-Minkowskian order.

C.4 discusses the validity of the result found by computing the testbody limit of the EOB metric.

The periastron shift, obtained from the 2PM expansion by [3], is also briefly presented.

Notationally, quantities in the effective formalism will be denoted ”eff”, while those in the

real formalism will not be given extra notation. 4-vectors/oneforms will be given greek indices

throughout to distinguish them from their 3-vector counterparts, which don’t carry any extra

notation nor any special font. This is to conform with notation in [3].

C.1 Effective One-Body mapping

The mapping between effective and real formalisms is crucial for obtaining equivalent results.

Every dynamical and physical quantity must be mapped. Among these, the scattering angle map

will prove to be the crucial link determining the effective metric. First, let us define the real and

effective physical quantities, then map them.

In the real formalism, two objects of mass m1,m2, 4-momenta pµ1 , p
µ
2 and total energy E “

E1 ` E2 scatter on each other with impact parameter b and total angular momentum J . Denote

M “ m1 ` m2 for convenience. The system is considered in the center of mass frame in which

p1 “ ´p2 where they move with relative velocity v ” v1 ´ v2

The effective formalism particle has mass µ “ m1m2

m1`m2
(see eg. [75]) and moves at the same

velocity v with 4-momentum pµeff and angular momentum Jeff . This particle scatters with impact

parameter beff on an effective metric geffµν , the latter of which will be discussed later. Coordinates

used in the effective formalism are spherical tt, r, θ, ϕu where t, θ, ϕ are time and angle coordinates

and where r is interpreted as the real-world particle separation.

Momentum and energy will be mapped first. We will evaluate the mapping in the Minkowskian

limit, that is, with infinite particle separation r “ r1´r2 Ñ 8. The resulting mapping is assumed

to generalise outside this regime.

For additional reasons made clear in the next section, we will map the effective particle mo-

mentum peff to the center of mass momentum p8 of a single particle when r Ñ 8. In this limit

any potential terms in particle energies pE1, E2qrÑ8 can be neglected.

The effective particle momentum is given by peff “ γµv, where γ “ 1?
1`v2

is the lorentz

contraction factor. In a flat background, in terms of real-formalism variables evaluated in the CM

frame, it is

γ “
pµ1pp2qµ

m1m2

“
E2 ´ m2

1 ´ m2
2

2m1m2

33 (152)

33Note that pµ1 pp2qµ is covariant. Evaluating it in the restframe S̃ of m1, using Ei “ γimi where i indicates
particle index and γi “ 1

1´ṽ2
i

pµ1 pp2qµ “ E1E2 ´ p1p2 “ m1γ2m2 “ m1m2γ (151)
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where E is the CM energy of the real-formalism particles. The energy map may be found from

eq. (150) and using Eeff “ µγ,

(energy map)

E “ M
a

1 ` 2νpγ ´ 1q “ M

d

1 ` 2ν

ˆ

Eeff

µ
´ 1

˙

(153)

where ν “ µ{M “ m1m2

M2 . This is the energy map.

One may now evaluate p2eff

p2eff
µ2

“
pE2 ´ pm1 ` m2q2pE2 ´ pm2

1 ´ m2
2qq

4m2
1m

2
2

34 (155)

and compare it to p28

p28 “
pE2 ´ pm1 ` m2q

2qpE2 ´ pm2
1 ´ m2

2qq

4E2
35 (160)

to obtain

(momentum map)

peff “
µE

m1m2

p8 “
E

M
p8 (161)

since particle 2 in this frame moves at velocity ṽ2 “ v. Subscript ”tilde” has been used to avoid confusion with
CM velocities v1, v2.

The second equality follows from calculation of

pp1 ` p2qµpp1 ` p2qµ “ E2 “ m2
1 ` m2

2 ` 2pµ1 pp2qµ ñ pµ1 pp2qµ “
E2 ´ m2

1 ´ m2
2

2
(152)

in the CM frame with total energy E.
34This result is readily obtained from

p2eff {µ2 “ γ2v2 “ γ2 ´ 1 “
pE2 ´ m2

1m
2
2q2 ´ 4m2

1m
2
2

4m2
1m

2
2

(155)

which upon inspection is equal to the expression given.
35Let i “ 1, 2 be particle index. In the CM frame and letting r1 ´ r2 Ñ 8

Ei “

b

m2
i ` p28 (157)

Then writing out the square of eq. (150), one finds

pE2 ´ m2
1 ´ m2

2q2

4
“ ppµ1 pp2qµq2 “ pE1E2 `p28q2 “ E2

1E
2
2 `p48 `2E1E2p

2
8 “ pm2

1 `p28qpm2
2 `p28q `p28 `2E1E2p

2
8

(158)
which upon inspection may be written as

pE2 ´ m2
1 ´ m2

2q2

4
“ m2

1m
2
2 ` p28E2 (159)

where E “ E1 ` E2 using the exact form above. Some simple rewriting yields

p28 “
pE2 ´ pm1 ` m2q2qpE2 ´ pm1 ´ m2q2q

4E2
(160)
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which is the momentum map.

Angular momentum and scattering angles are to be mapped next. Working with scat-

tering states, it is natural to assume the scattering angle map

χeff “ χ (scattering angle map) (162)

as in [75]. As was the case of angular momentum, it is natural to equate impact parameters

beff “ b, such that

(angular momentum map)

beff “ b ñ J{p8 “ Jeff{peff ñ Jeff “
peff
p8

J “
E

M
J (163)

which follows directly from the definition b ” J{p. Alternatively one could have equated angular

momenta directly, as in [75]. The above prescription introduces energy dependence in the EOB

metric.

C.2 Real and effective scattering angles and the EOB metric

The real formalism scattering angle χ is known [76] order by order in Newtons gravitational

constant GN . Using eq. (162), one may thus determine the EOB metric order by order in GN .

The first task is to find expressions for χ and χeff . First we will show how χ is related to

first order to the effective potential Veff pr, pq of the real problem. The effective potential may

be defined by the impetus equation, relating center of mass momentum p to its value at infinite

separation, p8

p2 “ p28 ´ Veff pr, Eq (164)

where Veff may be expressed as an expansion in GN like

Veff pr, Eq “ ´

8
ÿ

n“1

fnpEq

ˆ

MGN

r

˙n

(165)

where the coeffiecients fnpEq, only depending on energy E, will be related to the scattering angle.

The scattering angle χ of the scalar probe is given by eq. (40), which when written out produces

dpχ{2q

dr
“

b{r2
b

1 ´
Veff pr,Eq

p28
´ b2{r2

(166)

inserting eq. (164) and using b “ J{p8. One may now compare orders in GN of eq. (166)

with results previously found from amplitude calculations [1, 88], thus finding individual orders

χnpVeff q. This has been achieved to all orders in GN [1, eq. (4.22)]. Quoting the first-order term

from [1, eq. (4.34)]

χ1 “
Mf1
Lp8

“
Ef1

Lµ
a

γ2 ´ 1
36 (168)

36Second rewriting comes from

p8 “
νM2

a

γ2 ´ 1

E
(168)

58



note the extra factor of M , corresponding to a different definition used for f1 in [1, eq. (4.23)]

compared to eq. (165). One remarkable fact about the general expansion, evident from [1, eq.

(4.29-4.30)], is that powers of GN and 1{J for any single term accompany each other. Expansions

in either are thus equivalent. χ to 1PM order is known from auxhilliary calculations [76, eq. (85),

no spin],

χ “ χ1GN “
2GNm1m2

L

2γ2 ´ 1
a

γ2 ´ 1
“

GNE

Lµ
a

γ2 ´ 1

“f1 compared to (167)
hkkkkkkkkikkkkkkkkj

2p2γ2 ´ 1qµ2M

E
(169)

This determines f1, and thus Veff to first order [3]

f1 “ 2p2γ2
´ 1q

µ2M

E
37 (172)

We now focus on calculating χeff .

It may be found with eq. (40) directly from the Hamilton-Jacobi equation for the effective

particle

gµνeffBµSBνS “ µ2 (173)

where BµS ” peffµ “ pE,´peff q is defined as the 4-momentum of the scattering particle. 38

Because of spherical symmetry, restricting to θ “ π{2 orbits, one may write a separated ansatz

for S

S “ Eeff t ´ Jeffϕ ´ W prq 39 (174)

An ansatz for the metric geffµν is also sought after.

Since the interaction potential between particles is spherically symmetric as viewed from the CM

frame, one should also expect spherical symmetry of the EOB metric. In isotropic coordinates,

one may adopt the general ansatz

ds2 “ Aprqdt2 ´ Bprqpdr2 ` dθ2 ` sin2θdϕ2
q (175)

37As a check, inserting eq. (170) in (167) reproduces the 1PM scattering angle found by [76, eq. (85), no spin].
The calculation is a simple check. Suppose eq. (170) and eq. (167) reproduces [76]. Then

2pγ2 ´ 1qµ2M2

Lp8E
?
“

2pγ2 ´ 1qµM

L
a

γ2 ´ 1
ñ

p8E

m1m2
“

a

γ2 ´ 1 (171)

which when using p8E “ peffm1m2{µ and Eeff “ γµ becomes

peff {µ “

b

E2
eff {µ2 ´ 1 ñ p2eff “ E2

eff ´ µ2 (172)

which just expresses the 4-momentum norm pµeff ppeff qµ “ µ2 “ E2
eff ´ p2eff of the effective particle.

38Note that the definition differs in sign compared to [75], because we work in a (+,-,-,-) convention, compared
to the (-,+,+,+) convention used there.

39Note the different signs compared to [3], [75]. These are immaterial since W prq and Jeff appear as squared
quantities in the Hamilton-Jacobi equation (178). The formal ˘ solutions of W prq in (179) reflect this. See the
associated footnote for more information.
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with Aprq and Bprq parametrised as

Aprq “

ˆ

1 ´ hprq

1 ` hprq

˙2

, Bprq “ p1 ` hprqq
4 (176)

as a gaugefixing condition. In the test-body limit ν Ñ 0 one expects hprq Ñ GM
2r

, corresponding

to the Schwarzschild metric with mass M in isotropic coordinates 40.

Inserting in eq. (173) yields 41

E2
eff

A
´

1

B

˜

ˆ

dW prq

dr

˙2

`
J2
eff

r2

¸

“ µ2 (178)

from which dW prq

dr
“ peffr may be isolated,

dW prq

dr
“

d

B

A
E2

eff ´ Bµ2 ´
J2
eff

r2
42 (179)

from which the scattering angle becomes

dχeff

dr
” ´

B

BJeff

„

dW prq

dr

ȷ

“
Jeff{r2

b

B
A
E2

eff ´ Bµ2 ´
J2
eff

r2

“
beff{r2

c

B
A

E2
eff

p2eff
´ B µ2

p2eff
´

b2eff
r2

(180)

again using beff “ Jeff{peff .

C.3 EOB metric geffµν to 1PM

hprq from the EOB metric may be determined by imposing the scattering angle map, χ “ χeff .

From eqs. (166) and (180)

dχ

dr
“

dχeff

dr
ñ

b{r2
b

1 ´
Veff pr,Eq

p28
´ b2{r2

“
beff{r2

c

B
A

E2
eff

p2eff
´ B µ2

p2eff
´

b2eff
r2

(181)

which upon imposing mappings (161) and (163) becomes

1 ´
Veff pr, Eq

p28
“

Bµ2

p2eff
p
E2

eff

µ2A
´ 1q (182)

40Note that ν Ñ 0 may be enforced by taking one mass, say, m1 Ñ 0. Then M Ñ m2 as expected for a
testparticle m1 orbiting m2.

41The inverse metric is evidently

gµνeff “
1

Aprq
δ0µδ

0
ν ´

1

Bprq
pδ1µδ

1
ν `

1

r2
δ2µδ

2
ν `

1

r2sin2θ
δ3µδ

3
νq (177)

42Here we take the ` solution, as a convention. Note that restricting χ Ñ mod2πpχq makes the sign in the
definition of dχ{dr, and thus that of dW prq{dr, completely irrelevant.
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Employing the 4-momentum norm expression E2
eff “ µ2 ` p2eff “ γ2µ2 yields

1 ´
Veff pr, Eq

p28
“

B

γ2 ´ 1
p
γ2

A
´ 1q (183)

and inserting eq. (176) finally produces a 6th order equation in hprq after multiplying by p1`hq2

and using p28 “
ν2M4pγ2´1q

E2
43

ˆ

hprq `
γ ´ 1

γ ` 1

˙ ˆ

hprq `
γ ` 1

γ ´ 1

˙

p1 ` hprqq
4

“ p1 ´ hprqq
2

ˆ

1 ´
E2

pγ2 ´ 1qM2

Veff pr, Eq

ν2M2

˙

44

(185)

Writing hprq “
ř8

n“1 hn

`

GNM
r

˘n
, this equation may be solved for hn order by order in GN . To

first order, with f1 from eq. (165)

h1

ˆ

4 `
γ ´ 1

γ ` 1
`

γ ` 1

γ ´ 1

˙

“
E2

pγ2 ´ 1qM4ν2
f1 ´ 2h1 (186)

and thus

h1 “
E2

4M2 p2γ2 ´ 1q

f1
ν2M2

“
E

2M
(187)

C.4 Reflection on EOB metric without spin

The full 1PM EOB metric without spin is per eq. (187)

ds2 “

˜

1 ´
GNE
2r

1 `
GNE
2r

¸2

dt2 ` p1 `
GNE

2r
q
4
pdr2 ` r2dθ2 ` r2sin2θdϕ2

q (188)

In the testbody case ν Ñ 0 meaning E Ñ M and h Ñ 1{2, the above reduces to the Schwarzschild

metric in isotropic coordinates. This is consistent with requirement (149).

Solving (185), one may find hnď3, beyond which the impetus equation (164) has not been proven

to hold. The energy map (153), which plays no part in finding h, may actually be found from eq.

(182). The same is true for the free-particle relation Eeff “ peff `µ2, as shown by [3]. Expanding

eq. (182) up to first order in GN yields

´
1

p2eff
pE2

eff ´ µ2
´ p2eff q `

«

f1
p28

`
h1

p2eff
p2µ2

´ 6E2
eff ´ 2p2eff q

ff

GNM

r
` OpG2

Nq “ 0 (189)

Requiring each order in GN vanish identically, the 0’th order term yields the free-particle expres-

sion for Eeff ,

E2
eff “ µ2

` p2eff (190)

43follows directly from the momentum map (161)

p28 “
M2

E2
p2eff “

µ2M2pγ2 ´ 1q

E2
“

ν2M4pγ2 ´ 1q

E2
(184)

where p2eff “ E2
eff ´ µ2 “ pγ2 ´ 1qµ2 from the 4-momentum norm peffµ pµeff “ µ2

44Note the sign difference compared to [3, eq. (30)].
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and then the first order term determines the energy mapping

Eeff

µ
“

d

f1E2 ` 4µ2M2h1

8µ2M2h1

“ γ “
E2 ´ m2

1 ´ m2
2

2m1m2

45 (194)

which corresponds exactly to eq. (150). Equations (190) and (191) necessarily hold to all orders

in GN . Continuing the calculation to 2PM, [3, eq. (40)] shows that the 2PM periastron shift ∆Φ

corresponds exactly to expectations. The result will just be quoted here for reference without

further discussion,

∆Φ “
3πG2

NM
2µ2

2J2

ˆ

E

M

˙

p5γ2
´ 1q (195)

45Inserting eq. (190) in the first order term of (189) yields the requirement

f1
p28

` 4
h1µ

2

p28
p1 ´ 2

E2
eff

µ2
q “ 0 (192)

Then isolating Eeff {µ gives

Eeff {µ “

d

f1E2 ` 4µ2M2h1

8µ2M2h1
(193)

which upon inserting f1E
2 “ 2p2γ2 ´ 1qµ2ME “ 4p2γ2 ´ 1qµ2M2h1 where h1 “ E

2M , gives directly

Eeff {µ “ γ “
E2 ´ m2

1 ´ m2
2

2m1m2
(194)

where the last equality follows from the last part of eq. (150)
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D NJA algorithm

The Newman Jones Algorithm (NJA) is a procedure of introducing spin to a static metric. First

introduced by Newman and Janis as a quriosity in 1965 [89], it was shown to produce the Kerr

metric from the Schwarzschild solution. Furthermore it also produces the Kerr-Newman metric

from the Reissner Nordstroem solution [16]. The procedure is considered ad-hoc, because no

formal explanation has been given as to its sucessfulness (see step 3 below) [90, 91].

The algorithm consists of the following. [91]

1. Consider a general spherically symmetric metric and write it in advanced null coordinates

ds2 “ e2Φprqdu2
` eΦprq`λprqdudr ´ r2pdθ2 ` sin2θdϕ2

q (196)

The Schwarzschild metric in advanced null coordinates is

ds2 “

´

1 ´
rs
r

¯

du2
` 2dudr ´ r2

`

dθ2 ` sin2θdϕ2
˘

(197)

2. Express the metric in terms of null-tetrads Zµ
a “ plµ, nµ,mµ, m̄µq

gµν “ lµnν
` lνnµ

´ mµm̄ν
´ mνm̄µ (198)

where

lµl
µ

“ mµmµ “ nµn
µ

“ 0, lµn
µ

“ ´mµm̄
µ

“ 1, lµm
µ

“ nµm
µ

“ 0 (199)

For the metric (197), the null tetrads are

lµ “ δµ1 (200a)

nµ
“ δµ0 ´

1

2

´

1 ´
rs
r

¯

(200b)

mµ
“

1
?
2r

ˆ

δµ2 `
i

sinθ
δµ3

˙

(200c)

3. Define a complex coordinate x̃ and rewrite Zµ
a P R in such a way that when x̃ Ñ x, the

correct form of Zµ
a is recovered. This procedure is not unique, being generally considered ad-hoc.

The correct procedure which recovers Kerr from Schwarzschild lets

1

r
Ñ

1

r̃
`

1
¯̃r
,

1

r2
Ñ

1

r̃¯̃r
in lµ and nµ

r Ñ r̃ and r Ñ ¯̃r for mµ and m̄µ respectively
(201)

such that eq. (200) becomes

lµ “ δµ1 (202a)

nµ
“ δµ0 ´

1

2

ˆ

1 ´
rs
2

p
1

r̃
`

1
¯̃r

q

˙

(202b)

mµ
“

1
?
2r

ˆ

δµ2 `
i

sinθ
δµ3

˙

(202c)
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4. Now perform a complex coordinate transformation x̃ Ñ x1µ “ x̃µ ` iγµpx̃q to the null-tetrad

vector Zµ
a , such that

Z 1µ
apx1

q “
Bx1µ

Bx̃µ
Zµ

a px̃q (203)

For the Schwarschild metric written with eq. (202), one uses

x̃µ
“ x1µ

` iacosθpδµ0 ´ δµ1 q (204)

denoting x1µ “ pu1, r, θ, ϕ1q reusing notation slightly. The metric found from the Schwarzshild

metric is

gµν “

¨

˚

˚

˚

˝

1 ´ rsr
Σ

1 0 asin2θ rsr
Σ

¨ 0 0 ´asin2θ

¨ ¨ ´Σ 0

¨ ¨ ¨ ´ sin2 θpr2 ` a2 ´ a2sin2θ rs
Σ

q

˛

‹

‹

‹

‚

, where Σ ” r2 ´ a2cosθ (205)

Dots (.) indicate gµν “ gνµ.

The coordinates x̃ are assumed to be real valued, such that the metric (205) has no mention of

complex quantities.

5. For the Schwarzschild metric, the ordinary coordinate transformation

u “ t ´

ż

dr
a

∆
, ϕ1

“ ϕ ´

ż

dr
r2 ` a2

∆
, ∆ ” r2 ` a2 ´ rsr (206)

shows that the metric (205) is, remarkably, Kerr, now transformed to Boyer-Lindquist coordinates

pt, r, θ, ϕq. Note that by the integral above, we mean a indefinite integral without integration

constant.

For the Reisner Nordstroem metric, a similar coordinate transformation of the form u “ t`F prq,

ϕ1 “ ϕ ` Gprq recovers the Kerr-Newman metric.
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E Explanation of code

E.1 Calculations with test particle spin

The code ((official) proper math, optimised) Scattering angle proper math.nb can han-

dle all calculations with spin. These are included as separate appended files.

Setting up the scattering system in the code

The code needs specifying of the scattering situation in the form of a couple parameters. Below

is a list hereof, with a detailed description

• g: Scattering metric, written in normal coordinates tt, ρ, ϕu restricted to the scattering

plane. The coordinates should be denoted by these exact symbols for the code to work.

• simplifications and simplifications2: Simplifications to be used before and after in-

tegrating, respectively.

• orderInS: The order in test particle spin S at which the scattering angle should be found.

The code will expand in parameter S multiple times throughout, ensuring consistent orders

are produced in the final scattering angle.

• scatteringOrder: PM order in Newtons gravitational constant, at which the scattering

angle should be found. The code ill expand in paramter G multiple times throughout,

ensuring consistent orders are produced in the final scattering angle.

Some extra parameters printExtraInformation and progressPrinting control how the ouput

is displayed. The Timeout of Simplify in Mathematica can also be set at the top of the document.

Lastly, the test particle spin properties are defined by parameters PT, PPHI and tm, which are

discussed below.

Implementing the scattering angle formula in code and implementing spin on the

probe

We have now established a scattering metric on which the test particle scatters. This includes a

normal coordinate system tt, ρ, ϕu to which we restrict ourselves furthermore. The general formula

for scattering angles with spin is

χ “

ż 8

rm

dr
dϕ

dr
“

ż 8

rm

dr
Drprs

p8

“

8
ÿ

n“0

ż 8

0

du

ˆ

d

du2

˙n

D

«

r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

ff

, in last equality r2 “ u2
`b2

(207)

D ” Bb ` fSprqBS “ Bb `

ˆ

p8S

mκ
`

p8 pa2r ` 2GM pκ2 ´ r2q ´ κlr ` r3qS2

m2κ2 pγr3 ´ aκrq

˙

BS ` OpS3
q (208)

The scattering metric, with asymptotically spherical coordinates tt, r, ϕu is denoted g in the code.

Finding Upr, bq and D
Both Upr, bq and D can be constructed from Justin Vines’ unpublished notes. These notes specify
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canonical momenta pµ “ tpt, pϕ, pru and dϕ
dr

as

m̃2
{m2

“ gµνπµπν (209a)

πt “ ´γ ` GMκσu3
` Opσ3

q (209b)

πϕ “ l ´ aGMκσu3
` GMκσ2u3

` Opσ3
q (209c)

m̃{m “ 1 ´
GMpu3 ` 3u5κ2qσ2

2
` Opσ3

q (209d)

9xµ
“

1

m̃
gµνpν ` OpS3

q ñ
dϕ

dr
“

9ϕ

9r
“

u2

p∆2πr

rπϕ ´ 2GMupπϕ ` aπtqs ` OpS3
q (209e)

46 where we have introduced rescaled quantities

πµ “ pµ{m, σ “ S{m, γ “ E{m, l “ J{m ´ γσ “ pπϕqrÑ8, κ “ l ´ γa (211a)

u “ 1{r, p∆ “ u2∆ “ 1 ` a2u2
´ 2GMu (211b)

The prefactor fSprq in D as given by eq. (207) may be found by matching eq. (207) with

(209e). Constructing the operator in this way, is a trivial step, and completely equivalent to the

hprq structure of the derivation given in our article. The code at the moment uses the operator-

form, and is optimised for this form. It would be possible to rewrite the code with the hprq

structure, however would require optimising. D is simply defined at the top of the code, as

quantity op.

Upr, bq is found by solving the Hamilton-Jacobi equation (209a) for pr, then letting p2r “

p28 ´ L2

r2
´ Upr, bq where L is the orbital angular momentum. Upr, bq is denoted R in the code.

Computing the integrand of eq. (207)

We have now computed both Upr, bq and D. Computing the integrand in eq. (207) is therefor

trivial. However, we have not yet imposed specific orders in S and G, at which the scattering

angle should be computed. Doing so removes may terms and speeds up calculation.

To do this efficiently, we treat every term in the
ř8

n“0 one by one. Since Upr, bq9G, we can

restrict to look at n ď scatteringOrder. For each n, do the following

• Compute the term r2nUn`1pr,bq

pn`1q!p
2pn`1q
8

in eq. (207) up to scatteringOrder in G and orderInS in S.

To minimise expressionlength (which greatly improves performance), Upr, bqn`1 is expanded

separately in S and G.

• Rewrite all γ’s and energies e with velocity v. This simplifies the parameterspace with which

Mathematica has to work while doing simplifications.

• Simplify the result. This greatly minimises expression lengths and increases performance.

46Note we may also expand m̃2 directly, as did Vines in ”AlignedSpins”, to obtain

m̃2{m2 “ 1 ´ GMpu3 ` 3u5κ2qσ2 ` Opσ3q (210)
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• Impose r2 “ u2 ` b2 explicitly.

• Act with the operators D and
`

d
du2

˘n
and keep only relevant orders in S

• Simplify the result

• Integrate the resulting integrand of eq. (207)

Imposing assumptions while integrating and simplifying, such as b ą a, greatly improves perfor-

mance. The individual integrands are summed for n ď scatteringOrder, which sum to produce

the scattering angle.

Simplifying the scattering angle

We now have a scattering angle result which is somewhat overcomplicated. The result may be

simplified systematically by using FullSimplify, setting everything over a common denominator

and gathering powers in v. The resulting scattering angle is very concise and properties such as

the light bending limit can readily be surmised. Writing everything in terms of single parameter

v, opposed to a possible v, γ form, also provides a very easy way of comparing results ot previous

calculations.

E.2 Calculations without test particle spin

As mentioned above calculations without spin are best performed with the Scattering Angle

pure v.nb code. The general strucuture of the code is very similar to that of the spinning test

particle. The appropriate scattering angle formula is in this case

χ “

8
ÿ

n“0

ż 8

0

du
B

Bb

ˆ

d

du2

˙n
r2nUn`1pr, bq

pn ` 1q!p
2pn`1q
8

, r2 “ u2
` b2 (212)

Again, Upr, bq is calculated from solving the Hamilton-Jacobi equation

m2
“ gµνpµpν (213)

where pµ “ te, L, pru with e test particle energy and L test particle angular momentum.

The integrand is then computed exactly as before, with a slightly different simplification

method to optimise performance. In the sum over n, each term is treated and integrated separately

and the results summed to produce the correct scattering angle.

The simplifications of the final angle are identical with those performed before.

E.3 Reference of quantities and notation used in code

Test particle related quantities

• m: Test particle mass

• v: Test particle asymptotical velocity

• γ: Test particle asymptotical Lorentz contraction factor
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• e: Test particle energy

• J: Test particle angular momentum (total)

• b: Test particle impact parameter (measured at asymptotically flat infinity)

• S: Test particle spin

• tm: Effective mass of a test particle with spin, appearing in the Hamilton-Jacobi equation

• PT and PPHI: Canonical test particle momenta in t and ϕ directions which are input by

the user. They are replaced with pt and pϕ later in the code

• pt, pr, pϕ: test particle canonical momenta as used in the internals of the code.

• pϕdynReplacement and ptdynReplacement: Canonical momenta used in the internals of the code

which denote the G-dependent parts of canonical momenta PT and PPHI

Metric and notation

• tt, ρ, ϕu: normal coordinates in which the metric is written

• g: Scattering metric written in normal coordinates tt, ρ, ϕu

• G: Newtons gravitational constant

Input quantities for the computation

• op: Name in code for operator D producing scattering angle with spin. See below.

• scatteringOrder: Order in G at which the scattering angle should be determined

• orderInS: Order in S at which the scattering angle should be determined

Additional input parameters

• printExtraInformation: Toggles whether things like Upr, bq and T should be printed while

doing the calculations. Off by default.

• progressPrinting: Toggles whether extra information about the integrands should be

printed while they are evaluated.
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