
university of copenhagen

foreign object detection in x-ray
images using machine learning

Master’s Thesis in Physics

submitted by

jesper rask pedersen

2020

Jesper: Foreign object detection in x-ray images using machine learning

This Master’s Thesis has been carried out at

niels bohr institute, copenhagen

under the supervision of

prof. brian vinter

and

assistant prof. kenneth skovhede

acknowledgments

Many people has had a hand in making this thesis, and deserves a large

thanks.

Thanks to my supervisors Brian Vinter and Kenneth Skovhede. Brian Vinter

was my main supervisor for the �rst year, and was responsible for establishing

the contact to FOSS, and for giving me a good start. Kenneth Skovhede had

to take over in the middle of the Summer, and without his support it would

probably not have passed the �nish line.

I have had the pleasure of working with three daily supervisors. Elisabeth

Ulrikkeholm was my intial contact person at FOSS, and also served as the main

supervisor from FOSS until December. I am grateful to her for introducing

me to the people at FOSS. Then Erik Dreier took over, and he had a massive

in�uence on the project with arti�cial foreign objects. I also appreciate the

time he took to proof read this thesis, and for all the meetings. From NBI’s

side I have been working closely with Carl-Johannes Johnsen during most of

the project. I am grateful for the fact that you always had time to talk, even

though you have been supervising # other students. There is also no doubt

that the thesis itself improved by your countless readings.

It has been a long project and without the great collaboration at the eScience

group it would have been a very bleak time indeed. A great thanks to all the

people involved.

I got an amazing reception at FOSS, and everyone has always been willing to

help, and answer my emails. That played a large part in me feeling welcome,

and kept the motivation up.

Finally I have to thank my family and friends from outside the University for

supporting me and keeping me sane. A special thanks to my girlfriend Cilie

for having to actually live with me during this, at times, stressing period.

Furthermore, she also did large parts of the proof reading, often in the early

iterations, and for that I am deeply grateful.

i

abstract

The development of better detectors, x-ray sources, as well as faster and

cheaper computer processing resources, has made x-ray imaging have nu-

merous applications: From airport security, through medical industry to food

processing. One way to get more out of x-ray imaging is to use dual-energy

x-rays. Dual-energy increases the possibilities with x-ray to measure the

contents of the scanned objects. For many applications large amounts of data

are collected since x-ray is introduced to do quality control. This is also the

case for the food processing industry, where applications of x-ray imaging

can be used in-line to scan the full production. The large amounts of data

collected requires automated processing to be e�ective. This thesis explores

Machine Learning in the data processing pipeline of a real world machine:

The Meat Master II, which generates dual-energy x-ray images.

Concretely, the challenge is to detect foreign objects in the images. To

detect the foreign objects a Convolutional Neural Network was trained.

Furthermore, the use of synthetic data was explored. We �nd that it is possible

to train a Convolutional Neural Network to 98.74% accuracy on detecting

foreign objects, using a sliding window algorithm to preprocess the data from

the Meat Master II. We observed a signi�cant drop in accuracy when the

model is evaluated on similar but yet unseen data. This is a signi�cant issue

since it is hard to guarantee that the training data represents the full test

distribution. It is possible to alleviate this drop in performance, as measured

by the Area Under the ROC-curve, by using our synthetic data in the form

of arti�cial foreign objects. The accuracy is currently not good enough for

real world use, but with a larger dataset to train on, it should be possible to

successfully introduce machine learning to automate the detection of foreign

objects in meat using machine learning.

ii

CONTENTS

x-ray physics and setup
1 Introduction 2

2 X-ray images 5

2.1 Photons 5

2.2 Attenuation contrast 7

2.3 Creation and Detection of X-rays 8

2.4 Dual energy 9

3 Data Presentation 13

3.1 FOSS images 13

3.2 Labelling 16

foreign object detection with deep learning
4 Data Processing 19

4.1 Sliding window 19

4.2 Data transformations 21

4.3 Arti�cial foreign objects 22

5 Learning 31

5.1 Supervised learning 31

5.2 Loss function 32

5.3 Optimizers 34

6 Neural Networks 41

6.1 Network Connections 41

6.2 Non-linearity 43

6.3 Normalization 44

6.4 Regularization 45

6.5 Model 46

7 Foreign object detection 49

7.1 Evaluation of Model 49

7.2 Bounds on generalization 54

iii

8 Discussion and Conclusion 61

8.1 Discussion 61

8.2 Conclusion 63

8.3 Future Work 63

appendix
A Table of Adam 66

Bibliography 67

iv

ACRONYMS

fcnn Fully Connected Neural Network

cnn Convolutional Neural Network

relu Recti�ed Linear Unit

sgd Stochastic Gradient Descent

adam Adaptive Moment Estimation

roc-curve Receiver Operating Characteristic Curve

auc Area Under the ROC-Curve

gan Generative Adversarial Nets

vae Variational Autoencoder

v

Part I

X-RAY PHYS I CS AND SETUP

1 I N TRODUCT ION

Figure 1.1: Wilhelm Röntgen, from [1]

Wilhelm Röntgen discovered x-rays in 1895 as a penetrating electro-magnetic

radiation. The ability to penetrate matter made it possible to take pictures

of the insides of solid objects, and this found use almost immediately in the

medical industry. This resulted in Wilhelm recieving the �rst Nobel prize

in physics in 1901 [2]. Today, x-rays have numerous applications: From

airport security, in the medical industry to food processing. In the food

processing industry, the ability to do non-destructive inspection of food

is an incredibly cost e�ective way to make quality control. Contrary to

a destructive procedure using statistical sampling to test, with x-rays it is

possible to scan objects non-destructively. For this reason, x-ray technologies

has been adopted in various food lines in factories.[3]

The ability to inspect all the food in a production line generates enormous

amounts of data. To make proper use of the data, the analysis needs to be

automatic. The �eld of computer vision concerns the automated analysis

of images. The past years, the �eld of computer vision has undergone a

revolution with the introduction of deep learning [4]. The development of

deep learning has been driven by companies like Google and Facebook, who

are pushing the boundaries of what is possible in many areas of application.

With deep learning, it is possible to take advantage of large datasets to create

models of greater size than before in order to get extremely good performance.

Figure 1.2: Meat Master II, from [5]

A company selling optical instruments to use in food production is FOSS, and

this piece of work has been birthed in a collaboration with them. FOSS sells

the Meat Master II [6] which is used in-line in meat production to scan meat.

The Meat Master II uses x-rays to primarily determine the fat composition

of meats. As a secondary task it scans the meat for foreign objects. In meat

possible foreign elements could be naturally appearing matter such as bone.

More troublesome, is the chance of plastic or metal, which could appear from

unfortunate accidents, or perhaps more worrisome, in the form of tampering

of the product [7].

The current methods used in the Meat Master II for foreign object detection

are threshold-based using computer vision. With their threshold-based algo-

rithm, pieces of metal are the easiest to �nd, small pieces of bone is almost

undetectable, and thin slices of plastic are impossible. The aim of this thesis

has been to explore machine learning, and more speci�cally deep learning,

to do foreign object detection. The expectation is that it should be possible

to implement an algorithm that can detect foreign objects, of metal and bone.

This takes starting point in data from the Meat Master II, but the methods

explored here might have more general applications.

2

This thesis is divided into two parts: X-ray Physics and Setup, followed by

Foreign Object Detection with Deep Learning.

X-ray Physics and Setup introduces the physics of x-rays and the data made

available by FOSS. This includes the electromagnetic interactions of interest

and the source and detector necessary for x-ray imaging (Chapter 2). Then

the images that constitute the available data are presented and the labelling

of the foreign elements is shown (Chapter 3).

PART I

Foreign Object Detection with Deep Learning follows the four steps of a deep

learning algorithm as laid out by the main textbook cited [see 8, sec 5.10]: "...
combine a speci�cation of a dataset, a cost function, an optimization procedure
and a model". First, the data processing leading to the �nal dataset is speci�ed.

This entailed implementing a sliding window algorithm to preprocess the

data into a format better suited for the model. Furthermore, simple data

augmentation transformations, along with a more complex one of my own

design which introduces synthetic/arti�cial foreign objects are described

(Chapter 4). Then the cost function and optimizers used are presented. The

cross-entropy of the negative log-likelihood was used for cost function. For

optimizers, Stochastic Gradient Descent (SGD) with momentum along with

variations of Adaptive Moment Estimation (Adam) was used (Chapter 5).

The design of the deep learning model is presented next (Chapter 6). This

concludes the four steps describing the deep learning algorithm, and left

is only the evaluation of the approach. The results are presented, both

for windows and full pictures. Furthermore, the performance of the model

outside its training regime is explored (Chapter 7). Drawing it all to a close,

the discussion and conclusion are last (Chapter 8).

PART I I

For deep learning I used the PyTorch library. All of the code, for both the thesis

and the models, should be available at https://github.com/jrpedersen/mlfoss.

3

https://github.com/jrpedersen/mlfoss

contents

2 X-ray images 5

2.1 Photons 5

2.1.1 Photoelectric absorption 6

2.1.2 Compton Scattering 6

2.1.3 Pair production 7

2.1.4 Coherent Scattering 7

2.2 Attenuation contrast 7

2.3 Creation and Detection of X-rays 8

2.3.1 X-ray tubes & Bremsstrahlung 8

2.3.2 Detector 9

2.4 Dual energy 9

2.4.1 Dual energy scintillator 10

4

2X-RAY IMAGES

In this chapter the physics governing x-ray attenuation contrast imaging is

presented. To do so, I will try to shine a light on the interactions between

electromagnetic radiation and matter. These interactions are the foundation

on which photography is founded, and are key in the making of x-ray images.

X-rays are electromagnetic radiation with a typical wavelength in the range

of 10?< to 10=<. Central to the usefulness of x-rays is the ability to penetrate

solid materials.

The layout of the chapter will be as follows: In the �rst section, § 2.1, the

physics and equations governing the interactions that are relevant for x-rays

is showed. These are the photoelectric absorption, Compton scattering, pair

production and coherent scattering. The exposition of the material follows

Radiation Detection and Measurement [9]. The second section, § 2.2, gathers

these interactions in the context of attenuation contrast imaging. The third

section, § 2.3, concerns itself with the creation
1

1. In other words, the sourceand detection of x-ray photons.

Finally, a short section is devoted to introduce dual energy x-rays, § 2.4.

2.1 photons

Photons or electromagnetic radiation occupy a central place in physics, and

is used to investigate anything from the biggest stars, to the smallest of atoms.

Now the photon is famously both a particle and a wave at the same time, and

when viewing the interactions of importance it is perhaps better to think

of the photons as single particles undergoing interactions, which will let it

either pass through a given material, or be stopped. For a single photon, the

energy, �? , and momentum, ? , is given by:

�? = ℎa,

? =
�?

2
,

with ℎ being planks constant, and a the frequency. Furthermore the conver-

sion between wavelength and frequency is given by:

2 = _a,

With 2 the speed of light, _ the wavelength. The interactions of interest are

the ones which transfer energy from the particle to the matter.
2

2. That these interactions are fun-

damental to physics, can also be

seen by the Nobel prizes given for

discovering an interaction. Given to

Einstein, Compton and Blackett.

For the

following I have used [see 9, chap. 2]

5

2.1.1 Photoelectric absorption

e
−

Figure 2.1: The photoelectric absorp-

tion. An incident wave (blue) is ab-

sorbed by an electron (black) which

is in turn ejected from it bound state.

Photoelectric absorption happens when a photon interacts with an atom and

the photon excites an electron from the atom to the continuum. A simplistic

representation of this is shown in Fig. 2.1. In this process the photon is

absorbed. For photoelectric absorption to happen, the energy of the photon

has to be greater than the energy with which the electron is bound to the

nucleus, �1 . The resulting energy of the excited electron, �4− is:

�4− = �? − �1,

The resulting atom is now ionized, and depending on which shell the electron

exited belonged to, further reactions may take place, resulting in the emission

of new photons.

The full description of this e�ect, how it alters the probability of absorption,

is rather complex. As an approximation in the x-ray regime, it is described

by the equation:

g ∝ /#

�3.5
,

with g being the rate of absorption given / , the atom number, and # ∈ [4, 5]
an experimentally determined constant. Thus we see that heavier nucleus

absorbs more photons, which is why these are used to shield x-ray devices

with especially lead being common.

2.1.2 Compton Scattering

e
−

Figure 2.2: Compton scattering.

An incident wave (blue) is in-

elastically scattered by an elec-

tron (black) which in turn recoils.

Compton scattering describes the inelastic de�ection of an incoming photon

when interacting with an electron of the target material. A simplistic rep-

resentation of this is shown in Fig. 2.2. In this process the photon transfers

energy to the electron it interacts with. Using conservation of energy and

momentum, for a given scattering angle \ , we have:

ℎa ′ =
ℎa

1 + ℎa
<02

2
(1 − cos\)

,

where a ′ is the frequency of the outgoing photon, and<02
2

is the rest-mass

energy of the electron.

6

2.1.3 Pair production

Pair production is an interaction between the photon and the nucleus at high

energies. The result is that the photon energy is converted to an electron-

positron pair. A simplistic representation of this is shown in Fig. 2.3. Since

the rest-mass energy of a pair of electrons is 1.02"4+ , the photon energies

must be larger than this. This e�ect only becomes predominant at even larger

energies well outside the scope of the x-rays used for this thesis. e
−

e
−

p
+

Figure 2.3: Pair production. An

incident wave (blue) interacts

with the nucleus (red), which

transforms its’ total energy

into an electron-positron pair.

2.1.4 Coherent Scattering

Included for completeness is coherent scattering. It is a fully elastic interac-

tion which leaves the energy of the photon unchanged. For the low energies

this interaction is roughly a couple of percentages of the total attenuation

coe�cient. The surroundings can also by coherent scattering introduce noise

in the images.

2.2 attenuation contrast

0 100
keV

10 6

10 4

10 2
At

te
nu

at
io

n

T
P

C
R

Figure 2.4: Attenuation for all the

di�erent processes for Carbon in the

energy range 5 − 150 keV. T for total,

P for photoelectric, C for Compton

Scattering, and R for Rayleigh Scat-

tering (Coherent Scattering). From

[10]

To create attenuation contrast images we use the property that a beam of

x-rays will be attenuated when transmitting through a given sample. Areas

of high density, d , and containing elements with a high atomic number, / ,

will have a higher probability to absorb photons from our beam, contrasting

with regions lacking these attributes.

To model all of the above interactions as one probability for the photon to be

absorbed, we can introduce the linear attenuation coe�cient, `, as:

` = `%� + `�><? + `%% + `�>ℎ4A4=C , (2.1)

with `%� the contribution from the photoelectric e�ect, `�><? the contri-

bution from Compton scattering, `�>ℎ4A4=C the contribution from coherent

scattering and `%% the contribution from pair production. A plot of the total

attenuation can be seen in Fig. 2.4 where Carbon is chosen as the target. Thus

if the intensity of a photon beam is �0 the intensity after passing through a

given material is then given by the Lambert-Beer’s law:

� (G) = �0 4−`G . (2.2) LAMBERT-BEER ’ S L AW

That the density is important can be inferred from the fact that our description

of interactions is per atom. Thus higher densities lead to a higher number

of atoms, which leads to more interactions that attenuate our beam. To get

7

a density independent description of ` we can use the mass attenuation

coe�cient `d .

`d =
`

d

For compound materials, the total mass attenuation coe�cient can be calcu-

lated from:

`d (C>C0;) =
∑
8

F8 · `d (8)

where the

∑
8 is over the 8 elements and F8 is the fraction of the weight of

element 8 to the total weight. With these equations in hand, it’s possible to

infer the material properties of an unknown sample, giving rise to a host of

applications.

2.3 creation and detection of x-rays

In practice the quality of x-ray imaging is heavily dependent on both the

quality of the created x-rays, and the quality of the dector. The source of

x-rays used
3

3. by FOSS. for this thesis is an x-ray tube. The main process being used

in conventional x-ray tubes to generate x-rays is called Bremsstrahlung

which we will look at �rst. Then, scintillator based detectors will be quickly

reviewed, since these are the ones FOSS used to generate the images for this

thesis.

2.3.1 X-ray tubes & Bremsstrahlung

Figure 2.5: Bremsstrahlung. From [11]

Bremsstrahlung is the radiation due to electrons de-accelerating in matter

and converting their energy to electro-magnetic radiation. A stylistic example

of this can be seen in Fig. 2.5. This results in a broad spectrum of energies,

bounded by the maximum energy of the electron above, and dominated by

the low energies. In order to get a good conversion of electron energy to

radiation, the material used to slow the electrons has to have a high atomic

number, and the electron energy has to be high as well. In x-ray tubes, a beam

of electrons is shot at a target which is responsible for the de-acceleration.

The electrons have a chance to excite the atoms of the target which when

the atom decays result in some characteristic x-rays of a given energy, on

top of the Bremsstrahlung spectrum. In practice, one is mostly interested in

the high end of the spectrum which leads one to apply a �lter to remove the

low energy x-rays. For our purposes photons in the energy range 10 − 200

keV is of interest.

8

2.3.2 Detector

Figure 2.6: Scintilator

detector. From [12]

FOSS uses a scintillator based detector. The scintillator converts high

energy photons to visible light. Then it is possible to measure the amount of

visible light with a conventional camera. This requires that the scintillator is

transparent to the wavelength of its own emitted light.

The total performance of the scintillator is given by its ability to convert

x-rays into its own emitted light. Furthermore, this conversion should be

linear, such that the light emitted is proportional to energy input.

2.4 dual energy

This sections draws heavily on [13]. The above admittedly very simple picture

of attenuation excluded one very important fact. The interactions between

photon and material are very dependent on the energy of the photon, �? .

Thus the linear attenuation coe�cients are too. Introducing this dependence

formally by writing ` (�?) in Eq. (2.1) and Eq. (2.2) results in:

� (�? , G) = � (�? , 0) 4−` (�?)G .

Here we have also already anticipated the possibility that the incident beam

is not monochromatic, meaning �0 becomes � (�? , 0). From § 2.3 we know

that this is very much the fact. Leaving that aside for now, if we assume

that we have two perfectly monochromatic beams on the same target, with

intensities �1, �2, we can use the relation:

log

� (�?1,G)
� (�?1,0)

log

� (�?2,G)
� (�?2,0)

=
` (�?1)
` (�?2)

,

to get a length independent estimate of the composition of the target. If we

assume that our target, with length !, consists of two materials, we get:

`! ≈ `1!1 + `2!2,

which is a solvable system of two equations. For a non-monochromatic beam

one has to integrate over the energy of the beam to get the full transmission.

This gives us, under the assumption of dual-energy beams, the equations:∫
�1

�1(�1, 0) 4−`1 (�1)!1−`2 (�1)!23�1 = �1,∫
�2

�2(�2, 0) 4−`1 (�2)!1−`2 (�2)!23�2 = �2.

9

These are the two intensities resulting in the images we have been working

with.
4

4. Assuming perfect detector e�-

ciency.

Our approach has been to use machine learning with these as inputs,

instead of using any physical way to solve the system. We will show examples

of the actual dual channel images in the next chapter.

2.4.1 Dual energy scintillator

FOSS uses a sandwich detector to obtain their dual energy images. In this

setup, there is one source, with two detectors stacked on top of each other. The

�rst scintillator absorbs the low energy x-rays and transmits most of the high

energy x-rays. The second scintillator is designed to absorb the remaining

high energy photons. This result in the two energies being correlated with

each other, since the high energy signal also has to pass through the low

energy detector. This e�ect can be reduced by placing a metal �lter between

the two scintillators to remove all the low energy photons before the second

scintillator. An example can be seen in Fig. 2.7.

10

Figure 2.7: One sandwich detector

illustrated, not the one FOSS uses.

From [12].

11

contents

3 Data Presentation 13

3.1 FOSS images 13

3.2 Labelling 16

12

3DATA PRESENTAT ION

In this chapter the data are presented. The chapter is split in two sections.

The �rst section, § 3.1, presents the data that was made available from FOSS.

The data are dual energy x-ray images obtained using the Meat Master II.

I was involved in a quarter of the experiments. The second section, § 3.2,

goes in depth with the critical task of labelling the data, which I did for all

the images. The labels are used to both train and evaluate the performance.

Thus, to a large extend, the quality of the labelling bounds the performance

of the algorithm.

This chapter will present the raw data and methods used for annotation.

Then, in the next chapter, we will look at the data in the context of machine

learning.

3.1 foss images

The full dataset is made up of four parts. In order to keep track of each, we

will refer to them as: Circles, Squares, Pens, and Uniform. Examples from

each are presented in Fig. 3.1. Each image has two channels, one for the

low- and the high energy part. When visualizing images, we visualize the

low energy channel, unless otherwise written. The images are captured on

a conveyor belt and have the height of 384 pixels. The width is dependent

on the objects being scanned, roughly ranging from 380 to 550 pixels. The

pixels have a physical size of 1.6 mm. As the �rst preprocessing step, the

width across images belonging to the same dataset was made constant. They

would di�er by 1 − 10 pixels, so in e�ect it meant cutting of small strips at

the edges. The concrete composition of the datasets are as follows:

Circles. This part of the data contains 20 images, where half of the images

have three phantoms each. Every phantom consists of 13 spheres of metal,

giving each image a total of 39 foreign objects. An example of an image

belonging to this dataset can be seen in Fig. 3.1.A. This image contains

phantoms, but they are not necessarily easy to see. This row, shows both the

low- and high energy channel, along with their di�erence. The di�erence

is plotted to show that there is some extra information in having the two

channels. It also makes it slightly easier to spot the foreign objects.

Squares. This part of the data contains 116 images. A quarter of the images

contain phantoms. These images have two distinct backgrounds. In Fig.

3.1.B the �rst and third images shows the two kinds of backgrounds, and

13

the second and fourth are examples that includes foreign objects. For this

dataset, the foreign objects consists of both cubes of metal and the phantoms

from before.

Pens. This part consists of 40 images. These images have four distinct

background, examples of which can be seen in Fig. 3.1.C. The foreign objects,

of this dataset, are real world objects and there are two con�gurations. This

means they are more complex than the previous types of objects. Examples

are shown in row two and three of Fig. 3.1.C.

Uniform. In total there is 47 images with the same, mostly uniform, back-

grounds, shown in Fig. 3.1.D. This is the dataset I helped to create. The

uniform background is made up of a varying number of POM plates, fromWhat is POM short for?

2 to 17. Each image contain two phantoms identical to the ones used in

Circles.

We will be using the �rst three sets of images, Circles, Squares and Pens, as

the images that are the main challenge of the thesis. The background in these

images are real meat, and thus they resemble the real world the best. The

fourth set, Uniform, will be used to test my �nal model in a more contrived

setting, helping to put some boundaries on the performance.

14

Image #13 LE Image #13 HE Image #13 LE-HE

Image #11 LE Image #10 LE Image #28 LE Image #30 LE

Image #1 LE Image #19 LE Image #20 LE Image #29 LE

Image #5 LE Image #12 LE Image #21 LE Image #32 LE

Image #9 LE Image #15 LE Image #26 LE Image #36 LE

#POM = 17 #POM = 13 #POM = 7 #POM = 2

A

B

C

D

Figure 3.1: A Visualization of one image from the dataset called Cirles. The image has two channels, corresponding to the low energy

(LE) and high energy (HE) channels. Their di�erence is shown in the third picture. The example image contains phantoms. B The

low energy channel of four images from Squares. These images have either round or square meats as background, and shown is two

examples of each. The �rst two are without phantom, the last two with. C The low energy channel of 12 images from Pens. The four

distinct backgrounds are shown along the columns, with each set foreign objects on each row. D The �nal row is four images of the low

energy channel from Uniform. The range of backgrounds is from 17 to 2 POM plates. All of these images contain foreign objects.

15

3.2 labelling

Two di�erent pieces of software was used to label the data. The �rst, labelImg

([14]), allowed one to make rectangular bounding boxes. The second, Labelme

([15]), also has support for polygonal and circular annotations. In both cases,

the labelling resulted in a binary mask. Fig. 3.2 shows di�erent annotations of

the same image with their di�erence, using an zoomed in example from Pens.
The plot of the di�erence shows that the rectangular boxes will wrongly

label a signi�cant amount of pixels in the vicinity of non-square objects.

Depending on the eventual algorithm used, this could have an e�ect on

the �nal result. Furthermore, it is possible to see three objects that are not

labelled as foreign objects. These are the hair tie between the pen and the

trapeze. Above that a circular shape is also shown. Finally there is a small

stone to the center right. These were hard to consistently see and as such

they are not included in general. It seems the Labelme would be ideal for this

dataset. Unfortunately, I began using it late in the process and only have a

version of Pens labelled this way.

Rectangular labelling Polynomial labelling Difference

Figure 3.2: The two ways to label the data and their di�erence. The �rst image was labelled using LabelImg which only allows rectangles.

The second was annotated with Labelme which allows for more complex shapes. Finally, the di�erence of the masks is plotted, with

the yellow representing the extra pixels due to the rectangles. The dark blue corresponds to pixels not marked with the polynomial

labelling, but only with the rectangular.

16

Part II

FORE I GN OB J ECT DETECT ION W I TH DEEP
LEARN ING

By now it is perhaps evident that I have eschewed the traditional IMRaD

struture of a thesis. This is done for two reasons.

The �rst, was to keep the structure closer to actual real world pipeline, from

x-rays to images to model.

Secondly, I view the process of creating a machine learning algorithm as

the collection of many building blocks, as Je� Clune de�nes the approach to

manual AI in [16]. In that sense, by presenting a deep learning algorithm as

consisting of 4 steps, and for each step presenting the building blocks I have

used, this modular approach has been made as clear as possible.

contents

4 Data Processing 19

4.1 Sliding window 19

4.1.1 Training and test split 19

4.1.2 Distributional Statistics 20

4.2 Data transformations 21

4.2.1 Standardization 21

4.2.2 Rotations and mirroring 22

4.3 Arti�cial foreign objects 22

4.3.1 Gathering the Foreign Objects 24

4.3.2 Creating Random Shapes 25

4.3.3 New windows 27

4.3.4 AFO transformation 27

18

4DATA PROCESS ING

After having labelled the available images the question is: How do you go

from a labelled dataset to a reliable model? First of all, the quality of the

available data limits the performance of our model. The labelling lets us

know whether the images contain foreign objects, which is the process we

would like to automate. Thus, errors in labelling might result in errors in

our model. Secondly, the images we have are only a sub-sample of the larger

distribution of data which our model is supposed to work on. Thus any

avenue which increase the quality or suitability of our data, compared to our

model, is worth pursuing.

The approach were as follows: The images were cut into windows using

an sliding window algorithm (§ 4.1). In order to make the model robust to

perturbations, we introduced augmentations in the dataset. First, the simple

data augmentations of rotation and mirroring (§ 4.2). Secondly, we created

synthetic data, in the form of arti�cial foreign objects (§ 4.3).

4.1 sliding window

A sliding window algorithm was used to generate 32 × 32 pixel windows

from the images with 50% overlap. The windows was used as input to

the model. The smaller size of the windows, compared to the full image

size, allowed for expanding
1

1. Expand perhaps in an arti�cial

way.

the initial limited dataset of approximately 200

images considerably. Since the task of detecting foreign objects was harder

for smaller objects, keeping the input of a size comparable to the expected

objects seemed sensible. Furthermore, this greatly increased the number of

background only windows to learn from (true negatives), as one tiny metal

sphere of a size of 5 × 5 pixels would not reduce a full picture to positive.

4.1.1 Training and test split

In order to verify the results of ones model, it is ubiquitous in machine

learning to split ones dataset into Train and Test sets. The Test part is a

hold out set, which you use for testing your �nal model in order to evaluate

its performance. If these test results are to be believable it is key that the test

data are kept strictly separate from the training process. This is due to the

fact that the models used in deep learning sometimes have the capacity to �t

19

to the noise in the data itself. This is called over�tting, and the problem is

that it is impossible to know whether you over�t if you do not keep a hold

out set. The training set is the data you have to learn with. It is common to

split training into training and validation sets. Thus you only train on part of

your training set, and keep the validation set to optimize hyper-parameters.

Optimizing hyper-parameters directly on the training set can also lead to

over�tting. Finally, we have used a k-fold validation split. K-fold validation

is when you split at dataset into k parts, and then use : − 1 for training,

and the last part for validation. This allows you to validate : partitions of

your dataset. This makes k-fold validation most viable for smaller datasets,

since validation of : models can be too computationally expensive for large

models.

4.1.2 Distributional Statistics

Positive

9.0%

Negative

91.0%

Figure 4.1: Distribution of la-

bels for the Mixed dataset.

All the windows from Circles, Squares and Pens were collected into one

dataset called Mixed. These three sets of images were the initial data made

available from FOSS, and they represent various ways to evaluate the model.

Mixed was then split into a Train-, Validation- and Test Set using the

ratios 0.64, 0.16, 0.20, respectively. This was done by �rst splitting train and

test 80% to 20%. Then the training set was split one-to-�ve in validation

and train. The Mixed dataset was labelled with rectangular bounding boxes.

The label distribution of the windows can be seen in Fig. 4.1. We see that

9.0% of the windows contain foreign objects. This means that our dataset is

unbalanced, which can potentially lead to issues when training. Furthermore,

this is also much higher than what we would expect to see in the real world.

This is a problem when reporting test results, since the test result are from a

clearly biased distribution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Raw input

104

105

106

107

Fr
eq

ue
nc

y
(L

og
-s

ca
le

)

Pixel intensity

Figure 4.2: Log-histogram

of low energy pixel values.

20

A logarithmic histogram of the distribution of pixel intensities is plotted in

Fig. 4.2. The most prevalent values for a pixel is between 0.0 − 0.5. These

pixels are all uncovered conveyor belt, and are not of interest for our model.

They can relatively easily be cut away, but we also assume that the model

would have no problem �guring out that these are not foreign objects. As

we will see in Chapter 7 that is indeed the case. The other end of the scale is

where our foreign objects lie. Not all of these pixels corresponds to foreign

objects but most do. Preprocessing methods of interest such as histogram

equilization and the like were brie�y tried, but never fully implemented and

tested.

Pixel averages normalized

0.148

0.150

Figure 4.3: Normalized pixel absorp-

tion averages. The normalization is

over the full range of values the pixel

can take as inputs.

Looking at the windows themselves, the mean value of each pixel, normal-

ized by the range of values to lie between 0 and 1, is plotted in Fig. 4.3. Ideally

this would have looked like homogenous white noise. This seems to be the

case in the vertical direction, where the variation seems to be on the order of

less than 1% of the range of inputs. Varying horizontally, this is not the case.

We see that the variations corresponds to 4% of the total range measured.

I assume this is a bias due to the sliding window algorithm, and not a bias

in the full images themselves. When looking at the two halves of the plot,

divided vertically, we see the same pattern repeating just with lower values

to the right. This, at least, makes sense since our sliding windows overlap

50%.

4.2 data transformations

This section describes the various steps in the preprocessing pipeline after

loading the windows.

4.2.1 Standardization

The windows was standardized as has become standard practice for many

deep learning algorithms [17]. This is done channel-wise for all pixels in the

window with mean and standard deviate estimated from all the images of the

training set. Standardizing is done in order to improve the convergence of

the model, and more generally, to make the di�erent data dimensions equal.

To be clear the formula is:

-= =
- − 〈- 〉
f-

I use Pytorch’s transforms.Normalize, but it does in e�ect standardize [18].

21

4.2.2 Rotations and mirroring

The images we work with were captured from above, and since the subject

is meat, with possibly some non-meat objects we would like identi�ed, the

algorithm should be rotationally invariant. Thus, rotations and mirrorings

were introduced to augment my data. Since my windows are square, by de-

sign, rotations of 90
◦

are especially easy. Combined with mirroring either the

vertically or horizontally the number of windows were e�ectively increased

eight-fold. Rotations of other degree than multiples of 90
◦

could have been

implemented using linear interpolation, but this would potentially result in a

loss of information so we chose not to.

Figure 4.4: Rotations and mirrorings

illustrated on a random window.

4.3 artificial foreign objects

If your available data does not cover the full distribution it is sampled from,

it will bias any model trained on it. Collecting more data to �x this is time

consuming and expensive, especially if it also has to be labelled manually.

This has lead to the emergence of a �eld of synthetic data. [19] Synthetic data

is arti�cially generated data, it can for example be the results of simulation.

In general, simulation is used in many �elds of engineering and science and

extending it to deep learning has been tried in various formats. Examples of

ways to simulate data includes algorithms such as Generative Adversarial

Nets (GAN)’ [20] and Variational Autoencoder (VAE) [21]. These are typically

larger models, and for this project with only 200 images I deemed it infeasible

to try creating one of these. For interested readers, a concurrent Masters

project employed a GAN in a x-ray potato dataset [22].

Our training set consisted of a limited amount of shapes. This might have

induced any model trained on it to over�t to these speci�c shapes.
2

2. This had in fact happened on

a previous pilot project at FOSS.

Thus, in

order to remove any possible shape dependence, a training set containing

many di�erent kinds of arti�cial shapes was created. Our algorithm draws

22

inspiration from the creation of our images. They were physically created

by "adding" foreign objects on top of di�erent meats. We tried creating the

obvious pendant by adding foreign objects on top of our meat algorithmically.

In the best case scenario, this would let us learn to recognise any shape of

objects, even though we had only trained on circles and squares. Further

motivation for why this approach might work was two fold:

Firstly, the Lambert-Beers equation (2.2) suggest that by splitting ` in `<40C
and `�$, we get

� (G) = �0 4−`<40CG<40C−`�$G�$.

Taking the negative log of this ratio of intensities we get to the format of our

images:

− log

� (G)
�0

= `<40CG<40C + `�$G�$

This view is simplistic as it disregards the dual energy. However, it suggest

that adding metal is additive in the signal. Furthermore, if we can subtract

the background from images with metal, what we have left would be the

contribution of the metal. This can then be used to create arbitrary shapes as

arti�cial foreign objects.

Secondly, an alternative way to motivate our approach is in the literature on

synthetic data. Speci�cally, we could take inspiration from the paper [19],

which introduces an approach they term: Cut, Paste and Learn. This creates

synthetic data as you could imagine: By cutting objects from one setting and

pasting them into another. That paper concerns instance detection, which

is a sub category of object detection. For instance detection one has to able

to di�erentiate between di�erent instances of the same object.
3

3. A possible example being distin-

guishing one brand of canned soup

from another in a supermarket for

example.

They show

that combining synthetic data with real data they can increase the relative

performance of their trained model by 21% on benchmarks. While this dataset

is signi�cantly di�erent, the idea that one could make useful synthetic data

simply by cutting and pasting lends credit to our approach. They work with

RBG images, but for x-rays, I believe a reasonable replacement of pasting is

addition. Pasting would after all overwrite the local information, where as

addition mimics the real world e�ect as shown above.

The overall idea in our algorithm is to create random shapes, give these

plausible intensities generated from our pool of labelled foreign objects, and

then add these to otherwise empty windows. For any given dataset the steps

required are summarised in Fig. 4.5, and further elaborated below.

23

Figure 4.5: Overview of the arti�cial foreign object pipeline. First we draw a random foreign object from our set of bounding boxes

containing foreign objects. Alongside it, we create a pseudo-random shape. Examples of both shown in the upper row. From the foreign

object we subtract the background (blue arrow). The random shape is pixelated to the size we are interested in (orange arrow). Using

the results of both processes we can create window containing only zeroes and our new foreign object. This can then be added to a

window containing only background.

4.3.1 Gathering the Foreign Objects

To obtain an approximation of the foreign object linear attenuation coe�-

cient, we gathered all the bounding boxes containing foreign objects. Before

collecting them the background image was subtracted from the images the

boxes belonged to. The background was approximated by applying a channel-

wise median �lter of size 25× 25 to the full picture. This way to approximate

the background is reminiscent of one of the steps taken in the threshold

algorithm used to do foreign object detection by FOSS, and it was suggested

to me by Erik Dreier. This subtraction of the background is represented by

the blue arrow in the Fig. 4.5, which leads from a bounding box containing a

metal ball to one with the background subtracted. The values of the colorbar

changes, and the corner pixels change values relative to each other. Further

examples of the result of this process, and of di�erent bounding boxes, can

be seen in Fig. 4.6

24

0.5

1.0

0.0

0.5

1.75

2.00

2.25

0.25

0.00

0.25

1.0

1.5

0.00

0.25

0.50

1

2

0.0

0.5

1.0

Figure 4.6: In the upper row is shown

a sample of four bounding boxes

with foreign objects. The lower

row is the same objects with the

background subtracted.

4.3.2 Creating Random Shapes

The shapes/objects are created in two steps. First, a "high resolution" shape is

created and it is then pixellated to �t into a window. The shapes created are

2D. A more complete simulation could include 3D objects and then project

them to 2D if speci�c 3D shapes was of interest. The high resolution random

shapes were created using the approach presented by the user ImportanceOf-

BeingErnest on stackexchange in reply to [23]. In the following, the method

for creating random shapes, which is based upon Bézier curves of the third

order, is described.

Figure 4.7: In blue a Bézier curve of

the third order. The orange points

are the end points, with the green

the intermediate ones.

Bézier curves is named after Pierre Bézier [24] who used them for designing

cars in the sixties. Today, they are widely used in computer graphics. A

Bézier curve of the third order is speci�ed by four points %8 , 8 ∈ (0, . . . 3),
with an example shown in blue in Fig. 4.7. Here %0 and %3 are end points and

%1, %2 the intermediate points. For the interval C ∈ [0, 1] the curve is de�ned

as:

�(C) = (1 − C)3%0 + 3(1 − C)2C%1 + 3(1 − C)C2%2 + C3%3

This is recognized as the expectation of a function, 5 (:), of a random variable,

: , given by a Bernouilli distribution [25]:

�(C) =
=∑
:=0

5 (:/=)
(
=

:

)
C: (1 − C)=−:

A third order Bézier curve has = = 3 and 5 (:) = %: . In the limits of C = 0, 1 we

have �(0), �(1) = %0, %3 which are the end points. As C → 1 the intermediate

points contribute to the curve.

Now, in order to get a smooth pseudo random shape we need to draw a

number of random points
4

4. Three or more.which will serve as endpoints for our Bézier

25

curves. Thus, each pair of neighbouring points on the clock is connected

through Bézier curves. To get a smooth shape, the intermediate points of each

curve must be speci�ed carefully. First of all, the angle of the curves through

each point is the average of the angles between it and its two neighbours,

unless the parameter edgy is de�ned. Edgy controls the edginess of the

corners of the shapes by being a weight in the averaging of angles. Then the

intermediate points between two end points is set using the angle of the curve

at the endpoints and continuing in a straight line for some distance. This

distance is determined by a radius, which has the corresponding parameter

rad in the code. A overview plot of both the parameters e�ect on random

shapes is shown in Fig. 4.8.

Figure 4.8: Algorithm to cre-

ate random shapes overview.

Figure taken from [23]

The shape was pixelated by initially creating a it on a ten times �ner scale

than the one desired. This scale was then reduced by averaging whether each

�ne grained cell was inside or outside the shape in question. In this way the

grid is reduced by a ratio of 10 × 10. This leaves a smaller grid, in our case

8 × 8, with each grid cell giving the percentage to which the cell is inside

the shape. In the overview (Fig. 4.5) the averaging process is represented

by the orange arrow. Examples of �ne-scale curves and their corresponding

reduction is given in Fig. 4.9.

26

Figure 4.9: Four pseudo-randomly

generated shapes is shown on the up-

per row, with the resulting pixelation

shown below.

4.3.3 New windows

Finally, a random foreign object is drawn from our bounding box set. From

the foreign object, we took the channel-wise mean of the four highest values

to use as a representation of a foreign object. The use of four values is more

or less entirely arbitrary, to the extend that choosing more than one reduced

the statistical uncertainty. This mean was multiplied with the pixelated shape

resulting in an arti�cial foreign object. This object was thus approximated

to be made of the same material and thickness as the foreign object drawn.

The new arti�cial foreign object was then inserted on a random position in a

zeroed array of the same size as the windows. This served as a "top window"

which could then add on top of any negative window to create a positive

sample. This allowed us to enhance the training set with more positives, and

more importantly, positives with "any" shape.

4.3.4 AFO transformation

Finally, the above was implemented as a Pytorch transformation
5

5. From the github link:

/cnn2/model/Arti�cialFO.py

. This trans-

formation is di�erent from the standard data augmentation transformations

because it also changes the label of the windows. Furthermore, I decided

to only apply the transformation to windows that did not have any FO’s to

begin with in order to not dilute the original true signal. The transformation

was applied to negative windows with a 20% chance when it was used. This

probability is a tune-able hyper parameter. Examples of empty backgrounds

before and after the addition of an arti�cial foreign object can be seen in Fig.

4.10.

27

Figure 4.10: In the top row is showed

the low energy channel of a sam-

ple of windows form the train-

ing set. The second row show the

same windows with the addition

of arti�cial foreign objects gener-

ated using the shapes from Fig. 4.9

28

contents

5 Learning 31

5.1 Supervised learning 31

5.2 Loss function 32

5.2.1 Label Smoothing 33

5.2.2 Regularization 33

5.3 Optimizers 34

5.3.1 Stochastic gradient descent 35

5.3.2 Adam & its derivatives 35

30

5L EARN ING

Machine learning as a �eld aims to automate learning. The learning itself can

be de�ned various ways, but keeping to our recipe from [8]
1

1. "Nearly all deep learning algo-

rithms can be described as particular

instances of a fairly simple recipe:

combine a speci�cation of a dataset,

a cost function, an optimization

procedure and a model."

, the learning is

a result of choosing a cost function and an optimization procedure. The cost

function speci�es what you are interested in learning, and the optimization

procedure speci�es how you will combine your data and model to learn it.

First we will look at a de�nition of supervised learning (§ 5.1). Then we

will look at what we are learning by introducing the cost function
2

2. I will use the term loss function

and cost function interchangeably.

(§ 5.2).

Finally, di�erent algorithms that use the �rst order derivatives to update the

parameters are described, along with a custom combination of them (§ 5.3).

The main work of reference for this chapter is the Deep Learning Book [8].

5.1 supervised learning

For a thorough exposition of what learning algorithms encompass I recom-

mend [see 8, sec 5.1].

There are two broad categories of learning: supervised and unsupervised

learning. For our purposes, it is enough to discuss supervised learning. The

task of supervised learning is trying to model:

? (~ |G),

where ~ is the label, and G the input to the model. If discrete values are used

for ~ to encode di�erent categories we call it classi�cation. Since the data

was
3

3. Painstakinglylabelled, we are doing supervised learning. The target was classi�cation

approach, since it is fundamentally the binary question we are interested in

answering for the real world usage of the Meat Master II.

We used one-hot encoding for my classi�cation. Thus classi�cation formally

is the learning a function:

5 : R= → R: ,

with = = 32
2

and : = 2. In our case with - representing our data we have.

5 (-) = I8 , 8 ∈ {0, 1}.

To get a �nal prediction from our output, I8 , we have to make some choice.

For our model, unless otherwise noted, the choice will be to take argmax of

I8 .

31

5.2 loss function

The loss function is what we optimize. Thus it has to be constructed in a way

that optimizing this results in our model learning. We are not interested in

only �tting our data, rather we want to learn the underlying phenomenon

to generalize to unseen data. The loss function is interesting in the sense

that it serves as an expected loss on unseen data. Where we want to make

? (~ |G)<>34; = ? (~ |G))AD4 . We use the negative log likelihood as the cross-

entropy loss function between the empirical distribution de�ned by the

training set and probability distribution of our model. To derive this we

follow the approach of main reference [see 8, sec 3.13].

We start by de�ning the Shannon entropy as the expected information of a

given distribution, % (-), as:

� (G) = −EG ∈% [log % (G)]
= −

∑
8

?8 log?8
SHANNON ENTROPY

From this we then de�ne the Kullback-Leibler divergence, which is measure

of the di�erence between two distributions, % (-), & (-), of the same random

variable:

� ! (% | |&) = EG ∈%
[
log

% (G)
& (G)

]
=

∑
8

?8 log?8 −
∑
8

?8 log@8

KUL LBACK- L E I B L ER
D I V ERGENCE

This lets us de�ne the cross-entropy as:

� (%,&) = � (%) + � ! (% | |&)
= −

∑
8

?8 log@8
CROSS ENTROPY

Thus we see that cross-entropy is the term in � ! (% | |&) dependent of our

model& (G). The way we use the above, is by having@8 being a the probability

the model outputs for a given category, and ?8 being the ground truth, encoded

as an one-hot vector. For the �nal output of the model, I8 , we use the softmax

function to normalize it:

@8 =
exp I8∑:
9 exp I 9

SOFTMAX FUNCT ION

32

5.2.1 Label Smoothing

One issue
4

4. Or feature depending on your view.is the optimal solution to our optimization problem above. The

use of negative log likelihood with the softmax reduces the loss function

with assuming that ?8 is a one-hot encoding of our category we �nd that for

the label 8:

−
∑
9

? 9 log@ 9 = −(I8 − log

∑
9

exp I 9)

Thus, the negative log likelihood has maximum when I∗8 → inf . This is good

since this mean we can keep training forever. It is bad for the exact same

reason: Training forever will potentially lead to over�tting. Furthermore, we

are not necessarily interested in encouraging our network extreme con�dence

in its predictions.[26]

A remedy is to introduce label smoothing as done in [26]. The idea is to

replace our labels by:

? ′8 = (1 − n)X8 9 + (1 − X8 9)n D (8)

where n is a small number and D (8) is a distribution that is independent of the

label of the data points, such as D (8) = 1/(: − 1) as in [27]. Now the optimal

solution I∗8 becomes:

I∗9 = X8 9 log

(: − 1) (1 − n)
n

+ U

here U is a real number which depend on the implementation. Thus the

model will converge a �nite output. In the two papers cited for this section

they found empirical improvements using label smoothing.

5.2.2 Regularization

One way to limit the degree to which a model can over�t is to limit the

capacity of the model. Without going into details exactly what capacity

means explicitly a simple approximation is the number of parameters of the

model. One way to limit the capacity is done by adding a term to the loss

function that penalizes the weights:

� = ! + UΩ(\) .

Here � is the total cost function, with ! the loss term and Ω(\) the regular-

ization. U determines the tradeo� between the two terms. In our case, !2

33

regularization was used. Here, we penalize the model by its norm of the

parameters unrolled into a vector.

Ω(\) = | |\ | |2

This limits the capacity of the model by adding a term in the gradient to keep

the weights small. Thus, the parameter-space of the model is constrained.

5.3 optimizers

The �eld of optimization is vast, and for our purposes we need only a tiny

part which nevertheless play an outsized role. That tiny part is the methods

that rely on the gradient of the cost function to do gradient descent in the

loss landscape. Consigning us to �rst order gradient based methods, from

Stochastic Gradient Descent (SGD) to a series of optimizers using estimates

of the second moments to modulate the learning rate, Adaptive Moment Esti-

mations (Adams). The optimizers are presented in approximately ascending

order of complexity.
5

5. Descending order of age.

As a starting point, if we de�ne the total loss, � (\ ;-) corresponding to a

loss function, � (·), as a function of the dataset, - , and the parameters of our

model, \ , we can de�ne the derivative of this loss with regards to the models

parameters as:

∇\ � (\ ;-) .

This gives us the following update rule for gradient descent:

\C+1 = \C − [∇\ � (\ ;-) .GRAD I ENT DESCENT

Here we have introduced the learning rate [, which controls the step size of

the gradient descent. This will be the building block of the methods to follow.

Furthermore, we tacitly assume that this gradient is possible to calculate

which it is for the models described in this thesis.

First, we will look at SGD with and without momentum. Momentum is

the �rst moment of the gradient, and with it we can introduce estimates of

the second moments and use both to create Adam. Adam was not the �rst

algorithm to use second order moments, but it has gained a lot of popularity,

and spawned many derivates, some of which will be presented below. All

proofs of convergence in convex and non-convex settings are beyond the

scope of this thesis, and as such we refer the reader to the references.

34

5.3.1 Stochastic gradient descent

When using gradient descent for very large datasets, it is e�cient to batch

the data into smaller groups, -� . If the batches are sampled randomly from

the dataset we have SGD [28],[29]. Following [30] we can write SGD as:

\C+1 = \C − [∇\ � (\ ;-�) . SGD

Momentum

Momentum,<C , [31] is used to increase the rate of convergence of the opti-

mization. The idea is that the best direction in loss space of update is obtained

by keeping a running, exponentially decaying, average of the past gradient

steps. The intend is that the part of the update that is due to random noise is

averaged out.

<C = W<C−1 + [∇\ � (\ ;-�),
\C+1 = \C −<C ,

with W determining the exponential decay of past gradients, and a typical

value is W = 0.9. From the above it is evident that part of the update at time C

was already known at C − 1. Namely, the �rst part of the momentum W<C−1

which is W times the update at the last timestep. This part can we subtract

from the momentum before taking the derivative. This is called Nesterov

momentum [32], [33]. We can write:

<C = W<C−1 + [∇\ � (\ − W<C−1;-�)
\C+1 = \C −<C

SGD WITH NESTEROV MO-
MENTUM

Which, for later convenience can be rewritten as [34]:

6C = ∇\ � (\C−1;G8 , ~8)
<C = W<C−1 + [6C
\C = \C−1 − (W<C + [6C),

assuming<0 = 0, i.e. the momentum is initialized to zero.

5.3.2 Adam & its derivatives

Expanding the estimation of moments to also include second order moments,

we can get di�erent algorithms suchs as AdaGrad, RMSprop and Adam. Since

35

RMSprop is Adam with V1 = 0 and AdaGrad is very similar, we focus on

the family of Adams which are the ones used in this thesis. Some of the

variations can be seen in the list to the left. For the following U is used in

place of [for the learning rate.

Adams family

1) Adam [35]
2) NAdam [34]
3) Amsgrad [36]
4) PAdam [37]
5) AdamW [38]
6) Yogi [39]
7) RAdam [40]
8) AdaBound [41]
9) AdaBelief [42]

Adam

Adamwas in the words of its authors [35] intended to combine the advantages

of AdaGrad, RMSprop, and as such serves as our starting point of optimizers

with adaptive learning rate.
6

6. As far as the author know

whether Adam manages to com-

bine these advantages and always

performs better than the previous

two is not necessarily the case.

The idea is to estimate the second order

moments and use these to normalize the learning rate individually for each

parameter. The second order moments are equal to the uncentred variance.

Thus, a large variance in the gradients for some parameters should correspond

to a low learning rate. The concrete formula is:

6C = ∇\ � (\C−1;-�)
<C = V1 ·<C−1 + (1 − V1) · 6C
EC = V2 · EC−1 + (1 − V2) · 62

C

<̂C =<C/(1 − VC1)
ÊC = EC/(1 − VC2)

\C = \C−1 − UC
<̂C√
ÊC + n

.

The exponentially decaying averages,<C , EC now have distinct parameters

for each estimate V1, V2 with out of the box values of 0.9, 0.999. Furthermore,

to get an unbiased estimate <̂ is needed instead of< directly, and likewise

for ÊC . Finally, n is included for numerical stability, with a typical value of

n = 14 − 8 [35]. This algorithm allows the second order momentum to adapt

the rate of change for each parameter. This makes the magnitude of the

update to the parameters invariant to rescaling of the gradient. It creates a

natural bound on the step size:

<̂C√
ÊC
∼ 6C
6C

Adam while popular, shows the best performance in natural language tasks,

whereas in image tasks Adam is outperformed by SGD [43].

36

NAdam

We can introduce Nesterov momentum in Adam as in SGD [34]. Doing so

will modify Adam to look like:

\C = \C−1 −
UC√
ÊC + n

· (V1<̂C︸︷︷︸
The momentum term from t+1

+ (1 − V1)6C︸ ︷︷ ︸
Gradient part

)

The motivation for introducing Nestorov momentum is the same as for SGD.

It serves as an improved form of momentum [see 34, sec 2].

AdamW

If we useAdam as is, the regularization by !2
also gets a adaptive learning rate.

Thus weight decay and !2
decouple, where by weight decay the meaning is

the explicit penalizing of large parameters. This was noticed in [38], and they

proposed AdamW to reintroduce the unmodi�ed weight decay into AdamW.

This entails removing the !2
term from the loss function, and calculate the

update it gives as a separate step in the optimizer.

RAdam

It is found empirically that it is important for Adam to have some form of

warm-up of the learning rate. This means keeping the learning rate low

for the �rst epoch, and slowing increasing afterswards. This is done in

order to stabilize the estimates of the second momentums. In an attempt to

incorporate warm-up more directly into Adam, Recti�ed Adam (RAdam) was

created [40]. The di�erence is that we introduce a term, dC :

d∞ =
2

1 − V2

− 1,

dC = d∞ − 2C
VC

2

1 − V2

,

37

which we can use to calculate AC to replace the warm-up heuristic as:

if dC > 4 :

;C =

√
(1 − VC

2
)

EC

AC =

√
(dC − 4) (dC − 2)d∞
(d∞ − 4) (d∞ − 2)dC

\C = \C−1 − UCAC<̂C;C

else
\C = \C−1 − UC<̂C

AdaBound

Now AdaBound [41] is another algorithm that tries to be the heir to Adam.

AdaBound tries to bridge the gap between Adam and SGD by literally closing

it as the optimizer iterates. This is done by clipping the parameter update

to lie between two bounds, which you let converge. Thus, when the upper

and lower bound converge there is no adaptability left in the learning rate,

leaving one with SGD. The main changes can be written as:

[̂C = Clip(UC√
EC
, [; (C), [D (C))

[=
[̂C√
C

\C+1 = \C − [<̂C

Where �;8? (G, ·) output forces G to lie between to two boundaries given. For

boundaries they use:

[; (C) = 0.1 − 0.1

(1 − V2)C + 1

,

[D (C) = 0.1 + 0.1

(1 − V2)C
,

as the converging upper and lower bound.

AdaBelief

AdaBelief is a brand new version of Adam [42]. The main change from Adam

is that here they use the centred second order moment. Thus we have:

EC = V2 · EC−1 + (1 − V2) · (6C −<C)2

38

They �nd that this simple change, with no extra parameters introduced, gives

signi�cantly better performance.

AdamRNW

Since all the changes mentioned in NAdam, AdamW and RAdam seemed

well justi�ed, and somewhat orthogonal, they were combined into Adam-

RNW, which was tested along the other algorithms. RAdam already had

weight decoupling as an option, so my contribution was only to add Nesterov

momentum to it.

Comparison

0 2 4 6 8 10 12 14
Epochs

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Va
lid

at
io

n
Ac

cu
ra

cy

AdaBound, 6, 0.001
AdamRNW, 6, 0.001
AdaBelief, 6, 0.001

Figure 5.1: A comparison of the three

versions Adam that I thought was in

contention to be used. Plotted is the

mean of a 5-fold validation accuracy

as a function of epochs.

AdaBound, AdamRNW and AdaBelief is compared in Fig. 5.1. The learning

rate used, 0.001, was the same for all, and as such this is not that conclusive.

But it seems that they all have very similar performance, and as such I felt

justi�ed in using my own, AdamRNW. For these result I divided the learning

rate by 5 every sixth epoch.

39

contents

6 Neural Networks 41

6.1 Network Connections 41

6.1.1 Fully connected neural network 42

6.1.2 Convolutional neural network 42

6.1.3 Max-pooling 43

6.1.4 Backpropagation 43

6.2 Non-linearity 43

6.2.1 ReLU 44

6.3 Normalization 44

6.3.1 Batch Normalization 44

6.3.2 Weight normalization 45

6.4 Regularization 45

6.4.1 Dropout 46

6.5 Model 46

40

6NEURAL NETWORKS

The term model has been mentioned countless times by this point, but the

reference is to some speci�c kinds of models. We have worked with variations

of neural networks for this thesis. The model is built of consecutive layers

which represents compositions of functions. Each layer consists of a number

of nodes, or featuremaps, which is calculated based on the connections in

our network.

In the �rst section neural networks are introduced with two di�erent struc-

tures of networks, namely the Fully Connected Neural Network (FCNN), and

the Convolutional Neural Network (CNN) (§ 6.1). Then we will look at the

activation functions, which are crucial to the elevate the models from their

linearity (§ 6.2). Important for larger models with many layers is the way one

normalizes the inner workings. Thus we will look at batch normalization and

weight normalization as two options (§ 6.3). Following last chapter we know

that regularization plays an important role in the capacity of the model, one

way to introduce regularization in the model is introduced in (§ 6.4). Finally

the model used is presented (§ 6.5).

6.1 network connections

In some sense neural networks are an extension of modelling hyper-planes,

with the addition of some non-linearity on top. The next issue is how to con-

nect these linear functions. Below we will look at two ways, fully connected

neural networks, and a special case of these which is the convolutional neural

network. They are called neural since each output, of a linear sum with an

activation function on top of it, resembles a neuron. For our purposes we

will only look at feedforward networks. In feedforward the input is trans-

formed through di�erent layers to a layer giving a �nal output. Crucially,

the connections can only go from an earlier layer to a later. Networks which

allows backwards connections or recurrent connections exists and are called

recurrent neural networks. In the model two types of connections between

layers are used.

41

6.1.1 Fully connected neural network

Figure 6.1: A FCNN with 2 hidden

layers. The arrows represent a

weight. We see that each neuron

from each layer is connected to all

the neurons from the previous. Illus-

tration from [44]

The basic building block of a Fully Connected Neural Network (FCNN) is a

linear combination of all inputs to all outputs. This can be represented for

each node 8 as:

I
(;+1)
8

= F̄
(;+1)
8

~; + 1;+18 ,

~
(;+1)
8

= f (I (;+1)
8
),

with ; representing a layer, and ~0
being the inputs. The weights F

(;+1)
8

,

with the bias term 1;+18 can be collected into one matrix w. f (I8) is the

activation function which is responsible for introducing the non-linearity,

and is something we will return to in the next section. The fully connected

part is due to the fact that each element of ~: depends on all features of the

preceding layer D 9 , see Fig. 6.1.

6.1.2 Convolutional neural network

Figure 6.2: The result

of a 3 × 3 convolution is

shown. Illustration from [45].

Convolutions of images with a certain �lters or kernel has been standard

practice in computer vision for many years. Convolutions work by apply a

�lter as can be seen in Fig. 6.2. Formally, applying a convolution consisting

of a given kernel, (:, ;) to a image of some dimensionality, � (8, 9) one gets

a new featuremap, �" (8, 9), of the size:

�" (8, 9) =
∑
:

∑
;

 (:, ;)� (8 + :, 9 + ;),

where the sum is over the kernel.
1

1. This is techically the cross-

correlation, which is related to the

convolution by �ipping the kernel.

The kernel is applied to all areas of

the input dependent on the stride and padding used. Stride determines the

42

interval with which the kernel is used. Padding is the addition of zeros to the

edges to possibly allow moving the center of a kernel along the edges. To

get a CNN we stack layers of convolution with activation functions applied

in between. With convolutions in the network you can learn the traditional

feature engineering part of computer vision itself, without having to do it

explicitly manually. Thus, using convolutions, one gets a new way of creating

linear combinations of inputs, with the big di�erence being that each new

feature created has some sense of restriction of neighbourhood of in�uence.

Furthermore, each kernel is applied many times to the input in di�erent

places. In that sense it is a strong inductive bias to create nodes with weight

sharing. [see 8, chapter 9]

6.1.3 Max-pooling

Figure 6.3: An example of using max-

pooling with a kernel of 2, 2 and a

stride of 2. Illustration from [45].

When applying max-pooling of a size 2, 2 with a stride of 2, which is what we

use, to a matrix we divide it into 2, 2 squares and take the maximum of each as

the result. An example can be seen in Fig. 6.3. The resulting dimensions size

of the featuremaps is reduced by two in each direction. Thus, max-pooling is

a way to reduce the dimensionality of the feature maps. Taking the maximum

also introduces some kind of invariance to small local translations. This can

of course be generalized to kernels of any size and stride.

6.1.4 Backpropagation

Backpropagation is basically the chain rule of derivatives applied at large.

As mentioned, everything is implemented in PyTorch which handles the

backpropagation automatically. Thus, I have chosen not to derive backpropa-

gation for each module presented, but instead refer interested readers to [8],

and the other cited sources of this chapter.

6.2 non-linearity

The non-linearity is introduced with the activation functions. Why activation

functions? The activation functions are the key to the neural network. With-

out these, consecutive layers of linear combinations of features would only

result in one grand linear combination. Thus the activation function, and

more generally, the algorithms used between layers of linear combinations or

�lters, are the key to introducing non-linearity to the model. The activation

functions have historically taken many di�erent shapes and even to this day

43

new functions are continually developed. We introduce the one we have

been using, Recti�ed Linear Unit (ReLU) [46].

6.2.1 ReLU

1 0 1
x

1.0

0.5

0.0

0.5

1.0

(x
)

Figure 6.4: A plot of ReLU.

In the earlier days of deep learning the activation functions used were

the sigmoid, or tanh [47]. A simpler alternative exists which is the ReLU.

The simplicity makes the network get sparse representations. Furthermore,

the computations are cheaper with the ReLU, and it reduces the chance of

vanishing gradient [48]. The ReLU can be formally written as:

ReLU(G) = f (G) = max(G, 0).

A plot of the activation function can be seen in Fig. 6.4. The simplicity of

ReLU makes it extremely e�cient and it has all but replaced earlier activation

functions such as the sigmoid. Since its inception, various new modi�cations

to ReLU has been proposed. Nevertheless, I ended up using the ReLU and

thus we will not take a deeper look at activation functions. One possible

downside to this choice is readily apparent in the fact that the function can

turn negative inputs o�, thus leading neurons to become inactive. Thus for

the last layer ReLU is not used.

6.3 normalization

We have already seen that standardization of the inputs to the model improves

the results (§ 4.2.1). When constructing models consisting of multiple layers,

each layer serves as an input to the next, and one might naturally think that

standardization might also have a role to play here. Furthermore, these inputs

change during training so some running standardization might be needed.

This is de�ned as Internal Covariate Shift in [49], and their proposed solution

is the addition of Batch Normalization. Another way to normalize is to use

Weight Normalization [50] which reparametrizes the weights in a smart way.

Below we will explore both these approaches.

6.3.1 Batch Normalization

Batch Normalization [49] introduces another set of parameters to learn,

namely the parameters to normalize each internal input. Typically applied

directly after the convolutional operation, for each output G of a convolution

44

we have for �#W,V (G) [51]:

�#W,V (G) = W
G − `�√
f2

�
+ n
+ V

where W, V are learned parameters, and n needed for numerical stability.

During training `�, f
2

�
is the mean and variance estimated for the mini-batch.

Thus Batch Normalization both normalizes outputs, and at the same time

introduces a shift and scaling after the normalization, to keep the networks

expressive power. For inference, the mean and variance are �xed, and are

population wide estimates. This is done by keeping a running mean of `�, f
2

�

during training as:

E[G] = E� [`�]

V[G] = <

< − 1

E� [f2

�]

Thus for inference we get:

�#
8=5

W,V
(G) = W G − E[G]√

V[G] + n
+ V

This is an enormously successful addition to deep models, and is used every-

where in deep convolutional neural networks [51] [52].
2

2. So successful that as of writing this

[49] has been cited ≈ 22000 times

since 2015.

6.3.2 Weight normalization

Weight normalization[50] can be viewed as an alternative to Batch Normal-

ization
3

3. Both can be used at the same time,

so not an exclusive alternative.

. We split the vectors resembling each weight into two components,

namely a length and a direction. This means that for a weight w from some

operation of our total weights \ we reparametrise it into:

w =
6

| |v| |v.

Thus we have increased the numbers of parameters by one by decoupling the

length of weight, 6, from the spatial orientation, v. This is a normalization of

the weights as well, and [50] �nd it to speed the convergence of the model

up.

6.4 regularization

Regularization is any modi�cation we make to a learning algorithm that

is intended to reduce its generalization error but not its training error by

45

constraining the capacity. In § 5.2.2 we looked at how this could be done with

the loss function. It is also possible to incorporate regularization directly in

the model which is what we will look at now.

6.4.1 Dropout

Figure 6.5: Dropout visualized.

The arrows, representing weights,

are randomly dropped during

training. Illustration from [44]

Dropout [53] is a technique that aim to increase a neural networks ability

to generalize. It is related to the method of adding noise to the hidden units

of a network and can be considered as a form of stochastic regularization.

Dropout was shown in [44] to improve generalization performance on many

di�erent tasks and it was thus ideal for use in our case as well.

It works by "dropping out" a percentage of the neurons during training as

seen in Fig.6.5. This in turn ensures that no neurons can freeload, and that

each neuron contribute. Furthermore, over�tting generally results from

many neurons linking tighty, which is much harder since it is now random

during training which links are active, and thus gets updated at the same

time. In e�ect this lets one train multiple networks at the same time since

di�erent neurons will be turned o� at each iteration. These networks are

highly correlated with each other, but it let us think of it as an ensemble

method. This makes the feedforward operation during training, and assuming

a FCNN:

A ;9 ∼ Bernoulli(?)
~̃; = Ā ; · ~̄;

I
(;+1)
8

= F̄
(;+1)
8

~̃; + 1;+18

~
(;+1)
8

= 5 (I (;+1)
8
)

During testing, all the neurons are activated at the same time and their

output is then scaled in order to re�ect the increased number of connections

compared to during training.
4

4. Extra in the sense that

all connections are used.

If the dropout percentage is set to ? the output

is scaled by ? . Using Batch Normalization with Dropout at the same time

creates problems due to both modifying the variance of the output [54]. A

workaround is to use Dropout for FCNN, and use Batch Normalization for

the convolutional layers.

6.5 model

A visualization of the �nal model can be seen in Fig. 6.6. The model can

be divided in two. There is a feature engineering part made of CNNs, and

46

Figure 6.6: An overview of the �nal model. Created with the tool: https://alexlenail.me/NN-SVG/LeNet.html.

a classi�cation part of FCNNs. Both used ReLU as the activation function

except for the last layor which had none.

Feature engineering

I used three convolutional blocks, each consisting of two 3 × 3 convolutions

with a stride of 1 and padding of 1. After each of the �rst two blocks I applied

max-pool. This was to make the e�ective �eld of view of the last 8 × 8

featuremap cover the whole window. As max-pool decreased the size of the

featuremaps I increased the number of channels from 2→ 16→ 32→ 64. I

used Batch Normalization after Weight Normalization for the convolutional

layers.

Classification

For the classi�cation part I unrolled the 64 × 8 × 8 features into one vector to

which I had two layers of FCNNs. I used Dropout after the �rst FCNN layer.

Hyper-parameters

The model was created using AdamRNW (§ 5.3.2) trained on Mixed (§ 3.1).

I selected the model based on the best mean of 5-fold validation accura-

cies. Furthermore a grid search was made over the learning rate, [∈
[0.001, 0.002, 0.008, 0.016], and batch size ∈ [64, 128, 256]. For the �nal model

I did not use either label smoothing or arti�cial foreign objects. Neither im-

proved the validation accuracy. The case for arti�cial foreign objects is

explored further in § 7.2.2.

47

https://alexlenail.me/NN-SVG/LeNet.html

contents

7 Foreign object detection 49

7.1 Evaluation of Model 49

7.1.1 Test set evaluation 50

7.1.2 Occlusion test 51

7.1.3 Full picture evaluation 53

7.2 Bounds on generalization 54

7.2.1 Uniform backgrounds 54

7.2.2 Dataset dependence 56

48

7FORE I GN OB J ECT DETECT ION

This chapter presents the �nal results and insights gained from evaluation of

our �nal model. In § 7.1 an evaluation of our Convolutional Neural Network

(CNN) architecture is presented, with various ways to evaluate the models

performance shown. In § 7.2, a more nuanced analysis of how the limited

datasets might limit model generalization performance is presented.

7.1 evaluation of model

The model being evaluated in this section is speci�ed in § 6.5. As a reminder,

the overlapping sliding windows of 32G32 are used to preprocess the images,

meaning every pixel is evaluated anywhere from 1 to 4 times, with 4 being

the norm for any pixel more than 16 pixels from any border.

A plot of the convergence of the �nal model can be seen in Fig. 7.1. The

network was trained for 15 epochs. During training the loss was measured for

each 50 mini-batches (plotted in blue), and after each epoch the loss and the

accuracy on the validation set was calculated (plotted in orange and green

respectively). The best accuracy on the validation set is achieved after 9

epochs of training, and the model corresponding to this epoch was chosen

as the �nal model.

0 3 6 9 12 15
Epoch

.000

.002

.004

.006

.008

.010

<L
os

s>
 p

r.
wi

nd
ow

Validation accuracy
Train loss
Valid loss

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Figure 7.1: A �gure showing train-

ing (Blue) and validation (Orange)

loss as a function of the number of

epochs trained. Superimposed is the

validation accuracy (Green) again as

a function of epochs. The �nal model

was chosen to maximize validation

accuracy, which was at epoch 9.

49

7.1.1 Test set evaluation

N P
Predicted label

N

PTr
ue

 la
be

l 19779 37

243 2205

Figure 7.2: Confusion matrix for

best model on test data. The �nal

accuracy is 98.74%.

Testing on the full Test Set gave an accuracy of 98.74%. To summarise the

overall binary performance on a window basis, we have also plotted the

confusion matrix in Fig. 7.2. The confusion matrix reveals a large number

of False Negatives, with a total of 243 windows. We know that the sliding

window approach in my implementation is expected to give a number of

cases where the window gets a False Positive label. This is due to the binary

masks being square, and potentially used to cover round foreign objects,

thus leaving the corners with the wrong truth value. This explains to some

degree the in�ated number of False Negatives, but to what exact degree is

not explored here.

To illustrate the trade-o�, inherent in binary prediction tasks, between false

negatives and false positives, we introduce the Receiver Operating Character-

istic Curve (ROC-curve). It is de�ned as the true positive rate as a function

of the false positive rate. The model outputs a score for each binary category,

and the �nal prediction is the maximum of the two outputs. This is equal to

taking the di�erence of the two outputs, and having a decision threshold of

0. To create the full ROC-curve we will instead vary the this threshold, in

order to go from a false positive rate of 0 to 1.
1

1. With a false positive rate = 0

corresponding to 0 false positives,

which in this case means no pos-

itive predictions. This would re-

turn the accuracy to its’ baseline

of never predicting foreign objects.

The result is seen in Fig. 7.3.

The ROC-curve is plotted in blue, and the rates corresponding to a threshold

of 0 is plotted as the orange dot. The Area Under the ROC-Curve (AUC) is

0.981, with a theoretical maximum of 1.0. In the bottom right corner is shown

a close-up showing how the ROC-curve changes around the threshold of

0. We see that when we optimize for high accuracy we optimize for false

positive rate as opposed to true positive rate.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Test; AUC = 0.981
Test; Max(out)

0.0 0.1 0.2

0.8

0.9

1.0

Figure 7.3: ROC-curve (Blue) for the

outputs of the �nal model. The area

under the curve (AUC) is 0.981. In

the bottom right corner is a visual-

ization of the top corner. The rates,

when the prediction is the maximum

of the two outputs, is plotted as the

orange cirle.

50

Taking a more detailed look at the errors, we have plotted a logarithmic

histogram over the di�erent between the softmax of the output for both True

predictions and False in Fig. 7.4. In the ideal case the True predictions (Blue)

would be U-shaped, and the False predictions (Orange) would be centered

around zero.
2

2. Meaning that the model it-

self had a "hard time" deciding.

Taking into account the the histogram is logarithmic, the

extremes of the True predictions is roughly a factor of 10 larger than their

neighbours resulting in a U-shape. Unfortunately the errors does not seem

to be centered around zero. As mentioned above, some of this might be due

to the labelling, however, this has not been investigated further.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Softmax difference: Pred(Positive)- Pred(Negative)

100

101

102

103

104

Fr
eq

ue
nc

y
(L

og
-s

ca
le

)

True
False

Figure 7.4: Histogram over True

and False predictions as a function

of the softmax normalized output

di�erence.

7.1.2 Occlusion test

Padding
Occlusion square
Resulting window

Figure 7.5: An example of one oc-

cluded image out of the 1849 images

generated for the test.

In order to visualize what the model actually uses to determine its predictions,

an occlusion test following [55] was made. The idea is to occlude one area of

the picture at a time, and then compare the prediction of this new image with

the one from the un-occluded image. This gives you an intuition for which

areas of an image that are important for the �nal prediction since these will

potentially change the prediction. So in short, one generates a full test set

from one single image containing all the possible combinations of occluded

areas. Then for each pixel in the original image one visualizes which fraction

of it being occluded predicts positive. In this way, each pixel gets a value

from 0.0 to 1.0 which when plotted shows the importance of various areas.

In this case the occluded area was 12G12 pixels. The size was chosen in order

that the occlusion could cover any one foreign object, while still being small

compared to the full image. Then (32 + 12 − 1)2 = 43
2 = 1849 new windows

were generated from one test image, each having a di�erent placement of

51

the occlusion square. An example of one of these can be seen in Fig. 7.5. We

chose the occlusion to take the value of the local minimum in the window.

The window fed to my algorithm is encased in the red square. The padding

needed to have all variations of occlusions is shown in dark blue. Since the

square is 12G12, there is 144 predictions pr. pixel. In the ideal case we would

see that only the foreign objects should change the resulting prediction when

occluded. Three windows from the Test Set, shown in Fig. 7.6 in the upper

row, on the same intensity scale across the row. The �rst (a) is a true positive

prediction of the model, the second (b) a false positive, and the third (c) a

false negative. On the second row is plotted the importance of each pixel,

with a corresponding colorbar below. The importance being the fraction of

times occluding the pixel changes the output.

a) True Positive b) False Positive c) False Negative

Scoring Scoring Scoring

0.90 0.95 1.00 0.5 1.0 0.0 0.2

Figure 7.6: Three cases representing a

true positive (a), false positive (b) and

false negative (c) example is plotted

in the top row. Below each is plotted

the result of an occlusion test with

an occlusion square of size (12,12)

with the value of the minimum of

each window.

We can see that the true positive case behaves ideally. Namely, the prediction

only changes, from positive to negative, when the foreign object, in the upper

right corner, is covered. For the false positive case we can also see clearly the

pixels the model considers to be a foreign object. On the raw image, even

to the naked eye, this could look like a foreign object. This is clearly a hard

case to predict, and in some sense the model is justi�ed in getting this wrong.

Finally, for the false negative case, the picture is more muddled. First of all, the

supposed existence of a foreign object is very hard to see with the eye. This

could perhaps be a case of wrongly labelled data. Nevertheless, the occlusion

test is perhaps the most informative in this case. We see that covering the

upper right portion of the image leaves the prediction unchanged, which

makes sense. What perhaps does not, is that covering either the left or the

bottom part makes the model predict a foreign object. One explanation for

this could be that the occluded square creates a strong arti�cial gradient,

which perhaps is enough for the model to start changing predictions. Why

this is more prevalent on the edges of the image is hard to say though, but

52

Image

B.Box of FOs
Window size

Predicted Positives False Positives False Negatives

Image

B.Box of FOs
Window size

Predicted Positives False Positives False Negatives
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 7.7: The model applied on the two full images. The �rst row is one the images where the performance was worst, the second

row an image where the performance was one of the best. The images themselves are plotted in the �rst column, with my labelling

of bounding boxes of foreign objects (red) on top. In the second column the windows predicting a foreign object is plotted, each

contributing 0.25. Due to the overlap, up to 4 windows can predict positive for each area giving a maximum value of 1.0. In the third

column we have visualized the windows resulting in false positives, and the fourth column we have the false negative predictions.

one could speculate that it is harder in general to predict on the edge, which

shows that the model is vulnerable in these areas.

7.1.3 Full picture evaluation

So far, we have only looked at model predictions per window. The windows

were generated using the sliding windows approach with 50% overlap, which

in e�ect means that each area is in fact evaluated 4 times
3

3. In fact, only once for the corners,

twice for the rest of the edges, and 5

times if there is some extra overlap

in some areas due to the sliding

windows size not dividing the full

picture dimensions.

. This implies that

evaluating one window at a time is misleading, since they are not independent.

In general, around 40% of the full pictures in the Test Set get a perfect score.

These all have no foreign objects though, and mind that a couple of empty

full pictures gets some false positives. One could imagine extending the

model to combine the di�erent predictions for each 16G16 square, potentially

increasing the performance.

To investigate this, we visualize the performance of the model on two full

pictures in Fig. 7.7. Each row corresponds to a di�erent input picture. For

the top row I have chosen one of the images with the worst performance,

for the second row I have visualized one the images with foreign objects

with best performance. The low energy channel of the images are plotted in

53

the �rst column. All the images have my labelling of the foreign objects, as

bounding boxes, superimposed in red. In green I have shown the size of an

32G32 window.

In the second column, we have plotted the windows which were predicted

positive. Here the colorscale corresponds to the ratio of overlapping windows

predictions being positive. In both rows, there seems to be a very good overlap

between the positive predictions (yellow areas) and the foreign objects (red

boxes). Furthermore, not a single foreign object is, in these two examples,

not spotted by at least one of the windows.
4

4. which would show as a red square

on the darkest blue background.

In the third column, the windows resulting in false positive predictions are

shown. A clear example of a false positive prediction is seen in the upper left

corner in the �rst row image. On the other hand, we can see that not a single

time do we have more than two consecutive windows giving a false positive

prediction. At least for these examples.

In the fourth column the false negative predictions are shown. We see that a

fair amount of false predictions belongs to windows that just barely overlaps

a bounding box. These are the False Positive labels that as mentioned would

show up as "impossible" predictions. In the top row there are a few cases

where a foreign object is overlapped centrally and not found. These can

not be explained away, and are more troublesome. In general, there are

very few areas which get all four predictions wrong. Thus, this shows that

qualitatively the model seems to work reasonably well.

7.2 bounds on generalization

This section explores some of the limits of the model. The idea is to see

how the model performs outside of the training regime.
5

5. This is also called domain shift.[56] , in some controlled

fashion First, in § 7.2.1, the model is tested on Uniform. This is a dataset

where it is easy spot the foreign objects with the naked eye, due to the

background being uniform. Thus we would expect the model to perform well

even though it is tested on data not represented in the training sets. Next,

§ 7.2.2 investigates the connection between training set and generalization

ability. We look at the generalization by testing on datasets di�erent from

training
6

6. Using the three datasets

that make up Mixed.

, with and without the introduction of arti�cial foreign objects from

§ 4.3.

7.2.1 Uniform backgrounds

Uniform, introduced in § 3.1, is the dataset with a simple, almost uniform,

background of varying thickness with two areas containing phantoms. The

54

overall accuracy for the model evaluated on this dataset is 0.962 compared to

a baseline of 0.870.
7

7. The baseline from predicting no

foreign object on every window.

This is 0.025 lower than the score for the Mixed Test
Set. This is mainly due to the fact that the model was not trained on these

images. Nevertheless, the dataset itself was supposedly "easier" to predict on,

given that the background is comparably uniform. One could imagine that

this accuracy depends on the thickness of the background, since increasing

thickness reduces the signal-to-noise ratio of the foreign elements. This

relationship is plotted in Fig. 7.8. Shown is the full picture accuracy for the 47

pictures in Uniform, with the mean of the full picture accuracy as a function

of the number of POM plates
8

8. i.e. thickness of background.plotted in blue and orange, respectively. The

errorsbars represent the standard error on the mean. It initially seems hard

to conclude that varying the thickness in itself a�ects the performance of the

model, even though there is a trend showing degrading performance as the

number of POM plates increase past 11 plates.

1 3 5 7 9 11 13 15 17
POM plates

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Accuracy pr. full picture
Mean of Accuracy
Mixed test accuracy

Figure 7.8: Thickness (# POM plates)

vs Accuracy. In blue is shown the

single picture accuracy (ratio of

correctly predicted windows). The

mean is plotted in orange, with the

standard error on the mean shown

as symmetrical errorbars. The green

line is the accuracy, of 98.74%, on the

full Test Set.

Taking a closer look at the drop in accuracy, we can repeat the full picture

evaluation from last section, § 7.1. The full picture with the lowest accuracy, of

0.924, is chosen to visualize the performance of, in Fig. 7.9. As in the previous

section, the low energy channel of the image is plotted in the �rst column.

My labelling of the foreign objects, as bounding boxes, is superimposed in

red. The green square shows the size of a 32 × 32 window.

In the second column, we have the windows which was predicted positive.

The performance seems to have worsened, compared to Fig. 7.7. Many

positive predictions do not overlap with any red squares. This is con�rmed

when looking at the false positive predictions, in the third column: The

number of false positives have increased. Finally, roughly half of the false

negative predictions, plotted in the fourth column, shows the same behaviour

as in Fig. 7.7. These are the rightmost phantoms, and they barely overlap a

55

bounding box. These could be artefacts of the sliding window approach. The

other half, on the left side, shows the model missing some foreign objects.

The network does not make any mistakes on the background outside the box

being scanned. This was also the case in the examples in Fig. 7.7, and in that

sense, the network has learned to spot uncovered conveyor belt.

Image

B.Box of FOs
Window size

Predicted Positives False Positives False Negatives

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 7.9: The model applied on an image belonging to Uniform. I have chosen the image where the model performed the worst. In

the �rst column the low energy channel of the image is plotted, with my labelling of bounding boxes of foreign objects (red) on top.

The green square in the corner indicates the sliding window size. The second column shows the windows predicting a foreign objects,

each contributing 0.25. Due to the overlap, up to four windows can predict positive for each area giving a maximum value of 1.0. The

last two columns show the false positives and false negatives, respectively.

7.2.2 Dataset dependence

This subsection studies the ability to generalize of the CNN approach trained

on limited data. After all, all the available data is lab data, in the sense that

it is created explicitly for developing and testing algorithms. This lab data

has to be representative for the underlying distribution for the reported test

accuracies to be trustworthy. Thus, it is naturally of interest to know whether

your training sample is biased, and what the possible consequences would be.

It is unknown to what extend the lab data is biased compared to the eventual

use-cases of the Meat Master II. On the other hand, we have tried to analyse

the possible consequences of bias by simulating the case of partial data.

We split the Mixed dataset into its constituent parts: Cirles (Ci), Squares
(Sq) and Pens (Pe). Then, the model was trained on each partial dataset

56

Accuracy Trained on Ci Trained on Sq Trained on Pe
Test Ci w/ AFO=0 0.9940 0.9897 0.9522
Test Sq w/ AFO=0 0.9379 0.9951 0.8246

Test Pe w/ AFO=0 0.9594 0.9694 0.9778
Test Ci w/ AFO=1 0.9948 0.9917 0.9433

Test Sq w/ AFO=1 0.9195 0.9957 0.9357
Test Pe w/ AFO=1 0.9579 0.9677 0.9772

Table 7.1: Accuracy for di�erent combinations of training and test datasets. The columns

represent the data trained on, with the rows being the data tested on. Ci, Sq and Pe are

short for Cirles, Squares and Pens. The table is divided in two, with Arti�cial Foreign

Objects added (AFO=1) and without (AFO=0). In the diagonals (blue background) the model

is evaluated on the corresponding validation set. The best accuracy between the two tables

with and without arti�cial foreign objects is written in bold font.

alone, and then evaluated the resulting model on all three datasets.
9

9. When evaluated on the dataset

it was trained with, we report

the result from the validation

set. Where as evaluating on

a di�erent dataset the entire

dataset was used a validation set.

Thus,

this is an attempt to approximate the potential real world case of training

the model on data from a biased sample. Furthermore, this might give some

insight into which dataset is the most powerful one to generalize from. Finally

the addition arti�cial foreign objects is evaluated in this context as well. In

order to make a fair comparison between the binary choice of whether to use

arti�cial foreign objects, we optimized an extra hyperparameter in my runs.

Namely, the weight given to the positive labels in the loss functions. This

weight rebalance the ratio of positive to negative labels of the windows in the

loss function. Introducing arti�cial foreign objects also moves this balance

by turning 20% of the negatives to positives. This potentially makes the

extra weighting of positives unnecessary for convergence. For each dataset

we tested three di�erent weights 1, 2, 4, and chose the optimal one using

cross-validation. Thus for the following we used a weight of 2 when training

without arti�cial foreign objects. With arti�cial foreign objects the weight

was 1 for training on Squares and Pens, and 2 when training on Circles.

The accuracy is presented �rst. Table 7.1 shows the 3 × 3 × 2 = 18 di�erent

accuracies the models obtains.
10

10. 3 datasets used for training, the

same 3 datasets as possible test

sets, and �nally with and without

arti�cial foreign objects, 2.

The bold font marks the best performance

with and without arti�cial foreign objects. We notice two things: First, in both

tables, the accuracy drops o� the diagonals. This shows that all performance

drops when evaluated out of distribution. This drop in accuracy is especially

pronounced when the model was trained on Circles or Pens. The smallest

drop in accuracy is when the model is trained on Squares. This shows that

the training dataset needs to be carefully selected to represent the full range

of foreign objects likely in meat samples. Secondly, it does not seem like the

addition of synthetic data changes the lowering of accuracy o� the diagonal.

Introducing more positive windows in our training can potentially move the

balance between false positives and false negatives, which the accuracy does

not re�ect. To explore this the ROC-curves are shown in Fig. 7.10. When

not trained on Squares (Column 1 and 3) the addition of arti�cial foreign

57

AUC Trained on Ci Trained on Sq Trained on Pe
Test Ci w/ AFO=0 0.9957 0.9781 0.9860
Test Sq w/ AFO=0 0.8955 0.9785 0.9166

Test Pe w/ AFO=0 0.9531 0.9521 0.9781
Test Ci w/ AFO=1 0.9920 0.9825 0.9834

Test Sq w/ AFO=1 0.9434 0.9763 0.9697
Test Pe w/ AFO=1 0.9557 0.9526 0.9779

Table 7.2: AUC for di�erent combinations of training and test datasets. The columns represent

the data trained on, with the rows being the data tested on. Ci, Sq and Pe are short for Cirles,
Squares and Pens. AFO indicates whether the model used arti�cial foreign objects to create

synthetic data. In the diagonals (blue background) the model is evaluated on the corresponding

validation set. The best AUC between the two tables with and without arti�cial foreign objects

is written in bold font.

objects drastically improves the curves when tested on Squares (orange).

Table 7.2 shows this improvement re�ected in the AUCs in the second row

of each table. The di�erence AUC is approximately increased by 0.05 when

using arti�cial foreign objects. The lower left triangle is of special interest,

since this area represents training on a comparatively simpler dataset to the

ones tested on. That the AUC is increased here is encouraging.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Trained on Ci

Test Ci w/ AFO=0
Test Ci w/ AFO=1

Test Sq w/ AFO=0
Test Sq w/ AFO=1

Test Pe w/ AFO=0
Test Pe w/ AFO=1

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Trained on Sq

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Trained on Pe

0.0 0.1 0.2

0.8

0.9

1.0
0.0 0.1 0.2

0.8

0.9

1.0
0.0 0.1 0.2

0.8

0.9

1.0

Figure 7.10: ROC-curves showing model performance. Each column corresponds to di�erent training sets: Cirles (Ci), Squares (Sq)

and Pens (Pe). The blue, orange and green curves correspond to testing on Cirles, Squares and Pens, respectively. The opaque curve

corresponds to training without arti�cial foreign objects (AFO=0).

In summary, the performance drops whenever the model is applied outside

of the training domain. This is the case when we apply it to some supposedly

simple data such as Uniform. Furthermore, this is also seen for training

on the constituent parts of Mixed. This is not over�tting since the model

58

performs well on the dataset that it is trained on. The problem is instead that

this performance does not translate to other datasets. We saw that measured

on the accuracy we can not conclude the using arti�cial foreign objects im-

prove our result. There was a clear e�ect on some of the ROC-curves though.

These are in many ways a more thorough way to evaluate performance, and

the increase here shows that Arti�cial Foreign Objects can help the modelling

process.

59

contents

8 Discussion and Conclusion 61

8.1 Discussion 61

8.1.1 Data 61

8.1.2 Model 62

8.2 Conclusion 63

8.3 Future Work 63

60

8D I SCUSS ION AND CONCLUS ION

This chapter is split into three sections: Discussion, Conclusion and Future

Work.

8.1 discussion

We have not achieved the performance we had hoped for when starting the

project. This can be due to limits of the data § 8.1.1 or of the model § 8.1.2.

8.1.1 Data

The central assumption of this work is that the available data represents the

real world usage of the model. If this is not the case, the reported result will

be severely biased. Some e�ects of this was explored in § 7.2. For the test

on Uniform the drop in performance is not necessarily as bad as it seemed.

These were the only background which was not meat. In that sense they

were one large foreign object, and alternatively the algorithm should in fact

predict all the windows of the whole image to be foreign objects. The real

problem was discussed in section § 7.2.2. The performance, whether accuracy

or Area Under the ROC-Curve (AUC), drops when the models are tested on

unseen data. This shows that one has to be careful when collecting data to

train on. An alternative to lab data would be a setup with online learning

directly from the real world usage of the Meat Master II. This has its own

set of challenges, but presumably the problem of domain shift is not one of

them. For an overview of the general problems of domain shift I refer to [57].

Relabelling the foreign objects could increase the performance with three

potential improvements. 1) The data should have been labelled using the

polynomial method § 3.2. Our model managed to converge, but it was clear

that the bounding boxes bordering foreign objects was a problem. 2) Another

problem with the labelling was that I labelled all foreign objects equally.

They were made out of di�erent materials, steel and aluminium, since they

were meant to represent di�erent things, such as metal or bone. This extra

information was lost. 3) Furthermore, three items were consistently left out

of the labelling. Including these would have increased the potential of the

algorithm.

The implementation of the arti�cial foreign objects could have been improved

61

in at least three ways. 1) The idea with adding arti�cial foreign objects as a

transformation was that it is possible to update this transformation on the

�y. In that sense one could monitor for which parameters, size or shapes,

the algorithm performed worst and then introduce more of these arti�cial

foreign objects. I never got to implement this is in full, but this is one of the

advantages of using the transformation approach. 2) To approximate the

attenuation coe�cients of metal we chose the four maximum values from

each randomly drawn bounding box. This is rather arbitrary. Perhaps, it

would have been better to model a distribution of attenuation coe�cients

to draw from. 3) We originally had a cut-o� on the algorithm, to make sure

that when the background was subtracted the lowest value would be around

zero, otherwise the drawn bounding box would be discarded. This was

removed since we normalized the images before creating examples without

background.

8.1.2 Model

In machine learning it is common to test new results against baselines. The

obvious baseline to use for this study would be FOSS’ current implementation

of their foreign object detection algorithm. Their algorithm is based on some

clever thresholding. While, the algorithm would be nice to test against in

theory, this would introduce new complications regarding secrecy. The lack

of baseline makes it harder to interpret the accuracy of 0.9874. Based on my

impression collaborating with FOSS I do still think it is safe to say that this

accuracy is too low for real world usage. For FOSS’ customers it is expensive

to stop the production if the Meat Master II �ags a crate of meat as containing

a foreign object. Thus the false positive rate needs to be as low as possible

from a cost standpoint. O� course the �nal consumer of the meat might be

more concerned with the number of false negatives, and thus we are back at

the classical trade-o� problem.

The sliding window algorithm plays a large role in the shaping of the al-

gorithm. But other methods could have been used to generate images for

a Convolutional Neural Network (CNN). An alternative would be to use a

random crop of the full images as input. This is then combined with rescaling

to �x the size of the input to a common value. The number of available

images was small, and the pixels have very consistent physical interpretation,

i.e. the absorption of the beam. This made the sliding windows approach a

good choice since there is no rescaling, and it lets us keep the images of a

size corresponding to the foreign objects.

As a tangential project, the family of Adaptive Moment Estimations (Adams)

was explored. My intial critia for choosing those to work with was that

they should be orthogonal to each other, and not introduce too many new

hyperparameters to tune. Unfortunately, it was not possible to incorporate

62

AdaBelief into AdamRNW due the time of publication of AdaBelief [42]. I

chose a small subset of Adams to work with, and this choice was guided

by what I perceived to be the most promising. This belief was informed by

reading [42] and [41], but there are a few alternatives of special interest. The

�rst is Yogi [39] which is similar to AdaBelief, and the second is Ranger [58]

which is more like my mix of ideas in AdamRNW.

8.2 conclusion

We have trained a model to predict foreign objects with an estimated accuracy

of 98.74% on 32 × 32 windows. This, I believe, is not good enough for real

world use, but some interesting observations have been made along the

way. There is a very real detrimental e�ect of testing on data outside of

our training distribution. Thus, in order to train a working model, both

the labelling and the training sample has to represent the real world usage

closely. It is possible to create simulated data of arti�cial foreign objects that

increases performance as measured by the AUC.

8.3 future work

The preprocessing of the images from raw outputs to �nal absorption mea-

surement was done entirely by FOSS. This step is crucial for the signal to

noise ratio, and to remove systematic variations caused by imperfect detec-

tors. I believe that implementing these models in a full setup should not be

done independently of the preprocessing. Another master’s thesis carried

out at the eScience group [59] made a detailed pipeline for optimizing x-ray

images for a similar test, spotting foreign objects in potatoes. The approach

relied on a larger amount of preprocessing algorithms also in the context of

applying a CNN at the end. Testing these results with FOSS’ images seems

like an obvious next step.

One could also use more advanced models with the pixelwide labelling such

as YOLOv4 [60] or Faster R-CNN [61] or another one from [62]. These apply

more advanced architectures with many more parameters, it would be of

exciting to apply these here. It would go well with the polynomial labelling

since they require pixel accuracy in the labels.

63

APPEND I X

A TABLE OF ADAM

If we de�ne the bias corrections, and the non-forgetting as the following:

�8 (G, C) =
G

(1 − VC
8
) ,

"8 (E1, ..., EC) = max(EC , EC−1).

We can write an overview of the di�erent versions of Adaptive Moment

Estimation (Adam) as in table A.1.

EC \C − \C−1

Adam �2(V2 · EC−1 + (1 − V2) · 62

C) −UC <C√
EC+n

NAdam . − UC√
EC+n · (V1<C + �1((1 − V1)6C))

Amsgrad " (EC) .

PAdam " (EC) −UC <C
(EC)?+n

Yogi �2(EC−1 − (1 − V2)sign(V2EC−1 − 6C 2)6C 2) .

AdamW* . −UC <C√
EC+n −F3 · \C−1

RAdam** . −
√
(dC−4) (dC−2)d∞
(d∞−4) (d∞−2)dC UC

<C√
EC

AdaBound . −Clip(UC√
+C
, [; (C), [D (C)) ·<C

Table A.1: * AdamW. ** RAdam.

66

B I B L IOGRAPHY

[1] “Wilhelm Conrad Röntgen”. da.

In: Wikipedia, den frie encyklopædi (Nov. 2020) (Cited on p. 2).

[2] The Nobel Prize in Physics 1901-2000. en-US.

https://www.nobelprize.org/prizes/uncategorized/the-nobel-prize-

in-physics-1901-2000-2

(Cited on p. 2).

[3] Ronald P. Ha� and Natsuko Toyofuku. “X-Ray Detection of Defects

and Contaminants in the Food Industry”. en.

In: Sensing and Instrumentation for Food Quality and Safety 2.4 (Dec.

2008), pp. 262–273. issn: 1932-7587, 1932-9954.

doi: 10.1007/s11694-008-9059-8 (Cited on p. 2).

[4] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton.

“Deep Learning”. en. In: Nature 521.7553 (May 2015), pp. 436–444.

issn: 0028-0836, 1476-4687. doi: 10.1038/nature14539 (Cited on p. 2).

[5] FOSS. MeatMaster_II_One_pager_GB (Cited on p. 2).

[6] 100% Meat Analysis with FOSS X-Ray Analyser Installed Inline. en.

https://www.fossanalytics.com/en/products/meatmaster-ii

(Cited on p. 2).

[7] CBC News · Posted: Nov 28, 2016 7:01 AM AT |

Last Updated: November 28, and 2016.

Halifax Police Investigating after Needle Found in Potato | CBC News. en.

https://www.cbc.ca/news/canada/nova-scotia/halifax-pei-potato-

needle-no-injuries-1.3870465. Nov. 2016

(Cited on p. 2).

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016 (Cited on pp. 3, 31, 32, 43).

[9] Glenn F. Knoll. Radiation Detection and Measurement. en. 3rd ed.

New York: Wiley, 2000. isbn: 978-0-471-07338-3 (Cited on p. 5).

[10] X-Ray Optics Calculator.
http://purple.ipmt-hpm.ac.ru/xcalc/xcalc_mysql/ref_index.php

(Cited on p. 7).

[11] Lecture 3 : Accelerated Charges and Bremsstrahlung.

http://www.astro.utu.�/~c�ynn/astroII/l3.html (Cited on p. 8).

67

https://doi.org/10.1007/s11694-008-9059-8
https://doi.org/10.1038/nature14539

[12] Efrat Shefer et al. “State of the Art of CT Detectors and Sources: A

Literature Review”. en. In: Current Radiology Reports 1.1 (Mar. 2013).

Læs dual-energy del, pp. 76–91. issn: 2167-4825.

doi: 10.1007/s40134-012-0006-4 (Cited on pp. 9, 11).

[13] Thorbjørn Louring Koch. Online Inspection of X-Ray Images. Nov. 2017

(Cited on p. 9).

[14] darrenl. Tzutalin/labelImg. Oct. 2020 (Cited on p. 16).

[15] Kentaro Wada. Wkentaro/Labelme. Oct. 2020 (Cited on p. 16).

[16] Je� Clune. “AI-GAs: AI-Generating Algorithms, an Alternate

Paradigm for Producing General Arti�cial Intelligence”. en.

In: arXiv:1905.10985 [cs] (Jan. 2020). arXiv: 1905.10985 [cs]
(Cited on p. 17).

[17] Yann A. LeCun et al. “E�cient BackProp”. en.

In: Neural Networks: Tricks of the Trade: Second Edition. Ed. by

Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller.

Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 2012, pp. 9–48. isbn: 978-3-642-35289-8.

doi: 10.1007/978-3-642-35289-8_3 (Cited on p. 21).

[18] Torchvision.Transforms — PyTorch 1.7.0 Documentation.

https://pytorch.org/docs/stable/torchvision/transforms.html

(Cited on p. 21).

[19] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. “Cut, Paste and

Learn: Surprisingly Easy Synthesis for Instance Detection”. en.

In: 2017 IEEE International Conference on Computer Vision (ICCV).
Venice: IEEE, Oct. 2017, pp. 1310–1319. isbn: 978-1-5386-1032-9.

doi: 10.1109/ICCV.2017.146 (Cited on pp. 22, 23).

[20] Ian Goodfellow et al. “Generative Adversarial Nets”. en. In: (), p. 9

(Cited on p. 22).

[21] Diederik P. Kingma and Max Welling.

“Auto-Encoding Variational Bayes”.

In: arXiv:1312.6114 [cs, stat] (May 2014). arXiv: 1312.6114 [cs, stat]
(Cited on p. 22).

[22] Rasmus Skov Johannesson. Generating Realistic Arti�cial Xray Images
of Highly Homogeneous Food Items (Cited on p. 22).

[23] Python - Create Random Shape/Contour Using Matplotlib.

https://stackover�ow.com/questions/50731785/create-random-shape-

contour-using-matplotlib. ImportanceOfBeingErnest

(Cited on pp. 25, 26).

[24] “Bézier Curve”. en. In: Wikipedia (Nov. 2020) (Cited on p. 25).

68

https://doi.org/10.1007/s40134-012-0006-4
https://arxiv.org/abs/1905.10985
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1109/ICCV.2017.146
https://arxiv.org/abs/1312.6114
https://stackoverflow.com/users/4124317/importanceofbeingernest

[25] Jacek Cichoń and Zbigniew Golębiewski.

“On Bernoulli Sums and Bernstein Polynomials”. en. In: (), p. 13

(Cited on p. 25).

[26] Christian Szegedy et al.

“Rethinking the Inception Architecture for Computer Vision”.

In: arXiv:1512.00567 [cs] (Dec. 2015). arXiv: 1512.00567 [cs]
(Cited on p. 33).

[27] Tong He et al. “Bag of Tricks for Image Classi�cation with

Convolutional Neural Networks”. en. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).
Long Beach, CA, USA: IEEE, June 2019, pp. 558–567.

isbn: 978-1-72813-293-8. doi: 10.1109/CVPR.2019.00065 (Cited on p. 33).

[28] H. Robbins. “A Stochastic Approximation Method”. In: (2007).

doi: 10.1214/aoms/1177729586 (Cited on p. 35).

[29] J. Kiefer and J. Wolfowitz.

“Stochastic Estimation of the Maximum of a Regression Function”. EN.

In: Annals of Mathematical Statistics 23.3 (Sept. 1952), pp. 462–466.

issn: 0003-4851, 2168-8990. doi: 10.1214/aoms/1177729392
(Cited on p. 35).

[30] Sebastian Ruder.

“An Overview of Gradient Descent Optimization Algorithms”. en.

In: arXiv:1609.04747 [cs] (June 2017). Comment: Added derivations of

AdaMax and Nadam

Comment: Added derivations of AdaMax and Nadam.

arXiv: 1609.04747 [cs] (Cited on p. 35).

[31] Ning Qian. “On the Momentum Term in Gradient Descent Learning

Algorithms”. en. In: Neural Networks 12.1 (Jan. 1999), pp. 145–151.

issn: 0893-6080. doi: 10.1016/S0893-6080(98)00116-6 (Cited on p. 35).

[32] Yurii E. Nesterov. “A Method for Solving the Convex Programming

Problem with Convergence Rate O (1/K2̂)”. In: Dokl. Akad. Nauk Sssr.
Vol. 269. 1983, pp. 543–547 (Cited on p. 35).

[33] Ilya Sutskever et al. “On the Importance of Initialization and

Momentum in Deep Learning”. en. In: (), p. 14 (Cited on p. 35).

[34] Timothy Dozat.

“INCORPORATING NESTEROV MOMENTUM INTO ADAM”. en.

In: (2016), p. 4 (Cited on pp. 35–37).

[35] Diederik P. Kingma and Jimmy Ba.

“Adam: A Method for Stochastic Optimization”.

In: arXiv:1412.6980 [cs] (Jan. 2017). Comment: Published as a

conference paper at the 3rd International Conference for Learning

69

https://arxiv.org/abs/1512.00567
https://doi.org/10.1109/CVPR.2019.00065
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729392
https://arxiv.org/abs/1609.04747
https://doi.org/10.1016/S0893-6080(98)00116-6

Representations, San Diego, 2015. arXiv: 1412.6980 [cs]
(Cited on p. 36).

[36] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar.

“ON THE CONVERGENCE OF ADAM AND BEYOND”. en.

In: (2018), p. 23 (Cited on p. 36).

[37] Jinghui Chen and Quanquan Gu.

“Padam: Closing the Generalization Gap of Adaptive Gradient

Methods in Training Deep Neural Networks”. In: (Sept. 2018)

(Cited on p. 36).

[38] Ilya Loshchilov and Frank Hutter.

“Fixing Weight Decay Regularization in Adam”. In: (Feb. 2018)

(Cited on pp. 36, 37).

[39] Manzil Zaheer et al.

“Adaptive Methods for Nonconvex Optimization”.

In: Advances in Neural Information Processing Systems 31.
Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 9793–9803

(Cited on pp. 36, 63).

[40] Liyuan Liu et al.

“On the Variance of the Adaptive Learning Rate and Beyond”.

In: arXiv:1908.03265 [cs, stat] (Apr. 2020). Comment: ICLR 2020. Fix

several typos in the previous version. arXiv: 1908.03265 [cs, stat]
(Cited on pp. 36, 37).

[41] Liangchen Luo et al.

“Adaptive Gradient Methods with Dynamic Bound of Learning Rate”.

In: International Conference on Learning Representations. Sept. 2018

(Cited on pp. 36, 38, 63).

[42] Juntang Zhuang et al. “AdaBelief Optimizer: Adapting Stepsizes by

the Belief in Observed Gradients”.

In: arXiv:2010.07468 [cs, stat] (Oct. 2020).

arXiv: 2010.07468 [cs, stat] (Cited on pp. 36, 38, 63).

[43] Ashia C Wilson et al. “The Marginal Value of Adaptive Gradient

Methods in Machine Learning”.

In: Advances in Neural Information Processing Systems 30.

Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4148–4158

(Cited on p. 36).

[44] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural

Networks from Over�tting”. In: The Journal of Machine Learning
Research 15.1 (Jan. 2014), pp. 1929–1958. issn: 1532-4435

(Cited on pp. 42, 46).

[45] Damian Podareanu et al. “Best Practice Guide - Deep Learning”. en.

In: Deep Learning (), p. 51 (Cited on pp. 42, 43).

70

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/2010.07468

[46] Vinod Nair and Geo�rey E Hinton.

“Recti�ed Linear Units Improve Restricted Boltzmann Machines”. en.

In: (), p. 8 (Cited on p. 44).

[47] Rikiya Yamashita et al. “Convolutional Neural Networks: An

Overview and Application in Radiology”. en.

In: Insights into Imaging 9.4 (Aug. 2018), pp. 611–629. issn: 1869-4101.

doi: 10.1007/s13244-018-0639-9 (Cited on p. 44).

[48] Xavier Glorot, Antoine Bordes, and Yoshua Bengio.

“Deep Sparse Recti�er Neural Networks”. en.

In: The Journal of Machine Learning Research 15 (June 2011), p. 9

(Cited on p. 44).

[49] Sergey Io�e and Christian Szegedy.

“Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift”. en.

In: International Conference on Machine Learning. PMLR, June 2015,

pp. 448–456 (Cited on pp. 44, 45).

[50] Tim Salimans and Durk P. Kingma.

“Weight Normalization: A Simple Reparameterization to Accelerate

Training of Deep Neural Networks”. en. In: Advances in Neural
Information Processing Systems 29 (2016), pp. 901–909

(Cited on pp. 44, 45).

[51] Shibani Santurkar et al.

“How Does Batch Normalization Help Optimization?”

In: arXiv:1805.11604 [cs, stat] (Apr. 2019). Comment: In NeurIPS’18.

arXiv: 1805.11604 [cs, stat] (Cited on p. 45).

[52] Jonathan Frankle, David J. Schwab, and Ari S. Morcos.

“Training BatchNorm and Only BatchNorm: On the Expressive Power

of Random Features in CNNs”. In: arXiv:2003.00152 [cs, stat] (June

2020). Comment: NeurIPS submission. arXiv: 2003.00152 [cs, stat]
(Cited on p. 45).

[53] Geo�rey E. Hinton et al. “Improving Neural Networks by Preventing

Co-Adaptation of Feature Detectors”. en.

In: arXiv:1207.0580 [cs] (July 2012). arXiv: 1207.0580 [cs]
(Cited on p. 46).

[54] Xiang Li et al. “Understanding the Disharmony Between Dropout and

Batch Normalization by Variance Shift”. en. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
Long Beach, CA, USA: IEEE, June 2019, pp. 2677–2685.

isbn: 978-1-72813-293-8. doi: 10.1109/CVPR.2019.00279 (Cited on p. 46).

[55] Matthew D. Zeiler and Rob Fergus.

“Visualizing and Understanding Convolutional Networks”.

71

https://doi.org/10.1007/s13244-018-0639-9
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/2003.00152
https://arxiv.org/abs/1207.0580
https://doi.org/10.1109/CVPR.2019.00279

In: arXiv:1311.2901 [cs] (Nov. 2013). arXiv: 1311.2901 [cs]
(Cited on p. 51).

[56] “Domain Adaptation”. en. In: Wikipedia (Nov. 2020) (Cited on p. 54).

[57] Alexander D’Amour et al. “Underspeci�cation Presents Challenges

for Credibility in Modern Machine Learning”.

In: arXiv:2011.03395 [cs, stat] (Nov. 2020).

arXiv: 2011.03395 [cs, stat] (Cited on p. 61).

[58] Less Wright. Lessw2020/Ranger-Deep-Learning-Optimizer. Oct. 2020

(Cited on p. 63).

[59] Aleksandar Topic. Adaptive X-Ray Inspection System (AXIS). en

(Cited on p. 63).

[60] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.

“YOLOv4: Optimal Speed and Accuracy of Object Detection”. en.

In: arXiv:2004.10934 [cs, eess] (Apr. 2020).

arXiv: 2004.10934 [cs, eess] (Cited on p. 63).

[61] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks”. en.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 39.6

(June 2017), pp. 1137–1149. issn: 0162-8828, 2160-9292.

doi: 10.1109/TPAMI.2016.2577031 (Cited on p. 63).

[62] Papers with Code - COCO Test-Dev Benchmark (Object Detection). en.

https://paperswithcode.com/sota/object-detection-on-coco

(Cited on p. 63).

72

https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/2011.03395
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/TPAMI.2016.2577031

colophon

This document was typeset using the custom LATEX 2Y document class jespersthesis
which is almost identical to dionsthesis by Dion Haefner, based on uiothesis
developed by Eivind Uggedal. It uses Minion Pro, developed at Adobe Sys-

tems, and Fira Sans, developed by the Mozilla Foundation, as body fonts.

	Front matter
	Acknowledgments
	Abstract
	Contents
	Acronyms

	X-ray physics and setup
	Introduction
	X-ray images
	Photons
	Photoelectric absorption
	Compton Scattering
	Pair production
	Coherent Scattering

	Attenuation contrast
	Creation and Detection of X-rays
	X-ray tubes & Bremsstrahlung
	Detector

	Dual energy
	Dual energy scintillator

	Data Presentation
	FOSS images
	Labelling

	Foreign object detection with deep learning
	Data Processing
	Sliding window
	Training and test split
	Distributional Statistics

	Data transformations
	Standardization
	Rotations and mirroring

	Artificial foreign objects
	Gathering the Foreign Objects
	Creating Random Shapes
	New windows
	AFO transformation

	Learning
	Supervised learning
	Loss function
	Label Smoothing
	Regularization

	Optimizers
	Stochastic gradient descent
	Adam & its derivatives

	Neural Networks
	Network Connections
	Fully connected neural network
	Convolutional neural network
	Max-pooling
	Backpropagation

	Non-linearity
	ReLU

	Normalization
	Batch Normalization
	Weight normalization

	Regularization
	Dropout

	Model

	Foreign object detection
	Evaluation of Model
	Test set evaluation
	Occlusion test
	Full picture evaluation

	Bounds on generalization
	Uniform backgrounds
	Dataset dependence

	Discussion and Conclusion
	Discussion
	Data
	Model

	Conclusion
	Future Work

	Appendix
	Table of Adam

	Bibliography
	Colophon

