MATHEMATICAL MODELLING OF BONE
MICROSTRUCTURE

JAMES-IESTYN WATKIN

Thesis for the M.Sc. degree in physics

August 6 2021



James-lestyn Watkin: Mathematical Modelling of Bone Microstructure,
Thesis for the M.Sc. degree in physics, © August 6 2021

SUPERVISORS:
James Avery

DEPARTMENTS:

The Niels Bohr Institute
Faculty of Natural Sciences
University of Copenhagen

LOCATION:
Copenhagen

DATE OF SUBMISSION:
August 6 2021

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosi¢. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available for both
EIEX and LyX:

https://bitbucket.org/amiede/classicthesis/


https://bitbucket.org/amiede/classicthesis/

I love my girlfriend. Like a lot. She’s amaxing.

— James-lestyn Watkin I swear



ABSTRACT

Micrometer-scale resolution synchrotron micro-CT 3D images provide
some of the highest quality and clearest three dimensional images of
the microstructure of bone that we can create. However, due to physical
distortion effects there are problems when trying to systematically
make quantitative analysis of bone based on these images. If we could
remove those distortion effects such an analysis would be possible.

In this thesis, I have designed and developed algorithms to automat-
ically analyze these images to reduce and remove these distortions. I
have done this by combining spatial dependencies in the probability
distributions of these images; to segment them into air, blood vessels,
bone and titanium. This research has shown that whilst it is possible
to reduce the effect of the distortions, it is very challenging to remove
them entirely, though this should give a benefit to the MAXIBONE
project in general, as it brings the automatic and systematic analysis
of bone even closer.

Further work is required to automatically analyse the segmented
tomograms to quantify bone-contact and blood flow to the implants
around which the new bone grows.

iv



FOREWORD AND ACKNOWLEDGMENTS

Due to time constraints, both aspects of the project and this thesis
remain incomplete at the time of submission. In addition due to a
number of technical issues the font size of some of the figures is very
small, please zoom in to fully appreciate them. I hope you can find
some method to my madness within.

I would like to thank my partner, Karen Alavi, for putting up with
me throughout this process. I would like to thank my son, Milo, for
being a talkative new addition to this journey. Finally I would like
to thank my supervisor, James, for the patience and support he has
shown. Without any of these people I owuld not have been able to
ramble on for countable pages in this document .



CONTENTS

INTRODUCTION xi

I THEORY
SYNCHROTRON X-RAY TOMOGRAPHY
2 COMPOSITION OF BONE 5

II METHOD

3 PROGRAMMING LANGUAGE 7
4 FINDING THE MATERIALS IN A SINGLE TOMOGRAM SLICE 8
5 ENTIRE TOMOGRAM 10
6 INTERPOLATION 13

IIT RESULTS AND DISCUSSION

7 SINGLE TOMOGRAM SLICE 15
8 ENTIRE TOMOGRAM 22
INTERPOLATION 27

IV CONCLUSION
10 CONCLUSION AND FURTHER WORK 33

BIBLIOGRAPHY 34

V. APPENDIX
A APPENDIX: SCRIPTS 36

Vi



LIST OF FIGURES

Figure 4.1

Figure 4.2

Figure 5.1

Figure 7.1

An example of a tomogram slice, labelled 770-
slice-1500-1505 in the dataset. This slice is a
good representation of a typical tomogram in
the dataset, as it contains all the materials were
are searching to identify. Note: the bright region
in the centre of the slice, this is the titanium
implant, the area above the bright centre, the
air, and the area surrounding and below the
slice; bone, blood vessels and resin. . . . . . . .
A histogram of the intensities present in the
example slice. Note the peaks corresponding to
the various materials present in the slice. There
are two large peaks, which likely are due to the
air and bone present in the image, and between
them a series of smaller peaks, due to blood
vessels and other impurities. Then the highest
intensity peak is the titanium implant, which
can be seen as a low, non-gaussian peak at the
rightmost point of the histogram. . . . . . . ..
This is a histogram of the intensity values for
the tomogram slice at 1024 located in the y-z
plane. The part of the histogram coloured in
red is a peak that has been identified. Notice
the height, size and shape of that peak relative
to the peaks around it. This large difference
in height caused issues when trying to auto-
matically bound the exponential which was
intended to fit to that peak. . .. ... ... ..
A histogram of the intensities present in tomo-
gram 770-slice-1500-1505. Each region, which
is caused by the presence of a specific material,
has been coloured and labelled. . . . . . .. ..

vii



Figure 7.2

Figure 7.5

Figure 7.6

LIST OF FIGURES

These are representative components of the to-
mogram slice, 770-slice-1500-1505. Each image
highlights a material present in the sample. (a)
is the air present, it tends to be a uniform area
in the top part of the tomogram slice in the y
- z plane. (b) the blood vessels present in the
bone. Centred in the image, is a large blood ves-
sel, but note the smaller blood vessels present
throughout the main bone structure surround-
ing the blood vessel, identifiable only as dark
flecks. (c) is an example of the bone present
in the sample. Again, there are blood vessels
present throughout the bone, visible as small
dark spots of varying shapes and sizes. Finally
(d) is an example of the titanium alloy present
in the sample, it is a very bright, and therefore
dense, region of the tomogram. . . . .. .. ..
The material classification probability represen-
tations of the tomogram for one slice. These
represent (a) air, (b) blood vessels, (c) bone, (d)
titanium alloy. They were calculated using only
four exponentials in the curve, one for each
peak present in the data. The colour of the im-
age represents the probability that a specific
voxel is of the material titled. The important
features to note are the blood vessels near to the
titanium implant which have been misclassified
as bone with this analysis, and the resin which
has been classified as blood vessel, due to its
similar position in the intensity. . . . . . .. ..
The material classification probability represen-
tations of the tomogram for one slice. These
represent (a) air, (b) blood vessels, (c) bone,
(d) titanium alloy. They were calculated us-
ing only six exponentials in the curve, two for
the two largest peaks and one for each other
peak present in the data. They are qualitatively
very similar to the probability distributions pro-
duced with four exponentials making up the
fitted curve. . ... ... o L

20

viii



Figure 8.1

Figure 8.2

Figure 8.3

LIST OF FIGURES

These images represent the peaks in the his-
tograms through x, where each histogram is a
slice in the y-z plane. (a) is the image of these
histograms, with the height of the peak, or the
intensity, represented by brighter colours. Note
the titanium implant midway through the slices
and at a high intensity. It is also easy to see the
effect of spatial position from this image, as
the peaks curve at their start and end points,
usually near interfaces. This will be due to the
beam hardening phenomenon. (b) shows the
lines detected automatically across the space,
with each line having a different colour to sig-
nify it’s individuality. . . ... ... ... ...
These are the probability distributions for each
material across the entire range of tomograms.
These curves were fitted using a least squares
method. The colour represents the probability
that a voxel in that spatial location and at that
intensity is a part of the material. The lines
that correspond to definite materials are (6) ti-
tanium, (7) air, (8) bone and (9) blood vessels.
The minor lines (1) and (5) represent some im-
purities in the sample. Material (9) is a great
example of poor continuity which is not pe-
nalised by the least squares method. . . . . . .
These are the probability distributions for each
material across the entire range of tomograms.
These curves were fitted by using a minimise
method on an energy function. The colour rep-
resents the probability that a voxel in that spa-
tial location and at that intensity is a part of
the material. The lines that correspond to defi-
nite materials are (6) titanium, (7) air, (8) bone
and (9) blood vessels. The minor lines (1) and
(5) represent some impurities in the sample. In
comparison to the least squares method mate-
rial (9) has far better continuity as this method
penalises discontinuity. . . . . .. ... ... ..

25

26

ix



Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

LIST OF FIGURES

These graphs are a representative example of
the disposition of the values that compose the
exponentials in each fitted curve. These graphs
represent: (a) material 6 value A, (b) material 8
value B, (c) material 8 value D, (d) material 9
value A. Note the varied nature between each
graph. Some values have a very discontinuous
form (c), whilst others, apart from some odd
anomalous numbers, are quite continuous (b).
It is interesting as well to note that (c) on two
occasions is equal to the upper bound of it’s

These are the interpolated results for the graphs
shown in the previous figure. These graphs
represent: (a) material 6 value A, (b) material 8
value B, (c) material 8 value D, (d) material 9
value A. . . ...
These graphs represent probability densities
when using purely the smooth and continuous
interpolated values to determine the probabil-
ity. I have only included the plots for the four
main components: (a) titanium, (b) air, (c) bone
and (d) blood vessels. . . . ... .........
These graphs represent probability densities
when using the minimise method a second
time, but setting the value B for every expo-
nential component equal to that of the interpo-
lated values for B. Otherwise the other values
were given the same boundary conditions as
the initial pass of the mininise method. I have
only included the plots for the four main com-
ponents: (a) titanium, (b) air, (c) bone and (d)
blood vessels. This has given the best probabil-
ity distributions across the spatial coordinate to

X



INTRODUCTION

In this thesis I aimed to develop and implement algorithms to auto-
matically analyze micrometer-scale resolution synchrotron micro-CT
3D images of bone, which has replaced standard histomorphometry
for the analysis of bone micro-architecture. This technique is a non-
destructive way of obtaining three-dimensional images with a high
resolution across all spatial axes, whilst it avoids physical sample
preparation. This analysis used a combination of classical automatic
image analysis techniques with computational physics.

Due to the extremely large size of the micrometer-scale resolution
synchrotron micro-CT data sets, of 160GB per sample and the full
dataset of dozens of terabytes, standard Python-based imaging soft-
ware was unsuitable for use. My focus was on efficiently and robustly
implementing selected parts of the functionality needed for analysis,
so that it is able to deal with these enormous data sets efficiently. This
work could then be integrated into the MAXIBONE project.

I have implemented a new segmentation method developed for
micrometer-scale resolution synchrotron micro-CT 3D images that
aims to reverse physical distortion effects present by combining spa-
tially dependent probability distributions over several axes, and apply
it to segment into air, titanium, bone, and blood vessels a data set of
35 goat mandible bone samples. This sample consisted of seven goats,
each with four different experimental methods for bone regeneration
and one control.

In the next part of this thesis I will present the theory behind
synchrotron X-ray computed tomography as well as a brief introduc-
tion to structure and composition of bone. Following that, I present
the method and algorithms I have used to automatically analyze
micrometer-scale resolution synchrotron micro-CT 3D images of bone.
This then leads on to a presentation of the results of this investigation
with a discussion on those results. Finally there is a chapter containing
my conclusions and an indication of further work in this area.

xi



Part1

THEORY



SYNCHROTRON X-RAY TOMOGRAPHY

In order to image bones for medical purposes X-ray radiography is the
easiest and oldest form of examination. Though this method of bone
examination has some limitations. X-ray radiography only allows a
two dimensional flattened projection of the three dimensional object
of investigation to be rendered. On the other hand X-ray computed
tomography circumvents this projection problem present in radiogra-
phy by imaging ‘slices” in the object. X-ray computed tomography is
the method of imaging an object by taking a series of two dimensional
slices, or images, of an object using penetrative radiation, in this case
X-rays. The image produced by this technique is called a tomogram.
A tomogram is made up of many voxels; which constitute a notional
three dimensional space in the image. In this case the data each voxel
contains is the intensity of the X-ray energy photons that were incident
on the object, have then been transmitted by it and finally detected by
our detection mechanism.

When an electrically charged particle is subjected to an acceleration
it will emit photons as electromagnetic waves. In a synchrotron, a
circular accelerator, electrons are accelerated using magnetic fields.
This acceleration is caused by a radial force which attracts these
electrons to the centre of the ring shaped accelerator. The photons
emitted by this process are called synchrotron radiation. There is a
wide spectrum of possible radiation produced by a synchrotron, from
the X-ray all the way to infrared. The X-ray range, a frequency of
between 10'¢ to 10%° Hz, can only be reached when the energy of the
electrons is very high, in the order of 10~ J per electron.

The synchrotron produces a beam of X-ray photons to penetrate
the object under examination. As an X-ray beam passes through the
object it is attenuated. The rate of attenuation is dependent on the
energy of the X-ray and the material that it passes through. In order
to gather useful information from this attenuation it is important to
use a beam of suitable frequency so that the attenuation is governed
by the photoelectric effect. This then means the intensity of the X-rays
detected after passing through the object is given as:

I = Ipexp <—p;u) px (1.1)

Here Ij is the intensity of the incident photon and I is the intensity
of the photon after it travels a distance, x, through the material, which
has a linear attenuation coefficient of y.

%” is known as the mass attenuation coefficient (cm 2 gil) of the
object. Rewriting this equation gives mass attenuation coefficient as a



SYNCHROTRON X-RAY TOMOGRAPHY

function of the density of the material, the distance it travels through
the material as well as the incident and transmitted photon’s intensity.

- iln <I> (1.2)
0 px Io

However, the Beer-Labmert law, which relates the attenuation of
light to properties of the material it travels through and is expressed
in equation [2 above], is only completely obeyed when the beam of
photons are all of the same exact frequency. In real world applications
of X-ray tomography the beam will contain a range of frequencies.
These frequencies are not attenuated uniformly when passing through

the same material, this phenomenon is called beam hardening.

Beam hardening happens when the X-ray beam passes through
a dense material in the object of the tomogram. The X-ray beam
will consist of a series of photons of different frequency distributed
around some target frequency. When this beam passes through the
object there is a selective attenuation of the beam as the photons of
lower frequency, and thus energy, are more easily attenuated and
can even be completely absorbed when passing through the object.
When the tomogram is then constructed from the detection of the
transmitted X-rays, if we assume the attenuation of the beam is linear
throughout the object then edges of the object will have a higher
intensity, appearing brighter, even though the object may be made of
an entirely homogeneous material. This means that beam hardening
will skew results of a tomogram which will lead to an incorrect
analysis of an object’s density and thus composition.

Another effect that will affect the tomogram’s representation of an
object’s density is reflection. At very high contrast interfaces between
one material and another inside the object, i.e. titanium to human
tissue, there will be reflection due to high refraction of the X-ray beam
as it passes from the dense medium to another that is much less dense.
This X-ray scattering at the interface will lead to areas in the less dense
material around the interface appearing much more dense than they
are in reality. The value of these voxels is higher and would appear to
correspond to a denser material than in other locations in the object,
which are actually the same material but lie further away from these
interfaces.

Both the X-ray beam and the individual materials in the object being
imaged are not uniform. In the case of the beam of X-ray frequency
photons produced by the synchrotron, which are of a very high quality,
they still have a distribution of frequencies centred around a target
frequency. Additionally as mentioned the individual materials in the
object being imaged are not uniform. Not only are there impurities
which we cannot explain with our model as we don’t know their com-
position but the materials themselves will produce slightly different
attenuation due to their structure on a nanometre scale, which is the
wavelength of the X-ray photons in the beam. This means that we
can use gaussian distributions to model the intensity of the X-rays



SYNCHROTRON X-RAY TOMOGRAPHY

detected from each different material, as the spread of intensity values
from the transmitted photons should follow a gaussian distribution.
Of course there are instances where this is not completely the case,
due to some of the effects mentioned earlier like beam hardening and
reflection. The “errors’ in the tomogram slices are systematic and so I
was able to account for them in the techniques used to mitigate their
effect.



COMPOSITION OF BONE

There are a number of roles that bone fulfils in an organism. The
structure of bone is different depending on the scale of observation. At
a micrometer scale there are two main regimes to this structure that can
be discerned; cortical and cancellous bone. These are a dense external
shell and a porous inner material composed of thin trabeculae, which
are an irregular network of spaces inside the bone. For the purposes
of this analysis we have focused on images and analysis of cortical
bone. Cortical bone plays a primary role in the strength of the bone,
and the fragility of the bone is dependent on its microstructure (Peter
and PEYRIN, 2011).

Bone tissue, otherwise known as osseous tissue, is a type of spe-
cialised connective tissue. The composition of bone tissue is a mix of
water, collagen and a mineral (Hydroxyapatite (HA) crystals). Whilst
the collagen gives bone its toughness the hydroxyapatite crystals are
responsible for bone’s characteristic stiffness. The internal structure of
bone resembles a honeycomb, it is a lattice of different types of bone
cells. These are osteoblasts, osteocytes and osteoclasts. The osteoblasts
are responsible for the formation of mineral structures in the bone.
Once an osteoblast has produced so much bone matrix around itself
that it has become trapped it is then referred to as an osteocyte. Osteo-
cytes remain in contact, and communication, with other bone cells. The
third type of bone cell, osteocytes, are responsible for breaking down
the mineral structure of the bone. Bone is continually altering its shape
and structure due to the activity of the osteoblasts and osteoclasts.

Though this makes up the majority of the structure of bone, there
are other types of cells and tissue present. These include: bone mar-
row, nerves and blood vessels. As cells in the bone require nutrients
and oxygen, like other cells in the human body, the blood vessels are
woven throughout the bone structure. The blood vessels in bone can
be extremely narrow, making them very small artifacts to detect even
with a micrometer-scale resolution synchrotron micro-Computed To-
mography 3D image. It is also important to note that even at this scale
individual osteocytes still cannot be distinguished on a micrometer-
scale resolution synchrotron micro-Computed Tomography 3D image.
At different scales imaging techniques will provide different types
of information. In order to study bone microstructure resolutions of
between 5 ym - 10 ym are necessary, as we have used in this project.
To examine the ultra-structural level a submicrometer resolution is
needed, and for a study of the crystalline structure a nanometre scale
of observation is appropriate.



Part II

METHOD



PROGRAMMING LANGUAGE

The extremely large size of the micrometer-scale resolution synchrotron
micro-CT 3D images data sets, around 160GB per sample with dataset
in tens of terabytes, meant that standard Python-based imaging soft-
ware was unsuitable for use. In order to maintain easy readability
Python was used throughout this project to efficiently and robustly
implement selected parts of the functionality needed for analysis, so
that it is able to deal with these extremely large data sets efficiently,
and then so that it could be integrated it into the common source code
for the MAXIBONE project.



FINDING THE MATERIALS IN A SINGLE
TOMOGRAM SLICE

First I looked at a single slice of a tomogram, along a single plane.
In this case I define this plane as the x-y plane. The objective is to
find, using the intensity of the voxel at a specific location, the material
present at that location. We already know the different materials
which are present in the tomogram and those are; bone, blood vessel,
metal, resin/air and any other impurities in the bone. The important
materials we wish to identify and clearly distinguish between are the
blood vessels and the bone. The first step to identify the different
materials present is to take a histogram of the intenisites present in
our tomogram slice.

Tomogram slice

50000

40000

30000

20000

10000

T T T T T T
0 500 1000 1500 2000 2500 3000

Figure 4.1: An example of a tomogram slice, labelled 770-slice-1500-1505
in the dataset. This slice is a good representation of a typical
tomogram in the dataset, as it contains all the materials were are
searching to identify. Note: the bright region in the centre of the
slice, this is the titanium implant, the area above the bright centre,
the air, and the area surrounding and below the slice; bone, blood
vessels and resin.



Frequency / number of voxels

FINDING THE MATERIALS IN A SINGLE TOMOGRAM SLICE 9

Histogram of intensity values of a single tomogram slice

70000 -

60000

50000 -

40000 1

30000 4

20000 4

10000 -

T\

T T T T T
10000 20000 30000 40000 50000
Intensity / arbitrary units

Figure 4.2: A histogram of the intensities present in the example slice. Note
the peaks corresponding to the various materials present in the
slice. There are two large peaks, which likely are due to the air
and bone present in the image, and between them a series of
smaller peaks, due to blood vessels and other impurities. Then
the highest intensity peak is the titanium implant, which can be
seen as a low, non-gaussian peak at the rightmost point of the
histogram.

The intensity histogram has a series of peaks. Each peak should
represent a material present in the sample. To each of these peaks a
gaussian can be fitted so that the sum of these gaussians fits well to the
entire histogram. This sum of gaussians was fitted to the histogram
using a non-linear least squares method. Also, using multiple gaus-
sians to fit the same peak was tried for an even more accurate curve
titting which may give a better fitting for some peaks as compared to
only using a single gaussian for each peak.

In order to fit this sum of gaussians to the histogram, bounding
was also needed so that each peak would accurately be fitted with
a gaussian. The bounding was such that it forced a gaussian to be
present in the required location for each peak in the histogram. A
good initial guess for the parameters of each gaussian, along with the
bounding, helped by reducing the time taken for the computation.

Once there was a fitted approximation for the curve the probability
that a single voxel was a member of a specific gaussian in the fitted
curve, and thus a specific material, could be ascertained. This was
done based on the equation Hli -. At the edges of each gaussian the
height falls to very low values, but continues to be nonzero for a long
time. In order to account for this, and not predict large probabilities
of a voxel in these extremities belonging to the wrong material group,

a value € was also added to the sum H.

Using this for each gaussian the probability that a single voxel
contained a specific material could be found and then applied to
the tomogram slice to separate the different materials present in the
tomogram. Then it was possible to present only the various elements
of the tomogram that correspond to a specific material to qualitatively
analyse the results of this process.




ENTIRE TOMOGRAM

Due to the effects of beam hardening and reflection due to high
refraction at very high contrast interfaces, such as tissue - titanium,
the position of a voxel must also be used to determine the material to
which that specific voxel belongs. By looking at all the slices in each
plane (x-y, x-z, y-z) as well as the displacement from the centre of
the tomogram, r, we can ascertain the relationship between position,
intensity and the material. This should allow the effects of beam
hardening and reflection to be mitigated.

First I looked at all the slices in the x-y plane, the same plane as the
single tomogram slice analysed earlier. Similarly to that process the
first step was to make histograms for every slice. These can be plotted
as an image where the x axis is intensity of the slice and the y axis is
each slice through the other coordinate, in the case of the x-y plane
the z coordinate. The brightness of the image represents the frequency
of the histogram for a particular intensity.

Using the initial work of Carl Johnson, each histogram in this range
the locations of each peak was found automatically. The progression
of a peak corresponding to a certain material throughout the numer-
ous histograms is referred to as a line, and each line of peaks was
labelled. As the series of histograms can be viewed as an image it was
possible to perform image analysis techniques on these histograms.
Morphological transformations were performed with a small kernel
size. First the lines present in the image were eroded, then they were
dilated. Erosion removed the edges of the lines in the image, thinning
them as all pixels near the boundary of a line were discarded. This
removed small background noise in the line detection. Dilation is the
opposite process to erosion, where erosion reduces the size of the line
in the image dilation will increase the size of the lines and as noise
should be reduced we are then only enlarging the true presence of
a line. This was useful to join discontinuities in the lines. Following
that the contours of the image were found, in order to find which
components of the image, which lines, were connected. These were
then labelled, and it was assumed that each line represented a single
material. The kernels used during this process were elongated in the
vertical direction, the direction parallel to the lines. This was done as
the lines of peaks needed to be continuously connected and a line is
much longer in the direction of its length than its width.

Using this information it was possible to begin automatically bound-
ing and setting initial guesses for the fitting function to use. New
curves were fitted for each slice. By having the peak locations already
found the centre point of the peak can be estimated which enables
automatic bounding.

10



20000

Frequency / number of voxels

5000

ENTIRE TOMOGRAM

The initial guess for the height value, a, is set as being the highest
point of a specific peak. The bounds are then set for height between 0.2
and 1.01 of max height value previously found. The initial guess for
displacement, b, is the intensity of the highest point of the frequency
peak. On the histogram this corresponds to the value of x at the initial
guess for height.

Histogram of intensity values for tomogram slice 1024 in the y-z plane

11

15000

10000

500 1000 1500
Intensity / arbitrary units

Figure 5.1: This is a histogram of the intensity values for the tomogram
slice at 1024 located in the y-z plane. The part of the histogram
coloured in red is a peak that has been identified. Notice the
height, size and shape of that peak relative to the peaks around
it. This large difference in height caused issues when trying to
automatically bound the exponential which was intended to fit to
that peak.

The width, ¢, of the fitted curve was set to be the width at the point
where the height of the peak has fallen by half, for both sides of a
given peak. This doesn’t always work, as some peaks are nestled next
to much larger peaks[Example peak], so if the ratio of height to width
is greater than 0.001 instead a more dynamic fitting of the initial width
of a curve was needed. Instead of setting width to be equal to the
fall off at half peak height, I tried where the height falls off to 0.9
of the maximum. It is important to note that the displacement of a
peak where this smaller width is used must not be above 1200, as this
would be the metal implant, which is very short, wide and outside
the range of the ‘normal” peaks due to bone, blood, etc. This means I
could exclude this high intensity peak when taking the comparative
ratio mentioned before. If the ratio was greater than 0.01 something
even more drastic was needed. Here I set width to be at the location of
height fall off to 0.99 of the maximum. As this must be a peak nestled
inside, or very close to other peaks as shown in Fig. 5.1 The bounds

2000




ENTIRE TOMOGRAM

for the width of the curve was set to 1.3 times larger and smaller than
the initial guess for width, c.

In order to obtain a better fit for curve it was necessary to drop
pure gaussians and instead have the exponent of the gaussian be
alterable.To this end the possible range for this was set between 1.5
and 2, with an initial guess of 2, which would make that component
of the overall curve a gaussian. This made the equation of the curve a
sum of exponentials like this:

D?
(x-B)"

22 (5.1)

N
2 A% exp
i

For each histogram a curve made up of exponentials was fitted

using a non-linear least squares method to fit my function to the data.

Though this could cause a problem, with fitting leaving the curve
higher than the data it is fitting. To counter this problem an energy
function that must be minimised is used instead. Then a function with
a minimise method can be used to fit a new curve to the data. This
curve was tuned with a weighting penalty that penalised any result
which was higher, or larger, than the data.

12



INTERPOLATION

Having found the values that govern the curves that have been fitted
to histogram across a series of slices of the tomogram, from a certain
orientation. These values need to be smoothed. To do this I used a
series of low degree polynomials with a small number of segments,
six. These polynomials took the form:

A+ Bx 4+ Cx*> + Dx® (6.1)

These were used to interpolate the values that govern the curves
that have been fitted to histograms, as over the range of histograms the
values were not continuous. In order to do this the interpolation must
be continuous and differentiable (at all points and at the connections
between segments). A matrix of equations for each point in a curve
value was created, across the space of histograms, i.e. a across z. This
means x is the displacement, z, of the tomogram slice and y, or the
result of the above equation, is the curve value at that point.

There were two conditions used to fit an N-segment piecewise cubic
polynomial to a set of points with linear least squares:

(1) Continuity at the borders: f,(X,) = f—1(Xn)
(2) Differentiability at the borders: f;(X,) = f,_,(Xx)

Due to the constraints on the interpolation, after the first segment, I
did not need to solve for A and B, as I could use the f(x) and f’'(x) to
solve for future values of A and B beyond A; and B;. This did mean
I needed to continue having the first set of A, B, C, D values in each
equation. By doing this it also tied every equation in my matrix to
every part of the interpolated line.

Taking this new, smooth line, I used it to set the displacement of each
exponential to this continuous set of values from the interpolation.
This, along with the other interpolated values were passed into the
minimise function to be a new set of bounding conditions for a second
fitting. This gave better, more continuous results.

Once the spatial dependence of the intensity in each plane was
ascertained, by using the method described above, it was then possible
to automatically and systematically predict to which material a given
voxel belonged. This enabled the removal of the disconnectedness
effects.

13



Part III

RESULTS AND DISCUSSION



SINGLE TOMOGRAM SLICE

A tomogram slice was chosen at a midpoint to be mostly representative
of the overall structure of the bone; this was done by qualitatively
analysing many slices. This slice contained all of the materials that I
was looking to separate and distinguish. It is important to note that
not all of the slices contained the metal implant, which has a very high
intensity compared to the other materials present and is the cause of
X-ray reflection.

Rate of change of intensity in the tomogram slice Tomogram slice

50000
10000

8000 40000

6000
30000

20000

2000

10000

500 1000 1500 2000 2500 3000
y

500 1000 1500 2000 2500 3000
y

(a) Image showing the rate of change of the intensity of (b) The tomogram slice used for this part of the analysis,
the voxels in a single tomogram slice, labelled 770-slice- 770-slice-1500-1505. A good representative slice to use
1500-1505 in the dataset. Note the bright lines around to begin a curve fitting attempt.
the location of the titanium implant, and at the edges of
blood vessels. These areas are the primary locations for
reflection, a phenomenon discussed earlier.

A brighter voxel on the tomogram indicates a higher intensity of
the transmitted X-ray beam and as such should mean that the material
at the specific voxel is more dense. Conversely the darker regions
of the tomogram are indicative of lower intensities, and thus lower
density materials. From a qualitative analysis of the tomogram slice it
was clear there are four main regions that need to be distinguished.
After taking a histogram of the intensities across this slice this then
confirmed my initial qualitative analysis.

There are three main, large peaks present on the histogram. The
leftmost peak, present at around 12,000 corresponds to the air at the
top of the tomogram, which has many voxels with a similar low
value. This can be confirmed by the darker colour in the tomogram
slice. It is important to note that the units used for intensity here are
arbitrary and at later points these same peaks will appear at different
intensities. The next noticeable peak is at around 18,000. This peak

15



70000

60000

50000

40000

30000

Frequency / number of voxels

20000

10000

SINGLE TOMOGRAM SLICE

Histogram of intensity values of a single tomogram slice

16

e U

10000 20000 30000 40000 50000
Intensity / arbitrary units

Figure 7.1: A histogram of the intensities present in tomogram 770-slice-1500-
1505. Each region, which is caused by the presence of a specific
material, has been coloured and labelled.

corresponds to the bone present in the sample, as a large number of
voxels are bone in the tomogram. Between these two peaks with a high
frequency of voxels sharing similar intensity values there are a number
of smaller peaks which don’t quite correspond to a specific material,
though the main material present in this range should be the blood
vessels in the bone sample. Otherwise this region contains a lot of
noise, impurities and other non-uniform materials that exist across the
tomogram. Finally at the far, rightmost end of the histogram there is a
very low, wide peak; centred at around 47,000. This peak corresponds
to the titanium implant present in the centre of the sample. It is the
brightest region of the tomogram and the densest part of the sample
being analysed.

As there are four main regions in the sample, and the histogram, to
be separated. A curve composed of four gaussians was fitted to the
histogram. Using my previous qualitative analysis of the peaks present
in the histogram I could then give the fitting function reasonable
bounding to use. I also supplied some initial guesses to the fitting
function by reading off the heights, guessing a rough width and
displacement for each gaussian peak present in the overall curve that
was fitted.

This fitting gave close fits for the two largest peaks. This heavily
supports the decision to use gaussians to represent the material peaks.
It also supports the hypothesis that the materials in the bone sample
have some mean value that the intensities are centred around, with a
gaussian distribution. However, as the central region between those
peaks was not comprised of a single gaussian, this peak did not have
as great a fit as the others. This is likely due to the impurities in the
sample being mainly in this intensity range.

In addition the titanium peak, which does not look particularly
gaussian in nature, was also not as well fitting. Though, as there are
no other peaks in the vicinity of this peak, an imperfect fitting of the
curve in this region shouldn’t cause an issue when using the fitted
curve to distinguish the various regions of the tomogram.

Next I tried improving the fit of the curve to the data. To do this I
tried using multiple gaussians for some of the peaks. Specifically the



1950
2000
2050
2150
2200
2250

y

SINGLE TOMOGRAM SLICE

() (b)

“Tomogram slice, titanium

17

Tomogram slice, b

(©) (d)

Figure 7.2: These are representative components of the tomogram slice, 770-
slice-1500-1505. Each image highlights a material present in the
sample. (a) is the air present, it tends to be a uniform area in the
top part of the tomogram slice in the y - z plane. (b) the blood
vessels present in the bone. Centred in the image, is a large blood
vessel, but note the smaller blood vessels present throughout the
main bone structure surrounding the blood vessel, identifiable
only as dark flecks. (c) is an example of the bone present in the
sample. Again, there are blood vessels present throughout the
bone, visible as small dark spots of varying shapes and sizes.
Finally (d) is an example of the titanium alloy present in the
sample, it is a very bright, and therefore dense, region of the
tomogram.

two largest peaks. This gave a better fit for the data than the previous,
single gaussian per peak that was used first. The most noticeable
improvement occurred in the central region between the two large
peaks. This was as expected, as in that range of intensity there are a
number of other impurities amongst the blood vessels.

However, these improvements do not cause any noticeable improve-
ment in the probabilities calculated from this fitted curve. Whilst it
does give a closer fit to the data represented in the histogram it does
not seem to provide much additional benefit to the clarity of the dis-
tinction. As can be seen, from a qualitative standpoint, both sets of
material classification probability representations of the tomogram are
nearly indistinguishable. They both provide a reasonable classification
of the different materials for which we are searching.

nnnnn

nnnnn

uuuuu

ooooo

uuuuu



70000

&, 60000

K

~ 50000

5

]

£ 40000

Z

2 30000

H

g

& 20000
10000

0

SINGLE TOMOGRAM SLICE

Fitted curve using four gaussians

18

10000 20000 30000 40000 50000
Intensity / arbitrary units

(@)

Each component in fitted curve

70000
& 60000
]
3
« 50000
5
3
£ 40000
g
3 30000
H
g
g 20000

10000

0

10000 20000 30000 40000 50000
Intensity / arbitrary units

(b)

Figure 7.3: The first graph (a) shows the fitted curve next to the data. Note
that this is using the least squares method and there are a number
of regions where the fit raises above the data. The second graph
(b) is the individual components of the fitted curve in (a).

With regard to the material classification probability representations
of the tomogram, the intensity of the image represents the likelihood
that the particular voxel in question is of a specific material. As can be
seen close to the titanium-bone interface the intensity of those voxels
are higher than other blood vessel voxels or bone voxels in other areas
of the image. This is a great example of the reflection phenomenon
described earlier. This also means that areas which, upon a qualitative
examination, would appear to be blood vessels are being distinguished
as bone. They do not exist in the blood vessel classification probability
image, but clearly are a part of the bone classification probability
image. Near the edges of the image there are also great examples
of beam hardening, with a similar but opposite effect to the visual
representation of reflection observable in the possibility representation
images.

While this approach was a good start to distinguish the various ma-
terial regions of the tomogram, there are clearly issues. As discussed
previously, the reflection phenomenon present at the high density
to low density material interfaces causes issues with the automatic
classification of the tomogram. In addition the beam hardening causes
issues around the edges. In order to address these issues a spatial
component, as well as the intensity, of the voxels in the tomogram
across a number of spatial dimensions needs to be investigated. This
was then used to account for these phenomena.



SINGLE TOMOGRAM SLICE 19

Fitted curve using six gaussians

10000

o

10000 20000 30000 40000 50000
Intensity / arbitrary units

(@)

Each component in fitted curve

10000

10000 20000 30000 40000 50000
Intensity / arbitrary units

(b)

Figure 7.4: The first graph (a) shows the fitted curve next to the data. Note
that this is using the least squares method and there are a number
of regions where the fit raises above the data. The second graph
(b) is the individual components of the fitted curve in (a). There
are six components of the curve that are fitting to four peaks
in this regime. Note the improved fit around the central region,
blood vessels and impurities, this is due to the addition of more
components in the fitted curve.

This implementation did not have any way to work out the initial
guesses and bounds of the curves in an automatic way. Without some
automatic generation of these initial conditions for the fitting function
the process used to segment the materials of this tomogram slice
cannot be extended to other slices. This was not very useful, and
needed to be addressed. Additionally the implementation did not
have an automatic way of finding the general locations of the peaks
present, which would of course be the prerequisite to an automatic
solution for bounding and generating initial guesses. These issues
were addressed as the process was refined.



500

1000

1500

2000

2500

3000

500

1000

1500

2000

2500

SINGLE TOMOGRAM SLICE 20

Probability density image, blood vessels

Probability density image, Air

00

(@)

Probability density image, bone N B 5
Probability density image, titanium

500
1000
1500
2000
2500

3000

0.0

() (d)

Figure 7.5: The material classification probability representations of the to-
mogram for one slice. These represent (a) air, (b) blood vessels,
(c) bone, (d) titanium alloy. They were calculated using only four
exponentials in the curve, one for each peak present in the data.
The colour of the image represents the probability that a specific
voxel is of the material titled. The important features to note are
the blood vessels near to the titanium implant which have been
misclassified as bone with this analysis, and the resin which has
been classified as blood vessel, due to its similar position in the
intensity.



SINGLE TOMOGRAM SLICE 21

Probability density image, blood vessels

Probability density image, Air

500

1000

1500

2000

2500

0.0

(@) (b)

Probability density image, titanium

Probability density image, bone

1000
1000

06 1500
1500

2000
2000

2500
2500

3000 3000

00

(© (d)

Figure 7.6: The material classification probability representations of the to-
mogram for one slice. These represent (a) air, (b) blood vessels,
(c) bone, (d) titanium alloy. They were calculated using only six
exponentials in the curve, two for the two largest peaks and one
for each other peak present in the data. They are qualitatively
very similar to the probability distributions produced with four
exponentials making up the fitted curve.



ENTIRE TOMOGRAM

First, I started by examining the tomogram slices on the y-z plane,
such that each slice was layered down along the x axis. The tomogram
slice’s intensities were binned to generate histograms for each layer.
This series of histograms was plotted in 2 dimensions to perform a
qualitative analysis of the histograms. The continuity of the peaks,
visible on a single histogram of a single slice, along the x direction
will be referred to as lines. If the X-ray tomography.

All hisotogram of intensity values all tomogram slices in the y-z plane All hisotogram of intensity values all tomogram slices in the y-z plane

500 500

1000 1000
1500 1500
2000 2000
2500

2500

3000 3000

0 250 500 750 1000 1250 1500 1750 2000 0 500 750 1000 1250 1500 1750 2000
Intensity / arbitrary units Intensity / arbitrary units
(a) (b)

Figure 8.1: These images represent the peaks in the histograms through x,
where each histogram is a slice in the y-z plane. (a) is the image
of these histograms, with the height of the peak, or the intensity,
represented by brighter colours. Note the titanium implant mid-
way through the slices and at a high intensity. It is also easy to see
the effect of spatial position from this image, as the peaks curve
at their start and end points, usually near interfaces. This will
be due to the beam hardening phenomenon. (b) shows the lines
detected automatically across the space, with each line having a
different colour to signify it’s individuality.

22



ENTIRE TOMOGRAM

Then using the method outlined previously these curves, made
of sums of exponentials, were fitted to every histogram. This was
done with both a least squares fitting and a minimising fitting. Then
the computed curves were used to calculate the probability that a
voxel at a certain intensity and displacement, x, was a member of a
specific material. When looking at some of the individual histograms,
from an individual slice, there is little difference between the curve
fitted using the least squares method and the curve fitted using the
minimise method. The main noticeable difference is that the least
squares method does not penalise overshooting, and as such that
curve tends to rise above the data on many occasions. In contrast, due
to the penalty incorporated in the energy function, the minimise curve
never exceeds the data.

When we move on to viewing the probability distributions across
the entire range of histograms for each material there is a qualitative
difference between the two methods. It is quite clear that the least
squares method, which overshoots, does not produce probability dis-
tributions that are as contiguous as the minimise method. Furthermore
the exponentials fitted with least squares have a higher tendency to
be of a lower height but greater width than those fitted using the
other method. This lower connectedness of probability distributions
and sporadic flattening of individual exponentials in the overall curve
leads to a higher incidence of splits along individual lines. These splits
cause discontinuity problems for both sets of probability distributions,
but are clearly more pronounced amongst the curves calculated with
a least squares method.

Materials labelled ‘1" and ‘5" are interesting to investigate. These
two peaks are quite likely both part of the same smaller line which
exists nestled amongst the larger, and more obvious, lines surrounding
them on either side. On close inspection, they are noticeably shallow
and difficult to define. It is highly likely that the material these peaks
represent is an impurity in the sample, or possibly the resin component.
They are noticeable in the lines representing materials ‘8" and ‘9.

By comparing the histograms calculated for a single tomogram slice
with the lines present in his entire histogramme space, it is possible to
quantify the materials each line represents. The easiest to distinguish is
the titanium implant, as that has a very high intensity. That is material
‘6’. Next is the air part of the tomogram, that is of the lowest intensity
as it is the least dense and therefore will attenuate the X-ray beam the
least. This is the material labelled as “7’. Following this, by comparing
a single histogram from a single slice with the single slice analysed
earlier it is possible to discern that material ‘8 is bone and material ‘g’
is blood vessels.

Upon inspection, it was clear that some smoothing is needed of the
variables that compose each exponential across the histogram space.
This is where interpolation comeslt is important to note that to keep
the time of the computation down, but still maintain accuracy, the
maximum number of function evaluations for the minimise method
was set to forty. This number was chosen during testing as it seemed to

23



ENTIRE TOMOGRAM

be an effective number of evaluations. This is due to the fact that if the
energy function is minimised by this point, forty evaluations, it doesn’t
really improve much more. At the extreme end of the evaluations this
is because the minimisation is stuck oscillating between a set of values
until it reaches the function evaluation limit.

Upon inspection, it was clear that some smoothing is needed of the
variables that compose each exponential across the histogram space,
as the probability density is not the smooth function we would like
it to be. This is where interpolation of the variables can be used. It
is also clear that using the minimise function produces better results,
and for that reason the least squares fitting method will be dropped
in future iterations of this process.

24



1000

1500

2000

2500

3000

°

500

1000

1500

2000

2500

3000

0

250

500

750

1000

1500

2000

2500

3000

1000 1250 1500 1750 2000

(@)

500

1000

1500

2000

2500

3000

0 250 500

1000 1250 1500 1750 2000

(d)

1000 1250 1500 1750 2000

(b)

()

1000 1250 1500 1750 2000

ENTIRE TOMOGRAM

25

1000

1500

2000

2500

3000

1000 1250 1500 1750 2000

(©

0 250 500 750

500

1000

1500

2000

2500

3000

750 1000 1250 1500 1750 2000

(®)

Figure 8.2: These are the probability distributions for each material across
the entire range of tomograms. These curves were fitted using a
least squares method. The colour represents the probability that a
voxel in that spatial location and at that intensity is a part of the
material. The lines that correspond to definite materials are (6)
titanium, (7) air, (8) bone and (9) blood vessels. The minor lines
(1) and (5) represent some impurities in the sample. Material (9)
is a great example of poor continuity which is not penalised by
the least squares method.



1000

1500

2000

2500

3000

500

1000

1500

2000

2500

3000

[

250

500

750

750

(@)

(d)

1000 1250 1500 1750 2000

500

1000

1500

2000

2500

3000

(b)

1000

1500

2000

2500

3000

1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

(e)

1000 1250 1500 1750 2000

ENTIRE TOMOGRAM 26

1000

1500

2000

2500

3000

1000 1250 1500 1750 2000

(©

1000

1500

2000

2500

3000

500 750 1000 1250 1500 1750 2000

(f)

Figure 8.3: These are the probability distributions for each material across

the entire range of tomograms. These curves were fitted by using
a minimise method on an energy function. The colour represents
the probability that a voxel in that spatial location and at that
intensity is a part of the material. The lines that correspond to
definite materials are (6) titanium, (7) air, (8) bone and (9) blood
vessels. The minor lines (1) and (5) represent some impurities in
the sample. In comparison to the least squares method material (9)
has far better continuity as this method penalises discontinuity.



INTERPOLATION

In order to interpolate the individual values of each exponential com-
ponent in the fitted curves it was necessary to plot them across the
numerous histograms. This showed that some values were much more
continuous than others, and likely not the reason for the discontinu-
ities in the probability distributions. However, other values did follow
a smooth function, these values included a number of anomalous
points, far outside the observed range of the other values. It is im-
portant to note that all of these values are squared in the exponential
function, as they cannot be negative in these exponentials. This also
means that they differ from the bounds specified earlier, as the bounds
are the bounding of the square of these values. For instance the value
of D in a number of places seems to be constant at a value just above
1.4. Yet this is actually due to the fact that it has reached the edge of
the bounding, it is at SQRT(2).

There are a large number of slices where some materials are not
present. This can be seen for instance in the titanium line. Outside the
presence of a peak the values for the exponential of course drop to
zero. In order to interpolate the values correctly any values outside the
existence of a peak were dropped, where they were zero. To interpolate
6 segments were used. In addition the mean and standard deviation
of each value, ignoring values of zero, was calculated. And entries
for a value that were more than three standard deviations from the
mean were excluded, this addressed the anomalous entries for certain
values across the space.

Using these new interpolations for the values of the exponentials
three regimes were tried. First I tried setting all of the values to
those gained through interpolation, without attempting to use the
minimise function a second time. Whilst this did provide very smooth
probability densities throughout the space, there were definite issues
which were quite striking upon qualitative investigation.

The next method tried was to use the minimise method a second
time but to set the initial guess as the interpolated value at each point,
x. Then set the boundary conditions to be one standard deviation
from the interpolated line. This gave a better result than the previous
method tried, without using the minising function. Though there are
clearly still issues with discontinuity and lines split by odd slices.

The final method used was to set the value of B, the displacement of
each exponential component, using the interpolated values. This gave
a smooth and continuous central point of each peak. This was the best
result yet for the probability distributions across the spatial coordinate.
Once this was completed for the y-z plane it was then used on the x-y,
x-z and r planes to produce probability distributions across the space.

27



INTERPOLATION

Material 6, value 0

500 1000 1500 2000 2500 3000 3500
x

(@)

Material 8, value 1

500 1000 1500 2000 2500 3000 3500
x

(b)

Material 8, value 3

1400

1375

1350

1325

value

1300

1275

1250

1225

500 1000 1500 2000 2500 3000 3500
x

(©

Material 9, value 0

Figure 9.1:

500 1000 1500 2000 2500 3000 3500
x

(d)

These graphs are a representative example of the disposition
of the values that compose the exponentials in each fitted curve.
These graphs represent: (a) material 6 value A, (b) material 8 value
B, (c) material 8 value D, (d) material 9 value A. Note the varied
nature between each graph. Some values have a very discontin-
uous form (c), whilst others, apart from some odd anomalous
numbers, are quite continuous (b). It is interesting as well to note
that (c) on two occasions is equal to the upper bound of it’s limits.

28



INTERPOLATION

material 6, value 0 masked

1000 1200 1400 1600 1800 2000 2200 2400 2600
x

material 8, value 1 masked

0 500 1000 1500 2000 2500 3000 3500
x

(b)

material 8, value 3 masked

1400

1375

1350

1325

value

[

1300

- W"r

1225

i 4..m|um || ! L e ‘nlul |

[ 500 1000 1500 2000 2500 3000 3500
x

(©

material 9, value 0 masked

o 500 1000 1500 2000 2500 3000 3500
x

(d)

Figure 9.2: These are the interpolated results for the graphs shown in the
previous figure. These graphs represent: (a) material 6 value A,
(b) material 8 value B, (c) material 8 value D, (d) material 9 value
A.

29



INTERPOLATION

500 500

000 1000

500

1500

000

2000

500

1500

000 3000

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000
(a) (b)
8

o

o

500

1000
1000

1500
1500

2000
2000

2500 2500

3000 3000

250 500 750 1000 1250 1500 1750 2000 500 750 1000 1250 1500 1750 2000
(© (d)

Figure 9.3: These graphs represent probability densities when using purely
the smooth and continuous interpolated values to determine
the probability. I have only included the plots for the four main
components: (a) titanium, (b) air, (c) bone and (d) blood vessels.

30



INTERPOLATION 31

500 500

lo00 1000
1500 1500
2000 2000
2500

2500

3000

1000 1250 1500 1750 2000
1000 1250 1500 1750 2000

(@) (b)

500
500

1000
1000

1500
1500

2000
2000

2500
2500

3000
3000

750 1000 1250 1500 1750 2000
] 250 500 750 1000 1250 1500 1750 2000

(© (d)

Figure 9.4: These graphs represent probability densities when using the
minimise method a second time, but setting the value B for every
exponential component equal to that of the interpolated values
for B. Otherwise the other values were given the same boundary
conditions as the initial pass of the mininise method. I have only
included the plots for the four main components: (a) titanium,
(b) air, (c) bone and (d) blood vessels. This has given the best
probability distributions across the spatial coordinate to date.



Part IV

CONCLUSION



CONCLUSION AND FURTHER WORK

Whilst on the surface some of the methods employed seem rather
straightforward. The process of bounding the methods was quite chal-
lenging. In order to generate accurate probability spaces the bounding
required quite fine tuning. Then setting these boundary conditions
across the spatial coordinates, for instance x, was an even greater
challenge.

Whilst the initial material classification probability representations
of the tomogram for one slice seem to be quite accurate, outside the
areas where beam hardening and reflection have affected them, the
areas that they are inaccurate are some of the most interesting to
study. Therefore without this automatic reversal of physical distortion
effects by combining spatially dependent probability distributions
over several axes, the tomograms are less useful for further work and
research.

Due to time constraints the final combination of all planes to be
reinterpreted with probability distributions on a single tomogram slice,
using both intensity and spatial coordinates, was not completed. This
would be a key piece of further work to round off this investigation. All
of the components have been completed, as the probability densities
were completed in every plan, and across the ‘r” coordinate or distance
from the centre of the tomogram. Though this recombination is non-
trivial.

Following from that it should then be possible to use this process
to systematically analyse and interpret many tomograms in order to
automatically analyse the segmented tomograms to quantify bone-
contact and blood flow to the implants around which the new bone
grows. This would improve and hasten other work in this field, the
MAXIBONE project.

33



BIBLIOGRAPHY

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Berlin, Heidelberg: Springer-
Verlag. 1sBN: 0387310738.

Jahne, Bernd (2005). Digital Image Processing 6th Edition. Berlin [u.a.]:
Springer. ISBN: 3540240357 9783540240358. URL: http://www.amazon.
com/Digital-Image-Processing-Bernd-J%C3%A4hne/dp/3540240357/
ref=sr_1_17s=books&ie=UTF8&qid=1328626244&sr=1-1.

Peter, Zsolt-Andrei and Frangoise PEYRIN (Apr. 2011). “Synchrotron
Radiation Micro-CT Imaging of Bone Tissue.” In: Theory and Ap-
plications of CT Imaging and Analysis. 233-254. InTech. URL: https:
//hal.archives-ouvertes.fr/hal-02268606.

Schaffler, M. B. and O. D. Kennedy (2012). “Osteocyte signaling in
bone.” In: Current osteoporosis reports 10.2, pp. 118-125. URL: https:
//doi.org/10.1007/s11914-012-0105-4.

34


http://www.amazon.com/Digital-Image-Processing-Bernd-J%C3%A4hne/dp/3540240357/ref=sr_1_1?s=books&ie=UTF8&qid=1328626244&sr=1-1
http://www.amazon.com/Digital-Image-Processing-Bernd-J%C3%A4hne/dp/3540240357/ref=sr_1_1?s=books&ie=UTF8&qid=1328626244&sr=1-1
http://www.amazon.com/Digital-Image-Processing-Bernd-J%C3%A4hne/dp/3540240357/ref=sr_1_1?s=books&ie=UTF8&qid=1328626244&sr=1-1
https://hal.archives-ouvertes.fr/hal-02268606
https://hal.archives-ouvertes.fr/hal-02268606
https://doi.org/10.1007/s11914-012-0105-4
https://doi.org/10.1007/s11914-012-0105-4

PartV

APPENDIX



APPENDIX: SCRIPTS

Listing A.1: Script "single_slice_4_gaussians.py"

import numpy as np

import numpy.ma as ma;

import scipy.ndimage as ndi

import skimage.morphology as morf
import skimage.filters as filt
import skimage.feature as feature
import matplotlib.pyplot as plt

from scipy.ndimage import gaussian_filterld
from scipy.optimize import curve_fit
from scipy.optimize import minimize
#from scipy import polyfit

tomo_data = np.load("770—slice —1500_1505.npy")

(Nz, Ny, Nx) = tomo_data.shape
R=Nx /2

xs = np.linspace(-R, R, Nx)
ys = np.linspace(-R, R, Ny)
rs = np.sqrt(xs[None, :1 *x 2 + ys[:, None] *x 2) # rs[i,]j] =

sqrt(xs[jl17™2 + ys[i]"2)
mask = rs >= R # mask[i,j] == rs[i,j] >= R, dtype==bool

tomo_slice = ma.masked_array(tomo_data[3], mask=mask)

plt.figure(figsize=(15,15))
plt.imshow(tomo_slice)
plt.show()

plt.figure(figsize=(15,15))
plt.hist(tomo_slice.compressed(), bins=2000)
plt.show()

#(vmin, vmax) = (tomo_slice.min(), tomo_slice.max())
(vmin, vmax) = (-4,12)
#print(vmin, vmax)

nbins = 2 *x 16 +1
bin_edges = np.linspace(vmin, vmax, nbins)
values = (bin_edges[1:] + bin_edges[:-1]) / 2

#counts, _ = np.histogram(tomo_slice.compressed(), bins=bin_edges
)

counts, _ = np.histogram(values[tomo_slice.compressed()], bins=
bin_edges)

36



APPENDIX: SCRIPTS

#convolve with 1D gaussian

counts = gaussian_filterld(counts, 10, mode='constant')
#print(len(counts))

plt.subplots(figsize=(20, 5))

plt.plot(values, counts)
plt.show()

X = np.array([2,5,7,0,1,3,6,3,3,7,0,9,1,3])
y = np.linspace(0,1,10)

z = y[x]
print(z)

test = values[tomo_slice]
print(len(test))
print(len(tomo_slice))

def gaussian(x, a, b, c):
return a x np.exp(-((x-b)*x2) / (2%c)*x*2)

def testfunc3(xs, al, a2, a3, bl, b2, b3, cl, c2, c3):
return gaussian(xs, al, bl, cl) + gaussian(xs, a2, b2, c2) +
gaussian(xs, a3, b3, c3)

def testfuncd4(xs, al, a2, a3, a4, bl, b2, b3, b4, cl, c2, c3, c4)

return gaussian(xs, al, bl, cl) + gaussian(xs, a2, b2, c2) +
gaussian(xs, a3, b3, c3) + gaussian(xs, a4, b4, c4)

def testfunc5(xs, al, a2, a3, a4, a5, bl, b2, b3, b4, b5, cl, c2,
c3, c4, c¢5):
return gaussian(xs, al, bl, cl) + gaussian(xs, a2, b2, c2) +
gaussian(xs, a3, b3, c3) + gaussian(xs, a4, b4, c4) +
gaussian(xs, a5, b5, c¢5)

def testfunc6(xs, al, a2, a3, a4, a5, a6, bl, b2, b3, b4, b5, b6,
cl, c2, c3, c4, c5, c6):
return gaussian(xs, al, bl, cl) + gaussian(xs, a2, b2, c2) +
gaussian(xs, a3, b3, c3) + gaussian(xs, a4, b4, c4) +
gaussian(xs, a5, b5, c5) + gaussian(xs, a6, b6, c6)

print('almost")

popt2, pcov2 = curve_fit(testfunc4, values, counts, bounds
=([1l000, 10, 500, 100, -1, -0.8, 0, 6, O, 0, 0, O], [l0600,
1000, 10000, 10000, -0.6, 0, 2, 8, 1, 1, 1, 101))

print('alomst...")

probabilityl = gaussian(values,popt2[0],popt2[4],popt2[8]) / (
testfunc4(values, *popt2) +0.01)

probability2 = gaussian(values,popt2[1],popt2[5],popt2[9]) / (
testfunc4(values, *popt2) +0.01)

probability3 = gaussian(values,popt2[2],popt2[6],popt2[10]) / (
testfunc4(values, *popt2) +0.01)

37



APPENDIX: SCRIPTS

probability4 = gaussian(values,popt2[3],popt2[7],popt2[11l]) / (
testfunc4(values, *popt2) +0.01)

min2 = np.max(np.where(probabilityl > 0.5)[0])

max2 = np.min(np.where(probability3 > 0.5)[0])

where2 = np.logical_and(tomo_slice >= values[min2], tomo_slice <=
values[max2])

probmap2 = probability2[tomo_slice]
plt.figure(figsize=(15,15))
plt.imshow(probmap2)

plt.colorbar()

plt.show()

print("here")

print(min2)

print(max2)

probability2[0:min2] = 0 * probability2[0:min2]

probability2[max2:len(probability2)] = 0 * probability2[max2:len(
probability2)]

plt.subplots(figsize=(20, 5))
plt.plot(probabilityl)
plt.plot(probability2)
plt.plot(probability3)
plt.plot(probability4)
plt.show()

testl = values[tomo_slice]

print('test1 length =', len(testl))
print('test1 shape =', testl.shape)
testlcomp = values[tomo_slice.compressed()]
index = np.unique(testlcomp)

index = np.sort(index)

print('index length =', len(index))

print( 'testzcomp length =', len(testlcomp))

indicies = np.arange(0, len(values))

np.min(index)

countl = 0

initposit = np.where(testl == index[5])
x = testl.shape

print(x)

new_tomo = np.zeros(x)

print(initposit)

print(np.where(values == index[5]))
print(values[np.where(values == index[5])])
print(index[6])

#test2 = values[index]
#print(np.max(test2))
#print(len(test2))

plt.subplots(figsize=(20, 5))

38



plt

plt
plt

plt.
plt.
plt.

plt.
plt.

APPENDIX: SCRIPTS

.title( 'Histogram of intensity values of a single tomogram

slice ")

.xlabel('Intensity / arbitrary units")
.ylabel( 'Frequency / number of voxels')
plt.

plot(values, gaussian(values,popt2[0],popt2[4],popt2[8]),
color='m'")

plot(values, gaussian(values,popt2[1],popt2[5],popt2[9]),
color="y")

plot(values, gaussian(values,popt2[2],popt2[6],popt2[10]),
color="r")

plot(values, gaussian(values,popt2[3],popt2[7],popt2[11]),
color="g")

plot(values, counts)

show()

#new_tomol = values[tomo_slice]

print('max of tomo_slice', np.max(tomo_slice))
print('min of tomo_slice', np.min(tomo_slice))
print(nbins)

zonel
zone2
zone3
zone4

plt.
plt.
.title('Probability density image, Air')
.xlabel('y")

.ylabel('z")

plt.
plt.

plt
plt
plt

plt.
plt.
.title('Probability density image, blood vessels')
.xlabel('y")

.ylabel('z")

plt.
plt.

plt
plt
plt

plt.
plt.
.title('Probability density image, bone")
.xlabel('y")

.ylabel('z")

plt.
plt.

plt
plt
plt

plt.
plt.
.title('Probability density image, titanium')
.xlabel('y")
.ylabel('z")

plt
plt
plt

probabilityl[tomo_slice]
probability2[tomo_slice]
probability3[tomo_slice]
probability4[tomo_slice]

figure(figsize=(20,20))
imshow(zonel)

colorbar()
show()

figure(figsize=(20,20))
imshow(zone2)

colorbar()
show()

figure(figsize=(20,20))
imshow(zone3)

colorbar()
show()

figure(figsize=(20,20))
imshow(zone4)

39



APPENDIX: SCRIPTS 40

plt.colorbar()
plt.show()



APPENDIX: SCRIPTS

Listing A.2: Script "single_slice_6_gaussians.py"

import numpy as np

import numpy.ma as ma;

import scipy.ndimage as ndi

import skimage.morphology as morf
import skimage.filters as filt
import skimage.feature as feature
import matplotlib.pyplot as plt

from scipy.ndimage import gaussian_filterld
from scipy.optimize import curve_fit
from scipy.optimize import minimize
#from scipy import polyfit

tomo_data = np.load("770—slice —1500_1505.npy")

(Nz, Ny, Nx) = tomo_data.shape
R=Nx /2

xs = np.linspace(-R, R, Nx)

ys np.linspace(-R, R, Ny)

rs

np.sqrt(xs[None, :] **x 2 + ys[:, None] *x 2) # rs[i,j] =
sqrt(xs[j17™2 + ys[i]"2)
mask = rs >= R # mask[i,j] == rs[i,j] >= R, dtype==bool

tomo_slice = ma.masked_array(tomo_data[3], mask=mask)

plt.figure(figsize=(15,15))
plt.imshow(tomo_slice)
plt.show()

plt.figure(figsize=(15,15))
plt.hist(tomo_slice.compressed(), bins=2000)
plt.show()

#(vmin, vmax) = (tomo_slice.min(), tomo_slice.max())
(vmin, vmax) = (-4,12)
#print(vmin, vmax)

nbins = 2 *x 16 +1
bin_edges = np.linspace(vmin, vmax, nbins)
values = (bin_edges[1:] + bin_edges[:-1]1) / 2

#counts, _ = np.histogram(tomo_slice.compressed(), bins=bin_edges
)

counts, _ = np.histogram(values[tomo_slice.compressed()], bins=
bin_edges)

#convolve with 1D gaussian
counts = gaussian_filterld(counts, 10, mode='constant')
#print(len(counts))

plt.subplots(figsize=(20, 5))

41



APPENDIX: SCRIPTS

plt.plot(values, counts)
plt.show()

X
1]

np.array([2,5,7,9,1,3,6,3,3,7,0,9,1,3])
np.linspace(0,1,10)

<
Il

z = y[x]
print(z)

test = values[tomo_slice]
print(len(test))
print(len(tomo_slice))

def gaussian(x, a, b, c):
return a * np.exp(-((x-b)x*x2) / (2*c)*x2)

def testfunc3(xs, al, a2, a3, bl, b2, b3, cl, c2, c3):
return gaussian(xs, al, bl, cl) + gaussian(xs, a2, b2, c2) +
gaussian(xs, a3, b3, c3)

def testfuncd4(xs, al, a2, a3, a4, bl, b2, b3, b4, cl, c2, c3, c4)

return gaussian(xs, al, bl, cl) + gaussian(xs, a2, b2, c2) +
gaussian(xs, a3, b3, c3) + gaussian(xs, a4, b4, c4)

def testfunc5(xs, al, a2, a3, a4, a5, bl, b2, b3, b4, b5, cl, c2,
c3, c4, c5):
return gaussian(xs, al, bl, cl) + gaussian(xs, a2, b2, c2) +
gaussian(xs, a3, b3, c3) + gaussian(xs, a4, b4, c4) +
gaussian(xs, a5, b5, c¢5)

def testfunc6(xs, al, a2, a3, a4, a5, a6, bl, b2, b3, b4, b5, b6,
cl, c2, c3, c4, c5, c6):
return gaussian(xs, al, bl, cl) + gaussian(xs, a2, b2, c2) +
gaussian(xs, a3, b3, c3) + gaussian(xs, a4, b4, c4) +
gaussian(xs, a5, b5, c5) + gaussian(xs, a6, b6, c6)

print('almost')
popt2, pcov2 = curve_fit(testfunc6, values, counts, bounds
=([1l000, 500, 10, 500, 500, 166, -1, -1, -0.8, 0, 0, 6, O, O,
0, 6, 0, 0], [10000, 10000, 1000, 10000, 10000, 10000, -0.6,
-0.6, 0, 2, 2,8, 1,1,1, 1, 1, 10]))
print('alomst...")
probabilityl = (gaussian(values, popt2[0], popt2[6], popt2[12]) +
gaussian(values, popt2[1l], popt2[7], popt2[131)) / (
testfunc6(values, *popt2) + 0.01)
probability2 = gaussian(values,popt2[2],popt2[8],popt2[14]) / (
testfunc6(values, *xpopt2) + 0.01)
probability3 = (gaussian(values,popt2[3],popt2[9],popt2[15]) +
gaussian(values,popt2[4],popt2[10],popt2[16])) / (testfuncé(
values, =xpopt2) + 0.01)
probability4 = gaussian(values,popt2[5],popt2[11],popt2[17]) / (
testfunc6(values, *popt2) + 0.01)

min2 = np.max(np.where(probabilityl > 0.5)[0])

42



APPENDIX: SCRIPTS

max2 = np.min(np.where(probability3 > 0.5)[0])
where2 = np.logical_and(tomo_slice >= values[min2], tomo_slice <=
values[max2])

probmap2 = probability2[tomo_slice]
plt.figure(figsize=(15,15))
plt.imshow(probmap2)

plt.colorbar()

plt.show()

print("here")

print(min2)

print(max2)

probability2[0:min2] = 0 x probability2[0:min2]

probability2[max2:len(probability2)] = 0 * probability2[max2:len(
probability2)]

plt.subplots(figsize=(20, 5))
plt.plot(probabilityl)
plt.plot(probability?2)
plt.plot(probability3)
plt.plot(probability4)
plt.show()

testl = values[tomo_slice]

print('test1 length =', len(testl))
print('test1 shape =', testl.shape)
testlcomp = values[tomo_slice.compressed()]
index = np.unique(testlcomp)

index = np.sort(index)

print('index length =', len(index))

print( 'testicomp length =', len(testlcomp))

indicies = np.arange(0, len(values))

np.min(index)

countl = 0

initposit = np.where(testl == index[5])
x = testl.shape

print(x)

new_tomo = np.zeros(x)

print(initposit)

print(np.where(values == index[5]))
print(values[np.where(values == index[5])1)
print(index[6])

#test2 = values[index]
#print(np.max(test2))
#print(len(test2))

plt.subplots(figsize=(20, 5))

plt.plot(values, gaussian(values,popt2[0],popt2[6],popt2[12]),
color='m")

plt.plot(values, gaussian(values,popt2[1],popt2[7],popt2[13]),
color="y")

43



plt.
plt.
plt.
plt.

plt.
plt.

plot(values,
color="k")
plot(values,
color="r")
plot(values,
color="g")
plot(values,
color='c")
plot(values,
show()

APPENDIX: SCRIPTS

gaussian(values,popt2[2],popt2[8],popt2[14]),
gaussian(values,popt2[3],popt2[9],popt2[15]),
gaussian(values,popt2[4],popt2[10],popt2[16]),
gaussian(values,popt2[5],popt2[11],popt2[171]),

counts)

#new_tomol = values[tomo_slice]

print('max of tomo_slice', np.max(tomo_slice))
print('min of tomo_slice', np.min(tomo_slice))
print(nbins)

zonel
zone2
zone3

probabilityl[tomo_slice]
probability2[tomo_slice]
probability3[tomo_slice]

zone4 = probability4[tomo_slice]

plt.
plt.
.title('Probability density image, Air')
.xlabel('y")
.ylabel('z")
plt.
plt.

plt
plt
plt

plt.
plt.
.title('Probability density image, blood vessels')
.xlabel('y")
.ylabel('z")
plt.
plt.

plt
plt
plt

plt.
plt.
.title('Probability density image, bone')
.xlabel('y")
.ylabel('z")
plt.
plt.

plt
plt
plt

plt.
plt.
.title('Probability density image, titanium')
.xlabel('y")
.ylabel('z")
plt.
plt.

plt
plt
plt

figure(figsize=(20,20))

imshow(zonel)

colorbar()
show()

figure(figsize=(20,20))

imshow(zone2)

colorbar()
show()

figure(figsize=(20,20))

imshow(zone3)

colorbar()
show()

figure(figsize=(20,20))

imshow(zone4)

colorbar()
show()

44



APPENDIX: SCRIPTS

Listing A.3: Script "find_po_and_bounds.py"

import numpy as np

def find_bounds_and_init_guess(local_peakcount, local_peaks, po,
bounds, bins, bintype, lines, 1i):

for j in range(local_peakcount):

lineslice = (lines[bintypel[i] == local_peaks[j])
height = np.max(lineslice * bins[i])
height_index = np.max(np.where(bins[i] == height))

if local_peakcount ==

gap = 500

if j < (local_peakcount - 1) and j > 0O:

gap = np.min([np.min(np.where(lines[bintype][i] == local_peaks[]j
+ 1])) - np.max(np.where(lineslice)),

np.min(np.where(lineslice)) - np.max(np.where(lines[bintype][i]
== local_peaks[j - 1]))1)

elif j < (local_peakcount - 1):

gap = np.min(np.where(lines[bintype][i] == local_peaks[j + 1])) -

np.max(np.where(lineslice))

elif j > 0:

gap = np.min(np.where(lineslice)) - np.max(np.where(lines[bintype
1[1i] == local_peaks[j - 11))

width

float(gap / 2)

po[j] height
#set
height initial guess, A
bounds[0][j] = height * 0.2
#set min height
bound, A
bounds[1][j] = height * 1.01 + 0.0001
#set max height bound, A
pO[j + local_peakcount] = height_index
#set displacement initial
guess, B
bounds[0][j + local_peakcount] = height_index - width / 8
#set min displacement bound, B
bounds[1][j + local_peakcount] = height_index + width / 8
# #set max displacement bound, B

right_peakedge = np.max(np.where(lineslice))
left_peakedge = np.min(np.where(lineslice))

left_side_peak = np.where(bins[i] > @) * (np.where(bins[i] > 0) <
left_peakedge)

left_side_above_value = np.where(bins[i] < height / 2)

left_half_peak_gapindex 1

try:

left_half_peak_gapindex = np.max(np.intersectld(
left_side_above_value, left_side_peak))

45



APPENDIX: SCRIPTS

except ValueError:
pass

right_side_peak = np.where(bins[i] > 0) * (np.where(bins[i] > 0)
> right_peakedge)
right_side_above_value = np.where(bins[i] < height / 2)

right_half_peak_gapindex =1

try:

right_half_peak_gapindex = np.min(np.intersectld(
right_side_above_value, right_side_peak)[

np.nonzero(np.intersectld(right_side_above_value, right_side_peak
N

except ValueError:

pass

leftwidth = np.abs(left_half_peak_gapindex - np.max(np.where(

lineslice * bins[i] == height)))
rightwidth = np.abs(right_half_peak_gapindex - np.max(np.where(
lineslice * bins[i] == height)))

#print(((leftwidth + rightwidth) / 2) /(height+0.0000001))
if (((leftwidth + rightwidth) / 2) /(height+0.0000001) > 0.001):
#tries to work out if the previous has found the wrong

location for width, at half peak height.

if height_index < 1200:

#checks that it

is NOT the metal at a position above 1200. IMPORTANT, only
tested on x, may break for y, z or r

left_side_above_value = np.where(bins[i] < height * 9 / 10) #
choses what new peak height to use to determine the width

left_half_peak_gapindex =1

try:

left_half_peak_gapindex = np.max(np.intersectld(
left_side_above_value, left_side_peak))

except ValueError:

pass

right_side_above_value = np.where(bins[i] < height * 9 / 10) #
choses what new peak height to use to determine the width

right_half_peak_gapindex =1

try:

right_half_peak_gapindex = np.min(

np.intersectld(right_side_above_value, right_side_peak)[np.
nonzero (

np.intersectld(right_side_above_value, right_side_peak))])

except ValueError:

pass

if (((leftwidth + rightwidth) / 2) / (height + 0.0000001) > 0.01)
if height_index < 1200: # checks that it is NOT the metal at a

position above 1200. IMPORTANT, only tested on x, may break
fory, zorr

46



APPENDIX: SCRIPTS

left_side_above_value = np.where(

bins[i] < height * 99 / 100) # choses what new peak height to
use to determine the width

left_half_peak_gapindex =1

try:

left_half_peak_gapindex = np.max(np.intersectld(
left_side_above_value, left_side_peak))

except ValueError:

pass

right_side_above_value = np.where(

bins[i] < height * 99 / 100) # choses what new peak height to
use to determine the width

right_half_peak_gapindex =1

try:

right_half_peak_gapindex = np.min(

np.intersectld(right_side_above_value, right_side_peak)[np.
nonzero(

np.intersectld(right_side_above_value, right_side_peak))])

except ValueError:

pass

leftwidth = np.abs(left_half_peak_gapindex - np.max(np.where(

lineslice * bins[i] == height)))
rightwidth = np.abs(right_half_peak_gapindex - np.max(np.where(
lineslice * bins[i] == height)))

bounds[0][j + local_peakcount *x 2] = (np.min([leftwidth,
rightwidth]) / 1.3) *x 2 #set min width bound, C

bounds[1][j + local_peakcount * 2] = (np.max([leftwidth,
rightwidth]) * 1.3) **x 2 + 0.0001 #set min width vound, C

bounds[0][j + local_peakcount * 3] = 1.5
#set min exponent bound, D
bounds[1][j + local_peakcount * 3] = 2
#set max exponent bound, D

p0[j + local_peakcount * 2] = ((leftwidth + rightwidth) / 2) *x 2
#set width initial guess, C
p0[j + local_peakcount * 3] = 2
#set exponent initial
guess, C

return np.sqrt(bounds), np.sqrt(p0@) #return bounds and intial
guess

47



APPENDIX: SCRIPTS

Listing A.4: Script "fit_curve.py"

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

from find_pO_and_bounds import find_bounds_and_init_guess

# define exponential functions

def gaussian(x, a, b, c, d):

return a *x 2 x np.exp(-np.abs((x - b *x 2)) *x (d *x 2) / (2 * C
xx 2))

def gaussians2(xs, al, a2, bl, b2, cl, c2, dl, d2):
return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2

)

def gaussians3(xs, al, a2, a3, bl, b2, b3, cl, c2, c3, dl, d2, d3
):

return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2
) + gaussian(xs, a3, b3, c3, d3)

def gaussians4(xs, al, a2, a3, a4, bl, b2, b3, b4, cl, c2, c3, c4
, dl, d2, d3, d4):

return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2
) + gaussian(xs, a3, b3, c3, d3) + gaussian(xs, a4, b4, c4,
d4)

def gaussians5(xs, al, a2, a3, a4, a5, bl, b2, b3, b4, b5, cl, c2
, €3, c4, c5, d1, d2, d3, d4, d5):

return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2
) + gaussian(xs, a3, b3, c3, d3) + gaussian(xs, a4, b4, c4,
d4) + gaussian(xs, a5, b5, c¢5, d5)

def gaussians6(xs, al, a2, a3, a4, a5, a6, bl, b2, b3, b4, b5, b6
, ¢l1, c2, c3, c4, c5, c6, d1, d2, d3, d4, d5, d6):
return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2
) + gaussian(xs, a3, b3, c3, d3) + gaussian(xs, a4, b4, c4,
d4) + gaussian(xs, a5, b5, c5, d5) + gaussian(xs, a6, b6, c6,
do6)

def fit_curve(data, bintype):

#define a dictionary of the functions

fndict = {"A": gaussian, "B": gaussians2, "C": gaussians3, "D":
gaussians4, "E": gaussians5, "F": gaussians6}

keynames = ["A", "B", "C", "D", "E", "F"]

binsl, binsl_lines = data

48



APPENDIX: SCRIPTS

lines = binsl lines[()]

bins = binsl[bintypel]

shapedepth, shapecount = bins.shape #shapedepth is the number of
histograms, shapecount is the frequencies of the histograms

peakcount = np.size(np.unique(lines[bintype]) ) -1 # the
number of materials in the whole space
peakmax = np.max(lines[bintypel) # the

highest numerical index of the materials

# totalcurves = np.zeros((shapedepth, shapecount)) #commented
out as not used

individual_curves = np.zeros((peakmax, shapedepth, shapecount)) #
these are the individual peaks for each material, acorss the
whole space

curve_values = np.zeros((peakmax, shapedepth, 4)) #these are
the ABCD values for each material, across the whole space

probabilities = np.zeros((peakmax, shapedepth, shapecount)) #
these are the values for the probability that this is the
material, at each point in the space.

counts = np.arange(shapecount)

counts = counts.astype(float)

for i in range( shapedepth):

# a personal check to see if it is working still. Currently
Disabled

if i% 250 == 0:

print(i)

local_peaks_bad, ind = np.unique(lines[bintypel[i], return_index=
True)

local_peaks local_peaks_bad[np.argsort(ind)]

local_peaks = np.delete(local_peaks, 0)

local_peakcount = np.size(local_peaks)

if local_peakcount ==
continue

bounds = (np.zeros(local_peakcount * 4), np.zeros(local_peakcount
x 4))
p0 = np.zeros(local_peakcount * 4)

bounds, p0 = find_bounds_and_init_guess(local_peakcount,
local_peaks, p0, bounds, bins, bintype, lines, i) # generate
bounds and initial guess

popt2, pcov2 = curve_fit(fndict[keynames[local_peakcount - 111,
counts, bins[i], maxfev=200000, pO=pO, bounds=bounds) # fits
the curve

# calculates and saves the probabilities
for m in range(local_peakcount):

# saves the values of ABCD in the correct index for each material
curve_values[local_peaks[m] - 1, i, 0] = popt2[m]

49



APPENDIX: SCRIPTS

curve_values[local_peaks[m] - 1, i, 1] = popt2[m +
local_peakcount]

curve_values[local_peaks[m] - 1, i, 2] = popt2[m +
local_peakcount * 2]

curve_values[local_peaks[m] - 1, i, 3] = popt2[m +

local_peakcount * 3]

# gets the intensity values for each material at a this slice of
the data

individual_curves[local_peaks[m] - 1, i, :] = gaussian(counts,
popt2[m], popt2[m + local_peakcount],

popt2[m + local_peakcount * 2],

popt2[m + 3 * local_peakcount])[:]

# works out probabilities as h_i / (H + epsilon)

probabilities[local_peaks[m] - 1, i] = gaussian(counts, popt2[m],
popt2[m + local_peakcount],

popt2[m + local_peakcount * 2],

popt2[m + 3 * local_peakcount]) / (

fndict[keynames[local_peakcount - 1]](counts,

*popt2) + np.abs(

fndict[keynames[local_peakcount - 1]](counts, xpopt2) < 0.1))

# o

# prints out the graphs periodically, if you want to do that!

# Change the condition to choose how often it prints out a
histogram

# o

if 1 % 250 == 100000:

plt.subplots(figsize=(20, 5))

plt.title(i)

plt.plot(counts, fndict[keynames[local_peakcount - 1]](counts, =*
popt2), color='c')

plt.plot(counts, bins[i], color="r', lw=2, ls='-")

for k in range(local_peakcount):

plt.plot(counts, gaussian(counts, popt2[k]l, popt2[k +
local_peakcount], popt2[k + local_peakcount * 2],

popt2[k + 3 * local_peakcount]))

plt.show()

plt.subplots(figsize=(20, 5))

plt.title(i)

plt.plot(counts, fndict[keynames[local_peakcount - 1]](counts, *
popt2))

plt.plot(counts, bins[il])

plt.show()

#

# this plots the probabilities after all data has been fitted

peakindex = np.delete(np.unique(lines[bintype]), 0)

for i in range(peakcount):
plt.title(peakindex[i] - 1)
plt.imshow(probabilities[peakindex[i] - 1])

50



APPENDIX: SCRIPTS 51

plt.show()

return probabilities, curve_values, individual_curves



APPENDIX: SCRIPTS

Listing A.5: Script "optimise_fit.py"

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import minimize

from find_pO_and_bounds import find_bounds_and_init_guess

NA = np.newaxis

# define exponential functions

def gaussian(x, a, b, c, d):

return a *x 2 x np.exp(-np.abs((x - b %% 2)) xx (d **x 2) / (2 * C
xx 2))

def gaussians2(xs, al, a2, bl, b2, cl, c2, dl, d2):
return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2

)

def gaussians3(xs, al, a2, a3, bl, b2, b3, cl, c2, c3, dl, d2, d3
):

return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2
) + gaussian(xs, a3, b3, c3, d3)

def gaussians4(xs, al, a2, a3, a4, bl, b2, b3, b4, cl, c2, c3, c4
, dl, d2, d3, d4):

return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2
) + gaussian(xs, a3, b3, c3, d3) + gaussian(xs, a4, b4, c4,
d4)

def gaussians5(xs, al, a2, a3, a4, a5, bl, b2, b3, b4, b5, cl, c2
, €3, c4, c5, d1, d2, d3, d4, d5):

return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2
) + gaussian(xs, a3, b3, c3, d3) + gaussian(xs, a4, b4, c4,
d4) + gaussian(xs, a5, b5, c¢5, d5)

def gaussians6(xs, al, a2, a3, a4, a5, a6, bl, b2, b3, b4, b5, b6
, ¢l, c2, c3, c4, c5, c6, d1, d2, d3, d4, d5, d6):
return gaussian(xs, al, bl, cl, dl) + gaussian(xs, a2, b2, c2, d2
) + gaussian(xs, a3, b3, c3, d3) + gaussian(xs, a4, b4, c4,
d4) + gaussian(xs, a5, b5, c5, d5) + gaussian(xs, a6, b6, c6,
d6)

# distribution
def distribution(X, ABCD):

ABCD = np.reshape(ABCD, (4, -1))
A, B, C, D =ABCD # len(A) = len(B) = ... = Nmaterials

52



APPENDIX: SCRIPTS

return A[:, NA] xx 2 x np.exp(-np.abs((X[NA, :]1 - B[:, NA] xx 2))
xk (D[:, NA] *x 2) / (
2 x C[:, NA] *x 2)) # A,B,C,D along rows, XS along columns

# energy function
def energy(ABCD, *options):

(penalty, histogram) = options

hist_length = len(histogram)
X = np.arange(hist_length)

dist_values = distribution(X, ABCD)

hist_approx = np.sum(dist_values, axis=0)
difference = histogram - hist_approx
negative_mask = difference < 0

pen = penalty * np.abs(difference * negative_mask)

return np.sum(np.abs(difference) + pen)

def optimise_fit(data, bintype, penalty=1, maxfuncev=50, ex_pO=np
.zeros(1l), ex_bounds=np.zeros(l), set_b = False):

# define a dictionary of the functions

fndict = {"A": gaussian, "B": gaussians2, "C": gaussians3, "D":
gaussians4, "E": gaussians5, "F": gaussians6}

keynames = ["A", "B", "C", "D", "E", "F"]

binsl, binsl_lines = data

lines = binsl_lines[ ()]

bins = binsl[bintype]

shapedepth, shapecount = bins.shape # shapedepth is the number
of histograms, shapecount is the frequencies of the
histograms

peakcount = np.size(np.unique(lines[bintypel])) - 1 # the number
of materials in the whole space

peakmax = np.max(lines[bintype]) # the highest numerical index
of the materials

# totalcurves = np.zeros((shapedepth, shapecount)) #commented
out as not used

individual_curves = np.zeros(

(peakmax, shapedepth, shapecount)) # these are the individual
peaks for each material, acorss the whole space

curve_values = np.zeros(

(peakmax, shapedepth, 4)) # these are the ABCD values for each
material, across the whole space

probabilities = np.zeros((peakmax, shapedepth,

shapecount)) # these are the values for the probability that
this is the material, at each point in the space.

53



APPENDIX: SCRIPTS

counts
counts

np.arange(shapecount)
counts.astype(float)

for i in range(shapedepth):

# a personal check to see if it is working still. Currently
Disabled

#print(1i)

if i% 250 == 0:

print(i)

local_peaks_bad, ind = np.unique(lines[bintypel[i], return_index=
True)

local_peaks = local_peaks_bad[np.argsort(ind)]

local_peaks = np.delete(local_peaks, 0)

local_peakcount = np.size(local_peaks)

bounds = (np.zeros(local_peakcount * 4), np.zeros(local_peakcount
*x 4))
pO = np.zeros(local_peakcount * 4)

if np.sum(ex_pO@*x*x2) < 0.01:

bounds, p0 = find_bounds_and_init_guess(local_peakcount,
local_peaks, p0, bounds, bins, bintype, lines,

i) # generate bounds and initial guess

bounds_low = bounds[0]

bounds_high = bounds[1]

else:

#print('here!")

if set_b == False:

bounds_low = bounds[0]

bounds_high = bounds[1]

for m in range(local_peakcount):

for n in range(4):

pO[m + nxlocal_peakcount] = ex_pO[local_peaks[m] - 1,i,n]

#print(local_peaks[m]-1,i,n)

#print(ex_bounds[local_peaks[m] - 1,i,n])

bounds_low[m + n * local_peakcount] = ex_pO[local_peaks[m] - 1,1,
n] - ex_bounds[local_peaks[m] - 1,i,n]

bounds_high[m + n * local_peakcount] = ex_p0O[local_peaks[m] - 1,
i, n] - ex_bounds[local_peaks[m] - 1, i, n]

#print(po)

#print(bounds_high)

#print(bounds_low)

elif set_b == True:

bounds, p0 = find_bounds_and_init_guess(local_peakcount,
local_peaks, p0, bounds, bins, bintype, lines,

i) # generate bounds and initial guess

#print(bounds[0])

#print(bounds[1])

bounds_low = bounds[0]

54



APPENDIX: SCRIPTS

bounds_high = bounds[1]

for m in range(local_peakcount):

#if i ==

#print('2 before this')

p0[m + local_peakcount]= ex_pO[local_peaks[m] - 1,i,1]

#print('here', m)

bounds_low[m + local_peakcount] = ex_p0O[local_peaks[m] - 1, i, 1]

- 0.0001

bounds_high[m + local_peakcount] = ex_p0O[local_peaks[m] - 1, i,

1] + 0.0001

#print(bounds)

#restructure the bounds to work for optimise.minimise
pass_bounds = np.zeros((len(bounds_low), 2))
#print(pass_bounds)

for p in range(len(bounds_low)):

pass_bounds[p,0]
pass_bounds([p, 1]

bounds_low[p]
bounds_high[p]

#print(pass_bounds)
# bounds=pass_bounds

#print(p0o)

#print(pass_bounds)

#print(bounds_low)

res = minimize(energy, pO, (penalty, bins[i]), method='Powell",
bounds=pass_bounds, options={'maxfev': maxfuncev}) #fits by
minimising the energy

popt2 = res.x

#print(res.x)

# calculates and saves the probabilities
for m in range(local_peakcount):
#print(m)

# saves the values of ABCD in the correct index for each material
curve_values[local_peaks[m] - 1, i, 0] = popt2[m]

curve_values[local_peaks[m] - 1, i, 1] = popt2[m +
local_peakcount]

curve_values[local_peaks[m] - 1, i, 2] = popt2[m +
local_peakcount * 2]

curve_values[local_peaks[m] - 1, i, 3] = popt2[m +

local_peakcount * 3]

# gets the intensity values for each material at this slice of
the data

individual_curves[local_peaks[m] - 1, i, :] = gaussian(counts,
popt2[m], popt2[m + local_peakcount],

popt2[m + local_peakcount * 2],

popt2[m + 3 * local_peakcount])[:]

# works out probabilities as h_i / (H + epsilon)
probabilities[local_peaks[m] - 1, i] = gaussian(counts, popt2[m],
popt2[m + local_peakcount],

55



APPENDIX: SCRIPTS

popt2[m + local_peakcount * 2],

popt2[m + 3 * local_peakcount]) / (
fndict[keynames[local_peakcount - 1]](counts,

*popt2) + np.abs(

fndict[keynames[local_peakcount - 1]](counts, xpopt2) < 0.1))

#III

# prints out the graphs periodically, if you want to do that!
Change the condition to choose how often it prints out a
histogram

# o

if 1 == 100000: #% 250 == 0:

plt.subplots(figsize=(20, 5))

plt.title(i)

plt.plot(counts, fndict[keynames[local_peakcount - 1]](counts, *
popt2), color='c')

plt.plot(counts, bins[i], color="r', lw=2, ls='-")

for k in range(local_peakcount):

plt.plot(counts, gaussian(counts, popt2[k]l, popt2[k +
local_peakcount], popt2[k + local_peakcount * 2],

popt2[k + 3 * local_peakcount]))

plt.show()

title_string = str(penalty) + ', ' + str(i)

plt.subplots(figsize=(20, 5))

plt.title(title_string)

plt.plot(counts, fndict[keynames[local_peakcount - 1]](counts,
popt2))

plt.plot(counts, bins[i])

plt.show()

# this plots the probabilities after all data has been fitted
peakindex = np.delete(np.unique(lines[bintype]), 0)

for i in range(peakcount):

continue

title_string = str(penalty) + ', ' + str(peakindex[i] - 1)
plt.title(title_string)
plt.imshow(probabilities[peakindex[i] - 1])

plt.show()

return probabilities, curve_values, individual_curves

56



APPENDIX: SCRIPTS

Listing A.6: Script "cubic.py”

from numpy import array, linspace, sin, empty, zeros, linalg,
random, pad, concatenate
import numpy as np

# Scheme:

# Fit an N-segment piecewise cubic polynomial to a set of points
with linear least squares with

# two exact conditions:

# (1) Continuity at the borders: f_n (X_n) = f_{n-1} (
X_n)

# (2) Differentiability at the borders: f_n'(X_.n) = f'_{n-1}(
X_n)

#

# Input: A list of M data points [(x1,yl),....(x_M,y_M)] and

# A list of N+1 borders [X0,X1,....,X_N]

#

# This file generalizes the 2-segment method given in cubic2.py

to an arbitrary

# number of segments.

# / fl(x) = Al + B1l*x(x-X0) + CLx(x-X0)**2 + D1x(x-X0)
*%3 if x>=X0 & x<=X1

# f(x) = |

# | f2(x) = f1(X1) + f1'(X1)*(x-X2) + C2x(x-X2)**2 + D2
*(X-X2)**x3 if x>=X1 & x<=X2

# I

# | f3(x) = f2(X2) + f2'(X2)*(x-X3) + C2%(x-X3)**x2 + D2
*(X-X3)**3 if x>=X2 & x<=X3

# | o

# \ f_N(x) = F_{N-1}(X_{N-1}) + f'_{N-1}(X_{N-1})=*(x-
X_N) + CoN*k(X-X_N)**2 + D_N*(x-X_N)x**3

#
if x>=X_{N-1} & x<= X_N

#

# We still want to set up a linear least squares system of
equations that implicitly
# obeys the two exact conditions (so they are not weakened by the
least squares
# approximation to the over-determined system).

# Eq. (1) and (2) determine A_n (the function value at X_n) and
B_n (the derivative at X_n).

# So we have 4+2x(N-1) = 2x(N+1) variables to determine: Al, BI1,
C1, D1, and C2, D2, C3, D3, ..., C_N, D_N

# Each data point (x_i,y_i) defines a row with the coefficients
for A1,B1,C1,D1,C2,D2,...,C_N,D_N in the matrix, and y_i on
the RHS.

def mxrow_f (x, borders):

if(len(borders) < 2):

printf(f'No segments: borders = {borders}")

return

Xleft, Xright = borders[-2:] # x >= Xleft & x <= Xright

57



APPENDIX: SCRIPTS

n = len(borders)-2 # n is the current segment number
# print(f"f_{n}({x}): Xleft,Xright = {np.round([Xleft,Xright
1,2)}; borders = {borders}, {len(borders)-1} segments")

if n==0:

X = x-Xleft

return array([ 1, X, Xsx2, X%x3])
else:

# We recursively define the matrix row

# f_n(x) = f_{n-1}(Xn) + f'_{n-1}(Xn)*(x-Xn) + Cnx(x-Xn)**2 + Dn
*(X-Xn)*x3

# print(f"Recursing down from level {n} to level {n-1},
evaluated at {Xleft}")

row zeros((4+2xn,), dtype=float)

row[: (4+2x(n-1))]1 = mxrow_f(Xleft,borders[:-1]) + mxrow_df(Xleft,
borders[:-1]1)*(x-Xleft);

row[-2:1] = [(x-Xleft)=*x2, (x-Xleft)*xx3]

# print(f"returning length = {len(row)} row at level {n}")

return row

def mxrow_df(x,borders):

if len(borders) < 2:

print (f"No segments: borders={borders}")
return

Xleft, Xright = borders[-2:] # x >= Xleft & x <= Xright

n = len(borders)-2 # n is the current segment number

# print(f"f'_{n}({x}): Xleft,Xright = {np.round([Xleft,Xright
1,2)}; borders = {borders}, {len(borders)-1} segments")

if n==0:

X0 = borders[0]

return array([ 0, 1, 2*%(x-X0) ,3*%(x-X0)*%2])

else:

# We recursively define the matrix row: f'_n(x) = f'_{n-1}(Xn) +
Cn*x2x(xX-Xn) + Dnx3%(x-Xn)

row = zeros((4+2x*n,), dtype=float)

row[: (4+2x(n-1))]1] mxrow_df (Xleft,borders[:-1])

row[-2:1] [2% (x-Xleft), 3x((x-Xleft)=*x2)]

return row

# We can now put these together to construct the matrix and RHS

row by row:
def piecewisecubic_matrix(xs,ys, Xs):
M = len(xs) # M data points
N = len(Xs)-1 # N segments, i.e. N+1 borders
A = empty((M,2*x(N+1)),dtype=float)
b = empty((M,1),dtype=float)
n=20 # Start in first region

Xleft, Xright = Xs[0], Xs[1]

for i in range(len(xs)):

58



APPENDIX: SCRIPTS

# print(f"Xleft, Xright = {Xleft, Xright}, Xs = {Xs}, n =
{n}")

if(xs[i] > Xright):

n+=1

Xleft, Xright = Xs[n], Xs[n+1]

# print(f"A[{i}]: n = {n}, 4+2n = {4+2*xn}, n+2 = {n+2}")
Ali,:(442xn)] = mxrow_f(xs[i],Xs[:(n+2)])

b[i] = ysl[i]

return A,b

# A function that takes an N-segment piecewise cubic polynomial

# produced by fit_piecewisecubic() and evaluates it on an
arbitrary

# set of coordinates xs (not necessarily the same as the data
points

# it was fitted to):

def piecewisecubic(pc,all_xs):

coefs, Xs = pc # Polynomial coefficients Al1l,B1,(C1,D1,C2,
D2,C3,D3,... and borders

N = len(Xs)-1 # N segments have N+1 borders: |segl|seg2
|...|segN|

ys = [1] # List of function values for segments

A,B = coefs[:2] # A and B coefficients are only defined

for 0-segment

for n in range(N):
C, D = coefs[(2+2%n): (242*xn+2)] #

Xleft, Xright
Xs_segment

Xs[n], Xs[n+1]
all_xs[(all_xs>=Xleft) & (all_xs< Xright)]

# f_n(x) = A + Bx(x-Xn) + Cx(x-Xn)**x2 + D*(x-Xn)x*x*3

xs = xs_segment - Xleft # Segment coordinate x-
Xn

ys += [A + Bxxs + Cx(xs**2) + Dx(xs*x3)] # f_n(xs)

Calculate next A and B coefficients:

Xright-Xleft

A + BxX + Cx(X**%2) + Dx(X*%3) # A_{n+1}
B + Cx2xX + D*3x(X*%x2) # B_{n+1}

f_n (X_{n+1})
f'_n(X_{n+1})

W > X #*
[}

return concatenate(ys)

# ...and a function to construct the overdetermined linear system
of

# equations and find the least squares optimal approximate
solution:

def fit_piecewisecubic(xs,ys, Xs):
A, b = piecewisecubic_matrix(xs,ys,Xs)

59



APPENDIX: SCRIPTS

coefs, residuals, rank, sing = linalg.lstsq(A,b, rcond=None)
return (coefs,Xs)

def cubic_interpolation(curve_values, segments=5, plot=False):
new_curve_vals = np.zeros_like(curve_values)

for i in range(len(curve_values)):

for j in range(4):

print(i,j)

if np.sum(curve_values[i, :, jl*x2) < 0.01:
print('ignored"')

continue

vals = curve_values[i, :, jI1.T

mask_abovezero = (vals > 0.000001)

val_mean = np.mean(vals[vals> 0.0001])
val_std = np.std(vals[vals> 0.0001])

if 1 == 6:

"

print(f"mean, std = {val_mean, val_std}")
mask = (vals > 0.000001) & (np.abs(vals-val_mean) < 3xval_std)
Xs = np.argwhere(mask).astype(float).flatten()

ys = vals[mask]
borders = np.linspace(xs.min(), xs.max() + 1, segments + 1)

pc = fit_piecewisecubic(xs, ys, borders)
Xs = np.arange(len(curve_values[i,:1))
Ys = piecewisecubic(pc, xs)

YXs = piecewisecubic(pc, Xs)

for k in range(int(np.min(borders)),int(np.max(borders)), 1):
new_curve_vals[i, k, j] = YXs[k-int(np.min(borders))]

return new_curve_vals

60



APPENDIX: SCRIPTS

Listing A.7: Script "find_lines.py"

import cv2

import numpy as np

from numpy.lib.function_base import disp
from scipy import signal

from scipy.ndimage import gaussian_filterld
from moviepy.video.io.bindings import mplfig_to_npimage
import matplotlib.pyplot as plt

from skimage.morphology import skeletonize
import json

import argparse

import os

def batch():
global args

if not os.path.exists(args.output):
os.mkdir(args.output)

for histogram in args.histogram:

sample = ''.join(os.path.basename(histogram).split("'.")[:-1])
f = np.load(histogram)

for name, bins in f.items():

rng = _range(0,bins.shape[1l],0,bins.shape[0])

px, py = scatter_peaks(bins)

mask = np.zeros(bins.shape, dtype=np.uint8)

mask[py, px] = 255

dilated, eroded = process_closing(mask)

labeled = process_contours(eroded, rng)

np.save(f'{args.output}/{sample}_{name}_labeled ', labeled)

if args.verbose:
print (f'Processed {sample}")

def load_config(filename):
if os.path.exists(filename):
with open(filename, 'r') as f:
config = json.load(f)

else:

config = {

'min peak height': 1,

'close kernel y': 160,

'close kernel x': 2,

'line smooth': 7,

'iter dilate': 10,

'iter erode': 5,

'min contour size': 2000,
'joint kernel size': 2

}

return config

def load_hists(filename):
hists = np.load(filename)
results = {}

61



APPENDIX: SCRIPTS

for name, hist in hists.items():

hist_sum = np.sum(hist, axis=1)
hist_sum[hist_sum==0] =1

results[name] = hist / hist_sum[:,np.newaxis]
return hists

class _range:
class inner_range:

start = 0
stop = 0
X = inner_range()

y = inner_range()

def update(self):

self.x.start = cv2.getTrackbarPos( 'range start x', 'Histogram
lines ")

self.x.stop = cv2.getTrackbarPos( 'range stop x', 'Histogram lines
")

self.y.start = cv2.getTrackbarPos( 'range start y', 'Histogram
lines ")

self.y.stop = cv2.getTrackbarPos( 'range stop y', 'Histogram lines
")

return self

def __init__(self, range_x_start=0, range_x_stop=0, range_y_start
=0, range_y_ stop=0):

self.x.start = range_x_start

self.x.stop = range_x_stop

self.y.start = range_y_start

self.y.stop = range_y_stop

def parse_args():

parser = argparse.ArgumentParser(description="Computes the
connected lines in a 2D histogram. It can either be run in
GUI mode, where one tries to find the optimal configuration
parameters, or batch mode, where it processes one or more
histograms into images. In GUI mode, one can specify the
bounding box by dragging a box on one of the images, specify
the line to highlight by left clicking and reset the bounding
box by middle clicking.")

# E.g. histogram: /mnt/data/MAXIBONE/Goats/tomograms/processed/
histograms/770c_pag/binsl.npz

# TODO glob support / -r --recursive

parser.add_argument( 'histogram', nargs='+",

help="Specifies one or more histogram files (usually *.npz) to
process. If in GUI mode, only the first will be processed.
Glob is currently not supported. ')

parser.add_argument('-b', “—batch', action='store_true',

help="Toggles whether the script should be run in batch mode. In
this mode, the GUI isn\'t launched, but the provided
histograms will be stored in the specified output folder."')

parser.add_argument('—c', '—config', default='config.json', type
=str,

62



APPENDIX: SCRIPTS

help='The configuration file storing the parameters. If in GUI
mode, this will be overwritten with the values on the
trackbars (unless the —b flag is provided). If it doesn\'t
exist, the default values inside this script will be used.
NOIE: there\'s an error in libxkbcommon.so, which crashes
OpenCV whenever any other key than escape is used. So to save

it, close the GUI with the escape button. ')

parser.add_argument('—d', '—dry_run', action='store_true’,

help="Toggles whether the configuration should be saved, when
running in GUI mode. ')

parser.add_argument('-o', —output', default='output', type=str,
help="Specifies the folder to put the resulting images in.")
parser.add_argument('—p', —peaks', action='store_true’,

help="Toggles whether to plot peaks on the cutout (1st row, 3rd
image). Turned off by default, since it is computationally
heavy. Only applicable in GUI mode.")

parser.add_argument('—v', “—verbose', action='store_true’,

help="Toggles whether debug printing should be enabled. ')

args = parser.parse_args()
return args

def plot_line(line, rng: _range):
global config

meaned, peaks = process_line(line[rng.x.start:rng.x.stopl])
fig, ax = plt.subplots()
ax.plot(line[rng.x.start:rng.x.stop])

ax.plot(meaned)

ax.scatter(peaks, meaned[peaks], c='red"')

line_plot = mplfig_to_npimage(fig)

line_plot = cv2.cvtColor(line_plot, cv2.COLOR_RGB2BGR)
plt.close()

return line_plot

def process_closing(mask):
global config

close_kernel = np.ones((config[ 'close kernel y'], config['close
kernel x']1))

dilated = cv2.dilate(mask, close_kernel, iterations=configl['iter
dilate '])

eroded = cv2.erode(dilated, close_kernel, iterations=config[ 'iter
erode'])

return dilated, eroded

def process_contours(hist, rng: _range):
global config

contours, _ = cv2.findContours(hist, cv2.RETR_TREE, cv2.
CHAIN_APPROX_SIMPLE)

contours = [c for c in contours if cv2.contourArea(c) > config['
min contour size ']]

63



APPENDIX: SCRIPTS

result = np.zeros((rng.y.stop-rng.y.start, rng.x.stop-rng.x.start
), np.uint8)

bounding_boxes = [cv2.boundingRect(c) for ¢ in contours]

(contours, _) = zip(xsorted(zip(contours, bounding_boxes), key=
lambda b:b[1]1[0]))

for 1 in np.arange(len(contours)):

result = cv2.drawContours(result, contours, i, int(i+1), -1)

return result, [i+1 for i in range(len(contours))]

def process_joints(hist):
global config

skeleton = skeletonize(hist)

skeleton_gray = cv2.cvtColor(skeleton, cv2.COLOR_BGR2GRAY)

skeleton_gray = cv2.threshold(skeleton_gray, 1, 255, cv2.
THRESH_BINARY)[1]

skeleton_gray = cv2.dilate(skeleton_gray, (3,3), 10)

joint_kernel_size = config['joint kernel size']

horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (
joint_kernel_size,1))

horizontal = cv2.morphologyEx(skeleton_gray, cv2.MORPH_OPEN,
horizontal_kernel, iterations=2)

vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,
joint_kernel_size))

vertical = cv2.morphologyEx(skeleton_gray, cv2.MORPH_OPEN,
vertical_kernel, iterations=2)

joints = cv2.bitwise_and(horizontal, vertical)

joints = cv2.dilate(joints, (10,10), iterations=5)

return joints

def process_line(line):
global config

meaned = gaussian_filterld(line, config[ 'line smooth'])
peaks, _ = signal.find_peaks(meaned, .0lxconfig[ 'min peak height'
1xline.max())

return meaned, peaks

def process_scatter_peaks(hist, rng: _range):
global config, args

# Show the peaks scattered on the cutout of the original

px, py = scatter_peaks(hist[rng.y.start:rng.y.stop,rng.x.start:
rng.x.stopl])

fig, ax = plt.subplots()

ax.imshow(hist[rng.y.start:rng.y.stop,rng.x.start:rng.x.stop],
cmap="'jet"')

if args.peaks:

ax.scatter(px, py, color='red', alpha=.008)

scatter_plot = mplfig_to_npimage(fig)

scatter_plot = cv2.cvtColor(scatter_plot, cv2.COLOR_RGB2BGR)

plt.close()

64



APPENDIX: SCRIPTS

return scatter_plot, py, px

def process_with_box(hist, rng: _range, selected_line, scale_x,
scale_y, partial_size):

display = ((hist.astype(np.float32) / hist.max()) * 255.0).astype
(np.uint8)

box_x_start = int(rng.x.start * scale_x)

box_y_start = int(rng.y.start * scale_y)

box_x_stop = int(rng.x.stop * scale_x)

box_y_stop = int(rng.y.stop * scale_y)

resized = cv2.resize(display, partial_size)

colored = cv2.cvtColor(resized, cv2.COLOR_GRAY2BGR)

colored = cv2.rectangle(colored, (box_x_start, box_y_start), (
box_x_stop, box_y_stop), (0, 255, 0), 1)

colored[int(selected_linexscale_y),:] = (0,0,255)

return colored

def save_config():
global config, args

with open(args.config, 'w') as f:
json.dump(config, f)

def scatter_peaks(hist):

peaks_x = []

peaks_y = []

for i in range(len(hist)):

_, peaks = process_line(hist[i,:])
line_y = [i for _ in peaks]
peaks_x += list(peaks)

peaks_y += line_y

return peaks_x, peaks_y
def gui():

global last_bin, args
def update_image(_):

hist_shape = f[keys[cv2.getTrackbarPos('bins', 'Histogram lines"')
11.shape

cv2.setTrackbarMax( 'range start x', 'Histogram lines', hist_shape
[11-1)

cv2.setTrackbarPos( 'range start x', 'Histogram lines', min(cv2.
getTrackbarPos( 'range start x', 'Histogram lines'),
hist_shape[1]-1))

cv2.setTrackbarMax( 'range stop x', 'Histogram lines', hist_shape
[11-1)

cv2.setTrackbarPos( 'range stop x', 'Histogram lines', min(cv2.

getTrackbarPos( 'range stop x', 'Histogram lines'), hist_shape
[11-1))

cv2.setTrackbarMax( 'range start y', 'Histogram lines', hist_shape
[0]-1)

cv2.setTrackbarPos( 'range start y', 'Histogram lines', min(cv2.
getTrackbarPos( 'range start y', 'Histogram lines'),
hist_shape[0]-1))

65



APPENDIX: SCRIPTS

cv2.setTrackbarMax( 'range stop y', 'Histogram lines', hist_shape
[01-1)

cv2.setTrackbarPos( 'range stop y', 'Histogram lines', min(cv2.
getTrackbarPos( 'range stop y', 'Histogram lines'), hist_shape
[0]1-1))

update(42)

def update_line(event, x, y, flags, param):
global mx, my, scale_x, scale_y, last_bin

sizex = cv2.getTrackbarPos('size x', 'Histogram lines")

sizey = cv2.getTrackbarPos('size y', 'Histogram lines")

rng = _range().update()

rwidth = rng.x.stop - rng.x.start

rheight = rng.y.stop - rng.y.start

pwidth = sizex // 3

pheight = sizey // 2

dead_zone = 100 # This is in global scale

if y > sizey // 2 or x < sizex // 3:

1x = x % pwidth

ly = y % pheight

gx = int(lx * (1l./scale_x)) if y < sizey // 2 else int(rng.x.
start + Ix * (1./(pwidth / rwidth)))

gy = int(ly * (1./scale_y)) if y < sizey // 2 else int(rng.y.
start + ly * (1./(pheight / rheight)))

if (event == cv2.EVENT_LBUTTONDOWN) :

print ('down', gx, gy)

mx = gx

my = gy

elif (event == cv2.EVENT_LBUTTONUP):

print ('up', gx, gy)

if abs(mx-gx) < dead_zone and abs(my-gy) < dead_zone:

cv2.setTrackbarPos( 'line', 'Histogram lines', gy)
print ('Set line', y, ly, gy)

update(42)

else:

mx, gx = sorted((mx,gx))
my, gy = sorted((my,gy))
cv2.setTrackbarPos( 'range start x', 'Histogram lines', mx)
cv2.setTrackbarPos( 'range stop x', 'Histogram lines', gx)
cv2.setTrackbarPos( 'range start y', 'Histogram lines', my)

cv2.setTrackbarPos( 'range stop y', 'Histogram lines', gy)
print ('Set bounds', mx, my, gy, gy)
update(42)

elif (event == cv2.EVENT_MBUTTONDOWN) :
print ('reset bounding box")
hist_shape = fl[keys[cv2.getTrackbarPos( 'bins', 'Histogram lines")

11.shape
cv2.setTrackbarPos( 'range start x', 'Histogram lines', 0)
cv2.setTrackbarPos( 'range stop x', 'Histogram lines', hist_shape
[11-1)
cv2.setTrackbarPos( 'range start y', 'Histogram lines', 0)
cv2.setTrackbarPos( 'range stop y', 'Histogram lines', hist_shape
[61-1)

update(42)

66



APPENDIX: SCRIPTS

# TODO Only do recomputation, whenever parameters that have an
effect are changed.

def update(_): # Note: all colors are in BGR format, as this is
what OpenCV uses

global last_bin, config, scale_x, scale_y

update_config()

# Check if trackbar ranges should be updated

bin = cv2.getTrackbarPos('bins', 'Histogram lines"')
hist = flkeys[bin]]

if bin !'= last_bin:

last_bin = bin

# Set trackbar max values

cv2.setTrackbarMax( 'range start x', 'Histogram lines', hist.shape
[1]1-1)

cv2.setTrackbarMax( 'range stop x', 'Histogram lines', hist.shape
[11-1)

cv2.setTrackbarMax( 'range start y', 'Histogram lines', hist.shape
[0]-1)

cv2.setTrackbarMax( 'range stop y', 'Histogram lines', hist.shape
[0]-1)

cv2.setTrackbarMax( 'line', 'Histogram lines', hist.shape[0]-1)

# Set trackbar starting values

cv2.setTrackbarPos( 'range start x', 'Histogram lines', 0)

cv2.setTrackbarPos( 'range stop x', 'Histogram lines', hist.shape
[11-1)

cv2.setTrackbarPos( 'range start y', 'Histogram lines', 0)

cv2.setTrackbarPos( 'range stop y', 'Histogram lines', hist.shape
[01-1)

cv2.setTrackbarPos( 'line', 'Histogram lines', 0)

# Show the original image, along with the line
rng = _range().update()

selected_line = cv2.getTrackbarPos('line', 'Histogram lines')
partial_width = cv2.getTrackbarPos('size x', 'Histogram lines")
// 3

partial_height = cv2.getTrackbarPos('size y', 'Histogram lines")
// 2

partial_size = (partial_width, partial_height)

scale_x partial_width / hist.shape[1l]

scale_y = partial_height / hist.shape[0]

colored = process_with_box(hist, rng, selected_line, scale_x,
scale_y, partial_size)

# Show the plot of a single line
line_plot = plot_line(hist[selected_line, :1, rng)
lp_resized = cv2.resize(line_plot, partial_size)

scatter_plot, py, px = process_scatter_peaks(hist, rng)
sp_resized = cv2.resize(scatter_plot, partial_size)

67



APPENDIX: SCRIPTS

first_row = np.concatenate((colored, lp_resized, sp_resized),
axis=1)

local_scale_y = partial_height / (rng.y.stop - rng.y.start)

mask = np.zeros((rng.y.stop-rng.y.start,rng.x.stop-rng.x.start),
dtype=np.uint8)

mask[py, px] = 255

dilated, eroded = process_closing(mask)

display_eroded = cv2.resize(eroded, partial_size)

display_eroded = cv2.cvtColor(display_eroded, cv2.COLOR_GRAY2BGR)

if selected_line > rng.y.start and selected_line < rng.y.stop:

display_eroded[int((selected_line-rng.y.start)*local_scale_y),:]
= (0,0,255)

# Find lines

labeled, labels = process_contours(eroded, rng)

label_colours = [(0,0,0)] + [(np.random.randint(0,255), np.random
.randint(0,255), np.random.randint(0,255)) for _ in labels]

labeled_colour = np.zeros((labeled.shape[0], labeled.shape[l], 3)
, dtype=np.uint8)

for y in range(labeled.shape[0]):

for x in range(labeled.shape[l]):

labeled_colour[y,x,:] = label_colours[labeled[y,x]]

display_contours = cv2.resize(labeled_colour, partial_size)

if selected_line > rng.y.start and selected_line < rng.y.stop:

display_contours[int((selected_line-rng.y.start)x*local_scale_y)
,:1 = (0,0,255)

# Find joints

joints = process_joints(labeled_colour)

display_joints = cv2.resize(joints, partial_size)

display_joints = cv2.cvtColor(display_joints, cv2.COLOR_GRAY2BGR)

if selected_line > rng.y.start and selected_line < rng.y.stop:

display_joints[int((selected_line-rng.y.start)*local_scale_y),:]
= (0,0,255)

second_row = np.concatenate((display_eroded, display_contours,
display_joints), axis=1)

cv2.imshow( 'Histogram lines', np.concatenate((first_row,
second_row)))

def update_config():
global config

for entry in config.keys():
config[entry] = cv2.getTrackbarPos(entry, 'Histogram lines')

f = np.load(args.histogram[0])
keys = [key for key in f.keys()]
first_hist = f[keys[0]]

last_bin = 0
cv2.namedWindow( 'Histogram lines ')
cv2.createTrackbar( 'range start x', 'Histogram lines', 0,

first_hist.shape[l]-1, update)

68



APPENDIX: SCRIPTS

cv2.createTrackbar( 'range stop x', 'Histogram lines', first_hist.
shape[1]-1, first_hist.shape[l]-1, update)
cv2.createTrackbar( 'range start y', 'Histogram lines', 0,

first_hist.shape[0]-1, update)

cv2.createTrackbar( 'range stop y', 'Histogram lines', first_hist.
shape[0]-1, first_hist.shape[0]-1, update)

cv2.createTrackbar( 'size x', 'Histogram lines', 1024, 1920,
update)

cv2.createTrackbar( 'size y', 'Histogram lines', 512, 1080, update
)

cv2.createTrackbar( 'bins', 'Histogram lines', 0, len(keys)-1,
update_image)

cv2.createTrackbar( 'line', 'Histogram lines', 0, first_hist.shape
[0]-1, update)

cv2.createTrackbar( 'line smooth', 'Histogram lines', config[ 'line
smooth'], 50, update)

cv2.createTrackbar( 'min peak height', 'Histogram lines', config['
min peak height'], 100, update)

cv2.createTrackbar( 'close kernel x', 'Histogram lines', config['
close kernel x'], 100, update)

cv2.createTrackbar( 'close kernel y', 'Histogram lines', config['
close kernel y'], 100, update)

cv2.createTrackbar( 'iter dilate', 'Histogram lines', config['iter
dilate'], 100, update)
cv2.createTrackbar( 'iter erode', 'Histogram lines', config['iter
erode'], 100, update)
cv2.createTrackbar( 'min contour size', 'Histogram lines', configl
'min contour size'], 10000, update)
cv2.createTrackbar( 'joint kernel size', 'Histogram lines', config

['joint kernel size'], 100, update)
cv2.setMouseCallback( 'Histogram lines', update_line)
update(42)
cv2.waitKey(0) # Segfaults for some reason, when the key isn't

escape :) Looks like it's some wayland / ubuntu 20.04 error
#while True:

# key = cv2.waitKey(16)
# key &= OxFF

# if key == 113:

# break
cv2.destroyAllWindows ()

if __name__ == '__main__ ":
global args

args = parse_args()

config = load_config(args.config)
if args.batch:

batch()

else:

gui()

if not args.dry_run:
save_config()

Listing A.8: Script "test_bones.py"

import numpy as np

69



APPENDIX: SCRIPTS

import matplotlib.pyplot as plt

from scipy.optimize import least_squares
from scipy.interpolate import CubicSpline
from optimise_fit import optimise_fit
from fit_curve import fit_curve

from cubic import =*

np.set_printoptions(suppress=True)

bins_linesdata = np.load("bins1_lines.npz", allow_pickle=True)
binsdata = np.load("bins1.npz", allow_pickle=True)

bintype = 'x_bins' #choose which data to look at, x, y, z or r
data = [binsdata, bins_linesdatal]
binsl, binsl_lines = data

#a = np.arange(10)
#np.save('a_output_test', a)

lines = binsl_lines[()]
bins = binsl[bintype]

line_10 = bins[:, 500]

#plt.plot(line_10, np.arange(len(line_10)))
#plt.show()

for i in range(10):

plt.plot(bins[:,200%i], np.arange(len(bins[:,200%1i])))
plt.show()
#optimise fit
#optimise fit
#optimise_fit
#optimise fit
#optimise fit
#optimise_fit

data, bintype, -100)
data, bintype, -10)
data, bintype, -5)
data, bintype, -2)
data, bintype, -1)
data, bintype, 0)

—~ e~ o~ o~~~

#probabilities, curve_values, individual_curves = optimise_fit(
data, bintype, 2, 50)

#probabilities, curve_values, individual_curves = fit_curve(data,
bintype)

np.save('output_probs_x_leastsq', probabilities)

np.save('output_curve_values_x_leastsq', curve_values)

np.save('output_individual_curves_x_leastsq', individual_curves)

probabilities = np.load( 'output_probs.npy"')
curve_values = np.load( 'output_curve_values.npy')
individual_curves = np.load( 'output_individual_curves.npy')

70



APPENDIX: SCRIPTS

new_p0 = cubic_interpolation(curve_values)

np.save( new_po', new_p0)
new_bounds = np.zeros_like(new_p0)
mask = new_p0 > 0.0001
new_pO_masked = new_p0O[mask]
print('here")

for i in range(len(new_p0)):

for j in range(len(new_p0[0,0]1)):

if np.sum(curve_values[i, :, j] *x 2) < 0.01:
#print('ignored')
continue

#print(i,j)

new_p0_here = new_pO[i,:,]j]

mask = new_p0O_here > 0.0001

new_p0_masked = new_p0O_here[mask]

new_bounds[i,:,j] = 0x np.std(new_pO_masked) + 0.0001
#if i ==

new_probs, new_curve, new_individual = optimise_fit(data, bintype
, 2, 50, new_p0O, new_bounds, False)

#new_new_p0O = cubic_interpolation(new_curve) # ,plot = True)

#probabilities, curve_values, individual_curves = optimise_fit(
data, bintype, 2, 50)

Xs = np.arange(len(curve_values[i]))
for i in range(10):
for j in range(4):

plt.plot(xs, new_curveli,:,jl])
plt.plot(xs, curve_values[i,:,j])
plt.show()

np.save( 'new_output_probs_nochange', new_probs)
np.save( 'new_output_curve_values_nochange', new_curve)
np.save( 'new_output_individual_curves_nochange', new_individual)

71



	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	Introduction
	 Theory
	1 Synchrotron X-ray tomography
	2 Composition of Bone

	 Method
	3 Programming language
	4 Finding the materials in a single tomogram slice
	5 Entire tomogram
	6 Interpolation

	 Results and Discussion
	7 Single tomogram slice
	8 Entire tomogram
	9 Interpolation

	 Conclusion
	10 Conclusion and further work
	 Bibliography

	 Appendix
	A Appendix: scripts


