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Abstract

The presented thesis was written as a partial requirement for acquiring a Masters degree in Bio- and
Medical Physics from the University of Copenhagen, Denmark. The amount of work equated to 60 ECTS
points and had been completed in the period from September 2019 to May 2020. The project was conducted
in collaboration with the Department of Clinical Physiology, Nuclear Medicine & PET at Rigshospitalet,
Copenhagen University Hospital and based at the Clinically Applied Artificial Intelligence Group.

The project focused on investigating the feasibility of a deep learning-based approach to reducing noise
inherent to low-dose CT images for quality enhancement. The generative adversarial network (GAN) archi-
tectures in particular, namely those recently proposed by Yi et al., 2017 (J Digit Imaging) and Yang et al.,
2018 (IEEE Trans. Med. Imaging.), were scrutinised. The latter was implemented for training a model on
a local clinical data of spatially-aligned low- and high- dose CT image pairs.

The resulting denoising method yielded an increase in peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) values of the output images. Moreover, the standard deviations across similar uniform
regions were significantly lower for generated images as compared to their low dose counterparts, approaching
that of a diagnostic dose. The resulting denoised images received a higher rating for visually-perceived quality
by the on-site radiologist: 1.36±0.12 and 1.52±0.12 (p = 0.08) out of 3.0 (target) for low-dose and network
output images respectively.
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1 Introduction

Computed Tomography (CT) is an essential and widely used imaging modality in a clinical environment as
well as other fields of application. Where diagnostic radiology is concerned, CT is particularly useful for its
high spatial resolution and the three-dimensional rendering that allows to recover the structural depth, lost
in a two-dimensional projection image. [1] Unfortunately, there exists an obvious drawback in the form of
ionising radiation exposure to patients. [2] CT accounts for approximately 9% of all radiological examinations
but is responsible for 47% of medical radiation dose. [3] The associated risks (effective dose) can be limited
through either lowering the energy (tube potential in kV) or the flux of the radiation field (tube current in
mAs). However, low voltage will result in poor transmission as the photons will not have sufficient energy
and lowering the X-ray tube current leads to significantly degraded image quality due to an increased level of
quantum noise. This creates a niche for developing a method that would perform accurate denoising without
impeding the diagnostic quality. A number of approaches have been developed in recent years to tackle the
aforementioned problem, including those in the sinogram domain and complimentary to image reconstruction.
[4], [5] The issue with the former is susceptibility to edge blurring and sinogram data of commercial scanners not
being readily available to users, while the latter tends to be vendor-specific and computationally cumbersome.
Alternatively, post-processing techniques are able to mitigate these difficulties through operating on an image
directly without having to rely on raw data. [6], [7]

The image reconstruction techniques in CT are broadly categorised into Fourier-based (Filtered Backpro-
jection or FBP) and iterative (a more detailed account of both can be found in Sections 2.3.2 and 2.3.3). The
former involves convolving discretely sampled projection data contributions with appropriate filters prior to
transformation into the image domain. Apart from the x-ray beam and the electronics, the choice of filter
employed in FBP can also affect the level of noise and even the uniformity of its propagation in the final image.
[8] Nevertheless, the FBP algorithm is the one most commonly used in CT scanners. [1] It utilises directly
measured attenuations of X-ray transmission lines, while iterative methods evaluate their values numerically
and are better suited for imaging modalities with “poorer” photon statistics like SPECT. [9] It is also important
to note that even though iterative reconstruction has the potential to serve as an excellent denoising method in
itself [10], correctly estimating noise during iterations is not a straight-forward task. [11] Furthermore, iterative
reconstruction is associated with producing coarser noise granularity [12] and a visual change in texture that
does not appeal to trained radiologists, potentially jeopardising diagnostic confidence. [4], [13] Therefore, one
of the goals of this project was to produce model outputs visually similar to those obtained from FBP at higher
dose levels.

The growing prominence of Deep Learning (DL) research [14] and its numerous successful applications in
the computer vision domain [15] have also lead to adopting deep neural networks as an alternative approach to
tackling modern day challenges in the field of medical imaging. [16], [17], [18]

As far as CT images are concerned, the oversmoothing and residual error issues, commonly observed in image
processing tasks, are particularly hard to address due to non-uniform noise distribution in reconstructed CT.
The advantage of learning-based methods is their immunity to this specific problem as they depend primarily on
training samples. [19] In the recent years, a number of Deep Learning approaches to LDCT denoising have been
proposed (for example, [21], [22], [23]). Training a noise-reducing neural network typically requires spatially-
aligned dignostic (also referred to as routine or normal - NDCT) and low dose CT image pairs (LDCT), which
are not always available due to additional radiation exposure to patients and general susceptibility to motion
artefacts. Wolterink et al. [20] suggested that disregarding the per-voxel loss and only utilising the adversarial
feedback from a Generative Adversarial Network or GAN (see Section 2.7 for a more detailed account of GAN
arhitecture) could be sufficient for training a robust model. The GAN denoising algorithm is primarily concerned
with learning the low-dose image noise distribution with the aim of subtracting it in a way that would mimic
the dignostic dose, which acts as the training target (also called the ground truth image). Thus, this particular
method is also immune to metal artefacts as these features are inherently different to the noise structure. Yi
et al. [19] and Yang et al. [6] tackled the sharpness impairment caused by the mean squared error loss through
incorporating auxiliary “sharpness” and “perceptual” losses respectively to a GAN with Wasserstein distance.

This thesis project investigated the feasibility of a post-processing deep learning LDCT image denoising
approach. The WGAN-VGG network [6] was trained on a local clinical dataset comprising spatially-aligned
LDCT and NDCT image pairs. The model was calibrated and adjusted for best performance on the unique
clinical dataset. The denoising ability of the resulting model was analysed quantitatively and qualitatively and
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results compared to those achieved previously on a simulated dataset. Additionally, network performance was
evaluated against that of a different architecture (see [19]) and validated on a simulated dataset, obtained by
manually applying a range of noise levels to the high dose images from the test set. The viability of potential
clinical implementation was explored by conducting a subjective blinded scoring test, where the overall image
quality across low/high dose and resulting denoised network output counterparts were rated by an on-site
radiologist. Finally, considerations of limiting factors and suggestions for further model improvements and deep
learning noise reduction approaches were discussed.

1.1 Aim

The main aim of the project was to implement the WGAN-VGG architecture, proposed by Yang et al. [6] and
adjust the network for best results on the local dataset with the ultimate goal of upscaling the quality of LDCT
to ease the trade-off between image quality and radiation dose.
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2 Theoretical Background

This section will cover the physical, mathematical and technological prerequisites that are essential for an in
depth understanding of the underlying theory of the presented thesis project and form the premise for the
relevant methodology.

2.1 X-Ray Physics

Diagnostic radiology with X-rays manifests in a range of modalities from CT scans and fluoroscopy to mam-
mography, dental and conventional X-ray examinations. The fundamental principle behind all these imaging
techniques is based on registering the distribution of X-ray photons transmitted through an object. The dif-
ference in transmitted intensities possesses the information about the attenuating properties of all tissue types
traversed before reaching the detector.

2.1.1 X-ray Photon Interactions in Matter

As an X-ray photon passes through matter it interacts with it either by complete absorption, elastic/inelastic
scattering or pair production. The mode of interaction depends heavily on the incident photon energy and the
absorber material. Figure 1 describes schematically the three dominant modes and their prevalence for different
materials and energy ranges. Figure 2 shows the X-ray absorption probabilities for a range of selected elements.

Figure 1: Light-matter interaction types (left to right):
photoelectric absorption (PE), Compton scattering and
pair production (PP). The two lines correspond to ener-
gies and material atomic numbers for which neighbour-
ing interactions are equally likely. Figure from Podgor-
sak (2006) [24].

Figure 2: PE interaction probabilities per unit
density for a range of photon energies for 32 se-
lected elements (logarithmic scale). The abrupt in-
crease in X-ray absorption occurs when the photon
energies are close to absorber atom K-shell bind-
ing energy (referred to as K-edge). Image adapted
from Dance et al. (2014) [25].

The predominant interaction mode for lower energy photons is photoelectric absorption. The incident X-ray
energy Eγ is transferred into releasing a photoelectron from its bound shell. A characteristic X-ray is emitted as
the atom “relaxes” back to its stable state (see Figure 3). The probability of photoelectric absorption is enhanced
for materials of high atomic number Z and diminishes with higher photon energies. This is why high Z materials
such as lead are typically used for gamma-ray shielding. Moreover, distinct attenuation probabilities and K-
edges (see Figure 2) for each given Z facilitate good radiological contrast (see Section 2.4) for differentiating
between materials (like bone and soft tissue) at lower photon energies. [24], [26]

The main interaction mechanism for X-rays of intermediate energy range is Compton scattering. During
this process, the incident photon of energy E = hυ is deflected off an electron in a material by some angle θ
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with respect to its original direction, depositing some of its energy (schematically depicted in Figure 4). The
subsequent increase in photon wavelength is given by the Compton equation via elastic momentum conservation:

∆λ = λs − λi =
h

mec
(1− cos θ), (1)

where λs and λi are the wavelengths of the scattered and incident photons respectively, h is the Planck’s
constant, me= 511 keV/c2 is the electron rest-mass and θ is the scattering angle. Since the probability of
Compton scattering increases with the number of electrons available, it, therefore, increases linearly with Z, but
otherwise depends weakly on the material type and, thus, is of less importance for the purposes of diagnostic
imaging. [27]

Figure 3: Schematic of photoelectric absorption. If the
incident X-ray energy is higher than the binding energy
of an electron in a given shell of the absorber atom, a
vacancy is created. Characteristic X-rays are emitted
during subsequent state transitions as the vacancy is
filled by one of the higher shell electrons. Image from
of Danad et al. [28].

Figure 4: A visual representation of a Compton
scattering of a photon off a recoil electron in a
medium along with respective energies and scatter-
ing angles. Image from usr ureview@bell.net. Ac-
cessed 30/10/19 via http://universe-review.
ca/I15-72-Compton1.jpg.

At energies higher than twice the rest mass of an electron pair production becomes energetically possible.
In this case photon energy is used to create an electron-positron pair, with any excess shared between the two
in the form of kinetic energy. Following the positron annihilation with electrons in the medium, radiation is
produced in the form of two 511 keV photons that may superimpose on decay spectra of the daughter product,
resulting in characteristic peaks at either or both 511 keV and 1.02 MeV (also called escape peaks). [29], [30]

2.1.2 X-Ray Attenuation

The penetrating ability of an X-ray beam is commonly measured in terms of the Half Value Layer (HVL). It
is defined as the distance required to be traversed in a given material in order for the incident electric field to
dissipate exactly half of its energy (beam intensity). The effective energy of a polychromatic X-ray beam is
equivalent to that of a monoenergetic one possessing the same penetrating ability. The range of transmission
is directly proportional to photon energy and inversely to the atomic number/density of the absorber material.
It is quantified through the interaction probability per path length or linear attenuation coefficient µ:

µ = τPE + σCompton + µpair, (2)

which is simply the sum of all interaction probabilities. The transmitted intensity I can then be expressed in
terms of incident beam intensity I0 and material thickness t as [29]:

I = I0e
−µt. (3)

2.1.3 X-Ray Production and Detection

Employing an X-ray tube is among the most common and straightforward methods of obtaining X-ray photons.
It consists of an evacuated chamber containing a metal filament (cathode), which emits electrons upon heating
(thermionic emission), and a high potential difference across the chamber that accelerates the electrons towards
the anode. The bombarding electrons can then either decelerate due to Coulomb interactions with the electric
field near the nucleus or knock out the electrons from the inner shell of the absorber material atoms. The
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Figure 5: X-ray radiation emission spectrum. Image
from Physics Open Lab. Accessed 30/10/19 via
http://physicsopenlab.org/wp-content/
uploads/2017/08/graph-11.png.

Figure 6: Schematic of a rotating anode X-
ray tube cross-section. Image from Physics
Open Lab. Accessed 30/10/19 via
https://www.sltinfo.com/
wp-content/uploads/2016/04/
x-ray-tube.jpg.

former results in a continuous emission spectrum referred to as bremsstrahlung, while the latter gives rise to the
pronounced peaks corresponding to the characteristic X-ray emissions due to inner shell transitions, as discussed
prior in Section 2.1.1. An example of the resulting superimposed spectrum can be seen in Figure 5. Sometimes
secondary emission of electrons may follow if sufficient amount of released energy is transferred into releasing
them from the outer shell. These are referred to as Auger electrons and do not contribute to the process of
X-ray production. The threshold on the intensities of the peaks (X-ray flux) is controlled by the number density
of the electrons (tube current) and the K-edge of the filament material. This means that the delivered dose
rate (see Section 2.1.5 below) increases linearly with tube current output. The maximum achievable emission
energy is defined by the tube voltage applied. [24], [29] In some X-ray tubes the anode is rotated in order to
prolong the lifetime of the material through redistributing the electron bombardment over its area. Figure 6
demonstrates the components of a rotating anode X-ray tube. The produced photons then pass through an exit
window of a small Z material (usually beryllium or aluminium) to rule out the unwanted weak radiation that
can be fully absorbed in the patient, causing damage and not contributing to image formation. Typical photon
energies used in diagnostic radiology range from 20 keV to 150 keV (1 eV ≡ 1.6×10−19 Joules or kinetic energy
gained by one electron through being accelerating from rest by a potential difference of 1 V in vacuum). [1],
[29], [30] Due to the high flux of X-rays in CT tungsten anodes and cooling systems with water or oil are used
to handle high temperatures and large heat dissipation. [25]

The detector quantum efficiency reflects the detected fraction of photons impinged on the surface and scales
with the incident photon energy, absorber material and its thickness. Currently, solid-state detectors are used
in CT due to their high DQE. They mostly consist of crystal or ceramic scintillators. When a valence electron
in a scintillating material is excited by the incident X-ray photon, it jumps an energy band. Eventually the
electron loses its energy through reemitting a visible light photons, which are then picked up by photodiodes or
photocathodes of the photomultiplier tubes and transformed into an electrical current. [29], [30] This way, the
output in CT is fully digitalised and available for evaluation within seconds.

2.1.4 Quantum Noise

There is a degree of uncertainty associated with quantum processes due to their inherently random nature. The
statistical fluctuation on the number of detected photons obeys the Poisson distribution with relative counting

error decreasing with the total number of photons N as ∝ ∆N
N =

√
N
N = 1√

N
. As the dose scales with the X-ray

flux, at lower doses electronic noise becomes more significant. It normally manifests as a systematic error that
is Gaussian-distributed and is usually caused by the equipment itself. Therefore, the total error on the signal
due to noise εN will follow:

εN ∼ Poisson[N0 exp(−y)] +Gaussian[0, σe], (4)

where N0 is the incoming photon flux, y is the sinogram data (see definition in Section 2.3.2) and σe is the
standard deviation of the electronic noise. While this representation of noise distribution is generally true for
idealised X-ray measurements, it is not so straightforward in reconstructed CT images. [31]

page 7 of 47

http://physicsopenlab.org/wp-content/uploads/2017/08/graph-11.png
http://physicsopenlab.org/wp-content/uploads/2017/08/graph-11.png
https://www.sltinfo.com/wp-content/uploads/2016/04/x-ray-tube.jpg
https://www.sltinfo.com/wp-content/uploads/2016/04/x-ray-tube.jpg
https://www.sltinfo.com/wp-content/uploads/2016/04/x-ray-tube.jpg


2.2 Computed Tomography MSc Thesis, Fridlund I.M.M. (2020)

2.1.5 Dose and Radiation Safety

Exposure to ionising radiation is linked to hazardous health implications that are either directly related to
delivered dose (such as DNA damage and toxicity due to an increase in free radical density) or implicitly lead to
long-term complications. Safety regulations are essential for minimising all radiation-associated risks for both
the patients and the staff involved. Any delivered dose should be kept As Low As Reasonably Achievable
(ALARA). Patient age is also a decisive factor because smaller organ sizes in younger patients deem them more
vulnerable to radiation exposure and longer life expectancy allows for the detrimental effects to manifest. [32]

Energy deposition is typically measured in Grays (Gy), defined as the absorption of one Joule of radiation
energy per kilogram of matter, while the biological effects due to received dose are quantified with Sieverts
(Sv). Radiation exposure is quantified as the kinetic energy transfer to all secondary particles (ionised electrons

and emission photons) by the primary flux photons: K =
∑

i Ei

dm , where m is the mass element where the
incident energy is fully absorbed. K is measured in Gy and is called the Kerma (Kinetic Energy Released
by uncharged particles per unit Mass). While Kerma deals with the associated energy transfer, the absorbed
dose encapsulates all the energy that had been deposited in a given material. Naturally, its amount and the
extent of physical and chemical changes scale with the type and strength of radiation, specific element half-life
as well as ionisation density and scattering properties of a given material or metabolism in the body. Thus, the
concept of the effective dose HE had been introduced to estimate the health effects based on both the severity
of radiation and specific organ sensitivity:

HE =
∑
T

ωTHT , (5)

where ωT is tissue-specific weighting factor, HT =
∑
R ωRDT,R is the equivalent dose absorbed by a given tissue

type T and HE , HT are measured in Sv. The radiation equivalence weighting factor ωR constitutes for the fact
the extent of damage varies with the type of radiation, even if the absorbed dose is the same. For example,
an absorbed photon of 1 mGy is equivalent to the dose of 1 mSv, while for 1 MeV neutron 1 mGy absorption
results in a dose of 20 mSv (ωR = 20). [25], [33]

The effective dose upper limit as established by ICRP (International Commission on Radiological Protection)
is approximately 1 mSv annually from occupational use for general public and up to 20 mSv for certified workers
(delivered over a 5 year period). Typical CT scan effective doses vary from around 1 mSv (lung/head) to 25
mSv (whole body). [34] The exposure due to natural background radiation in Denmark constitutes 2 - 4 mSv
per person per year. [35] The risk of developing cancer is estimated at 5% per Sv received (also subject to age
group and body part exposed) and the lethal dose is defined as that causing death to 50% of exposed population
in 30 days and ranges from 4 to 5 Sv (when received in a relatively small time period). [36]

2.2 Computed Tomography

Figure 7: A rendered image of a typical CT scanner
from SIEMENS. Accessed 31/10/19 via:
https://www.siemens-healthineers.com.

Figure 8: Reconstructed CT image examples in three
standard slice orientations: axial, coronal and sagittal.
Image from Bushberg et al. [27].

After its first clinical implementation in the early 1970s, the CT scanning method was subsequently recog-
nised with the 1979 Nobel Prize in Medicine jointly shared between Godfrey N. Hounsfield and Allan M.
Cormack. [37] Presently, the refinements in the CT imaging setup had resulted in high spatial and contrast
resolution with a large field of view and acquisition times of mere seconds.
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A radiographic image is a two-dimensional projection of a three-dimensional distribution of X-ray paths
and associated attenuating properties along those paths. The image then represents a cross section containing
one-dimensional line projections from different angles. It is possible to reconstruct the cross-sectional image
from a given set of ”raw” projection data by taking an inverse Radon transform (see Section 2.3.2) and the
volumetric object is formed by building a stack of reconstructed images. A CT scanner acquires the projection
data in steps by rotating an X-ray (along with detector array) source around the patient and moving the table
across after each exposure. Figures 7 and 8 show a visual representation of a typical CT scanner and formed
CT images respectively.

2.2.1 Instrumentation

This section gives an brief overview of the fundamental components of a generic CT scanner. As previously seen
in Figure 7, a CT scanner consists of a movable patient table and a cylindrical casing that houses a fast-rotating
gantry upon which both the X-ray tube and the detector array are mounted. This setup is demonstrated
schematically in Figure 9a. The X-ray attenuation is then measured along a line between the source and a
given detector. Modern scanners also utilise spiral/helical scanning as well as multiple detector arrays to reduce
acquisition time (Figure 9b). Moreover, in such a setup the detectors outside of the field of view (FOV) of the
beam can be used to measure the unattenuated beam intensity (making it, thus, possible to easily infer µ).

(a) (b)

Figure 9: Schematic representation of basic CT components and scanning methods. (a) A gantry with multiple
detector rows as seen from patient’s feet and side. Collimation and filter systems are employed to focus the
X-ray beam and modulate its intensity, while lead septa isolate signals from neighbouring detectors. (b) The
concepts of multi-detector/source (left) and helical scanning (right). The former is able to acquire multiple
slices simultaneously, while the latter rotates the source around the isocentre while the patient table is moved
across. The resulting X-ray tube path about the patient is then a helix of pitch p = X

S , where x is the bed
advancement per source rotation and s is the beam collimation. It follows that lower pitch leads to higher
absorbed dose. Hence, tube current modulation is required to avoid unnecessary exposure, while maintaining
image quality irrespective of the pitch. Images from of Flower (2012) [1] and Dance et al. (2014) [25].

2.2.2 Transmission Profile, Hounsfield Units and Image Formation

As the source is moved across the patient in N steps, X-ray transmissions are measured for each cross-section
at N angles. Every slice is then divided into N ×N pixels and the total attenuation per slice is measured as a
sum of all pixel contributions along a given X-ray path l as a line integral:∫

µ(x, y)dl = ln[
I0
I

] =

N∑
i,j

xpq,{i,j}µi,j = Λpq, (6)

where i, j is a given pixel position, pq are given measurement angle and offset respectively, x is the length of
attenuation line in pixel i, j, such that xpq,ij is a contribution of pixel {i, j} to a measurement pq (fraction of
pixel {i, j} intercepting a given X-ray) and µ, I, I0 have their previous meanings. Thus, a set of N parallel
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projections Λθ(x
′) is obtained for each measurement angle. This results in a matrix of linear attenuation

coefficients inferred from the respective degree of attenuation of the incident beam in a given pixel/voxel.
In CT imaging given µ values are translated into corresponding CT numbers, measured in Hounsfield units

(HU) relative to the linear attenuation coefficient of water at room temperature [25]:

HUmaterial =
µmaterial − µH2O

µH2O − µair
× 1000. (7)

It follows that HUH2O = 0 and HUair = -1000. A change of 1 to the HU value translates to the 0.1% change
in the µ of water and, thus, reflects the relative difference between the linear attenuation coefficient of a given
material and that of water. The Hounsfield scale was introduced for establishing practical reference values for
anatomical tissue types.

2.3 Image Reconstruction

Figure 10: Signal (top), imaging
system output (centre) and re-
spective MTF that defines reso-
lution capabilities of the system
(bottom).

This section considers some of the mathematical concepts of signal pro-
cessing and standard reconstruction algorithms associated with CT data,
namely the Filtered Backprojection and Iterative Reconstruction.

2.3.1 Signal Processing

In reality, a response of an imaging system is not entirely isotropic, but
has an inherent degree of blurring associated with the detector output. The
Point Spread Function (PSF) describes the blurring on a point source math-
ematically. An image can then be formed by convolving (see more on con-
volution in Section 2.6) a 2D object profile with its respective PSF. The
added PSF blurring contributions overlap more in the vicinity of the ob-
ject position, thus, forming a region of highest intensity in the final image.
An alternative description of the blurring of an imaging system is provided
by the Modulation Transfer Function (MTF). MTF is a multiplicative fac-
tor reflective of the ”degree of blurring” (reduction in the signal intensity).
For a sinusoidal signal of constant amplitude, the effects of blurring will
be more prominent at higher spatial frequencies and result in lower output
contrast. It follows that the image can be built by decomposing an object
into superposition of spatial frequencies and multiplying them by an appro-
priate MTF (Figure 10). From the Convolution Theorem that states that
the Fourier Transform (FT) of the convolution of two functions is equal
to the product of their FTs it follows that MTF is the FT of the PSF:
MTF (x, y) = |FT [PSF (x, y)]|. [38] [39]

2.3.2 Filtered Backprojection

The backprojection method is based on the intuitive concept of taking the transmission profiles, measured in
accordance with Equation (6), at specific angles and distributing that signal uniformly back at the same angle
as the respective projection.

Projections of a 2D image in Cartesian space (x, y) with parallel rays yield a single line in the projection
space (also called the Radon space). Projection p(t, θ) is then a function of the distance of a given ray from
the object’s isocentre t and the projection angle θ (see Figure 11a). The raw data in CT is represented by a
complete set of profiles (all measured projections at each angles) that form a 2D Radon space or a sinogram (an
example plot of which can be found in Figure 11b). The Central Slice Theorem states that a Fourier Transform
of a given p(t, θ) translates to a line in the 2D Fourier space (also k-space), angled at θ. This operation is
visualised in Figure 11b), where it can also be seen that the transformed projections in the frequency domain
radiate outwards. This leads to over-representation of lower spatial frequencies in the final image and inevitable
blurring. Instead of applying weights to individual frequencies and handling the cumbersome inverse 2D FT, the
filtered backprojection approach is used instead. Here, each projection is convolved with a filter that suppresses
lower frequencies and amplifies the higher ones responsible for the edge behavior in the Fourier space prior to
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backprojecting. An example of a typical filter and its effect on the reconstructed image resolution is shown
in Figure 12. Figure 13 illustrates how the backprojections at different angles from Radon space with a filter
applied in the Fourier domain form an image. Overall, the reconstructed image f(x, y) can be expressed as:

f(x, y) =

∫ π

0

dθ

∫ +∞

−∞
p(k, θ)|k|ei2πktdk, (8)

where p(k, θ) is the 1D FT of the 1D projection at an angle θ (typically projections measured from 0 to π) and
|k| is a filter in the frequency domain. [27], [38], [39]

Different reconstruction filters or kernels are available in CT protocols depending on the clinical purpose.
These include smoothing filters for noise reduction or edge/contrast enhancing convolution kernels.

(a) Single transmission profile geometry. An X-ray is
transmitted through the point (x, y) in a 2D object, at
a distance t from its centre and at an angle θ with respect
to the detector. For each set of transmissions at each given
angle there exists a 1D line in the Radon space.

(b) The mathematical domains and respective transfor-
mations involved in FBP. The image slice (top) and cor-
responding projection space (bottom left). When a single
point profile is measured at different angles, a sine wave is
formed. A sinogram is therefore a collection of such waves
for every projection point in the image domain. It follows
that in practice one can obtain an image from a given
sinogram by performing a 2D inverse Radon transform. A
Fourier map of the image is then built from 2D arrays of
FT of each projection in the sinogram at their respective
angles, in accordance with the Central Slice Theorem.

Figure 11: Geometrical considerations of backprojection. Images courtesy of Dance et al. [25].

(a) (b)

Figure 12: Backprojecting a measured intensity profile with (a) and without a filter (b). Convolving the
projection with a filter results in a significantly higher spatial resolution. Images courtesy of Bushberg et al.
[27].
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Figure 13: The effect of the number of used projections (2, 4, 8, 16 and 128) in FBP on the reconstructed images.
Bottom right shows the result for backprojection without prior filtering. Image courtesy of ImPACT, UK.
Accessed: 21/01/19 via http://www.impactscan.org/slides/impactcourse/basic_principles_
of_ct/image15.html.

2.3.3 Iterative Reconstruction

Due to the rapid advancement in computer hardware and algorithm architectures, iterative reconstruction
techniques had been made possible and are widely utilised. The iterative reconstruction method replaces the
line integrals for the projections with a set of linear equations to be solved:

λ̂(φ, x′) =

I∑
i=1

αi(φ, x
′)µi, (9)

where λ̂ is the computed projection, αi(φ, x
′) is the path length of projection (φ, x′) in the pixel i and the rest

have their previous meanings. The values of µi are computed numerically until λ̂ resembles measured projection
λ. The calculation methods vary across algorithms. A simplified example is shown in Figure 14. [1], [38]

Figure 14: A schematic representation of iterative reconstruction. Three-ray projections P1−4 are taken through
the 9-pixel object O additively. The projection dataset is then sequentially compared with respective estimate
E1−4 grids and the RMS difference between them is used to correct and backproject the updated image in-
formation. This continues until a stopping criterion like sufficient RMS or iteration number is reached. Image
courtesy of Flower (2012) [1].
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2.4 Image Quality

There are many factors that contribute to a reconstructed image appearance and its diagnostic value. Among
the most important qualities in CT is the contrast or the ability to distinguish small differences in greyscale
values between neighbouring image regions. Even though a lower tube voltage will result in better contrast,
it is typically kept relatively high to sustain good X-Ray transmission. Achieving acceptable contrast becomes
progressively more tricky for smaller structures in lower contrast regions since they are usually obstructed by
noise. As previously established, this noise is largely caused by the insufficient number of photons reaching the
detector (Section 2.1.4), but simply raising the tube current (mAs) comes at a trade-off of patient exposure.
Alternatively, noise can be reduced through increasing slice thickness or employing smoothing filters at the cost
of degrading the spatial resolution.

2.4.1 CT artefacts

The causes of artefacts in CT can be broadly divided into three categories: physics, hardware and patient. All
three will be be briefly discussed below in given order.

Aliasing refers to undersampling in the number of projections and ray paths per projection. Moreover,
there is a fundamental limitation on the highest spatial frequency that can be discretely sampled. If that
frequency is higher than the Nyquist frequency, defined as fN = 1

2υ, where υ is the spatial sampling rate, the
true signal cannot be recorded unambiguously. Finally, the sampling resolution is physically limited by the
detector width itself. Aliasing leads to higher frequency signals appearing as lower frequency artefacts (Section
2.3.2) and creates “streaks” in the reconstructed image. Beam hardening occurs when lower energy X-rays
in a polychromatic beam get attenuated in the body more, resulting in overall effective energy increase in
the spectrum. As a result, the “hardened” beam will appear brighter at the tissue exit point as compared
to the entry due to higher energy photons being attenuated less. This leads to underestimation of the linear
attenuation coefficient and has to be corrected for (e.g. with post-processing techniques or dual-energy scans).
Another potential cause for CT number underestimation is the partial volume averaging, appearing when
the scanned object does not fill the scan plane.

Ring artefacts can appear due to system miscalibration or malfunctioning detector elements and arc artefacts
are a consequence of short-circuit within the tube that leads to loss in X-ray information.

Finally, artefacts can be caused by patient motion during the scan or the presence of a highly attenuating
material, like a metal implant. [25], [27], [38], [39]

* * *

page 13 of 47



2.5 Deep Learning MSc Thesis, Fridlund I.M.M. (2020)

2.5 Deep Learning

In the recent years Machine Learning (ML) has gained great prominence across various research disciplines,
resulting in a plethora of scientific advances from object recognition [40] and speech synthesis [41] to abnormal
pattern detection [42] and self-operating machinery [43]. Specifically, Deep Learning, originating from the early
1980s [44], has become an asset in the field of medical imaging due to its numerous successful applications
in image-to-image translation tasks [45], including but not limited to segmentation and classification [46],
augmentation [47], synthesis [48] and super-resolution [49]. Among the most valuable for diagnostic purposes
are the image reconstruction methods: from artefacts correction [50] to denoising. These techniques aim to
assist the qualified professionals that presently act as the gold standard for medical image evaluation.

2.5.1 The Basics of Machine Learning

The basic dynamics behind a ML algorithm comprises measured data of one or more features (e.g. image
pixels or edges), a model that inputs data and carries out a task and its task-specific performance measure. A
program is said to “learn” from a given example if doing so results in improved model performance. [51] The
accuracy of the model is calculated with an error rate, reflective of the proportion of data samples or average
associated probabilities for which the model produces an undesirable result.

The degree of change to the model in response to error estimations during training is referred to as learning
rate. Learning rate is an example of a collection of ML algorithm hyperparameters, which are values set
before the training process (for instance, number of hidden layers, kernel sizes, patch sizes). If the learning rate
is too fast, the model converges too quickly, producing a suboptimal result or divergence, whereas a learning
rate that is too small can take too long to train or even get stuck.

Machine learning can be divided into two broad categories: supervised, where each feature set is also
associated with a specific label that the algorithm learns to predict from a given example, and unsupervised.
The latter method typically learns how to predict a distribution that generates the sample set either explicitly
or implicitly by using a dataset with many features, such is the case in image denoising.

Training a model involves sampling from this data-generating distribution and separating a given example
into data used for training and fitting the model (training set) as well as “unseen” data for which the the
predictions are to be made (test set). Test data is only used to assess the performance. The degree to which
a given model performs as expected on the previously unseen data is referred to as generalisation or test
error. The goal is then to minimise the training error (see more in Section 2.5.4), while also reducing the gap
between training and testing error. A situation where a model is not able to reach an acceptably low training
error is called underfitting, while the gap between testing and training error that is too large is referred to as
overfitting. Figure 15a shows a schematic plot of model fit accuracy as a function of epochs (number of times
that a given neural network had iterated over the entire training data) comparing strong and little overfitting
as well as some visual examples. The ability of a model to find appropriate fits for both the training and the
test data is called the capacity. It should be defined by the complexity of the task at hand, as setting the
capacity higher than necessary can lead to overfitting. [52]

(a) (b)

Figure 15: A trained model is validated against test data. (a) When training fit accuracy (red) approximately
follows the validation curve, little to no overfitting is assumed (green). Blue curve represents an overfitted
model. (b) An underfitted model fails to learn, while an overfitted one is too dependent on the training data.
Image courtesy of user cs231n (karpathy@cs.stanford.edu). Accessed 23/10/19 via http://cs231n.github.
io/assets/nn3/accuracies.jpeg.
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Commonly a given dataset is represented in terms of a matrix, also called design matrix, (or a set of
example vectors when dealing with heterogeneous data), where each row contains an example and each column
an individual feature. Supervised learning also requires supplementary label vector(s). An ML algorithm then
acts as a prescription for transforming a given design matrix vector into predicted output.

2.5.2 Deep Neural Network

Let an n×m matrix of pixel values be an input fed to a neural network of several layers (described below) and
subsequently passed forward through each layers. Because only the input/output information is available to the
user, the layers are considered “hidden”, while their number defines the “depth” of the neural network. Each
layer consists of individual units called neurons, all of which are connected to the neurons in the following
layer (also referred to as fully-connected). Figure 16 is a simplified example diagram of a neural network with
two hidden layers and respective interconnections of nodes. Deep neural network is a collective term that
encompasses feed-forward networks with many hidden layers.

Figure 16: A simple neural network containing two hidden layers of neurons. The lines represent the information
passed from a given neuron to all the neurons in the next layer. The last layer transforms the learned information
into an output that is compared with the target value. Image from Sorokina, K. (2017). Accessed 15/10/19 via
https://miro.medium.com/max/1318/1*3fA77_mLNiJTSgZFhYnU0Q@2x.png.

2.5.3 The Activation Function

What separates a deep learning algorithm from a simple regression optimisation is the ability to handle non-
linear functions and understanding the interactions between all the input variables. This is made possible via
the activation function that is responsible for transforming the weighted input sum into corresponding output
(the process of neuron activation, depicted schematically in Figure 17a). The neurons are then activated
when the weighted sum exceeds a specific “activation number” a, defined as follows:

a(L) = σ[w(L)a(L−1) + b(L)] = σz(L), (10)

for a single neuron located in a layer L, where a(L−1) is the activation of a neuron in the previous layer, w is
the weighting term and b is the bias, which is an independent parameter for each layer introduced to ensure the
model fits need not necessarily pass through the origin. Thus, in the absence of an input, the layer output would
be biased towards b. σ represents a non-linear function that forces a given value into a desired range, typically
used for normalisation and computational efficiency (see Figure 17b for examples). The relevant weighted sum
is expressed in terms of z(L) for simplification purposes. Since there is usually a number of neurons in a given
layer (as is shown in Figure 16), w is not a parameter, but rather a vector of parameters that determines the
strength of node interconnections or, in other words, how each feature affects the mapping from parameters to
predictions. Therefore, for an n×m matrix it is the weighted sum of respective activations:

a(L)
m = σ

nL−1∑
n,m=1

w(L)
n,ma

(L−1)
m−1 + b(L)

m , L = {0, 1, ..., n}; (11)
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that determines the likelihood of activation of a single neuron in a given layer L to result in an overall algorithm
output value getting closer to the desired output. Naturally, a positive weight increases a specific neuron’s
associated prediction value, while a negative one decreases it.

(a) Neuron activation mechanism. A given activation func-
tion determines which neurons are fed as the input to the
next layer in the form of their weighted sum and corre-
sponding biases. Image from Guarnieri et al. [53].

(b) The sigmoid function transforms real numbers into out-
puts within the [0, 1] range. The ReLU is zero for all in-
puts x < 0 and linear otherwise. Modified image from Jain
(2019) [54].

Figure 17: (a) A given neuron activation is triggered when the weighted sum of inputs and biases exceeds the
threshold. (b) Plot of some common activation functions.

ReLU stands for Rectified Linear Unit and is an activation function, responsible for transforming all the
given node inputs to values in the range (0, x). More specifically, ReLU outputs 0 for all negative inputs and
simply returns all the non-negative values. Such a normalisation process eliminates all the negative pixel values
and introduces non-linearity after affine convolutional transformations. Applying ReLU also assists gradient
learning as the second derivative of the rectifier is almost always 0 and, thus, all second order effects become
negligible. Often, a Leaky ReLU is used instead, where all the negative inputs are transformed with some
small near-zero slope coefficients to ensure activation by most inputs from the training data and, thus, a better
estimation of all the gradient contributions. [52].

2.5.4 Loss Functions and Optimisation

Optimising a deep learning algorithm implies indirectly improving model performance on a given training
example, estimated in terms of a loss function. One of the most straightforward approaches to quantifying
the degree of its accuracy is to calculate the mean squared error (MSE) of the model on the test set. The single
resulting value C0 is then the cost of learning from a given example:

C0 = (ŷ − y)2, (12)

where ŷ is the network prediction and y is the desired output. Following this logic, the magnitude of the
activation change of a given neuron, determined by the cumulative weights from the previous layer, is directly
proportional to how close it is to the expected value. The primary goal of a neural network is to find the most
effective way to adjust weights and biases in order to minimise the cost of training. In mathematical terms, one
needs to find the most rapid gradient descent (of the training error) on the cost function across all training
data:

−∇C(w̃, b̃) =
∂C

∂w(L)
+

∂C

∂b(L)
=

1

n

nL−1∑
i=0

∂Ci

∂w
(L)
n,m

+
∂Ci
∂z(L)

= 0; ~w =

w
(0)

...
w(L)

 ,~b =

b
(0)

...
b(L)

 . (13)

In other words, the local minima are found by calculating the gradient loss for the training dataset and updating
the parameters that point in the opposite direction until a local minimum is found.

It is important to note that the notions of cost and loss functions are interchangeable across literature and
publications. The main purpose, however, is to establish a network optimisation tool in the form of a function
to be minimised.
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Typically one deals with either a numerical quantity or a label as the model output. Regression loss functions
handle the first category. Approaches other than MSE in Equation (12), also known as L2 Loss, can be utilised
for loss minimisation. For instance, the sum of absolute differences between target and prediction values can

act as an alternative loss function. This Mean Absolute Error (MAE) or L1 Loss, defined 1
N

∑N
i=0 ‖a

(L)
i − yi‖

accordingly, is less optimal for training (see Figure 18), but is more responsive to statistical outliers in the
training data. [52]

2.5.5 Backpropagation

Figure 18: MAE loss (top) and MSE loss
(bottom) plots for an example where the true
target value is 100 and the predicted val-
ues range from -10000 to 10000. The gra-
dient of MAE loss is constant due to the
function’s linear nature, while MSE gradi-
ent decreases as loss approaches 0, result-
ing in better convergence. Image courtesy
of Prince Grover (2018), accessed 09/04/19
via: https://heartbeat.fritz.ai.

The backpropagation algorithm is responsible for determining
how sensitive the cost function is to single changes in weights and
biases for every training example. Firstly, the components that
minimise the cost of network training are determined by applying
chain rule to the cost function:

∂Ci

∂w
(L)
n,m

=
∂z

(L)
m

∂w
(L)
n,m

∂a
(L)
m

∂z
(L)
m

∂Ci

∂a
(L)
m

. (14)

One can then infer from the term
∂a(L)

m

∂wL
n,m

that the strength of ac-

tivation of node m in layer L depends on activation of node n
in layer L − 1, determined by weight wLn,m, in accordance with
Equation (11). Finally, the response of cost function to this pre-

ceding activation a
(L−1)
n can be expressed in a similar way to

expansion in Equation (14):

∂Ci

∂a
(L−1)
n

=
∂z

(L)
m

∂a
(L−1)
n

∂a
(L)
m

∂z
(L)
m

∂Ci

∂a
(L)
m

. (15)

This demonstrates that the loss in one given layer L − 1 is di-
rectly affected by the loss in the next layer L, encompassing the
notion of backpropagation, where “learned” weights and biases
in the second to last layers are used to update the previous layers
recursively until the optimal fit is found. Initialising weights and
biases is of great significance to any training process as it deter-
mines how close the model is from a given target at the start of
the optimisation process. The parameters can either be set to
zero, drawn randomly or obtained from a similar model that had
been previously trained in the process known as transfer learning.
[55]

The above considerations scrutinise a generalised cost func-
tion before applying any non-linear activation function. More-
over, computing the negative gradient across all data is too com-
putationally cumbersome in reality. Instead, one would divide
the data into batches and calculate the corresponding non-linear
stochastic gradient descent instead.

Batch size is a hyperparameter that defines the number of samples iterated over before applying backprop-
agation.

There also exist auxiliary strategies aimed to optimise gradient descent. One example is the Adam [56]
optimisation algorithm that utilises the adaptive moment method to continuously adjust individual learning
rates for each parameter involved. The notion of the so-called momentum is inspired by the physical analogy
and is estimated based on the cumulative exponentially decaying average of past gradients for each training
batch.

In summary, basic feed-forward (deep) neural networks (also called multilayer perceptrons or vanilla net-
works) have an input layer, followed by hidden and output layers consisting of nodes with associated non-linear
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activation function. A network is trained to learn a non-linear mapping from a collection of examples to find a
model approximation of some function of interest that would best describe both test and training data distribu-
tions using backpropagation to update the model parameters and iterative optimisation algorithms to minimise
the training error gradient.

2.5.6 Model Regularisation

Simultaneously, various model regularisation strategies are typically employed during training to achieve the
most efficient model performance on a given test set, while addressing problems like overfitting. For example,
by limiting a model’s capacity through introducing weight penalties (either through adding sparsity or decay of
the large components in the weight matrix, know as L1 and L2 regularisations respectively). The technique of
batch normalisation standardises each “mini-batch” input by calculating the mean and standard deviation per
given batch to stabilise the training. When training a neural network with many layers, droupout or long-skip
connection methods can be used to reduce the computational toll. The former intentionally ignores several
random layer outputs to create an effect of fewer nodes and connections, while the latter skips layers when
feeding information forward. Early stopping is used for models, whose validation errors begin to increase past
a certain time. [52]

2.6 Convolutional Neural Networks

(f ∗ g)(t) =

∫ ∞
−∞

dτf(t− τ)g(τ). (16)

Equation (16) is a general mathematical definition of the convolution operation acting on two functions f(τ)
and g(τ), where the integral represents the amount of the overlap as g is shifted over f . In the context of
image processing one is dealing with a finite set of digital measurements sampled from some analog signal.
A measurement is, thus, a weighted average of these samples or a convolution of the sampling distribution
with a weighting function. In neural network terminology f is a multidimensional input data array, g is is a
multidimensional parameter array or kernel and the output is referred to as feature map.

A vanilla network acts similarly to a matrix multiplication of data and parameters. Its application is
straight-forward for handling data of same dimensionality. Convolutional Neural Networks (CNN), on the other
hand, are not constrained to the entire data set or same-size inputs, but utilise sparse representation, storing
the important parameters only (e.g. edges) and omitting the rest. Using smaller kernels also reduces the
computational complexity. Figure 19 is a simplistic visualisation of an image patch convolution with a filter
(a bunch of features stored by the kernel). Patch size is a hyperparameter that defines the pixel area seen
by the kernel at any given time. The convolution filter is moved across the input image patch in a number
of steps. Every step, all the lined up image and feature pixel values are multiplied and divided by the total
number of pixels in the kernel, forming a corresponding single pixel value in the output filtered image. A stack
of filtered images forms a convolution layer. [57] A typical convolutional neural network layer consists of
several suboperations: convolutions with associated linear activations (as discussed in Section 2.5.3), followed
by a non-linear activation (ReLU) and a pooling function. In the process of pooling, a network designer picks
a window (kernel) size and the length of strides, with which it is “walked” across the image to be filtered. This
is done to reduced dimensionality and introduce high order features. [52]

2.7 Generative Adversarial Networks

Generative network types are useful, among other things, for manipulating high-dimensional probability distri-
butions and predicting missing data inputs. [59] Generative Adversarial Network (GAN) is a neural network
type that works on the basis of two networks being trained against each other. One is responsible for synthesis-
ing samples that mimic the training data distribution, while the other differentiates between real and generated
samples. Since the introduction of its concept in 2014 (Goodfellow et al. [60]) GAN has found numerous
successful applications in the medical imaging field across various tasks and modalities. [61]

In a GAN framework the generator machine G samples data distribution px to learn a mapping from random
noise to data space (distributed with some unknown pdata) through implicitly defined generative distribution
pg over sample space x. The generator is usually conditioned upon auxiliary information (also referred to as
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Figure 19: The squares represent pixel values stored in the data matrix. Each pixel in the output image is
formed by convolving input image pixels with respective kernel pixels. The resulting pixel value is then the
average of all corresponding image and feature pixel values, obtained through element-wise multiplication. The
filtered image is formed by moving the filter across the selected patch. Image from of Goodfellow et al. (2016)
[52].

conditional GAN or simply cGAN ), for example an LDCT image to be denoised. The discriminator network

D model parameters are simultaneously updated until pdata(x)
pdata(x)+pg(x) in its algorithm converges to 1

2 , effectively

reaching the point at which pdata = pg. The training itself is performed alternately, keeping the discriminator
constant such that the generator has a fixed learning target during its training phase. Similarly, the generator is
held constant during discriminator training, because the latter is forced to find more intricate solutions each time
the generator improves its performance. Thus, the process of assessing a trained and an untrained generator is
inherently different.

Generally speaking, GAN networks aim to solve a min/max optimisation problem through finding optimal
parameters for the two (or more) networks in order to reach an equilibrium where neither of them can further
reduce the cost function. It then follows that the loss for a GAN, conditioned upon a real data example y, can
be quantified as:

min
G

max
D
V (G,D) = Ex,y∼pdata(x,y)[log(D(x, y)] + Ex∼px(x),z∼pz(z)[log(1−D(G(x, z), x))], (17)

where V (G,D) is the overall cost function and pz(z) is the (random) noise distribution. In simple terms, training
a conditional GAN to achieve the optimal algorithm convergence to pdata = pg involves sampling mini-batches
of noise {zi}, i = 1, ...,m and feature vectors {xi} and computing the ascending gradient of the discriminator
with the guidance of the target examples {yi}:

∇λd

1

m

m∑
i=1

[log(D(xi, yi)) + log(1−D(G(xi, zi), xi))], (18)

where λd represents the discriminator parameters and D(x, y), D(G(x, z), x) are the probabilities of a given
sample coming from the data, pdata, or generated, pg, distributions respectively. Once the discriminator is
optimised accordingly, the error is backpropagated to update the generator. For smaller datasets D should be
optimised in several steps per each training iteration to avoid overfitting. G is trained to minimise the probability
of D assigning the correct label to a given sample x. This is achieved through maximising log(D(G(x, z), x)) in a
way guided by the loss calculated with the feedback from D (a more comprehensive mathematical formulation of
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the above ideas can be found in Goodfellow et al. (2014) [60]). This approach had been empirically proven to be
more robust than minimising log(1−D(G(x, z), x)), following the logic of Equation (18). A more stable learning
is achieved by G maximising the log-probability of D being wrong, because at initial stages of the training G
produces poor output which D can confidently reject, resulting in an overall saturation of log-probability. [59]
In a conditional GAN, typically some form of an MSE loss is also introduced to minimise the difference between
generated, G(x), and real samples, y. [6] A schematic example of the above training dynamics can be found in
Figure 20.

It is believed that GANs are, on average, a success in producing realistic looking images due to moving from
traditional max-likelihood. [63] Naturally, variations in the vanilla GAN architecture, as well as tailored features
to address specific challenges in the medical imaging field, had been proposed in the recently published works
([7]-[5], [19]).

Figure 20: A schematic of the conditional GAN training dynamics based on the image domain adaptation
example. The generator G is fed a variable x which it then maps to G(x). The aim of G is to convince D that
generated sample G(x) had been drawn from the real data sample (like training example y). The discriminator
is also conditioned upon the input to G, such that it effectively differentiates between real and fake image pairs.
It aims for D(y) to approach 1 and D(G(x)) to approach 0. The generator is the sufficiently optimised when
D(x) = 1

2 for ∀x. Image from of Isola et al. [62].

2.7.1 SAGAN

An example of a more complex GAN is an adversarial network with an added sharpness-aware network
(SAGAN), proposed by Yi et al. [19]. Figure 21 shows the overall architecture comprising three networks:
the generator G, discriminator D and an auxiliary sharpness detector S, introduced for recovering sharpness in
low contrast regions of noisy images. Here, the generator adopts the U-net [58] structure with 8 deep convo-
lutional layers as well as long skip connections (see Figure 22). On top of the output being fed from one layer
to the next, the long skip connections enable transmission to further selected layers, which allows for training
a deeper network by “skipping” some of the layers. The discriminator architecture borrows from the pix2pix
[62] GAN-base image-to-image translation framework and differentiates between overlapping image patches, as
opposed to full images.

Equations (19) describe the respective adversarial Ladv(D,G) and pixel-wise LL1(G), Lsharp(G) loss func-
tions adopted for training SAGAN. The authors chose to perform the min/max optimisations of G and D
respectively in the least square sense rather than log-probability (Equation (17)). The mean square error and
sharpness map differences are also backpropagated to update the generator weights. This results in a cumulative
loss LSAGAN = arg min

G
max
D

(Ladv(D,G) + λ1LL1
(G) + λ2Lsharp(G)), where λ1 and λ2 represent the weighting

terms.
The sharpness detection network comprised a U-net architecture [58] and was trained on the set of 704

defocused images from [64]. The output sharpness map was created by the means of an analytic sharpness
metric, proposed by Yi et al. (2016) [65].

Ladv(D,G) = Ex,y∼pdata(x,y)
[(D(x, y)− 1)]2 + Ex∼pdata(x)

[D(x, ŷ)2],

LL1
(G) = Ex,y∼pdata(x,y)

[||y − ŷ||L1
],

Lsharp(G) = Ex,y∼pdata(x,y)
[||S(ŷ)− S(y)||L2

]. (19)
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Figure 21: SAGAN components. G performs mapping G : x 7→ ŷ from input LDCT (x) to a virtual denoised CT
(ŷ) such that ŷ is as close to the real full dose target (y) as possible and D is not able to differentiate between
y and ŷ. x paired with both y and ŷ is also fed to the discriminator as auxiliary information for detecting the
mismatch between image pairs. Network S compares the sharpness maps of the output of G with its respective
ground truth. Image courtesy of Yi et al. [19].

Figure 22: A schematics of the SAGAN generator. The network implements U-net structure [58] for feature
learning and skip connections (represented by the black lines in the diagram) for efficiency. Coloured rectangles
indicate the steps and constituents of each convolutional layer, while bottom row boxes show respective kernel
sizes. Image courtesy of Yi et al. [19].

2.7.2 WGAN-VGG

A number of works have addressed the edge oversmoothing and fine detail loss associated with the per-
pixel/voxel Mean Square Error (MSE) loss ([6], [20], [23]). To tackle these challenges, Yang et al. [6] put
forward a GAN with Wasserstein Distance and Perceptual Loss (WGAN-VGG). There, the classic GAN loss
function, described in Equation (17), was modified as follows:

min
G

max
D
LWGAN = −Ex[(D(x)] + Ez[D(G(z))] + λEx̂[(||∇x̂D(x̂)||2 − 1)2], (20)
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where x and x̂ are respective true and generated sample pairs and λ is a constant weighting parameter. The
Wasserstein distance, represented by the first two terms, is a metric for calculating the distance between true
and generated probability distributions. This is a direct difference measure as opposed to a regular GAN
approach that tries to minimise that distance indirectly through the log-probability. Essentially, the former
method compares the cost of generator mapping from one distribution to another directly, while the latter
compares probability distributions of real and generated images. The last term in Equation (20) is an added
gradient penalty for faster loss convergence. [6], [66] It has been demonstrated that using Wasserstein GAN
rather than a standard GAN can result in a more stable optimisation process. [67]

An additional perceptual loss was also incorporated for retaining finer details, quantified as follows:

LV GG(G) = E(x,z)[
1

whd
||φ(G(z))− φ(x))||2F ], (21)

where the pre-trained VGG-19 [68] network (a deep CNN model for classifying image features) acts as a feature
extractor φ, with the feature being the output of its last convolutional layer. Thus, perceptual loss computes the
mean square difference between images in the established feature space instead of directly per-pixel/voxel. w, h

and d are then the width, height and depth of the feature space respectively and ||A||F =
√∑m

i=1

∑n
j=1 |ai,j |2

for an m× n matrix A. The overall cumulative loss of WGAN-VGG is then:

min
G

max
D
LWGAN + λ1LV GG, (22)

where λ1 is the VGG network weighting parameter.
Figure 23 demonstrates the WGAN-VGG architecture. The generator and discriminator comprise a CNN

with 8 and 6 convolutional layers respectively and the pre-trained VGG serves as a perceptual loss calculator.

(a) The WGAN-VGG structure. The generator is a convolutional neural network with 8 ReLU-activated layers, each
consisting of 32 3× 3 convolutional kernels. The generator inputs Low-Dose CT, z, and outputs a denoised image, G(z),
which is fed to the perceptual loss calculator and the discriminator networks along with the ground truth image x.

(b) The WGAN-VGG discriminator network. It consists of 6 convolutional layers with consecutive 64, 128 and 256 filters
of 3 × 3 kernel sizes. The discriminator is finalised with two fully-connected layers, where the penultimate one has 1024
outputs and the last layer downsamples to a single output.

Figure 23: A diagram of the WGAN-VGG architecture. Images courtesy of Yang et al. [6].
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3 Methods

3.1 Methodological Approach

In the scope of this research the WGAN-VGG network [6] was re-trained on the local dataset to adjust the model
hyperparameters for best results. A learning rate scheduler and early stopping were introduced to regularise the
model performance. The cross-validation method was employed to increase the number of available test images.
These were then denoised by the corresponding WGAN-VGG models, trained with the set of hyperparameters,
inferred earlier.

To observe the effect of the dose level on the model output and ensure that the algorithm did not impede
the quality of the images that were already low in noise, a range of simulated noise was applied to diagnostic
dose images from the test set. Finally, resulting WGAN-VGG model was compared to a pre-trained SAGAN
model [19] by first assessing both network performances on the data used for training SAGAN, followed by the
local validation set.

3.2 Data

Data from two different studies were used in this project. In both cases routine dose FBP images were employed
as the reference standard.

3.2.1 Clinical Data

The data were obtained from the ongoing study investigating dopamine transportation with the PE2I radiophar-
maceutical in patients with suspected or diagnosed parkinsonism. [69], [70] Low dose CT scans are routinely
performed alongside PET for attenuation correction in PET/CT. [71] High dose CTs were requested for patients
with observed pathologies. The brain scans were obtained at Rigshospitalet Glostrup, Copenhagen University
Hospital utilising a SIEMENS scanner (SOMATOM Definition AS) with a tube voltage of 120 kVp. Spatially-
aligned diagnostic and low dose CTs were obtained with tube currents of 193 mAs (CTDIvol = 59.99 mGy) and
60 mAs (CTDIvol = 6.83 mGy) respectively (an equivalent of approximately 1.5 mSv and 0.2 mSv, correspond-
ing 90% reduction in dose in LDCT as compared to diagnostic). All images were FBP-reconstructed to 111 ×
2 mm slices with the H19 convolution kernel (dimensionality of 512×512 pixels with 0.59×0.59 mm2 spacing).
The patient data were appropriately anonymised in accordance with relevant data protection standards. A total
of 27 different patient datasets were utilised over the course of the project (9 of which were female and 18 male,
with a mean age of 71.26± 1.64).

3.2.2 Piglet

In this case, the data consisted of full-body CT scans of a single deceased piglet at dose levels ranging from
full dose to reductions of 50%, 25%, 10% and 5% (tube potential was set to 100 kVp for all series) and various
reconstruction methods respectively. Filtered backprojection alone was used in the scope of this project. 906
image slices of 0.625 mm thickness and 0.41×0.41 mm2 pixel spacing (512×512 matrix) from the full dose (tube
current 300 mAs, CTDIvol = 30.83 mGy with effective dose of 14.14 mSv) and the 95%-reduced scans (tube
current 15 mAs, CTDIvol = 1.54 mGy with effective dose of 0.71 mSv) were selected for the comparative network
testing experiment. The dataset was previously acquired for SAGAN training by Yi et al. [19] and downloaded
with the author’s consent. This data was used exclusively for comparing SAGAN [19] performance with that
of WGAN-VGG [6].

3.2.3 Training, Testing and Validation Data Split

The size of the patient cohort used for selected experiments was defined by the number of paired data made
available at the relevant time. The first model was trained on 10 patients. Most of the models trained for
the purpose of identifying optimal network hyperparameters had a training set of 15 clinical patients, while
the model employed for the learning rate scheduler and simulated noise experiments comprised a total of 22
training patients. Two separate patients were held out for model validations on all occasions.

Due to a limited size of the data sample, the ability of the best performing model to generalise to unseen
data was tested by applying the cross-validation method. [73] The two patients used as a validation set during
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the fine-tuning stage were excluded from this statistical experiment to reduce bias in the evaluation of model
fits. The remaining 25 datasets were split into 5 subsets (folds) by isolating 5 patients and training on the rest
of the data. The resulting five models, each trained on 20 patients, were then evaluated with respective retained
testing subsets. This way, the entire cohort participated in both validation and training, with each example
serving as validation exactly once, thus, producing 25 unique testing outputs and performance results averaged
over five models. Figure 24 shows the data split distribution for the clinical dataset.

For the evaluation of the 5-fold outcome images, randomly selected patient slices from the middle of the
brain regions were selected from all 5-fold model test sets. This was done with the aim of each example to serve
as a sensible respective group representative, while also omitting the slices mostly depicting air and possible
spatial misalignments across the entire image series. The final quantitative evaluation was performed on 5
different image triplets (low-dose, output, diagnostic), where each output was denoised with a separate model
and each image set was a subset of respective model training data.

Figure 24: A schematic of the clinical data split for the purposes of different experiments. The two validation
patients utilised for hyperparameter tuning were excluded and the inferred parameters were used to train the
models at the cross-validation stage.

3.2.4 Simulated Dataset

A simulated noise dataset was utilised to quantify the relation between the initial noise level and the magnitude
of the denoising in the output images. To compare the denoising abilities across the five folds, a controlled
range of noise was applied to diagnostic dose images from the five selected sets, described above.

Matlab was employed to simulate the effect of dose on the reconstructed image quality (courtesy of Yi
et al. [74]). Fan beam geometry was used to transform the clinical data into the sinogram domain. The
noise levels were controlled by varying the number of incident flux photons, following Equation (4), for N0 =
1 × 106, 3 × 106, 5 × 106, 1 × 107 (mimicking the range utilised in [19]). Electrical noise was discarded for the
purposes of this experiment. Each image was then denoised with the appropriate corresponding model and the
PSNR with SSIM compared across folds.

3.3 WGAN-VGG Implementation

The WGAN-VGG (refer to Section 2.7.2 for details of the architecture) training/testing model by Yang et al.
[72] was implemented with TensorFlow 1.14.0 (Python v3.6) on NVIDIA Titan GPU. Visual analysis and
model fits were performed using the TensorBoard toolkit.

3.3.1 Network Training

All the models were optimised using the Adam algorithm [56] with all the parameters, apart from the learning
rate α and VGG-19 network weight λ1, intact (β1 = 0.5, β2 = 0.9, λ = 10) as prescribed by the authors [6].
The various model generators G were trained for a range of iterations in mini-batches of 128.
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3.3.2 Data Pre-/Post-Processing

All the input DICOMs files were resampled into 512×512 32-bit images slice-by-slice. The minimal and maximal
pixel values were mapped to -1024 and 3075 respectively to cover the clinical HU range. The images were then
divided into 64×64 patches and respective low-/diagnostic dose pairs concatenated for training. The greyscale
CT images were duplicated to make RGB channels before being fed to the pre-trained VGG network. The
denoising model was applied on whole-size test images. The resulting pixel data from the network output was
then written to corresponding DICOM files as 16-bit integers.

Training Iterations

The optimal number of iterations was investigated with the WGAN-VGG model trained on 10 clinical patients.
The model was validated on two separate patients after 200, 600 and 850 thousand iterations and respective
outputs compared. The effect of continuing model training after initial convergence was also observed by training
a model on 2 patients, followed by the addition of 8 extra patients with persisting iterations.

3.3.3 Hyperparameter Tuning

As the VGG perceptual loss effectively accounts for the structural difference between the input and generated
images and is intrinsically linked to the accuracy of model fit to both noise distributions, the respective loss
function and reciprocal fit qualities were used to evaluate model performance. The perceptual loss curves and
PSNR between LDCT input and denoised output, according to Equations (21) and (24) respectively, were used
to estimate the effects of the initial learning rate α and the weight of the VGG network λ1 on the WGAN-VGG
model convergence. The specific choice of these parameters was justified by two reasons. Firstly, even though
the learning rate is among one of the most important parameters, it cannot be calculated analytically for tailored
cases. [52] Secondly, it was compelling to investigate the possible refinements in denoising quality introduced
by the proposed perceptual similarity comparator. The models were trained with the dataset of 15 patients for
120 thousand iterations and validated on 2 separate cases.

The potential benefits of introducing the VGG network as a supplement to the GAN model were assessed
by adjusting the weighting parameter λ1, responsible for the trade off between the perceptual and adversarial
losses, and comparing the results with the proposed value of λ1 = 0.1. One of the models was also trained with
Wasserstein GAN alone (by setting λ1 to 0). The initial learning rate was kept at the original value of α =
1e-5. [6]

Model Regularisation

To further solidify the choice of an appropriate value of α for the optimal model convergence, a learning rate
scheduler was introduced to the Adam optimiser during the hyperparameter tuning process. The initial learning
rate α0 was gradually reduced with an exponential time decay as follows:

LRdecay = α0 × 0.95
step
10000 , (23)

where α0 was set to decay by 5% every 10000th iteration step. Two models with different initial learning rates
(α0 = 1e-5 and 5e-6; λ1=0.15) were trained with 22 patients for 120 thousand iterations in order to investigate
whether gradually reducing the α0 value after several training epochs would have ultimately resulted in better
fit parameters later on. A third model with the slowest learning rate α = 1e-6 (λ1=0.15) was trained without
decay scheduling for comparison.

Lastly, the resulting model trained on 22 patients with the best performing set of hyperparameters (identified
by the performance on the validation set of 2 patients) was trained for 800 thousand iterations. The model
performance was observed after 100, 200, 600 and 800 thousand iterations to evaluate how fit accuracy scales
with the number of training iterations.

Early stopping (without the learning rate scheduler) was implemented for the final models trained for the
5-fold cross-validation (α = 1e-6, λ1=0.15). This way, appropriate numbers of training iterations for respective
model convergence were ensured by prescribing training halt once the perceptual loss stopped decreasing or had
plateaued (showed no improvements) for at least 200 thousand iterations. All five resulting models demonstrated
optimal convergent behaviour around 650 thousand iterations. Both the learning rate scheduler and the early
stopping were implemented with the Keras callback API.
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3.4 SAGAN Implementation

The pre-trained SAGAN [19] model was obtained from author’s GitHub repository [74]. A more detailed
description of the network can also be found in Section 2.7.1 of the background theory. CUDA version 9.1 with
cudNN 9.0 library and Torch framework (Python v3.7) were employed to run SAGAN. The testing is performed
on full images of 512×512 resolution. This network was not re-trained on the local data and was included in
the investigation solely for the purpose of comparing performance between the two different architectures.

3.5 Network Comparison

To investigate the feasibility of SAGAN implementation and compare the denoising abiliies of different network
architectures, the pre-trained SAGAN model was validated on the training data as well as tested against the
previously unseen local clinical data (the validation set of 2 patients described above). Both datasets were also
denoised with the WGAN-VGG model (α = 1×10−6, λ1 = 0.15, trained on clinical 22 patients for 650 thousand
iterations).

3.6 Evaluation Metrics

To get an objective estimate of the denoising power of the model, the noise levels in the output images were
evaluated quantitatively in terms of their PSNR, SSIM as well as mean CT numbers and standard deviations of
selected uniform regions (similarly to [6], [19], [20]). Finally, the quality of the noise suppression was scrutinised
by the on-site radiologist.

PSNR

One quantitative measure for spatially-aligned CT images is the peak signal-to-noise ratio (PSNR), defined as
follows:

PSNR = 20 log10

255√
MSE

, (24)

where 255 is maximal pixel value for an 8-bit image and
√
MSE is the root mean square error between the

testing and ground truth images. [1] All the analysed 16- and 32-bit images were linearly scaled to fit the 0-255
range.

SSIM

The Structural Similarity Index (or SSIM) is an popular measure of perceptual difference between two images
alternative to PSNR. The value is obtained by comparing image textures (specifically luminance, contrast and
structure) as opposed to error differences (see [75] for the introduction of the concept). The SSIM of the denoised
images with the respective ground truths were calculated with the Python skimage library.

ROI STD

For this evaluation, mean CT numbers (in Hounsfield Units) along standard deviations were obtained for similar
uniform regions of same radius across all inspected images. All regions of interest (ROI) were limited to white
matter in the frontal lobe to minimise the variation in CT numbers (and noise) due to anatomy. Values from
ROIs in the spatially-aligned series were obtained via the minc toolkit. [76]

Clinical Evaluation

A blinded test of the denoising method effectiveness was performed by a local radiologist (an MD with over
10 years of experience in diagnostic radiology). All of the denoised CT images (25 × 111 slices) generated
by the network along with their respective diagnostic and input low doses were randomised. The resulting 75
patients were subjectively scored, one after another, based on the overall image quality (1 = “poor quality,
unusable for clinical purpuses”; 2 = “average quality, but still usable”; 3 = “good quality, perfectly usable”).
The significance of the outcome was assessed with a paired t-test with the upper-tailed alternative hypothesis
assuming that mean output score was greater than that of the input.
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4 Results

4.1 WGAN-VGG Performance Optimisation

The following section considers various approaches to WGAN-VGG [6] (Section 2.7.2) network training optimi-
sation and model regularisation. The optimal set of parameters for desirable model convergence was inferred
empirically through monitoring performance during training and comparing respective output image qualities
from a range of trained models. The ability of the best performing model to generalise to unseen data was then
validated through using the 5-fold cross-validation method.

4.1.1 Training Iterations

Figure 25 is the denoising result of WGAN-VGG output trained on 10 different clinical patients. The juxta-
position of the generator and discriminator loss curves (Figures 25b - 25c) suggests that the network stabilises
after approximately 200 thousand iterations and such trend continues up until around 500 thousand iterations
where the generator loss starts to diverge. This is also reflected by the perceptual loss curve, which increases
in numerical value as the generator quality degrades (Figure 25a).

Figure 26 also shows the deteriorating effects of increasing the training data size fed to a WGAN-VGG
model with a previously optimised discriminator.

(a) The perceptual loss curve repre-
sents the mean-squared-error between
the generated and ground truth images
implicitly through Equation (21). Un-
der idealised conditions, the function
would tend towards 0 difference.

(b) The divergence of generator behav-
ior around 500k training iterations co-
incides with poorer translation of finer
detail as estimated by the perceptual
loss.

(c) Satisfactory performance is
achieved once the discriminator
learns enough features to identify
the true and reject the fake images
with equal confidence. The nega-
tive log-likelihood of discriminator
classification output tends towards 1

2

probability.

(d) Comparison of model output after training for 200, 600 and 850 thousand iterations. Continuing to train
the model past the discriminator convergence point eventually leads to contrast abnormalities and structural
loss in generated images.

Figure 25: Visual denoising quality of WGAN-VGG trained on 10 patients for an increasing number of training
iteration.
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(a) VGG perceptual loss curve of a model trained on 2
patients for 1.2 million iterations, followed by an extra
400 thousand iterations with additional training data
of 8 separate patients.

(b) Output of the model trained on 2 patients after 1.2
million iterations.

(c) Same model output following the intoduction of 8
more patients to the training set.

Figure 26: The effect of increasing patient cohort in a converged GAN-based model.

4.1.2 Hyperparameter Tuning

The following section presents various WGAN-VGG outputs from models trained with different sets of hyper-
parameter values as well as associated quantitative results.

VGG Weight, λ1

The perceptual loss and output PSNR functions, plotted as a mean of 128 batches against respective iterations
for models with varied VGG weights (λ1 = 0.0, 0.1, 0.15, 0.2 and a fixed learning rate α = 1e-5) are shown
in Figure 27. An example of denoised outputs from each models can be seen in Figure 28. The intermediate
value of λ1 = 0.15 produced the most plausible contrast in the output image (Figure 28). This result was also
supported numerically in the form of the highest mean output PSNR, as compared to other values of λ1, with
an identical setup otherwise (Table 1 demonstrates mean batch PSNR values across trained models). Finally,
λ1 = 0.15 yielded the highest average PSNR and SSIM values (as estimated on the whole images from the
validation set, shown in Table 2) among the four models in question.

Learning Rate, α

Along with the initial optimiser learning rate α = 1×10−5 (1e-5) selected by the authors [6], [66], performances
with α = 1× 10−4 (1e-4) and α = 1× 10−6 (1e-6) were evaluated. The results are shown in Figures 29 and 30
as well as Tables 1 and 2.
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(a) Perceptual loss curves from models with λ1 = 0.0, 0.1,
0.15, 0.2. All four models, including the one comprising
GAN only, λ1 = 0.0, demonstrated the ability to decrease
the loss at a similar rate.

(b) The models, trained with λ1 = 0.0, λ1 = 0.15 and
λ1 = 0.2, all produced output PSNR values higher than
the original parameter of λ1 = 0.1 on average (see Table 1
for mean PSNR values). However, due to all three curves
outlining the noise distribution in distinctly different man-
ners, it is ambiguous to draw any meaningful conclusion
based solely on the presented PSNR values.

Figure 27: Training models with different trade-offs between the perceptual and adversarial losses.

Figure 28: Visual comparison of model outputs trained with λ1 = 0.0, 0.1, 0.15, 0.2. Where the image quality
was concerned, the structural details appeared to translate better, as compared to the ground truth, for images
produced with models where the VGG network was on. Slight increment in the λ1 value yielded better contrast
in the denoised image as compared to the ground truth.

(a) Perceptual loss curves produced with various initial
learning rates. The slopes of the blue (α = 1e-5) and the
black (α = 1e-6) curves indicate similar loss minimisation
speed, while the red (α = 1e-6) model curve fails to de-
crease the perceptual loss all together.

(b) Estimated network output peak signal-to-noise evolu-
tion for models with different initial learning rates (see
Table 1 for respective mean PSNR values).

Figure 29: Visual analysis of convergent behaviour of different models based on their initial learning rates. The
slowest α = 1e-6 demonstrated the most stable behaviour throughout training process as well as achieving the
lowest perceptual loss values out of the three variants, outperforming the initial value of α = 1e-5 starting from
around 50 thousand iterations.
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Figure 30: Adjusting initial learning rates for the WGAN-VGG model. Following the results shown in Figure
29, α = 1e-5 and α = 1e-6 yield similar visual quality, while the model with learning rate α = 1e-4 fails to
converge, producing meaningless output.

Hyperparameters Output PSNR

LDCT 34.5790± 0.3290

α = 1e-5, λ1 = 0.1 34.8379± 0.3685

α = 1e-5, λ1 = 0.0 38.7587± 0.2839
α = 1e-5, λ1 = 0.15 38.8953± 0.3457
α = 1e-5, λ1 = 0.2 37.6991± 0.2905

α = 1e-4, λ1 = 0.1 32.7359± 0.2565
α = 1e-6, λ1 = 0.1 35.5533± 0.3841

α = 1e-6 λ1 = 0.15 39.1430± 0.1415

Table 1: Mean batch peak signal-to-noise estimated by the selected models during optimisation for the denoised
patches in accordance with Equation (24), also plotted in Figures 27b and 29b against training iterations. All
the models were trained on a dataset of 15 patients for the same number of iterations. LDCT value is shown
for comparison. The best performance is highlighted in red.

Model PSNR SSIM

LDCT 86.0474± 0.8770 0.9766± 0.0014

α = 1e-5, λ1 = 0.1 86.0557± 0.8900 0.9817± 0.0011

α = 1e-5, λ1 = 0.0 86.8431± 0.9440 0.9826± 0.0011
α = 1e-5, λ1 = 0.15 87.0580± 1.0824 0.9805± 0.0013
α = 1e-5, λ1 = 0.2 86.3361± 0.9283 0.9812± 0.0012

α = 1e-4, λ1 = 0.1 83.0017± 0.7874 0.9665± 0.0013
α = 1e-6, λ1 = 0.1 87.8318± 1.1314 0.9846± 0.0011

α = 1e-6, λ1 = 0.15 87.7527± 1.1762 0.9827± 0.0013

Table 2: Comparison of the quantitative validation outputs from models with various choices of hyperparameters,
previously introduced in Table 1 and associated with Figures 28 and 30. The stated PSNR and SSIM values
were obtained by averaging the results across 111 output image slices from the 2 validation patients.

* * *

For both the PSNR values, estimated per training epochs and from the denoised validation set images, the
learning rate α = 1e-6 and VGG weight λ1 = 0.15 produced the highest mean output (Tables 1 and 2). Thus,
these parameters were combined to train a separate model for best numerical improvement. Despite the fact
one model (same learning rate, λ1 = 0.1) yielded higher PSNR and SSIM values in the validation images, the
choice of the best performing model was also based on the visual appearance of the final output with respect
to the ground truth.
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Learning Rate Schedulers

Despite yielding the highest PSNR gain (Table 2), the slowest learning rate α = 1e-6 demonstrated some
underfitting behaviour in the noise distribution as compared to the other models (Figure 29b).

For this experiment two models with learning rate schedulers, as prescribed by Equation (23), and different
initial learning rates (α0 = 1e-5 and α0 = 0.5e-6), as well as one model with α = 1e-6 and no scheduler were
trained on 22 patients for 120 thousand iterations. The results can be seen in Figure 32 and Table 3. The model
with initial learning rate α0 = 1e-4 was excluded from the analysis due to its failure to converge. Despite being
less successful at fitting the true noise distribution right away, the slowest learning rate, without the addition of
a time decay, achieved the highest estimated PSNR gain, which was supported by the mean PSNR and SSIM
of the test images, previously unseen by the trained models (Table 3).

Model PSNR SSIM
LR Scheduler

α0 = 1e-5 Yes 86.3479± 0.9325 0.9812± 0.0012
α0 = 0.5e-6 Yes 86.3686± 0.9624 0.9814± 0.0012

α = 1e-6 No 87.4016± 1.1056 0.9835± 0.0012
+200k iterations 87.5785± 1.1242 0.9831± 0.0012

Table 3: The effect of implementing a learning rate scheduler on the statistical properties of the denoised images.
All models were trained on 22 patients and validated on the 2 separate patients. The model output with no
learning rate scheduler was repeatedly tested after training the model for additional 200 thousand iterations.

4.1.3 WGAN-VGG Model Regularisation

Figure 31: Perceptual loss and associated PSNR estimations for input and output images as functions of training
iterations for the same model after (a) 120, (b) 250, (c) 600 and (d) 800 thousand iterations. The presented
model was trained with 22 patients (α = 1e-6, λ1 = 0.15) and validated on 2.

In addition to selecting an optimal set of hyperparameters that would best generalise to the validation
data, it was important to identify the appropriate number of iterations prior to performing cross-validation,
since it proved to scale with the size of the training cohort (Figures 26 and 32). Consistent with the results,
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shown in Figures 29b and 32b, the larger number of patients required longer training time, underfitting when
the iterations were too low and overfitting when too high. The perceptual loss appears to plateau after 250
thousand iterations. However, some further training was required for the model to adjust the fit parameters
accordingly and achieve a stable PSNR increase, as seen by comparing (b) and (c) in Figure 31. Naturally,
persisting iterations had caused a significant overfit and misrepresentation of all three functions and, hence,
discrepancy in true value estimations, as compared to other models.

(a) The input and output image PSNR distributions as estimated by the models during respective network optimisations.
The faster the learning rate, the better the noise representation appeared to be early on with α0 = 1e-5 bearing the most
resemblance to the input and α0 = 1e-6 completely underfitting the data. The mean output PSNR values comprised
34.7124 ± 0.2985 for α0 = 1e-5, 35.2207 ± 0.2419 for α0 = 5e-6 and 38.3419 ± 0.3689 for α = 1e-6.

(b) Training the model with the slowest learning rate for longer allows it to capture the aspects of the noise distribution
better. The reciprocated mean PSNR increased to 39.4039 ± 0.3154 .

Figure 32: The effects of implementing a learning rate scheduler in conjunction with different initial learning
rates α0 on models trained with 22 patients for 120 thousand iterations. (a) Left to right: α0 = 1e-5 with LR
scheduler, α0 = 0.5e-6 with LR scheduler, α = 1e-6 and no scheduler. (b) Further iterations of the model with
no LR scheduler for additional 200 epochs. Even though it took longer for the model with slower learning rate
to learn the data distribution, it produced the highest PSNR gain. Moreover, there was a further increase in
its value (by 1.062), associated with subsequent iterations. The quantitative results on the final output images
of the models in question can be found in Table 3.
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4.2 Denoising Quality Evaluation

The statistical and aesthetic attributes of the final output images from the 25 patients, tested with the associated
5 cross-validation models (labelled ’FOLDN’, where N was the consecutive training number), were scrutinised
for potential upscale of low dose image quality.

The five model outputs along with their input low doses and the target diagnostic images are shown in
Figure 34. The respective image PSNR and SSIM values, along with LDCT values for comparison, are stated
in Table 4. The mean PSNR and SSIM values across the image series for all models and their test data can be
found in Appendix A.

Additionally, the mean CT numbers and standard deviations of similar circular regions of the same radii
were compared for the input-target-output sets across all models (Figure 33 and Table 5).

An increase was observed in the PSNR and SSIM values across all models and associated validations,
excluding one patient in FOLD4 (found in Appendix A).

The WGAN-VGG output image mean CT values of the ROI in Figure 33 were smaller on three occasions
and higher on two, as compared to both the low and target dose images. Nevertheless, denoised output yielded
much smaller STD values, akin to those of the diagnostic dose images.

FOLD1 FOLD2 FOLD3 FOLD4 FOLD5

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
LDCT 84.2777 0.9791 83.0414 0.9743 79.1954 0.9600 78.2294 0.9515 88.2097 0.9859

Denoised 85.2071 0.9881 84.4909 0.9865 80.1083 0.9715 78.4141 0.9623 88.4921 0.9925

Table 4: PSNR and SSIM values associated with images shown in Figure 34. The PSNR and SSIM values
increased by 0.7518 ± 0.2330 and 0.0100 ± 0.0010 on average across models for this sample in agreement with
values in Appendix A.

Figure 33: Examples of selected regions of interest (ROI) from individual high dose scans (associated with image
sets shown in Figure 34) used for evaluating mean CT numbers across test images. The radii of all five circular
selections were 15 mm.

FOLD1 FOLD2 FOLD3 FOLD4 FOLD5

Mean STD Mean STD Mean STD Mean STD Mean STD
LDCT 37.3201 10.9904 37.9746 14.7385 38.7308 11.3307 43.0408 17.3987 35.0602 13.5254

WGAN-VGG 34.7545 6.6432 34.1053 8.8168 34.0956 6.6103 45.1605 11.4934 37.7952 8.4015

Diagnostic 36.9925 5.2524 38.8693 6.6957 38.5066 5.2611 41.8147 12.0406 35.2038 8.2942

Table 5: Mean HU values of the regions of interest (indicated in Figure 33) and their standard deviation.
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Figure 34: Final model denoising results from the 5 statistical folds (left to right): LDCT, denoised output,
diagnostic. Top to bottom: FOLD1, FOLD2, FOLD3, FOLD4, FOLD5.
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4.3 Clinical Evaluation

Table 6 shows the mean quality rating for the randomised blinded scoring of the low dose, denoised output
and diagnostic dose images from the 25 clinical patients, according to procedure described in Section 3.6. The
diagnostic dose scans were awarded a perfect rating on all occasions by the radiologist. The final model denoised
output yielded a 0.16 improvement from LDCT (p = 0.08), with only 2 cases rated worse quality post-denoising.

Even though there appeared to be an improvement in image quality, some of the denoised images were
reported to be “slightly different” in perceived structure as compared to other images in the evaluation set.
Overall, the denoised images were deemed usable for evaluation and distinguishing smaller structures, like the
ventricles. However, the clinical expert concluded that the resulting images were still insufficient for carrying
out a confident diagnosis.

LDCT WGAN-VGG Output Diagnostic

Quality Score 1.36± 0.12 1.52± 0.12 3.0

Table 6: Quality rating of the 25 clinical test patients (mean ± std) based on the 3-point scale. The paired
t-test of LDCT and WGAN-VGG output resulted in a tscore = 1.14 and the one-tailed p-value of p = 0.08.

4.4 Simulated Noise Experiment

Figure 35 is an example of the effect of varied simulated noise levels on a diagnostic dose image and respective
denoised outputs. As expected, the performance improves when the noise level is lower. All models demonstrated
comparable results, with output scaling linearly with given dose levels (Table 7). Two out of five models followed
this trend, but did not achieve an increase in PSNR , despite visual similarity of the resulting output (FOLD4
and 5). The improvement in SSMI values post-denoising was observed on all occasions.

Figure 35: A visual example of the application of simulated noise of varied levels to a target image by changing
the amount of influx photons N0 (top). The corresponding WGAN-VGG (FOLD1 model) denoising output
(bottom). The target is a high dose image from the test set of FOLD1.
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N0 = 1× 106 N0 = 3× 106 N0 = 5× 106 N0 = 1× 107

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
LDCT 62.0591 0.3608 62.1090 0.3654 62.1244 0.3666 62.1390 0.3675

FOLD1
Denoised 62.0813 0.3667 62.1220 0.3679 62.1347 0.3681 62.1471 0.3684
LDCT 62.0999 0.3662 62.1537 0.3714 62.1699 0.3727 62.1855 0.3738

FOLD2
Denoised 62.1355 0.3732 62.1681 0.3743 62.1780 0.3745 62.1881 0.3747
LDCT 61.9996 0.3514 62.0527 0.3563 62.0679 0.3575 62.0833 0.3586

FOLD3
Denoised 62.0458 0.3575 62.0882 0.3588 62.1003 0.3591 62.1124 0.3594
LDCT 62.6055 0.4334 62.6609 0.4393 62.6774 0.4408 62.6930 0.4420

FOLD4
Denoised 62.5799 0.4410 62.6235 0.4422 62.6366 0.4425 62.6492 0.4427
LDCT 62.0505 0.3594 62.1029 0.3640 62.1183 0.3652 62.1331 0.3662

FOLD5
Denoised 62.0226 0.3652 62.0644 0.3662 62.0767 0.3664 62.0888 0.3666

LDCT 62.1629 0.3742 62.2158 0.3793 62.2316 0.3806 62.2468 0.3816
(± 0.0999) (± 0.0134) (± 0.1005) (± 0.0136) (± 0.1007) (± 0.0136) (± 0.1008) (± 0.0137)

Average
Denoised 62.1730 0.3807 62.2132 0.3819 62.2253 0.3821 62.2371 0.3824

(± 0.0926) (± 0.0137) (± 0.0931) (± 0.0137) (± 0.0932) (± 0.0137) (± 0.0934) (± 0.0137)

Table 7: Quantitative denoising results on various levels of simulated noise from the five models trained on 20
clinical patients. SSIM value of the lowest simulated dose level (N0 = 1× 10−6) increased to that of five times
higher (N0 = 5× 10−6), owing to WGAN-VGG denoising.

4.5 SAGAN Testing and Model Comparison

The visual inspection of SAGAN and WGAN-VGG validation on the two different datasets is presented in
Figure 36. The associated quantitative results are shown in Table 8. Both models demonstrated some denoising
ability, successfully avoiding too much blur in the output, supporting the claims published by Yi et al. and
Yang et al.

Unsurprisingly, SAGAN achieved better numerical improvement and aesthetical appeal of the output on the
piglet dataset. However, there exists significant bias in the fact that evaluation is performed on the training
data. WGAN-VGG output did not yield significant visual enhancement, but still led to small positive increase
in image statistical properties through denoising, irrespective of the fact that model training data consisted of
image slices from the human brain region only.

On the other hand, the outcome of the SAGAN network denoising of the previously unseen local clinical
patient data did not produce any quantitative improvements. Furthermore, as seen in Figure 36b, the output
image not only suffered the change in contrast, but also demonstrated deterioration in the appearance of finer
details and overall structure impairment, as compared to both the input and the target images.

Piglet Clinical Patient
PSNR SSIM PSNR SSIM

LDCT 33.0080 0.7231 34.6686 0.8041

SAGAN 33.8374 0.8168 33.8635 0.7114

WGAN-VGG 33.1396 0.7606 35.6816 0.8083

Table 8: Quantitative output associated with images presented in Figure 36.
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(a) Randomly selected lung region slice from the piglet dataset (Section 3.2.2). Top image in the middle was denoised
with the SAGAN model, while bottom middle with the WGAN-VGG.

(b) Randomly selected brain slice from the clinical data (Section 3.2.1). Following the example above, top row in
the middle demonstrates SAGAN output and bottom WGAN-VGG output. The output from SAGAN appears more
distorted than that of WGAN-VGG.

Figure 36: Visual output examples of the denoising result from the two different networks on the two separate
datasets, consisting of (left to right): LDCT input images, corresponding model output and target diagnostic
dose images. (a) The effective full dose scan comprised 14.14 mSv and LDCT was estimated at 0.71 mSv (5% of
the full dose). The SAGAN post-processing images were displayed in the ”abdomen” window. (b) The effective
high dose images from the local clinical scans amounted to 1.5 mSv and 0.2 mSv for the low dose (13% of the
full dose).
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5 Discussion

5.1 Outcomes

The presented thesis project resulted in a novel implementation of the WGAN-VGG [6] network on a local
clinical dataset of paired low- and high-dose CT images. A learning rate scheduler and early stopping were
introduced to the original model by Yang et al.. During the fine-tuning of the network, the learning rate and the
trade-off between the adversarial and perceptual losses were adjusted for improved performance on the unseen
data. The optimal values were found to be α = 1e-6 for the former and λ1 = 0.15 for the latter. The final
model (precisely - the average across 5 folds) introduced an enhancement in the quality of the denoised images
as compared to their low-dose inputs. The numerical improvement was observed in PSNR and SSIM values
along with significantly lower noise standard deviations across same uniform regions. The denoised images
also scored, on average, higher in visual quality than LDCT in the subjective clinical evaluation. Finally, the
implemented model raised the PSNR and SSIM values of the lowest simulated dose images to the dose level
five times higher. WGAN-VGG, trained on the clinical data, also generalised better to the unseen pig data, as
opposed to SAGAN, trained on the pig and tested on the clinical patients.

5.2 Optimisation Strategies & Performance Evaluation

Network performance optimisation is more intricate than simply finding local minima of some loss function. An
appropriate convergence criterion must be chosen to accommodate the task at hand. In the case of a GAN-type
network, this implies equilibrium between the generator and the discriminator. Since the output of another
network effectively acts as a loss function, searching for model convergence becomes more fleeting and volatile.
Hence, implementing a manual stopping criterion becomes important: continuing to train a model that already
has a perfectly optimised discriminator causes the generator to learn from a randomised feedback, which results
in poorer performance over time [59] (confirmed and demonstrated in Section 4.1.1). Moreover, the appropriate
span of training for accurate model fit in the case of WGAN-VGG was additionally largely defined by the size of
the training data. It is also important to understand, particularly during the fine-tuning process, that specific
model performance is not necessarily a linear function of any single hyperparameter. The model in question, for
example, possesses a rather high capacity, allowing for many nonlinear interactions. This might require different
optimal training time per given choice of parameters. All of the above issues are easily tackled by the common
regularisation strategy of early stopping. In this case, it involved discontinuing training iterations past the point
of degradation (or prolonged plateauing) of corresponding perceptual loss (refer to Section 4.1.3). Finally, loss
functions for any given model need to be inspected for signs of underfitting (implying poor representation and
parameter estimations) and/or overfitting (which is likely to result in weak generalisation) during training. It
is important to remember that the best performing models usually have exactly the appropriate amount of bias
in a way that guides parameter estimation, without being too dependent on the training data. Whether any
given dataset is sufficient for the job can only be determined on an individual basis.

Identifying appropriate model performance measure is of great importance because it is only possible to
perform indirect evaluation, be it a loss function or fit accuracy. PSNR is a useful metric in this regard as
it is inherently linked to the quality of the generator performance and accompanying noise estimation (and
the degradation in the accuracy of PSNR estimation with worsened G performance was indeed observed, for
instance, in Figure 31).

The addition of VGG perceptual loss was proven to be beneficial for the visual appearance of the output
(Figure 28). Moreover, while GAN-types are overall successful in generating realistic images, the adversarial
loss alone does not account for the degree of structural preservation. Therefore, the addition of an auxiliary loss
for output-target correspondence is a necessity rather that accessory when diagnostic qualities are concerned.

5.2.1 Hyperparameter Tuning

As had been previously demonstrated in Sections 4.1.2, faster learning rate naturally resulted in accelerated
model convergence, while capturing aspects of the noise distribution early on. However, irrespective of the
tendency of models with slower learning rate to underfit initially, these yielded the best end results in terms of
both the quantitative noise measure and perceived quality of the final image. This result simply justifies the
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mainly heuristic approaches to finding optimal collections of hyperparameters and regularisation routes for each
specific network architectures and data types.

Several models with learning rate schedulers were trained in order to observe if comparable PSNR gain could
be achieved more quickly, based on the tendency of a greater α value to achieve a better representation of the
data distribution at a faster rate. These models were trained by allowing the network to update faster at initial
stages, followed by a steady decrease in the learning rate. This was made in an attempt to rectify model fits
in the later training stages by preventing the gradient descent “overshoot” of the true local minima (also a
plausible explanation for models favouring slower learning rate) and, hence, the ultimate loss divergence and
poor predictions. However, it did not result in any significant development. It might also be rationalised by the
choice of the network optimisation algorithm itself, since the utilised Adam optimiser aims to handle appropriate
updates of the learning rate through individual tweaks to each parameter. Adam proved to be robust enough
with the default rate and simply required appropriate number of iterations for given models to achieve the
most successful quantitative and visual enhancement. Lastly, the processing time difference among investigated
learning rates proved to be negligible, so there was no massive trade-off in the form of computational cost and
time. Any further decrease of the learning rate, however, would be ineffective from a practical point of view.
[77] Overall, introducing a learning rate scheduler did not lead to any quantitative improvements, but was still
helpful for verifying the optimal initial rate value. On the contrary, an addition of early stopping proved useful,
as models trained for an appropriate number of iterations demonstrated better performance.

5.3 WGAN-VGG Denoising Results

The resulting noise distribution plots (Figures 32 and 31) indicated that the network was successful in mimicking
the true noise. Additionally, upon visual inspection and according to clinical evaluation, no abnormalities or
pathologies were introduced in the generated images.

The generally small variations in the PSNR values across models might be explained by the fact it is
encapsulated in the optimisation process directly. Moreover, some deviations in statistical parameters could
have been affected by the rounding off in the stages of data pre-/post-processing and writing to different DICOM
files. The difference in magnitude of PSNR, as measured by the network directly (for example, Tables 1 and
8) and later on the output DICOM files (for example, Tables 2, 3 and 4), were due to the fact the images
were processed in 32-bit, but the output pixels were written to DICOMS as 16-bit integers. Nevertheless, these
fluctuations were deemed acceptable for the purpose of the analysis, since it was only concerned with the relative
difference, as compared to the target. Therefore, no inconsistencies were observed otherwise.

All statistical folds achieved comparable PSNR and SSIM gains (Appendix A). The resulting mean gain in
PSNR and SSIM from a different WGAN-VGG model on the two published images in Yang et al. appeared to
be 4 times higher that the one achieved in this project for the five image sets in Figure 34 (3.6570 ± 0.0532
and 0.04525 ± 0.0026 for the former against 0.7518 ± 0.2330 and 0.0100 ± 0.0010 from the latter). Alas, the
implications of such a comparison are uncertain. Firstly, the former model was trained on 10 patients, as opposed
to the proposed trained on 20, potentially making the first more biased. Secondly, the noise distributions learned
by respective models are inherently different in nature. Finally, the validity of comparing such metrics across
different models and datasets is rather ambiguous (elaborated more in Section 5.6).

When the mean CT numbers of the analysed image regions were concerned (Figure 33), all of the models
achieved significant reduction in SD, that tended towards, but did not fall below, the SD values of the respective
target images. This is indicative of substantial noise reduction without any over-smoothing in the regions of
interest. On the contrary, the resulting mean HU values were either lower or higher than in corresponding low
and high dose images, suggesting that some information content was compromised in the process. This might
serve as the rationale behind some of the output images appearing slightly different during clinical evaluation.

Overall, the k-fold validation yielded similar results across models, with an exception of PSNR and SSIM
reduction in Table 4 and increse in HU values in Table 5 post-denoising in FOLD4 and FOLD5, contrary to
other similar outputs. This might imply that these two models generalise slightly worse than the rest, but are
still very much similar on average (Appendix A).
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5.3.1 Clinical Evaluation

It is important to obtain an opinion from the clinical experts prior to attempting method implementation into
clinical practice to ensure the fidelity of the output data. Even though the deep learning denoising method
resulted in objective quality improvement, the mean awarded score of the output images was still below 2.
Based on the radiologist’s assessment, some of the presented model outputs also exhibited a change in perceived
structure in comparison to standard LD/HD CT images, evident to an experienced practitioner. This leaves
room for improvement on the side of generating perfectly realistic images.

5.4 Simulated Noise

The published results from Yang et al. were achieved with a model trained on a real clinical dataset paired with
simulated quarter-dose CT images. The x-ray photon measurements, and even electronic noise, can indeed be
modelled in accordance with Equation (4). Furthermore, de Nijs (2015) [9] demonstrated that for simulating
half (or less)-count images Poisson resampling is the method of choice. On the other hand, the study was
performed on the SPECT data, which has a different geometry and does not account for the noise distribution
in reconstructed CT images, which is not uniform. Thus, while deep learning methods mitigate the uncertainty
in noise expression between low and diagnostic dose CT images, the issue still remains in how well a model
trained on simulated noise would generalise to real data.

Moreover, attempting to train a WGAN-VGG model with data comprising low dose images from both the
simulated and real noise distributions resulted in completely meaningless output (purposefully excluded from
the analysis) as, in agreement with Yang et al., the model parameters have to be adjusted or re-trained for
different noise properties.

Even though the relation between the true and simulated noise distributions remains an open question,
the control of the exact noise level in the simulated images allowed to quantify denoising change with better
precision and ensured that the model did not introduce significant changes to images that were already high
in PSNR. Furthermore, the denoising output of the lowest dose level yielded SSIM value equivalent to that
obtained with five times the number of photons (Table 7). This corresponds to a 20% dose reduction under the
assumption the noise is truly representative of the dose level.

5.5 SAGAN Model Comparison

It was hard to assess the general effectiveness of the network performance as the training code had not been
made available. A more detailed look at the code could also potentially reveal the reason for the algorithm
producing a ”target” image identical to that of the corresponding input. Even though the authors claimed
that the given model can be applied to a range of anatomies and dose levels, including unseen doses within the
training range, there was not enough evidence to support this conclusion.

On the other hand, there is still an obvious upper limit on the allowed dose levels when it comes to real
clinical data. Due to the underlying physics, some degree of noise is still present in higher dose images, which
could get captured by the generator. While the SAGAN model was not trained on the human patients, the high
dose images in the published work enjoyed a much higher dose (14.14 mSv as compared to the clinical analogue
of 1.5 mSv). This could also explain more significant visual denoising, as compared to the WGAN-VGG model
trained on the clinical data (Figure 36). Finally, it is important to remember that the type of filter employed
in reconstruction directly affects noise and blur in resulting images. Thus, consistency across datasets needs to
be ensured for a more accurate comparison.

All things considered, the WGAN-VGG model still generalised to the unseen data better that the SAGAN
model.

5.6 Limitations

The main challenge posed in the course of the project involved pinpointing the objective measure of noise in
images. Still presenting an immense value as a tool for performance evaluation, the overall significance of PSNR
as a visual quality metric should be carefully considered. PSNR compares the statistical properties of an image
with respect to the ground truth only and becomes more ambiguous when structural preservation and visual
appeal are involved, thus telling very little about the overall quality improvements. This is further supported
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by the small differences in its value across high and low dose images (Tables 1 to 4, Appendix A), while the
change as perceived by the human observer is clearly evident (Figure 34, Table 6). Furthermore, since PSNR is
measured in terms of relative pixel intensities, insignificant aspects, like a few bright pixels, can jeopardise the
validity of the metric altogether. There appears to be a consensus on the fact that SSIM is a better candidate for
objective image structural quality estimations, since it is a more intricate measure in comparison to the absolute
error of PSNR and MSE, by definition. [78] Nevertheless, the quantitative results from this analysis indicated
than an increase in PSNR is usually accompanied by an increase in SSIM. Furthermore, a supplement of a
third noise-quantifying metric in the form of mean CT numbers and their standard deviations in similar regions
of the output images should serve as a conclusive argument in favour for observed statistical improvements
introduced by the denoising model, as compared to their original low-dose counterpart. Moreover, because the
PSNR is analogous to MSE error (of pixel intensities), network architectures that aim to minimise MSE loss
were proven to land more substantial quantitative gains [6], while the proposed model focuses instead on the
clinically-relevant objective of preserving structure and limiting blurring.

Irrespective of being sufficient for the numerical analysis within the scope of the project, the debatable
validity of the quantitative metrics involved from a global perspective also raises concerns about the fidelity of
comparing achieved quantitative results with similar publications. Furthermore, the concerns for using PSNR
and SSIM alone for medical image quality evaluation has been similarly expressed by the authors of presently
utilised network architecture who noted that direct iterative reconstruction methods yielded the highest PSNR
and SSIM values, while also introducing artefacts. [6] Perhaps, the most important aspect to consider in this
matter is the fact models from Yang et al. were trained on simulated low-dose noise.

Another inherent limitation aspect comprised the availability of the training data. Firstly, the mandatory
requirement of the presented network for spatially-aligned high and low dose images greatly constrained the
choice of suitable data, while the improvements that a larger patient cohort can introduce are evident. Secondly,
the architecture tends to overfit the data when the training data set is small (as seen, for example, by comparing
the generator loss of the network trained on 10 patients in Figure 25 with that trained on 22 in Figure 32). The
fidelity of the generated images also appeared to greatly improve for the latter (for instance, through inspecting
the respective outputs in Figures 26a with Figures 30 and 28). Finally, the abundance of training data is
generally associated with more successful network training, irrespective of the network architecture. [52]

Some intrinsic properties of the data itself could also serve as potential source of confusion for the generator
network or or add to the ambiguity of the quantitative metric. For instance, the tiny spatial misalignments
and inconsistencies across paired image series that cannot be helped or the ratio of grey to white matter, which
could have had an effect on learning or estimations of the noise standard deviation.

Lastly, the fact that the hyperparameter tuning was done with only 2 validation patients could lead to
poorer generalisation. Nevertheless, the decision was made in favour of maximising the training cohort instead,
as the total amount was limited due to ceased patient scanning during national lockdown. Training models
with a consistent data size over the course of the project was also complicated, because the high dose scans and
appropriate reconstruction were not always made available. Nonetheless, the size of the training cohort utilised
in this project did not vary much from comparable publications (for example, Yi et al. [6] trained the original
WGAN-VGG model on 10 patients).

5.7 Perspectives

Regularising and adjusting the model to the utilised dataset involved a long process of various model training,
which was otherwise eased by the WGAN-VGG architecture, making performance monitoring a straight-forward
task. The model itself demonstrated good denoising ability and quality improvement, but the generated image
structure still remained suboptimal for clinical purposes. Apart from accessing more training data, it could
prove useful to investigate other GAN architectures in the future, for example more complex generators, like
that in [21]. Furthermore, there exist alternative GAN architectures that do no require paired data for training
(for instance, Wolterink et al. (2017) [20] used the adversarial loss only and Kang et al. (2018) [23] employed
a cyclic GAN for for LDCT denoising).

Another way to ease the necessity for paired clinical data might involve investigating more elaborate ap-
proaches to simulating noise in CT. It would be intriguing to quantify the extent of the influence of the elec-
tronic noise on the overall noise distribution along with relative fidelity of simulated datasets. Furthermore, as
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variations in the noise levels are associated with, among other things covered above, reconstruction methods
themselves, it might prove beneficial to explore the denoising methods directly in the sinogram domain. This
approach also addresses the irreversible information loss problem associated with post-reconstruction methods.
There also exist potential strategies to avoid using paired data entirely as in Zhu et al. (2017) [45].

Moreover, a possible collaboration with the local forensic department became a topic for discussion in the
course of the project. The great advantage of the post-mortem CT scans is the potential for an abundance of
paired images with a less strict upper dose threshold.

There is a plethora of currently available and actively utilised deep learning methods in the medical imaging
field. For instance, GE proposed the TrueFidelity, a neural-network based CT image reconstruction technology
that could challenge both the FBP and IR methods. [13] Presently, implementing a post-processing method
for improving constitution of a gold standard reconstruction output is likely to assist the diagnostic process for
radiologists in the future.

Finally, there is nothing that suggests the application of the presented denoising method is limited to a
single imaging modality.

6 Conclusion

Ultimately, the proposed model has the capacity for visually significant LDCT image denoising without in-
troducing blur or oversmoothing in the generated image. A variety of approaches to evaluating the denoising
results should serve as sufficient evidence in favour of hypothesised improvement. Presently, the goal consisted
mainly of upscaling the quality of existing low dose images with the aim of assisting the diagnostic process in
the future. Given the relatively small training patient cohort, a statistically significant improvement was still
observed in both the numerical output and the radiologist’s assessment. Accessing more training data will lead
to further advancements in the model performance and continued research will reveal more effective approaches
to the gentle balancing act of eradicating noise and conserving finer structure for diagnostic purposes.

It is important to recognise that currently, the generated images could not replace the diagnostic dose. But
improving the quality of the low dose is both feasible and promising. Furthermore, training a robust model
validated on a variety of unseen data would allow for scanning patients at lower dose levels, while achieving
image quality comparable to that obtained with conventional CT.

The main advantage of the presented work is in the unique real clinical data employed for training as well as
a larger number of patients than in Yang et al.. Thus, the resulting trained model parameters should be better
adapted to realistic noise distribution in CT. This is especially relevant for the proposed WGAN-type, as the
adversarial loss in this case aims to minimise the difference between the respective probability distributions.

In conclusion, two compelling questions still remain open for debate: whether the need for paired training
data could be suppressed in the future and whether the gap between the network output and the golden standard
could be breached.
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A Quantitative Results Associated with the Test Images from the
5 WGAN-VGG Cross-Validation Models

PSNR SSIM
LDCT Output LDCT Output

81.8250± 0.8096 82.3864± 0.8710 0.9643± 0.0017 0.9698± 0.0017
66.9681± 0.2109 66.9885± 0.2117 0.7623± 0.0074 0.7661± 0.0077

FOLD1 80.2639± 1.1345 80.6742± 1.1892 0.9432± 0.0034 0.9483± 0.0032
67.1800± 0.1809 67.1839± 0.1803 0.7522± 0.0066 0.7538± 0.0065
68.0484± 0.2865 69.5917± 0.3572 0.8014± 0.0082 0.8231± 0.0097
77.4451± 0.8253 77.6138± 0.8915 0.9202± 0.0056 0.9241± 0.0057
84.1317± 0.8558 85.7560± 1.0772 0.9707± 0.0016 0.9796± 0.0013

FOLD2 85.3825± 0.7487 86.5430± 0.9349 0.9771± 0.0014 0.9828± 0.0014
66.9131± 0.1806 66.9538± 0.1826 0.7747± 0.0068 0.7783± 0.0066
80.1323± 1.1757 80.9534± 1.3388 0.9381± 0.0039 0.9442± 0.0036
73.6664± 1.1523 74.2485± 1.2999 0.8579± 0.0075 0.8609± 0.0076
67.2408± 0.1872 67.2712± 0.1853 0.8152± 0.0056 0.8184± 0.0057

FOLD3 81.8121± 0.8040 82.7601± 0.9540 0.9618± 0.0017 0.9689± 0.0015
66.4992± 0.1890 66.5311± 0.1883 0.7544± 0.0067 0.7571± 0.0066
84.8116± 0.9788 86.7181± 1.2372 0.9667± 0.0025 0.9748± 0.0022
78.7799± 0.8722 78.8583± 0.8759 0.9328± 0.0040 0.9390± 0.0040
75.1007± 1.0758 75.6016± 1.2111 0.8967± 0.0060 0.8985± 0.0058

FOLD4 87.5983± 0.7987 88.5547± 0.9812 0.9822± 0.0011 0.9867± 0.0010
89.9497± 0.8303 91.0401± 1.0075 0.9839± 0.0011 0.9886± 0.0010
66.9581± 0.2107 66.9370± 0.2118 0.7526± 0.0074 0.7524± 0.0073
72.8889± 1.2640 73.5789± 1.4353 0.8399± 0.0078 0.8423± 0.0078
82.5099± 1.1286 83.2858± 1.3658 0.9522± 0.0031 0.9536± 0.0031

FOLD5 89.6671± 0.7975 90.8500± 0.9647 0.9847± 0.0011 0.9900± 0.0008
82.1655± 1.0126 83.0797± 1.1793 0.9532± 0.0028 0.9597± 0.0026
76.4294± 1.3545 76.8996± 1.4597 0.8624± 0.0091 0.8651± 0.0092
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