

U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

N I E L S B O H R I N S T I T U T E

Master’s Thesis in Physics

Automated Parameter Tuning for the Versatile Ocean
Simulator (VEROS)

Ida Lei Stoustrup

Supervisors

James Avery & Markus Jochum

A C K N O W L E D G E M E N T S

First, I want to thank my supervisors, James and Markus, for their great help with this

project, and James especially for taking over when Brian went away for his new job. While

it is by far the most independent project I have worked on at university, requiring a lot of

choices and prioritisations on my part, it was invaluable to have James’ help with the overall

structure, and since I am not an ocean physicist it would have been impossible to set up the

ocean simulations without Markus’ guidance. I’d also like to thank both the eScience group

and Team Ocean for helping me figure out their respective computer clusters so I could run

my experiments on them.

Secondly, I want to thank my parents for letting me come home during the two lockdowns

caused by the COVID-19 pandemic, giving me a safe haven in which to work on my project

and lots of support whenever I felt a bit lost in it all. I also want to thank my roommate

Emma for being suitably impressed with my GUI even when it was just a window with a

button that didn’t do anything and for listening to my ramblings about the project, even

when I got too technical, too fast and lost her five minutes in.

ii

A B S T R A C T

Simulations of the ocean, especially those containing biogeochemistry, are often complicated

entities which involve a lot of parameters that govern the behaviour of the system. Many of

these parameters are often uncertain or unknown, and without better tools, ocean physicists

have to resort to tools like random searches or grid searches, which are often infeasible,

especially when used to tune many parameters. This thesis aims to provide a user-friendly,

effective tool by utilising a method called Bayesian Optimisation and developing a GUI to

give users insight into the process and the ability to make adjustments, if needed. The Python

code in the project has been made available as a Python package named veropt, available for

installation through the Python Package Index (PyPI). A series of test experiments are run to

verify the efficacy of the method and compare different parts of it to each other, and finally

the method is tested on three increasingly complex ocean simulations.

The method performed well on the test experiments, showing significant improvements

over random search and getting close to the global maximum in both single objective

experiments. It performed well on the ocean experiments as well, achieving a relative

error of 0.001, 0.002 and 0.004 in the three original optimisation runs and 0.0005 in a fourth

optimisation run, where the third ocean simulation was tuned again, this time with a small

change in the set-up.

The optimisation problems provided by the ocean simulations turned out to be lacking in

complexity, not quite serving as decisive demonstrations of the method’s prowess, since they

probably could be tuned satisfactorily by random search as well. Still, we demonstrated the

veropt package’s ability to easily inspect and adjust optimisation runs and then discussed

some of the many ways in which the method can be made even better and more robust in

the future, while maintaining its transparency and adjustability.

iii

C O N T E N T S

I I N T R O D U C T I O N

1 I N T R O D U C T I O N A N D O U T L I N E 2

II B A C K G R O U N D

2 O P T I M I S AT I O N 6

2.1 General Strategy . 6

2.2 Assumptions and Limitations . 8

2.3 Gaussian Process Regression . 8

2.3.1 Bayesian Linear Regression . 8

2.3.2 Using Basis Functions . 13

2.3.3 Gaussian Processes . 14

2.3.4 Kernels . 18

2.3.5 Optimisation of kernel parameters . 21

2.4 Acquisition Function . 25

2.4.1 Noisy Upper Confidence Bound . 27

2.4.2 Optimisation of the Acquisition Function 27

2.5 Initial Evaluations . 29

2.6 Prior Information . 31

2.7 Difference Measure . 32

2.8 Multiple Objectives . 34

2.8.1 Normalisation in MOO . 38

3 O C E A N T H E O R Y 39

3.1 The Atlantic Meridional Overturning Circulation 39

3.1.1 Wind-driven Upwelling . 41

3.2 Eddies and Mixing . 42

3.2.1 Parameterising the Isopycnal Mixing 43

3.2.2 Parameterising the Flattening of Isopycnals 44

3.2.3 Spatially Dependant Vertical Mixing (the TKE Closure) 44

4 T H E C O D E 46

iv

C O N T E N T S v

4.1 Design Strategy . 46

4.1.1 Overall Structure . 47

4.1.2 Default Set-up . 48

4.2 The veropt package . 49

4.2.1 Underlying Python Packages . 49

4.2.2 Python Superclasses . 50

4.2.3 The GUI . 55

4.2.4 Saving the Optimiser Class . 58

4.2.5 The Visualisation Tools . 59

4.2.6 Using Priors . 62

4.2.7 Predefined Ocean Objectives . 63

4.2.8 Slurm Tools . 63

4.2.9 The Experiment Class . 64

4.2.10 Simple Example . 64

III T E S T F U N C T I O N S E X P E R I M E N T S

5 T E S T F U N C T I O N E X P E R I M E N T S 67

5.1 BO vs Random Search . 67

5.1.1 Hartmann Test Function . 68

5.1.2 Fitting a Sine . 68

5.1.3 VehicleSafety Test Function . 69

5.2 Tuning Acquisition Function Parameters . 70

5.3 Future Work . 72

IV O C E A N S I M U L AT I O N S

6 O C E A N S I M U L AT I O N S 74

6.1 Optimisation Set-up . 74

6.2 Difference Measure . 74

6.3 Simulation One . 75

6.3.1 The ACC Set-up . 75

6.3.2 Parameterisations . 76

6.3.3 The Optimisation Problem . 76

6.3.4 Test Runs . 77

6.4 Simulation Two . 77

6.4.1 The Optimisation Problem . 78

C O N T E N T S vi

6.4.2 Test Runs . 78

6.5 Simulation Three . 79

6.5.1 The Optimisation Problem . 80

6.5.2 Test Runs . 80

7 R E S U LT S & D I S C U S S I O N 81

7.1 Simulation One . 81

7.2 Simulation Two . 82

7.3 Simulation Three . 86

7.3.1 With A Logarithmic Difference Measure 89

7.4 Overall Evaluation . 91

V C O N C L U S I O N A N D F U T U R E W O R K

8 C O N C L U S I O N 94

9 F U T U R E W O R K 96

9.1 The Python Package . 96

9.2 Prior Information from Ocean Physics . 96

9.3 Space Design, Space Warping Kernel and More 97

9.4 Two Dimensional Objectives . 97

VI A P P E N D I X

10 A P P E N D I X 100

10.1 Examples . 100

10.1.1 Multiple Objectives, Vehicle Safety Test Function 100

10.1.2 Ocean Objective . 101

10.1.3 Slurm Support . 105

Bibliography 106

L I S T O F F I G U R E S

1 Waves crashing at Juno Beach. Photo by Leo Roomets on Unsplash. . 2

2 Ten functions drawn from the a priori distribution (left) and the

posterior (right). The black line gives the mean of the distribution

and in the plot on the right, data (sampled from a linear function with

noise) with standard deviation is shown as well. 13

3 Ten functions drawn from a prior distribution using an RBF kernel

(left) and a corresponding posterior conditioned on some data (right).

The data is just randomly chosen numbers. The blue lines are func-

tions drawn from the distributions, the black lines give the mean of

the distributions and in the plot on the right, data is shown as red stars. 18

4 Ten functions drawn from a prior distribution using an absolute

exponential kernel (left) and a corresponding posterior conditioned

on some data (right). The blue lines are functions drawn from the

distributions, the black lines give the mean of the distributions and

in the plot on the right, data is shown as red stars. 19

5 Ten functions drawn from a prior distribution using a Matern kernel

(left) and a corresponding posterior conditioned on some data (right).

The blue lines are functions drawn from the distributions, the black

lines give the mean of the distributions and in the plot on the right,

data is shown as red stars. 20

6 The MLL and its significant two terms are plotted against the value

of the lengthscale hyperparameter on the left, given an RBF kernel

and a simple test set. On the right the data from the simple test set

is shown and we see the mean of three posterior distributions: One

with the smallest lengthscale we have used, one with the largest and

one with the lengthscale that gives the highest MLL. 24

7 This plot shows the same quantities as in figure 6, except we are using

a Matern kernel here. 25

vii

https://unsplash.com/@papaleo
https://unsplash.com

L I S T O F F I G U R E S viii

8 Grid search (left) compared to random search (right) for some exam-

ple objective. We see that random search gives us more point on any

one parameter axis. Figure from [11]. 31

9 Example of a non-convex Pareto front. Figure taken from [46]. (The

axes were inverted since we try to find a maximum, not a minimum

in this thesis.) . 37

10 Illustration of the hypervolume indicator in two dimensions. We see

how different points contribute to the overall area covered between

the Pareto front and the reference point. Figure from [21]. 37

11 The currents of the AMOC (middle), the Antarctic Circumpolar Cur-

rent (bottom) and currents through the Pacific Ocean (left and right).

Figure from [24]. 40

12 A vertical schematic of the volume transport and different upwelling

processes of the AMOC. Figure from [24]. 41

13 Overall structure of the veropt package. 48

14 The veropt GUI running an optimisation problem with the Brannin

Currin test function. 56

15 Prediction plot for the test problem sine_1param, available in the veropt

package. Above the objective function data and corresponding model

is shown and below the acquisition function is plotted. 59

16 Prediction plot for the Brannin objective in the BranninCurrin test

function from the collection of test functions available in the package

BoTorch. 60

17 Pareo front plot for the Brannin Currin test functions, showing the

distribution of the objective function values for both objectives and

marking the dominating (Pareto-optimal) points in black. We also see

the mean and variance of the candidate points for the next round of

the optimisation. 61

18 The mean (and its uncertainty) of the cumulative best objective func-

tion value for Bayesian optimisation and random search on the test

function Hartmann, available through the BoTorch package. 68

19 Mean and its uncertainty of the cumulative best value (left) and

histograms of the final best values (right) both for the test function

sine_3params, available in the veropt package. 69

L I S T O F F I G U R E S ix

20 Mean and its uncertainty of the cumulative best value when taking

the weighted sum of the three objectives (left) and the mean and its

uncertainty of the cumulative best value of each objective (right),

both of the VehicleSafety test function available in the BoTorch package. 71

21 Cumulative best values (of the weighted sum) for the VehicleSafety

function with varying values of α (left) and ω (right). 71

22 Physical set-up for the first and second ocean simulation. Figure from

[1]. 75

23 Three test runs of the first simulations. We see the zonal mean of

the vertically integrated streamfunction at the southern border of the

model as it changes over time for three different values of κj. 77

24 Contour plots of the zonally integrated meridional transport for κj =

500 (left) and κj = 1500. 79

25 The vertical minimum of the zonally integrated meridional transport

at different meridional coordinates. 79

26 The vertical minimum of the zonally integrated meridional transport

at 20ºN. 80

27 Objective function values, model predictions and acquisition function

values for the first simulation. 82

28 Objective function values at different points for the first simulation. . 83

29 Objective function values, model predictions and acquisition function

values for the second simulation. This is a two-dimensional parame-

ter space and we’re seeing a slice for each parameter at the point with

the best objective function value. The plot with varying κj is on the

left and the one with varying min(κv) is on the right. 83

30 Prediction plots as in figure 29 but after refitting with different length-

scale bounds and with suggested points. 84

31 Three-dimensional figure from the optimisation of the second sim-

ulation. We see that the points from a parabola. Note that this is an

old figure from an old run and that’s why the labels are so small. See

footnote for details. 85

32 Progress plot for the second simulation. 86

33 Prediction plot for simulation three at step 3, after the model has been

refitted with wider lengthscale bounds. 86

L I S T O F F I G U R E S x

34 Prediction plot for simulation three, after the final step. We note that

the lengthscale has been fitted too small. 87

35 Prediction plot for simulation three after the final step. The model has

been refitted with lengthscale bounds [1.0, 5.0] but behaves erratically. 87

36 Prediction plot for simulation three after the final step. The model has

been refitted with lengthscale bounds [10.0, 12.0] and fits correctly

but with too little variance. 88

37 Prediction plot for simulation three after the final step. The model

has been refitted with a spectral mixture kernel (SMK). 88

38 Prediction plot for simulation three after the final step, here using a

logarithmic distance measure. 89

39 Prediction plot for simulation three after the final step, here using a

logarithmic distance measure. 90

40 Progress plots for simulation three. On the left with quadratic differ-

ence measure and on the right with the logarithm of the quadratic

difference measure. 91

L I S T O F T A B L E S

1 Table with the input variables for the class BayesOptimiser. 51

xi

Part I

I N T R O D U C T I O N

1

I N T R O D U C T I O N A N D O U T L I N E

The ocean is an incredibly complicated system, reigned by numerous differential equations

and only really approachable with simplifying assumptions.

All the same, understanding it and its large-scale currents is of incredible importance, e.g.

to understand the climate of the world and how it might be changed by global warming.

To understand the behaviour of the ocean in greater detail, computer models are therefore

often used to simulate its behaviour. Besides from the great complexity, this is made more

difficult by two factors; The great circulations of the ocean take a very long time to come

into equilibrium (up to several centuries) and they depend significantly on small-scale

movements.

This means we have two conditions we’d like to avoid when trying to run a simulation;

We need to run the model for a long time and at a high resolution.

To overcome this problem, a coarser spatial resolution is often chosen and sub-grid

processes are then approximated with parameterisations to make sure the large-scale tracer

developments are still correct. This then leads to a large amount of parameters with unknown

Figure 1: Waves crashing at Juno Beach. Photo by Leo Roomets on Unsplash.

2

https://unsplash.com/@papaleo
https://unsplash.com

I N T R O D U C T I O N A N D O U T L I N E 3

or uncertain values, and when the simulations run, they often behave quite differently than

the real-world ocean.

In order to make the simulations more correct, the parameters with unknown values are

often tuned by comparing part of the model’s output to some real-world data and changing

the parameters’ value until the output matches the data. In a more physical sense, this means

that we change the behaviour or strength of the parameterisation until some chosen part of

the simulation behaves the same way as its real-world counterpart. This could correspond

to checking that a current runs the right way with the right strength or that some specific

kind of algae has the right quantity and distribution.

The goal of this thesis is to develop a tool that can help ocean physicists tune their models

without requiring too many simulation runs and then to test this tool on a couple of ocean

simulations.

Now, for some specific tuning problem, we could use domain-specific knowledge to

predict its overall structure and what kind of optimisation method might work well. But the

real challenge in developing the kind of tool we’re looking for is to create a tool that will

work well not just for one tuning problem but for any tuning problem it might encounter.

This is a big challenge of course, because we don’t know what kind of behaviour to

anticipate and thus what kind of optimisation tool that will work well. We could choose

something with randomly varying parts, like an evolutionary algorithm but the problem

here is that since ocean simulations take such a long time to run, we can’t expect to get

more than ∼ 100 evaluations. This means that any method with significant randomness will

probably be too inefficient.

What do we do then? Well, one option is a method called Bayesian optimisation in which a

surrogate model is fitted to the data and then optimised in place of the slow ocean simulation.

It requires entering some prior expectations by choosing the form of the surrogate model,

which means that we get direct control over which structure the optimisation is expecting

and, more importantly, that we can change this prior expectation as we want.

Of course, we don’t want to make the tool too demanding of the user, so we will try to

find a simple default set-up that will hopefully perform well on a wide range of problems,

but we will keep the user as a safe-guard, giving them the tools to inspect the optimisation

and its progress, making sure that everything is running as it should and otherwise adjust it.

To enable the user to do this, we will develop a user interface from which the model can

be inspected and adjusted. This ensures that if the user sets up an optimisation run that

I N T R O D U C T I O N A N D O U T L I N E 4

takes several weeks or months to complete, they will always know that the optimisation is

on the right track, not wasting the computer time that it’s occupying.

We will start this thesis by going through the theory for Bayesian optimisation and some

of the many options we have at every part of the method. We will then go through the theory

of the ocean simulations we plan to do. Then we will go through the structure, design and

most important features of the Python code that has been written.

After this theoretical part, we test out the developed method, first on a couple of test

functions and then on the ocean simulations themselves.

Part II

B A C K G R O U N D

2

O P T I M I S A T I O N

All I ask is a tall ship and a star to steer

her by.

Masefield

Optimisation can be done in many ways and for many different purposes. The focus

in this thesis is on finding the best parameter values within a highly limited amount of

evaluations (in the order of 100) of the function being optimised. In other words, we are

assuming that the evaluations of the function of interest take a very long time which means

that the time we spend on the optimisation itself can be allowed several minutes if needed

and still be insignificant in comparison.

This means that we want to take advantage of the information available as much as

possible and find the best possible coordinates for new points, avoiding wasting time with

poorly motivated points that are unlikely to yield anything interesting.

We’ll generally assume that we’re looking for a maximum during this thesis. This involves

no loss of generality, since one can always change the sign of the function being optimised.

While the ultimate goal of the project is to make an optimisation tool that works well for

the tuning of ocean simulations specifically, we do not utilise any ocean theory while setting

up our general optimisation method, so we will talk about the error between the chosen

simulation output and its target value simply as the objective function.

2.1 G E N E R A L S T R AT E G Y

In order to find an optimum within a small amount of evaluations, we need to utilise the

information we have already obtained about the function being optimised (i.e. the points

we have already evaluated) to the best of our ability. One way to do this is to create a

surrogate model that tries to predict the behaviour of the objective function. This surrogate

6

2.1 G E N E R A L S T R AT E G Y 7

model should optimally have both a predictive value and a measure of uncertainty at every

coordinate in the function domain, and ideally it should contain all the information we have

about the objective function, allowing us to predict where interesting (high-valued) points

may reside.

There will have to be made some assumptions about the objective function, of course,

since we could fit an infinite number of functions to any given number of points. More about

this in the next section.

Once we have a surrogate function, we need to use it to find out which point(s) we would

prefer to evaluate next. Of course, we’ll want to look at areas where the predicted value of

the objective function is high, but we might also want to look at how uncertain our model is,

since areas with high uncertainty might be harbouring maxima that our model just doesn’t

have enough information to predict yet. The function that describes the desirability of a

point as the next evaluated point (given the information from the surrogate model) is called

the acquisition function and can take many different forms. To find the next point we

simply find the maximum of this function. This means that we have to choose a method of

optimisation for this as well. Since the surrogate model does not have the long evaluation

time of the true objective function, we can use a different kind of optimisation for this that

assumes short evaluation time and thus utilises a large amount of evaluated points.

The surrogate model will often have one or more parameters to tune it to the points

evaluated so far. Before this tuning can happen, we will need some data to fit to, so we

always start out an optimisation with some initial evaluations. This can be done randomly

or one can choose a method that aims to fill out the space in a desirable way.

We can now summarise the optimisation process in the following steps:

Algorithm 1: Overall strategy

Evaluate initial points;

for opt_step in n_opt_steps do

Fit hyper parameters of model to all evaluated points;

Find optimum of acquisition function to obtain new candidate points;

Evaluate objective function at new candidate points;

end

2.2 A S S U M P T I O N S A N D L I M I TAT I O N S 8

2.2 A S S U M P T I O N S A N D L I M I TAT I O N S

In order to approximate the objective function with a surrogate model, we have to make

some assumptions about it. This means we have to either know something about it in

advance or make some general assumptions that will work for a wide range of functions. A

simple assumption could be that the function is continuous and varies with some average

length.

If we don’t know anything prior to optimising and can’t make a general assumption

like the one above, optimising can become very difficult, if not impossible. A worst case

scenario would be some function that had the same value everywhere except for one very

narrow, high-valued peak (essentially a delta-function). With a function like that the best

one can do is to perform a random search and hope to be lucky enough to stumble upon

the right area by chance. Hopefully, the objective functions encountered when optimising

ocean simulations will rarely be so difficult. Still, it is important to know that Bayesian

optimisation hinges on the prior assumptions (whether specific to the problem or general)

being somewhat reasonable. If the surrogate model fails critically, the method fails and then

something as simple as a random search will perform better. Luckily, the prior information

given to the Bayesian optimisation can be changed by the user during the optimisation, and

so the method can prevail, even if the initial set-up was sub-optimal.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N

One way to construct a surrogate model is to use something called Gaussian process regression.

We will go through the theory of that now.

We start out with simple linear regression, expand that model with basis functions and

then end up using Gaussian processes to do the regression, which we will show gives us an

equivalent to using an infinite amount of basis functions, without having to explicitly use

the basis functions.

2.3.1 Bayesian Linear Regression

As described above, we want to make a surrogate model that tries to predict the behaviour

of the objective function and we either have no information about the objective function

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 9

(except for a standard set of assumptions) or some case-specific initial information about

what kind of function we’re expecting.

The question is now how to make a model that gives us the best approximation of the

objective function, given the points we have already evaluated, despite not having an

equation to describe it.

One way to do this could be to just guess and e.g. assume that the function is linear. An

obvious problem with this, of course, is that if the true objective function is not linear, our fit

will fail critically. Making this assumption is thus just a stepping stone on the way to greater

things and we will revoke it soon enough.

This section is inspired by Chapter 2 of [33].

Given the linearity assumption, we can start by fitting a weight for each parameter xi in

the input vector x = [x1, x2..xn] and we’ll have that the model takes the form,

f (x) = xTw (1)

where f (x) is the surrogate model and w is a vector of weights. To put it in another way, we

are making the assumption that the objective function has an equation like the following

one:

y = xTwtrue + ε (2)

where y is the objective function, wtrue is a vector of the true weights and ε is Gaussian noise

of the form N (0, σ2
n).

The prior knowledge we have in this case would then surmise of the form of the surrogate

model (which here assumes a linear objective function) and whatever guesses we make

about the weights w. One option for the latter is to assume that the weights are Gaussian

distributed with zero mean and some covariance matrix Σw so that,

w ∼ N (0, Σw) (3)

where N (µ, σ2) signifies a Gaussian distribution with mean µ and variance σ2. The ∼ sign

here means that the variable on the left is drawn from the distribution on the right.

We can now look at what these assumptions mean practically. If we know the covariance

matrix Σw, describing the prior information of the weights, we can draw a vector of weights

from the distributionN (0, Σw). We can then use our model f (x) = xTw and evaluate it with

the weights we have drawn, on some function domain we’ve been given, and we’ll see a

linear model with some specific slope. In one dimension, this is just a straight line.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 10

If we did this some number of times we would then get a sense of the distribution of

functions that we have chosen with our prior information, in one dimension simply a

distribution of lines with different slopes.

If we choose our a priori information correctly it should be true that the objective function

could be drawn from this distribution of functions, so in this case, the objective function

should be a linear function going through the origin with some slope, the value of which is

reasonably likely given the prior over the weights, N (0, Σw). If this is not true, the surrogate

model will fail to fit the data and our overall method will fail. Now, this might be alarming

to the reader since we have currently chosen a very restricted model that will fail at most

problems, but we will soon show that other prior distributions of functions can be chosen

that will fit (very nearly) any function we might come across. (At least in the sense that the

model will go through all data points. The quality of the fit will always depend upon how

well the objective function corresponds to the prior distribution of functions.)

Another concern regarding our prior information could be whether the prior we have put

on the weights is reasonable. This, however, is not as critical an issue since we can look at

the conditional distribution of the weights, once we have evaluated our initial points. To do

this we use Bayes’ Theorem which says that,

P(A | B) =
P(B | A)P(A)

P(B)
(4)

where A and B are events with some likeliness and P(A | B) signifies the likeliness of A

given B. In Bayesian statistical theory P(A | B) is known as the posterior because it collects

the information from the prior P(A) and the likelihood P(B | A). The denominator P(B) is

called the marginal likelihood and generally just serves as a normalisation factor.

In our case, the posterior will be p(w | y(X)), i.e. it gives us the likeliness for some

vector of weights w given the data y at coordinates X. This means that the overall equation

becomes,

p(w | y(X)) =
p(y(X) | w)p(w)

p(y(X))
(5)

Let’s go through the different parts of it for our case. The prior is the Gaussian distribution

we put on the weights, so we have,

p(w) = N (0, Σw) (6)

Of course, a part of the overall prior information we’re using is also the class of functions

(linear in this case) but we choose not to include it in this equation, instead letting it serve as

an underlying assumption.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 11

Our likelihood is given by the points we have already evaluated, at first given by the initial

points we always evaluate at the beginning of an optimisation run. If we assume that the

points are independent we can multiply the probability of each point given a specific vector

of weights w. The probability for each individual point can be found by using equation 2

and exchanging the unknown true weights wtrue for the variable w:

p(y(X) | w) = ∏
i

p(yi(xi) | w) (7)

If we then multiply all the probabilities of each point, we get the following equation for the

likelihood:

p(y(X) | w) = Πn
i=1 p(yi(xi) | w) = Πn

i=1N (xT
i w, σ2

n) (8)

= Πn
i=1

1√
2πσn

exp(−
(yi − xT

i w)2

2σ2
n

) = N (XTw, σ2
n I) (9)

As intuitively must be the case, this is simply a Gaussian with mean XTw and variance

equal to the variance of the noise-parameter ε, so when y− XTw is small (i.e. when the

discrepancy between the data and the model is small) the probability of drawing the data

set y (given the weights w) is high.

Notice that if there is no noise, the likelihood must simply be 1.0 if the weights make the

model go straight through the points and 0.0 otherwise. This means that if there is no noise,

the likelihood will select (from the prior) exactly the functions that go through all the data

points and the posterior will simply consist of this selection.

In this linear case, this set could maximally consist of one function, but if we didn’t have

the linearity assumption and had a larger set of functions in our prior (perhaps an infinite

amount of functions), the likelihood would pick out all the ones that agreed with the data.

In this case, where we do have noise, the functions in our posterior simply consist of

a distribution of functions where the most likely one are the ones that have the highest

likelihood, i.e. the ones that have the least accumulated distance to the points they run

through.

The marginal likelihood p(y(X)) gives us the likelihood of the data regardless of the

weights. It is called the marginal likelihood because it is calculated by looking at the joint

distribution of the conditional distribution of the data given the weights and the prior

distribution of the weights and then marginalising out the weights by integrating over all

possible values of them;

p(y(X)) =
∫

p(y(X) | w)p(w)dw (10)

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 12

To get an equation for the posterior we now need to multiply the likelihood with the prior

(here choosing to omit the normalisation):

p(w | y(X)) ∝ p(y(X) | w)p(w) = N (0, Σw) · N (XTw, σ2
n I)

=
1

(2πσ2
n)

n/2
1

Σw
√

2π
exp(−|yi − XTw|2

2σ2
n

)exp(
1
2

wTΣww) (11)

Of course, the product of two Gaussian distributions will give a new unnormalised Gaussian

distribution so the only hassle is to figure out the mean and variance of this new distribution.

The marginal likelihood becomes trivial because we know that a Gaussian distribution is

normalised by the factor (σ
√

2π)−1where σ is the variance.

To find the mean and variance of the posterior, we simply need to rewrite the above

equation as a Gaussian distribution. Doing this gives us,

p(w | y(X)) = N
(

1
σ2

n
A−1Xy, A−1

)
(12)

where A = σ−2
n XXT + Σ−1

w .

Now, what have we achieved? We’re on our way to finding a good surrogate model for our

objective function and we’ve started out with assuming that we could use linear functions to

fit it. We have then used Bayes’ Theorem to go from a prior distribution of linear functions

to a posterior distribution of linear functions (more specifically a posterior distribution on

the weights w but that is easily translated to a distribution of functions by using equation

1). What remains is then to figure out how to use this distribution to get an estimate for

the objective function at some specific set of coordinates x. Since we’re using Bayesian

statistics and have a distribution over the weights w, the predicted value of y is determined

by doing an integration over this distribution, multiplying the posterior p(w | y(X)) by the

conditional probability of some possible value of the objective function f (x) given some

vector of weights w: p(f (x)|w). This means we end up with a distribution for the objective

function value at each point, not just a scalar value;

p(f (x) | y(X)) =
∫

p(f (x)|w)p(w | y(X))dw (13)

Writing out this expression and doing the integral gives us,

p(f (x) | y(X)) = N (
1
σ2

n
xT A−1Xy, xT A−1x) (14)

Notice that this is simply the posterior distribution of weights, p(w | y(X)), where the mean

has been multiplied by xT and the variance has been multiplied by xT from the left and x

from the right (which is intuitive since the model is f (x) = xTw).

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 13

0 2 4 6 8 10
x

8
6
4
2
0
2
4
6

y
Draws
Mean

0 2 4 6 8 10
x

0

5

10

15

20

25

30

y

Draws
Mean
Data

Figure 2: Ten functions drawn from the a priori distribution (left) and the posterior (right). The black

line gives the mean of the distribution and in the plot on the right, data (sampled from a

linear function with noise) with standard deviation is shown as well.

We have then arrived at a predictive model for our objective function y, and since it’s a

distribution and not a scalar, we can look at the mean if we want a single value and at the

variance for an idea of the uncertainty of the model at that point. The next step is to discard

the assumption that the objective function is linear and expand the flexibility of our model.

In figure 2, ten functions have been drawn from respectively a prior distribution and a

posterior distribution conditioned on a set of noisy data. Looking at the functions from the

prior distribution, we can see that the distribution of weights has mean zero and a fairly

large variance. In comparison we can see that the posterior weight distribution has a mean

around 3 and a smaller variance because the likelihood has selected group of functions that

go through the data.

2.3.2 Using Basis Functions

How can we expand our linear model to something that can fit any underlying objective

function?

One option is to use a series of basis functions. If we choose a series that has large

expressiveness so that it converges to any reasonably well-behaved, bounded function then

we should be able to model any well-behaved function we might encounter reasonably well

(given that the amount of basis functions we include is large enough).

To implement this we now write a new model;

f (x) = φ(x)Tw (15)

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 14

where φ(x) is a function that maps the coordinates x to a feature space consisting of these new

basis functions.

The attentive reader will notice that this is actually the same model as the one we used in

equation 1, except we exchanged x with φ(x). This means the weights that before simply

gave us the slope of our model, now tells us how much each basis function contributes to our

model. It also means the dimension of the equation changed from nparameters to n f eatureswhere

the first scalar gives the amount of parameters we are tuning and the second counts the

amount of basis functions we’re using.

Since the model is the same except for this substitution, we get exactly the same equations,

except x is substituted for φ(x) everywhere.

Applying this we get that the predictive distribution of our surrogate model is now,

p(f (x) | y(X)) = N (
1
σ2

n
φ(x)T A−1φ(X)y, φ(x)T A−1φ(x)) (16)

where A has been similarly changed to A = σ−2
n φ(x)φ(x)T + Σ−1

w .

Introducing a new entity, k(x, x′) = φ(x)TΣwφ(x′), we can rewrite this equation into the

following form:

p(f (x) | y(X)) = N (k(x, X)(k(X, X) + σ2
n I)−1y,

k(x, x)− k(x, X)(k(X, X) + σ2
n I)k(X, x)) (17)

In this form, we can see that the prior information (the chosen basis functions and the prior

weights over them) is collected in the function k(x, x′) which we name the kernel or the

covariance function.

2.3.3 Gaussian Processes

In the previous subsection, we expanded our linear model into a feature space with some

finite amount of basis functions and thus achieved much better expressiveness and flexibility

of our surrogate model. But what if we could make the model even more flexible by having

an infinite amount of basis functions? Then we would (given that the series of basis functions

converges to any reasonably well-behaved, bounded function and the objective function is

indeed reasonably well-behaved and bounded) be able to fit any objective function and thus

have all functions in the posterior distribution go exactly through every point in the data (or

through a suitable area around the data points, if the data has noise).

The obvious problem with this, is that so far our prior information is contained in the

covariance function, given by k(x, x′) = φ(x)TΣwφ(x′) which contains two entities that are

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 15

n f eatures-dimensional and would thus gain infinite dimensionality, if we let the amount of

basis functions go towards infinity, making the covariance function incomputable.

Unless, of course, we could write those basis functions as an infinite sum and similarly

write the weights as an infinite series. This, however might be quite cumbersome to work

with, and the prior information contained in these sums might be quite difficult to get a

good, intuitive feeling of. But having gotten this far, we might ask: What if such a sum

could be written as a simple expression with just one term? Then we’d have a simple,

compact expression that for each set of points (x, x′) gave us a scalar just like the expression

φ(x)TΣwφ(x′) would.

To get a better understanding of what kind of information would be contained in such an

expression, we turn our attention towards something entirely new for a moment, something

called stochastic processes, specifically the kind called Gaussian processes.

A stochastic process is a collection of random variables where each variable follows the

same statistics in some way, e.g. by being drawn from distributions of the same kind.

A Gaussian process is a stochastic process where each random variable follows a Gaussian

distribution and any finite collection of these follow a multivariate Gaussian distribution.

The random variables depend on the continuous coordinate x. We write,

GP(x) = GP(m(x), k(x, x′)) (18)

where GP(x) is a Gaussian Process, m(x) is the mean and k(x, x′) is a covariance function.

The last two quantities entirely describe the Gaussian Process. Because the variable x is

continuous, there is an infinite number of random variables defined over some interval of it.

When using a Gaussian Process in practice, however, it is evaluated over a grid and so it

degenerates to a multivariate normal distribution with a finite number of random variables.

In our case such a series of random variables (and let us just keep them finite for ease

of understanding) could be a series of (unknown) objective function values {y1, y2..yn} at

coordinates {x1, x2..xn}, and so a draw of the Gaussian process could give us a possible

sequence of values of the objective function, given that we found a suitable mean and

covariance function.

Knowing the definition of a Gaussian process we can look at the quantities m(x) and

k(x, x′). If m(x) is described by a vector of n entries (where n is the amount of variables in

our series), each entry will give the mean for the corresponding random variable, or, in our

case, the mean for the objective function estimate at that coordinate. If k(x, x′) is described

by a matrix of n× n entries, it will contain the covariance of each random variable and thus

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 16

describes the spread of their individual distributions along with their correlation to the other

random variables.

To understand the covariance function better, we might take a look at one often used when

working with Gaussian Processes; The Radial Basis Function (RBF) covariance function. It is

described by the equation,

k(x, x′)RBF = exp(−||x− x′||2
l

) (19)

where ||x− x′|| is the euclidian distance between points x and x′ and l is the lengthscale

hyperparameter which we can choose the value of. More on that later.

First of all, we remark upon that this covariance function is dependent specifically on the

squared difference between x and x′, thus making it independent on the absolute position

on the x-axis. This kind of covariance function is called a stationary covariance function.

Next, we notice that a squared distance of 0 between x and x′ will give us a correlation of

1, whereas a large distance will have the correlation descending towards 0. This means that

points close to each other will be highly correlated and thus have similar values, whereas

points far from each other will be near independent. The existence of covariance functions

like this one thus tells us that the draws from the Gaussian Process can be continuous.

Now that we know that the vectors drawn from the Gaussian Process can be continuous

and specified with a mean and interdependence between the points, we might start to see

how it could represent an estimate of our objective function. We notice though, that we,

unlike before, won’t be getting an analytical expression, unless we know the basis functions

behind the covariance function.

But as it turns out, it is often possible to expand a given covariance function into a series

of basis functions, and if that series is infinite, we call the covariance function nondegenerate.

Specifically, Mercer’s theorem tells us that any positive semidefinite covariance function can

be expanded into a series of basis functions ([33], page 14). For a definition of a positive

semidefinite kernel see [29]. Sometimes it’s possible to find this expansion analytically

and even if that’s not possible, it may be possible to approximate the basis functions with

computer algorithms [33].

The good thing about working from the perspective of Gaussian Processes is that we

understand that the covariance function simply tells us the correlation between points at

different locations of the model, and we don’t actually need to know the series of basis

functions in order to use a given covariance function, just that it’s positive semidefinite and

perhaps whether or not it’s degenerate. In other words, we can set up a prior distribution of

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 17

functions simply by stating the interdependence of points, instead of defining an infinite

series of basis functions. Practically, this means that instead of drawing a vector of weights for

our basis functions (when we draw a function from our prior distribution) and multiplying

it by our series of basis functions, we simply draw a vector from our collection of random

variables and this vector then directly represents a function from our prior distribution.

In equation 17, we found the predictive distribution by explicitly using basic functions.

Can we reach the same result only using Gaussian Processes?

Let us begin with the prior distribution. The covariance function of this Gaussian Process

will simply be the one we have chosen to represent our prior information. We just call it

k(x, x′) as we have before. The mean of the Gaussian Process can be chosen depending on

our prior assumptions as well. A usual choice is to simply let it be zero.

Putting this together, our prior distribution is simply,

p(f (x)) = GP(0, k(x, x′)) ≈ N (0, k(x, x′)) (20)

The ≈ sign simply signifies that the expression on the right of it is evaluated over a grid,

whereas the expression on the left is defined over a continuous variable. We use the same

symbols for the mean and covariance function, even though there’s a technical difference

there as well; from the continuous functions to their vector/matrix representations.

How do we get to the posterior from here? Well we saw in the earlier subsection that the

posterior is simply the prior times the likelihood (normalised by the marginal likelihood),

and that if we have no noise, the likelihood simply selects the functions from the prior that go

through the data. Since we already know that we will be using the method with simulations

that always return the same result given some given parameter values, this is the scenario

we are interested in. This means all we need to do is "reject" all the functions from the prior

that do not correspond with the data.

Of course, actually doing this process would be horribly impractical, but luckily it can be

done efficiently by simply conditioning the prior on the data. One might think there is a

problem here: That we do not know the distribution of the data. But if our prior is correct,

the data should follow that distribution. This means we have two multivariate Gaussians,

both defined by the covariance function k(x, x′) and a mean of zero. One of them is given by

our data and a finite Gaussian distribution, while the other is a continuous Gaussian Process,

where we can choose which grid points we want to evaluate it on.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 18

0 2 4 6 8 10
x

3

2

1

0

1

2

3
y

Draws
Mean

0 2 4 6 8 10
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Draws
Mean
Data

Figure 3: Ten functions drawn from a prior distribution using an RBF kernel (left) and a corresponding

posterior conditioned on some data (right). The data is just randomly chosen numbers. The

blue lines are functions drawn from the distributions, the black lines give the mean of the

distributions and in the plot on the right, data is shown as red stars.

If we choose a grid for the Gaussian Process (thus estimating it with a Gaussian distribu-

tion) and then condition this Gaussian distribution on the Gaussian distribution of the data,

we get the posterior1,

p(f (x) | y(X)) = N (k(x, X)(k(X, X) + σ2
n I)−1y,

k(x, x)− k(x, X)(k(X, X) + σ2
n I)k(X, x)) (21)

And we see that whether we look at this problem through the lens of basis functions or

Gaussian Processes we get exactly the same result! So this is completely equivalent to the

basis function approach from the last subsection.

2.3.4 Kernels

As we saw in the previous section, the covariance function or kernel of a Gaussian Process

defines its behaviour. Now the question becomes which kernels we might consider when

doing our optimisation process.

In the previous section we looked at the Radial Basis Function kernel. This kernel gives a

distribution of functions where every one of them is infinitely differentiable and continuous

[38], and the correlation between each point is simple and easy to understand. However,

the smoothness of the functions can sometimes make them rigid and prone to fluctuations

between points if the length scale hyperparameter is large, because the functions have to

be smooth and can’t make abrupt turns to go more directly through points that are not

1 See [33] A.2 for how to condition one Gaussian distribution on another.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 19

0 2 4 6 8 10
x

3

2

1

0

1

2
y

Draws
Mean

0 2 4 6 8 10
x

0.5

0.0

0.5

1.0

1.5

2.0

y

Draws
Mean
Data

Figure 4: Ten functions drawn from a prior distribution using an absolute exponential kernel (left)

and a corresponding posterior conditioned on some data (right). The blue lines are functions

drawn from the distributions, the black lines give the mean of the distributions and in the

plot on the right, data is shown as red stars.

directly in their current path. This might induce features in our model that are inconsistent

with the data, unless, of course, the underlying objective function is known to be infinitely

differentiable itself. With simulation outcomes we don’t expect this to be the case.

Another option for a covariance function could then be if we removed the second power

from the RBF kernel and instead did,

k(x, x′)abs_exp = exp(−||x− x′||
l

) (22)

Now this kernel turns out to make functions that are completely indifferentiable [37], look

very noisy and in figure 4, we see that the posterior mean just draws straight lines through

every point. We have thus gotten rid of the problem of the model "swinging out" in between

points and gotten to a worse alternative: A model that here just performs linear interpolation

between points and won’t predict optimum for us like we want it to.

One might wonder if there’s something in between these two alternatives that gives us

the behaviour we’ve been looking for. And it turns out that there is! Its name is the Matern

kernel and the equation is given by,

k(x, x′)Matern =
21−ν

Γ(ν)

(
√

2ν
||x− x′||

l

)ν

Kν

(
√

2ν
||x− x′||

l

)
(23)

where Γ(·) is the gamma function and Kν is the modified Bessel function of the of order ν.

This kernel turns out to be dνe − 1 differentiable [25] and it is plotted in figure 5 with

ν = 2.5, making it twice differentiable. We see that we have a continuous set of functions

that go through the data nicely without "swinging out" between points like the functions

generated by the RBF kernel did (compare with figure 3).

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 20

0 2 4 6 8 10
x

2

1

0

1

2
y

Draws
Mean

0 2 4 6 8 10
x

0.5

0.0

0.5

1.0

1.5

y

Draws
Mean
Data

Figure 5: Ten functions drawn from a prior distribution using a Matern kernel (left) and a correspond-

ing posterior conditioned on some data (right). The blue lines are functions drawn from the

distributions, the black lines give the mean of the distributions and in the plot on the right,

data is shown as red stars.

For the default set-up of our method (which won’t assume any specific properties of

the objective function) this might be a strong contender. It offers a simple correlation

between points (at least if we utilise the information that it is something between an absolute

exponential kernel and an RBF kernel), it easily fits our relatively dramatically changing

little test problem without any peculiar behaviour and only has a single hyperparameter to

fit.

If we have more specific information about a given problem or anticipate a very complex

function structure that we don’t believe the Matern kernel will be able to contain, we have

many, many other options. There are periodic kernels, linear kernels (equivalent to the linear

regression we did in chapter 2) and the rational quadratic kernel, just to mention a few (see

[7] for equations for these and more). Furthermore we can add and multiply different kernels

as we want, since the only requirement is that the kernel stays positive semidefinite.

For more complex kernels, we can mention the Spectral Mixture Kernel (SMK) [42] or the

Deep Kernel [43]. Both of these offer great complexity and can find complicated structures

in data. With the SMK we can even tune the amount of complexity by deciding how many

terms in a series to include (see equation 12 in [42]). Similarly in the Deep Kernel (DK), we

can design the Artificial Neural Network it incorporates as we wish, with as many layers as

we want. The SMK shows good performance and beats, among others, the Matern kernel

on a number of test sets that all display some kind of complex, periodic behaviour. The

DK is tested on a range of large datasets (compared to the ones we expect to encounter)

but is largely beaten by the SMK. It is shown to do well, however, on a step function full of

discontinuities where the SMK struggles.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 21

Clearly, there are many options (and many well-designed and intelligent options) when

choosing our kernel.

Through all this though, we have to remember: We assume to work with datasets of only

∼ 100 data points and when fitting for the first time we might only have ∼ 20 points to work

with. As such, many of these complicated kernels are likely to be overly complex unless they

are chosen specifically to match the objective function (and even then over-complexity could

certainly still be a problem).

Furthermore and perhaps most importantly, we should go back and remember the follow-

ing: The Matern kernel (if we assume we will just use ν = 2.5) only has one hyperparameter

and it is easily understandable. It simply states over which distance we expect the objective

function to change significantly and it can easily be fitted. As a demonstration it could be

mentioned that the lengthscale in figure 5 was fitted by hand since it’s a one dimensional

parameter sweep and is barely worth the trouble of setting up an algorithm.

Many of the other mentioned kernels will mean that we end up with many parameters

that might be internally dependant and thus introduce an additional optimisation problem

into our method. Besides introducing the risk of failing this optimisation and gaining a poor

model for our method, it becomes more difficult for the user to adjust the hyperparameters,

should they have undesirable values.

With the Matern kernel, we can visualise the model for the user and give them the option

to change the fitted lengthscale if the fit looks wrong. Furthermore we can start up the

algorithm with easy-to-interpret bounds on the hyperparameter that prevent it from being

catastrophically wrong.

Of course, if we knew we had many data points and anticipated objective functions with

complex patterns, using SMK or DK would probably be preferable.

When there are multiple parameters (as there generally are), we can choose a kernel for

each one or choose the same kernel for all and simply fit the hyperparameters individually

to each parameter.

2.3.5 Optimisation of kernel parameters

All of the kernels named above have one or more parameters that we need to choose values

for. Given that these parameters control our prior distribution of functions instead of being

function parameters themselves, we call them hyperparameters.

This chapter is inspired by chapter 5 in [33].

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 22

Being in a Bayesian framework, the obvious thing to do in order to optimise their values,

is to look at the probability of some potential values of them, given some data, i.e. to look at

the posterior of the hyperparameters:

p(θ | y(X)) =
p(y(X) | θ)p(θ)

p(y(X))
(24)

where we use θ to signify the hyperparameters, however many there might be.

Now this is a fairly complicated expression but we know that the marginal likelihood in

the denominator just normalises the expression, so we can write,

p(θ | y(X)) ∝ p(y(X) | θ)p(θ) (25)

Next, we might assume that the prior on the hyper parameters is either flat or just fairly

broad and thus might not influence the location of our maximum. What we’re left with is

then just the probability p(y(X) | θ).

We now write up Bayes’ equation for the function values;

p(f(X) | y(X)) =
p(y(X) | f(X))p(f(X))

p(y(X))
(26)

And if we consider this equation given some specific values of the hyperparameters, we get,

p(f(X) | y(X), θ) =
p(y(X) | f(X), θ)p(f(X), θ)

p(y(X), θ)
(27)

And we get that the marginal likelihood in this equation is the same as the likelihood we

were looking for. This is useful because seeing the likelihood in this way we can write is as,

p(y(X) | θ) =
∫

p(y(X) | f(X), θ)p(f(X) | θ)df (28)

and we see that we have found an equation that we can use to find the likelihood we needed.

Common practice is to take the logarithm of this expression and because of this, it is

commonly known as the marginal log likelihood (MLL). Of course, this is a bit of a vague name

as Bayesian optimisation utilises many likelihoods and any of them could be seen as marginal

if calculated by integrating out some quantity. All the same, this is the name and it can be

shown ([33], page 113) that it is equal to,

log(p(y(X) | θ)) = −1
2

yTK−1
y y− 1

2
log|Ky| −

n
2

log(2π) (29)

where Ky = K f + σ2
n I and K f is k(X, X), the covariance matrix for the coordinates of the data

points.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 23

This equation turns out to be very informative of the behaviour of the MLL, as each term

affects the optimal choice of hyperparameters (and thus the optimal form of the surrogate

model) in different ways. The first term gives a measure of how well the model follows

the data, which in the case of no noise on the data is perhaps a little less intuitive than

usual, since all functions in the posterior go through the data points, but the term essentially

measures whether the covariance function predicts the same correlation as is given in the

data vectors y. The second term gives a punishment for complexity (or alternatively, a

reward for simplicity) and the third term gives nothing really, as it’s just a normalisation

term and independent of θ.

The first term is one we would expect from any measure on how good our model is,

but the second is very interesting. When setting up a model, we generally want to avoid

unnecessary complexity that isn’t represented in the data (a principle known as Occam’s

Razor), and with MLL we actually get this automatically!

Another favourable quality of the MLL is that it becomes more peaked when we have more

data [42]. This basically shows us that the MLL converges towards a specific interpretation

of the data when more data is known.

If we were to look at the RBF or Matern kernel for an example, we can look at the

lengthscale hyperparameter they both have and see how it influences the MLL.

If we start with the RBF kernel (see figure 6), we can see that the data-fit term plummets

after the value of ∼ 1.0 (left). If we look at the right-hand side plot, where the mean of the

posterior is plotted for the smallest, largest and best lengthscale value, we can see why; For

the lengthscale l = 2.0, the mean of the posterior distribution swings wildly between data

points in a way that is completely unrepresented by the data. This is, as mentioned earlier,

because the RBF kernel is infinitely differentiable and with a large lengthscale, it can only

get through the quickly changing points by "bending" in between. (Think of trying to force a

very thick, stiff cable through a series of fastenings with varying height.)

Looking at the results from the Matern kernel instead (figure 7), we see that it doesn’t have

this erratic behaviour. Instead we have that the best lengthscale and the largest lengthscale

almost coincide completely. We also notice that at small lengthscales the function value

go towards our chosen prior mean (zero) in between points. This is simply because the

functions in the prior distribution vary so rapidly that they just become noise around the

mean and then "shoot up" to meet each data point. It should be noted that the RBF kernel has

the same behaviour at low lengthscales. Most kernels will probably lead to this behaviour if

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 24

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Length Scale

8000
7000
6000
5000
4000
3000
2000
1000

0
Lo

g
Pr

ob
ab

ilit
y

MLL
Data-Fit
Simplicity

0 2 4 6 8 10
x

2

0

2

4

6

y

Smallest Lengthscale
Largest Lengthscale
Best Lengthscale
Data

Figure 6: The MLL and its significant two terms are plotted against the value of the lengthscale

hyperparameter on the left, given an RBF kernel and a simple test set. On the right the

data from the simple test set is shown and we see the mean of three posterior distributions:

One with the smallest lengthscale we have used, one with the largest and one with the

lengthscale that gives the highest MLL.

the hyperparameters are badly fitted in a way such that the prior functions change much,

much more rapidly than the data.

Furthermore, if we look at the left hand side of the plot, we can see the behaviour of the

two terms of the MLL; The data-fit term still falls when we get to the higher lengthscales,

but it doesn’t plummet dramatically like it did for the RBF kernel. This term has a maximum

around l ≈ 0.6. The simplicity term rises as the lengthscale becomes longer. This is because

the model is less complex at higher lengthscales where the variations of the model value

happen over a longer distance. This means that if we look between two data points, some of

the functions in our posterior distribution might predict a higher value and some of them

might predict a lower value, but none of them will predict that the value goes up and down

multiple times (see figure 5). To make an analogy with a well-known subject, we could

think about a Taylor series. A simple Taylor series will just contain a few, low-order terms

that vary simply, whereas a complex one might involve many high-order polynomials that

swing up and down between the data points (if the problem is over-fitted at least). Another

way of putting it is that a lower lengthscale will allow for more variation and will not be

"surprised" (have a low probability) for new data points that lie outside of the current mean.

For example, if we turn up the lengthscale in figure 5 to 15.0 (the one shown in the figure is

2.5), all the draws lie exactly on top of the mean, i.e. the probability of values outside of the

mean falls towards 0.

2.4 A C Q U I S I T I O N F U N C T I O N 25

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Length Scale

40

30

20

10

0

10
Lo

g
Pr

ob
ab

ilit
y

MLL
Data-Fit
Simplicity

0 2 4 6 8 10
x

1.0

0.5

0.0

0.5

1.0

1.5

y

Smallest Lengthscale
Largest Lengthscale
Best Lengthscale
Data

Figure 7: This plot shows the same quantities as in figure 6, except we are using a Matern kernel here.

When using a kernel with a simple hyperparameter like the lengthscale, it can be a good

idea to set some bounds before letting the optimisation run. By doing this we are guaranteed

not to choose a value that is dramatically low or high. At low lengthscales (before reaching

the point of complete nonsense and bias towards our prior mean), we can over-estimate

the uncertainty between points, because the posterior functions oscillate too much. At high

lengthscales our model turns overly confident and we lose the information that is the spread

in our posterior distribution of functions.

An alternative to using MLL could be to use cross validation (especially leave-one-out

cross validation so we still get to utilise all of our precious, sparse data), but we won’t go

into this method and its pros and cons in this thesis.

As a final note, the Bayesian framework used to find an expression for the MLL could also

be used to compare different models, once we have evaluated our initial points, but that has

not been attempted in this thesis.

2.4 A C Q U I S I T I O N F U N C T I O N

Once we have a good surrogate model fitting our objective function, we will need to decide

how to use it for choosing candidate points. To make this decision we introduce an acquisition

function that prioritises the two main sources of information from our model: The mean and

the variance of the posterior distribution.

Naturally, we want to evaluate the objective function at coordinates where the mean of

the model is large, since it then predicts that the objective function will be large there. When

it comes to the variance, however, it is slightly less intuitive, because while a maximum with

2.4 A C Q U I S I T I O N F U N C T I O N 26

low variance of course has its advantages (because we are fairly sure that it is a maximum), a

place with a mean in the middle of our range but a high variance might be host to a hidden

maximum. Furthermore there’s an advantage to exploring areas with high variance because

these are often areas where the model is lacking information and evaluating points here

might further our understanding of the objective function.

A simple acquisition function then becomes,

aUCB(x) = µ(x) + σ2(x)β (30)

where µ is the mean of the model, σ2 is the variance and β is a tunable parameter.

This acquisition function is called Upper Confidence Bound (UCB) because it combines the

mean and variance to give a guess at an upper bound (influenced by the parameter β) of

how good the objective function is expected to be at some set of coordinates. The parameter

β gives a direct, linear way to set the trade-off known as exploration vs. exploitation, where a

high β will give large exploration and thus will search places with high variance to expand

our knowledge of the objective function by exploring many different regions or find maxima

that weren’t certainly predicted by the model yet. A low β, on the other hand, will mean

that we’re exploiting the regions where we already know that the objective function has a

large value or where the model very certainly predicts that it does.

Another popular acquisition function is the Expected Improvement (EI) function that aims

to calculate the expected increase in function value at any given coordinate set with the

following equation [23]:

aEI(x) = E[max(fmax − f (x), 0)] (31)

where E[·] signifies the expected value and fmax is the maximum value of the objective

function that we have found so far.

Since this acquisition function integrates over all model values at coordinate vector x,

it automatically uses the spread of the distribution as well as the mean. The advantage

and disadvantage of this acquisition function then becomes the same: It doesn’t have any

parameters. This is great as long as it performs well, but if it doesn’t we have no way to

adjust its behaviour (i.e. its exploration/exploitation balance).

Furthermore, EI has the advantage that already evaluated points (without noise) will have

acquisition value zero, where they with UCB will simply be a local minimum because the

variance will be zero at the point but larger immediately around it. This however, leads us

to another disadvantage with EI, which is that it will be zero in large areas and thus might be

difficult to find the maximum of.

2.4 A C Q U I S I T I O N F U N C T I O N 27

2.4.1 Noisy Upper Confidence Bound

During initial testing of the method, it sometimes happened that the objective function was

very flat in one parameter, resulting in a nearly flat mean with a slight tilt and a constant

uncertainty. In this case the optimisation could sometimes get stuck at a specific value for that

parameter, because there would be a slight maximum on the right or left side of the bounds.

This would keep the parameter from sampling other values and keep the optimisation from

discovering any structure in the objective function along that parameter.

To mitigate this, we propose to add a little bit of Gaussian noise to the acquisition function

and make that noise dependant on the size of the variance, so that more uncertain areas of

the model will get more noise. The proposed acquisition function is called UCBVar and has

the equation,

aUCB_Var(x) = µ(x) + σ2(x)β + rσ2(x)βγ (32)

where r is a random number from the normal distribution N (0, 1) and γ is a tunable

parameter.

We propose a default value for γ of 0.01, so the noise only really makes a different when

the model is very flat in some parameter and won’t introduce too much randomness into

our method.

Note that since the noise is larger when the variance is higher, this addition to UCB won’t

affect the optimisation when the model is confident in its predictions.

Note also that because a random perturbation is chosen every time the acquisition function

is called, a powerful optimisation method like dual annealing might be able to ignore the

noise and still find the point with the largest acquisition function value without taking the

noise into account. Given that, it might be favourable to find a way to add noise to the

acquisition function that is more constant in the parameter space, but this has not been

further explored in this project.

2.4.2 Optimisation of the Acquisition Function

When optimising the surrogate model instead of the objective function, we have one major

advantage: The surrogate model is quick to evaluate so we can evaluate it lots and lots of

times.

This means we can use any standard global optimisation method we would like, as long as

it performs well and finishes within some reasonable amount of time. This amount of time is

2.4 A C Q U I S I T I O N F U N C T I O N 28

better chosen too high than too small: Getting stuck in a local maximum of the surrogate

model (or worse: not finding a maximum at all) and thus choosing a bad candidate point

basically means wasting an entire evaluation of the objective function and if this takes hours

or even days, this is really a critical mistake. Going from e.g. 3 to 6 minutes of optimising the

acquisition function, however, is completely insignificant (as long as the objective function

takes much longer), so if that’s the price for finding the right candidate, it’s well worth it.

Of methods to use for this optimisation, we can name e.g. Dual Annealing [45] and

multi-start L-BFGS-B (as implemented by the BoTorch Python package [2]). But as mentioned,

any suitable method for global optimisation can be used.

2.4.2.1 With Multiple Points

If we’re running multiple evaluations of the objective function at each step of the optimisation,

we need to find multiple candidate points at each step as well.

This can be approached either by expanding the acquisition functions to return more

points at one evaluation or by finding one point at a time and using some criterion to push

the candidates away from each other.

The former is described in [44] and requires using Monte Carlo to approximate the

acquisition function. It has the advantage of attempting to simply expand the criterion used

to find one parameter to finding several, but we won’t go further into how it works here.

The latter could be done most simply by making a hard boundary, so after finding one

point, we don’t allow any more inside some radius around it. The disadvantage of this is

that if we were to have two peaks close to each other, we might want to have a candidate

point on each one, and if we are using hard bounds, one of the peaks might get excluded.

Instead, we propose to add a punishment to the acquisition function that increases when

we are close to already-chosen points. A simple choice for this punishment would be a

Gaussian centred around each point we’ve found so far, so that the acquisition function dips

down around already chosen points. A peak close to a point that is already a candidate

might then still get chosen, if the punishment is not too harsh or too broad.

The scaling of the Gaussian can be chosen to be some fraction of the value of the acquisition

function at that point (without any punishments) to make sure that the punishment always

has the same impact, no matter the scale of the problem.

2.5 I N I T I A L E VA L U AT I O N S 29

This then leaves us with two parameters: α that describes the width of the Gaussian and ω

which describes the relative size of the dip. The equation is,

punishment(x) = ∑
i

a(x) ·ω · e−||x−xcand_i ||2/α2
(33)

where || · || signifies the Euclidian distance, a(x) is the value of the acquisition function, ω

is a parameter, α is a parameter and xcand_i is the i’th candidate point that has already been

found. This punishment is subtracted from the acquisition function during optimisation.

Having the parameters α and ω is both an advantage and a disadvantage compared to

using the expansion approach, because we get two simple parameters to control the spread

of the points, but we then have to choose some kind of values for them. We don’t expect,

however, that they’re overly sensitive or vary too much with each individual problem.

Another advantage over the expansion approach is the simplicity. Understanding exactly

how the expanded version of e.g. UCB works isn’t necessarily very easy or intuitive. But

simply adding a punishment to push the points apart is simple and can be easily adjusted

by the user while running an optimisation.

2.5 I N I T I A L E VA L U AT I O N S

Before we can use our model to make educated guesses about where the highest objective

function values might be, we need to give it some data to fit its hyperparameters. This means

that we have to choose some initial candidate points that fill the parameter space in some

way.

So how do we choose these points? One simple idea is to do a so-called grid search where

we uniformly search the parameter space in a grid structure. This gives us the advantage of

sampling the parameter space with equal spacing. The great disadvantage, however, is that

the grid structure means that we use the same value of a given parameter multiple times

and thus end up with fewer individual values in each dimension than if we chose a structure

where none of the points are overlapping when projected to the axis of a specific parameter.

Another option then, is the random search where the parameter values are simply sampled

from a uniform random distribution along every axis. In this method we are not guaranteed

equal spacing between points but with a high amount of evaluations we do get a uniform

sampling of the parameter space. On the other hand we have now dispensed with the

overlapping structure of the grid search, so we now get ninit points on each parameter axis.

The two methods are illustrated in figure 8.

2.5 I N I T I A L E VA L U AT I O N S 30

In this project, we are assuming generally to have only a small number of evaluations

so the fact that the random sampling becomes uniform at high amounts of points might

not mean much to us. In fact, when sampling a small amount of points we might generally

expect the points to "clump" together (as in figure 8) and thus give us parts of the parameter

space that are well represented and parts that are not. This leads us to asking whether there

might be a method that ensures good space-filling as it’s called and simultaneously avoids

the overlap issue of the grid search.

In the method called Latin Hypercube Sampling (LHS) we divide each axis of the parameter

space into equally large parts and make sure that none of the points we sample coincide

within the same divisions along each axis. This means that we are guaranteed a large degree

of space-filling within each separate dimension, but we might still see some amount of

clumping along linear combinations of the axes ([18], chapter 4).

Alternatively we can consider a method called minimax (or the similar one called max-

imin), where the points are spread in a more deterministic fashion to get the minimum

maximum distance (or in maximin, the maximum minimum distance). Either metric spreads

the points out through the search space and avoids "clumping" in any direction.

Either of these could possibly provide a good option, but while space-filling and uniformity

are both intuitively good, sensible goals for the initial design, there is one thing we have yet

to consider: What kind of sampling does the model need to fit its hyperparameters?

And here, we might immediately see a problem with space-filling designs: High-frequency

variations might be missed, if all of the points are spread far apart, thus making e.g. the

lengthscale hyperparameter of Matern or RBF models longer than it should be when it is

fitted.

In [47] it is shown through six experiments with problems of increasing dimensionality

(one in the first and six in the last) with 30 different lengthscales to be fitted in each experiment

and 1000 realisations of space design in each, that random space design indeed performs

better with a log(MSE) metric (comparing the fitted model to the data) than minimax, but

at the same level as LHS (which probably makes sense as LHS still allows some degree

of "clumpiness", i.e. small distances between points). To investigate which distributions

of pairwise distances performed well in the random designs, they took out the 50 best

performing random designs and looked at the distributions of pairwise distances in these.

They then proposed a design fitted to that distribution called beta and finally a hybrid design

that combines LHS and beta called lhsbeta. The latter design especially performs well and

2.6 P R I O R I N F O R M AT I O N 31

Figure 8: Grid search (left) compared to random search (right) for some example objective. We see

that random search gives us more point on any one parameter axis. Figure from [11].

outperforms all the above-mentioned designs in nearly all experiments with the exception

that beta sometimes does a little bit better.

Given that these results hold up across other use cases, it might be advisable to use

their design for initialisation. Otherwise doing random sampling or LHS might be the best

alternatives. Minimax should only be used if the lengthscale is known to be long along all

parameter axes.

2.6 P R I O R I N F O R M AT I O N

If we have prior information about which parameter values are more likely to yield the

global maximum of the objective function, we want to use this information.

One simple solution would be to use it when finding our initial points, by sampling from

this prior distribution over the parameter values, instead of e.g. sampling from a uniform

random distribution as mentioned above. Then our initial points would have a greater

chance of striking high objective function values and thus leading the model quickly to

desirable regions of the parameter space.

A disadvantage of doing this, is that the regions with low probability in the prior would not

be sampled and so our model would attribute them with high uncertainty, which means our

acquisition function would likely have a high value there, causing our method to investigate

by choosing candidate points there.

2.7 D I F F E R E N C E M E A S U R E 32

A solution to this was proposed in [32] where the pairwise distance in the kernel ||x− x′′||2

is replaced by,

||φm(xm)− φm(x′m)||2 (34)

where φm is the cumulative distribution function (cdf) of the prior.

This method can be used with any kernel that uses a pairwise distance (i.e. any stationary

kernel) and works by warping the space of the model so that the regions of the parameter

space with high prior likelihood are expanded to fill up more of the space, while low-

likelihood areas are shrunk to fill less, in such a way that the prior distribution is flat in

the warped space. If the prior distribution accurately describes the likeliness of finding the

global maximum, that likeliness will be flat in this warped space as well.

In the article, the method generally outperforms a BO method without prior information

and a method that just samples from the prior distribution (without using BO), but it is not

run against a BO method initialised with the prior.

A disadvantage of the method might be that the warping of the parameter space could

transform a well-behaved objective function into something less fit-able. It might also be

worthwhile to note that the acquisition function cannot immediately use the same transfor-

mation since it doesn’t use pairwise distance, and will thus be operating in a different space

than the model, and might then still over-sample the uninteresting regions.

An important note is also that if the prior is wrong and the global optimum is outside of

the regions that have a high prior likelihood, it will be very difficult to find with this method,

more so than if we just use the prior for sampling the initial points.

A possible alternative might be to simply punish the acquisition function for suggesting

candidate points with low prior likeliness, perhaps by

aUCB_prior(x) = µ(x) + σ2(x)β− (1− pprior(x))τφ (35)

where τ = abs(µ(x) + σ2(x)β) and φ is some arbitrary constant with range φ ∈ [0, 1] that

toggles how hard the punishment is. We don’t have time to explore this acquisition function

further in this thesis, but mention it in case it sparks inspiration for a future reader.

2.7 D I F F E R E N C E M E A S U R E

In our simulations, our objective function will generally be measuring the difference between

some output of the simulation and some data that we have acquired.

2.7 D I F F E R E N C E M E A S U R E 33

Choosing the metric for this difference in a reasonable way is of great importance, since it

greatly influences the shape of the objective function. Of course, the objective function will

also be shaped by how the chosen output depends on the parameter values, and this relation

we don’t know. If we did we wouldn’t need to run the optimisation at all.

The relationship between the objective function, the difference measure and the simulation

can roughly be written as,

fobj = fdi f f _met(y(X), fsim(p)) (36)

where p signifies the parameters, fobj is the objective function, fdi f f _met is the difference

measure and fsim(p) is the simulation output as a function of the parameters.

Given all this, we need to make a decision about the difference metric we use, and thus

we need to make an assumption about fsim(p). The simplest thing we can do is to assume

that it’s linear, and if we only need to consider a small area - such as the section of the

parameter space close to the global maximum of the objective function - it might be an

alright assumption. If the assumptions holds in that area we will know what our global

maximum looks like and thus how well our model will be able to fit it.

The simplest metric we can imagine is probably the squared difference (with a negative

sign, since we’re maximising the objective function). This function has the advantage that it

makes a nice, smooth peak that a kernel like Matern or RBF will have an easy time fitting.

The disadvantage is that the difference is squared so the optimisation will be rewarded

greatly by getting to decent solutions with a few correct digits but won’t be rewarded greatly

by getting a large precision on the match between the chosen simulation output and the

data.

The quadratic difference measure is simply,

fobj = −(output− target)2 (37)

This isn’t necessarily a problem; It all depends on the problem at hand. If we are optimising

a large amount of objectives or just one very difficult objective, this might be exactly what

we want. We will find the acceptable areas of the parameter space for an objective and then

be focused on getting the other objectives correct as well.

If, however, we are optimising an output where we would ideally like to get many digits

correct, we will need to choose a different metric.

The least dramatic thing to do would be to simply drop the second power and use the

absolute value of the difference instead. The drawback of this is that the peak of our objective

2.8 M U LT I P L E O B J E C T I V E S 34

will no longer be a smooth parabola but a triangle with a non-differentiable point at the top.

This might prove more challenging for some kernels. It will also still not encourage a very

large precision in the output.

The absolute difference measure is given by,

fobj = −abs(output− target) (38)

A more drastic solution would then be to take the logarithm of the quadratic difference

measure, making our objective function increase linearly when the error falls with an order

of magnitude. The issue with this is that our objective might then get a very narrow peak

that might be challenging for some kernels to fit, since the objective function values will

essentially be diverging as the error approaches zero.

The logarithmic difference measure is given by,

fobj = −log((output− target)2) (39)

2.8 M U LT I P L E O B J E C T I V E S

If we have more than one objective, we need to consider how we fit the data points from

them all and how we choose our candidate points.

The simplest thing to do would be to combine the different objectives with a weighted

sum. Then we’d only need to fit one model, as we did before, and we’d be able to use the

same acquisition functions we did before.

Now, the immediate disadvantage of that is that we are bound to lose information by

collapsing the nobjs different objective functions into one. So fitting one model to a weighted

sum is bound to give us less information than fitting nobjs models to nobjs objective functions.

Given our general situation, where we have little information and lots of time to take

advantage of it, we can immediately see that we don’t want to do this.

So we fit one model to each one of our objective functions and thus are left with the

question of how to use our acquisition function, which is designed to consider just one input

variable.

Once again, the simplest thing to do is to simply add the objective function estimates

from the models in a weighted sum and use our acquisition functions as we would with one

objective. To explore why this isn’t necessarily a good idea we have to take a step back and

ask ourselves the more fundamental questions: If we used a weighted sum, which weights

would we use? If we have more than one objective, and a given vector of parameter values

2.8 M U LT I P L E O B J E C T I V E S 35

gives us, not a scalar objective function value, but a vector of objective function values,

which data points do we think of as good? If all the objectives were perfectly correlated and

always increased in the same parameter regions, this would be easy, but that isn’t necessarily

the case.

The overall answer to these questions is simple: It’s subjective. Or rather, it depends on

the user and what their priorities are, for whatever reasons they might have.

To get a deeper answer, we need to introduce some new concepts.

First off, let’s represent the vector of objective function values as,

f(x) = [f1(x), f2(x)... fnobjs(x)] (40)

Now, if this vector only has one element, it’s easy to define one being superior to another.

If the vector has more elements, things become muddier, because of the above-mentioned

circumstance: Choosing among these points might need a prioritisation by the user.

If, however, the two vectors we’re comparing obey the condition that every element of the

first one is larger than the respective element in the other, we can say without a doubt, that

the first one is better. More specifically, we say that the first vector dominates the other one,

or that,

v � u (41)

if,

vi > ui ∀ i ∈ {1, ..., nobjs} (42)

If the elements are instead larger than or equal to (≥ instead of > in the definition above) we

sat that v weakly dominates u and we write v � u.

Given this definition we can now define a non-dominated solution, as one that is not

dominated by any other solution, and then we can define the set of solutions that are non-

dominated. We call this set the Pareto-optimal set and the collection of objective function

values given by it is called the Pareto front.

We have then arrived at a possible goal for multi-objective optimisation: Finding the

Pareto front.

If we know the Pareto front, we know every solution that we might be interested in. The

optimiser can then return these solutions to the user, who can choose which one they want.

Of course, since we have a highly limited amount of evaluations, we don’t actually expect

to discover the full shape of the Pareto front. That is, we don’t expect enough points to

sample it abundantly, but we can still try to sample it as diversely as possible and try to keep

2.8 M U LT I P L E O B J E C T I V E S 36

finding points that dominate the ones we already know, getting closer and closer to the true

Pareto front.

The question then becomes how to sample the Pareto-front efficiently and without bias.

And now we can return to the discussion of the weighted sum approach!

What we want when using the weighted sum approach, is to sample the points on

the Pareto front that has the specific trade-off given by the weights between the different

objectives. In practice, however, we find that different sets of weights can lead to the

same points and thus the method gives us a non-uniform sampling of the Pareto front [46].

Furthermore, it only works well with convex Pareto fronts [46]. To give some quick intuition

as to why that is, we can think of an example where we have a mostly convex Pareto Front,

let’s say in two dimensions, and we then a little "dent" (see figure 9) and the Pareto-optimal

point that gives us exactly the trade-off we’ve requested with our weights happens to lie in

this dent. Let’s say that we have weights (0.5, 0.5). If point A has objective values (5.0, 3.0),

point B has values (3.0, 5.0) and C has values (3.5, 3.5), then C is not dominated by either A

or B (it is Pareto-optimal) and it gives us the trade-off we had requested. By using weighted-

sum, however, we would arrive at point A or B because the weighted sum of these points

is 8, while the weighted sum of point C is 7. Now, this might not be such a big problem.

Perhaps the 0.5 value difference in one objective is not particularly important to the user

and they’d rather have the sum be that much higher. But consider another scenario, where

we have found a point where one objective gets a very large value, say 8.0 and the other

objective at that same point is only at 0.5 and that we have another point where we have

the values (4.0, 3.5). The weighted sum method prioritises the first point but (depending on

the case and the user!) it might be more desirable to have two decent values rather than one

high and one low, and the weighted sum method might simply not find the (4.0, 3.5) point

for the user to choose.

An alternative to the weighted sum method is using the hypervolume indicator.

The hypervolume indicator aims to give a measure of the size of the known Pareto front.

In two dimensions this would simply be the area contained by all Pareto-optimal points and

some chosen reference point, as shown in figure 10. This reference point is usually chosen to

be the nadir point [4], which is defined as the worst value for each objective amongst the

objective values in the dominating objective vectors.

2.8 M U LT I P L E O B J E C T I V E S 37

Figure 9: Example of a non-convex Pareto front. Figure taken from [46]. (The axes were inverted

since we try to find a maximum, not a minimum in this thesis.)

Figure 10: Illustration of the hypervolume indicator in two dimensions. We see how different points

contribute to the overall area covered between the Pareto front and the reference point.

Figure from [21].

Generally, the hypervolume indicator can be defined as [21],

H(S) = Λ(
⋃
p∈S
p≥r

[p, r]) (43)

where Λ() is the Lebesque measure and [p, r] = {q ∈ Rd| p ≥ q and q ≥ r} is the (hyper)box

contained by the points p and r. d is the amount of objectives. With this definition, we see

the hypervolume, as we described above, as the union of all hyperboxes contained by the

reference point r and the dominating objective vectors. Other definitions are possible, see

[21].

With the hypervolume indicator we get a measure for MOO that tells us the diversity and

spread of our solutions and grows monotonously as we get closer to the true Pareto front.

It does not require us to state the priorities of our objectives beforehand and thus doesn’t

depend heavily on such a choice, like the weighted sum method would.

2.8 M U LT I P L E O B J E C T I V E S 38

In [10] Emmerich, Giannakoglou and Naujoks proposed a version of the Expected Im-

provement acquisition function that utilised the hypervolume indicator, now known as the

Expected Hypervolume Improvement (EHVI). This method essentially replaces the expected

scalar improvement of a single objective in the original EI with the expected improvement

in the hypervolume indicator. As such, it integrates the existing methodology we have

described above with a sensible indicator of our improvement across multiple objectives and

makes a good candidate for our method.

2.8.1 Normalisation in MOO

When we are working with multiple objectives, we suddenly see that an element that previ-

ously did not impact our algorithm much, becomes incredibly influential: The normalisation.

Whether we are using a simple weighted sum or a clever approach like the hypervolume

indicator, the normalisation is essential because otherwise, different scaling of our objectives

could mean that one of them completely overshadows the others. Of course, if we know

beforehand that our objectives are in the same scale, we can forego the normalisation.

This isn’t necessarily a given though and if we have, e.g. a difference of a factor 103

between objectives, the result is catastrophic in that we only really consider one objective’s

improvement when looking at candidate points.

One simple option is to normalise after the initial evaluation so that all objectives are

transformed to have mean 0 and standard deviation 1. Alternatively, one could transform

the objectives to be within the interval [0, 1] or perhaps [−1, 0] if one wants to converge

towards 0.

The question then becomes whether or not to renormalise after that initial normalisation.

If we don’t, we get that an objective will be prioritised more if it is easier with our method to

make improvement past the initial evaluations. This isn’t necessarily undesirable behaviour.

An argument in the opposite direction could be that we, with repeated renormalisation,

make sure that all the objectives are always equally weighted.

3

O C E A N T H E O R Y

We neither fear complexity nor embrace

it for its own sake, but rather face it with

the faith that simplicity and

understanding are within reach.

Fred Adler

Across the Atlantic Ocean, an immense amount of water is continuously transported,

running all the way from the Southern Ocean to up above Greenland. This circulation,

named The Atlantic Meridional Overturning Circulation, carries incredible amounts of heat

(up to around 1 PW in the North Atlantic [24]) and is of vital importance to the climate of

the Earth.

In a given model of the world’s oceans, it is therefore always an important part and must

be reasonably faithful to the real-world version for the rest of the model to be trustworthy.

For this reason, it makes a good target for tuning an ocean simulation.

3.1 T H E AT L A N T I C M E R I D I O N A L O V E RT U R N I N G C I R C U L AT I O N

The temperature and salinity of the water changes throughout all the world’s oceans. They

are the key players in determining the water’s density [35] and thus have a large impact on

the ocean’s currents.

At the equator, the temperature is high and the amount of water evaporating exceeds

the amount of water added to the ocean through precipitation. This means that both the

temperature and the salinity are high. Note, however, that salinity and temperature affect

the density in opposite ways. A simple formula for the change in density is [39],

ρ = ρ0(1− α∆T + β∆S), (44)

39

3.1 T H E AT L A N T I C M E R I D I O N A L O V E R T U R N I N G C I R C U L AT I O N 40

Figure 11: The currents of the AMOC (middle), the Antarctic Circumpolar Current (bottom) and

currents through the Pacific Ocean (left and right). Figure from [24].

where ρ is the density, ∆T is a change in temperature, ∆S is a change in salinity, ρ0 is

some reference density, α is the thermal expansion coefficient and β is the saline expansion

coefficient.

This warm, salty water from the equator then flows northward. Here, the air is cold and the

water quickly loses its heat by exchange with it. Since it is saltier than the surrounding waters,

its density becomes larger as it cools down, and it sinks down. Furthermore, the forming of

sea ice in this region rejects the salt of the seawater, releasing it into the surroundings. This

also results in water that is saltier and thus denser than the surrounding water and it sinks

as well. This process is known as deep water formation.

Once the water has sunken, it moves the opposite way, running southward but now at

a low depth. For the circulation to be sustainable, this water must come up again at equal

volume to what sank down, but while the water sinking at high latitudes has gravity on its

side, gets pulled down and loses potential energy in the process, the deep water is cold and

salty and will require external energy to get back up.

The origin of this external energy and thus the driving force of the upwelling required

is still a topic of discussion (see [24] for a thorough review) and one riddled with many

assumptions and uncertainties, but there are two main candidates; Wind-driven upwelling

and diapycnal mixing.

3.1 T H E AT L A N T I C M E R I D I O N A L O V E R T U R N I N G C I R C U L AT I O N 41

Figure 12: A vertical schematic of the volume transport and different upwelling processes of the

AMOC. Figure from [24].

Diapycnal mixing has historically been thought to be the main cause of the upwelling [26],

but more recent data and estimates have made this seem less likely. Instead, Kuhlbrodt [24]

argues that it is likely a mix of the two.

In figure 11, the expanse of the AMOC is shown (along with the Antarctic Circumpolar

Current and currents through the Pacific Ocean). We also see the locations of Deep Water

Formation and the different kinds of upwelling.

3.1.1 Wind-driven Upwelling

In the Southern Ocean, strong westerly winds drag against the water surface and force it

westward. Because of the Earth’s rotation, however, the result is a northward transport of

water. This is called Ekman transport [9].

The wind stress has a maximal strength around 50ºS, so the northward transport is

consequently also at its maximum at that latitude. This means that we get an imbalance

with the amount of water being moved away from the zonal band at 50ºS and the amount of

water moving into it. Consequently waters at lower depths must move up to compensate for

the water loss. Similarly there is a surplus of water north of this band and waters there must

downwell.

3.2 E D D I E S A N D M I X I N G 42

This phenomenon is called Ekman upwelling and Ekman downwelling. It occurs many

places in the world’s oceans, including coastal regions and at the equator where the trade

winds come in from opposite sides, due to the opposite sign on the coriolis force in the

northern and southern hemisphere. The Ekman upwelling in the Southern Ocean, however,

is especially significant for the AMOC.

The Southern Ocean is special because there, unlike anywhere else on Earth, are no barriers

for a zonal flow, all the way down to a depth of 2500 meters [24]. This means that the pressure

gradient becomes zero, which again means that the zonally averaged geostrophic velocity

has to vanish (a geostrophic current is one where the coriolis force is balanced by the force

from the pressure gradient). Thus we can only have ageostrophic meriodionial currents and

the strong westerly winds mentioned above can directly force a northward current.

The Ekman upwelling and downwelling resulting from this wind forcing then creates

very steep density slopes, which make for a uniquely efficient way for the deep waters to

resurface [26].

In figure 12 the AMOC is shown in a vertical plot where the zonal coordinate has been

integrated away. We see the different locations of the different kinds of upwelling and

internal mixing and see the vertical dependency of the volume transport.

3.2 E D D I E S A N D M I X I N G

The other significant way for the deep water to upwell is through diapycnal mixing.

Most of the ocean is heavily stratified, which means that the water is divided into different

layers with different properties, most importantly, different density. The planes of equal

density are called isopycnals and the stratification makes it hard for water to mix across

these.

It doesn’t, however, make it impossible.

All across the ocean, there are circular currents of water called eddies. These range in size

from centimetres up to hundreds of kilometres and are responsible for large amounts of

transport and mixing in the ocean.

Given this, resolving their movement becomes very important in our ocean models, but

unfortunately a significant part of them have smaller scales than that represented in our

models. This means that if nothing is done, their effect on the evolution of various tracers

will be missing and the upwelling of the AMOC will, for example, be too small.

3.2 E D D I E S A N D M I X I N G 43

3.2.1 Parameterising the Isopycnal Mixing

The following two subsections were inspired by [1].

To mitigate that unfortunate effect of our coarse resolution, we make a number of parame-

terisations to mimic the effect of the eddies.

The simplest way to do this is to just assume that the mixing that would have been done

by the eddies can be approximated by standard diffusion of particles.

For a simple differential equation, describing the temporal evolution of some tracer (such

as temperature, salinity, etc.), we then just get the convection-diffusion equation [5];

∂τ

∂t
= ∇ · (κ∇τ)−∇ · (uτ) + S (45)

where τ is a tracer, κ is the diffusivity constant, u is the velocity field of the water and S

contains any sources and sinks there might be for the tracer.

The first term ∇ · (κ∇τ) gives us the diffusion of the tracer. The strength of the diffusion

is controlled by the parameter κ. The term −∇ · (uτ) gives us the advection of the tracer, as

it’s moved by the water currents. As mentioned, S contains the sources and sinks, so if e.g.

heat is being generated by absorption of heat from the sun or salt is being added by brine

rejection, these processes will be represented through this term.

Now, this simple model assumes that the diffusion is equally strong in all directions, but

we already discussed how that isn’t the case because of the stratification of the ocean.

This means that we can improve the model simply by splitting up the diffusion term, so

that we can have a different diffusivity constant along isopycnals and across. Updating the

equation like that, we get:

∂τ

∂t
= ∇ρ · (κiso∇ρτ) +∇v · (κv∇vτ)−∇ · (uτ) + S (46)

where κiso is the diffusivity constant along isopycnals, ∇ρ is the gradient along isopycnals

(constant density, ρ), κv is the vertical diffusivity and∇v is the vertical gradient. The attentive

reader will notice that while we proposed to split the diffusion into a component along

isopycnals and one across, we have made one along the isopycnals and one that is simply

vertical. Since most isopycnals will be approximately horizontal this should be a good

approximation. The reason for it is very simply that this is how it’s done in the literature

used by the veros package that this thesis uses.

Notice that the diffusion term simplifies to κ∇2τ if the diffusivity κ is independent of

location. See [24], chapter 3 for why that probably isn’t a very good assumption, at least not

in the vertical direction.

3.2 E D D I E S A N D M I X I N G 44

3.2.2 Parameterising the Flattening of Isopycnals

Another problem with not resolving sub-grid eddies, is that they work to flatten isopycnals

[13]. This means that without these eddies, the isopycnals will just grow steeper and steeper

over time and since a flat (horizontal) isopycnal corresponds to the lowest possible potential

energy [14], this would mean that we’re losing the conservation of energy or, put another

way, that our system stops being adiabatic.

To mitigate this issue, Gent and McWilliams created a parameterisation in 1990 [13] that is

now known as the GM parameterisation.

The GM parameterisation adds terms to our simple tracer equation (see their article [13],

equation 24), and becomes simple when the constant from this parameterisation κGM is the

same as κiso [20]. It can be further simplified when the isolines of the tracer are parallel to the

isopycnals (see [19], pages 282-283), and then the term we’re adding is simply,

∂τ

∂t
= −∇ · (κGMS2 ∂

∂z
τ) + ... (47)

where we have introduced an expression for the isopycnal steepness,

S = −∇hρ
∂ρ
∂z

(48)

where ∇h is the horizontal gradient.

Putting all this together our simple tracer equation becomes,

∂τ

∂t
= −∇ · (κGMS2 ∂

∂z
τ) +∇ρ · (κiso∇ρτ) +∇v · (κv∇vτ)−∇ · (uτ) + S (49)

3.2.3 Spatially Dependant Vertical Mixing (the TKE Closure)

As mentioned above, the vertical diffusion likely depends significantly on spatial coordinates

(see [24]), and so setting κv to a constant value would likely induce a relatively large error in

our simulation. Because of this, we would like to have an estimate of the vertical diffusivity

at a given spatial coordinate.

In 1989, Bougeault and Lacarrere made a parameterisation like that for the atmospheric

case [3] and in 1990 Gaspar et al. adapted it for the oceanic case [12]. This parameterisation

uses something called the turbulence kinetic energy and for that reason the method is widely

known as TKE.

3.2 E D D I E S A N D M I X I N G 45

The turbulence kinetic energy is defined as [41],

k =
1
2

(
(u′)2 + (v′)2 + (w′)2

)
(50)

where u, v and w are the three components of the velocity field of the water. The apostrophe

denotes the difference between the instantaneous and average velocities, so that u = u− u,

and the overline denotes an average, so that u =
1
T

∫ T

0
u(t) dt.

This entity gives a measure of how much turbulent kinetic energy is available for the

mixing.

The parameterisation (or closure) proposed by the article is then,

κv =
cklkk

1/2

Prt
(51)

where ck is a constant, lk is a mixing length scale and Prt is the turbulent Prandl number (a

dimensionless number defined as the ratio of momentum diffusivity to thermal diffusivity

[30]). Notice that the turbulence kinetic energy is averaged and raised to 1/2 (i.e., the

overline is not a negative sign of the power).

We note that there is also a proposed closure to make κGM spatially varying (see [8]), but

we won’t go through that here.

4

T H E C O D E

Design is not just what it looks like and

feels like. Design is how it works.

Steve Jobs

This project was written with the aim of providing Team Ocean with a tool for doing

parameter tuning in as broad a range of simulations as possible. As such, making the

code flexible, modular and easy to interact with has been an important goal throughout its

development.

The code is written in pure python and has been made available for download on the

Python Package Index as ’veropt’.

4.1 D E S I G N S T R AT E G Y

The most important goal for this tool is to demand as little prerequisite knowledge of

Bayesian Optimisation of the user as possible, and still deliver great results.

This requires two things: To have a range of default choices that perform as well on the

"average ocean simulation" (a difficult definition to be sure, but a necessary one) as possible

and to make the software as easy to interact with as possible.

Next, we have a goal to make the code as modular and flexible as possible, so that if the

user knows what they want, they can get it. This means that if the default kernel is Matern,

the user can choose to exchange it for an RBF kernel or a Deep kernel. It means that if the

user wants a different acquisition function they can choose one of the ones supplied or define

a brand new one as they please.

Because ocean simulations can take several days to run, getting to 50-100 iterations can

take quite a long time, and so it was also deemed necessary to design a graphical user

46

4.1 D E S I G N S T R AT E G Y 47

interface (GUI) that can be used to inspect the optimisation run and make sure it’s still

making progress and that the model is fitting the objective function correctly.

This GUI and the visualisation tools embedded in it are also a great help when intuitively

inspecting the performance of different methods on test functions and spotting potential

bottlenecks that can then be rectified.

The GUI also works as a view into the process behind the optimisation; Instead of a black

box that does something and then spits out a number of candidate points, the model and

acquisition functions are visible and can be adjusted during an optimisation run.

4.1.1 Overall Structure

The method we’re using is a composite of many submethods. This gives us a tree-like

structure which is reflected in the code and some of the most important parts (as implemented

in the code) are shown in figure 13. At the top we just have Optimiser which generally signifies

the overall method and in the code specifically is the top-most python class which contains

all the others and a number of tools, e.g. some for visualisation or one for finding the Pareto-

optimal points. At the next, lower level we have Model, Objective Function and Acquisition

Function.

Model contains the Gaussian Progress regression we’re using to create a surrogate model

and the method for optimising it. Underneath the model we have a box with Kernel to signify

the chosen covariance function but there is not a box with Kernel Optimiser, because this

is currently just implemented as a method in the code and not a stand-alone python class.

This could be changed in a future version of the package so that the method for training the

model could more easily be changed to e.g. cross-validation.

Objective Function contains the objective function and all its necessary information like

bounds, amount of objectives along with either a method to run the objective function

directly or a method for saving and loading data from the objective function. The first

method is typically useful for test functions while the latter is typically useful for real

objective functions like ocean simulations which often need to be run on a cluster. The

Saver and Loader boxes under Objective Function signify methods for these saving/loading

methods. This package offers a method for loading and saving from veros simulations, but if

the package is used in another context the user can simply make their own.

4.1 D E S I G N S T R AT E G Y 48

Optimiser

Objective FunctionModel Acquisition Function

Saver LoaderKernel Acq. Func. Optimiser

Figure 13: Overall structure of the veropt package.

Finally, Acquisition Function contains the acquisition function and any potential param-

eters. Under it, we have the Acquisition Function Optimiser which contains the method for

optimising the acquisition function.

4.1.2 Default Set-up

For the kernel, the Matern kernel was chosen, because it is simple, yet flexible, and makes it

very easy for the user to adjust the model in the GUI.

For the optimisation of the kernel we use the MLL, because it is a simple, powerful

statistical measure that has a built-in punishment for overly large complexity.

For the acquisition function, the UCBVar was chosen because it is a very intuitive measure

that gives the user control over the exploitation vs. exploration balance and gives the model

a fail-safe in cases where the parameter dependence is very low. The default values for β

is 3.0 and for γ it’s 0.01. In the case of multiple objectives, the EHVI acquisition function

is used instead, simply because it’s the only acquisition function using hyper volume that

was implemented, and hyper volume methods are likely to be preferred over weighted sum

methods (see the discussion in chapter 2).

For the optimisation of the acquisition function, we use the serial optimisation scheme

proposed in chapter 2, because it again is very intuitive and gives the user control over the

distribution of the points. The default values for both α and ω is 1.0. 1

1 Unfortunately, there was an error in the implementation of the serial optimisation scheme. It has been fixed now

but all the experiments in this thesis had already been run when it was discovered and it was too late to rerun

4.2 T H E veropt PA C K A G E 49

As should be clear from the above paragraphs, the prioritisation in these decisions was

largely on intuition and simplicity. This is because of the goal to make the tool easy to

understand, inspect and adjust. More complex sub-methods can easily be implemented due

to the modular structure of the code, and if some of the currently chosen sub-methods turn

out to be too simple, different sub-methods can be chosen in future work on this project.

4.2 T H E veropt PA C K A G E

In this section, the reader will find a brief overview of the veropt package, including its

overall structure and its most important features.

4.2.1 Underlying Python Packages

This Python package builds on the BoTorch, GPyTorch and PyTorch packages (see [2], [16]

and [31]), given here in the order of dependence (BoTorch relies on GPyTorch which relies

on PyTorch). BoTorch is "A Framework for Efficient Monte-Carlo Bayesian Optimization". It

supplies flexible tools needed for Bayesian Optimisation like classes for acquisition functions,

kernels and so on. The kernels are built on the GPyTorch library which is described on

their official GitHub as a "Gaussian process library" which is "designed for creating scalable,

flexible, and modular Gaussian process models with ease". This means that it makes a great

basis for our kernels, giving us full flexibility to define new ones if we need to. GPyTorch is

based on PyTorch which gives it a great basis for GPU integration and autograd, ensuring

that we can run our models fast and always spend our time as efficiently as possible. Of

course, we have lots of time to find candidate points in this project, but we would still

rather spend that time on ensuring that we find the best possible points (often by giving the

optimisation of the acquisition function (which depends upon the model) plenty of time),

instead of wasting it on an inefficient backend. Furthermore, PyTorch uses very similar syntax

to NumPy which is arguably the most widely used package within scientific computing and

thus a framework that a lot of people in the field will be well-acquainted with.

This package is then meant to be a further specialisation, using the tools supplied by the

aforementioned packages, but requiring less of the user, giving the user tools to look into

them. This means that the candidate points beyond the first might have been spread a little too much and in a

slightly biased fashion in the experiments.

4.2 T H E veropt PA C K A G E 50

the process and being tuned for the case of long evaluation time/a limited amount of data

points.

Of alternatives to the underlying package we could mention GPflowOpt [15] which uses

TensorFlow [40] as a backend instead of PyTorch, but it is a much smaller package than

BoTorch and given PyTorch’s similarity to NumPy one could argue that it’s a preferable

backend.

4.2.2 Python Superclasses

In this project, the aim is to have both great default options and great flexibility to change

them. To this end, Python superclasses come in incredibly handy. In Python, one can define a

class via a different class (the superclass) and thus have it inherent all methods from it.

This means that we can construct generic versions of the classes we need for the submeth-

ods shown in figure 13. If we need more specialised versions of these classes, we can then let

them inherit the basic structure of the generic superclass but keep the basic structure visible

for the user in the superclasses.

If the user then wants to make their own version of one of the classes (because the pre-

made solutions do not work for them), they can let their own class inherit from the generic

superclass as well and thus achieve the same structure as the one intended by the project.

Furthermore, they can still use the rest of the project along with their own, specialised

submethod.

This design ideal was largely achieved with the objective function and acquisition function,

less so with the model. This shouldn’t be a great limitation, however, as we will discuss

below.

In the following four subsections, we will discuss the overall structure of the topmost class

and the three at the next level.

4.2.2.1 Optimiser

The main class is called BayesOptimiser and has the other classes as some of its variables.

Besides from this it has a variety of visualisation methods, methods for normalisation, for

generating initial steps, saving the optimisation run and so on.

To create an instance of the class, the user must supply three things; the amount of initial

points (n_init_points), the amount of points found with the method (n_bayes_points) and

the objective function. Everything else has a default value and is not necessary to input.

4.2 T H E veropt PA C K A G E 51

We will now quickly go over the call signature of the class’ __init__ function to get a quick

overview of the class variables and what they do.

1 class BayesOptimiser:

2 def __init__(self, n_init_points, n_bayes_points, obj_func:

ObjFunction, acq_func: AcqFunction = None, model:

BayesOptModel = None, obj_weights=None,

using_priors=False, normalise=True,

points_before_fitting=15, test_mode=False,

n_evals_per_step=1, file_name=None, verbose=True,

normaliser=None, renormalise_each_step=None):

↪→

↪→

↪→

↪→

↪→

↪→

The first three arguments are the mentioned necessary inputs. After this we have the class

for the acquisition function and the one for the model. The rest of the parameters are listed

in table 1. 2

Parameter Description

obj_weights List with weights for the different objectives. Default is even weights.

using_priors Flag telling whether priors are used. If enabled, the initial steps are

found by sampling from the prior. (The prior information must be

supplied in the objective function class).

normalise Flag telling whether or not to normalise.

points_before_fitting Integer telling how many points to evaluate before fitting the model.

This can be lower than the amount of initial points if needed.

test_mode Flag enabling a mode used when testing out a set-up on a test function.

Shows true objective function values while using visualisation tools.

n_evals_per_step Integer telling how many objective function evaluations to do at each

optimisation step.

file_name String giving the name used when saving the optimiser.

verbose Flag telling whether or not to print output.

normaliser Class giving the method to use for normalisation.

renormalise_each_step Flag telling whether to renormalise after every optimisation step.

Table 1: Table with the input variables for the class BayesOptimiser.

2 Note that the code has only really been tested with the normalise flag set to True so it might require some

debugging before it can safely be turned off.

4.2 T H E veropt PA C K A G E 52

After initialising the class, the method run_opt_step() can be used to run an optimisation

step. If the objective function has a built-in method for evaluating itself this will,

Algorithm 2: run_opt_step() (1)
Suggest a candidate point.

Evaluate the objective function at the candidate point.

Add the new data from the objective function and update the model.

If the objective function instead has a saver() and a loader() method it will,

Algorithm 3: run_opt_step() (2)
Load new data with the loader() method and update the model.

Suggest a candidate point.

Save the candidate point with the saver() method.

In the latter case, the user will have to run the objective function themselves, e.g. by

running a veros simulation on a cluster. It doesn’t really matter to the method though,

so it could just as well be running a different type of simulation, possibly in a different

programming language or running a physical experiment in a lab and noting the result. All

the method needs is a way to save its candidate points so the method running the objective

function can read them and a way to load the new data from the objective function.

In the case of veros simulations, a saver and loader has been written already and is available

on the veropt GitHub page.

4.2.2.2 Objective Function

The generic superclass for the objective function is called ObjFunction and it has the signature,

1 class ObjFunction:

2 def __init__(self, function, bounds, n_params, n_objs,

init_vals=None, stds=None, saver=None, loader=None,

var_names=None, obj_names=None):

↪→

↪→

The required input variables are the function (None if the objective function is run outside

of the optimiser), the bounds of the tunable parameters, the number of parameters and the

number of objectives.

Besides from this, there are a number of optional parameters; init_vals and stds if prior

information is used, the saver and loader as described above and the var_names (should

4.2 T H E veropt PA C K A G E 53

have been names param_names) and obj_names to name the parameters and objectives for

the visualisation tools and the GUI.

Inheriting from this superclass, we have the PredefinedTestFunction, PredefinedFitTestFunc-

tion and OceanObjFunction.

The first one of these uses a number of test functions from the BoTorch package and can be

called in the following way: PredefinedTestFunction("Hartmann") , here using the

Hartmann test function.

The second one fits functions to generated data and can be called in the following way:

PredefinedFitTestFunction("sine_3params") , here fitting a sine with 3 param-

eters.

The last one is made for use with the veros package and also contains a saver() and a loader()

method.

4.2.2.3 Acquisition Function

The generic superclass for the acquisition function is called AcqFunction and has the following

signature:

1 class AcqFunction:

2 def __init__(self, function_class, bounds, n_objs,

optimiser: AcqOptimiser = None, params=None,

n_evals_per_step=1, acqfunc_name=None):

↪→

↪→

It requires the class of the desired acquisition function (expected to have the same structure

as a BoTorch acquisition function class mainly in that it needs to take the GP model as an

input variable when initialising), the bounds of the parameters and the amount of objectives.

As optional parameters there is the optimiser for the acquisition function (more about this in

a moment), params which is the parameter names (and probably should have been named

par_names), the amount of objective function evaluations per optimisation step and the

name of the acquisition function.

To optimise the acquisition function, we have the AcqOptimiser which has the signature,

1 class AcqOptimiser:

2 def __init__(self, bounds, function, n_objs,

n_evals_per_step=1):↪→

4.2 T H E veropt PA C K A G E 54

And simply needs the bounds of the parameters, the function that will optimise the acqui-

sition function, the amount of objectives and the amount of evaluations per optimisation

step.

Inheriting from the AcqFunction superclass, we have the PredefinedAcqOptimiser that can be

called like,

1 PredefinedAcqFunction(bounds, n_objs, n_evals_per_step,

acqfunc_name='EHVI')↪→

Where acqfunc_name chooses one of the predefined acquisition functions (EI, UCB, UCB_Var,

EHVI and qEHVI).

Inheriting from the AcqOptimiser, we have the PredefinedAcqOptimiser which uses Dual

Annealing as implemented in scipy [27] and multi-start L-BFGS as implemented in BoTorch.

It can be called as,

1 PredefinedAcqOptimiser(bounds, n_objs, n_evals_per_step,

optimiser_name='dual_annealing')↪→

4.2.2.4 Model

As mentioned above, the class for the model (BayesOptModel) has not been made with a

generic superclass like the ones above. This is mostly a limitation in regards to how the

model is optimised, because the kernel can still be defined freely. More details below.

The BayesOptModel class has the signature,

1 class BayesOptModel:

2 def __init__(self, n_params, n_objs, model_class_list:

List[MaternModelBO] = None, init_train_its=1000,

train_its=200, lr=0.1, opt_params_list=None,

using_priors=False, constraint_dict_list=None):

↪→

↪→

↪→

It takes the amount of parameters and objectives as two necessary arguments. After this

there is a list of model classes, which enables a different choice of kernel for every objective.

It then has three parameters used for optimising the model’s hyperparameters (init_train_its,

train_its and lr), a list of dictionaries with which model parameters should be optimised, a

flag indicating whether or not the model is using priors (as in the warped kernel method,

4.2 T H E veropt PA C K A G E 55

see [32]) and a list of dictionaries with constraints for the hyperparameters. The reason we

have lists of dictionaries is because we can have multiple kernels. If a single dictionary is

given, it is assumed to be applicable for all models. Similarly, if a single model is given, it is

used for all objectives.

The hyperparameters are optimised in the class method train_backwards() which uses the

standard PyTorch training loop, as described in [17]. This is very useful if integrating artificial

neural networks (like when using the Deep Kernel), because the nodes in such a network can

be trained in the exact same way. As mentioned, implementing a different hyperparameter

optimisation method might be a bit troublesome, but could probably be achieved without

too much hassle by inheriting from the BayesOptModel and overwriting the train_backwards()

method with the custom method.

The class assumes that the model(s) chosen is (are) inheriting from a GPyTorch kernel class

like gpytorch.models.ExactGP and the BoTorch class botorch.models.gpytorch.GPyTorchModel. A

number of models are provided in the same file as BayesOptModel (veropt/kernels.py), such

as MaternModelBO, RBFModelBO and DKModelBO and can be given to the BayesOptModel

when making an instance of it.

The constraints follow the structure of the GPyTorch kernels and name different modules

and then different parameters in those modules. If the kernel for some objective is RBF or

Matern, the default constraints are,

1 self.constraint_dict_list[obj_no] = {

2 "covar_module": {

3 "raw_lengthscale": [0.1, 2.0]}}

4.2.3 The GUI

Since the objective functions we’re expecting take a very long time to evaluate the optimisa-

tion process in its entirety will usually also be a quite lengthy affair. If the objective function

takes several days to evaluate, we could be looking at weeks or even months before the

necessary amount of points have been found.

Given this time scale, it seems undesirable to simply start the process and then let it run

until completed, without checking on it. For this reason (and to generally make the tools of

the package more easily available to the user) a GUI was developed.

4.2 T H E veropt PA C K A G E 56

Figure 14: The veropt GUI running an optimisation problem with the Brannin Currin test function.

The GUI is shown in figure 14, optimising the Brannin Currin test function from the

BoTorch test function library.

On the left side of the window, there is a range of buttons to easily access some of the

visualisation tools of the package (more about these below).

In the middle there are a number of editable text-boxes to enter new values for the β and α

parameters of the acquisition functions if those are in use (in the displayed example, β is

not, so its button is greyed out) and below there are text-boxes for changing the lengthscale

hyperparameter constraints, if the selected kernel uses the lengthscale hyperparameter.

This means that the behaviour of both the kernel and the acquisition function can be easily

altered within the GUI and afterwards inspected with the visualisation tools available at

the left side. It would be desirable to automatically detect the parameters being used in

both the acquisition function and the kernel, but this is non-trivial, especially for the kernel,

because the amount of parameters can easily become very large and displaying them all in an

orderly fashion would require some fairly time-consuming GUI development. Therefore the

4.2 T H E veropt PA C K A G E 57

parameters of the default kernel and acquisition function have simply been made available

and other parameters will have to be changed in the python script being used.

At the right, a number of buttons with different functionalities are displayed. The topmost

button suggests new candidate points that will afterwards be visible in the visualisation tool

that plots the model’s predictions. Under, there is a button for saving the suggested points

and adding new data from the objective function. These will be available if the objective

function has a loader() and saver() method. Next, we have an option to refit the model if the

current fit doesn’t seem optimal. If the lengthscale constraints are changed, the model will

refit automatically. Then there is a button to re-normalise (mostly interesting with multiple

objectives) and lastly there is a button to run a full optimisation step. This will have different

behaviour depending on whether there is a method implemented for the objective function

directly or alternatively a saver() and loader() (see above).

At the bottom of the GUI there is a text field that shows anything being printed by any of

the methods working in the background. Under the text field there is a button to save the

optimiser class as a pickle (.pkl) file.

The GUI only provides access to the methods of the different classes implemented in the

class and so anything that can be done in the GUI can be done simply by calling the classes’

methods in a script. This means that the code creating the GUI is completely separated from

the code performing the optimisation and using the GUI is never a requirement, just an

option to make things easier.

Multi-threading has been implemented for some of the more time-consuming methods,

like finding new points and refitting the model, so the GUI doesn’t just freeze while these

processes are running. To make sure that the optimiser class isn’t changed in an unsafe way

while these methods are being used, all buttons are made inactive while they are running.

The progress of the task being done will often be shown in the text box, e.g. updates on

how many candidate points are found, just visible in the top of the text box in figure 14).

Unfortunately, error messages from the thread that does the more time-consuming tasks,

seem to get lost and this bug has not yet been fixed. If that occurs, a solution is to close the

GUI and run the same method in the python script to get the error message and fix whatever

problem arose.

Since the objective functions are expected to be expensive, it is likely that many of them

will run externally on clusters where the GUI can’t be used. Because of this, a method has

been implemented for saving the optimiser class (more below), and the idea is then to start

the optimisation run on the cluster, save the optimiser class after every step (this should

4.2 T H E veropt PA C K A G E 58

probably be done anyways, to make sure progress isn’t lost if the run is interrupted), and

then download the saved optimiser class to the local system and run it in the optimiser with

a script like the following one;

1 from veropt import load_optimiser

2 from veropt.gui import veropt_gui

3

4 optimiser = load_optimiser("Optimiser_Name.pkl")

5 veropt_gui.run(optimiser)

This will then open the GUI with the ongoing optimisation and the method can be

inspected and altered if so desired. If anything is altered, one can simply upload the

optimiser class again (and overwrite the original) to implement the new changes.

4.2.4 Saving the Optimiser Class

As described in the previous subsection, we need a method for saving the optimiser class.

One simple option is to use the native Python method "pickle" where an object is serialised

and can be saved as a file with a .pkl ending.

Unfortunately, there are parts of the kernels we use from the GPyTorch library that cannot

be pickled. The solution is easy, though; It is simply a matter of using the package dill [6]

instead. dill is an extended, more versatile version of pickle that successfully serialises the

GPyTorch kernels.

Using this method gives us the advantage that we capture a perfect snapshot of our

optimiser as it was when it was saved. The disadvantage is the more or less the exact same

thing. When Python objects are de-serialised like this, they require access to the classes that

created them and if these classes have changed then the de-serialisation might fail. This

means that this method of saving is not very robust over different versions of the required

packages and updating a package (especially veropt itself) could mean that old optimisation

runs might not load anymore.

A future solution to this might be to always save the data and kernel separately so the

most important aspects of the optimisation run are always able to de-serialise and load.

4.2 T H E veropt PA C K A G E 59

2 3 4 5 6 7
1.2

1.0

0.8

sin
e_

1p
ar

am
Initial points
Predicted function value

Uncertainty

2 3 4 5 6 7
freq

0.0

2.5

Ac
q.

 F
un

c.

Figure 15: Prediction plot for the test problem sine_1param, available in the veropt package. Above

the objective function data and corresponding model is shown and below the acquisition

function is plotted.

4.2.5 The Visualisation Tools

For our tool to be easy to understand and easy to adjust in every situation, one thing becomes

essential: Visualisation.

Having good visualisation tools allows us to lift the hood and look into the engine,

understanding how things are working – or why they aren’t.

4.2.5.1 Prediction Plots

The most important thing then becomes to give us a window into the most essential parts

of the method: The model and the acquisition function. The model is a summary of all

the information our method is building on, both the prior assumptions and what we’ve

accumulated from previous objective function evaluations, and if it fails our candidate points

cannot possibly be chosen intelligently. Similarly, the acquisition function determines which

points we find interesting and if it malfunctions, our points will be chosen poorly.

Of course there is an immediate challenge here: Our problem might have any amount of

parameters, making the model for each objective arbitrarily high-dimensioned.

4.2 T H E veropt PA C K A G E 60

0.0 0.2 0.4 0.6 0.8 1.0

100

0

Br
an

in
Initial points
Bayes points

Predicted function value
Uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Variable number 2

0.00

0.01

0.02

Ac
q.

 F
un

c.

Figure 16: Prediction plot for the Brannin objective in the BranninCurrin test function from the

collection of test functions available in the package BoTorch.

With one parameter we can make a two dimensional plot (for each objective), with two

parameters we can make one in three dimensions, but if we go any higher than that, we can’t

display all information at once.

What we can do instead is to choose a point and let every parameter except for one be

frozen. The chosen, non-frozen parameter will then sweep over its defined values and we

essentially get a slice of the model at the point we chose.

For one dimension, this can be seen in figure 15 and for two it can be seen in figure 16.

In the first plot, we have only one parameter and one objective in total. Eight initial

evaluations are plotted and we see how the mean of the model goes through them. Further-

more, we see the variance of the model as a green field stretching out on both sides of the

mean and we see grey lines going through this field. Since we are in one dimension, the

variance falls to zero at all known points. The grey lines are draws of the model and can help

the user recognise whether the functions of the posterior distribution seem like reasonable

candidates for the objective function (given the data available to both the user and the model

at that point). If the draws seem to fluctuate overly much compared to the data, it might be

recommendable to tighten the constraints of the lengthscale hyperparameter (if the chosen

kernel uses that hyperparameter).

Under the model, we see the acquisition function (here UCB_Var) plotted for the same

range of values. We see that it has maxima where the model has a large mean and a large

4.2 T H E veropt PA C K A G E 61

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
Branin

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

Cu
rri

n

Dominated Points
Pareto-Optimal Points
Suggested Points

Figure 17: Pareo front plot for the Brannin Currin test functions, showing the distribution of the

objective function values for both objectives and marking the dominating (Pareto-optimal)

points in black. We also see the mean and variance of the candidate points for the next

round of the optimisation.

variance. We also see that it has local minima at all known points, although it may not be

clear at all points with the given resolution.

In the other plot (figure 16), we have two parameters and two objectives, Brannin and

Currin.

We see largely the same features, although we now note that the model doesn’t follow all

points because some of them are not in the plane we are inspecting the model in. To make

this more visible, points further away are more transparent, while points in the same plane

as us are completely opaque (this is only true for the black point at the upper right corner).

We also see that this acquisition function (Expected Hypervolume Improvement) is largely

zero and has only one maximum (in this plane).

The selected point for the inspection is either the best known point (found by weighted

sum if there is more than one objective) or the found candidate point with the highest

acquisition function value. It will be the latter if a range of candidate points have been found.

In that case, these candidate points will be shown in red and with uncertainty bars to show

the model’s uncertainty in their value.

This method was implemented in three dimensions too, but unfortunately the 3-D version

still needs to be updated to support multiple objectives and isn’t currently functional.

4.2 T H E veropt PA C K A G E 62

The method is available in the GUI via the Plot predictions button, over which the desired

objectives and parameters can be chosen. The user can also choose whether or not to enable

the normalisation in the plot.

4.2.5.2 Pareto Front Plots

If we have multiple objectives, plotting the dominating points against each objective can be

very interesting and show us how our model is sampling the Pareto front. In figure 17, such

a plot is shown for a run with the Brannin Currin test function. We see that three points with

a nice balance between each objective have been found, but that the method seems slightly

biased towards the Branin objective. The new candidate points are shown and all favour the

Branin objective.

This visualisation tool is available via the GUI (by pressing the Plot Pareto front button),

but currently it doesn’t support choosing which objectives to include, so it is only active

when there’s two or three objectives (giving a three dimensional plot in the latter case).

4.2.6 Using Priors

The veropt package has been designed to support prior information. The prior information

(currently assumed to be a mean value and standard deviation of a Gaussian prior) is entered

into the objective function class. When the main optimiser class (BayesOptimiser) is initialised,

the flag using_priors can then be set to True and the optimiser will then make an instance

of the PriorClass with truncated normal distributions from scipy (see [34]), enabling us easy

access to both the probability distribution function and the cumulative distribution function.

The latter is needed for the warped kernel method discussed in chapter 2.

When the using_priors flag is activated, the optimiser will automatically sample initial

points from the prior distributions. This should perhaps be made optional in a future version

of the package.

The model class (BayesOptModel) also has a flag called using_priors. If this is activated

it will pass the prior information to the chosen kernel, e.g. a warped kernel. When the

optimiser class initialises the PriorClass, it automatically passes it on to the model class.

It unfortunately wasn’t reached to implement the proposed acquisition function from

chapter 2, aUCB_prior, so it is currently not available and hasn’t been tested out during the

project.

4.2 T H E veropt PA C K A G E 63

4.2.7 Predefined Ocean Objectives

In order to run the ocean simulations discussed in chapters 6.5.2 and 7.4, an objective function

class was written to be used with simulations from the veros package. It contains a saver()

and loader() method embedded in a Saver and Loader class. The saver() method works by

saving a pandas [28] DataFrame with the parameters’ names and values for each candidate

point along with an id for that simulation run. This id is given to the veros simulation when it

starts and defines it filename. Furthermore, the a method from the Loader class can be called

within the simulation and will then return the parameter values that it is supposed to use.

The loader() method used by the optimisation can then identify the different simulation runs

by looking at their filenames and will know which parameters have been used in each run.

See the appendix for code excerpts explaining how to write an objective function class with

the OceanObjFunction as a superclass and how to use the loader_class in the veros simulation

set-up file.

The OceanObjFunction and its submethods are currently written for one objective, but

could easily be extended for multi-objective problems.

4.2.8 Slurm Tools

To make it easier to start an optimisation run on a cluster, a number of Python scripts (found

under veropt/slurm_support) were written. The slurm_controller script manages an ongoing

optimisation by running the run_opt_step() method of the main optimiser class and starting

veros simulations with the parameter values from the new candidate points. The slurm_set_up

script sets up the necessary shell scripts for submitting to the slurm queue, both for the

slurm_controller and the veros simulations. If the veros simulations require a complicated

parallel setup, the batch files can just be edited.

The slurm_set_up script was written for optimisation runs on the MODI cluster and

experiment runs on the AEGIR cluster and might be a bit inflexible when applied other

places.

Future versions of veropt could expand on both these scripts to make optimisation runs

easy on all (or at least most) platforms using slurm.

4.2 T H E veropt PA C K A G E 64

4.2.9 The Experiment Class

To make it easier to compare different set-ups, a class was implemented called BayesExperi-

ment that takes a list of BayesOptimiser’s and runs them all. Afterwards these can then be

plotted and compared in various ways.

To make this code run faster, a multiprocessing method was implemented, both one for

laptops with shared memory that uses python’s native multiprocessing module and one

for clusters that uses MPI. Since the problem is embarrassingly parallel this could give a

speed-up that is pretty much proportional to the amount of cores that can be utilised, if the

serial version doesn’t already utilise parallelism. Having this class means means that if a

new method is implemented and needs to be tested against an existing one, this can be done

easily.

4.2.10 Simple Example

4.2.10.1 Hartmann Test Function, Default Options

To give some direct insight into how the package can be used, we here show a simple

example using the Hartmann test function and the default optimisation choices. Similar

examples can be found on the veropt GitHub page [22].

1 from veropt import BayesOptimiser

2 from veropt.obj_funcs.test_functions import

PredefinedTestFunction↪→

3 from veropt.gui import veropt_gui

4

5 n_init_points = 24

6 n_bayes_points = 64

7 n_evals_per_step = 4

8

9 obj_func = PredefinedTestFunction("Hartmann")

10

11 optimiser = BayesOptimiser(n_init_points, n_bayes_points,

obj_func, n_evals_per_step=n_evals_per_step)↪→

4.2 T H E veropt PA C K A G E 65

12

13 veropt_gui.run(optimiser)

Part III

T E S T F U N C T I O N S E X P E R I M E N T S

5

T E S T F U N C T I O N E X P E R I M E N T S

The most exciting phrase to hear in

science, the one that heralds discoveries,

is not ‘Eureka!’ but ‘Now that’s

funny. . . ’

Isaac Asimov

Before we use our method to optimise some real ocean simulations, we want to try it out

some test functions to make sure it actually works.

Now, of course there is no guarantee that these test functions share enough structural

properties with the ocean simulations for the results to be transferable but this is true also

from one ocean simulation to another, and an inherent challenge with trying to make a

general optimisation tool.

Furthermore, the method we use has many parts and requires many choices. In chapter

4, we chose a default set-up on principles of simplicity, transparency and adjustability, but

it might be interesting to actually do some experiments to test out different sub-methods

against each other.

Only one such experiment was reached in the end, but we finish the chapter with a

discussion of future possible experiments.

5.1 B O V S R A N D O M S E A R C H

First off, we would like to simply confirm that our method performs better than a random

search, since that is one of the simplest methods to employ when no advanced tools are

available to the user.

The BO set-up we use here will be the default from the veropt package, described in chapter

2. We will do 24 initial points and 76 points where the method is used.

67

5.1 B O V S R A N D O M S E A R C H 68

0 20 40 60 80 100
Evaluation No

0.5

1.0

1.5

2.0

2.5

3.0

Ob
je

ct
iv

e
Fu

nc
tio

n

Random Search
BayesOpt

Figure 18: The mean (and its uncertainty) of the cumulative best objective function value for Bayesian

optimisation and random search on the test function Hartmann, available through the

BoTorch package.

With multiple objectives, the default in veropt is now to normalise at each step, but these

experiments were run before that was implemented so that feature is not activated.

5.1.1 Hartmann Test Function

For single objective optimisation we will start off with the test function Hartmann with 6

parameters and one objective. In figure 18 we see the best value that has been found at

a given point of the optimisation, both for random search and our method. We see the

uncertainty of the mean of the distribution of best values for both searches (the standard

deviation of that distribution divided by
√

Nreps) in a shaded area around the mean. That is,

we see how the methods have done in average and how uncertain that average is.

At point 24 we see how the mean for the BO method jumps, since this is where the method

is activated. We see how it improves at every batch of 8 points until it hones in on the global

maximum which has the value 3.3224. This is exactly the kind of evolution we want to see,

steady progress towards the global maximum.

5.1.2 Fitting a Sine

For the second single objective problem we try to fit three parameters of a sine. We do this by

generating some noisy data with known parameters and then create the objective function

by measuring the mean square error (MSE) between the data and the fit made with the

5.1 B O V S R A N D O M S E A R C H 69

0 20 40 60 80 100
Evaluation No

15

10

5
Ob

je
ct

iv
e

Fu
nc

tio
n

Random Search
BayesOpt

4 3 2 1 0
Objective Function Value

0

10

20

30

Fr
eq

ue
nc

y

BayesOpt
Random Search

Figure 19: Mean and its uncertainty of the cumulative best value (left) and histograms of the final

best values (right) both for the test function sine_3params, available in the veropt package.

proposed parameter values. In the veropt package, the class FitTestFunction can do this

automatically and the class PredefinedFitTestFunction has a number of functions

predefined, one of them sine_3params which is the one we use here.

This is a surprisingly difficult problem, partially because the sine obviously gives rise to

some periodic behaviour in the objective function with lots of local optima, and partially

because we are trying to fit the frequency, amplitude and offset and the interdependences of

these parameters are quite tricky.

In figure 19, on the left side, we see the evolution of both methods, BO and random search,

just like we did for the Hartmann function in figure 18. We see a smaller difference between

the methods here, probably mainly because it is easy to find not-terrible parameters with

scores above ∼ −3. On the right side though, we see a histogram with the final best values

of all 80 optimisation runs for both method. We see that BO has more than double objective

function values in the interval between [−0.5, 0.0]. We could probably do better than this

by choosing a more specialised kernel (like a periodic or a spectral mixture kernel), but the

point here is to try out with the default set-up and see how it performs, and we still do see a

significant improvement over random search. We might also have seen a different tendency

if we had chosen an error measure (instead of MSE) with larger reward around the global

maximum, i.e. larger reward for getting close to zero error.

5.1.3 VehicleSafety Test Function

For multi objective optimisation (MOO) we use the test function VehicleSafety (from the

BoTorch [2] library of test functions), which has 3 parameters and 3 objectives.

5.2 T U N I N G A C Q U I S I T I O N F U N C T I O N PA R A M E T E R S 70

In figure 20, we see the best point found at a given point as we have for the last two

experiments. Here, however, we have multiple objectives, so the information in this figure is

not quite as easily chosen. On the left side, we see the best points when that is measured by

doing a weighted sum (here with equal weights) of the objectives. On the right side, we see

the best value found in each objective.

In the left-hand plot we can see that the optimisation jumps to a point where the weighted

sum of the objectives is large, but then doesn’t find anything much better (by that metric)

afterwards. In the right-hand plot we see that this jump is largely brought about by the

improvement in the third objective, which jumps at point 24 and then doesn’t improve much.

We can see that the other two objectives also do better on average than in the random search,

however, and we note that there is more gradual progress in the first objective. Now, gradual

progress isn’t necessarily good if it is compared to immediately finding the best possible

section of the parameter space. But it might also mean getting stuck at a local optima and

not improving from there.

For this experiment we only normalised once at the beginning of the optimisation runs,

and that might affect how the optimisation progresses. Since the third objective quickly

find a large improvement we effectively have that its values has a larger range than the

other objectives. This is because the initial normalisation puts the values between roughly

[−1.5, 1.5] and if an objective then greatly succeeds what the intial points found, it will

effectively have a range from e.g. −1.5 to 6.0 instead, thus potentially dominating the

search. To counteract this there is now a parameter in the veropt package that makes the

optimiser re-normalise at every step. It would be interesting to run an experiment to see if

this re-normalisation makes the optimisation better. 1

5.2 T U N I N G A C Q U I S I T I O N F U N C T I O N PA R A M E T E R S

5.2.0.1 Alpha and Omega

In the sequential optimisation of the acquisition function proposed in chapter 2, there are

two parameters: α and ω. We proposed in that chapter that they should have a value of

about 1.0.

To test out this idea, we ran an experiment with the VehicleSafety test function, varying

α values from 0.1 to 2.0 and ω values from 0.1 to 1.0. These parameters might have some

1 Note that the optimisation runs also had to be re-normalised before entering into these plots, in order to be

comparable.

5.2 T U N I N G A C Q U I S I T I O N F U N C T I O N PA R A M E T E R S 71

0 20 40 60 80 100
Evaluation No

0.6

0.4

0.2

0.0

0.2

0.4
Ob

je
ct

iv
e

Fu
nc

tio
n

Random Search
BayesOpt

0 20 40 60 80 100
Evaluation No

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ob
je

ct
iv

e
Fu

nc
tio

n

Random Search, obj 1
Random Search, obj 2
Random Search, obj 3
BayesOpt, obj 1
BayesOpt, obj 2
BayesOpt, obj 3

Figure 20: Mean and its uncertainty of the cumulative best value when taking the weighted sum of

the three objectives (left) and the mean and its uncertainty of the cumulative best value

of each objective (right), both of the VehicleSafety test function available in the BoTorch

package.

0 20 40 60 80 100
Evaluation No

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Ob
je

ct
iv

e
Fu

nc
tio

n Random Search
alpha: 0.10
alpha: 0.31
alpha: 0.52
alpha: 0.73
alpha: 0.94
alpha: 1.16
alpha: 1.37
alpha: 1.58
alpha: 1.79
alpha: 2.00

0 20 40 60 80 100
Evaluation No

0.8

0.6

0.4

0.2

0.0

0.2

0.4
Ob

je
ct

iv
e

Fu
nc

tio
n

Random Search
omega: 0.10
omega: 0.33
omega: 0.55
omega: 0.78
omega: 1.00

Figure 21: Cumulative best values (of the weighted sum) for the VehicleSafety function with varying

values of α (left) and ω (right).

amount of interdependence but for now we just vary one at a time, keeping the other one at

the default value of 1.0.

In figure 21, we see the result of this experiment. From this simple test, it would seem that

higher values of α and ω generally do better, and it seems that a value of 1.0 for each of them

is not completely unreasonable.

Of course, this is just the results for one test functions and with other test functions we

might see other results. Particularly we would probably expect to see smaller values of α and

ω perform better at smaller parameter spaces, but the default values of the method should

probably be tuned more for more complex problems where it is of greater use.

Either way, it is nice to see that the intuition from chapter 2 fits with these results.

As mentioned in chapter 2, there was an error in the implementation of the serial optimisa-

tion scheme, so the results of this experiment could in principle change slightly if run again,

without this error.

5.3 F U T U R E W O R K 72

5.3 F U T U R E W O R K

There are lots of interesting experiments that could be conducted to investigate the perfor-

mance of different parts of the method.

First off, it would probably be advisable to decide on a range of test functions with the

desired properties. It is probably desirable to make them structurally diverse in the objective

function but to make them relatively complex, since we want the method to work well for

more complex problems.

One interesting thing to examine would then be the performance of different kernels on

this range of test problems. One could try to compare the performance of more simple

kernels like Matern to more complex kernels like SMK.

Another interesting thing could be to examine the performance of different acquisition

functions, e.g. EI vs UCB_Var or EHVI vs a weighted sum acquisition function.

The shape of the objective when trying to fit functions is also of great importance, and

matters greatly when we use the method to tune ocean simulations. It would be interesting

to see, for example, if it is a disadvantage to have very sharp peaks in some objectives (e.g.

by taking the logarithm of the error) when trying to optimise many objectives at once.

It could also be interesting to test out the influence of prior information, either by just

using it for the initial evaluations or by using the warped kernel method discussed in 2.

Finally, as mentioned somewhere above, it would be interesting to see the influence of

re-normalising at every step versus that of only influencing once at the beginning.

Part IV

O C E A N S I M U L A T I O N S

6

O C E A N S I M U L A T I O N S

In this field we are not pushed by

experiments but pulled by imagination.

Richard Feynman

To test out the optimisation tool, three different veros set-ups were tuned. The set-ups

are of increasing complexity so the tool can be tested out in a simple environment first

and then be given harder and harder challenges. The source files for the experiments

described in this part of the thesis are available in the veropt GitHub [22] page, under

examples/ocean_examples. It was originally the intention to do a fourth multi-objective

problem as well, but unfortunately time didn’t allow it.

6.1 O P T I M I S AT I O N S E T- U P

To test the method out in a straight-forward manner that would not have required expert

knowledge of Bayesian Optimisation to select, we simple optimise the ocean simulations

with the default veropt set-up. See chapter 4 for these default choices.

6.2 D I F F E R E N C E M E A S U R E

As discussed in chapter 2 the difference measure between the current output of the simulation

and the target value is quite important to the behaviour of the optimisation. It determines

both how easy it is for the surrogate model to fit the data and how the optimisation is

rewarded for coming closer to the target value. For these ocean simulations we have simply

used the quadratic difference between the target value and the simulation output. This gives

us a parabolic objective function if the simulation output is linear in the chosen parameters

74

6.3 S I M U L AT I O N O N E 75

Figure 22: Physical set-up for the first and second ocean simulation. Figure from [1].

(or in areas where it is), and makes it easier for our model to fit the objective function. It also

means that the optimisation is rewarded largely for matching the output in the first couple

of digits but will not be greatly rewarded for higher precision.

In simulation three we will try to optimise for the logarithm of the quadratic distance as

well, and see if the optimisation is capable of obtaining higher precision in that way.

6.3 S I M U L AT I O N O N E

The first simulation was constructed to be as simple as possible, giving us a way to make

sure the tool performes as expected. The set-up of the model is a very simple, default one

from the veros setup gallery [36], named acc. We will describe the most important details of it

below.

6.3.1 The ACC Set-up

The boundaries of the ocean in this simulation form a rectangle, creating a simple box model

that aims to mimic the Atlantic Ocean. The coordinates run from 60º South to 60º North and

from 30º East to 30º West. The depth is 4000 m everywhere expect for 60ºS to 40ºS where it

is 2000 m. In this bottom part there is also periodic boundary conditions between the east

and west border to mimic the conditions in the Southern Ocean and create the necessary

6.3 S I M U L AT I O N O N E 76

conditions for the Antarctic Circumpolar Current. See figure 22 for a visual representation of

this set-up.

The resolution of the model is vs.nx, vs.ny, vs.nz = 30, 42, 15 , which means

that there are 30 grid points in the x-direction, 42 in the y-direction and 15 in depth. This

means that we have a ∼ 2.5 degree resolution in latitude/longitude and a 250m resolution

in depth.

For more details on the acc set-up, see [1], chapter 3.

6.3.2 Parameterisations

In this simulation we use the simple diffusion along isopycnals with the parameter κiso, the

Gent McWilliams parameterisation with parameter κGM and the TKE parameterisation. The

EKE parameterisation, which is also implemented in veros has been turned off, letting us set

a constant κGM instead.

6.3.3 The Optimisation Problem

Since we want a simple problem, we have just one parameter to change and one objective to

optimise. The one parameter to change will be the joint value of κGM and κiso, as described

in chapter 3. We will name this joint value κj for ease of notation. The output we will use

for the tuning will be the zonal mean of the vertically integrated streamfunction, measured

at the Southern border of the model, giving us a measure of the strength of the Antarctic

Circumpolar Current (ACC). This was chosen simply because we know that there are steep

isopycnals in the Southern Ocean and we know that a higher value of κGM should work to

flatten those isopycnals. Thus we know very certainly that the parameter we’re changing will

affect our objective, and that something in our set-up is wrong if we don’t see a dependence.

The target value for this streamfunction comes not from data but from an identical simula-

tion with a known value of κj = 1000m2/s. This was chosen for this first experiment because

then we can try to retrieve this known value and again confirm that everything works as it

should.

6.4 S I M U L AT I O N T W O 77

0 25 50 75 100 125 150 175 200
Times [years]

100

120

140

160

180

200

220

St
re

am
 fu

nc
tio

n
[S

ve
rd

ru
p,

 1
0^

6
m

^3
/s

]

kappa = 500
kappa = 1500
kappa = 1000

Figure 23: Three test runs of the first simulations. We see the zonal mean of the vertically integrated

streamfunction at the southern border of the model as it changes over time for three

different values of κj.

6.3.4 Test Runs

Before running the optimisation itself, three simulation runs were done with different

values of κj to confirm the dependency and check the spin-up time. In figure 23 we see the

measured stream function at the Southern boundary of the model from years 0 to 200 with

three different values of κj. As we can see in the figure, the value of κj strongly influences

the strength of the ACC.

We can also see that the model appears nearly stable around year 200, so we will make

our measurements in the optimisation run there. We could choose to run it a bit longer to

go into complete equilibrium, but that would impact the runtime, so we compromise and

simply measure at year 200.

6.4 S I M U L AT I O N T W O

In the second simulation, we will still be using the acc set-up described above and the same

parameterisations.

6.4 S I M U L AT I O N T W O 78

6.4.1 The Optimisation Problem

For this second simulation, we will change the value of one more parameter. We’d like to

change the strength of the vertical mixing, but since we’ve activated the TKE parameterisa-

tion, we can’t directly change κv to some scalar value. Instead we use the minimum of κv as

a parameter, effectively changing the vertical mixing in the areas where it is weakest.

Another change from the first simulation, is that we will now actually try to use the

AMOC as our objective. We will still be using a reference value from an identical set-up with

κj = 1000 and min(κv) = 2e− 5.

To measure the AMOC we will look at the vertical minimum of the zonally integrated

stream function, showing us the transport in the meridional direction. The meridional

location of this measurement should not matter in theory, since we expect the current to be

constant in strength along its trajectory and for this trajectory to be circular (as depicted in

figure 12) in a vertical/meridional view. Thus we could in principle measure the largest neg-

ative (southward) meridional transport at any meridional coordinate. In practice, however,

we might find that this measurement is more stable at some locations than others. Three

simulation test runs were done to examine this further.

6.4.2 Test Runs

To find a good location for our measurement and check the spin up time, we perform

three test runs with three different values of κj = 500, 1000, 1500. In figure 24 we see a

vertical/meridional contour plot of the meridional water transport, one for κj = 500 and one

for κj = 1500, both measured at year 100. As expected we see that there is largely northward

transport at the surface and southward transport in the depths. This figure confirms that

the behaviour is as expected, but it is perhaps difficult to guess where the largest numerical

stability will be achieved, so in figure 25, the temporal evolution of the minimum transport

along the z-axis was plotted, for κj = 1000. Here we see that four meridional coordinates

seem to settle into an equilibrium after 200 years of spin-up; -40º, -30º, 0º and 10º. Out of these

we select 0º so that we choose to measure at the equator. For this output, the model seems to

be adequately settled after 100 years, so that is when we will measure in the optimisation.

6.5 S I M U L AT I O N T H R E E 79

40 20 0 20 40
Meridional coordinate (U) [degrees_north]

1750

1500

1250

1000

750

500

250

0
Ve

rti
ca

l c
oo

rd
in

at
e

(W
) [

m
]

1.6
1.2
0.8
0.4

0.0
0.4
0.8
1.2
1.61e7

40 20 0 20 40
Meridional coordinate (U) [degrees_north]

1750

1500

1250

1000

750

500

250

0

Ve
rti

ca
l c

oo
rd

in
at

e
(W

) [
m

]

2.0
1.6
1.2
0.8
0.4

0.0
0.4
0.8
1.2
1.61e7

Figure 24: Contour plots of the zonally integrated meridional transport for κj = 500 (left) and

κj = 1500.

0 25 50 75 100 125 150 175 200
Time [years]

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

St
re

am
fu

nc
tio

n
[m

^3
/s

]

1e7

-40 degrees North
-30 degrees North
-20 degrees North
-10 degrees North
0 degrees North

10 degrees North
20 degrees North
30 degrees North
40 degrees North

Figure 25: The vertical minimum of the zonally integrated meridional transport at different merid-

ional coordinates.

6.5 S I M U L AT I O N T H R E E

In the third simulation, we finally move out of the box and work with a real model. Now we

have a complete ocean system with continents and everything. The amount of grid points is

vs.nx, vs.ny, vs.nz = 90, 40, 15 so we have roughly four degrees resolution in

latitude and longitude. The set-up we use here is the one called Global four-degree model in

the veros set-up gallery [36].

6.5 S I M U L AT I O N T H R E E 80

0 25 50 75 100 125 150 175 200
Times [years]

1.38

1.39

1.40

1.41

1.42

AM
OC

 st
re

ng
th

 [m
^3

/s
]

1e7

Figure 26: The vertical minimum of the zonally integrated meridional transport at 20ºN.

6.5.1 The Optimisation Problem

For this simulation we will separate κGM and κiso, since we are in a more complicated setting

and might need the parameterisations to be tuned individually. We’re also still tuning

min(κv), bringing us to three parameters.

For our objective, we will choose the AMOC again, measured largely in the same way. We

will, however, move the meridional coordinate of the measurement to 20ºN.

For this problem we will not be using an identical, reference set-up but instead tune our

measurement of the AMOC to 15 Sverdrup since this is its approximate strength of it [24].

6.5.2 Test Runs

For this set-up we didn’t reach testing an optimal meridional coordinate for the measurement,

but in figure 26 the measurement at 20N can be seen. Note that there is a large swing up to 21

Sv at the first couple of years that is out of frame of the figure (to make the other tendencies

visible) before the value dips and goes towards equilibrium. We see that the model is stable

around 100 years, but has some kind of divergence after year 175. This might be an instability

of the model or just an effect of choosing an unfortunate place to measure. Either way, the

model seems stable and in equilibrium at year 100, so this is when we will measure. Further

investigation into the rise in value after year 175 might have been desirable, but wasn’t

reached.

7

R E S U L T S & D I S C U S S I O N

7.1 S I M U L AT I O N O N E

For this first simulation, we just run 8 initial points and 24 points with bayesian optimisation.

We will run 8 points every round to make the process go faster.

In figure 27 the data from the optimisation is plotted, along with the mean and variance of

the model. We see that the objective function is approximately parabolic in a large section of

the parameter space, which must mean that the simulation output is linear in the parameter

value, given our chosen difference measure. The maximum of this parabola is around

κj = 1000 as expected.

In the left of figure 27 the model is shown as it was when the optimisation stopped. We

notice that the variance is quite large between points, telling us that the functions in the

posterior distribution of the model oscillate between points. This tendency doesn’t seem

supported in the data and likely means that the lengthscale is too small. The fitted lengthscale

by the MLL optimiser was 0.35 and the default bounds for the lengthscale are [0.1, 2.0], but

these can easily be adjusted in the GUI. Setting the lower bound to 0.7 instead and refitting

(effectively forcing the lengthscale to at least double), we get the model seen in the right of

the figure. This looks more reasonable and would likely overall perform better.

Using the method optimiser.best_coords(in_real_units=True) we are told

that the parameter value that gave us the highest objective function value was κj = 1018.5

which is close to the target. Of course we could easily get higher precision for such an easy

problem but the overall aim with the current set-up is to get the first couple of digits right

(otherwise we should choose another difference measure). This was chosen because ocean

simulations are generally complex entities and the end goal of this tool is to be able to set a

large amount of parameters to an acceptable value.

81

7.2 S I M U L AT I O N T W O 82

600 800 1000 1200 1400

2

0

m
ea

n_
ps

i_s
b

1e13

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm_iso

5

0

Ac
q.

 F
un

c.

600 800 1000 1200 1400

2

0

m
ea

n_
ps

i_s
b

1e13

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm_iso

5

0

Ac
q.

 F
un

c.

Figure 27: Objective function values, model predictions and acquisition function values for the first

simulation.

The method was likely also impaired by having to evaluate eight points at each evaluation.

Since this problem only has one real maximum that takes up most of the parameter space,

there is not much to explore with the points beyond the first, at least not with α = 1.0 (recall

that this is the parameter that spreads points out when using the sequential optimisation of

the acquisition function that was proposed in chapter 2. We might get better results then, by

setting α lower, but, again, we did achieve what we wanted and got the two first digits of

the parameter right.

The objective function value (found using optimiser.best_val(in_real_units=True))

at the best point is −2.9e10 which might sound dramatic given that the best possible value

is 0, but the target value from the reference simulation is 158.85e6 (rounded) and we have

squared the difference. This means that the linear difference is 1.5e5 and the relative error is

1.5e5/158.85e6 ≈ 0.001. So we can easily say that we’ve tuned the simulation to our target

value. (Again, if we needed high precision in this target, we would simply have chosen a

different difference measure.)

In figure 28, we see the objective function value at the different points. In this simple

problem there isn’t really a big difference between the two. In fact there are a few outliers

from the BO, probably because it had to choose 8 points at once and some of them got pushed

far away from the interesting region.

7.2 S I M U L AT I O N T W O

In the second simulation, we ran 8 initial points and 40 with bayesian optimisation, since we

now have 2 parameters. We will again do 8 points per round.

7.2 S I M U L AT I O N T W O 83

0 5 10 15 20 25 30
Point

5

4

3

2

1

0

1

Ob
j f

un
c

va
lu

e

Init points
Bayes points

Figure 28: Objective function values at different points for the first simulation.

600 800 1000 1200 1400

5

0

m
in

_v
sf

_d
ep

th
_e

qu
at

or 1e10

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm_iso

0

2

Ac
q.

 F
un

c.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 4

1.0

0.5

0.0

m
in

_v
sf

_d
ep

th
_e

qu
at

or 1e11

Initial points
Bayes points

Predicted function value
Uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
kappa_min 1e 4

1

2

3

Ac
q.

 F
un

c.

Figure 29: Objective function values, model predictions and acquisition function values for the second

simulation. This is a two-dimensional parameter space and we’re seeing a slice for each

parameter at the point with the best objective function value. The plot with varying κj is

on the left and the one with varying min(κv) is on the right.

In figure 29 we see the data and model from simulation two as it looked when the

optimisation had just finished. We see again that the lengthscale appears to have been fitted

too low with 0.38 for κj and 0.34 for min(κv). Just refitting the model fixed this problem for

min(κh), changing the lengthscale to 1.30, but κj still had an overly small lengthscale. To fix

this, we again increase the lower bound, this time to 1.0. Refitting then gives us a lengthscale

of 1.0 for both parameters. The updated model can be seen in figure 30.

The best parameter values were κj = 855.7 and min(κh) = 7.97e− 5, means we’re a bit

more off than in the first simulation. As for the tuned simulation output, we had a relative

error of 0.0034 from the target value (linear difference/target value).

7.2 S I M U L AT I O N T W O 84

600 800 1000 1200 1400
1.0

0.5

0.0

m
in

_v
sf

_d
ep

th
_e

qu
at

or

1e11

Initial points
Bayes points
Predicted function value

Uncertainty
Suggested point

600 800 1000 1200 1400
kappa_gm_iso

0

2

Ac
q.

 F
un

c.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 4

1.0

0.5

0.0

m
in

_v
sf

_d
ep

th
_e

qu
at

or

1e11

Initial points
Bayes points
Predicted function value

Uncertainty
Suggested point

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
kappa_min 1e 4

0

1

2

Ac
q.

 F
un

c.

Figure 30: Prediction plots as in figure 29 but after refitting with different lengthscale bounds and

with suggested points.

Now, we came very close to the correct simulation output, but let’s take a look at the

slightly worse parameter values. They are probably explained just by the worse model fit

than in the first simulation, but there could be a few other things. First off, our range for

min(κh)is [2e− 6, 2e− 4] and we are working in a linear space. This means that the largest

scale (e− 4) takes up almost all of our space. This means that our initial steps will be largely

biased towards this scale and that our model doesn’t differentiate much between 2.5e− 5

and 7.97e − 5. To overcome this problem, it could be an idea to implement a parameter

transformation method in veropt so that a parameter where the goal is to find the right scale,

would be represented more reasonably, e.g. by taking the logarithm of it before it enters the

optimiser’s methods.

Another thing is, of course, that we’re now in two dimensions. We saw in the first

simulation that our data formed a nice, simple parabola with a single maximum. How does

it look in this simulation? To answer this we look at a 3D plot of the data and model, shown

in figure 31 1.

All the same, we see how the data from the simulation forms a two dimensional parabola

(left) and we see how we at a given projection onto the parameter axes get a one dimensional

parabola. Thus, we see that there is a linear combination of the two parameters that will give

us roughly the same objective function value. This means that we can’t necessarily expect to

retrieve the exact parameter values from our reference experiment, since there might be an

1 Note that these are unfortunately saved figures from an old optimisation run (all of the optimisation runs were

rerun before the finalisation of the project, because of the problems with saving mentioned in chapter 4 and

changes to the default methods of the package) and can’t be easily updated because the methods to create 3D

plots haven’t been updated after the veropt package was upgraded to support multiple objectives.

7.2 S I M U L AT I O N T W O 85

kappa_gm

1e3 0.6
0.8

1.0
1.2

1.4
kappa_min

1e 4

0.00
0.25

0.50
0.75

1.00
1.25

1.50
1.75

2.00

Ob
je

ct
iv

e
1e

11

1.2

1.0

0.8

0.6

0.4

0.2

0.0

kappa_gm1e3
0.6 0.8 1.0 1.2 1.4 kappa_min1e 4

0.000.250.500.751.001.251.501.752.00

Ob
je

ct
iv

e
1e

10

8

6

4

2

0

Figure 31: Three-dimensional figure from the optimisation of the second simulation. We see that the

points from a parabola. Note that this is an old figure from an old run and that’s why the

labels are so small. See footnote for details.

infinite amount of parameters that produce the same simulation outcomes, as long as they’re

along that line.

Still, there might be a slight maximum along the top of the parabola, so to explore the

possibilities for inspecting the method, changing parameters and running new points with

the changes, we try to run one more step (we have run 6 so far) and see if we see an

improvement. Since the parameter space is still pretty small with just two parameters and

relatively narrow bounds, we set α = 0.5 as well. The resulting suggested points can be seen

in figure 30. The mean shows the expected values of them and the variance shows the model

variance at their location.

After this extra step, we got parameter values of κj = 1014.4 and min(κv) = 3.12e− 5, so

it would seem our adjustments have worked! The relative error of the simulation output to

the target value was 0.0020.

Of course, this adjustment could have been done earlier in the optimisation process so

an extra step wouldn’t have been necessary, and if this optimisation had been for a more

complex simulation with a longer runtime, one would have lost of time between steps to

check in on the optimisation and make sure everything was running smoothly.

In figure 28 we see the objective function value at the different points evaluated. Again,

we don’t see a large difference, possibly because the model was wrongly fitted. At the last

eight points we do see that the majority of them are better than the preceding ones while

7.3 S I M U L AT I O N T H R E E 86

0 10 20 30 40 50
Point

3

2

1

0

1

Ob
j f

un
c

va
lu

e

Init points
Bayes points

Figure 32: Progress plot for the second simulation.

600 800 1000 1200 1400
2

1

0

m
in

_v
sf

_d
ep

th
_2

0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm

1.00

1.25

Ac
q.

 F
un

c.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 4

2

1

0

m
in

_v
sf

_d
ep

th
_2

0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
kappa_min 1e 4

1

0

1

Ac
q.

 F
un

c.

Figure 33: Prediction plot for simulation three at step 3, after the model has been refitted with wider

lengthscale bounds.

two of them are outliers. If we look at figure 30 we can see that two of the suggested points

were selected because of their large uncertainty. Those are likely the ones we see scoring low

in the progress plot.

7.3 S I M U L AT I O N T H R E E

In the third simulation we ran 16 initial points and 48 points with Bayesian optimisation.

Again, we ran 8 points per round.

At step 3, we again saw that the lengthscale was too small, giving overly large variance

and oscillations in the posterior functions, but this time it was because the upper bound was

limiting the MLL optimisation from going higher than 2.0. The upper bound was therefore

changed to 5.0 and the model was fitted to lengthscales of [5.00, 5.00, 1.22] for parameters κiso,

7.3 S I M U L AT I O N T H R E E 87

600 800 1000 1200 1400
2

0

m
in

_v
sf

_d
ep

th
_2

0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm

1

2

3

Ac
q.

 F
un

c.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 4

5.0

2.5

0.0

m
in

_v
sf

_d
ep

th
_2

0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
kappa_min 1e 4

2.5
0.0
2.5

Ac
q.

 F
un

c.

Figure 34: Prediction plot for simulation three, after the final step. We note that the lengthscale has

been fitted too small.

600 800 1000 1200 1400
2

0

m
in

_v
sf

_d
ep

th
_2

0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm

1

2

Ac
q.

 F
un

c.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 4

2.5

0.0

2.5
m

in
_v

sf
_d

ep
th

_2
0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
kappa_min 1e 4

0

5

Ac
q.

 F
un

c.

Figure 35: Prediction plot for simulation three after the final step. The model has been refitted with

lengthscale bounds [1.0, 5.0] but behaves erratically.

κGM and min(κv) respectively. The updated optimiser file was then uploaded to the cluster

where the optimisation was running and took effect from step 4 and onwards. In figure 33

we see the model after the refit. Note that we only plotted two out of the three parameters.

This is partially for practical reasons but was chosen because it seems that neither κiso or κgm

has a strong dependence in the simulation outcome we’re investigating, at least not at the

range of well-performing points that were found.

After the eigth and final step, however, the model had some problems again. In figure 34,

we see how the model has a lengthscale that is too low again. This time, however it’s not

as easy to fix. It turns out that if we change the lower bound to e.g. 1.0 and refit, we get a

large oscillation that is not represented in the data, like we saw for the RBF kernel in chapter

2. Looking at the data as a function of min(κv), this is likely because the data points lie in

an almost perfectly horizontal line until min(κv) = 0.75e− 4 where they dive down. As we

know from chapter 2, the Matern kernel expects data that varies along roughly the same

7.3 S I M U L AT I O N T H R E E 88

600 800 1000 1200 1400

2

1

0
m

in
_v

sf
_d

ep
th

_2
0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm

0.825

0.850

0.875

Ac
q.

 F
un

c.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 4

2

1

0

m
in

_v
sf

_d
ep

th
_2

0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
kappa_min 1e 4

2

0

Ac
q.

 F
un

c.

Figure 36: Prediction plot for simulation three after the final step. The model has been refitted with

lengthscale bounds [10.0, 12.0] and fits correctly but with too little variance.

600 800 1000 1200 1400

2

1

0

m
in

_v
sf

_d
ep

th
_2

0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm

0.850

0.855

0.860

Ac
q.

 F
un

c.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 4

2

1

0
m

in
_v

sf
_d

ep
th

_2
0N 1e13

Initial points
Bayes points

Predicted function value
Uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
kappa_min 1e 4

2

0

Ac
q.

 F
un

c.

Figure 37: Prediction plot for simulation three after the final step. The model has been refitted with a

spectral mixture kernel (SMK).

lengthscale so if we have a section first that has a very, very long lengthscale and then one

with a much smaller one, we might not be able to fit it well. We note that this is the first time

we’ve seen a model critically malfunction, prediction high objective function values where

the data doesn’t support it, and it only did it after we forced the lengthscale up.

If we turn the lower bound of the lengthscale all the way up to 10.0 (see figure 36), we

interestingly see these oscillations vanishing, but we also see that the variance in the model

almost vanishes, which means that the small variations in the mean in κGM and κiso dominate

in the acquisition function and would lead to some areas being more favoured for candidate

points than they probably should be.

In this case, it seems then that the Matern kernel isn’t necessarily a good choice, and so

we simply choose a different kernel. In chapter 2 we briefly discussed the SMK kernel [42],

which offers more advanced data fitting capabilities. Changing the model of an ongoing

optimisation can be done with

7.3 S I M U L AT I O N T H R E E 89

600 800 1000 1200 1400
30

20

m
in

_v
sf

_d
ep

th
_2

0N
Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_gm

4

6

Ac
q.

 F
un

c.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 4

30

20

m
in

_v
sf

_d
ep

th
_2

0N

Initial points
Bayes points

Predicted function value
Uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
kappa_min 1e 4

4

6

Ac
q.

 F
un

c.

Figure 38: Prediction plot for simulation three after the final step, here using a logarithmic distance

measure.

optimiser.set_new_model(BayesOptModel(n_params, n_objs, SMKModelBO))

(where optimiser is a loaded BayesOptimiser class).

In figure 37 we see that this indeed performs better, showing a larger variance in κGM

and therefore not being as sensitive to small deviations in the mean. Here we also see why

UCBVar (see chapter 2) can be useful; The model is largely flat with a small uncertainty but

has a small tilt. The slight random noise helps making sure the rightmost value of κGM isn’t

the only one that gets sampled.

In this simulation we didn’t use a reference experiment, so we can’t say which parameter

values we should be getting. The best point had the coordinates κiso = 849.2, κGM = 501.8

and min(κv) = 7.4e− 5. The relative error to the target value was 0.0037.

7.3.1 With A Logarithmic Difference Measure

As mentioned, we’ve used a quadratic difference measure through all of these simulations,

setting a goal for getting the right simulation output in the first couple of digits, but not going

for high precision. As mentioned, this is useful when having lots of different parameters and

objectives and trying to get within an acceptable region for all of them. Or it could be the

right choice when the target value isn’t known to higher precision anyways, or there might

not be complete agreement between the real-world measured quantity and the simulation

output.

To test the method in a setting where we do want high precision in one or more objec-

tives, we now try to take the logarithm of our quadratic difference measure, rewarding the

optimisation linearly with every correct digit it finds.

7.3 S I M U L AT I O N T H R E E 90

600 800 1000 1200 1400
30

25

20

m
in

_v
sf

_d
ep

th
_2

0N

Initial points
Bayes points

Predicted function value
Uncertainty

600 800 1000 1200 1400
kappa_iso

5

6

7
Ac

q.
 F

un
c.

Figure 39: Prediction plot for simulation three after the final step, here using a logarithmic distance

measure.

This means that our objective function will in fact be diverging, taking off towards infinity

as the difference approaches zero. Optimally, our model should see this and simply fit it as a

sharp peak (with a finite height).

At step 4, we saw that the lengthscale bounds were too tight, just like in the previous

optimisation run with this simulation, so the bounds were expanded to [0.1, 5.0].

In figures 38 and 39 we see the model and data after the final step of the optimisation. We

see that with the logarithmic difference measure, the objective function landscape is much

less flat along all three parameter axes, which is why we now included both κGM and κiso.

The strongest dependence is still for min(κv), where we see a very sharp peak. Here we

are probably approaching an exact value of 15.0Sv of the water transport and so we see the

difference between the target and output approaching zero, causing the objective function

value to shoot up, because of the logarithm involved in calculating it.

We note that the model seems to have fitted well here, even if the low lengthscale along

the min(κv) only fits well right at the peak. This isn’t an issue in this case, since we only

have one maximum, but for other problems, this could be problematic. An idea could then

be to fit a sum of two Matern kernels where one has the low lengthscale that fits the peak

and another has a larger lengthscale to fit the other areas.

For this optimisation run, we got parameter values κiso = 1093.7, κGM = 1289.4 and

min(κv) = 7.8169e− 5. We got a relative difference from the target value of 0.0005, so about

an order of magnitude smaller than we did when using the quadratic difference measure.

In figure 40, on the left side, we see the progress plot for the optimisation of simulation

three with the quadratic difference measure. We see that we’ve largely been sampling from

7.4 O V E R A L L E VA L U AT I O N 91

0 10 20 30 40 50 60
Point

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Ob

j f
un

c
va

lu
e

Init points
Bayes points

0 10 20 30 40 50 60
Point

1

0

1

2

3

4

5

6

7

Ob
j f

un
c

va
lu

e

Init points
Bayes points

Figure 40: Progress plots for simulation three. On the left with quadratic difference measure and on

the right with the logarithm of the quadratic difference measure.

the area with high objective function values, having a very different distribution than the

initial, random points. We also see that there are outliers, again probably because there

wasn’t "space" for eight simultaneous points with the α value we chose (α = 1.0 since we

used default choices). In the same figure, on the right, we see the progress plot when the

logarithmic difference measure was used. Here we see steady progress, as the optimisation

digs into the maximum, getting more and more digits correct. This is the kind of progress

plot we expect (or hope, at least) to see when we encounter a problem that can’t easily be

solved by random search.

7.4 O V E R A L L E VA L U AT I O N

The first thing to remark upon here must be that the optimisation problems provided by

the chosen ocean simulations were too simple and too easily solved. All of these problems

could have been solved by using random search, except for the very last one, when trying to

get higher precision on the tuning of the measured simulation output. As mentioned, the

original goal of the project was to include a fourth simulation with biogeochemistry and two

objectives. This would probably have presented a more challenging problem, more in tune

with what the tool was designed for.

As it is, the problems we had were perhaps a little underwhelming as to really establish

the potential of the method, since we couldn’t see a large advantage over random search in

most cases, like we easily could in the test problems.

We have, however, demonstrated how an ongoing optimisation can be inspected with the

visualisation tools and how it can be adjusted easily in the GUI.

7.4 O V E R A L L E VA L U AT I O N 92

We might also have seen that the Matern kernel could be a bit too simple in some situations

and that for some optimisation problems, different kernels might be needed. We have also

seen that the optimisation of the kernel hyperparameters might not be quite as robust

as we would like and future development on this project might want to put some work

into improving this aspect of the method, perhaps by implementing cross-validation or

something similar.

We should note, however, that some of these findings might also change when presented

with more challenging problems. For example, simple problems warrant fewer initial

evaluations, giving our model less data for the initial fit, possibly making the lengthscale

estimation harder, since the MLL is then less peaked. We also saw how doing eight points at

each round was probably too much for these simple problems, but we don’t expect that to

be an issue at larger complexity, where the parameter space is bigger and there are probably

more potential optima to investigate.

Either way, the good thing about Bayesian optimisation is, that no matter what challenges

we might encounter, we have to remember that very nearly every part of the method can be

exchanged for another one. As such, we don’t even have to use Gaussian process regression

for our surrogate model, we just need something that returns a mean and a variance. (Except,

actually, we could define an acquisition function that doesn’t use an uncertainty measure so

we don’t even need that.)

The challenge then, can be to find a model that is a good default option, but because the

user can easily get involved and inspect the optimisation, it isn’t strictly necessary to find

one model that will never fail us. And as we saw here, it was pretty easy to fix whatever

shortcomings we saw when inspecting.

Note that the optimisation files for these runs are available in the veropt project GitHub,

so they can easily be loaded and inspected via the GUI or through a Python console, if the

reader wants to further inspect the models or the data acquired by the optimisation. 2

2 Note that the loading can be a little unstable because of different package versions in different Python environ-

ments and that you will need to have the ocean objective class imported or in the same folder (it can be found in

the same GitHub directory).

Part V

C O N C L U S I O N A N D F U T U R E W O R K

8

C O N C L U S I O N

In this thesis, a flexible, user-friendly optimisation tool utilising Bayesian optimisation was

developed. The tool has been made available in a Python package called veropt and is geared

towards cases where the objective function takes a long time to evaluate and there is no

noise in the objective function evaluations, such as when tuning an ocean simulation.

While going through the theory of Bayesian Optimisation, we proposed two new exten-

sions to the UCB acquisition function and a simple way to optimise the acquisition function

when multiple candidate points are required in each round of the optimisation.

A default set-up of the method was created through the ideals of simplicity and adjustabil-

ity, and this default set-up was tested, first on a couple of test problems and then on three

increasingly complex ocean simulations.

In two of these test problems we saw very clear advantage of using our method over using

random search and in the last one we saw a slight advantage. At this point of the project we

also tested out different parameter values for the proposed optimisation of the acquisition

function and saw that our intuitive guess of setting α = 1.0 and β = 1.0 seemed sensible.

With the optimisation problems provided by the ocean simulations, we demonstrated

how the tool can be used for easily inspecting and adjusting the method to ensure that the

optimisation is always running as it should. We also saw that the optimisation of the model

hyperparameters might need to be made more robust and that the default kernel (the Matern

kernel) might be a little too simple to fit all the objective function landscapes we might

encounter.

All of the ocean simulation were tuned so that there was only a small relative error (on the

order of 0.001) between the measured output and the target value, but they turned out to be

too simple to really show the advantage of running the method, since a similar result could

likely have been achieved through random search. An exception is the last optimisation run

that was performed, where the third simulation was tuned again, but now with a different

94

C O N C L U S I O N 95

measure of the difference between the target value and the simulation output. Making this

difference logarithmic, resulted in a sharper peak in the objective function, which allowed

the method to converge towards higher and higher precision of the tuning.

Overall, we have created a strong foundation for an optimisation tool that offers a strong

default set-up for solving a wide range of problems, large transparency into its inner work-

ings and easy adjustment of many parts, while maintaining large modularity in the code,

creating nearly endless opportunities to improve every part of it in the future.

9

F U T U R E W O R K

Given the many parts of the used method and the large flexibility of each of their forms,

there are nearly endless ways the tool could be developed and improved.

The fact that it is also an ambition to make it user-friendly opens up even more possibilities.

Here we will go through a few of them.

9.1 T H E P Y T H O N PA C K A G E

Ultimately, the veropt package could be developed into a complex software suite with a

multitude of visualisation tools and tools for adjusting the current model or choosing a new

one. For example, there could be a list of implemented models to choose from within the

GUI and the fit of each one could be shown to the user. There could also be the option to add

or multiply any of the kernels and supply individual constraints for the hyperparameters of

all of them. Of course, the aim should still be to make the method easily accessible and easy

to understand, so the more complex options should only be made available to the advanced

user when they want them.

9.2 P R I O R I N F O R M AT I O N F R O M O C E A N P H Y S I C S

In this thesis, we mainly used the default set-up, but it could be interesting to look into how

expert knowledge could be included in the optimisation, either by including the kind of

prior information of the parameters that is always supported by the code, or by trying to

guess the best model by applying knowledge from the field.

96

9.3 S PA C E D E S I G N , S PA C E WA R P I N G K E R N E L A N D M O R E 97

9.3 S PA C E D E S I G N , S PA C E WA R P I N G K E R N E L A N D M O R E

In chapter 2, a number of theoretical methodologies were discussed that either weren’t

implemented or weren’t tested out in either test experiments or ocean experiments. For

example, we could mention the various options for space design that could be used to find

the initial points, which is not currently implemented in veropt or the warped kernel method

that was implemented but not tried out.

In future work on the project it would be interesting to implement and/or try out these

methodologies.

9.4 T W O D I M E N S I O N A L O B J E C T I V E S

Many of the simulation outputs that we might be interested in tuning are defined in more

than one spatial coordinate. Indeed, the water transports of the AMOC that we inspected in

this thesis are many-dimensional too and we worked with them in one dimension for the

simplicity of it and because the water transport is circular and must transport a constant

amount of water along its circuit.

For some outputs, however, the spatial dependence and distribution is critically important

and must be taken into account. This means that we might not be able to simply tune a

minimum or mean at some specific coordinate, but will have to consider the entire matrix or

tensor of the entity that we’re tuning.

To efficiently do so, we would need to implement a model that could predict this dis-

tribution. Of course, we could simply compare the simulation’s distribution to the target

distribution and collapse this into a single number to feed into our current system, but in

doing so the method would only see a single value for the overall mismatch, instead of

seeing the distribution of it and thus getting more information to use to predict what the

optimal parameter values might be.

After setting up this higher dimensional model, we can then take the difference to the

target distribution and collapse it into a scalar objective function value to use with our

already developed method.

The options for this higher dimensional model are endless and could be something like

a artificial neural network built for regression, but we could also stick with a method that

we’ve already worked with in this thesis: Gaussian process regression. To use a GP for this,

we would need to add every point of the grid as the data that we fit, effectively adding the

9.4 T W O D I M E N S I O N A L O B J E C T I V E S 98

spatial coordinates to our list of parameters. Now, this would of course add substantially to

the amount of data going through the GP, but luckily gpytorch offers many possibilities for

running GP’s fast. And if it turns out to be too slow, we can always go for a different option

insted.

The advantage with using a GP is that we would get an uncertainty measure as well.

Implementing this into the method would probably greatly improve its capability for

tuning complex ocean simulations with complex objectives, such as biogeochemistry models.

Part VI

A P P E N D I X

10

A P P E N D I X

10.1 E X A M P L E S

10.1.1 Multiple Objectives, Vehicle Safety Test Function

Example of optimisation run with the VehicleSafety test function with manual setting of the

acquisition function and model to show how that can be done.

1 from veropt import BayesOptimiser

2 from veropt.obj_funcs.test_functions import *

3 from veropt.acq_funcs import *

4 from veropt.kernels import *

5 from veropt.gui import veropt_gui

6

7 n_init_points = 16

8 n_bayes_points = 64

9 n_evals_per_step = 4

10

11 obj_func = PredefinedTestFunction("VehicleSafety")

12 n_objs = obj_func.n_objs

13

14 acq_func = PredefinedAcqFunction(obj_func.bounds, n_objs,

n_evals_per_step, acqfunc_name='EHVI', seq_dist_punish=True,

alpha=1.0, omega=1.0)

↪→

↪→

15

16 model_list = n_objs * [MaternModelBO]

100

10.1 E X A M P L E S 101

17 kernel = BayesOptModel(obj_func.n_params, obj_func.n_objs,

model_class_list=model_list, init_train_its=1000,

using_priors=False)

↪→

↪→

18

19 optimiser = BayesOptimiser(n_init_points, n_bayes_points,

obj_func, acq_func, model=kernel,

n_evals_per_step=n_evals_per_step)

↪→

↪→

20

21 veropt_gui.run(optimiser)

10.1.2 Ocean Objective

The objective function class for the third ocean simulation. We set the bounds of the pa-

rameters, the amount and names of the parameters and objectives. Then we at what year

the simulation output will be measured and set a target value. We then set the method for

calculating the objective function value by telling which simulation output file to look at

(filetype) and which parameters (param_dic containing the measure_year and target value)

to use for this calculation. The function calc_y is written as a static method of the class

and works by loading the data saved by veros simulations as xarray DataFrames and then

doing some user-defined calculation with them. Here we load the output vsf_depth from the

overturning output file and find the vertical minimum at 20ºN at year measure_year.

1 class OceanObjSimThree(OceanObjFunction):

2 def __init__(self, target_min_vsf_depth_20N,

measure_year=100, file_path=None):↪→

3 bounds_lower = [500, 500, 2e-6]

4 bounds_upper = [1500, 1500, 2e-4]

5 bounds = [bounds_lower, bounds_upper]

6 n_params = 3

7 n_objs = 1

8 var_names = ["kappa_iso", "kappa_gm", "kappa_min"]

9 obj_names = ["min_vsf_depth_20N"]

10.1 E X A M P L E S 102

10

11 self.measure_year = measure_year

12 self.target_min_vsf_depth_20N =

target_min_vsf_depth_20N↪→

13 self.file_path = file_path

14

15 param_dic = {

16 "measure_year": measure_year,

17 "target_min_vsf_depth_20N":

target_min_vsf_depth_20N}↪→

18

19 filetype = "overturning"

20

21 calc_y_method = (self.calc_y, filetype, param_dic)

22

23 super().__init__(bounds=bounds, n_params=n_params,

n_objs=n_objs, calc_y_method=calc_y_method,

var_names=var_names, obj_names=obj_names,

file_path=file_path)

↪→

↪→

↪→

24

25 @staticmethod

26 def calc_y(overturning, param_dic):

27 min_vsf_depth_20N =

float(overturning["vsf_depth"][param_dic["measure_year"]

- 1].min("zw")[25])

↪→

↪→

28 y = - (min_vsf_depth_20N -

param_dic["target_min_vsf_depth_20N"])**2↪→

29 return y, min_vsf_depth_20N

Here we show the python script to set up an optimisation run for an ocean simulation

with the default optimisation methods. We see that it resembles the set-up required for a test

function, except we use the ocean objective function class instead and supply a measure_year

and target value.

10.1 E X A M P L E S 103

1 from veropt import BayesOptimiser

2 from veropt.obj_funcs.ocean_sims import OceanObjFunction

3

4 class OceanObjSimThree(OceanObjFunction): ...

5

6 n_init_points = 16

7 n_bayes_points = 48

8

9 n_evals_per_step = 8

10

11 measure_year = 100

12 target_min_vsf_depth_20N = -15 * 10**6

13

14 obj_func = OceanObjSimThree(target_min_vsf_depth_20N,

measure_year=measure_year)↪→

15

16 optimiser = BayesOptimiser(n_init_points, n_bayes_points,

obj_func, n_evals_per_step=n_evals_per_step)↪→

17

18 optimiser.save_optimiser()

10.1.2.1 Modifying the veros .py file

To use the saver() and loader() method of the superclass OceanObjFunction we need to make a

few modifications to the veros set-up file.

We do two additional imports:

1 import click

2 from veropt.obj_funcs.ocean_sims import load_data_to_sim

And then we add some click decorators to the run() method and use the load_data_to_sim()

method which loads the right parameter values for this specific run of the ocean simulation

by using its id.

10.1 E X A M P L E S 104

1 @veros.tools.cli

2 @click.option('--identifier', default=None, is_flag=False,

3 help='Sets the identifier')

4 @click.option('--optimiser', default=None, is_flag=False,

5 help='Path to the optimiser file')

6 def run(*args, **kwargs):

7 global identifier

8 global var_vals

9

10 identifier, var_vals, kwargs = load_data_to_sim(kwargs)

11

12 simulation = GlobalFourDegreeSetup(*args, **kwargs)

13 simulation.setup()

14 simulation.run()

Finally, we change the file name to include the id so the loader() method used inside the

optimisation can identify the output files and know which parameter values they were run

with, and set the relevant parameters to the desired values.

1 def set_parameter(self, vs):

2

3 global identifier

4 global var_vals

5

6 vs.identifier = '4deg_id_' + str(identifier)

7 ...

8 vs.K_iso_0 = var_vals["kappa_iso"]

9 ...

10 vs.kappaH_min = var_vals["kappa_min"]

11 ...

12 vs.K_gm_0 = var_vals["kappa_gm"]

13 ...

Note that the ellipsis ... is meant to signify hidden code and not the python object Ellipsis

10.1 E X A M P L E S 105

In future versions of veropt it might be desirable to make this process more automatic.

10.1.3 Slurm Support

The following example sets up an optimisation run on the cluster MODI by creating a copy

of the slurm_controller.py script and creating shell files for both that script and the veros

simulation. The last line runs an sbatch command and starts the optimsation run. This works

by running the slurm_controller which then submits further sbatch commands, on for each

simulation run in each round.

This method can be used for other clusters of course, but the slurm_set_up has only been

tested on MODI and the batch files might need editing before they are ready for other

systems.

1 slurm_set_up.set_up(

2 optimiser.file_name, ["modi_long", "modi_short"],

"global_four_degree.py", make_new_slurm_controller=True,

using_singularity=True,

image_path="~/modi_images/hpc-ocean-notebook_latest.sif",

conda_env="python3")

↪→

↪→

↪→

↪→

3

4 slurm_set_up.start_opt_run("modi001")

B I B L I O G R A P H Y

[1] Laurits S Andreasen. “Time scales of the Bipolar seesaw: The role of oceanic cross-

hemisphere signals, Southern Ocean eddies and wind changes”. en. In: (2019), p. 46.

URL: https : / / www . nbi . ku . dk / english / theses / masters - theses /

laurits-s.-andreasen/Laurits_Andreasen_MSc_thesis.pdf.

[2] BoTorch · Bayesian Optimization in PyTorch. en. URL: https://botorch.org/ (visited

on 04/16/2021).

[3] P. Bougeault and P. Lacarrere. “Parameterization of Orography-Induced Turbulence in

a Mesobeta–Scale Model”. EN. In: Monthly Weather Review 117.8 (Aug. 1989). Publisher:

American Meteorological Society Section: Monthly Weather Review, pp. 1872–1890.

ISSN: 1520-0493, 0027-0644. DOI: 10.1175/1520-0493(1989)117<1872:POOITI>

2.0.CO;2. URL: https://journals.ametsoc.org/view/journals/mwre/

117/8/1520-0493_1989_117_1872_pooiti_2_0_co_2.xml (visited on

05/10/2021).

[4] Yongtao Cao, Byran J. Smucker, and Timothy J. Robinson. “On using the hypervolume

indicator to compare Pareto fronts: Applications to multi-criteria optimal experimental

design”. en. In: Journal of Statistical Planning and Inference 160 (May 2015), pp. 60–74.

ISSN: 0378-3758. DOI: 10.1016/j.jspi.2014.12.004. URL: https://www.

sciencedirect.com/science/article/pii/S0378375814002006 (visited

on 04/16/2021).

[5] Convection–diffusion equation. en. Page Version ID: 997508655. Dec. 2020. URL: https:

//en.wikipedia.org/w/index.php?title=Convection%E2%80%93diffusion_

equation&oldid=997508655 (visited on 05/07/2021).

[6] dill: serialize all of python. URL: https://pypi.org/project/dill (visited on

05/16/2021).

[7] David Duvenaud. Kernel Cookbook. 2014. URL: https://www.cs.toronto.edu/

~duvenaud/cookbook/ (visited on 04/16/2021).

106

https://www.nbi.ku.dk/english/theses/masters-theses/laurits-s.-andreasen/Laurits_Andreasen_MSc_thesis.pdf
https://www.nbi.ku.dk/english/theses/masters-theses/laurits-s.-andreasen/Laurits_Andreasen_MSc_thesis.pdf
https://botorch.org/
https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
https://journals.ametsoc.org/view/journals/mwre/117/8/1520-0493_1989_117_1872_pooiti_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/117/8/1520-0493_1989_117_1872_pooiti_2_0_co_2.xml
https://doi.org/10.1016/j.jspi.2014.12.004
https://www.sciencedirect.com/science/article/pii/S0378375814002006
https://www.sciencedirect.com/science/article/pii/S0378375814002006
https://en.wikipedia.org/w/index.php?title=Convection%E2%80%93diffusion_equation&oldid=997508655
https://en.wikipedia.org/w/index.php?title=Convection%E2%80%93diffusion_equation&oldid=997508655
https://en.wikipedia.org/w/index.php?title=Convection%E2%80%93diffusion_equation&oldid=997508655
https://pypi.org/project/dill
https://www.cs.toronto.edu/~duvenaud/cookbook/
https://www.cs.toronto.edu/~duvenaud/cookbook/

B I B L I O G R A P H Y 107

[8] Carsten Eden and Richard J. Greatbatch. “Towards a mesoscale eddy closure”. en.

In: Ocean Modelling 20.3 (Jan. 2008), pp. 223–239. ISSN: 1463-5003. DOI: 10.1016/j.

ocemod.2007.09.002. URL: https://www.sciencedirect.com/science/

article/pii/S1463500307001163 (visited on 05/09/2021).

[9] Ekman transport. en. Page Version ID: 1006523953. Feb. 2021. URL: https://en.

wikipedia.org/w/index.php?title=Ekman_transport&oldid=1006523953

(visited on 05/10/2021).

[10] M. T. M. Emmerich, K. C. Giannakoglou, and B. Naujoks. “Single- and multiobjective

evolutionary optimization assisted by Gaussian random field metamodels”. In: IEEE

Transactions on Evolutionary Computation 10.4 (Aug. 2006). Conference Name: IEEE

Transactions on Evolutionary Computation, pp. 421–439. ISSN: 1941-0026. DOI: 10.

1109/TEVC.2005.859463.

[11] Matthias Feurer and Frank Hutter. “Hyperparameter Optimization”. en. In: Automated

Machine Learning: Methods, Systems, Challenges. Ed. by Frank Hutter, Lars Kotthoff,

and Joaquin Vanschoren. The Springer Series on Challenges in Machine Learning.

Cham: Springer International Publishing, 2019, pp. 3–33. ISBN: 978-3-030-05318-5. DOI:

10.1007/978-3-030-05318-5_1. URL: https://doi.org/10.1007/978-3-

030-05318-5_1 (visited on 04/16/2021).

[12] Philippe Gaspar, Yves Grégoris, and Jean-Michel Lefevre. “A simple eddy kinetic

energy model for simulations of the oceanic vertical mixing: Tests at station Papa and

long-term upper ocean study site”. en. In: Journal of Geophysical Research: Oceans 95.C9

(1990). _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JC095iC09p16179,

pp. 16179–16193. ISSN: 2156-2202. DOI: https://doi.org/10.1029/JC095iC09p16179.

URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

JC095iC09p16179 (visited on 05/10/2021).

[13] Peter Gent and JC McWilliams. “Isopycnal Mixing in Ocean Circulation Models”. In:

Journal of Physical Oceanography 20 (Jan. 1990), pp. 150–155. DOI: 10.1175/1520-

0485(1990)020<0150:IMIOCM>2.0.CO;2.

[14] Peter Gent et al. “Parameterizing Eddy-Induced Tracer Transports in Ocean Circulation

Models”. In: Journal of Physical Oceanography 25 (Apr. 1995), pp. 463–474. DOI: 10.

1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

[15] GPflowOpt 0.1.1 documentation. URL: https://gpflowopt.readthedocs.io/en/

latest/intro.html (visited on 05/16/2021).

https://doi.org/10.1016/j.ocemod.2007.09.002
https://doi.org/10.1016/j.ocemod.2007.09.002
https://www.sciencedirect.com/science/article/pii/S1463500307001163
https://www.sciencedirect.com/science/article/pii/S1463500307001163
https://en.wikipedia.org/w/index.php?title=Ekman_transport&oldid=1006523953
https://en.wikipedia.org/w/index.php?title=Ekman_transport&oldid=1006523953
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/https://doi.org/10.1029/JC095iC09p16179
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC095iC09p16179
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC095iC09p16179
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2
https://gpflowopt.readthedocs.io/en/latest/intro.html
https://gpflowopt.readthedocs.io/en/latest/intro.html

B I B L I O G R A P H Y 108

[16] GPyTorch Regression Tutorial — GPyTorch 1.4.1 documentation. URL: https://docs.

gpytorch.ai/en/stable/examples/01_Exact_GPs/Simple_GP_Regression.

html.

[17] GPyTorch Regression Tutorial — GPyTorch 1.4.1 documentation. URL: https://docs.

gpytorch.ai/en/stable/examples/01_Exact_GPs/Simple_GP_Regression.

html (visited on 05/16/2021).

[18] Robert B. Gramacy. Surrogates: Gaussian Process Modeling, Design and Optimization for

the Applied Sciences. Chapman Hall/CRC, 2020. URL: http://bobby.gramacy.

com/surrogates/.

[19] Stephen Griffies. “Fundamentals of Ocean Climate Models”. In: (Jan. 2004).

[20] Stephen M. Griffies. “The Gent–McWilliams Skew Flux”. EN. In: Journal of Physi-

cal Oceanography 28.5 (May 1998). Publisher: American Meteorological Society Sec-

tion: Journal of Physical Oceanography, pp. 831–841. ISSN: 0022-3670, 1520-0485. DOI:

10.1175/1520- 0485(1998)028<0831:TGMSF> 2.0.CO;2. URL: https:

//journals.ametsoc.org/view/journals/phoc/28/5/1520- 0485_

1998_028_0831_tgmsf_2.0.co_2.xml (visited on 05/10/2021).

[21] Andreia P. Guerreiro, Carlos M. Fonseca, and Luís Paquete. “The Hypervolume Indica-

tor: Problems and Algorithms”. In: arXiv:2005.00515 [cs] (May 2020). arXiv: 2005.00515.

URL: http://arxiv.org/abs/2005.00515 (visited on 04/16/2021).

[22] idax4325. idax4325/veropt. original-date: 2021-03-04T13:54:29Z. Mar. 2021. URL: https:

//github.com/idax4325/veropt (visited on 05/11/2021).

[23] Donald R. Jones, Matthias Schonlau, and William J. Welch. “Efficient Global Opti-

mization of Expensive Black-Box Functions”. en. In: Journal of Global Optimization 13.4

(Dec. 1998), pp. 455–492. ISSN: 1573-2916. DOI: 10.1023/A:1008306431147. URL:

https://doi.org/10.1023/A:1008306431147 (visited on 04/16/2021).

[24] T. Kuhlbrodt et al. “On the driving processes of the Atlantic meridional overturning

circulation”. en. In: Reviews of Geophysics 45.2 (Apr. 2007), RG2001. ISSN: 8755-1209.

DOI: 10.1029/2004RG000166. URL: http://doi.wiley.com/10.1029/

2004RG000166 (visited on 05/05/2021).

[25] Matérn covariance function. en. Page Version ID: 995934658. Dec. 2020. URL: https:

//en.wikipedia.org/w/index.php?title=Mat%C3%A9rn_covariance_

function&oldid=995934658 (visited on 04/16/2021).

https://docs.gpytorch.ai/en/stable/examples/01_Exact_GPs/Simple_GP_Regression.html
https://docs.gpytorch.ai/en/stable/examples/01_Exact_GPs/Simple_GP_Regression.html
https://docs.gpytorch.ai/en/stable/examples/01_Exact_GPs/Simple_GP_Regression.html
https://docs.gpytorch.ai/en/stable/examples/01_Exact_GPs/Simple_GP_Regression.html
https://docs.gpytorch.ai/en/stable/examples/01_Exact_GPs/Simple_GP_Regression.html
https://docs.gpytorch.ai/en/stable/examples/01_Exact_GPs/Simple_GP_Regression.html
http://bobby.gramacy.com/surrogates/
http://bobby.gramacy.com/surrogates/
https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2
https://journals.ametsoc.org/view/journals/phoc/28/5/1520-0485_1998_028_0831_tgmsf_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/phoc/28/5/1520-0485_1998_028_0831_tgmsf_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/phoc/28/5/1520-0485_1998_028_0831_tgmsf_2.0.co_2.xml
http://arxiv.org/abs/2005.00515
https://github.com/idax4325/veropt
https://github.com/idax4325/veropt
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1029/2004RG000166
http://doi.wiley.com/10.1029/2004RG000166
http://doi.wiley.com/10.1029/2004RG000166
https://en.wikipedia.org/w/index.php?title=Mat%C3%A9rn_covariance_function&oldid=995934658
https://en.wikipedia.org/w/index.php?title=Mat%C3%A9rn_covariance_function&oldid=995934658
https://en.wikipedia.org/w/index.php?title=Mat%C3%A9rn_covariance_function&oldid=995934658

B I B L I O G R A P H Y 109

[26] Adele K. Morrison, Thomas L. Frölicher, and Jorge L. Sarmiento. “Upwelling in the

Southern Ocean”. In: Physics Today 68.1 (Dec. 2014). Publisher: American Institute

of Physics, pp. 27–32. ISSN: 0031-9228. DOI: 10.1063/PT.3.2654. URL: https:

//physicstoday.scitation.org/doi/full/10.1063/PT.3.2654 (visited

on 05/10/2021).

[27] Optimization and root finding (scipy.optimize) — SciPy v1.6.3 Reference Guide. URL: https:

/ / docs . scipy . org / doc / scipy / reference / optimize . html # least -

squares-and-curve-fitting (visited on 05/16/2021).

[28] pandas - Python Data Analysis Library. URL: https://pandas.pydata.org/ (visited

on 05/16/2021).

[29] Positive-definite kernel. en. Page Version ID: 994195860. Dec. 2020. URL: https://

en.wikipedia.org/w/index.php?title=Positive-definite_kernel&

oldid=994195860 (visited on 04/16/2021).

[30] Prandtl number. en. Page Version ID: 1021022434. May 2021. URL: https://en.

wikipedia.org/w/index.php?title=Prandtl_number&oldid=1021022434

(visited on 05/10/2021).

[31] PyTorch. en. URL: https://www.pytorch.org (visited on 05/16/2021).

[32] Anil Ramachandran et al. “Incorporating expert prior in Bayesian optimisation via

space warping”. en. In: Knowledge-Based Systems 195 (May 2020), p. 105663. ISSN:

0950-7051. DOI: 10 . 1016 / j . knosys . 2020 . 105663. URL: https : / / www .

sciencedirect.com/science/article/pii/S0950705120301088 (visited

on 04/16/2021).

[33] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for ma-

chine learning. Adaptive computation and machine learning. OCLC: ocm61285753.

Cambridge, Mass: MIT Press, 2006. ISBN: 978-0-262-18253-9.

[34] scipy.stats.truncnorm — SciPy v1.6.3 Reference Guide. URL: https://docs.scipy.

org/doc/scipy/reference/generated/scipy.stats.truncnorm.html

(visited on 05/16/2021).

[35] Seawater. en. Page Version ID: 1021376652. May 2021. URL: https://en.wikipedia.

org/w/index.php?title=Seawater&oldid=1021376652 (visited on 05/05/2021).

[36] Setup gallery — Veros 0+untagged.97.gba2abd2.dirty documentation. URL: https://

veros.readthedocs.io/en/latest/reference/setup-gallery.html.

https://doi.org/10.1063/PT.3.2654
https://physicstoday.scitation.org/doi/full/10.1063/PT.3.2654
https://physicstoday.scitation.org/doi/full/10.1063/PT.3.2654
https://docs.scipy.org/doc/scipy/reference/optimize.html#least-squares-and-curve-fitting
https://docs.scipy.org/doc/scipy/reference/optimize.html#least-squares-and-curve-fitting
https://docs.scipy.org/doc/scipy/reference/optimize.html#least-squares-and-curve-fitting
https://pandas.pydata.org/
https://en.wikipedia.org/w/index.php?title=Positive-definite_kernel&oldid=994195860
https://en.wikipedia.org/w/index.php?title=Positive-definite_kernel&oldid=994195860
https://en.wikipedia.org/w/index.php?title=Positive-definite_kernel&oldid=994195860
https://en.wikipedia.org/w/index.php?title=Prandtl_number&oldid=1021022434
https://en.wikipedia.org/w/index.php?title=Prandtl_number&oldid=1021022434
https://www.pytorch.org
https://doi.org/10.1016/j.knosys.2020.105663
https://www.sciencedirect.com/science/article/pii/S0950705120301088
https://www.sciencedirect.com/science/article/pii/S0950705120301088
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html
https://en.wikipedia.org/w/index.php?title=Seawater&oldid=1021376652
https://en.wikipedia.org/w/index.php?title=Seawater&oldid=1021376652
https://veros.readthedocs.io/en/latest/reference/setup-gallery.html
https://veros.readthedocs.io/en/latest/reference/setup-gallery.html

B I B L I O G R A P H Y 110

[37] sklearn.gaussian_process.kernels.Matern — scikit-learn 0.24.1 documentation. URL: https:

//scikit-learn.org/stable/modules/generated/sklearn.gaussian_

process.kernels.Matern.html (visited on 04/16/2021).

[38] sklearn.gaussian_process.kernels.RBF — scikit-learn 0.24.1 documentation. URL: https:

//scikit-learn.org/stable/modules/generated/sklearn.gaussian_

process.kernels.RBF.html (visited on 04/16/2021).

[39] Henry Stommel. “Thermohaline Convection with Two Stable Regimes of Flow”. en. In:

Tellus 13.2 (1961). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2153-

3490.1961.tb00079.x, pp. 224–230. ISSN: 2153-3490. DOI: https://doi.org/10.

1111/j.2153- 3490.1961.tb00079.x. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1111/j.2153-3490.1961.tb00079.x (visited on

05/05/2021).

[40] TensorFlow. en. URL: https://www.tensorflow.org/ (visited on 05/16/2021).

[41] Turbulence kinetic energy. en. Page Version ID: 1015945877. Apr. 2021. URL: https://

en.wikipedia.org/w/index.php?title=Turbulence_kinetic_energy&

oldid=1015945877 (visited on 05/10/2021).

[42] Andrew Gordon Wilson and Ryan Prescott Adams. “Gaussian Process Kernels for

Pattern Discovery and Extrapolation”. In: arXiv:1302.4245 [cs, stat] (Dec. 2013). arXiv:

1302.4245. URL: http://arxiv.org/abs/1302.4245 (visited on 04/16/2021).

[43] Andrew Gordon Wilson et al. “Deep Kernel Learning”. In: arXiv:1511.02222 [cs, stat]

(Nov. 2015). arXiv: 1511.02222. URL: http://arxiv.org/abs/1511.02222

(visited on 04/16/2021).

[44] James T. Wilson et al. “The reparameterization trick for acquisition functions”. In:

arXiv:1712.00424 [cs, math, stat] (Dec. 2017). arXiv: 1712.00424. URL: http://arxiv.

org/abs/1712.00424 (visited on 04/16/2021).

[45] Y Xiang et al. “Generalized simulated annealing algorithm and its application to

the Thomson model”. en. In: Physics Letters A 233.3 (Aug. 1997), pp. 216–220. ISSN:

0375-9601. DOI: 10.1016/S0375- 9601(97)00474- X. URL: https://www.

sciencedirect.com/science/article/pii/S037596019700474X (visited

on 04/16/2021).

[46] Xin-She Yang. “Chapter 14 - Multi-Objective Optimization”. en. In: Nature-Inspired Opti-

mization Algorithms. Ed. by Xin-She Yang. Oxford: Elsevier, Jan. 2014, pp. 197–211. ISBN:

978-0-12-416743-8. DOI: 10.1016/B978-0-12-416743-8.00014-2. URL: https:

https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
https://doi.org/https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://doi.org/https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1961.tb00079.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1961.tb00079.x
https://www.tensorflow.org/
https://en.wikipedia.org/w/index.php?title=Turbulence_kinetic_energy&oldid=1015945877
https://en.wikipedia.org/w/index.php?title=Turbulence_kinetic_energy&oldid=1015945877
https://en.wikipedia.org/w/index.php?title=Turbulence_kinetic_energy&oldid=1015945877
http://arxiv.org/abs/1302.4245
http://arxiv.org/abs/1511.02222
http://arxiv.org/abs/1712.00424
http://arxiv.org/abs/1712.00424
https://doi.org/10.1016/S0375-9601(97)00474-X
https://www.sciencedirect.com/science/article/pii/S037596019700474X
https://www.sciencedirect.com/science/article/pii/S037596019700474X
https://doi.org/10.1016/B978-0-12-416743-8.00014-2
https://www.sciencedirect.com/science/article/pii/B9780124167438000142
https://www.sciencedirect.com/science/article/pii/B9780124167438000142
https://www.sciencedirect.com/science/article/pii/B9780124167438000142

B I B L I O G R A P H Y 111

//www.sciencedirect.com/science/article/pii/B9780124167438000142

(visited on 04/16/2021).

[47] Boya Zhang, D. Austin Cole, and Robert B. Gramacy. “Distance-distributed design for

Gaussian process surrogates”. In: arXiv:1812.02794 [stat] (June 2019). arXiv: 1812.02794.

URL: http://arxiv.org/abs/1812.02794 (visited on 04/16/2021).

https://www.sciencedirect.com/science/article/pii/B9780124167438000142
https://www.sciencedirect.com/science/article/pii/B9780124167438000142
https://www.sciencedirect.com/science/article/pii/B9780124167438000142
http://arxiv.org/abs/1812.02794

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Introduction and Outline

	Background
	Background
	Optimisation
	General Strategy
	Assumptions and Limitations
	Gaussian Process Regression
	Bayesian Linear Regression
	Using Basis Functions
	Gaussian Processes
	Kernels
	Optimisation of kernel parameters

	Acquisition Function
	Noisy Upper Confidence Bound
	Optimisation of the Acquisition Function

	Initial Evaluations
	Prior Information
	Difference Measure
	Multiple Objectives
	Normalisation in MOO

	Background

	Ocean Theory
	The Atlantic Meridional Overturning Circulation
	Wind-driven Upwelling

	Eddies and Mixing
	Parameterising the Isopycnal Mixing
	Parameterising the Flattening of Isopycnals
	Spatially Dependant Vertical Mixing (the TKE Closure)

	Background

	The Code
	Design Strategy
	Overall Structure
	Default Set-up

	The veropt package
	Underlying Python Packages
	Python Superclasses
	The GUI
	Saving the Optimiser Class
	The Visualisation Tools
	Using Priors
	Predefined Ocean Objectives
	Slurm Tools
	The Experiment Class
	Simple Example

	Test Functions Experiments
	Experiments
	Test Function Experiments
	BO vs Random Search
	Hartmann Test Function
	Fitting a Sine
	VehicleSafety Test Function

	Tuning Acquisition Function Parameters
	Future Work

	Ocean Simulations
	Ocean Simulations
	Ocean Simulations
	Optimisation Set-up
	Difference Measure
	Simulation One
	The ACC Set-up
	Parameterisations
	The Optimisation Problem
	Test Runs

	Simulation Two
	The Optimisation Problem
	Test Runs

	Simulation Three
	The Optimisation Problem
	Test Runs

	Ocean Simulation Results

	Results & Discussion
	Simulation One
	Simulation Two
	Simulation Three
	With A Logarithmic Difference Measure

	Overall Evaluation

	Conclusion and Future Work
	Conclusion
	Conclusion
	Future Work

	Future Work
	The Python Package
	Prior Information from Ocean Physics
	Space Design, Space Warping Kernel and More
	Two Dimensional Objectives

	Appendix
	Appendix
	Appendix
	Examples
	Multiple Objectives, Vehicle Safety Test Function
	Ocean Objective
	Slurm Support

	Bibliography

