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Abstract

The glucose insulin system is well studied. Many mathematical mod-

els have been proposed and are capable of describing most of the

workings of it. This thesis proposes a new model for the glucose in-

sulin system and the euglycemic hyperinsulinemic clamp experiment

using experimental data.

Experimental data from euglycemic hyperinsulinemic clamp exper-

iments of rats for high and low insulin infusion rates suggest that

the insulin removal rate follows a non linear dynamic. The model

proposed in this thesis is based on this data. Motivated from the

findings in the data new terms for the insulin and glucose removal

have been derived. Initially a two-compartment model was used. To

validate the model, it was attempted to fit it to the experimental

data with a hierarchical model using Bayesian inference. Being un-

able to do so, the models complexity was reduced. With the reduced

model it proved possible to model the insulin measurement of varying

insulin infusion rates of the data and the tracer glucose of the eug-

lycemic hyperinsulinemic clamp experiments and therefore capture

the dynamics of the glucose removal. It was not possible to model

the glucose observations of the experiment as a result of the model

not being able to account properly for the endogenous glucose pro-

duction. Analysis of the individual parameters however showed that

the modeling of said observation was not due to the suggested model

but due to the parameters adjusting to be able to describe the obser-

vations.
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1 Introduction

With the number diabetic people raising constantly, the importance of understanding the

glucose insulin system increases. One of the most practiced experiments to investigate

and quantify insulin resistance is the euglycemic hyperinsulinemic clamp experiment.

The process of conducting the experiment is very a labour intensive one. The simple

interpretation of the results, however, makes the effort worth [1]. For a better under-

standing of the insulin glucose system mathematical models are needed.

In this thesis, it is attempted to model the euglycemic hyperinsulinemic clamp experi-

ment using Bayesian inference. A model of the insulin glucose system is proposed based

on data of euglycemic hyperinsulinemic clamp experiment performed on rats. The data

was provided by Novo Nordisk. The model tries to describe the insulin glucose system

as good as possible with the provided data. Another model, a reduction of the first

model, is proposed. The main purpose of this model is not to describe the insulin glu-

cose system as good as possible but to have a more simple model that is able to describe

the euglycemic hyperinsulinemic clamp experiment. The models are validated on data

of experiments in a hierarchical structure using Bayesian inference. The goal was to find

a probability distribution for each parameter.

In chapter 2, a biological background of the insulin glucose system is given. Chapter

3 introduces the methods used in this thesis. An overview over mathematical models,

Bayesian inference, Markov Chain Monte Carlo and No-U-Turn Sample, and pharma-

cokinetics is given. Chapter 4 introduces the data, where first the experimental proce-

dure of a euglycemic hyperinsulinemic clamp experiment and an IV experiment is given

which is then followed by an overview of the data. Chapter 5 introduces the proposed

models and discusses their validity by parameter estimation via Bayesian inference.

Lastly in Chapter 6 a conclusion of the work in this thesis is given.
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2 Biological Background

2.1 Insulin Glucose System

2.1.1 Insulin

Insulin is a peptide hormone that controls the blood glucose levels by its action on liver,

kidney, adipose tissue and skeletal muscle. Its secretion from the β-cells of pancreatic

islets of Langerhans is mainly dependent on the blood glucose levels even though other

factors such as macronutrients, hormones, humoral factors and neural input can also

stimulate insulin secretion. In addition to that a connection between insulin blood

concentration and insulin secretion from the β-cells have been suggested. [3].

During the basal state insulin is continuously secreted at levels that allow for insulin-

dependent cellular glucose uptake. Its secretion is stimulated by an increase of blood

glucose. The secretion of insulin to stimuli happens biphasic. An initial rapid release of

insulin, where already synthesized and stored insulin is released, is followed by a steadier

Figure 1: Effect of insulin on glucose production and disposal. The regulating effect of

insulin towards glucose production and disposal is shown. Full arrows indicate a direct

influence, dashed errors show an indirect influence. + and − denote the promoting

and inhibiting effects of insulin on that system. Insulin directly inhibits the glucose

production in kidney and liver. Further, insulin promotes the glucose disposal in muscle

and in adipose tissue. Glucose disposal in adipose tissue decreases FFA levels which has

inhibiting effect of glucose production in liver and kidney as well as an inhibiting effect

of glucose disposal in muscle. Figure from from [2].
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slower phase, where the secretion is a combination of both stored and newly synthesized

insulin. The secreted insulin from the islet cells is released into the portal vein. From the

portal vein insulin is carried to the liver where up to 80 % of it is cleared [4]. It follows

that the insulin concentration in the peripheral circulation is therefore only a third of

the insulin concentration of the portal vein. Besides hepatic insulin clearance there is

also extrahepatic (peripheral) clearance of insulin by the kidney, muscle, and adipose

tissue.[5] The effect of insulin itself on the secretion of insulin is variable. Depending

on whether a body is insulin sensitive or not insulin can increase its own secretion or

suppress it. [6]

Insulin main purpose lies in the regulation of the glucose homeostasis where it is the

only hormone that lowers blood glucose. This is done through different mechanisms

on liver, kidney, adipose tissue and skeletal muscle, see Fig.1. In liver and kidney

the endogenous glucose production is suppressed by regulation of the rate-limiting key

enzymes for gluconeogenesis (glucose-6-phosphatase and fructose-1,6-bisphosphatase)

and glycogenolysis (glycogensynthase and phosphorylase). Simultaneously it increases

the transcription of glucokinase which turns glucose into glucose-6-phosphate which

promotes glycogenesis which is the basis for glycolysis and glycogen synthesis [7]. In

muscles, adipose tissue and other insulin-sensitive tissues insulin binds to specific insulin

receptors which trigger a signaling cascade. Upon that the glucose transporter protein

GLUT4 migrates from the intracellular pool to the membrane where it increases the

glucose uptake of insulin-stimulated cells several fold. In adipose tissue the increase in

glucose transport leads over several steps to a decrease in free fatty acid (FFA) levels

in the circulation which in turn further decreases the glucose production in liver and

kidney as well as promotes uptake of glucose into tissue.[7][2]

2.1.2 Glucose

Glucose is an aldohexose. It is the predominant source of energy for the body. Different

tissues in the body utilize different amounts of glucose. In basal state the human brain

takes ∼ 50%, the splanchnic bed ∼ 25% and the insulin dependent muscle tissue ∼ 25%

of glucose [9]. In rodents the distribution of glucose utilization is different. The brain

only makes up < 10% of the basal glucose turnover. Under euglycemic hyperinsulinemic

clamp conditions the utilization changes again. In that case 70−80% of the glucose will

be used up by muscle mass.

The means of how the body derives glucose depends on the ’state’ of the body. The

two states are the fasting state and the fed state. Fig.2 shows the glucose homeostasis

in these two case. During the fasting state blood glucose is derived from endogenous
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Figure 2: Glucose homeostasis. The role of insulin and gluacon are described for 1A

fasting state and for 1B for the fed state in non-diabetic subjects. Full arrows indicate

an active state while dashed arrows indicate an inactive state. 1A: In the fasting state

no insulin is produced. Endogenous produced glucose is the only source for the plasma

glucose. 1B: In the fed state insulin is produced in the β-cells of the pancreas. They

suppress the endogenous glucose production. Glucose is taken up over the stomach.

Figure from [8].

glucose sources. Approximately 50% of the glucose released into the circulation is pro-

duced by hepatic glycogenolysis. The remaining 50% is produced by glycogenolysis in

the liver (30%) and the kidney (20%). Over a longer fasting period the fraction of glu-

cose production shifts towards gluconeogenesis because glycogen stores in the liver are

depleted rapidly. Insulin is able to suppress the glucose release from both processes. In

the fed state blood glucose comes from the ingestion of nutrients in the stomach. During

that time period endogenous glucose production is suppressed.[2]

Regulation of blood glucose levels is critical for the body. Both hypoglycemia (low blood

glucose levels) and hyperglycemia (high blood glucose levels) are harmful for the body.

Hyperglycemia can lead to life-threatening complications such as damage to the eye,

kidney, nerves, heart and the peripheral vascular system [10]. On the other hand long

term hypoglycemia can lead to loss of consciousness, disorientation, seizures and more

[11]. A tight regulation of the blood glucose is therefore necessary.

Regulation of the blood glucose level is achieved by a combination of different mecha-

nisms of which most involve the action of specific hormones by directing the glucose flux

to and from glycogen store, balancing glycolysis and endogenous glucose production

against each other as well as promoting protein catabolism. The two hormones that

stand out because of their dominant and overriding actions in the regulatory system of

glucose are insulin and glucagon [7]. Insulin production gets activated in response to
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high blood glucose levels. Once released insulin binds to specific insulin receptors in

muscles and other insulin sensitive tissues and triggers a signaling pathway. In response

to that the glucose transporter protein GLUT4 is moved to the plasma membrane where

it increases the glucose uptake into insulin-stimulated cells several fold. Other glucose

transporter proteins such as GLUT1 work independent of the blood insulin concentra-

tion. GLUT1 is used by most brain cells to ensure that enough energy is provided

even during fasting states where blood glucose and therefore also blood insulin levels

are low [5]. Furthermore insulin promotes glycolysis and glycogenesis by increasing the

amount of glucose 6-phosphate available. At the same time it inhibits the endogenous

glucose production of the liver and the kidney. Glucagon on the other hand is produced

in response to low blood glucose levels. It then promotes the release of glucose from

glycogen. [7]
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3 Methods

3.1 Models

Models are used to mathematically describe observed phenomena. While it is not only

the goal to capture the variability of the observations y it is also desirable to have an

underlying structural model f that approximates the physical phenomenon. Therefore

it is most common to use nonlinear mixed effects models. With the addition of effects for

the population and for individuals it is possible to use mixed effect models to describe

a population.

3.1.1 Nonlinear Mixed Effect Models

The first part of nonlinear mixed effects models is the non linear part. This means

the function f is free to choose whereas in a linear model f would need to be a linear

function. The non linearity in our model allows for more physical relevant functions

than linear functions would.

Our model is then defined as

yj = f(tj ;θ) + ej , (3.1)

where yj are our jth observation at time tj , θ is vector of specific parameters for our

model f and ej is a vector of residual errors.

In many cases the function f is not defined directly but it is given as the solution of

a system of ordinary differential equations (ODEs). For a lot of these systems there is

no analytical solution and the function f can never be given. In these cases numerical

solutions are used to solve the system of ODEs and the dependence of θ for f is only

given in its ODE form.

Eq.3.1 only considers one individual. In many cases however the observations do not

come from one, non-changing source. Even if the same event is observed there are almost

always differences in the observations between each other. Capturing these differences is

of interest to get a better understanding of the observed process. This can be achieved

by using mixed effect models.

To capture the differences it can be assumed that the specific parameters θ can vary.

For N different individuals we can therefore expend on Eq.3.1 and get

yij = f(tij ;θi) + eij , (3.2)
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where yij is the jth individual of the ith observation, tij and eij are the corresponding

time and residual error vectors, respectively, and θi is a vector containing the specific

parameters for individual i.

Since the model is supposed to describe the same process but for observations that

differs for whatever reasons it can be said that each parameter θik can be displayed as

a nonlinear function of a fixed effect βk, an individual/random effect ηik and covariates

ci, yielding

θik = h(βk, ηik, ci). (3.3)

Another way of non linearity occurs if the residual error is allowed to change between

individuals. The change may occur between subjects or even possibly over time and can

be modeled as a function g. Fig.3 shows some data with two different values for g. The

upper one shows g = a = const. and is called a constant error model. The error is the

same for all values. Contrary to that is the error model shown in lower part of Fig.3.

It shows a proportional error with g = bf . The error in that case is dependent on the

value of the function.

Implementing all of these features yields,

yij = f(tij ;βk, ηik, ci) + g(tij ;βk, ηik, ci)eij . (3.4)

3.1.2 Hierarchical models

Many models include parameters that are related to each other. For example consider

a model that uses the heights of humans as a parameter θj . It would be reasonable to

assume that the heights are related to each other. The dependency of these parameters

can be reflected by a joint probability model. This can be achieved in a simple and

natural way if a prior distribution is used for the related parameters. In that case the

related parameters can be seen as samples from a common population distribution.

From that it follows that a population can be described by the same parametric, struc-

tural model f with different individuals, specific parameter vectors θi. This gives it a

hierarchical structure that is a direct extension of the individual approach. The obser-

vations yij are modeled by parameters θi which themselves follow a given probabilistic

specification determined by further parameters, so called hyperparameters.
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Figure 3: Constant and proportional error model. Upper figures show the a constant

error model. The left figure shows the prediction error y − ỹ vs the prediction ỹ. The

left side shows the observations yij vs the predictions ỹij . The lines are y = ỹ and ±1

standard deviation. Constant error models are used if the error is the for all measure-

ments. Lower figure show the proportional error model. The figures follow the figures

above. Proportional error models are used if the error in measurements increase with

value. From [12].

The model can then be written as

yij = f(tij ;θi) + eij (3.5a)

θi = h(β, ηi, ci). (3.5b)

where θi is the vector containing the specific parameters for observation i as a function

of the hyperparameters β, ηi and ci which are the fixed effects, the individual/random

effects and the covariates, respectively.

A different way of describing Eq.3.5 is by using definitions. Using definitions is a more

natural way of describing the distribution of the individual parameters. It is of more

interest to describe the distribution of the individual parameters than it is of the distri-

bution of random effects. Equations are not able to describe these distributions. They

use ’artificial’ random effects to mimic them. Additionally it is not possible to write all
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Figure 4: Visualization of the structure of a hierarchical model. Shared priors α and β

allow for individual θi’s that are used to describe individuals yi’s .From [13]

distributions as equations, e.g. categorical parameter, which limits their use further.

If the residual errors and random effects are mutually independent and normally dis-

tributed they can be written as follows,

eij ∼
i.i.d.
N

(
0, σ2

)
(3.6a)

ηik ∼
i.i.d.
N

(
0, ω2

k

)
. (3.6b)

With these Eq.3.5 can be rewritten as

yij ∼ N
(
f(tij ; θi), σ

2
)

(3.7a)

θik ∼
i.i.d.
N

(
h(β, ci), ω

2
k

)
. (3.7b)

The distributions are not limited to Gaussian distributions.

3.2 Bayesian Inference

The aim of Bayesian inference often is to find posterior predictive distribution of parame-

ters p(θ|y) or unobserved data p(ỹ|y). The probability statements are given conditionally

on the observed data y and implicitly conditionally on the known values of any covari-

ates x.

To make this statement it is first necessary to have a model that provides a joint proba-

bility distribution for θ and y. That model is given by product of the prior distribution

9



p(y|θ) and the sampling/data distribution p(y),

p(θ, y) = p(θ)p(y|θ). (3.8)

Using Bayes theorem, conditioning on the known values of the data y, yields the posterior

density,

p(θ|y) =
p(θ, y)

p(y)
=
p(θ)p(y|θ)
p(y)

. (3.9)

Since p(y) does not depend on θ and can therefore be considered a constant. In that

case it can be neglected, yielding the unnormalized posterior density,

p(θ|y) ∝ p(θ)p(y|θ). (3.10)

Even though p(y|θ) is the conditional probability of y given θ it is in the circumstances

taken as function of θ and not of y.

These equation are the technical core of Bayesian inference. Developing an appropriate

model p(θ, y) and using computations, such as samplings, to find p(θ, y) is the goal of

this method. Further information about the program used for Bayesian inference in this

work can be found in Appendix C.

3.3 Pharmacokinetics

The goal of pharmacokinetics is the study of drug absorption, distribution and elimina-

tion inside a body. While there is also an experimental part of pharmacokinetics this

chapter will only focus on the mathematical approach to it. It is of interest to try and

describe these processes in a quantitative way using mathematical models. This section

follows [14].

3.3.1 One-Compartment Model

The easiest way of doing so is by using a one-compartment open model with an in-

travenous injection (IV bolus). One-compartment means that the whole body is con-

sidered as one compartment. Everything that happens in the model happens in that

one compartment. The open refers to the possibility of drugs to enter and the leave

said compartment. The IV bolus means that the drug is immediately in the blood

stream and eliminates the absorption part. Only distribution and elimination are left.

Upon injection the drug is considered to be distributed homogeneously throughout the
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compartment instantaneously. The elimination of the drug starts immediately after in-

jection. While this model is very simplistic in its nature it can still be useful in the

description and prediction of drug disposition.

In reality when a drug is injected intravenously the drug enters the blood stream and

distributes through the blood circulation throughout the body. This is a rapid process

and can be assumed as instantaneous in most cases. The distribution from the blood

circulation to other tissues is in most cases a slower process. The rate the drug is dis-

tributed at through a specific tissue depends on several processes and properties, for

example the blood flow in that tissue, the ability to enter the tissue from the blood

stream and the affinity of the tissue for the drug.

If the uptake processes are fast enough that complex system can be reduced to a one

compartment system. The volume of that system is called apparent volume of distri-

bution VD. It has no physiological meaning since no such compartment exists but it is

assumed that the injected drug will distribute homogeneously in that volume. It is a

theoretical volume, similar to the theoretical compartment, that gives the proportion

between the amount of the drug in the body DB and the concentration of the drug in

the blood plasma Cp,

DB = VDCP . (3.11)

Drug elimination happens most of the time in multiple places at the same time, for ex-

ample by liver metabolism and renal excretion. Both of these processes can be described

with as first-order elimination with constants km and ke, meaning they depend on the

amount of drug in the compartment linearly. These are the most common rates in phar-

macokinetics. All first-order elimination rates in any compartment can be summarized

into one first-order elimination rate k describing the elimination of the drug from that

Figure 5: One-compartment model. Structure of a one-compartment model with an

IV bolus injection and one removal. DB is the amount of drug in the body, VD is the

apparent volume of distribution and k is the elimination rate constant. From [14]
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compartment,

k = km + ke. (3.12)

That one-compartment model with two eliminations and one IV bolus at time t = 0 can

then be written as

dDB

dt
= −kDB. (3.13)

The solution to this equation can be derived analytically. The slope is given by the

first-order elimination rate k and the intercept with the y-axis is given by the initial

amount of drug D0
B injected into the body.

Since measurements measure the blood plasma concentration of the drug CD and not

the amount of drug in the body DB it is useful to have Eq.3.13 in concentrations. This

can be achieved by substituting Eq.3.11 into Eq.3.13,

dCP

dt
= −kCP . (3.14)

Similar to above, Eq.3.14 can be solved analytically. The difference of the solution of

Eq.3.13 would only be in a scaling factor. Since the distribution between plasma and

tissue is assumed to be fast the concentration of the plasma is at any time proportional

to the concentration of the tissue. It follows that any decline in plasma concentra-

tion is therefore proportional to the declines/removal in tissue. This allows the one-

compartment model to be useful for predicting concentrations of the blood plasma even

though it is only a very simple approximation.

3.3.2 Clearance

The measure of the drug elimination from the body without identifying the underlying

mechanism or process is called clearance Cl. Clearance refers to the fraction of drug

inside the body that is removed per unit time. It might also be considered as the volume

of plasma fluid that is cleared of drug per unit time. Describing clearance in different

ways grants different levels of insight and application in pharmacokinetics.

For first-order elimination processes clearance is a constant. Taking Eq.3.13 and substi-

tuting DB on the left hand side with Eq.3.11 yields,

dDB

dt
= −kCPVD. (3.15)
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Dividing both sides by CP gives the clearance Cl as volume of plasma fluid that is

cleared of drug per unit time,

dDB/dt

CP
= −kVD = −Cl. (3.16)

To get the fractional clearance of the drug one only needs to divide by the apparent

volume of distribution VD. Expressing the clearance Cl in terms of fractions over time

has the benefit of independent on whether the measurements are in concentrations or

amounts. For first-order processes this is directly incorporated in pharmacokinetics with

the elimination rate constant k.

3.3.3 Non Linear Pharmacokinetics

In the previous chapters elimination of any drug was considered to be a linear first-order

process. However, for some drugs higher dosages can cause deviations from the linear

first-order elimination.

The processes of absorption, distribution and elimination can involve enzymes or carrier-

mediated processes in a lot of cases. These processes can get saturated if the drug is

provided in big enough quantities. Besides through saturation processes nonlinear be-

Figure 6: Non linear clearance of plasma levels. A and B show plasma level curves for

a saturable elimination process. A presents a high dose, B presents a low dose. Curve

A shows a non linear clearance for high values. The terminal slope of A and B are

identical. Curve C shows a linear removal for a high bolus. Curves A and C highlight

the difference between non linear clearance and linear clearance. From [14]
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haviour can occur due to pathological alteration in some of these processes.

A drug that follows saturation kinetics has most of the time some tells. The drug

does not follow first-order elimination processes, the half-life of the drug changes with

changes in the dose, the saturation of capacity limited processes might be affected by

other drugs that use the same enzyme or carrier-mediated system and the composition

of the metabolites of a drug might be affected by a change in the dose. As a lot of these

drugs only show these behaviours for large doses it can be difficult to make predictions

based on small doses. Even though these saturation effects are present in some drugs

it is not always necessary to model them if the drugs are only present at lower levels

where they follow first-order elimination processes in approximation as can be seen in

Fig.6.

Saturable elimination processes are described by Michaelis-Menten kinetics. The elimi-

nation rate is then given by

Elimination Rate =
dCP

dt
=

VmaxCP

KM + CP
, (3.17)

with Vmax being the maximum elimination rate and KM being the Michaelis-Menten

constant. The Michaelis-Menten constant defines the concentration of CP that is nec-

essary for an increased removal. From Eq.3.17 it can also be seen that for CP = KM

the removal is at its half maximum. The values of these two parameters, Vmax and KM ,

depend on the drug as well as the enzymatic or carrier-mediated process.

Eq.3.17 describes the case if CP covers a broad range. For the limits of CP that expres-

sion can be simplified. For CP � KM the elimination rate simplifies to,

Elimination Rate ≈ VmaxCP

KM
= K̂CP , (3.18)

a first order elimination process with the elimination rate K̂ = Vmax/KM as mentioned

above.

For CP � KM Eq.3.17 gives,

Elimination Rate ≈ VmaxCP

CP
= Vmax, (3.19)

a constant, saturated elimination which is why Michaelis-Menten kinetics were chosen.

3.3.4 Multi-Compartment Model

Multi-Compartment models are an extension to one-compartment models. As drug

absorption, distribution and elimination inside a body are complex processes a one-

compartment model is often not sufficient to describe these. Similar to the one-compartment
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Figure 7: Biphasic removal. Plasma level curve of a two-compartment model showing

a biphasic removal. Biphasic because the removal can be separated into two phases, a

distribution phase and a elimination phase. Both follow a linear removal shown by a

and b resulting in a non linear removal. From [14]

model it is assumed in the multi-compartment models that the drug concentration

Ct is uniform and is distributed rapidly within any compartment. While in the one-

compartment model everything inside the body is described by one compartment the

multi-compartment model can make more separation between the different systems in

our body. It is common to have a central compartment that describes the blood, extra-

cellular fluid, and highly perfused organs/tissues such as heart, liver, and kidneys where

the drug is distributed from to other peripheral compartments, i.e. a tissue compart-

ment that represents the muscle mass and connective tissue. The drug concentration

in the tissue compartments Ct is only theoretical since drug concentration in the body

varies between different types of tissues and sometimes even within one type of tissue.

However the drug concentration Ct may represent the average drug concentration over

the different tissues. It follows that these concentrations can not be used to confirm or

forecast actual tissue drug levels.

In many cases the curve after an IV bolus does not look like the mono-exponential

15



decay described in the one-compartment model but it declines in a biphasic fashion as

demonstrated in Fig.7. A fast initial decline is followed by a more moderate one some

time afterwards. The first decline phase is referred to as distribution phase. In that

phase the drug is distributed from the central compartment, where the injection hap-

pened, to all the other compartments. The drug transfer between the compartments is

taken as a first-order process. With time an equilibrium is formed between the fraction

of drug in the tissue compartments and in the central compartment where the central

compartment reflects proportional changes in all the other compartments. At that point

the second, more moderate decline phase is active. It is called the elimination phase. In

this phase the driving cause is the elimination of the drug from the body. Any elimina-

tion in the tissue compartments are reflected proportional in the central compartment.

Because of that it appears as if the drug kinetics follow a one-compartment model.

Fig.8 shows possible two-compartment models. k12 and k21 are the rate parameters

from the first-order process of the drug transfer between the compartments. The ratio

k12/k21 between them determines how the concentration in the equilibrium is distributed

between the two compartments. k10 and k20 are elimination rates from the central and

the peripheral compartment, respectively. As in one-compartment models they can also

take a non linear form. As Fig.5 shows elimination of the drug can happen in either

one or both of the compartments. If no further information about the drug is known

then elimination from the central compartment is assumed as the major sites of drug

elimination, such as kidney and liver, are located there.

The model in Fig.8A can be written as

dCc

dt
= −k12Cc + k21Cp − k10Cc (3.20a)

dCp

dt
= k12Cc − k21Cp, (3.20b)

with Cp and Ct being the drug concentration in the central and the peripheral compart-

ment respectively, k12 and k21 being the first order transfer rates and k10 being a first

order elimination rate from the central compartment.

Following the one-compartment model each compartment of the multi-compartment

model has its own volume of distribution. Following Eq.3.11 they are defined as

Cc =
Dc

Vc
(3.21a)

Cp =
Dp

Vp
, (3.21b)

with Cc, Cp being the concentrations, Dc and Dp being the amounts of drugs Vc and

Vp being the volumes of distribution in the central and peripheral compartment, respec-
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Figure 8: Two-compartment open models. Three ways a two-compartment model could

be defined as. All three models contain a central and tissue compartment. Di, Vi, and Ci

are the amount of drug, the apparent volume of distribution and the drug concentration,

respectively, for the central p and tissue t compartment. All three models have a linear

transfer rates k12 and k21 between the compartments. Model A has elimination from the

central compartment, Model B from the tissue compartment and Model C from both

compartments. Elimination rates are given by k10 and k20 for the central and peripheral

compartment, respectively. From [14]

tively.

In accordance to Eq.3.13 and Eq.3.14, Eqs.3.20 can be written in terms of drug amounts

using Eqs.3.21 yielding,

dDc

dt
= −k12Dc + k̂21 − k10Dc (3.22a)

dDp

dt
= k̂12Dc − k21Dp, (3.22b)

with k̂21 = k21Vc/Vp and k̂12 = k12Vp/Vc.
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3.3.5 A priori Identifiability

A priori identifiability is to determine whether it is possible to estimate the parameters

of a postulated model under perfect conditions of noise-free measurements and error-free

model structure. Knowing that a model is a priori identifiable does not mean that the

parameter estimation from real data is possible or that the model itself is correct.

Finding out if a linear or nonlinear model is identifiable is a difficult task. There ex-

ists no solution for the general case. Only a few specific linear and nonlinear models

have been solved. Different methods such as transfer function, normal mode, exhaustive

modelling, power series expansion and differential algebra are used to find out if a model

is a priori identifiable or not.

Any model can be globally uniquely identifiable, locally nonuniquely identifiable or

unidentifiable. In the first case all parameters are uniquely identifiable. This means

that any parameter pi of the model has only one solution. Locally nonuniquely identi-

fiable means that all parameters pi are identifiable, either uniquely or nonuniquely. A

parameter is considered nonuniquely if it has more than one but a finite number of solu-

tions. An unidentifiable model is considered if at least one parameter is unidentifiable.

This means any parameter pi has an infinite number of solutions.[15] [16]

A model where the a priori identifiability has been determined is the two compartment

model with linear elimination. The three possible configurations of the model are dis-

played in Fig.8. Of these three models the rate constants of model A and B are uniquely

identifiable whereas the for rate constants of model C are unidentifiable [17].
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4 Data

As a base and a verification of the proposed models in this work, experimental data is

used. The data is provided by Novo Nordisk. The data is based on rat studies performed

by Novo Nordisk. Two types of studies were performed to create the four data sets

provided, clamp studies and IV studies. The clamp studies can be further separated

into normal clamp studies and clamp studies with the addition of tracer glucose. Similar,

the IV studies can be divided into insulin IV studies and tracer glucose IV studies. The

provided data is therefore given by four data sets with two for each study type. For each

study type, tracer studies have been performed. As these are Each data sets contains a

minimum of two studies, with each study containing multiple experiments.

In this chapter, first the experimental protocol of the clamp study and the IV study will

be explained. Afterwards the data gathered during the experiments will be described

and analysed.

4.1 Glucose Clamp and IV Studies

There are two main motivations behind doing euglycemic hyperinsulinemic clamp exper-

iments. One motivation is that glucose clamp experiments are required in the regulatory

guidelines for the development of new insulin analogs. Since Novo Nordisk is a company

that produces insulin analogs and develops new ones these studies are very common.

The first and largest data set stems from these kind of studies. As a support to these

studies IV bolus experiments were conducted. These IV bolus experiments were used

to test at what time scale the insulin analog is acting. The data from these experiments

form one of the data sets. The second motivation for euglycemic hyperinsulinemic clamp

experiments is to asses pharmacodynamic characteristics of insulin analogs. These stud-

ies are also present in the data set. They form the second euglycemic hyperinsulinemic

clamp studies. The difference between these experiments and normal one is that in

these tracer glucose is used. The addition of tracer glucose allows for a better tracking

of glucose and therefore offers more information about the dynamics of the glucose in-

side the body. Similar as in the first glucose clamp study an IV bolus experiment was

conducted for this study. In this case the bolus was done with tracer glucose to get more

information about the dynamics of glucose inside the body. IV bolus experiments for

insulin analogs are not necessary because the experiments were preformed with already

known insulin.

Glucose clamp experiments are based on the concept that the blood glucose lowering

effect of insulin is counteracted by a controllable infusion of glucose. The goal is to get
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the plasma glucose level of the rat to a target value and hold it there in steady state. The

experimental implementation follows these concepts pretty directly. The subject, here

rats, is equipped with two IVs, one for glucose and one for insulin infusion. Through

the insulin IV the rat is given a constant infusion of insulin for the whole duration of

the experiment. In some cases a bolus is administered at the start of the experiment

in addition to the normal infusion rate to get slow acting insulin analogs started. The

glucose IV is then used to inject a glucose infusion. This glucose infusion rate (GIR)

is controlled by the laboratory worker. The laboratory worker is free to change the

infusion rate at will to get the plasma glucose levels near the target value. To make

this possible the plasma glucose level of the subject is measured every ten minutes. To

support the ability of the laboratory worker to get the glucose plasma levels close to

the target value the movement of the subject is tracked. This is done by a string that

Figure 9: Illustration of clamp and IV experiment. Arrows on the left side indicate an

input, arrows on the right side an output. A shows a clamp experiment. Over the whole

experiment insulin and glucose are infused. Insulin has a constant infusion rate whereas

the GIR is adjusted by the experimentalist. Every 10, 60 min the blood/plasma glucose,

insulin concentration is measured. Glucose measurements are evaluated immediately

and used as a feedback for the GIR. Additionally tracer glucose can be infused and

measured. The tracer infusion rate follows the GIR. B shows an IV experiment. A

bolus is injected a t = 0 and every xmin a the blood/plasma concentration is measured.

Typically measurements are more frequent in the beginning and less frequent in the end.

20



is placed into the neck of the subject. Whenever the subject moves the string lengthen

or shorten. This change in length is tracked, documented and given to the laboratory

worker. The setup for the clamp experiments with tracer glucose is pretty much similar.

There are still only two IV’s. The tracer glucose will be given to rat over the same IV

as the normal glucose. A small fraction of the glucose is equipped with tracers. The

tracer glucose therefore always follows the GIR. 90min before the experiment starts a

bolus of tracer glucose will be given to the subject.

The setup for the IV experiments is much simpler. The subject is given a bolus of

insulin or tracer glucose via the appropriate IV and the plasma concentration of either

is measured at certain times. There are some differences in the execution of the experi-

ments between the two. Even between the different studies for the insulin IV there are

differences. In some studies the subjects were anaesthetized while in most other studies

they were not. Another factor that can differ between studies is if they measured the

insulin levels in the blood or in the plasma. For the glucose measurements there are

only two studies, both of them were conducted in the same way. On the contrary to the

insulin measurements the movement was tracked for theses measurement.

4.2 Data Structure and Data Analysis

As all data sets are provided by Novo Nordisk and as they are used to provide different

information for this work there are some general structures all of the data sets have

in common as well as a few that distinguishes them. For the different experiments

to be able to support each other it is necessary for them to be comparable. It follows

therefore that the subjects of each experiment, the rats, and the methodology applied in

the individual experiments should be as similar to each other as possible. As mentioned

above, only two types of experiments have been performed, IV and clamp studies. Most

noteworthy is, that all studies were performed on male Sprague Dawley rats.

Each experiment is labeled by an ID and a study. Every study has a unique identification

and every experiment within a study has an ID that is unique for the study. ID’s between

studies can be identical. For each experiment the following information about the rat

were given: strain, sex, fasted or fed, weight and anaesthetized or not. As mentioned

before, the strain and sex of the rat was identical in all cases. The other data varies

between experiments. In addition to the data concerning the subject every data set gives

notice of whether the blood or the plasma concentrations were measured. For simplicity

reasons they will be referred to as blood concentrations throughout this work. For data

sets containing insulin measurements the batch number of the used insulin is provided.

The batch number contains information about the type of insulin and in which batch it
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was synthesized. What further data is provided depends on the data sets.

Besides these information each experiment contained the data of the measurements. In

the following sections this data will be described and further analysed.

4.2.1 IV Data

Each measurement in each experiment is given by a time series, a concentration series

and the bolus amount. The insulin IV studies have measurements for both glucose and

insulin while the glucose tracer IV measurements only contains measurements of the

glucose tracer concentration. Only the insulin measurements are of interest. Within each

experiment the time series is constant but can change between experiments. Especially

between IV studies using different insulin analogs the time series vary a lot. However,

for this work only human insulin is considered.

Fig.10 shows the glucose tracer and insulin IV curves. For insulin, there are two studies

with a total of 23 experiments using human insulin. The tracer IV data sets contains

one study with seven studies. They are plotted on a semi-log scale. Each measurement

is displayed as a dot. To be able to follow the individual experiments better the dots are

connected by lines. The lines however do not represent how the data behaves between

the measurement points. It is to notice that the boli themselves are not displayed in

the figures as they are given in ’pmol’ whereas the measurements are given in ’pM’.

Conversion between follows Eq.3.11. As the volume is unknown it is not possible to do

(a) Blood insulin IV curves (b) Blood tracer glucose IV curves

Figure 10: IV curves for insulin (a) and tracer glucose (b). Each color represents

one experiment, every dot is a measurement. The lines connecting the dots are only

visual aids the follow one experiment. y-axis is on a logarithmic scale. Both display a

multiphasic behaviour. Insulin (a) has high and low boli whereas tracer glucose only

has one kind of boli.
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the conversion and therefore not possible to display the boli in the figures.

The insulin IV curves are displayed in Fig.10a. From the curves it can be seen that there

are two different regimes for the boli. The boli range from 351.6 to 1137.6 pmol/kg.

Measurements were stopped when the insulin levels got too low. The experiments with

low boli therefore contain less measurement points. The curves from the high and low

bolus show a similar behaviour. From this it can be concluded that the insulin removal

dynamics in this regime follow linearly with insulin bolus. The curves themselves do not

follow a simple exponential but have a multiphasic decline. As opposed to Fig.7 these

curves do not show a clear biphasic behaviour but more of a multiphasic behaviour with

no clear exponential decays in any part of the slope.

In Fig.10b the tracer IV curves are shown. In contrast to the insulin IV data set

the boli for the tracer experiments are close to each other. They range from 5759.8 to

6432.4 pmol/kg. All experiments have the same amount of measurements in them. Again

the curves do not follow a single exponential decay but show a multiphasic behaviour.

In these cases a biphasic decay seems to be the case. Similar to Fig.7 a first short steep

decline is followed by a second more moderate decline.

4.2.2 Clamp Data

In the clamp data set three different kinds of clamp experiments are present; Euglycemic,

Hyperglycemic and Hypoglycemic. The difference between the three experiments lies in

the target glucose value. The target values are 5.7 mM, 9 mM and 3.5 mM, respectively.

For this thesis only euglycemic experiments are of interest and hence all experiments

have a target value of 5.7 mM. In addition to these three types there are also eleven

different insulin analogs and human insulin used in the experiment. Again only the

experiments using human insulin are of interest for this work. The clamp experiments

containing tracer glucose were only performed as euglycemic experiments with human

insulin.

Excluding the above mentioned studies as well as the two studies ’CLBR140201-3H test’

and ’CLBR14-0201’ leaves 227 clamp experiments in 11 studies. In addition there are

44 experiments including glucose tracer measurements from two different studies.

Each experiments contains a glucose and an insulin measurement. The glucose mea-

surements starts at t = −30 min and is measured every 10 min for the whole duration of

the experiment. The length of the experiments depends on the study with the shortest

going 180 min and the longest going 300 min. Insulin is measured at different times

depending on the study. The measurements are conducted in the interval [30, 300].

The glucose and insulin measurements are the same for the tracer experiments with the
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addition of tracer measurements. Tracer glucose measurements only start at t = 0. In

the tracer experiments movement data of the rats are also available. They are recorded

every minute. The GIR starts at t = 0 and is recorded every 10 min. Between the

time steps the GIR is assumed to be constant at the last known GIR level as no further

information is available. During the experiment it is possible to adjust the GIR more

frequently than every 10 min however glucose measurements are only performed at these

time steps and changes of the GIR between them are unlikely to happen as there is no

information to base the adjustment of the GIR on. In the glucose tracer experiments a

glucose tracer bolus is injected at t = −90 and a constant tracer infusion rate is started.

Once the GIR starts the glucose tracer infusion rates follows with a proportional factor

of ∼ 1000.

Fig.11 shows the output and input of an example experiment. To be able to fit all the

information into one plot the insulin values are multiplied with a factor of 0.01.

Figure 11: Data of a clamp experiment. The inputs and outputs of one example clamp

experiment are shown. The left y-axis contains the glucose concentration in pM as well

as the insulin concentration scaled by 0.01. The right y-axis contains the GIR. The

x-axis is the time of the experiment. The blue dots show the glucose measurements, the

orange triangles show the insulin measurements. The red dotted line is the target value

for the glucose. The green line shows GIR over the course of the experiment.
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As it is the goal of the euglycemic hyperinsulinemic clamp to get the blood glucose

concentration as close as possible to the target value the glucose measurements are of

little interest as they are kept in the same range for all experiments. Of more interest are

the blood insulin concentrations as they are only regulated by the insulin infusion rate.

With varying insulin infusion rate the blood insulin concentration is expected to vary

as well. Another point of interest is the GIR. As the blood insulin concentration varies

with the insulin infusion rate but the blood glucose concentration needs to be kept at

the same level the GIR needs to compensate for that. The blood insulin concentration

and the GIR should for theses reasons be able to provide the most information about

the workings of the glucose insulin system.

In Fig.12 the blood insulin concentrations are shown at their times of measurement. The

insulin concentration is plotted on a log scale. The insulin measurements are grouped by

the insulin infusion rate used in the experiment. From the data in Fig.12 two features of

the insulin concentrations can be seen. Firstly, the blood insulin concentrations increase

with the insulin infusion rate and are spanning over multiple orders of magnitude. Sec-

ondly, the blood insulin concentrations seem to be in a steady state.

To further analyse the first point it is beneficial to look at the second point first. To

determine if the blood insulin concentrations are in a steady state the coefficient of

Figure 12: Insulin measurements. Each color represents one experiment, every dot

is a measurement. The lines connecting the dots are only visual aids the follow one

experiment. y-axis is on a logarithmic scale. x-axis gives the time of the measurements.

Experiment duration varies between experiments. Insulin measurements seem almost

constant over experiment duration.
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Table 1: Mean, STD, median and interval of the coefficient of variation cV for the insulin

measurements.

Mean µ STD σ Median Interval

cV 0.089 0.072 0.073 [0.007;0.575]

variation (CV) is calculated for every measurement. The CV is given by,

cV =
σ

µ
, (4.1)

with σ being the standard deviation and µ being the mean.

Tab.1 shows the mean, the standard deviation, the median and the interval of the

calculated CV’s. With the mean, the STD and the median below 0.1 it shows that

the measurements only deviate little from their mean. Hence, it is reasonable to assume

that the blood insulin concentrations are in a steady state for the recorded measurement

at all times. Small deviations from the steady state are to be expected in a complex

biological system.

With the assumption that the blood insulin concentration is in a steady state at all

measurement points it allows for a more convenient analysis of the properties of the

data.

As mentioned above, the blood insulin concentration is dependent on the insulin infusion.

Together with the assumption that the blood insulin concentration reaches a steady

state the statement can be rephrased to: the steady state blood insulin concentration

is dependent on the insulin infusion rate. In order to determine the kind of dependence

Fig.13 shows the mean insulin steady state in dependence of the insulin infusion rate

on a log-log scale. The relation seems to be almost linear. However, the steady state

concentrations for high and low infusion values seem not to align. This behaviour is

even more pronounced if the data is presented on a non-scale. It is therefore difficult to

tell if the dependence is linear or non linear.

The assumption of the blood insulin concentration being in a steady state allows for

further analysis. As described in Section 3.3.2, clearance gives the volume of blood that

is cleared of the drug per unit time. In most cases, that would require a model. In

steady state however, the removal of drug is given by the infusion rate, as they need to

be of the same values. This allows for analysis of the insulin clearance in dependence of

the blood insulin steady state concentration.

Fig. 14a shows the fractional blood insulin clearance as a function of the blood insulin

concentration. The insulin clearance is, following Eq.3.16, defined as the insulin infusion
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Figure 13: Insulin steady state in dependence of insulin infusion rate. The data is

presented on a log-log scale with the error bars being the SEM. The mean insulin steady

state concentration as a function of the insulin infusion rate. Both axis are on a log

scale. A not quite linear relation between the two can be seen.

rate over the blood insulin steady state concentration. For each insulin infusion rate

the average of the steady states have been taken. The error bars show the SEM. From

the figure it can be seen, that the insulin clearance decreases with increasing blood

insulin concentrations. Furthermore, the decrease of the clearance is non linear. In the

beginning insulin clearance decreases with increasing blood insulin concentrations. With

further increasing concentrations, however, the decrease of insulin clearance slows down

until it seems to kind of reach a plateau in the end for high blood insulin concentrations.

Besides the insulin infusion and the blood insulin concentration, the other measure of

interest is the GIR as mentioned above. As the GIR is adjusted to keep the blood

glucose concentrations at the target level, it should be affected by the changes in the

insulin levels due to the different infusion rates. To investigate this relation, Fig.14b

shows the mean GIR versus the blood insulin concentration steady state on a semi-log

scale. Again, the average was taken over all measurements for one infusion rate. The

error bars show the SEM. In Fig.14b it can be seen, that the mean GIR increases with

blood insulin concentration for lower values. Around a blood insulin concentration of

100 pM the GIR reaches a plateau.
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(a)

(b)

Figure 14: Analysis of the data. The error bars show the SEM. (a) shows the fractional

insulin clearance as function of the mean insulin steady state. The colors indicate the

insulin infusion rate. The x-axis is on a logarithmic scale. A non linear, saturable

relation can be seen. (b) shows the mean GIR as a function of the mean insulin steady

state. he colors indicate the insulin infusion rate. The x-axis is on a logarithmic scale.

A saturation of the mean GIR can be seen.
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5 Model of the Glucose Insulin System

The model proposed here consists of two two-compartment models that interact with

each other. Models for the glucose insulin system using multi-compartment models that

interact with each other have been proposed before by Dalla Man [18], Bergman [19]

and Hovorak [20].

5.1 ODE Model

The model can be subdivided into two subsystems, a glucose subsystem and an insulin

subsystem, that interact with each other. To support the determination of the param-

eters of the system a third subsystem can be introduced, a tracer glucose system. The

system has no influence of the dynamics of the blood glucose and blood insulin concen-

trations. It can be influenced by either of the other two subsystems but does not do

so in return. The tracer glucose system follows the dynamics of the glucose subsystem

with the exception of not having any endogenous glucose production. Its only purpose

is to help with the determination of parameters.

Fig.15 shows the scheme of the glucose insulin system. The upper part of the figure

shows the insulin subsystem while to lower part shows the glucose subsystem. Processes

that either increase or decrease the concentration in either compartment are shown by

black arrows.
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5.1.1 Insulin Subsystem

The insulin subsystem is given by a two-compartment model shown in the upper part

of Fig.15. The two compartments in the model are the central C and peripheral P com-

partment. The central compartment describes the dynamics in the blood, extracellular

fluids and highly perfused organs, the peripheral compartment on the other hand de-

scribes the dynamics in the periphery such as muscle mass and connective tissue. These

description follow 3.3.4.

A two compartment model is used because it is known that insulin has biological func-

tions in the blood circulation as well as in tissue, see Section 2.1.1. To further support a

two compartment model, the IV curves in Fig.10a can be looked at. They display mul-

Figure 15: Schematic presentation of the insulin glucose system. The upper part of the

figure shows the two-compartment model of the insulin subsystem, the lower part shows

the two-compartment model of the glucose subsystem. Arrows indicate movement of

insulin/glucose from and to compartments.
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tiphasic behaviour. To be able to describe these dynamics a model containing multiple

compartment is necessary.

The equations describing the model are given by,

dIC
dt

= k21IP − k12IC − nICIC
(

0.8
kICVIC

kICVIC + IC
+ 0.2

)
(5.1a)

dIP
dt

= −k21IP + k12IC − nIP IP
kIPVIP

kIPVIP + IP
(5.1b)

[Ij ] =
Ij
VGj

, for j = C,P. (5.1c)

IC , IP , [IC ] and [IP ] are the amounts and concentrations of exogenous insulin in the

central and peripheral compartment, respectively. The parameters k21 and k12 are

transfer rates between the two compartments. nC and nP are removal rate parameters

in their respective compartments. nC is the sum of the linear removal rate parameter

and the maximum elimination rate of the Michaelis-Menten term. nP on the other hand

is only the maximum elimination rate of the Michaelis-Menten term. The parameter

kIC and kIP are Michaelis-Menten constants. VIC and VIP give the apparent volume of

distribution of the central and peripheral compartment.

The removal term in Eq.5.1a consists of two separated processes, a linear removal term

and non-linear Michaelis-Menten removal term. The use of this structure is motivated

by Fig.14a. The figure shows the clearance of insulin as a function of blood insulin

concentration at steady state. The clearance shows a non linear behaviour. For lower

insulin levels the clearance follows a linear relation. A linear removal rate for this

range would be sufficient. Models such as Hovorak [20] use a linear removal rate from

their insulin compartments. For higher insulin values, however, a linear removal rate

is not sufficient anymore as can be seen in Fig.14a. A combination of the two removal

rates, a non-linear Michaelis-Menten and a linear removal term, is proposed in this

model. Neither of them on their own should be able to describe the dynamics that can

be seen as a singular Michaelis-Menten term would not be able to describe the linear

slope in the beginning as well as the non zero clearance at the saturated levels. A

combination of a linear clearance and non linear clearance, however, could be able to so.

A biological interpretation of the two terms is given by a receptor mediated processes

for the Michaelis-Menten term and some unspecific clearance of multiple processes in

the central compartment for the linear term.

As the peripheral compartment is only a theoretical compartment is it not possible to

have any measurements that could help with determining its dynamics. Models such as

Dalla Man [18] and Bergman [19] use a linear removal term. However, since the data

suggested a saturabel process the central compartment a similar process will be assumed
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for the peripheral compartment. The removal of insulin in the central compartment is

therefore described by non linear Michaelis-Menten dynamics.

The insulin subsystem does not contain an insulin secretion term as the insulin dynamics

described in this model refer to the exogenous injected insulin. Since the exogenous

insulin differs from the endogenously produced insulin of the rat, the only the source

of insulin in the model is the infusion rate. The total amount of insulin in either

compartment is therefore not only given by the values from the model but also from

the endogenous insulin present in the model. Any insulin and glucose dynamics should

therefore not only depend on the insulin amounts given by Eq.5.1 but by the total

amount of insulin in these compartments Ij,total. However, as any dynamics in the

insulin compartment only start when exogenous insulin is infused and as the amount of

infused exogenous insulin is large compared to the amount of endogenous insulin, the

simplification can be made that only the exogenous insulin determines the dynamics

of the exogenous insulin. For glucose on the other hand, such an assumption can not

be made, as some measurements of glucose and tracer glucose occur when no external

insulin has been injected. Therefore, glucose depends on the total amount of insulin in

the compartments Ij,total. In order to find the total amount of insulin, the endogenous

blood insulin concentration Iendo is required. As the rats are in a fasting state and

no exogenous glucose is injected before any exogenous insulin is injected it is assumed

that the endogenous insulin level will never rise above basal levels Ibasal. In addition to

that it is assumed that the amount of endogenous insulin will decrease linearly with the

amount of exogenous insulin as any endogenous insulin production will be suppressed

and the endogenous insulin will be replaced with exogenous insulin. This yields following

equations for the endogenous insulin amounts,

Ij,endo = max(Ij,basal − Ij), (5.2)

with j = C,P for the respective compartments.

The total insulin levels for the central and peripheral compartment are then given by

the sum of the endogenous and the exogenous insulin levels,

Ij,total = Ij + Ij,endo. (5.3)

Eq.5.1c follows the concept of the apparent volume of distribution described earlier.

Through substitution of Eq.5.1c into Eq.5.1a and Eq.5.1b it makes it possible to have

the model in terms of concentrations or amounts.

32



5.1.2 Glucose Subsystem

To have a two-compartment model for glucose follows the same line of argumentation as

for insulin. Mechanisms of glucose in the central regions as well as in peripheral tissue

are known, see Section 2.1.2. From the IV curves in Fig.10b a non biphasic behaviour

can be observed, further supporting the usage of a multi-compartment model.

The two-compartment model consists of a central C and a peripheral P compartment.

Their respective contents are the same as described in the insulin subsystem chapter

above.

The structure of the model is displayed in the lower part of Fig.15. The equations for

the model are given by,

dGC

dt
= EGP − k1GC + k2GP − FCNS , (5.4a)

dGP

dt
= k1GC − k2GP − nGPGP

GP

kGPVGP +GP

IP,total
kIPVIP + IP,total

, (5.4b)

[Gj ] =
Gj

VGj
, for j = C,P, (5.4c)

with GC , GP , [GP ] and [GC ] being the glucose amounts and concentrations in the central

and peripheral compartment. k1 and k2 are the transfer rates between the central and

the peripheral compartment, VGC and VGP are the apparent volumes of distribution of

the central and peripheral compartment, EGP is the endogenous glucose production,

FCNS is the insulin independent glucose uptake of the central nervous system, nGP is

the removal rate parameter in the peripheral compartment, kGP and kIP are Michaelis-

Menten constants for a glucose dependence and an insulin dependence in the peripheral

compartment, respectively and IP,total is the total insulin concentration in the peripheral

compartment.

The EGP is given as a function of the glucose and total insulin concentration in the

central compartment,

EPG = max(kEGP,0 − kEGP,GGC − kEGP,IIC,total, 0) (5.5)

with kEGP,0 being the endogenous production rate of glucose for zero glucose and in-

sulin and kEGP,G and kEGP,I being the rate parameters for the suppression of glucose

production for glucose and insulin.

Glucose GC and insulin IC,total in the central compartment suppress the production of

the endogenous glucose in a linear way. This description of the EGP follows the idea

introduced in [21]. While the models in [21] are much more sophisticated, it is not pos-

sible to follow these as the required data is not given. Therefore, more simple version of
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the EGP is used in this model.

The insulin independent glucose uptake of the central nervous system FCNS is assumed

to be constant for all levels of blood glucose and insulin since the brain uses mainly

GLUT1 as its transporter protein. With the presence of GLUT1 being not dependent

on the insulin or glucose concentration a constant term was chosen.

The removal term in Eq.5.4b describes the insulin dependent and the glucose dependent

removal of glucose from the peripheral compartment in one non linear term. The term is

composed of two non linear Michaelis-Menten terms describing the effects of the blood

glucose concentration and the total blood insulin concentration.

The insulin dependent removal of glucose is mainly driven by GLUT4 as explained in

Section 2.1.1. It follows that the insulin dependent glucose uptake is dependent on the

number of specific insulin receptors insulin can bind to as well as the number of GLUT4

transporters available for glucose uptake. As the binding of insulin to its receptors is the

cause for GLUT4 transporters to be released a proportionality between the two can be

expected. The GLUT4 concentration is therefore be approximated by the insulin con-

centration in this model. The non linearity originates from the amount of receptors and

GLUT4 transporters available as there is only a finite amount. To reduce the amount

of parameters in the model an assumption is made. As the insulin is binding to its re-

ceptors it is removed from the system. The non linearity of the removal of insulin in the

insulin subsystem could therefore be related with the release of the GLUT4 transporters.

Based on this assumption, the Michaelis-Menten constant from the insulin removal in

the insulin subsystem will be used for the insulin dependent removal of glucose in the

glucose subsystem.

Fig.14b. shows the mean GIR in dependence of the mean insulin steady state. It can be

seen that the GIR reaches a plateau even though the insulin steady state values increase

further. The insulin dependent glucose removal is therefore given by Michaelis-Menten

dynamics in dependence of the insulin concentration in the periphery,

UIDG = VIDG
IP,total

kIPVIP + IP,total
, (5.6)

with IP,total, kIP and VIP as introduced above and VIDG being the maximum elimination

rate of the insulin dependent glucose removal.

The glucose dependent glucose part of the glucose removal term UGDG also follows non

linear Michaelis-Menten dynamics. Glucose uptake of cells is in many cases a carrier

mediated process such as glucose transporter protein. As it is the case with any carrier

mediated process a saturation effect will occur once the amount of carrier is exhausted.
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A Michaelis-Menten removal term is therefore used. It is given by

UGDG = VGDGGP
kGPVGP

kGPVGP +GP
, (5.7)

with GP , kGP and VGP introduced as above and VGDG being the maximum elimination

rate of the glucose dependent glucose removal.

The model for the tracer glucose can be found in Appendix A

5.2 Model Complexitiy Reduction

It proved to be not possible to estimate the parameters of the previous two-compartment

model. The amount of parameters in combination with the quality of the data present

lead to a situation where it was not possible to determine the parameters of the model in

way that would lead towards the goal of having a distribution of all the parameters based

Figure 16: Schematic presentation of the reduced insulin glucose system. The upper part

of the figure shows the one-compartment model of the insulin subsystem, the lower part

shows the one-compartment model of the glucose subsystem. Arrows indicate movement

of insulin/glucose from and to compartments.
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on the individual fits using Bayesian inference with Stan. The amount of parameter and

the quality of the data is not necessarily the reason for our failure. Problems with the

Bayesian inference using Stand occurred during that period. Further information about

that can be found in Appendix B.

The decision was made to reduce the complexity of the model rather than change the

method of determining the parameters.

To reduce the model in complexity, a different approach to the problem was taken.

Models such as Dalla Man [18], Bergman [19] and Hovorak [20] are trying to describe

the insulin-glucose system as accurate as possible and as the insulin-glucose system is

complex these models also tend to be complex. The downside to that complexity is that

the amount of parameters that need to be estimated.

In this chapter a more simplistic model is introduced with the knowledge that it will

not be able to describe all the dynamics of the insulin glucose system but which should

be capable of modeling the euglycemic hyperinsulinemic clamp experiments which was

the goal of the thesis to begin with. Similar approaches have been done in [22] and [23].

5.3 ODE Model

Similar to the previous model this model can be divided into two subsystems, an insulin

subsystem and a glucose subsystem with a tracer subsystem that follows the glucose

subsystem closely. The structure of the whole system is is shown in Fig.16.

5.3.1 Insulin Subsystem

The structure of the insulin subsystem can be seen in the upper part of Fig.16. The

biggest difference between this model and the previous model is that the insulin sub-

system only consists of one compartment instead of two. It is also notable that the two

compartments have not been merged but that the peripheral compartment from the

previous model simply got removed yielding the insulin subsystem used in this model,

dI

dt
= −kIeI

(
0.8

kIVI
kIVI + I

+ 0.2

)
(5.8a)

[I] =
I

VI
, (5.8b)

with I, [I] being the insulin amount in the blood and the blood insulin concentration,

respectively, kIe being the removal rate, kI being the Michaelis-Menten constant and VI

being the apparent volume of distribution of the insulin system.

The argumentation for the terms used in the equation is the same as in Section 5.1.1

and is therefore not repeated here.
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Reducing the number of compartments from two to one will affect the ability of the

model to capture some of the dynamics involved in the glucose insulin system. As said

in Section 5.1.1 the insulin IV curves show a distinct multiphasic behaviour. To be able

to describe such behaviour at least a two-compartment model is necessary. It follows

that Eq.5.8 will not be able to describe the insulin IV data. In the context of the

euglycemic hyperinsulinemic clamp experiment this is however not too important as the

insulin is given in constant rate over the whole experiment as opposed to a single bolus

in the IV experiment. The steady state behaviour between the two models is similar

with the only difference being the additional removal term in the periphery in Eq.5.1b.

The big difference in the modeling of the euglycemic hyperinsulinemic clamp experiment

would be the dynamics of how the steady state is reached. However as it can be seen

from Fig.12 the blood insulin concentration has already reached its steady state by the

time of the first measurement and remains at it for the duration of the experiment.

Therefore the one-compartment insulin system should suffice in describing the insulin

dynamics in the euglycemic hyperinsulinemic clamp experiment.

Similar to the model introduced in Section 5 the insulin considered in this model only

refers to the exogenous insulin. The total amount of insulin in the blood IT is, as

described above, the sum of the the amount of endogenous and exogenous insulin in the

blood. The modeling of the endogenous insulin in this model is given by,

Iendo = max(Ibasal − I) (5.9)

Itotal = I + Iendo, (5.10)

with Ibasal being the amount of endogenous insulin in the blood at basal levels of glucose

and Iendo being the amount of endogenous insulin levels in the blood at any time.

5.3.2 Glucose Subsystem

The glucose subsystem is likewise reduced to a one-compartment model. The model

structure can be seen in the lower part of Fig.15. In contrast to the insulin subsystem

which uses the central compartment from the previous model the glucose subsystem in

this model uses some features from both, the central and the peripheral, compartments

from the previous model. The model is given by,

dG

dt
= EGP − kGe

G

kGVG +G

Itotal
kIVI + Itotal

(5.11a)

[G] =
G

VG
, (5.11b)
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with G, [G] being the amount of glucose in the blood and the blood glucose concentra-

tion, respectively, EGP being the endogenous glucose production, kGe being the removal

rate parameter, kG and kI being Michaelis-Menten constants for the insulin independent

and insulin dependent removal of glucose, respectively, Itotal being the total amount of

insulin in the blood and VG, VI being the apparent volumes of distribution for the glu-

cose and the insulin system, respectively.

The EGP again is a function of the amount of glucose and insulin in the blood. It is

given by,

EGP = max(kEGP,0 − kEGP,GG− kEGP,II, 0), (5.12)

with kEGP,0 being the endogenous production rate of glucose for zero glucose and insulin

and kEGP,G and kEGP,I being the rate parameters for the suppression of glucose pro-

duction for glucose and insulin. As the terms used in this model are similar to the ones

used in the previous model they will not be explained again. For a detailed description

of the terms see Section 5.1.2.

Merging the two compartments from the previous model will diminish the models ability

to describe all the glucose dynamics. As in the case of insulin, this glucose model will not

be able to describe the glucose IV curves as they also show a multiphasic behaviour that

can not be recreated in a one-compartment model. However, this more simple model

should be able to describe the dynamics of the euglycemic hyperinsulinemic clamp ex-

periment regardless. As can be seen in Fig.10b the first phase of the IV curves only takes

a short time. After only a few minutes the second phase, the removal phase, sets in. It

follows therefore that glucose equilibrates fast between the central circulation and the

tissue. Once this equilibrium state is reached the two-compartment model behaves like

a one-compartment model. This, however, applies mainly for IV studies as there is no

further input after the injection but the glucose model has a time varying input in the

GIR. Still as the time to reach an equilibrium state is quite low the one-compartment

model should fulfill the requirements to model the euglycemic hyperinsulinemic clamp

experiment.

5.4 Parameter Estimation and Discussion

The full model is given by Eq.5.8, 5.9, 5.10, 5.11, 5.12 and A.2. It contains ten param-

eters that need to be estimated.

Again the amount of parameters does not allow to fit everything at the same time. The

fitting process needs to be separated into different steps in an iterative way to determine
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the parameters. Parameters determined in previous fit will be used to determine the

next parameters.

In the first step Ibasal will be determined. To do so, the GIR in steady state together

with the insulin in steady state is used to extrapolate the insulin level for GIR = 0. This

value is then taken as Ibasal. In the second step the insulin parameter will be determined

as the insulin subsystem is only insulin dependent. Initially the insulin values from the

tracer data set will be used due to the fact that they only contain two different studies

with a total of three different infusion rates. The knowledge about the range of the

parameter values will then be used to fit the insulin data from the clamp experiments

which contains a much larger range of insulin infusion. In the next step the tracer data

is fitted. The tracer model is fitted ahead of the glucose model as it contains the same

parameters but does not have the EGP term. The parameters determined from the

tracer data can then be used to fit glucose model first with the tracer data set and then

with clamp data set. The parameters known from the tracer model are fixed.

5.4.1 Basal Insulin

To determine the endogenous insulin blood concentration Ibasal the clamp data set is

used. As there are no measurements of the blood insulin concentration for no GIR the

value needs to be determined by extrapolation. The steady state values of the GIR and

the blood insulin measurements are used for that. Since the blood insulin reaches its

steady state value already before the first measurement it does not need to be taken

into to consideration. The GIR however is changed a lot during the experiment only

during the last hour is it supposed to reach a steady state. Therefore, only the last hour

is taken into consideration when determining the steady state values of the GIR and

blood insulin concentrations. If the mean glucose value in the last hour was above 6

the experiment got excluded as in that case the glucose concentration would have been

significant above the target and GIR would have been reduced significantly in respond

to that. In the last step and experiments with GIR values above 5 are excluded to be

localized to allow for a simple linear regression,

y ∼ N (α+ β · x, σ2), (5.13)

where y is the insulin steady state value and x is the GIR value.

The result of the linear regression can be seen in Fig.17. It is visible that the fit has

some uncertainty because the values are spread pretty far. The general trend has been

captured regardless of that. The fit values are given in Tab.2. α corresponds to the

parameter Ibasal in our model.
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Figure 17: Basal insulin estimation. The basal insulin concentration is estimated by

a linear regression of the mean insulin concentration as a function of the mean GIR.

Only experiments with a mean glucose concentration below 6 mM a mean GIR below

5 mg/kg/min are considered. The linear regression is shown by the blue line. The orange

area indicates the 95% confidence interval.

Table 2: Mean values with their respective STD for the parameters of the linear regres-

sion

Mean STD

α 64.272 12.216

β 19.848 3.056

σ 8.307 3.838
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5.4.2 Insulin

The ODE model that is to fit the insulin data from the tracer data set is given by Eq.5.8

with the addition of the infusion rate XI ,

dI

dt
= −kIeI

(
0.8

kIVI
kIVI + I

+ 0.2

)
+XI (5.14a)

[I] =
I

VI
(5.14b)

I(0) = 0. (5.14c)

The above model has been fitted using Bayesian inference in Stan. The statistical model

used is given by,

yij ∼ N
(
f(tij ; θi), σ

2
)
, (5.15a)

θik ∼
i.i.d.

Lognormal
(
log(βk), ω2

k

)
, (5.15b)

with f being the numerical solution of the model integrated with a fourth and fifth

order Runge-Kutta method, θ = (kIe, kI , VI), βj and ωj being the parameters defining

the prior distribution. A log-normal distribution for the parameters was used in order

to restrict the parameter space to only positive values. Due to small range of insulin

steady states a constant error model was implemented. The values for βj and ωj are

given in Tab.3. To give the algorithm good starting parameters an initial scan of the

parameter space was performed manually. The values that resulted in the best fit are

the ones reported in Tab.3 as the mean value of the prior distribution.

A total of four chains were run for the fit. Each chain containing a total of 2000 itera-

tions with a burn-in period of 1000 iterations. The adapt delta was set to 0.8. To keep

the numbers of iteration low but still enable a sample with reduced auto correlation a

thinning of two was used.

The resulting fit values are shown in Tab.3. Fig.18 shows four mean trajectories with

their corresponding 95% confidence interval representing each insulin infusion rate (6,

12, 18) at least once. The shown examples fit the data in a good way. As discuss in

Section 4.2, insulin is at all measurement points in a steady state. The is fit able capture

that behaviour.

Before checking the model for validity, however the Bayesian inference itself should

be inspected. The trace plots in the right hand side of Fig.19. shows the trajectories

for the individual chains by parameters. From the figure it can be seen that during the

sampling process no divergences happened as these would be indicated by black vertical

lines, and that the chains are mixed, the chains all end up in the same region in the
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Figure 18: Insulin fit tracer data set. Three example measurements with their respective

fits are shown for the three different insulin infusion rates: 6 (red), 12 (green) and 18

(blue). The fits are the lighter colors and are shown with their 95% confidence interval.

The fitted measurement are given by dark colored lines. Dots in the respective colors

show the remaining measurements with the respective insulin infusion rate.

parameter space despite having different starting conditions. Looking at the traces from

VI however it can be seen that the traces are not covering the area 0.6. This can be

made more visible by plotting the histograms of the values the individual chains take.

Table 3: Priors and posteriors for the insulin fits of the the tracer data set. Prior values

are given before the are log transformed. Posteriors shown are the mean and STD over

the mean of all experiments

Priors Posteriors

Mean STD Mean STD

kIe 8.5e−01 1e−01 8.44e−01 2.99e−04

VI 5.6e−02 5e−02 6.42e−02 1.44e−02

kI 1.9e+04 5e+03 1.84e+04 2.98e+01

σ 5e+01 2e+01 2.76e+01 1.71e+00
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Figure 19: Chains of the Bayesian inference for the parameters. The chains of the three

parameter kIe, VI and kI that were estimated are shown from top to bottom. On the

right hand side the values the individual chains took during the Bayesian inference are

displayed. The left hand side shows smoothed histograms of these values. For clarity

reasons only every third fit is shown. The fits shown are representative for all fits.

They are shown on the left hand side of Fig.19. With the traces presented like that it

is quite clear that VI the individual distributions of VI are not located around the same

values. From the figure it seems as if there are two different parameter values that the

parameters take. The individual curves, however, do not display a bimodal behaviour.

The individual parameters of kIe and kI also both follow monomodal distributions but

mean values lie closer to each other.

For the posterior distribution of the parameters of the individuals a monomodal distri-

bution that has a similar mean and variance as the other individuals would have been

expected. Rat to rat variance is expected which is why a hierarchical model was used

in the first place. The underlying assumption was however that the parameters from
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Figure 20: QQ-Plot for insulin fits. Six example QQ-plots from the insulin fit are shown

with a linear regression fit. The y-axis shows the quantiles of the fits starting at the

first measurement point at t = 60. The x-axis shows theoretical qunatiles of a normal

distribution with mean zero and STD 1. The linear regression is given by the blue line.

The respective r-value of the linear regression is displayed in the upper left corner of

each plot.

the individual rats would form a monomodal distribution as there are no systematic

differences between the rats. This is represented by the lognormal-distribution that is

used as a prior distribution. The spread of the individual parameters for VI that occurs

in this case is unexpected. Further analysis showed, that the parameter center around

two values. The rats of the two values are from different studies. In Fig.19 this split can

be observed. Why this split happens is unknown as the experiments should follow the

same structures as discussed in Section 4.2. A possibility would be that the rats were

provided by different vendors and therefore have some differences between them.

To check for the validity of the statistical model QQ-plots and their respective r values

can be used. This analysis is inspired by the analysis of the statistical model in [23].

Fig.20 shows the QQ-plots of the first and last four experiments as an example. By look-

ing at the plots no immediate errors are visible. For a more quantitative measure the r

values of the linear regression are used. The values all are in the interval [0.973, 0.722]

with a mean value of 0.867. These values indicate that the model used is valid.

With the validity of the model for the insulin data in the tracer data set shown the
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model will be applied to the insulin data in the clamp data set. The difference between

the two data sets, as pointed out earlier, is the range of the insulin infusion. With the

validity of the model confirmed for the lower, more natural insulin infusion ranges the

data set containing high insulin infusion rates will tested.

For the fit of the insulin data in the clamp data set the model in Eq.5.14 will be used.

The associated statistical model for the Bayesian inference follows Eq.5.15 closely and

is given by,

yij ∼ N
(
f(tij ; θi), f(tij ; θi)σ

2
)

(5.16a)

θik ∼
i.i.d.

Lognormal
(
log(βk), ω2

k

)
, (5.16b)

with the variables and parameters following the description above.

The difference between the two statistical models is, that a proportional error model is

used instead of a constant error. This is due to the fact that through the large range of

insulin infusion rates the resulting blood insulin steady states multiple orders of mag-

nitudes span. To have a relevant error for all fits it is therefore not possible to use a

constant error as in the previous model but to use a proportional error model.

The same settings for the sampling were used as for the clamp data set. The mean of the

previously determined parameters were used to define the prior distribution. Initially

also the standard deviation from the previous fit were used. However, the accuracy of

the resulting fits was low and in respond to that the standard deviation was adjusted.

The reported values in Tab.4 show all the values used for the sampling.

In Fig.21 example fits for high and low infusion rates are shown. Looking at the fits for

the low insulin infusion rates it seems like they are fitted well. This was to be expected

as the insulin infusion rates in the previous data set covered a similar range. The high

insulin infusion rates are of more interest as they are affected by the non linearity that

Table 4: Priors and posteriors for the insulin fits of the clamp data set. Prior values are

given before the are log transformed. Posteriors shown are the mean and STD over the

mean of all experiments

Priors Posteriors

Mean STD Mean STD

kIe 8.36e−01 1e−01 8.28e−01 1.10e−03

VI 1.04e−01 5e−02 6.32e−01 1.60e−02

kI 1.8e+04 2e+03 1.78e+04 8.30e+00

σ 8e−02 1e−02 1.49e−01 4.34e−03
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(a) The insulin infusion rates for red, green and blue are 5, 15, 30, respectively.

(b) The insulin infusion rates for red, green and blue are 810, 480, 240, respectively.

Figure 21: Insulin fit of high and low insulin infusion rates. Three exemplary insulin

fits for low (a) and high (b) insulin values are shown. The colors in the plots indicate

the insulin infusion rate. The measurements fitted are indicated by big dots. Other

measurements of the same infusion rate are shown as smaller dots of the same color.

The fits are shown in lighter colors with the 95% confidence interval. (a) The insulin

infusion rates for red, green and blue are 5, 15, 30, respectively.
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can be seen in Fig.13 while the low infusion rates can be modeled as linear. From the fits

in Fig.21 it can be seen that the model seem to be able to capture the steady states of

the high insulin infusion quite good. Though through variation in the data not all data

points are within the 95% HDI interval it however seems as if the average falls within it.

The results suggest that the proposed model is capable of describing the insulin steady

states for low and very high insulin infusion rates.

Following along the lines of the previous analysis it is wise the see how Bayesian in-

ference performed. Thus the trace plots of the parameters are explored first. They are

shown in Fig.22. The first observation that can be made is that there are again no di-

vergences. There is however a pretty big difference between the trace plot of VI and the

Figure 22: Chains of the Bayesian inference for the parameters. The chains of the three

parameter kIe, VI and kI that were estimated are shown from top to bottom. On the

right hand side the values the individual chains took during the Bayesian inference are

displayed. The left hand side shows smoothed histograms of these values. For clarity

reasons only every eighth fit is shown. The fits shown are representative for all fits.
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trace plots of keI and kI . While the plots of keI and kI show a distribution that looks the

same for all parameters, the plot of VI shows a different picture. The traces are located

at different values. Looking at the histograms of the traces makes this much evident. In

the case of keI and kI the individual parameters are located around the same value with

distributions that look similar to each other. The histograms in the case of VI however,

are spread out. The distribution differ between higher and lower parameter values. For

lower parameter values the distributions are smaller while for higher distributions the

distributions are wider. From the trace plot on the right hand side of Fig.22 it can be

seen that the density around 0.7 is higher than at the other places. The distribution

of keI and kI seem to follow a monomodal distribution. Succeeding the discussion of

the distributions of the parameters for the insulin fit of the clamp data, monomodal

distributions are expected. The spread of the distributions of VI in this case however

can not just justified by arguing with different data sets as the experiments in this data

sets are different to each other on purpose and are not supposed to follow the same

procedure. A more thorough analysis is therefore necessary.

Seeing that the biggest difference between the experiments should be the insulin in-

fusion rate it is reasonable to look there first. In order to do that the mean parameter

values are plotted against the insulin infusion rate used in their experiments. The plots

are shown in Fig.23 together with the respective Pearson correlation coefficient. Looking

at the plots and the Pearson correlation coefficient the same tendency can be observed

in all three parameters. With increasing insulin infusion rates the parameter take lower

values. In the case of VI the changes between the parameter values are of a much bigger

Figure 23: Correlation of the estimated parameters with insulin infusion rate. The

estimated parameter values are plotted against the insulin infusion rate used in the

respective experiment. The x-axis is in logarithmic scale. All three parameter show

correlation. The Pearson correlation coefficient is reported at the top of the figure.
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Table 5: Pearson correlation coefficient between the estimated parameters for the in-

sulin fit and the insulin infusion rates and the coefficient of variation for the estimated

parameters.

PCC CV

keI -0.572 0.001

VI -0.524 0.25

kI -0.649 0.0005

scale than in the case of keI and kI . With the coefficient of variation reported in Tab.5

it is clear that the variation of keI and kI is very small were as the variation in VI is

quite big. Because of the different scale of changes in the parameters only VI shows a

spread in posterior distributions of the individual experiments in Fig.22. Nonetheless all

parameter show a linear correlation between their values and the insulin infusion rate

which is supported by the Pearson correlation coefficient as reported in Tab.5. Changing

the prior distribution to be more narrow does not yield a different result. The param-

eters will still show this correlation. The a spread of the prior distribution however is

not limited to VI . With some changes in the priors it is possible to have multimodal

distribution similar to the one VI has in Fig.22 for keI .

From this it seems as if the fits are fitted by the parameters rather than the dynamics

in the model. Even if the fits of the data is not given by the dynamics of the model but

by the parameters the validity of the model of interest. For that reason the QQ-plots

of the fits in Fig.21 are shown as examples in Fig.24. These plots show that a normal

distribution for the model is reasonable assumption. While points are not always follow-

ing the linear regression exactly they still follow the general trend. A more quantitative

analysis is given by looking at the r values of the linear regression. The values lie in the

interval [0.63, 1] with a mean of 0.88. This suggest that the model is overall fitted good

to the data. While 0.63 is lower than the reported value of the tracer insulin fits it is

still high enough to show that model used is valid. The Pearson correlation coefficient

between the r values and the insulin infusion rate is given by -0.338. It seems as if the

model is valid for both low and the high values with a slight tendency towards a better

validity for lower infusion rates.
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Figure 24: QQ-Plot for insulin fits of the clamp experiments . Six example QQ-plots

from the insulin fit are shown with a linear regression fit. The y-axis shows the quantiles

of the fits starting at the first measurement point at t = 60. The x-axis shows theoretical

qunatiles of a normal distribution with mean zero and STD 1. The linear regression is

given by the blue line. The respective r-value of the linear regression is displayed in the

upper left corner of each plot. In comparison to Fig.20 the linear regression is followed

close.

5.4.3 Glucose

The process of determining the parameters for the glucose model in Eq.5.11 is separated

into three steps. The first two steps will be performed on the tracer glucose data set

while the last one is done with the clamp data set. For all steps the previous determined

insulin parameter will be used. In the first step the tracer glucose data will be used. As

the dynamics of tracer glucose should be identical to the the dynamics of endogenous

glucose any parameter estimated for the tracer model should be able to be used in the

glucose model. Using tracer glucose has the benefit of no endogenous glucose produc-

tion. With no endogenous glucose production, the dynamics of tracer glucose are given

by the exogenous input, which is known, and the removal terms. Thereby reducing the

parameter that need to be determined. In the second step, the parameter for the en-

dogenous glucose production will be determined using the previous determined glucose

removal parameter leaves again fewer parameters to be determined. In the last step, the

glucose of the clamp data will be fitted with the parameters of the previous models as
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prior.

To determine the parameter of the glucose removal the tracer data is used. As described

in Section 4.2 the tracer is initially injected with a bolus at t = −90 alongside a con-

stant tracer infusion. At t = 0, the constant infusion is replaced by a infusion that is

proportional to the injected GIR. As stated in the previous Section 5.3.2 the one com-

partment model is not able to describe a bolus injection. Starting the fit at t = −90

is therefore not possible. Instead it necessary to wait until the bolus is distributed and

removed and the dynamics of the tracer glucose is mainly determined by the infusion.

The dynamics of the bolus are still in effect at the start of the experiment at t = 0. To

avoid complications because of that the fit will start at the measurement point at t = 60

where the effect of the bolus should have decreased enough for the model to work. Since

glucose has an insulin dependence it is necessary to include insulin in the ODE model.

With the insulin parameter determined in the previous chapter, they will be fixed. The

ODE model used for the fit is then given by,

dI

dt
= −kIeI

(
0.8

kIVI
kIVI + I

+ 0.2

)
+XI , (5.17a)

dT

dt
= −kGe

T

kGVG + T

Itotal
kIVI + Itotal

+XT , (5.17b)

[I] =
I

VI
, (5.17c)

[T ] =
T

VT
, (5.17d)

I(60) = Iexp(60), (5.17e)

T (60) = Texp(60). (5.17f)

XI and XT are the insulin and tracer infusion, respectively. The total insulin concen-

tration follows Eq.5.10. The initial conditions are given by Iexp(60) and Texp(60) which

are the insulin and tracer measurements at t = 60.

The statistical model used for the Bayesian inference in Stan is given by,

yij ∼ N
(
f(tij ; θi), σ

2
)
, (5.18a)

θik ∼
i.i.d.

Lognormal
(
log(βk), ω2

k

)
, (5.18b)

with f being the numerical solution of the model in Eq.5.17 integrated with a fourth

and fifth order Runge-Kutta method and θ = (kGe, kG, VG) being the parameter of the

model are going to be fitted.

For the statistical model a normal distribution with a constant error model was used.

Since the bolus part of the tracer glucose data is not plotted and the tracer glucose
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infusion rate is proportional to the GIR which is is used to keep the glucose at a target

value it is reasonable to assume that the tracer glucose will not show huge changes in

its concentration. This assumption is supported by the data. A constant error model

therefore should be a good fit. The parameters θ follow a log-normal distribution.

This allows for the values to be strictly positive defined without having to use a hard

constraints to only allow positive parameter values.

Finding values for βj and ω2
j proved to be difficult. Running the Bayesian inference

with a broad prior distribution lead to either divergences or saturation of the maximum

tree depth. Increasing the tree depth did not lead to better results but increased the

running time of the code severely. To increase the chance of convergence better prior

distributions needed to be found. In a similar approach as for the insulin, the model was

first manually fitted. During this fitting process it became obvious that the parameter

θj are not independent of each other; they are correlated. It follows that there is more

than one possible combination of θj ’s that are capable of fitting the model to the data.

Figure 25: Tracer fits. Four example tracer fits are shown. All tracer measurements

are indicated as grey dots. The fitted experiment is shown as bigger colored dots. The

fits are given in the same color with their 95% confident interval. The fits are in the

same range as the measurements and follow most of the time the general dynamics of

the measurement.
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With no steady state constraints, the parameter space was only limited to positive

values. However, some information about the apparent volume of distribution VG could

be gained from the bolus injection and the following infusion as the are given in amounts

while the measurements are in concentrations. With Eq.5.17d a rough estimate of the

apparent volume of distribution VG could be made. That left only the estimation of kGe

and kG open. The approach to estimate these parameters was to look at kG first and

estimate kGe accordingly. This approach was chosen as kG was the Michaelis-Menten

constant and as that determines the nonlinear glucose dependent glucose removal. The

final values used for βj and ω2
j are reported in Tab.6.

For the Bayesian inference four chains were used with 2000 iterations each of which

1000 iterations were used as a burn-in period. The adapt delta was set at 0.8 and

the maximum tree depth was set to 10. In addition to these, thinning was set to 2 to

increase the number of effective draws without increasing the memory necessary.

The means and STD of the resulting fit values are in Tab.6. Fig.25 shows four example

Figure 26: Estimation against observation. The estimated values all experiments are

plotted against each other. The black lines indicates the case in which estimation would

be equal to the observation with the red line being ±1 STD. From this figure it follows

that no systematic errors occur in the fits. Further it can be seen that a significant

amount of points lie outside ±1 STD
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Table 6: Priors and posteriors for the tracer fits of the tracer data set. Prior values are

given before the are log transformed. Posteriors shown are the mean and STD over the

mean of all experiments

Priors Posteriors

Mean STD Mean STD

kGe 8.5e+03 5e+03 8.11e+03 3.45e+03

VG 2.6e−01 3e−02 2.59e−01 1.91e−04

kG 2.45e+04 5e+03 2.41e+04 1.51e+02

σ 2e+02 2e+01 2.24e+02 2.52e−00

fits with their corresponding 95% confidence interval. The fits show an agreement with

the data. While the fits are capturing most of the features of data they are not able to

describe it entirely. In many cases, the data points even lie outside the 95% confidence

interval. However, it does not seem as if the fits have any systematic errors. As there

are 44 experiments it is not possible to do a qualitative analysis for all individual fits.

For that reason, the predictions of the fits at the time of measurement have been plotted

against the observations in Fig.26. The black line shows yfit = yobs, with the red lines

being ±1 standard deviation σ, that has been determined during the Bayesian inference,

around yobs. Whereas it is difficult to see a single experiment, Fig.26 is able to provide

some information about the models ability to fit the data. Fig.26 supports the earlier

sentiment that no systematic errors are observed. The data is evenly distributed around

the measurements. A distribution of the fitted values that would have been located

mainly above or below could have indicated a systematic error in the model. Fig.26

further supports the observation, that the differences between the measurement and

the fitted value can be quite large. A significant amount of points lie outside of one

standard deviation. While this shows a similar trend as Fig.25 it is notice that the

standard deviation in Fig.26 and the 95% confidence intervals in Fig.25 are not the

same.

Next the Bayesian inference itself will be evaluated. In Fig.27 the traces of the

individual plots for the parameters are displayed. The plots from VG and kG show an

overlap of the individual histograms from the individual fits. While not being identical

but following along the same distribution is what is wanted and what was expected. This

behaviour allows for individuality of the the individual while still following a general

joint distribution. Looking at the trace plot and the corresponding histogram of kGe it

is, however, quite obvious that this is not the case here. The distributions are spread
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Figure 27: Chains of the Bayesian inference for the parameters. The chains of the three

parameter kGe, VG and kG that were estimated are shown from top to bottom. On the

right hand side the values the individual chains took during the Bayesian inference are

displayed. The left hand side shows smoothed histograms of these values. For clarity

reasons only every eighth fit is shown. The fits shown are representative for all fits. The

distributions of the estimated parameters for the individual experiment of VG and kG

lie close to each other. The distributions of kGe however are spread out.

out over a range of almost one magnitude and are mostly not aligned with each other.

They all follow a monomodal distribution but without seeming to have a general joint

distribution. Combining the histograms together yields a multimodal distribution that

does not agree with our prior distribution of a log-normal. As mentioned above, during

the manual fitting of the model a correlation between the parameters was observed.

From the trace plots and histograms no correlation can be observed. looking at the

pair plot in Fig.28 shows that the parameters are not uncorrelated. Indeed, kG and kGe

are correlated while VG is independent of either of them. Because of the multimodal
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distribution of kGe any pair plot with it will display these modes. These plots can still

show a correlation between parameters as in the independent case all modes should

be evenly distributed as can be see in the pair plot of kGe and VG. The plot between

kGe and kG on the other hand show that the values are not independent of each other.

This observed correlation between kG and kGe during the manual fitting is confirmed by

Fig.28. It is not surprising that any variation of the model manifests in kGe as both, kG

and VG, have pretty strict priors whereas the prior for kGe was left loose. With a more

strict prior it was not possible for the Bayesian inference to fit all the parameters. The

cause for the variation in kGe can be tracked to the insulin infusion rates. Plotting the

kGe values in dependence of the insulin infusion rate shows a clear correlation between

the two. Indeed, the plot looks pretty similar to the resulting plot of the mean tracer

infusion rate versus the insulin infusion rate. From here it follows that the insulin

dependent glucose removal is not working as intended.

To validate the statistical model of the fit, Eq.5.18, Q-Q plots are used. Fig.29 shows six

Figure 28: Pair plot of estimated values of the parameters. The estimated values of all

three parameters of all experiments are plotted against each other. From the plots it

can be seen, that VG shows no correlation with any other parameter. Between kGe and

kG a correlation is visible.
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example plots. Q-Q plots are used to verify if our model is follows a normal distribution

as hypothesized in the statistical. Looking at the plots, the quantiles follow the fitted

linear regression in a wave like pattern. This indicates that the values produced by the

Bayesian inference follows a normal distribution. However, the wave like pattern would

suggest that the posterior distribution has heavier tails or is more skewed. The S shape

in these seem to be more pronounced than in the Q-Q plots of the insulin fits.

With the fit of the tracer data done and validated the next step of the parameter

estimation of the glucose model can be looked at. As lined out in the beginning of

the chapter the next step is to determine the parameter of the EGP . To do so, the

tracer-glucose relation will be used. As the the tracer should follow the same dynamics

as the glucose, the previously determined parameter kGe, VG and kG will be used as

fixed parameters for the glucose model. Since the tracer data and the glucose data were

measured in the same experiment, fixing the parameters should yield a working glucose

Figure 29: QQ-Plot for glucose tracer fits. Six example QQ-plots from the insulin fit

are shown with a linear regression fit. The y-axis shows the quantiles of the fits starting

at the first measurement point at t = 60. The x-axis shows theoretical qunatiles of a

normal distribution with mean zero and STD 1. The linear regression is given by the

blue line. The respective r-value of the linear regression is displayed in the upper left

corner of each plot. The plots show a stronger S shape than both QQ-plots of insulin

plots. This indicates that the distribution of the tracer fits is more skewed or has heavier

tails then the distributions of the insulin fits.
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removal in the glucose model. The EGP will then be fitted using Bayesian inference

again.

The model that will be fitted is given by,

dI

dt
= −kIeI

(
0.8

kIVI
kIVI + I

+ 0.2

)
+XI , (5.19a)

dG

dt
= EGP − kGe

G

kGVG +G

Itotal
kIVI + Itotal

+XG, (5.19b)

EGP = max(kEGP,0 − kEGP,GG− kEGP,II, 0), (5.19c)

[I] =
I

VI
, (5.19d)

[G] =
G

VG
, (5.19e)

I(−30) = 0, (5.19f)

T (−30) = Texp(−30). (5.19g)

with the parameters being defined as above and XI and XG being the insulin and GIR,

respectively.

The statistical model follows Eq.5.18 with f being the numerical solution of Eq.5.19b

and θ = (kEGP,0, kEGP,G, kEGP,I). βj and ω2
j are the corresponding values defining the

prior distribution.

For the fitting of the EGP a similar approach as in the fits before have been used. An

initial run of the model was done with the only prior being that all parameters need

to be positive. The fit did not converge. For a higher chance of convergence, better

priors are needed. Again following the approach from the fits before, the EGP was

fitted manually. During that process two problems arose.

First, the parameters of the EGP are correlated. Looking at Eq.5.19c the dependence

is quite obvious. However, a limitation is given by kEGP,0 as kEGP,0 needs to be at least

be big enough to provide a steady state when kEGP,G = kEGP,I = 0. This still leaves a

huge range for all three parameters.

Second, the glucose measurements can be separated into two phases, t < 0 before the

experiment and t ≥ 0 the experiment. For t < 0, the system should be in a steady state.

Neither the GIR nor the insulin infusion have started at that time. The EGP should

produce glucose. For t ≥ 0, the steady state system is perturbed. GIR and insulin

infusion have started. During that phase the EGP could be active all the time, active

some times or inactive all the time depending on the glucose and insulin blood concen-

trations. Over the two phases, the glucose blood concentration changes only slightly

while the insulin blood concentration increases significantly. The difficulty is find pa-
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rameters that are able to describe both phases at the same time. To get a better feel for

the problem the EGP can be simplified. Since the blood glucose concentration is not

changing a lot, kEGP,G ·G can be assumed constant. With kEGP,G ·G assumed constant

the EGP can be reduced to two parameters given by EGP = kEGP,0G − kEGP,II with

kEGP,0G = kEGP,0 − kEGP,GG.

Even with this simplification, it was not possible to fit Eqs.5.19b. The EGP could be

adjusted to fit the steady state phase or the experimental phase but not both at the

same time. Fig. shows an example fit of the solution of the model described in Eqs.5.19b

for three cases: EGP = 0, EGP fitted for the steady state phase and EGP fitted for

the experimental phase. The fitting has been performed by hand and is mainly illustra-

tive. In the case of EGP = 0 (green line), the glucose concentration is decreasing until

Figure 30: Plot of glucose for different configurations of the EGP . Three different

configuration of the EGP are plotted. The data is separated into two phase, t < 0

and t ≥ 0. The other parameter values are were taken from previous fits of the tracer

glucose and insulin. The orange line shows the plot of the glucose model with no EGP .

No phase is described good. The blue line shows a plot where the EGP is fitted for

first phase. The second phase is described in a good way. For the green line the EGP

was fitted to the second phase. Only after an initial stabilisation the second phase is

described well. The first phase is not described good.
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t = 0 when the GIR sets in and the blood glucose concentration stabilizes between 2 and

3 pM. The curve follows the dynamics of the glucose measurements but with an offset.

When fitting for the steady state phase (blue line), the first few data points are fitted

well but at t = 0 the blood glucose concentration raises until it stabilizes between 8 and

7 pM, above the measurement. Again, the dynamics of the measurement are followed

but with an offset. In the last case, when the EGP is fitted for the experimental phase

(green line), the blood glucose concentration in the steady state phase is decreasing until

t = 0 where it it starts to raise until it stabilizes around the measurement points. The

dynamics of the measurements are followed again.

All three fits are able to follow the dynamics of the model with or without an offset at

different times. However, non was able to describe the blood glucose concentration for

the whole duration of the measurement. Without being able to describe the EGP and

therefore not being able to fit the blood glucose dynamics, no further analysis of the

model has been done. While it would have been possible to fit the data in a similar way

as the tracer glucose, by removing the part that can not be described by the model, it

would have been a bigger limitation to the models capabilities.

The reason why it is not possible to estimate the EGP and therefore the fit the glucose is

difficult to determine. One possibility would be, that the chosen EGP term is not capa-

ble of capturing the dynamics. At the moment that would be difficult to show. Another

possibility would be, that the glucose model has shortcomings in its description of the

glucose removal. With the tracer model being able to capture the tracer dynamics and

the plots of the glucose in Fig.30 also being able to capture the dynamics even though

they are offset it seems unlikely that the problematic lies within the glucose dependent

glucose removal. However, the problem might lie within the insulin dependent glucose

removal. As can be seen from Fig.30 blue plot, when the EGP is fitted to capture

the steady state the model gives too high of glucose output over the whole duration of

the experiment. As the insulin is in a steady state for most of the experiment, see e.g.

Fig.21, it might be possible that insulin dependent removal of glucose is underestimated.

Possible complications with the insulin dependent glucose removal could be due to the

simplification made in the model, where the Michaelis-Menten constant from the insulin

model was also used for the glucose model. This underestimation of the insulin removal

could also be the reason why the parameter values of kGe were correlated to the the

insulin infusion rate and therefore to the insulin steady state values.
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6 Conclusion

In this thesis two models for the euglycemic hyperinsulinemic clamp experiment were

proposed and examined by fitting to experimental euglycemic hyperinsulinemic clamp

experiment data from rats using Bayesian inference in Stan. To fit the individual data,

a hierarchical model has been used. The distributions of the individual parameters were

expected to follow a the same population distribution with some variation between the

parameters.

The first model proposed was a model of the insulin glucose system consisting of two

two-compartment models for insulin and glucose each that interact with each other.

Similar models have been proposed before, e.g. [18]. However, the data sets used show

a behaviour that offers a different approach to some of the terms in the model. The new

proposed terms should allow for the model to describe the euglycemic hyperinsulinemic

clamp experiment for low and very high insulin infusion rates. In the initial step it was

attempted to fit the model to IV data. It proved, however, to be not possible to fit

the proposed hierarchical model to the data. While a simplified version of the model

was able to describe the data, as can be seen in Fig.32, it was not possible to fit it in a

hierarchical fashion for all parameters. It was considered if even the simplified version

of the model was too complex for to be fitted. However, it is known that the simplified

version of the model is apriori identifiable and therefore should be able to be fitted.

Other reasons that were considered are the quality of the data and the Bayesian infer-

ence used. Without being able to determine the reason for the inability to fit the model

it was decided that moving forward a less complex version of the model will be used.

The reduced model only contained a one-compartment model for both insulin and glu-

cose. With the reduction of the model, it follows that some dynamics of the glucose

insulin system can not be described anymore, mainly IV curves. This, however, should

not hinder the models ability to describe the euglycemic hyperinsulinemic clamp exper-

iment. In the first step the model was used to describe the insulin measurements of

the experiments. As can be seen in Fig.21a and 21b the model was able to capture the

these. But, further analysis showed that a correlation between the parameters and the

infusion rate exists. This finding suggest that it was not the terms of the model that

captured the changing dynamics but the parameters. In the next step the model was

used to describe the glucose dynamics. For that tracer measurements were analysed.

Fig.25 shows that the model was able to capture the dynamics of the model. But, sim-

ilar to the insulin fit, the fit was driven by the parameters and not the dynamics of the

terms. In the last step, the glucose was to be fitted by using the previously determined

parameters from the tracer fit to find the values of the EGP . This proved not to be
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possible. Possible reason for that are that are a wrong implementation of the EGP or

even errors in the model that lead to the point that the EGP could not be estimated.

In conclusion, the proposed models did not work. While the reduced model was able to

capture some of the dynamics, it was not due to dynamics implemented in the model

but due to the parameter changing.

6.1 Outlook

As the proposed model was not able to describe the observations from the euglycemic

hyperinsulinemic clamp experiments a new approach needs to be found. A first starting

point could be to look at the simplifications made in this model and see if they were the

reason for the failure. If this yields no results, a new approach for the removal of insulin

is needed.

Another possibility would be to try out a different approach to the estimation of the

parameters of the model. It is possible that the inability of the fitting of the model

does not lie within the model but within the approach and the program used. In this

thesis no cross validation between different fitting methods were used nor were different

platforms for Bayesian inference considered.
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A Tracer Models

A.1 Two-Compartment Model

The model for the tracer glucose follows Eqs.5.4 pretty close. With tracer glucose not

being able to be produced by the body, no EGP term is necessary. Further the insulin

independent clearance of glucose, FCNS , needs to be scaled as G� T . For that simply

the fraction of the two amounts is taken.

The model is then given by,

dTC
dt

= −k1TC + k2TP −
TC
GC

FCNS , (A.1a)

dTP
dt

= k1TC − k2TP − nGPGP
TP

kGPVGP + TP

IP,total
kIPVIP + IP,total

, (A.1b)

[Tj ] =
Tj
VGj

, forj = C,P, (A.1c)

with TC , TP , [TP ] and [TC ] being the glucose amounts and concentrations in the central

and peripheral compartment. k1 and k2 are the transfer rates between the central and

the peripheral compartment, VGC and VGP are the apparent volume of distribution of the

central and peripheral compartment, FCNS is the insulin independent glucose uptake

of the central nervous system, nGP is the removal rate parameter in the peripheral

compartment, kGP and kIP are Michaelis-Menten constants for a glucose dependence

and a insulin dependence in the peripheral compartment, respectively and IP,total is the

total insulin concentration in the peripheral compartment.

A.2 Reduced Model

The tracer model follows the glucose model Eq.5.11 very close again. Like in the previous

model the EGP term is removed and all the other terms are kept. The tracer model is

therefore given by,

dT

dt
= −kGe

T

kGVG + T

Itotal
kIVI + Itotal

(A.2a)

[T ] =
T

VG
, (A.2b)

with T , [T ] being the glucose tracer amount in the blood and blood glucose tracer con-

centration, respectively and the other parameters being the same as described in the

glucose model.
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B Parameter Estimation Two-Compartment Model

The model that is to fit the data is given by Eqs.5.1, 5.2, 5.3, 5.4, 5.6, 5.7 and A.1. It

contains a total of 15 parameters.

The size of the model does not allow for to fit everything in go. The plan was to

determine all the parameter in an iterative fashion. The parameters determined in

previous iterations will then be used to determine the remaining parameters building

up. In the first step steady state conditions and extrapolation are used to reduce the

parameter need to be estimated by fitting as much as possible. This step has been done

in Section 5.4.1. The next step is to use the IV data for the insulin concentrations

and the tracer concentrations. These should be able to yield the transfer rates in both

models. The next step would be to use only the insulin data to determine the parameters

in the removal term. In the next step the tracer data will be fitted. The tracer fit has the

benefit of not having a EGP and therefore reducing the amount of parameters needed to

be determined in one fit. In the next and final step the clamp data will be fitted. Using

all the information gained in the previous fits only the EGP needs to be determined

without any prior knowledge.

B.1 IV Fits

The goal in this section is to use the IV data to determine as many parameters as

possible. The priority however lies on determining the transfer rates k12, k21 and k1, k2

for the insulin and the glucose model, respectively.

For the fitting a statistical model needs to be set up. As the goal is to describe and

capture the variance between the individual rats a hierarchical model will be used.

The insulin and glucose fit will use the same structure for their statistical model. The

structure of the model is given by,

yij ∼ N
(
f(tij ; θi), f(tij ; θi)σ

2
)

(B.1a)

θij ∼
i.i.d.
N

(
log(βj), ω

2
j

)
, (B.1b)

following the general definition of hierarchical models in Eq.3.7.

For the function f(tij , θi) the numerical solution of Eq.5.1 and Eq.A.1 will be used for

the insulin and the tracer fit, respectively. As the IV data spans over multiple orders of

magnitude a proportional error model is used. The θi are the fit parameters from the

models. Since all parameters in the model are defined as larger then zero a log-normal

prior is used in Eq.B.1b.

For the IV fit of the tracer model some assumptions are necessary. Since no insulin data
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is provided in the tracer IV data set we assume basal insulin levels. Additionally we

assume that the infusion of tracer glucose does not disturb the system as in all tracer

experiment. The insulin levels are therefore taken as constant.

The initial conditions for the tracer IV fit are given by

TC(0) = Tbolus (B.2a)

TP (0) = 0. (B.2b)

Since tracer glucose is not produced endogenously and is not injected prior to the start

of the experiment its amount in the central compartment is equal to bolus amount while

the amount in the peripheral compartment is zero.

This left seven parameters to be determined in the fit. Running Bayesian inference on

this model yielded no results. Determining the seven parameters without prior knowl-

edge of their values proved not to be possible. As the main interest of the IV data were

the transfer rates the model was simplified.

In order to reduce the amount of parameters the removal term in the peripheral com-

partment got reduced to a linear removal term depending on the tracer concentration

in the peripheral compartment. The resulting model takes the form,

Figure 31: Mean fit of the tracer glucose IV curves. All tracer IV curves are fitted at

the same time for one set of parameter. In this setup it was possible to fit the whole

model.
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Figure 32: Tracer fit of the IV curves. Four example fits of the glucose tracer IV curves

are shown. The dynamics of the curve are well described. However, it was not possible

to fit the whole model to curves. The removal rate has been fixed in this case.

dTC
dt

= −k1TC + k2TP (B.3a)

dTP
dt

= k1TC − k2TP − VTPTP , (B.3b)

reducing the number of parameters needed to be determined from seven to four. The

initial conditions are unchanged.

Using Eq.B.3 the fits in Fig.31 are produced.

The initial conditions for the insulin fit are similar to the tracer ones. As the injected

insulin is a different analogue then the endogenous insulin the blood insulin will be zero

prior to the injection. Thus at the time of injection the insulin concentration in the two

compartments is given by

IC(0) = Ibolus (B.4a)

IP (0) = 0. (B.4b)

For the insulin fit we followed the approach from the tracer IV fits and simplified the

model. Opposed to the tracer model the insulin model contains a removal term in both

compartments. The simplification can therefore be done in multiple ways.

The four simplification considered here all follow a similar structure; the removal terms
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in each compartment are either linearized or removed. The model will take the form

dIC
dt

= k21IP − k12IC − VICIC (B.5a)

dIP
dt

= −k21IP + k12IC − VIP IP (B.5b)

with 1.) VIC 6= 0 and VIP 6= 0, 2.) VIC = VIP 6= 0, 3.) VIC = 0 and VIP 6= 0, and 4.)

VIC 6= 0 and VIP = 0 for the four simplifications considered.

1.) is closest to the full model as it has a removal rate in each compartment with different

removal rates between them. It therefore has the largest number of parameters that

needs to be determined. Simplification 2.) also has a removal term in each compartment

but the removal rates are set to be the same. Reducing the number of parameters that

need to be determined by one. The simplifications 3.) and 4.) both have one removal

term, in the central and in peripheral compartment, respectively. They have the same

amount of parameters as 2.) but the dynamics are more simple.

B.2 Results and Discussion

The fits of the IV data for insulin and tracer proved difficult as it was not possible to

do the hierarchical fits describe in SectionB.1. It was, however, possible to use all data

points to estimate one set of parameters for both the insulin and tracer IV data. The

fit for the tracer IV is displayed in Fig.31

While Fig.31 shows that the simplified tracer model is able to describe the dynamics

seen in the tracer IV curves Stan was unable to fit the hierarchical model. Even more

surprisingly Stan was not able to fit individual curves consistently even when presented

with very good priors, e.g. parameter values from the average fit. Fixing one parameter

and thereby reducing the number of parameters needed to be estimated yielded in a

positive change. With only three parameters to be estimated individual IV curves could

be fitted reliably. Furthermore it was possible to run the hierarchical model. The fit of

each individual curve is shown in Fig.32. As we are mostly interested in the transfer

rates k1, k2 the removal rate VM was set constant to the value determined in fit of the

average.

Similar to tracer IV fit the insulin IV curves could be described by model, however it

proved not to be possible to fit a hierarchical model to the IV data provided in the data

set. Applying simplification to the model to reduce the number of parameters that need

to be determined did not suffice in making the fit of the hierarchical model possible. It

was however possible to fit the average of the model using all the data provided. This,

at least, shows that the model is capable of capturing the dynamics to some extent.
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Using the parameter estimated this way as prior while fixing one of them allowed for

the fitting of the hierarchical models. It follows from here that the single IV curves do

not provide enough data to allow the estimation of all the parameters of the model for

the fitting with Bayesian inference.

An indicator to whether to problem lies within the model to fit, the data or the fitting

algorithm could be gotten by an a priori analysis of the models. In fact, for the simpli-

fied models used for the IV fits in the end a priori analysis have been performed [24].

The simplified tracer model as well as the simplifications 3.) and 4.) for the insulin

model are identifiable, simplification 1.) is unidentifiable and simplification 2.) is not

mentioned. As the simplification 1.) of the insulin model is the only one that could

not be fitted at all it seems like that the models are conform with the a priori analy-

sis. This, however, does not provide any additional information on why the hierarchical

model failed while the average model worked.

As we are unable to use hierarchical models for the simplest model we decided to use a

different model and keep working with Bayesian inference and Stan.

C Markov Chain Monte Carlo and No-U-Turn Sampler

To use Bayesian inference for parameter estimation programs have been developed. The

program used in this thesis for Bayesian inference is Stan [25]. Stan is platform for

statistical modeling and high-performance statistical computational.

Bayesian statistical inference in Stan is implemented through two Markov Chain Monte

Carlo (MCMC) algorithms, the Hamiltonian Monte Carlo (HMC) algorithm and its

adaptive variant the no-U-turn sampler (NUTS). MCMC is a method for constructing

and sampling from an posterior distribution. The method is based on drawing values

of θ from an approximate distribution and then correcting these to better approximate

the target distribution p(θ|y). The approximate distribution therefore should converge

towards the target distribution with every step in the simulation. The distribution of

the sampled draws depends only on the last drawn value and therefore forms a Markov

Chain.

Fig.33 shows a simple example of a Markov Chain simulation using a Metropolis al-

gorithm with two parameters θ that both follow a normal posterior distribution N ∼
N (0, I). While the Bayesian inference shown in Fig.33 uses a Metropolis algorithm the

general idea is the same as in the algorithm used in Stan. In the figure five chains with

different initial positions are shown. The black dots indicate their initial position. From
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Figure 33: Markov Chain simulation. Five independent sequences of a Markov Chain

simulation with two parameters both following a normal distribution. Starting points

are indicated by black squares. The lines from each square is the Markov Chain. A shows

the first 50 iterations. The chains have not converged. B shows the first 1000 iterations.

All chains have converged. C shows the last 500 iteration of the Markov Chain. They

represent a set of draws from the target distribution. No points are overlaying each

others. From [13]

there they are doing steps according to the Metropolis algorithm exploring the param-

eter space. The positions each chain took are indicated by the black lines. As there

two parameters, the chains in this case move in a two-dimensional parameter space.

Increasing the amounts of parameters increases the dimensions of the parameter space

accordingly. In this example, the two parameter both follow normal posterior distribu-

tion with mean zero, N ∼ N (0, I). Following the Metropolis algorithms, all the chains

converge to the parameter space that is described by the normal posterior distribution,

see B in Fig.33. Removing the chains and adding a point for every position visited yields

Fig.33 C. These points then build the posterior given by the Bayesian inference. The

algorithms used in Stan are working on a similar principle. Chains are used to explorer

the parameter space to be able to describe the posterior distribution of the parameters.

The HMC uses an approximate Hamiltonian dynamics simulation to suppress local ran-

dom walk behaviour used by other algorithm such as the Metropolis algorithm. That

allows for the HMC to move more rapidly through the target distribution.

In HMC every θj is assigned an auxiliary momentum variable ρ. Both θ and ρ are then

updated together. The posterior distribution p(θ|y) is augmented by the independent

distribution p(ρ), defining the joint distribution as

p(ρ, θ|y) = p(ρ)p(θ|y). (C.1)

From this simulation only θ is of interest for us. The inclusion of ρ is merely there to

help the algorithm move fast through the parameter space.

72



In Stan the auxiliary momentum distribution is a multivariate normal that does not

depend on the parameters θ. It has a mean of 0 and the variance is given by the

Euclidean metric or mass matrix M ,

ρ ∼ N (0,M). (C.2)

Stan sets M−1 equal to a diagonal estimate of the covariance computed during the warm

up.

From the joint distribution p(ρ, θ) a Hamiltonian can be derived,

H(ρ, θ) = − log p(ρ|θ)− log p(θ) = T (ρ|θ) + V (θ). (C.3)

Evolving the system via Hamilton’s equations for θ and ρ leaves a two state differential

equations that needs to be solved,

dθ

dt
= +

∂T

∂ρ
(C.4a)

dρ

dt
= −∂V

∂θ
. (C.4b)

To solve these equations Stan uses the leapfrog integrator which is a numerical inte-

gration algorithm that is specifically adapted to provide stable results for Hamiltonian

systems of equations. Each iteration of the HMC consists of three steps:

1. A random ρ is drawn from its posterior distribution, Eq.C.2

2. The θ and ρ are updated simultaneously solving Eqs.C.4 using the leapfrog inte-

grator. The leap frog step is repeated L times, each scaled by a factor ε:

ρ← ρ− ε

2

∂V

∂θ
(C.5a)

θ ← θ + εM−1ρ (C.5b)

ρ← ρ− ε

2

∂V

∂θ
(C.5c)

3. After all L steps are done parameter a Metropolis acceptance step is done. The

probability of keeping the generated (ρ∗,θ∗) generated from (ρ,θ) is given by

min(1, exp(H(ρ, θ)−H(ρ∗, θ∗))). (C.6)

If the step is not accepted the previous parameters are returned for the next draw

and used for the next iteration.

For the HMC the discretization time ε, the metric M and number of leap frog steps L

need to be specified. The sampling efficiency of the of the algorithm is highly sensitive
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to the choice of these three parameters. To avoid this problem, the No-U turn sampler

(NUTS) has been developed [26]. The workings of NUTS are described in [26].

To use the NUTS for the sampling of the Bayesian inference no arguments need to be

given besides the ones for the Bayesian inference. Optional the max treedpeth of the

NUTS can be adjusted. By default it is set to ten.
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