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Abstract

While it has been known for decades that most atomic nuclei can exhibit intrinsic deforma-
tion, it has recently been realized, that this information also can be accessed in ultra-relativistic
AA collision at LHC energies. This motivates the exploration of high and low-energy exper-
iments to act in conjecture with each other and to probe past the strong force to precisely
characterize nuclear structures. Using higher order standardized cumulants of transverse mo-
mentum correlation κ̃(p′mT ), a novel approach to accessing the initial conditions such as energy
density and nuclear shape is presented. By analysing ultra-relativistic heavy-ions collision of
129Xe and 208Pb at LHC energies and comparing the transverse momentum pT spectrum, it
is investigated how quadrupole deformation β2 and triaxiality γ affects the final pT spectrum.
Monte Carlo models such as HIJING and AMPT are employed to interpret the experimental
results and provide a deeper understanding of the observed phenomena. The results show that
while it should be possible to access information about the nuclear structure using standardized
cumulants κ̃(p′mT ), the current theoretical understanding of the probe does not allow for direct
extrapolation of these quantities.
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3. Generic formula for cumulants of mean transverse momentum fluctuation
Poster presentation at Quark-Matter 2022

4. Searching for a droplet of QGP in proton-proton collisions
Poster presentation at Dansk Fysisk Selskab Årsmøde 2019
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1 INTRODUCTION

1 Introduction

In this introductory chapter, I will present the relevant terminology, theoretical concepts, and
experimental aspects necessary for understanding the intricate phenomenology of heavy-ion
physics and nuclear structure. Firstly, I will introduce the effective theory that describes the
fundamental particles and forces in our universe, known as the Standard Model (SM). This will
lay the foundation for a comprehensive explanation of ultra-relativistic heavy-ion collisions and
their ability to serve as a means for probing the strong nuclear force. This will be followed by an
explanation of the theoretical framework addressing nuclear deformation in both low and high-
energy physics and how the coupling between the two fields can provide precise measurements
of nuclear structures. Finally, the chapter will introduce the nuclear structure frameworks used
in this thesis and in high-energy physics in general.

1.1 The standard model

The Standard Model (SM) of particle physics consists of the most fundamental description of all
matter and interaction in our universe (not including gravity). The SM divides particles into two
main types depending on the intrinsic quantity spin. The first type is the matter particles known
as fermions, which constitute our visible universe. Fermions are particles with a half-integral spin
that obey Fermi-Dirac statistics, which govern the behavior of indistinguishable particles. This
is primarily described by the Pauli’s exclusion principle, which describes the unique occupation
of energy eigenstates in a quantum system [1, 2]. The second type is bosons, which act as
the force carriers of all known matter and constitute the most fundamental exchanges between
interacting particles. The bosons have a one-integral spin, and obey the laws of Bose-Einstein
statistics. This is are contrary to fermions, meaning that a collection of bosons can occupy the
exact same quantum state [1, 2]. A summary table of the SM particles and their respective
properties, including mass, spin, and charge, can be seen below in Figure 1.1.
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Figure 1.1: Illustration of the standard model of particle physics

Additionally, the fermions are split into quarks (q) and leptons (ℓ), each containing six particle
species, commonly referred to as flavors. Each particle has a corresponding antiparticle, carrying
the opposite charge but the same mass and spin1. The antiparticles are denoted as q̄ and ℓ̄ for
antiquarks and antileptons, respectively. Both quarks and leptons are arranged into generations

1Additionally, the antiparticles also carry the opposite flavor quantum number
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1 INTRODUCTION

that reflect a hierarchical mass structure, which increases according to the generation number[3].
Each generation of quarks contains two flavors: one carrying an electric charge of +2/3 and one
carrying a negative charge of −1/32. The six flavors of quarks are called up (u), down (d),
charm (c), strange (s), top (t), and bottom (b). Although quarks are fundamental particles,
they are never observed freely but only in the confined state as hadrons, either as quark triplets
known as baryons (qqq), antibaryons (q̄q̄q̄), or as quark doublets known as mesons (qq̄). Some
well-known examples of baryons are protons and neutrons consisting of (uud) and (udd) quarks,
respectively. Additionally, the confinement of quarks inside baryons gives rise to the baryon
number.

B ≡ Nq/3 = [N(q)−N(q̄)] /3

Here, N(q) and N(q̄) denote the total number of q and q̄ present, respectively. While primarily
an empirical law, the baryon number is a conserved quantity in all known interactions [4].
Consequently, this implies that each quark carries a baryon number B = 1/3, while anti-quarks
carry B = −1/3. This conservation ensures that no free quarks are observed or left alone in
interactions, which aligns with experimental observations. Each generation of leptons consists
of a charged lepton ℓ and an associated neutral lepton (typically denoted as νℓ). The charged
leptons interact via both electromagnetic and weak nuclear interactions and can combine to form
composite particles, such as atoms. On the other hand, neutral leptons only interact through
the weak nuclear force and are typically detected through processes such as β-decays of atomic
nuclei and hadrons. For example, a free neutron decays into a proton with the emission of a
high-momentum electron and an electron antineutrino [5].

n → p + e− + ν̄e

While lepton phenomenology is a complex and rich subject by itself, the leptons do not interact
with the carrier of the strong nuclear force. Consequently, they do not contribute to nuclear
models3 and emphasis will therefore be put on quarks and the strong interaction.

Force carriers

Figure 1.2: Illustration of a free de-
caying neutron to a proton under weak
interaction

Aside from the fundamental matter particles that con-
stitute our universe, there are four fundamental forces:
gravity, the electromagnetic force, the weak force and
the strong force. Beside from gravity, each of the forces
results from the exchange of so-called carrier particles
that transfer energy from one particle to another. The
force carriers belong to the boson group in the SM. The
electromagnetic force is carried by the photon γ and in-
teracts with all charged particles. As the photon does
not carry charge itself it additionally does not inter-
act with itself but has an infinite range of interactions.
Secondly, the weak nuclear force is meditated by the
charged W± and neutral Z bosons. Due to their large
masses (≈ 80GeV/c) they have a very short interaction length and therefore decay before they
can be observed as final state particles. The weak force can be exchanged between all particles
and account for the decay as well as the transformation of quark flavors. The before-mentioned
decay of a free neutron to a proton can be seen in Figure 1.2, as illustrated through a Feynman
diagram. The neutron decay is thus a more fundamental decay of one of the two u valance
quarks, through the exchange of a W− boson that subsequently decays to the observed electron
(and not observed neutrino). The final interaction to outline is the strong nuclear force, but as
it is of great importance of this thesis the next section will go through a dedicated explanation
of the theory as well as current experimental measurements.

2The charge is given in units of elementary charge corresponding to the magnitude of the electric charge in
an electron, e = 1.602 · 10−19 C

3Not to be confused with atomic models
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1 INTRODUCTION

1.1.1 Quantum Chromo Dynamics

Quantum Chromo Dynamic (QCD) is the effective theory describing quark interaction in the
SM. The strong interaction is mediated by massless spin-1 bosons called gluons (g). Both quarks
and gluons carry color charges denoted as red (r), green (g), and blue (b). The term color is not
related in any way to the light we observe every day, but merely a label for the current state of
the quark/gluon. Just like antiparticle carries opposite electromagnetic charge with respect to
their particle counterpart, anti-quarks carries anti-color which are denoted as r̄, ḡ and b̄. While
there is a lot of experimental evidence for the existence of quarks, as well as color charge, it is a
fact that we do not observe these particles or forces in nature and experiments. This has led to
the hypothesis of colour confinement that only bind quarks as colorless objects[6]. Consequently,
quarks can only combine into a singlet state, either in a hadron form as (qrqgqb), or meson form
as (qr q̄r̄). With a bound colorless state the sum of color charges need to be zero which can be
inferred by letting r + g + b = 0 and r + r̄ = 0.4. For a bound meson state, the movement of
two quarks can be described by a non-relativistic potential with a column-like term from the
color charge, and an additional confinement term that increases linearly with the separation
distance[7].

VQCD(r) ≈ −4

3

αs

r
+ κr

A direct consequence of color confinement is that as the two quarks in a bound state are sepa-
rated, an increased amount of energy will be deposited in the color field connecting them. At
some point, it will become energetically favorable for the pair to split and create a new quark-
antiquark pair as can be seen Figure 1.3

Figure 1.3: Illustration of the creation of a new quark anti-quark pair pulled from the vacuum
as the color field tension increases

Asymptotic freedom

The exchange gluon between two quarks in their bound state can momentarily create a virtual
quark anti-quark pair. Similarly like in QED, this can lead to a screening effect where a cloud
of virtual qq̄ pairs shields the original color charge at large distances (low energies). However,
as the gluon can couple to its own charge, an additional virtual gluon-gluon pair can fluctuate
in and out of existence, creating an additional cloud of color charges. Unlike the screening
effect created by the intermediate quark-antiquark pairs, the gluon pairs act as a catalyzer of
the color field between two quarks, creating an effective ant-screening thundercloud[7]. As the
quark pair are separated the thundercloud grows more violent, and the attractive force is effec-
tively increased. In addition, when the quarks are joined within a small proximity, they exist
inside the eye of the cyclone, where the attractive forces diminish. As a consequence, they act
as a quasi-free particle at low distances (high energies). This behavior is known as asymptotic
freedom and effectively diminishes the coupling strength with respect to the momentum transfer
Q. The coupling strength of the strong interaction can thus be expressed in terms of a running
coupling constant given by[7].

αs(Q) ∝
(

1

1− ln(Q2/µ2)

)
4where the other two color neutral states of the mesons are given by b+ b̄ = 0 and g + ḡ = 0
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1 INTRODUCTION

The running strength of αs(Q) as obtained in different experiments, as well as different methods
can be seen in Figure 1.4. As the strength αs(Q) depends on the momentum transfer in the
process, QCD can be divided into a non-perturbative low-energy regime, and a perturbative
high-energy regime. This makes high-energy experiments suitable, and necessary, for probing
the strong nuclear force.

Figure 1.4: The running coupling constant αs(Q) as a function of momentum transfer Q as
obtained in a wide variety of different experimental methods. Figure taken from [8]

1.2 Heavy ion collisions

At the Large Hadron Collider, heavy nuclei such as lead (Pb) and xenon (Xe) are accelerated
to ultra-relativistic energies before being brought into collision. With the close-to-light-speed
velocities, the nuclei get Lorentz contracted into a high-density disk in the transverse plane.
Consequently, at the impact of the two colliding nuclei, extreme energy densities are reached
and the strong force effectively decouples from interacting partons, which makes a suitable envi-
ronment for studying this complex force of nature. In this stage of the collision, the interacting
system has reached a thermal equilibrium where the primordial matter of Quark-Gluon-Plasmsa
(QGP) is formed at temperatures above Tc ≈ 145 MeV[9]. This phase of matter, in where par-
tons propagate in a deconfined state, has following proved to behave like an almost perfect
liquid, with low shear viscosity[10]. Consequently the low shear viscosity results in a collective
(fluid-like) expansion of partons, from the equilibrium stage until the system has once again
cooled down and hadrons are formed. The main purpose of the ALICE experiments was to
study and extract the transport properties of this form of matter. Though, while the strongly
interacting matter of QGP has been studied to a great extent in decades, the pre-equilibrium
condition, such as nuclear shape and initial interaction is not understood properly. With the col-
lisions happening at ultra-relativistic energies the initial interaction of nucleons is well described
in the transverse plane only. With this in mind, the initial conditions and sequent evolution
dynamics of heavy-ion collision are often left to theoretical calculation and/or prediction in a
transverse plane. From the onset of collision, the evolution can roughly be described by the
following (summarised) stages[11] which are also illustrated in Figure 1.5

1. Pre-equilibrium
The two nuclei collide and the first interaction of nucleons leads to chaotic hard pro-
cesses. The hard processes are mainly responsible for the production of particles with
large transverse energies, consequently resulting in hadronic jets.

4



1 INTRODUCTION

2. Thermal Equilibrium, QGP
Interacting partons reach a thermal equilibrium in which they can propagate freely. The
system formed behaves as a strongly interacting fluid with low shear viscosity. The partonic
fluid is characterized as Quark-Gluon-Plasma (QGP) and follows ideal hydrodynamics.

3. Phase transition
As the system expands, it starts to cool down as it reaches a critical temperature Tc. In
this phase, partons start to undergo hadronization which is the formation of hadrons out
of gluons and quarks.

4. Hadron gas
The system has completely transitioned from a fluid phase to pure hadronic gas. The
hadron gas is composed of a system of free particles. This process is also characterized as
the freeze-out.

Figure 1.5: Illustration of the evolution of heavy-ion collision as described in light cone hyper-
bola along the beam axis z, and with proper time t.

While every aspect of the collision is crucial for a comprehensive understanding of its evolution,
from the pre-equilibrium stage to the final stage of hadron gas, particular emphasis will be
placed on the initial conditions. This focus stems from the clear assumption that the influence
of nuclear deformation and its subsequent effects on final state observables play a dominant role
during the pre-equilibrium and Quark-Gluon Plasma (QGP) stages. In the subsequent section,
I will provide a summary of the effective theory that describes the initial stage interaction in
heavy-ion collisions.

1.2.1 Pre-equilibrium and initial conditions

The initial conditions and sequent pre-equilibrium phase are to this date still one of the most in-
complete subjects in heavy-ion collisions. While some models show excellent agreement between
experimental measurements and simulation, more complex observables shows greater sensitivity
to implementation physics, and small tunings of it[12]. The initial density profiles created by
two colliding nuclei in the transverse plane are model dependent, as we do not have a complete
understanding of it. One of the most used initial stage models, is the MC-Glauber model. The
framework is based on a Monte-Carlo approach where nucleons are sampled from a density
function in the xy plane. The resulting nucleon distribution of the colliding nuclei can be seen
in Figure 1.6 (Left). Another model, the IP-Glasma, implements additional pre-collision effects
such as Color-Glass-Condensate (CGC)5 and treats the initial density profile with respect to
gluon field and nucleons[14], see Figure 1.6 (Right). The large discrepancy between density

5CGC is a relativistic effect describing the evolution of gluon fields in high energy heavy-ion collisions [13]
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1 INTRODUCTION

profiles in models, shows the gap between theoretical understanding and implementation of the
early stages in heavy-ion collisions. This emphasizes the need for additional studies to reveal
the correct path.

Figure 1.6: Initial energy density of a heavy-ion collision created by the nucleon projection in
the transverse plane. Left: IP-Glasma model. Right: MC-Glauber model. Figure from [15]

Accessing the initial conditions

While we do not have direct access to the initial state of the colliding nuclei, recent studies have
predicted an almost linear response of the energy density E and the measured mean transverse
momentum ⟨pT ⟩ off final state particles[16]. With fixed impact parameter b = 2.5 fm, Pb-Pb
collisions at

√
sNN = 5.02 TeV are simulated. The system is then expanded in hydrodynamical

evolution to final state particles. While the total entropy of the system were kept fixed for
each event, the initial density profile were random, and fluctuated event by event. The results
presented in Figure 1.7 show a clear positive correlation of the energy density E and ⟨pT ⟩. More
interesting we note a negative correlation between the ⟨pT ⟩ and the size of the interacting system
R implying a relation

⟨pT ⟩ ∝
1

R
1.1

The presented results from the study in[16] and Equation 1.1 highlight the significance of the
transverse momentum spectrum as a crucial observable for investigating the early stages of
heavy-ion collisions. This observable can serve as a valuable tool not only for constraining
initial stage models but also as a new direct supplement for studying nuclear structure. As
a result, there is a strong motivation to utilize ultra-relativistic collisions as a complementary
approach to low-energy experiments and the study of nuclear structure.

Figure 1.7: Correlation between initial energy density and final state transverse momentum
of Pb-Pb collisions at

√
sNN = 5.02 w. fixed entropy and impact parameter b = 2.5 fm

6



1 INTRODUCTION

1.3 Nuclear structure

While the fundamental laws of particle physics are covered in great detail, and it is possible to
obtain measurements with accuracies on the order ≈ 10−12[17], areas such as nuclear structure,
are still very poorly understood. Some of the first accurate descriptions of atomic nuclei are
made through the collective model created in 1975 by Aage Bohr and Ben Mottelson. The
collective model is based on the already existing shell model, where nucleons follow a similar
orbital structure as electrons, but also included additional rotations and collective motion within
the shells[18, 19]. Since then, a number of ways have been introduced to effectively describe the
nucleus in low-energy physics, both theoretical but also experimentally. The current state of
nuclear theory covers Ab Initio calculations for atomic nuclei with atomic number up to A = 60.
The Ab Initio approach is based on solving the non-relativistic Schroedinger equation for ground
state nuclei, this includes all constituent nucleons and the additional forces between them[20].

Figure 1.8: State as of 2020 of the nuclear chart. The chart shows the current description of
atomic nuclei in Ab initial (red), Atomic mass evaluation (yellow), and energy density functional
(blue). Figure taken from [21]

From these ground state descriptions of the nuclei, the low-energy experiment has been able
to attribute transition energies of nuclei to fit the model description that favors multi-pole
moments of the nucleon destribution[22, 23]. While it can not be observed directly due to
the subatomic scale, the multipole moment directly impacts the shape of the nuclei by small
shape perturbations. These perturbations of the nuclear shape lead to deformed nuclei. The
deformation strength is denoted as βn where n corresponds to the n´th multi-pole expansion of
the nucleon density, and characterizes different shapes, such as quadruple deformation β2, and
octupole deformation β3. While it is possible to experimentally measure the moments to some
extent, the shape itself cannot be correctly determined. This can be due to free nucleons in the
nuclei that do not contribute much to the collective effects, and therefore not to the multi-pole
mode. Though they are still there and thus contribute to additional shapes perturbation that
can not be easily measured. The rms radius of the nucleon distribution of deformed nuclei can
be described in terms of spherical harmonics to second order as[24, 25]

R′(θ, φ) = R0 [1 + β2 [cos(γ)Y20(θ, φ) + sin(γ)Y22(θ, φ)]] 1.2

where the radius R′(θ, φ) denotes the nuclear surface, R0 the rms radius of a spherical nuclei,
β2 the quadrupole deformation strength and γ the triaxiality. Though, in this more streamlined
surface description of the nuclei, it is important to note that deformation strength β2 does not
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reflect the exact quadrupole moment as measured in low-energy physics[26]. To first order the
dominant deformation is caused by the quadrupole moment of the nucleon density[24], which
is also the reason why it is the only moment considered here. An illustration of the induced
shape from Equation 1.2 can be seen in Figure 1.9, with fixed deformation strength β2 = 0.30
and varying γ. Here it can also more clearly be noted how each shape is different, but they still
carry the same quadruple moment.

Figure 1.9: Illustration of the surface of nuclei with different quadrupole deformation. From
left to right: Prolate, Tri-axial, Oblate. All carries the same deformation strength β2 but
different tri-axiality γ which consequently changes the shape

Though quadrupole deformation β2 can be measured experimentally with great precision[22,
23], the current framework does not allow for precise measurements of the triaxial structure. In
current studies [27] it can be observed, as shown in Figure 1.10, how experimental measurements
of quadrupole deformation and triaxiality cannot be described by current theoretical models.
The sensitivity to triaxial deformation suffers from larger deviations than measurements on β2.
Moreover, it can be noticed how the discrepancy between data and models on γ gets gradually
larger for lighter nuclei with a small atomic number A, Figure 1.10 (Left). An important thing
to remember is that the current studies of the nuclear structure only depend on the proton
distribution through the charge radi of the nuclei. In a heavy-ion collision, we can obtain the
total energy density that also accounts the neutrons. These challenging measurements bring
forward the motivation for other fields and methods, to be brought forward, and to act in
conjecture with current low-energy experiments.

Figure 1.10: Comparison of low-energy measurements of β2 and γ with respect to energy den-
sity functional nuclear theory BSkG. Left: Measurements of β2 and γ and theoretical prediction
in BSkG1 and BSkG2. Right: Difference between experiments and model prediction. Figure
taken from Figure 1.10
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1.3.1 Nuclear structure in high energy phsysics

As presented in the previous section, there exists an inverse correlation between the interacting
system and the observed ⟨pT ⟩ of the final state particles. With the introduction of nuclear
deformation, there should then also be accounted for a new type of collision. While the energy
and system remain the same, the deformation of atomic nuclei gives rise to rotational degrees
of freedom. Thus for nuclei that have a quadrupole deformation, their bodies will be elongated
along some principal axis. For ultra-central collisions, where the quadrupole deformed nuclei
are colliding at a small impact parameter b ≈ 0, we can distinguish two very different types of
collisions, depending on their orientation, at the moment of impact. If both their principal axis
are aligned in the xy-plane, we consider a body+body collisions which consequently produces
a large overlap area. This effectively spreads out the nucleons across a larger area and the
interaction system is therefore also larger. Likewise, we can also have a tip+tip collision where
the principal axis is aligned with the z-plane. This however will concentrate the same amount of
energy as in body+body collisions but on a smaller area. Following Equation 1.1 where we know
⟨pT ⟩ ∝ 1/R, the interacting system will be denser and the subsequent explosion will bare larger.
A schematic of the different kinds of collisions with respect to different deformation parameters
is outlined in Figure 1.11.

Figure 1.11: The initial density profile in the collision of deformed nuclei. Here it can be seen
how the deformation of nuclei directly affects the overlap of the colliding nuclei, and consequently
how the initial energy density will depend on it. Taken from [24]

In simulations of heavy-ion collision the colliding nuclei are typically sampled by the geo-
metric Glauber model as also introduced in the previous section. As the Glauber model is based
on nucleon sampling in the transverse plane it is possible to introduce rotations of the colliding
nuclei before the projection is made. The nucleon distribution in atomic nuclei is in high-energy
physics, modeled by the mean-field Wood-Saxon (WS) potential, given by

ρ(r, θ, φ) ∝ n0

1 + exp([r −R′(θ, φ)]/a0)
1.3

Here n0 is the nucleon density, a0 is the surface diffusion and r denotes the distance from the
center of the nuclei. Though instead of using the radius of spherical nuclei, the radius R′(θ, φ)
is given as in Equation 1.2 for the surface of deformed nuclei. The possibility of varying these
parameters makes it a suitable tool for studying the effect of nuclear deformation on final state
observables in collisions at the LHC energies.

In part of this thesis, heavy-ion collisions of 129Xe are simulated. By varying β2 and γ,
different shapes are created, from where it is studied, if the nuclear shape affects the final ⟨pT ⟩
fluctuations. This will directly be compared to Xe-Xe and Pb-Pb collision at the LHC to see
if like signals can be observed, and if it is possible to probe the nuclear structure with ⟨pT ⟩
fluctuations.
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2 Experimental setup

This chapter provides a brief summary of the experimental setup for obtaining data in heavy-
ion collisions. As this does reflect the most hours of work, and most relevant measurements,
the simulation of deformed AA collisions will be summarised inAppendix D. Firstly, the Large
Hadron Collider (LHC) is introduced. Subsequently, the main experiment of the analysis, A
Large Ion Collider Experiment (ALICE), is presented, along with a description of the sub-
detectors. It should be noted that many of the sub-detectors have undergone major (and minor)
upgrades since the construction of ALICE. Hence, the focus will be on the detector state during
LHC Run2, as all the presented data were obtained during this period.6. Finally, the base unit
for measurements, the centrality classification is presented.

2.1 The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) is located on the France-Schweiz border near Geneva and is
currently the largest and most powerful particle accelerator in the world[28]. The accelerator
components and detectors are placed in a circular tunnel with a circumference of 27 Km, located
approximately 100 m below the surface. The accelerator consists of an alternating set of elec-
tromagnets and electromagnetic cavities used to accelerate and focus the particles respectively.
The main colliding system is proton-proton (pp), and lead-lead (Pb-Pb) but a special test run of
Xenon-Xenon (Xe-Xe) has also been recorded in 2017[29]. Each proton beam is accelerated to
a maximum of 7 TeV before colliding, resulting in a center-of-mass energy

√
s = 14 TeV, while

the Pb-Pb nuclei collide with
√
sNN = 5.02 TeV. As the particles reach the desired energy, the

beams are made to collide at interaction points where dedicated detectors are placed to record,
detect and discover physic. Along the LHC ring, there are four major experiments located,
ATLAT, CMS, LHCb and ALICE as can be seen marked in blue text in Figure 2.1. ATLAS
and CMS are general purpose detectors built to explore a broad range of physics, and played
the key role in the discovery of the Higgs boson[30][31]. The LHCb is one of two dedicated
detectors and are built to study matter-antimatter relations[32], additionally, it is the only for-
ward spectrometer7. The final of the four experiments is the ALICE detector, which acts as the
second dedicated experiment. The main purpose of ALICE is to study the strong interaction in
the extreme energy densities that are reached in heavy ions collisions[33]. With this project and
analysis being an active component of ALICE, a more in-depth description of the experiment
will be given in the following section.

Figure 2.1: Schematic of the Large Hadron Collider and the four major experiments located
at CERN. Figure taken from [34]

6LHC Run2 spanned from early 2015 to 2018
7The particles are not colliding with each other but with an end ”plate”
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2.2 A Large Ion Collider Experiment (ALICE)

A Large Ion Collider Experiment (ALICE)[33, 35, 36] is one of the four major experiments
located at the LHC. The collaboration itself, where founded in 1993 and currently consist of
roughly 2000 active members, spread across a total of 40 countries. Additionally, the ALICE
Collaboration has an active Junior program that ensures educational quality and engagement of
both young and early career scientists. The detector is designed to investigate the strongly inter-
acting matter under extreme energy densities. Under these conditions, it is possible to recreate
the dense QGP fluid which composed our universe in the first few microseconds after the big
bang. The detector consists of numerous specialized sub-detectors, each designed for specific
collision dynamics, and can roughly be categorized into a central and forward segment. The
central segment is used for high-resolution tracking and particle identification, and is covered
by a large solenoid magnet, see Figure 2.2. It consists of three Si semiconductors which form
the Inner Tracking System (ITS), a Time Projection Chamber (TPC), and the Time-Of-Flight
(TOF) detector. The forward segments are used for global collisions characteristic and are po-
sitioned with relatively small angles with respect to the beam-axis, in both the forward and
backward regions. In the forward and backward region is the Zero-Degree-Calorimeter (ZDC)
used for event characterization, and the VZERO detector used for centrality determination.

Figure 2.2: Schematic of the ALICE detector during run2. Figure taken from [37]

2.2.1 Detector components

In the following section, a technical description will be presented for the ITS, TPC, and VZERO
sub-detectors which are the most important detectors concerning this thesis. While every com-
ponent of ALICE composes a vital part of the whole experiment, a description of every sub-
detector would simply be out of scope. Each section is based on technical design reports in
which the relevant references will be made at the beginning of each section.
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Inner Tracking System (ITS)

Located in the central region and in close proximity to the beampipe, the Inner Tracking System
(ITS)[36, 38] acts as the first interaction point of the thousands of particles produced in each
collision. The ITS covers a full 2π in the azimuth and a pseudo-rapidity range of |η| < 0.9. The
primary task of the ITS is to localize the primary vertex Vz of the two colliding nuclei, i.e. the
interaction position along the beamline. It consists of three distinct types of Si based detectors
stacked radial outwards, each with two layers. The inner layer of the ITS is composed of Silicon
Pixel Detectors (SPD) that provide a high track resolution and trigger rate. The SPD covers a
radial distance of 3.9 cm < r < 7.6 cm and is built to manage the high particle densities close
to the interaction point that is reached in heavy-ion collisions. The second and third layers
of the ITS consists of Silicon Drift-Detectors (SDD) and Silicon Strip-Detectors (SSD) respec-
tively and are positioned at 15 cm < r < 43 cm, where particle densities are much lower. The
SSD together with the SDD, both have analog-based readout that allows particle identification
through energy loss measurements dE/dx.

Figure 2.3: Schematic of the ITS, figure taken from [36].

Time Projection Chamber (TPC)

Located in the outer segment of the central barrel is the Time Projection Chamber (TPC) [36,
39] functions as the main detector for tracking, as well as particle identification through energy
loss measurement dE/dx. Combined with the ITS this ensures a large tracking range with a
high space point resolution. The TPC is a cylindrical chamber covering the ITS with a full 2π
in the azimuth, except for some minor dead zones. The pseudo-rapidity coverage is |η| < 0.9
from where it provides full tracking in the range η| < 0.8. The detector consists of a large
field cage covering a radial distance of 85 cm < r < 250 cm. The active volume (90 m3) of
the cylinders is filled with a gas mixture of Ne/CO2/N2 (90/10/5). The chamber is divided in
half by a central cathode, and an anode, placed on each side of the detector. The potential
difference of the anode and cathode creates a potential field difference the particle can move,
and be moved in The working principle of the TPC is as follows: As charged particles propagate
through the detector, the gas mixture is ionized alongside its path. The free electron sequentially
drifts towards the end plate where read-out chambers are placed, and the transferred energy is
converted to an analog signal that can be used to track direction and energy.
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Figure 2.4: Schematic of the TPC, figure taken from [39]

VZERO Detector (V0)

The VZERO detector[36, 40] consists of two scintillator arrays, named V0C and V0A, positioned
at the forward and backward region of the interaction point. The arrays cover a pseudo-rapidity
range of V0C (−3.7 < η < −1.7) and V0A (2.8 < η < 5.1) and each consists of 32 scintillator
counters that are distributed across four rings in a radial direction, covering 2π in the azimuthal
angle. The VZERO detector has several use cases but primarily functions as a minimum bias
(MB) trigger for the central barrel detector in pp and AA collisions and an additional centrality-
specific trigger for AA collision only. Besides given trigger signals, the VZERO also provides
measurements of charged particle multiplicity dNCH/dη that is used for classifying the centrality
of a given AA collision.

Figure 2.5: V0A and V0C segments positioned at the forward and backward region of the
interaction point. The figure is taken from[41].
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2.3 Centrality

Observables in AA collision are dependent on geometrical quantities such as the plane of inter-
action and are therefore needed to properly study different forms of physics, in ultra-relativistic
collisions. Such a quantity can be the transverse distance between two colliding nuclei which
is denoted as the impact parameter b. These quantities are though not directly accessible in
experiments and other estimators are needed to precisely classify events. Instead, collisions are
classified and measured with respect to centrality. The experimental centrality cexp of an event
is an approximate estimator of the fully measured visible cross-section of an observable[42]

cexp =
1

σvis

∫ ∞

X

dX
dσvis

dX′ =
1

N

∫ ∞

X

dX ′ dN

dX ′

In the context of heavy ion experiments, the centrality is often calculated on the basis of
observed charged particle multiplicity such that X = Nch. With this, we can classify events
according to central collision, low impact parameter b, or as peripheral collisions with high
impact parameter b. Intuitively, a low impact parameter would mean a head-on collision, which
consequently would result in more particles produced. Likewise, a large impact parameter would
result in few particles produced. The relation between multiplicity and centrality can be seen
in Figure 2.6. This not only allows for a nice and intuitive representation but also ensures that
all data are distributed uniformly. Thus it becomes easier to notice the statistical sensitivity
of measurements in different ranges. Centrality calculations based on multiplicities are a very
often complex process that requires additional fitting [43] and are therefore left for the experts8.

Figure 2.6: Figure of the charged particle multiplicity and corresponding centrality class of
Pb-Pb collision at

√
sNN = 2.76 TeV. The black points represent data, and the fitted line shows

the Glauberfit. Figure taken from [43]

8Though, an impact parameter-based estimator for centrality is calculated and presented under Appendix D
which is used for centrality estimation in the local deformation study.
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3 Analysis method

The direct correlation of mean transverse momentum and the area of interaction in Equation 1.1
gives rise to additional information that can be extracted in the early phase of the collision. With
an overlap region in the transverse plane R⊥ denoting the average area of participating nucleons
it is by definition directly related to the nucleon density d⊥. The fluctuation of transverse
momentum has been shown to exhibit a significant response to both pre-equilibrium dynamics
and the following hydrodynamic evolution of the bulk media through[24]

δ⟨pT ⟩
⟨pT ⟩

= k0
δd⊥
d⊥

= −k0
δR⊥

R⊥
= −k0

1

2

δS⊥

S⊥
3.1

where S⊥ denotes the transverse entropy density respectively and k0 is coefficient regarding the
transport properties of the QGP. Consequently, as the area of the interacting system is reduced,
the pressure gradient from participating nucleon will rise and increase the ”explosion” of the
QGP fireball. The experimental methods centering around the fluctuations are of increased
interest as they can contribute to the exploration of initial conditions in heavy-ion collisions,
and thus help to refine our understanding of the nuclear structure and strong interactions [12,
44]. In the following chapter, the basic definitions of intrinsic moments, cumulants, and multi-
particle correlation are discussed together with application, properties, and physical relation to
energy fluctuations in heavy-ion collisions. As this is all re-derived from previous work, this
constitutes a mostly historical and conceptual understanding of the basic theory. Sequently
new observable probes will be presented for the first time in the form of a generic formula
that generalizes the method of standardized cumulants of transverses momentum fluctuation
to arbitrary orders. The new probes will provide never seen ”snapshots” of the initial stage
in ultra-relativistic heavy-ion collisions, unraveling the nuclear structure and composition at
the moment of impact. The chapter will continue with the exploration of applied suppression
techniques for non-collective behaviour9, known as the sub-event method. This will be presented
together with its integration into the generic formulas.

3.1 Multi-particle correlation

For any m particles observed, their joint density function fm can be decomposed into a series of
symmetric function gm known as correlation function[45, 46]. The expansion of the distribution
function is defined as all partitions of gm that can be formed from the m particles and are to
third order decomposed as follows

f1(x1) =g1(x1)

f2(x1, x2) =g1(x1)g1(x2) + g2(x1, x2)

f3(x1, x2, x3) =g1(x1)g1(x2)g1(x3) + g2(x1, x2)g1(x3)

+ g2(x1, x3)g1(x2) + g2(x2, x3)g1(x1) + g2(x1, x2, x3) 3.2

Here an illustration of the three-particle distribution function can be seen in Figure 3.1, where
the last term would denote the genuine correlation of the three particles.

= + + + +

Figure 3.1: Illustration of the three-particle distribution and its corresponding decomposition
into symmetric correlation functions gm

9non-collective behaviors are effects that do not originate from the initial QGP phase, which consequently
bias the measurements by shielding the observables in a background noise
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It is clear that even though the distribution function fm contains the complete information
about the system, it is challenging to directly distinguish between correlated and uncorrelated
contributions from each gm. The correlation functions are themselves non-trivial and are typi-
cally inaccessible in experiments since the correlation reflects an unknown nature. On the other
hand, fm can be directly related to a physical equation or problem[41, 46]. To obtain a direct
measurement of the genuine m-particle correlation gm it can therefore be advantageous to ex-
press gm in terms of fm. By substituting the one-particle distribution functions f1 in Eq. 3.2
and isolating for g2 we can obtain an expression for the genuine 2-particle correlation.

g2(x1, x2) = f2(x1, x2)− f1(x1)f1(x2)

The genuine correlation of m particles gm is also more historically known and referred to as the
m’th order cumulant which will also be the formal name in this thesis. Though it can also be
noted that the second-order cumulant constitutes the covariance of two observables. In the case
of independent random variables, we further note g2 = 0 such that the joint density f2 can be
factorized as a product of marginalized density functions.

f2(x1, x2) = f1(x1)f1(x2)

Cumulants in heavy-ion experiments

Consequently, this also implies that the correlation function gm → 0 in the case of independent
random variables, is the key property of interest. In reality, we have no way of experimentally
accessing the correlation function but we can estimate key properties of the joint distribution
by sampling from an appropriate ensemble of events.

Eg [x1x2] = Ef [x1x2]− Ef [x1]Ef [x2]

An unbiased estimator for Ef [x1x2] is taken as the all-event average of all pair-wise combinations

of the observables x1 and x2[41]. Letting x1 ≡ p
(i1)
T and x2 ≡ p

(i2)
T we can obtain the expression

for the second-order cumulants of transverse momentum correlation.

Eg

[
p
(i1)
T p

(i2)
T

]
= Ef

[
p
(i1)
T p

(i1)
T

]
− Ef

[
p
(i1)
T

]
Ef

[
p
(i2)
T

]
For a more proper and generic notation, we will denote the general m-order cumulant of trans-
verse momentum correlation as follows

κ(p′mT ) ≡ Eg

[
p
(i1)
T · · · p(im)

T

]
3.3

3.1.1 Intrinsic moments

The isolation of transverse momentum fluctuations is in itself a very complicated procedure as
we are dealing with a PDF defined only by the measured pT . Consequently, any properties have
to be extracted from this one variable. To accommodate for this, high-energy experiments such
as RHIC and the ALICE have been utilizing the method of multi-particle correlation to obtain
anisotropies in the final state distribution of the azimuthal angle φ[47, 48]. In this approach, an
event averaged estimate is calculated by combining every possible, and unique, m-particle tuple
to form a m-particle intrinsic moment. Sequently the method of cumulants as described in the
chapter Multi-particle correlation are used to isolate the genuine correlation, and thus reveal if
the particle distribution is random or correlated in nature.

The intrinsic moments are firstly calculated by looping over all charged particle tuples in a
single event. The single event average (or particle average) which will be denoted by an angular
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bracket ⟨·⟩. The moments are sequentially calculated for a sufficiently large number of events
from where the all-event averaged moments are obtained. The all-event average will be denoted
by a double angular bracket ⟨⟨·⟩⟩. The first step involves calculating the single-event moments
with the first, second, and third order being defined by

⟨p′1T ⟩ ≡ ⟨p′1T ⟩ ≡
1

WNch,1

∑
i1

p
(i1)
T 3.4

⟨p′2T ⟩ ≡ ⟨p(i1)T p
(i2)
T ⟩ ≡ 1

WNch,2

∑
i1 ̸=i2

p
(i1)
T p

(i2)
T 3.5

⟨p′3T ⟩ ≡ ⟨p(i1)T p
(i2)
T p

(i3)
T ⟩ ≡ 1

WNch,3

∑
i1 ̸=i2 ̸=i3

p
(i1)
T p

(i2)
T p

(i3)
T 3.6

where the sum runs over all momentum tuples under the constraint i1 ̸= i2 ̸= i3 which mean
that all indices must be taken differently. Each sum is additionally weighted by a factor WNch,m

which accounts for each distinct number of m-particle combinations in the event with multiplicity
Nch. The weight is appropriately defined as[41, 44, 49] and accounts for multiplicity fluctuation
between different events by construction

WNch,m = Nch(Nch − 1) · · · (Nch −m+ 1) 3.7

In the second step, the moments averaged over all events are calculated as

⟪p′1T ⟫ ≡

event∑
i=1

W
(i)
Nch,1

⟨p′1T ⟩i
event∑
i=1

W
(i)
Nch,1

3.8

⟪p′2T ⟫ ≡

event∑
i=1

W
(i)
Nch,2

⟨p′2T ⟩i
event∑
i=1

W
(i)
Nch,2

3.9

⟪p′3T ⟫ ≡

event∑
i=1

W
(i)
Nch,3

⟨p′3T ⟩i
event∑
i=1

W
(i)
Nch,3

3.10

where W
(i)
Nch,m

and ⟨p′mT ⟩i are the associated multiplicity weight and intrinsic moment in event
number i respectively. As can be seen by the outlined Equation 3.4-3.10 the formulas are quite
easily generalized to arbitrary high orders for both the particle-average and the event-averaged
intrinsic moments as given by

⟨p′mT ⟩ ≡ ⟨p(i1)T p
(i2)
T · · · p(im)

T ⟩ ≡ 1

WNch,m

∑
i1 ̸=i2

p
(i1)
T p

(i2)
T · · · p(im)

T 3.11

⟪p′mT ⟫ ≡

event∑
i=1

W
(i)
M,m⟨p′mT ⟩i

event∑
i=1

W
(i)
M,m

3.12
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Though, while the concept of intrinsic moments in general has a simple expression they are
difficult to obtain in practice. This is solely due to the constraint of unique pairs which in gen-
eral have to be carried out in a nested loop over all particles used. Consequently, the calculation
reaches a time complexity of approximately O(Nm

ch) which is impossible in heavy-ion collisions
with event multiplicities reaching up to Nch ≈ 8000. To account for the difficulties in carrying
out the calculation in practice, a dedicated section will be provided for an efficient method as
applied in this thesis and in general heavy-ion experiments.

Momentum vector formulation

To account for the computational dependent task of obtaining the moments, the QCumulant
method where introduced[50] as an efficient way of isolating genuine particle pairs in anisotropic
flow analysis. The method relies on a clever expansion of the multi-variable constrained sum
(see Equation 3.11) into a set of independent sums, which would then only require a single pass
over the data. Following the procedure[49, 50] we define our momentum vector Pk as the sum

of particle momentum p
(ij)
T for all Nch particles in a event as

Pk ≡
Nch∑
j=1

(
p
(ij)
T

)k
3.13

where k denotes some arbitrary exponent which will be defined later. For two particle moments
we can decompose our constrained sum

∑
i1 ̸=i2

into following terms

∑
i1 ̸=i2

p
(i1)
T p

(i2)
T =

(∑
i1

p
(i1)
T

)(∑
i2

p
(i2)
T

)
−
∑
i1=i2

(
p
(i1)
T

)2
= P 2

1 − P2

where we in the last step have substituted the momentum vector definition(Equation 3.13).
As noted the decomposition into independent sums only requires a single loop over data and
effectively reduces the time complexity. Using the obtained expression we can redefine our
two-particle moments into a more accessible form in computational calculations

⟨p′2T ⟩ =
1

WNch,2

∑
i1 ̸=i2

p
(i1)
T p

(i2)
T =

1

WNch,2

[
P 2
1 − P2

]
For a more clear validation of the momentum vector formulation, we consider a simple example
with a slightly more detailed proof of concept for the intrinsic moment, again with second order
⟨p′2T ⟩ as an example. Consider an event with a very small multiplicity Nch = 3 we observe three

particles with momentum denoted p
(i1)
T ,p

(i2)
T ,p

(i3)
T where in denotes the n’th particle. Following

Equation 3.13 we loop over our three particles and construct our momentum vectors as

P1 = p
(i1)
T + p

(i2)
T + p

(i3)
T P2 =

(
p
(i1)
T

)2
+
(
p
(i2)
T

)2
+
(
p
(i3)
T

)2
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Inserting our momentum ”vectors” we get
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In the analytical decomposition, it is clear how the method provides quick and efficient separation
of particle pairs. Even though the expansion can be carried out to arbitrary orders, it does
require an analytical derivation for all terms, which can be far from trivial. Up to the third
order, the explicit formulas for direct calculation are obtained as

⟨p′1T ⟩ =
P1

Nch

⟨p′2T ⟩ =
P 2
1 − P2

Nch(Nch − 1)

⟨p′3T ⟩ =
P 3
1 − 3P2P1 + 2P3

Nch(Nch − 2)(Nch − 1)

For higher orders moments a generic formula will be presented in the following section, which
effectively reduces the expansion of arbitrary orders into a simple and accessible equation.

3.2 Generic formula

With the more formal definitions in place, we now introduced the generic formula for calculating
intrinsic moments of transverse momentum which will provide the baseline for our main cumu-
lants observables. The generic formula for a weighted average between all unique m-particle
combinations is given by the definition

⟨p′mT ⟩ ≡
∑Nch

i1 ̸=···̸=im
wi1wi2 · · ·wimp

(i1)
T p

(i2)
T · · · p(im)

T∑Nch

i1 ̸=i2 ̸=···≠im
wi1wi2 · · ·wim

3.14

where Nch is the charged particle multiplicity in a given event, pT labels the transverse mo-
mentum and w labels the associated weight. In contrast to the multiplicity weights defined in
Equation 3.7, the weight w is associated with the pT , and can thus be used to reduce systematic
effects such as detector efficiency. The weights can in general be a function of any desirable
properties of the particle track w(pT , η, ϕ, . . .), but will in this thesis be restricted to w(pT ).
As can be seen from Equation 3.14 the numerator and denominator are affected by the con-
strained sum. To reduce calculation the derivation will only concern to the numerator. The
same principle can afterward be applied to the denominator. Decomposing our generic definition
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in Equation 3.14 we outlined the reduced expressions

N⟨p′mT ⟩ ≡
Nch∑

i1 ̸=···≠im

wi1wi2 · · ·wimp
(i1)
T p

(i2)
T · · · p(im)

T 3.15

D⟨p′mT ⟩ ≡
Nch∑

i1 ̸=i2 ̸=···≠im

wi1wi2 · · ·wim 3.16

With the above equation outlined, we introduce a redefined momentum vector Pk and add an
associated weight vector Wk which will be used in reducing the formula.

Pk ≡
M∑
i=1

(
wip

(i)
T

)k
, Wk ≡

M∑
i=1

wk
i 3.17

In the development of a generic framework for anisotropic flow analysis[51], it was noted how
the innermost sum could be expanded without the constraints of other particles. Following the
same principle we take Equation 3.15

N⟨p′mT ⟩ =
Nch∑

i1 ̸=···̸=im

wi1wi2 · · ·wimp
(i1)
T p

(i2)
T · · · p(im)

T

expanding the innermost sum accordingly[51] we get

=

Nch∑
i1 ̸=···̸=im−1

wi1wi2 · · ·wim−1p
(i1)
T p

(i2)
T · · · p(im−1)

T ·

 Nch∑
im=1

wimp
(im)
T −

m−1∑
j=1

wijp
(ij)
T


contracting the constrained sum we obtain an expression as Equation 3.15, but with the order
reduced by óne

= N⟨p′m−1
T ⟩

 Nch∑
im=1

wimp
(im)
T −

m−1∑
j=1

wijp
(ij)
T


using our momentum vector in Equation 3.17 the first sum in the parentheses can be written as

= N⟨p′m−1
T ⟩

P1 −
m−1∑
j=1

wijp
(ij)
T


The summation can thus be expanded into lower-order terms by a recursive iteration. Following
the expansion through for m = 2 we can quickly obtain an expression for the two-particle
moments. Additionally, applying the same principle to Equation 3.16 we get

N⟨p′2T ⟩ = P 2
1 − P2

D⟨p′2T ⟩ = W 2
1 −W2

and for the three-particle moment, we have

N⟨p′3T ⟩ = P 3
1 − 3P2P1 + 2P3

D⟨p′3T ⟩ = W 3
1 − 3W2W1 + 2W3

We note from the direct expansion (and also by the generic formula) that the k´ iterated term
changes sign according to (−1)k−1. Additionally, each term picks up a factor of (m−k). Taking
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these term contributions into account, the explicit formulas for isolating particle pairs and hence
calculating intrinsic moment to arbitrary orders are given by these generic formulas

N⟨p′mT ⟩ =
m∑

k=1

(−1)k−1 (m− 1)!

(m− k)!
N⟨p′m−k

T ⟩Pk 3.18

D⟨p′mT ⟩ =
m∑

k=1

(−1)k−1 (m− 1)!

(m− k)!
D⟨p′m−k

T ⟩Wk 3.19

⟨p′mT ⟩ = N⟨p′mT ⟩
D⟨p′mT ⟩

3.20

3.3 Transverse momentum fluctuations

Observation of mean transverse momentum fluctuation where measured by the STAR collabora-
tion[52] and has sequentially fallen under the microscope for additional studies[44, 53]. Though
all presented data can be attributed directly to some aspect of IC and hydrodynamic expansion,
there is no direct road to take so far. Consequently, the direct formulation of pT fluctuations
can vary depending on experiments but are in general defined as central moment[44, 53]. As
outlined in the previous section, the generic formula for intrinsic moments represents an alter-
native to regular moments. While lower order cumulants κ(p′2T ) and κ(p′3T ) are the same whether
calculated as central moment or regular moment. Higher order cumulants κ(p′mT ) for 4 ≤ m do
not possess this property by default so a clear deviation is expected if compared. Throughout
this thesis, the cumulants obtained will be through regular moments as already presented.

3.3.1 Cumulants

The transverse momentum fluctuations measured in experiments can delicately be expressed in
terms of cumulants which reflect genuine correlation amongst particles. The method of azimuthal
correlation has for decades relied on flow measurements through cumulant expansions[41, 46,
47, 49, 50, 54, 55] and it should therefore be enough to stick with a brief outline of the approach.
The method for obtaining cumulants where first introduced in terms of cluster expansion [45,
56] as presented at the beginning of this chapter. Sequently a recursive formula has been derived
[57] to obtain cumulants by an expansion of the moment-generating function. Using the same
approach we can directly obtain our cumulants, and hence then genuine correlation, by switching
to our intrinsic moments. This will effectively make it possible to easily and efficiently isolate
the genuine correlation. With a more proper notation, we then present the generic formula for
cumulants of transverse momentum fluctuation.

κ(p′mT ) = ⟪p′mT ⟫−
m−1∑
k=1

(
m− 1
k − 1

)
κ(p′kT )⟪p′m−k

T ⟫ 3.21

where κ(p′mT ) and ⟪p′mT ⟫ are the m´th cumulant and event averaged moment respectively. The
calculation of higher-order cumulants consequently becomes more complex in structure as all
lower-order contribution has to be removed. By direct expansion of Equation 3.21 we list present
the first eight orders of transverse momentum fluctuations in terms of intrinsic moments.

⟨pT ⟩ =⟪p′1T ⟫ 3.22

κ(p′2T ) =⟪p′2T ⟫− ⟪p′1T ⟫2 3.23

κ(p′3T ) =⟪p′3T ⟫− 3⟪p′1T ⟫⟪p′2T ⟫+ 2⟪p′1T ⟫3 3.24

κ(p′4T ) =⟪p′4T ⟫− 3⟪p′2T ⟫2 − 4⟪p′1T ⟫⟪p′3T ⟫+ 12⟪p′1T ⟫2⟪p′2T ⟫− 6⟪p′1T ⟫4 3.25
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κ(p′5T ) =⟪p′5T ⟫− 5⟪p′1T ⟫⟪p′4T ⟫− 10⟪p′2T ⟫⟪p′3T ⟫+ 20⟪p′1T ⟫2⟪p′3T ⟫
+ 30⟪p′1T ⟫⟪p′2T ⟫2 − 60⟪p′1T ⟫3⟪p′2T ⟫+ 24⟪p′1T ⟫5 3.26

κ(p′6T ) =⟪p′6T ⟫− 6⟪p′1T ⟫⟪p′5T ⟫− 10⟪p′3T ⟫2 − 15⟪p′2T ⟫⟪p′4T ⟫+ 30⟪p′2T ⟫3
+ 30⟪p′1T ⟫2⟪p′4T ⟫− 120⟪p′1T ⟫3⟪p′3T ⟫+ 120⟪p′1T ⟫⟪p′2T ⟫⟪p′3T ⟫
− 270⟪p′1T ⟫2⟪p′2T ⟫2 + 360⟪p′1T ⟫4⟪p′2T ⟫− 120⟪p′1T ⟫6 3.27

κ(p′7T ) =⟪p′7T ⟫− 7⟪p′1T ⟫⟪p′6T ⟫− 21⟪p′2T ⟫⟪p′5T ⟫− 35⟪p′3T ⟫⟪p′4T ⟫+ 42⟪p′1T ⟫2⟪p′5T ⟫
+ 140⟪p′1T ⟫⟪p′3T ⟫2 − 210⟪p′1T ⟫3⟪p′4T ⟫+ 210⟪p′2T ⟫2⟪p′3T ⟫+ 210⟪p′1T ⟫⟪p′2T ⟫⟪p′4T ⟫
− 630⟪p′1T ⟫⟪p′2T ⟫3 + 840⟪p′1T ⟫4⟪p′3T ⟫− 1260⟪p′1T ⟫2⟪p′2T ⟫⟪p′3T ⟫− 2520⟪p′1T ⟫5⟪p′2T ⟫
+ 2520⟪p′1T ⟫3⟪p′2T ⟫2 + 720⟪p′1T ⟫7 3.28

κ(p′8T ) =⟪p′8T ⟫+ 20160⟪p′1T ⟫6⟪p′2T ⟫− 6720⟪p′1T ⟫5⟪p′3T ⟫− 25200⟪p′1T ⟫4⟪p′2T ⟫2 + 1680⟪p′1T ⟫4⟪p′4T ⟫
+ 13440⟪p′1T ⟫3⟪p′2T ⟫⟪p′3T ⟫− 336⟪p′1T ⟫3⟪p′5T ⟫+ 10080⟪p′1T ⟫2⟪p′2T ⟫3 − 2520⟪p′1T ⟫2⟪p′2T ⟫⟪p′4T ⟫
− 1680⟪p′1T ⟫2⟪p′3T ⟫2 + 56⟪p′1T ⟫2⟪p′6T ⟫− 5040⟪p′1T ⟫⟪p′2T ⟫2⟪p′3T ⟫+ 336⟪p′1T ⟫⟪p′2T ⟫⟪p′5T ⟫
+ 560⟪p′1T ⟫⟪p′3T ⟫⟪p′4T ⟫− 8⟪p′1T ⟫⟪p′7T ⟫− 630⟪p′2T ⟫4 + 420⟪p′2T ⟫2⟪p′4T ⟫+ 560⟪p′2T ⟫⟪p′3T ⟫2
− 28⟪p′2T ⟫⟪p′6T ⟫− 56⟪p′3T ⟫⟪p′5T ⟫− 35⟪p′4T ⟫2 − 5040⟪p′1T ⟫8 3.29

The measurements of cumulants can additionally be contaminated by non-collective effects.
These are false correlation signals that can arise from the jet and the decay of particles. For this
reason, it can be advantageous to use the higher order cumulants as the possibility of m particles
being correlated by other measures then the collective expansion is on the order ≈ 1/(Nch)

m−1

[41]. If the particles evolve from a collective expansion, as from QGP the particles would be
correlated in some manor, regardless of how many are taken into account. While they might not
always be accessible in real data due to statistical limitations, they can provide a great method
for obtaining possible saturation effects when going to higher orders.

3.3.2 Standerdized cumulants

As the cumulants are very sensitive to analysis details, such as the measured pT , collision
system, and collision energy[44], additional steps are made to assure a more robust observable
in where systematic effects are canceled. Additionally, it has been found that the application
of weights as introduced in Equation 3.19 results in a non-linear response, which consequently
causes failure of any closure tests10. To account for these effects we introduce scaled cumulants
which reduce the observables to dimensionless quantities. Some experiments scale the cumulants
by the mean measured transverse momentum 1/⟪p′1T ⟫ for a simple system comparisons[53] while
other experiments scale the cumulants with respect to some of the global parameter11, and are
denoted as intensive ratios[44]. The intensive ratios are constructed to reduce global fluctuations.
The scaling is therefore not strictly defined and differs in between experiments due to different
motivations. Consequently, direct comparisons of results are not always possible. In this thesis,
we provide a standardized baseline for the cumulant scaling. Following the same method of
standardized moments with respect to the square root of the variance we get

µ̃m =
µm

σm
=

E [(X − µ)m]

(E [(X − µ)2])
m/2

−→ κ̃(p′mT ) =
κ(p′mT )√
(κ(p′2T ))

m
3.30

where κ(p′mT ) are the m´th order cumualants as obtained through Equation 3.22-3.27. As a
result of the choice of scaling, the standardized cumulant is not defined for second order m = 2

10This research has mostly been discussed in internal ALICE meetings and analysis notes
11this is regarded as a common correlated variable in the analysis range, such as multiplicity or centrality as

used in this thesis
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as can be directly noted by the formulation in Equation 3.30. The complete formulas for up to
eight orders m = 8 are provided below.

κ̃(p′1T ) =
⟪p′1T ⟫√
(κ(p′2T ))

1
, κ̃(p′3T ) =

κ(p′3T )√
(κ(p′2T ))

3
, κ̃(p′4T ) =

κ(p′4T )√
(κ(p′2T ))

4
, κ̃(p′5T ) =

κ(p′5T )√
(κ(p′2T ))

5

3.31

κ̃(p′6T ) =
κ(p′6T )√
(κ(p′2T ))

6
, κ̃(p′7T ) =

κ(p′7T )√
(κ(p′2T ))

7
, κ̃(p′8T ) =

κ(p′8T )√
(κ(p′2T ))

8
3.32

The standardized cumulants for 3 ≤ m are thus providing a scale-invariant probe that only
contains the collective pT fluctuations of the system. While the second-order cumulants are not
directly defined, the first-order standardized cumulant κ̃(p′1T ) can be used to indirectly access
κ̃(p′2T ) information, in the same dimensionless base as the other observables.

3.4 Sub-event method

Measurements of transverse momentum fluctuation are in general contaminated by different
sources which are not necessarily part of the initial system which are studied. The non-collective
effects might arise due to a number of reasons but primarily arises from back-to-back decays
of particles and jets in energetic events. In the presentation of cumulants, it where presented
how higher orders are expected to suppress non-collective contribution and provide a more
trustworthy measurement. Though, as will also be noted later, the statistical dependence of
cumulants scales exponentially. Consequently, this motivates improved methods for low-order
cumulants, such that the non-collective effect undergoes additional suppression. In the following
section, the method is presented with illustrations and explanations.

3.4.1 Two-Sub event cumulants

In the standard calculation of the intrinsic moments, each particle is taken in the full acceptance
region of the detector |η| < 0.8. Thus by obtaining the correlation measurements in the experi-
ment, we sum the contribution from particles in distant and close proximity to each other. While
the correlation between distant particles is considered to arise from the collective expansion of
the system, a correlation between particles in close proximity can arise from the energetic stream
of particles produced in jets which unfortunately produces a bias in the measurements. These
effects are typically denoted as short-range correlations. To suppress these short-range effects a
gap in the pseudorapidity |∆η| can be enforced such that only distant particles are correlated
[53]12. Separating the detector into two independent regions, namely sub-event A and sub-event
B an additional constraint must be made. In calculating the moments one would have to make
sure that at least one particle is included from both sub-event A and sub-event B.

Figure 3.2: Illustration of the side view of the detector with the 2-sub event method with an
enforced gap in pseudorapidity |∆η|

12The sub-events methods have previously been studied in great details in anisotropic flow analysis of both
small and large collisions system [55]
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With the generic formula presented, it is possible to apply a shortcut for calculating intrinsic
moments with the sub-event constraints. Utilizing the fact that the generic formula isolates every
unique particle pair in a given range it is possible to first apply the calculations independently
and afterward multiply the sub-events moments. The product will simply expand and mix
particles from each event. The principle idea is illustrated in Figure 3.2. The two-sub event
moments are defined as

⟨p′mT ⟩(ij)2-sub = ⟨p′iT ⟩A⟨p
′j
T ⟩B , m = i+ j 3.33

where (ij) denotes the number of particles used in sub-event A and B respectively. Here it is also
noted that for a m´th order sub-event moment, there must naturally be a total of m particles
in sub-event A and B. The associated cumulants for the sub-event correlation can unfortunately
not be derived as easily as previously outlined as the particles in different sub-events now must
be treated as different random variables. Consequently, the expansion method[56] does not hold
anymore and the cumulants have to be derived according to full expansion in every partition.
This approach does unfortunately not have any pretty analytical solution, so the core approach
used is kept in Appendix G. We therefore without any further action define the 2-particle
cumulant for the two sub-event methods as

κ(p′2T )2-sub =⟪p′2T ⟫(11)2-sub − ⟪pT⟫A⟪pT⟫B 3.34
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4 Data processing and Selection

In this chapter, each step of the analysis procedure will be presented. Firstly a brief summariza-
tion of the analysis framework used for data processing on the LHC Grid will be given. Sequently
the selection cuts for events and particle tracks will be outlined with the motivation of choice for
such cuts. This is followed by applied efficiency correction to account for detector performance,
as well as compatibility between different periods of data taking. Finally, the propagation of
statistical as well as systematic uncertainties is presented for the final observables.

4.1 Analysis framework

The analysis is performed in two separate steps. The first part of the analysis is performed
under the AliPhysics analysis framework developed by the ALICE collaboration for processing
of data on the Grid, this is referred to as online analysis. The second step consists of final state
calculations as well as error propagation which is normally performed on a local machine, this
is referred to as offline analysis. The effective workflow of the whole analysis is illustrated in
Figure 4.1 for a more comprehensible understanding of the different aspects. Each colored com-
ponent in Figure 4.1 is completely separable, so implementing additional functions or features
can be implemented easily. The online analysis is performed by the AliAnalysisTaskDensity

and AliPtSubEventContainer which are two object-oriented-programming classes constructed
for this thesis. The analysis task has been included on the official AliPhysics GitHub reposi-
tory[58] and can be found under PWGCF/FLOW/GF/.

The AliAnalysisTaskDensity task, controls the experiment flow by managing the detector se-
lection criteria which will be outlined in the following section. The class AliPtSubEventContainer
is used for numerical calculation of the intrinsic pT moments as introduced in Analysis method
and constructed with the generic formulas as the core component. The class is additionally
tuned to calculate every term needed for arbitrary orders of two-sub event cumulants, and up to
six order pT cumulants with three-sub events. While they are still accessible within the ALICE
analysis framework, they could not be presented in the given time frame of this thesis.

In this analysis presented, data of Pb-Pb collision
√
sNN = 5.02 TeV as well as Xe-Xe collisions

at
√
sNN = 5.44 TeV are used. The data were obtained under the LHC Run 2 data-taking

period. The collision system, energy, and the anchored run period number are summarised in
Table 1. This composes of Pb-Pb data taken in 2015 and 2018 from where additional analysis
checks are made to make sure the two periods are compatible with each other.

Collision system Collision energy Period number

Pb-Pb
√
sNN = 5.02 TeV LHC15o, LHC18q, LHC18r

Xe-Xe
√
sNN = 5.44 TeV LHC17n

Table 1: List of the collision system and the data period in which data are obtained

4.2 Event selection

The events used in the analysis are selected from pre-defined criteria already implemented in
the ALICE framework. The first layer is used to select events according to the fired trigger. A
minimum-bias trigger, kInt7 are selected for all run period and are covering a centrality range
of 0-90%. Additional trigger selection for the LHC18qr period is applied with kCentral (0-10%
centrality) and kSemiCentral (30-50% centrality). For each event, the centrality is calculated
with AliMultSelection framework which is an additional integrated part of the AliPhysics
analysis framework. The centrality for each event is calculated based on the trigger and central-
ity estimator. For this analysis, the V0M centrality estimator is used which uses the observed
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Input Event
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Figure 4.1: Illustration of analysis workflow which consists of a two-step process. The analysis
is firstly performed on event-by-event calculations on the LHC Computing Grid, marked by the
entry/exit point (red). After online processing, the data are used for post-process calculation
and propagation of statistical and systematic uncertainties

multiplicity distribution from V0A and V0C detectors to estimate the centrality. The full event
cuts applied to each run period are presented in Table 2.

Primary vertex selection

The events are further required to stem from within ±10 cm of the nominal collision point
|Vz| ≤ 10. This cut is made to ensure full pseudorapidity coverage of produced particle tracks
in the central barrel region |η| < 0.8. The primary vertex is determined from the information
of the SPD layer, which is the innermost layer of the ITS detector.

Pileup rejection

With a million events occurring each second, it is not possible for the interactions trigger to
completely isolate each event information. Consequently, this leads to the event-mixing of par-
ticles originating from different collisions. These events are referred to as pile-up events and
are classified as same-bunch or out-of-bunch pile-ups. Same-bunch pile-up events happen from
collisions in the same bunch crossing and out-of-bunch happens from collisions in other bunch
crossings. Pileup-rejection is managed by the AliEventCuts13.

The first step of pile-up rejection is done by making sure that each event only has a single
reconstructed primary vertex as multiple would indicate a large amount of track mixing, and

13An additional specialized part of the AliPhysics analysis framework
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hence pile-up. The additional track originating in pile-up events would also result in a larger
amount of clusters being triggered in the TPC compared to a single event. Additional cuts are
thus enforced by ensuring a correlation between the centrality estimation from V0M and CL0
estimators. The correlation before and after pile-up rejection can be seen in Figure 4.2.
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Figure 4.2: LHC15o centrality correlation between V0M and CL0 estimators. Left: Before
events cuts. Right: After events cuts. The implementation act as a first step to reduce the
number of pileup events

Data Cut type Cut value

LHC18qr Trigger kInt7, kCentral, kSemiCentral
Vz < 10 cm
Pileup > 15000

LHC150 Trigger kInt7
Vz < 10 cm
Pileup > 15000

LHC17n Trigger kInt7
Vz < 10 cm
Pileup > 15000

Table 2: List of events cuts applied for run periods. During the 2018 run, additional triggers
were taken into action. These corresponds are focused to capture central and semi-central events

4.3 Track selection

After an event has passed the selection criteria each track undergoes additional filtering. The
online framework allows for quick track selection according to pre-defined cuts. In this analysis
global-tracks are used, also known as filterbit 96, but additional constraints are also implemented.
Global tracks use information from both ITS and TPC to constrain the track and ensure high
quality. The global track cuts are defined in the following list.

Global Track - Cut list

• Minimum of 70 hits in the TPC clusters

• Maximum χ2 ≤ 4 of the track fit per TPC cluster

• Maximum χ2 ≤ 36 of the track fit per ITS cluster

• A minimum of óne hit in the SPD or SDD
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• A cut on the longitudinal distance of closest approach |DCAz| < 2.

• A cut on the transverse distance of closest approach |DCAxy| < 0.0105 + 0.0350/p1.1T

• A converged track fit in the final stage of reconstruction

Each reconstructed track is propagated backward to predict the point of origin and make sure
that it is within some range of the nominal interaction point Vz of the collision. This is done
through the distance of the closest approach which is applied in the z and xy-plane indepen-
dently. In the z -plane a distance of the closest approach is chosen within 2 centimeters of the
primary vertex |DCAz| < 2. Due to the large solenoid magnet in the detector, the particle
trajectory is subject to additional bending and consequently bias in the reconstruction. For
this reason, a pT dependent DCA cut is made in the xy-plane |DCAxy|. As can be seen from
the list of global track cuts, the |DCAxy| cut is defined such that low momentum particles are
required to be closer to the primary vertex in order to minimize the effect of the magnetic field
strength. This also makes intuitive sense since a higher momentum would result in less bending
and thus provide a more straight line to fit in the final reconstruction phase. Besides the default
cut applied in the filter-bit selection, an additional constraint is set on the χ2 per TPC clusters
which are tuned to ≤ 2.5. The additional cut are regularly applied for Pb-Pb collisions after
2015 as part of the ALICE TPC upgrade which resulted in a more narrow χ2 distribution14.
The complete list of cuts applied can be seen in ??, as will be presented in the following section
about systematic uncertainties.

Physics selection Type Range

pT [GeV/c] [0.2, 3.0]
η [−0.8, 0.8]

Table 3: Kinematic cuts off the track as used in the analysis.

Additional cuts are made to the physical quantities of the track in an event. While the global
track cuts constrain the track resolution, the physics selection can pose a greater significance and
are prone to more dramatic changes when tuned. Only tracks selected within |η| < 0.8 of the
central barrel are selected such that full tracking is provided for all tracks. The transverse mo-
mentum is additionally bounded in the range 0.2 < pT < 3.0 GeV/c to exclude low momentum
particles and reduce possible jet inclusion15. The physics cuts are listed in Table 3. A quality
check (QA) is made of all the listed observables before any advancements are made in the data
analysis. With the LHC2015o period as an example, the track QA is shown in Figure 4.3-4.4 .
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Figure 4.3: QA of track selection in LHC15o for: TPC crossed rows, χ2 per TPC cls., χ2 per
ITS cls.

14This is unfortunately one of these things that are documented in personal analysis note within ALICE and
therefore not public

15jets normally result in a large number of high momentum particles
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Figure 4.4: QA of track selection in LHC15o for: |DCAxy|, |DCAz|, η

4.4 Efficiency correction for transverse momentum

The measurements of particle momenta are determined from track reconstruction as obtained
from propagation throughout the detector. As a consequence, the measured momentum is
directly affected by detector efficiency. With the measurements of transverse momentum corre-
lation being sensitive to just tiny fluctuation, it is important to obtain a pure estimate of the
particle momentum. To account for this an efficiency correction is applied to the measured pT
which will be presented in this section. The efficiency correction is calculated from Monte-Carlo
(MC) simulation, as it is not possible to obtain the true pT distribution, or even predict it.
This is done by using simulated collisions for a given system. For heavy-ion collisions, and
for this thesis, HIJING is used as an event generator. First, a pure event is generated, this
event does not account for detector loss and efficiency and is referred to as the generated MC
sample. Through the generated MC sample it is then possible to obtain the pT distribution
noted as pgeneratedT . Sequently the passage of the particles through matter is simulated using
the GEANT4 toolkit[59] and is referred to as the reconstructed event. With the reconstructed
event it is possible to obtain an estimate of how particles in different pT ranges are lost after
matter interaction. This is noted by N reconstructed

ch . The efficiency correction is then obtained
by the ratio between generated and reconstructed momentum, typically calculated in narrow pT
bins as

effeciency(pT ) =
N reconstructed

ch (pT )

Ngenerated
ch (pT )

4.1

The efficiency is frequently used for calculating an associated weight factor for the pT off each
particle. The weights for a given particle pT are calculated as

w(pT ) =
1

effeciency(pT )
4.2

The weights can afterward be applied accordingly as outlined in Equation 3.14. By con-
struction of the weights, it is ensured that w(pT ) > 1 so that a higher emphasis is put on
particles obtained in low-efficiency regions. The reconstructed events are additionally anchored
to a specific run period which accounts for the at-the-time state and efficiency of the detector.
This is ensured by verifying that the reconstructed data coincide with data as obtained in the
experiment. These verifications are made internally within ALICE before the event simulations
are made public (to ALICE members), ensuring only high-quality MC productions. Addition-
ally, as each reconstructed MC production is anchored to a specific period of data taking and
detector state, it also functions as an important step for making data of different periods com-
patible with each other. This is due to the continuous upgrades, modification, and not the least
degradation of the detector components which happens with the continued years of operation.
The efficiencies obtained for Xe-Xe and Pb-Pb collisions with respect to their run period, see
Table 1, are presented in Figure 4.5 for different systematic cuts applied.
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Figure 4.5: Left: Efficiency for Pb-Pb as obtained with different systematics cut. Right:
Change of efficiency with respect to the default cut used as outlined under Event selection and
Track selection. For systematic cuts with multiple curt values (as will be introduced in the
following section), only the upper and lower values are plotted )

The efficiencies are calculated in pT bins covering the range 0.2 ≤ pT ≤ 3. [GeV/c], corre-
sponding to the default physics cut as presented in subsection 4.3. As can be seen, the low pT
region surfers larger inefficiency that is shared between every run period and cut. This is partly
due to the momentum resolution of the central-barrel detector where the TPC has an effective
resolution of 0.1 ≤ p ≤ 100 [GeV/c][39]. The most significant change in the Pb-Pb data sets
can though be seen to come from the hybrid tracks which have more loose constraints on the
track reconstruction such as a higher maximum χ2 per TPC clusters and |DCAz|.

4.5 Compatibility check between run periods

While every period of data taking at LHC16 contains the same physics, it is not always possible to
combine data from different periods due to the replacement of detector parts, detector efficiency,
and also the sensitivity of observables. Before any data can be merged a qualitative analysis has
to be presented and discussed before any proceedings are made. In this section, the compatibility
of Pb-Pb collisions at

√
sNN = 5.02 TeV between the LHC15o and LHC18qr periods are outlined

with respect to the base observable, the intrinsic moments. The moments ⟨p′mT ⟩ for both run
periods can be seen in Figure 4.6 (Left) and the ratio of LHC18qr with respect to LHC15o
(Right).
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Figure 4.6: Left: Intrinsic moments of the LHC15o and LHC18qr run periods for m = 1, . . . , 8.
Right: Ratio of moments of LHC18qr data with respect to LHC15o data. Large deviation
observed from semi-central to peripheral centrality range

16considering same system and energy
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Before the data sets are compared the NUE correction, as presented in the previous section,
is applied to the observables in order to minimize the difference in detector performance between
periods. For low-order moments m = 1, 2, 3, 4 no clear deviation can be observed between the
two data sets. Though with the power law scaling of the moments, the trends also get ampli-
fied. explained by statistical fluctuations due to low uncertainties. A clear deviation of trends
between the two periods can be observed for the higher order m = 5, 6, 7, 8 in the semi-central
to semi-peripheral centrality range. The observed deviation shows a clear structure that cannot
be. While the lower order moments are within 0.5% agreement with each other the explicit
expression of the cumulants should also be taken into account. As noted in Equation 3.22-3.25
the cumulants follow a power law expansion of the moments. Consequently, the relatively small
deviation will be additionally amplified and the 0.5% deviation could go up to ≈ 2.% and higher.
With the power scaling behavior of the observables and observed structure in the LHC18qr it
is decided not to go forth with the merging of the two data sets as they are not compatible
with each other. Though to keep a complete analysis of the current Pb-Pb collisions that are
available, the LHC18qr data will be presented independently as an appendix. The reason for
going forwards with LHC15o data is due to its additional years of usage and tests.

4.6 Uncertainties

No physical experiment consists of uncertainty-free data. For this reason, this section provides
the steps taken from experimental measurements to final observables and associated observables.
Firstly the non-parametric bootstrap method which will function as the base step of error
propagation will be outlined for obtaining observable uncertainty. Additionally, the steps for
rebinning and comparison of different measurements are outlined.

4.6.1 Statistical uncertainty

As presented in Chapter 3, the number of terms in the final cumulants observables κ(p′mT )
and κ̃(p′mT ) reaches a tremendous order. Using analytical error propagation with derivatives
would result in all complex terms with associated correlation coefficients which would have to
be included in the final result. While it is possible to obtain a full analytical expression for the
lower orders m=2, 3 it quickly becomes impossible. To keep a consistent method across both
low and higher-order observables the Bootstrap method[60] is used for the propagation of final
results. The bootstrap method is a non-parametric resampling technique for variance estimation
and can therefore be implemented without any complex inferences about the population. In the
online part of the analysis, each calculation of the intrinsic moments is randomly divided into
sub-samples which all consist of roughly the same amount of data. In the offline part of the
analysis, each cumulant observables κ(p′mT ) and κ̃(p′mT ) are calculated for each sub-sample set.

With 10 sub-samples a total of B data-sample θ̂i is created by combining 10 randomly selected
samples with repetition. Each new set is combined as a weighted average with the weight
assigned according to the number of samples w = 1/10. The central value of the measurements
is obtained as the average value of the resampled bootstrap distribution, with the standard
deviation calculated as

σθ =

√√√√ 1

B − 1

B∑
i=1

(
θ̂i − θ̄

)2
4.3

It was discovered during the analysis that a too high sample size B (≈ 10.000) could result
in an underestimation of the errors associated with MC-generated data. The underestimation
of error is also a known drawback of the bootstrap resampling method. Though despite the
underestimation of errors, the bootstrap method as applied in high-energy heavy-ion physics
proves a robust and efficient method[61]. In this analysis, a distribution is made with B = 500
samples which were found to be an appropriate bound for the observables.
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Figure 4.7: Left: The 10 raw sub-samples of the third standardized cumulants κ̃(p′3T ). Right:
The raw 10 sub-samples of the third standardized cumulants κ̃(p′3T ) with bootstrap propagated
uncertainties

The method as applied for the third standardized cumulant κ̃(p′3T ) can be seen in Figure 4.7 in
the central range (0− 10%). The propagated uncertainties (Right) can be seen to comply with
the raw samples in each bin. The procedure is done for each observable in the whole centrality
range17
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Figure 4.8: The full centrality range as applied for every observable

Rebining of x-axis

To reduce the risk of statistical fluctuation effects between bins all calculations are firstly carried
out in centrality bins of c =1% and afterward rebined. This is done to make sure that the data are
representative and that small-scale effects are not suppressed. The rebined data are calculated
by a weighted mean of the desired neighboring bins ci given by

c̄ =

∑
ci/σ

2
i∑

1/σ2
i

4.4

In Figure 4.9 it can be seen how different bin widths can cause structure suppression in the
peripheral region if a too-large bin width is chosen. It can also be seen how a larger bin width
can contribute to an underestimation of errors and at the same time result in a more poor
representation of data. In general, simulations in this thesis will be presented in bin width
of ∆c̄ = 3. Though there are still some exceptions as real data suffers from more statistical
fluctuations and higher bin widths are therefore needed.

17as noted beforehand the centrality range in experiments covers 0-90%
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Figure 4.9: Two methods of rebinning. Left: Rebinning of data to a bin width of ∆c̄ = 10
together with the default binning. Right: Rebining of data to a bin width of ∆c̄ = 3 together
with the default binning. As can be seen, the lower bin width conserves the observed structures
better

4.6.2 Systematic uncertainties

In the previous section, a description has been outlined regarding the selection of events and
subsequent particle tracks in the event. These parameters, such as the requirements of a certain
number of hits in the TPC, are more related to the quality of the analysis and not so much to the
physics itself. Consequently, the selection of cuts reflects decisions taken by the experimentalist,
which can influence the measurements and must therefore be accounted for. This could be by
tightening the event selection with respect to the primary vertex Vz. While this would intuitively
increase the overall quality of the tracks, it can also affect the statistics as fewer events can be
used for the analysis. This section outlines the default cuts, systematic variations, and the
complete procedure for including the propagated (systematic) uncertainties in the final results
of the thesis. For the selection of the event, the primary vertex is tightened from a default value
of |Vz| < 10 cm down to |Vz| < 5 cm. Additionally, the centrality estimator is switched from the
V 0M to the CL0 and CL1 sub-detector which corresponds to the inner and outer components
of the ITS. The track cuts are tightened further in |DCAxy| and |DCAz|. The last tight cut
is put on the number of crossed rows in the TPC, where it is varied from > 70 to > 100 hits.
A loose cut is also tested by using hybrid filterbit 768 tracks. Hybrid tracks are as mentioned
more loosely defined in all parameters mentioned. The complete list, with the default cut and
the systematic variation, is listed in Table 4 for a complete overview. The pT dependent cuts
applied to DCAxy will be listed as |DCAxy| followed by the associated multiplication factor for
that variation, in each figure18.

For each systematic cut, the statistical significance of variation is calculated for every ob-
servable in each bin. The test used is referred to as the Barlow check[62] for fully correlated
variables are given by the expression

|xdef − xsys|√
|σ2

def − σ2
sys|

> 1 4.5

where x and σ denote the measurement and associated uncertainty respectively. While the
measurements are independent of each other, each cut is a subset of the default value and is
therefore always correlated to some extent. The Barlow check is calculated bin-by-bin for each
observable. If the average Barlow is larger than 1, the variation is considered significant and
a systematic uncertainty must be applied to the measurements. If multiple variations of the
same cuts, such as |DCAz| < 1 and |DCAz| < 0.5 are considered significant, only the largest
contribution will be included. For example, the standardized cumulant κ̃(p′1T ) is calculated for

18this is purely to save space in the figures
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Parameter Default cut Systematic cut

< 9 cm
|Vz| < 10 cm < 7 cm

< 5 cm

Centralit est. V0M
CL0
CL1

|DCAxy| < 7 · (0.0026 + 0.005/p1.01T )
< 6 ·(0.0026+0.005/p1.01T )
< 4 ·(0.0026+0.005/p1.01T )

|DCAz| < 2 cm
< 1 cm
< 0.5 cm
>100

TPC cls. >70 >90
>80

Track type. Global Hybrid

Table 4: Cuts applied for estimation of systematic variance as done in this thesis. Left panel:
Cut variables. Center panel: Default cuts. Right panel: Systematic cuts. The gray-shaded text
(CL0 and CL1) denotes variations that are not considered in the final estimation

each cut, see Figure 4.10 (Left). Following the measurements of each cut, the Barlow check
is calculated between the default and systematic cut, see Figure 4.10 (Right). As can be
noted every variation gives an average Barlow above unity and is thus considered significant,
consequently systematic uncertainties must be applied. While such a high value should raise
an eyebrow it can be observed in Figure 4.11 that the relative uncertainty for moat variations,
is below 1% which is far from bad. Additionally, as can be observed, the centrality estimators
CL0 and CL1 do pose the highest significance score of the Barlow check. With the addition of
the direct measurements in Figure 4.10 (Left) this contribution must be commented on as the
CL0 and CL1 estimators do not follow the general trend. One explanation of this could be that
by using the central barrel of the detector for both analysis and centrality determination, one
accidentally introduces a systematic error as the same particle information is used for multiple
measurements. For this reason, the systematic cut of CL0 and CL1 is not included in the final
propagation and calculation of systematic uncertainties.
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Figure 4.10: Left: Measurements of κ̃(p′1T ) in Pb-Pb collisions at
√
sNN = 5.02 with different

systematic cuts. Right: Barlow checks for all systematic variation with respect to the default
cut. The values 1 < signifies a significant source of variation that must be used to assign
additional uncertainties

The relative uncertainty for each systematic source is fitted with a pol0 fit as it is assumed to
be constant for the whole centrality range. This assumption is also reasonable as presented in
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the final bin width as seen from Figure 4.11.
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Figure 4.11: Each source contribution to the relative uncertainty of κ̃(p′1T ) in Pb-Pb collisions
at

√
sNN = 5.02. Each source are then fitted by a pol0 fit which all are available in Appendix C.

The final systematic uncertainties are obtained as the square root of the quadratic sum for
each contributing source.

δxsys =

√√√√ N∑
j=1

(
∆x

x

)2

j

4.6

Concluding remarks on the processing of data

After the complete procedure of data processing, from applying NUE correction to the prop-
agation of statistical and systematic uncertainties an overview of the experimental data with
respect to the presented probe is obtained. While the measurements of the higher order stan-
dardized cumulants κ̃(p′mT ) can be obtained with high precision in simulation, the same does
not hold true for real data. With the complete data processing as outlined in this section, it
has only been possible to make a proper representation of first and third-order standardized
cumulants κ̃(p′1T ) and κ̃(p′3T ) respectively, together with the raw pT cumulants κ(p′2T ). For Pb-Pb
collisions, a total of ≈ 48 million events passed all events selection criteria and were included
in the final analysis. Though the Xe-Xe collision recorded during the LHC run2 where not an
integrated part of the run schedule, so only a limited amount of events exist. For Xe-Xe collision
an ≈ 1.3 million passed all triggers and was used for analysis. While this number is relatively
low, compared to the Pb dataset it is possible to make a proper estimation of κ̃(p′1T ) and κ(p′2T ).
As the statistical fluctuations are quite large of the κ(p′3T ) observable in Xe-Xe collisions, the
systematic uncertainties assigned for this should be taken with a grain of salt. A full evalua-
tion of systematics sources is however carried out and the appropriate contribution is added.
A complete list of figures and associated fits for each source of systematics in the Pb-Pb and
Xe-Xe data can be found in Appendix C. The final systematic uncertainties for each observable
in Pb-Pb and Xe-Xe collisions are listed in Table 5-6 on the following page, with the largest
contributor for each variation.
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Pb-Pb |Vz| |DCAz| |DCAxy| #TPC cls. hybrid tracks Assigned unc.

κ(p′2T ) 2.7% 0.2% 1.8% 5.2% 2.4% 6.6%
κ̃(p′1T ) 1.5% 0.1% 0.5% 1.7% 0.7% 2.4%
κ̃(p′3T ) 14% 2.6% 14.% 15.6% 55% 60.1%

Table 5: Relative uncertainty from different systematic sources in Pb-Pb collision at
√
sNN =

5.02 TeV. Each outlined variation (in %) is taken at the largest contribution from alike cuts.
The combined systematic uncertainties are outlined on the right side of the table.

Xe-Xe |Vz| |DCAz| |DCAxy| #TPC cls. hybrid tracks Assigned unc.

κ(p′2T ) 5.6% n/a 2.% 2.1% 1.1% 5.8%
κ̃(p′1T ) 2.8% n/a 1.2% 0.4% 0.3% 3.1%
κ̃(p′3T ) 20% n/a n/a 7.4% 4.% 24.9%

Table 6: Relative uncertainty from different systematic sources in Xe-Xe collision at
√
sNN =

5.44 TeV. Each outlined variation (in %) is taken at the largest contribution from alike cuts.
The combined systematic uncertainties are outlined on the left side of the table.
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5 Results and Discussions

In this chapter, measurements of standardized cumulants of transverse momentum fluctuations
in ultra-relativistic collisions of Pb-Pb at

√
sNN = 5.02 TeV and Xe-Xe at

√
sNN = 5.44

TeV will be presented. These measurements aim to provide insight into collective effects in
heavy-ion collisions and reveal how initial-stage effects, such as nuclear deformation, can be
observed in experiments. The first part of the chapter utilizes Monte Carlo simulations to
study the sensitivity and response of the standardized cumulant κ̃(p′mT ) to different physical
processes. Monte Carlo simulation is an essential tool for studying such observables as it provides
a controlled framework where every physical process is well understood. The study begins
by investigating the origin of non-collective effects using the HIJING model. This analysis
includes examining the effects of selecting particles within specified pT ranges and how higher-
order cumulants can be employed to suppress collective effects. The sub-event method is also
utilized to suppress short-range correlations, allowing for the study of the non-collective effect
of jets. Subsequently, the sensitivity to nuclear deformation is explored using the AMPT model,
which simulates collisions of 129Xe with different deformations. This investigation aims to
provide valuable insights, that can clarify if the probe can accurately capture a ”snap-shot”
of the collision in the final stage measurements. By varying the deformation strength β2 and
triaxiality γ, the study focuses on the effect of triaxial deformation and its influence on the
nuclear structure’s sensitivity. Finally, experimental data from Pb-Pb and Xe-Xe collisions at
the LHC are presented and compared to the model predictions. Each section of the chapter
includes the presentation of relevant data, followed by discussions and summaries of the findings
along the way.

5.1 None collective effects

To study non-collective effects, the Heavy-Ion-Jet-Interaction-Generator (HIJING) model is em-
ployed. The HIJING model is a Glauber-based model that simulates pp, pA, and AA collisions.
In this model framework, AA collisions are simulated by superposing independent collisions be-
tween participating nucleons (Npart). The HIJING model[63] provides a robust framework for
describing jet and mini-jet production in heavy-ion collisions, which are the primary contributors
to non-collective effects19. From a statistical perspective, cumulants from an independent source
should be inversely proportional to the number of participating nucleons (κ(p′mT ) ∝ 1/Nm

part) [41,
44]. This quantity additionally scales linearly with the final-state number of observed particles
(Nch).
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Figure 5.1: Left: Measurements of κ(p′mT ) form = 2, 3, 4, 5, 6, 7, 8 in HIJING. Right: Integrated
cumulants values to illustrate independent source scaling

19Or at least what is expected based on this model
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With the definition of centrality used in this thesis, directly testing the independent source
scaling is not possible due to the influence of multiplicity fluctuations in each centrality bin.
Instead, the scaling is examined by integrating the measured cumulant values (κ(p′mT )) over the
entire centrality range, making the scaling independent of the number of final state particles.
The scaling is evaluated based on the magnitude of the integrated cumulant measurements
across the 0-90% centrality range, as shown in Figure 5.1 (Left). The integrated cumulants,
illustrated in Figure 5.1 (Right), exhibit the expected power scaling behavior. However, it
should be noted that summing all κ(p′mT ) contributions in each centrality bin can lead to the
loss of included physics. The obtained results demonstrate similar trends to those observed in
[53] for κ(p′2T ), κ(p

′3
T ), and κ(p′4T ), albeit with calculations performed in terms of Nch (number

of charged particles).

5.1.1 Short-range correlation

The suppression effect on short-range correlation is tested for the second-order cumulants κ(p′2T ).
The efficiency of the method is tested by varying the gap in pseudorapidity |∆η| from 0 < |∆η|
to 0.8 < |∆η|. As the applied gap is increased in the pseudorapidity range ∆η, as illustrated in
Figure 5.2, the effect of short-range correlation is reduced.

Figure 5.2: Illustration of the side view of the detector with 2-sub event method as non-flow
suppression techniques. Increased separation between correlated particles reduces the short-
range correlation that is typically associated with jets

In HIJING calculations of κ(p′2T )2-sub with different pseudorapidity gaps, the efficiency is
tested, as shown in Figure 5.3. It is observed that the applied gap in pseudorapidity reduces
the correlation and, consequently, the non-collective contribution. Since collectivity observed
in HIJING is mainly associated with jets, this observation indicates that the sub-event method
effectively reduces non-collective effects. Additionally, it can be noted that the response is
non-linear, and the peripheral range (60-90%) is more biased by non-collective behavior.

Looking at the relative variation in Figure 5.4, it is clear that the central collision is slightly
more biased by statistical fluctuations, as there should not exist any physics in the model that
would favor such a spike. However, it can be observed that a possible saturation point may
be reached at |∆η| < 0.4, as no visible difference is observed beyond this range. This implies
that all short-range correlations should be generated within |∆η| < 0.4, which seems reasonable.
However, this also suggests that there may be additional sources of collectivity not accounted
for in this model that are yet to be understood.
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can be observed that the increased gap between particles reduces short-range correlation
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5.2 Response to transverse momentum

As mentioned in previous sections, the inclusion of jets is one of the dominant sources of non-
collective effects. By varying the cuts on pT , we can investigate the effect on ”jet” regions and
differentiate between high and low-momentum particles. The measurements of the raw cumu-
lants κ(p′mT ) exhibit a non-linear response to the chosen pT range, as shown in Figure 5.520.
Applying upper and lower cuts on pT allows us to observe the differences between low and
high-momentum particles. It is evident that increasing the uppercut, potentially introducing
jet streams, also increases the magnitude of collective effects as expected. This effect is further
amplified by raising the lower cut to 0.5 ≤ pT ≤ 3. and 0.7 ≤ pT ≤ 3. [GeV/c], as seen in
Figure 5.5-5.6. This clear dependence on high-energy particles indicates their significant con-
tribution to non-collective effects. However, while these measurements confirm the assumption
of collective effects arising from jets, they also reveal interesting and unknown effects in the
measurements of standardized cumulants, which can lead to ambiguous conclusions.
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Figure 5.5: Measurements of κ(p′mT ) for m = 2, 3 with respect to different pT cuts. The
uppercut can be seen to amplify the response by many factors compared to the lower cut
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Figure 5.6: Measurements of κ(p′mT ) for m = 4, 5 with respect to different pT cuts. The
uppercut can be seen to amplify the response by many factors compared to the lower cut

20The full list of results can be found in Appendix B, including additional zoomed-in graphs for the central
region.
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Standardized cumulants

In HIJING calculations, the results of the second-order cumulant κ(p′2T ) were negative in the low
centrality range, which was unexpected. However, this is within statistical fluctuation and could
be partially attributed to operational steps in the online framework, which may have affected the
full production. As the standardized cumulants depend on

√
κ(p′2T ), it is not possible to obtain

a complete spectrum. Therefore, the range of 0-10% will be shaded gray in the presented figures
of standardized cumulants. The measurements show a clear splitting of the upper and lower pT
cuts compared to the regular 0.2 ≤ pT ≤ 3 [GeV/c] range. In both κ̃(p′1T ) and κ̃(p′3T ), it can
be observed that increasing the upper cut from 3. to 4.0 and 5.0 GeV/c, respectively, reduces
the magnitude of κ̃(p′mT ). This trend is also confirmed by all higher-order κ̃(p′mT ) presented in
Appendix B. Similarly, by increasing the lower cuts to 0.5 and 0.7 GeV/c, respectively, it can
be observed that the magnitude of κ̃(p′mT ) increases, indicating the expected response of non-
collective contribution. The indication that the inclusion of high-momentum particles should
reduce non-collective effects is not understood, and no theoretical explanation can be outlined
at this moment.
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Figure 5.7: Measurements of standardized cumulants κ̃(p′1T ) with respect to cuts in pT range.
Left: The standardized cumulants can be observed to split around the 0.2 ≤ pT ≤ 3. [GeV/c]
range with respect to a lower or uppercut the pT range. The split indicates that by including
additional higher-momentum particles, the collectivity should decrease. Right: Same plot but
adjusted to 30-90% centrality for a more clear difference in the splitting
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Figure 5.8: Measurements of standardized cumulants κ̃(p′3T ) with respect to cuts in pT range.
Left: The standardized cumulants can be observed to split around the 0.2 ≤ pT ≤ 3. [GeV/c]
range with respect to a lower or uppercut the pT range. The split indicates that by including
additional higher-momentum particles, the collectivity should decrease. Right: Same plot but
adjusted to 30-90% centrality for a more clear difference in the splitting
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Though21, one suggestion could be that the increased cuts, whether they are lower or up-
per, introduce a direct scaling of the regular cumulants κ(p′mT ). In the standardization process,
this scaling is canceled out, resulting in a more natural reflection of correlation factors. This
would imply that by cutting off high-momentum particles, one inadvertently excludes more in-
formation about the initial conditions than intended. This idea is also mentioned in [64], where
it is discussed that the granularity of the initial condition directly probes higher pT particles.
Although this discussion is in the context of a hydrodynamic picture, it is clear that the initial
condition has significant implications for the pT spectrum.

Summery of non-collective effects

The efficiency of using higher cumulants as a means to suppress non-collective effects has been
successfully tested. Moreover, the impact on short-range correlation has been investigated, and
the HIJING studies suggest a possible saturation point for an eta separation of 0.4 < |∆η|.
Importantly, the standardized cumulants κ̃(p′mT ) have been shown to be a more effective probe
for collective behavior in heavy-ion collisions, but they also reveal unexplained effects. These
observations highlight the need for further investigation into the origin of these effects, as the
current understanding is insufficient to make definitive claims at this stage.

5.3 Response to quadrupole deformation

To study the effect of nuclear structures on the standardized cumulants of transverse momen-
tum fluctuations, local production of Xe-Xe collisions has been conducted22. This includes an
improved version where the initial nucleons can be sampled from the deformed density function,
as described in Equation 1.2-1.3. The xenon isotope 129Xe has been chosen to match the xenon
collisions accessible at the LHC. The deformation study is carried out using the A Multi-Phase
Transport Model (AMPT) to investigate the conversion from the initial nucleon density dT to the
final state pT spectra. The AMPT model[65] is a multi-stage framework that aims to describe
the entire evolution of heavy-ion collisions. While the model can accurately characterize the
initial eccentricity ϵ2 of the overlap between the colliding nuclei and the measured flow harmon-
ics v2, it fails to describe the radial flow[24]. Therefore, the higher-order transverse momentum
fluctuations cannot be directly compared with data obtained at the LHC. However, the model
can provide initial indications and enable the observation of effects during the final stage of the
collision. Thus, the model is used solely to study a possible response in the parametrization of
nuclear structures/shapes with β2 and γ.

The deformation effects on transverse momentum fluctuations are studied with four different
shapes: spherical, prolate, triaxial, and oblate, as illustrated in Figure 1.9. The spherical nuclei
serve as the reference spectrum with β2 = 0. The deformed nuclear shapes (prolate, triaxial,
and oblate) are tuned with a quadrupole strength of β2 = 0.18 and triaxiality values of γ = 0,
γ = 27, and γ = 60, respectively. Standardized cumulants κ̃(p′mT ) for the deformed nuclei will be
presented for m = 1, 3, 4. This is because the measurements cannot be completely separated for
higher orders due to statistical limitations. The presented figures in the following section will
focus on observables that are most relevant for the final discussion. As higher-order cumulants
are generally considered to have greater sensitivity to the initial conditions, the lack of statistics
is likely the main factor for the limited measurements23. The choice of deformation parameters
is based on the recent suggestion that 129Xe, in its ground state, exhibits a triaxial structure
with β2 ≈ 0.18 and γ ≈ 0.27[66]. Thus, the triaxial deformation produced in the AMPT model
corresponds to the selected baseline. The other forms of deformation are considered to study
the sensitivity to β2 and γ, respectively.

21Be part of the solution, not part of the problem, Stephen R. Covey
22The post-processing of simulations performed in this thesis is outlined in Appendix D
23The complete study includes all orders and can be found in Appendix B
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Measurements of κ̃(p′1T ) presented in Figure 5.9 (Left) show a small deviation between the
different values of β2 and γ in central 0-15% collisions. However, as the centrality increases
towards 30%, a more noticeable grouping, independent of deformation parameters, becomes
apparent. Studies on probes for nuclear deformation effects in AA collisions suggest that the
strongest impact will be observed in central and ultra-central collisions, where the nuclei collide
at a small impact parameter b ≈ 0[67], allowing for an accurate snapshot of the bodies. As the
colliding bodies move away from each other, the rotational degrees of freedom approach those of
a spherical baseline, resulting in less deviation in the average observed fluctuation. In measure-
ments of κ̃(p′3T ), as seen in Figure 5.9 (Right), a more significant response can be observed for
the prolate nuclei in the central region. It can be directly seen that κ̃(p′3T ) for the prolate nuclei
has a larger magnitude and maintains an opposite sign over a wider centrality range. Addition-
ally, it should be noted that the grouping of every other nuclear shape appears independent of
both deformation strength and triaxiality in the central region (0-15%). However, the grouping
begins to split in the 15-30% centrality range, where the spherical and deformed nuclei group
separate. The increased magnitude of prolate nuclei with β2 = 0.18 and γ = 0 is systematically
seen in higher-order standardized cumulants κ̃(p′4T ), κ̃(p

′5
T ), κ̃(p

′6
T ), κ̃(p

′7
T ), and κ̃(p′8T ), indicating

some scaling behavior of the standardized cumulants as a function of deformation.
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Figure 5.9: Measurements of κ̃(p′1T ) and κ̃(p′3T ) in collisions of deformed nuclei Left: Mea-
surements of κ̃(p′1T ) where a splitting between different deformations can be observed in central
collision 0-15%. Right Measurements of κ̃(p′3T ) where the prolate can be observed to pose a
greater response than the others

In the initial stage calculation, the deformation of nuclei directly affects the transverse nu-
cleon density d⊥, which is also proportional to the final state ⟨pT ⟩ fluctuations. Therefore, it
is relevant to compare initial and final stage observables to gain insight into the relationship
between them. By varying the deformation strength β2 of colliding uranium nuclei[24], the nu-
cleon density fluctuation Sd increases accordingly, as observed in the final stage κ̃(p′3T ). However,
when the variation of γ is increased for a fixed β2 = 0.28, the shape and slope of Sd decrease,
contrary to the observed effect in the final stage, where κ̃(p′3T ) only seems to be sensitive to de-
formation β2 and not triaxiality γ. It should be noted that in the initial stage calculation, there
is a complete opposite sign between Sd and κ̃(p′3T ), suggesting a relation such that Sd ∝ −κ̃(p′3T ).
In a hydrodynamic picture, the m’th order d⊥ fluctuation is assumed to be proportional to the
m’th order ⟨pT ⟩ fluctuation. This would indicate that any constant of proportionality would be
negative.

5.3.1 Sensitivity to quadrupole deformation β2

The relative deviation of the results is calculated with respect to the spherical baseline with
β2 = 0, and the results are presented in Figure 5.10. This allows for a minor suggestion of
possible sensitivity to deformations. The calculations show a relative deviation of approximately
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2 − 5% for κ̃(p′1T ), which remains almost constant over the measured centrality range. Similar
behavior is observed for κ̃(p′3T ), although there is a clear sign change, as seen in Figure 5.9,
specifically for the prolate nuclei. This sign change is not taken into account in the calculation
since it is performed based on relative deviations. The behavior of prolate nuclei clearly differs
from the others, but a full comparison of the measurements cannot fully account for this. In
the initial stage calculation, a formula is used to determine the cumulants of the initial nucleon
density, following an expression of the form[24].

a′ + βn
2 (b

′ + c′ cos(3γ)) 5.1

In this parametrization, the centrality-dependent parameters a′, b′, and c′ are not directly
correlated to β2 or γ. Therefore, it is reasonable to assume that the relative deviation presented
includes contributions from both γ and β2, and it is not straightforward to determine the specific
contribution of each factor. This concept is further investigated in the sensitivity analysis of
triaxiality in the subsequent section.
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Figure 5.10: Ratios of κ̃(p′1T ) and κ̃(p′3T ) for collisions of deformed nuclei Left: Ratio of κ̃(p′1T )
with respect to the spherical baseline. Right: Ratio of κ̃(p′3T ) with respect to the spherical base-
line. The observed fluctuation indicates a rather constant difference across the whole centrality
range.

5.3.2 Sensitivity to triaxiality γ

In addition to the formula presented in Equation 5.1, it can be observed that when comparing
two nuclei with the same quadrupole moment (β2), the contribution cancels out, and the cu-
mulants become proportional to a centrality-dependent function of the triaxial deformation (γ),
given by a′+ c′ cos(3γ). By examining the relative deviation of nuclei with the same quadrupole
moment (β2 = 0.18), it is possible to obtain a simplified expression. This reduces the com-
plexity of the problem and allows for a more straightforward analysis. While the first-order
standardized cumulant κ̃(p′1T ) ratio does not exhibit any apparent response, a more noticeable
effect can be observed in the κ̃(p′3T ) ratios. The deviation in the κ̃(p′3T ) ratios indicates some level
of sensitivity to γ after eliminating the influence of the deformation strength, as also observed
in the initial stage calculation of the nucleon density.

Motivated by the proposed expression for the ratios (a′+c′ cos(3γ)), a simple fit is performed
to demonstrate the effect, as shown in Figure 5.12. It should be noted that arbitrary functions
are proposed and fitted, and the form p0+ p1 · exp2 appears to be favored by the data. The fit is
presented with 95% confidence band for each of the nuclei. As can be observed, there is a clear
sign that the model is favorable and the deformation effect is significant as observed in the final.
Additionally, attempts have been made to analyze higher-order cumulants to investigate if the
observed trend persists consistently. However, the available statistics do not provide sufficient
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Figure 5.11: Ratios of κ̃(p′1T ) and κ̃(p′3T ) with respect to prolate nuclei Left: Ratio of κ̃(p′1T ).
Right: Ratio of κ̃(p′3T ) shows a centrality-dependent trend

accuracy for accurate calculations. The result of the fit highlights that there might be a way to
access the nuclear structure with κ̃(p′3T ) ratios. However, this will mostly be for nuclei with the
same quadrupole deformation, as it would only probe the triaxiality γ. As could be observed
in calculations of κ̃(p′3T ), as shown in Figure 5.9, the quadrupole deformed nuclei approach each
other as the centrality range is increased. Consequently, this results in a more apparent trend
than could be obtained with respect to the spherical baseline, and hence a more clear description
of the data.
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Figure 5.12: Fit of standardized cumulants ratios κ̃(p′3T ) with 95% confidence band. While
the model does favor the fit, there is no clear difference between the triaxial strength.

Summery of deformation effect

The comparison between the final stage transverse momentum fluctuation (κ̃(p′mT )) in collisions
of deformed nuclei and the initial stage calculation of nucleon density fluctuation in the overlap
region reveals interesting observations. A clear splitting of the prolate nuclei is observed in
relation to the third-order standardized cumulant (κ̃(p′3T )). However, it cannot be determined
at the current stage whether this deviation will increase or saturate for higher orders due to
limited statistics. Furthermore, the results indicate that the ratios of κ̃(p′3T ) exhibit sensitivity
to the triaxiality of the nuclei. This suggests that by comparing measurements of standardized
cumulant ratios, it might be possible to further constrain the transverse momentum fluctuation
in terms of deformation strength and triaxiality. However, it should be noted that there is still
a lack of complete understanding regarding the ⟨pT ⟩ spectrum, which should be studied before
any conclusion can be made.
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5.4 ALICE data

The Monte Carlo studies conducted using the HIJING model revealed splitting between the
applied upper and lower cuts which is not fully understood. These findings have motivated
the extension of the analysis to real data in order to investigate if similar behavior is present.
The analysis involves varying the pT range used for particle selection, as explained in the pre-
vious section. It should be noted that in the data analysis, the uppercut extends beyond the
3. ≤ pT [GeV/c] range currently available in the NUE (Non-Uniform Efficiency) correction, as
shown in Figure 4.5. As a result, the NUE is not included in this additional analysis, and the
obtained results cannot be directly compared to the final observables. Furthermore, the study
focuses only on Pb-Pb collisions, as this collision system provides the most data. Since the ob-
served effects are expected to be independent of the specific collision system, it is not necessary
to include both Xe-Xe collisions in this analysis.

For measurements of κ̃(p′1T ) and κ̃(p′3T ) in Pb-Pb collisions at
√
sNN = 5.02 TeV, a similar

splitting effect as observed in the simulations, is observed in the measurements.
For κ̃(p′1T ), the splitting is mostly seen as a constant deviation from the target range of

0.2 ≤ pT ≤ 3.0 [GeV/c]. This deviation is observed from central to semi-central collisions.
However, in peripheral collisions (60-90% centrality range), a clear grouping is observed between
the applied upper and lower cuts. In the measurements, seen in Figure 5.13 (Left), the splitting
can be observed to occur in variations with an increased lower cut. When considering variations
in the uppercut (pT ≤ 4.0 and pT ≤ 5.0 [GeV/c]), it is noted that they both include particles with
momentum approaching the lower limit of 0.2 [GeV/c], just as the default cut. This indicates
that in the peripheral range, the exclusion of soft particle24 will increase the magnitude of the
measurements. At the same time, it can be observed, how the inclusion of hard particles reduces
the measurements, regardless of centrality. This could indicate that by including particles in a
wider pT range, one also includes more information about the system, and the measurements
become more robust. Though, before this can be concluded, an additional uppercut on ≤
2.[GeV/c] would need to be measured.
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Figure 5.13: Measurements of κ̃(p′mT ) response to particle momentum range in Pb-Pb
√
sNN =

5.02 TeV. The error bars denote the statistical uncertainties associated with each measurement.
Left: Measurements κ̃(p′1T ) with a different cut on the transverse momentum range. A small
grouping and splitting can be observed for peripheral collision in the 60-90% centrality range.
Right: Measurements κ̃(p′3T ) with different cuts on the transverse momentum range. Switching
between the groupings is observed at midcentrality

The splitting effect is also observed in measurements of κ̃(p′3T ) across the entire centrality
range, as shown in Figure 5.13. Moreover, it can be seen that the default pT cut undergoes
a change in trend around mid-centrality, indicating a shift in the dominant contributions. In

24particle with low momentum
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low centrality, the dominant contribution is expected to arise from soft processes, while in semi-
central collisions, hard scatterings start to become more dominant. Furthermore, the inclusion
of high-pT particles contributes to an overall positive shift in the measurements of κ̃(p′3T ) across
the probed centrality range. Understanding the behavior of this shift would be relevant in future
studies. In related studies, it has been shown that the third-order standardized cumulant of ⟨pT ⟩
fluctuations probes the skewness of the pT distribution. Therefore, a significant sign change as
observed in this case, is expected to provide valuable information on the initial conditions and
nuclear structure.

5.4.1 Probing nuclear structures at the LHC

Measurements of standardized cumulants, including κ̃(p′1T ), κ̃(p′3T ), and the second order cu-
mulant κ(p′2T ), have been performed in Pb-Pb collisions at

√
sNN = 5.02 TeV, and in Xe-Xe

collisions at
√
sNN = 5.44 TeV. In particular, the measurements of the standardization term

κ(p′2T ) show a noticeable difference between the two collision systems, as depicted in Figure 5.14
(Left). This difference might be influenced by the collision energy, making direct comparisons
between the systems challenging. Notably, there is a clear deviation between the HIJING model
predictions for the two collision systems, suggesting a contradiction in the observed trends that
cannot be explained by changes in physics alone. To investigate the possibility of statistical
effects causing this deviation, multiple online processing of the data has been conducted, and
the deviation can not be associated with the included statistics. In the analysis, the first-order
standardized cumulant κ̃(p′1T ) incorporates the mean transverse momentum ⟨pT ⟩ and is by de-
fault dimensionless. Thus, it is suitable for comparing different collision systems. Notably, the
measurements of κ̃(p′1T ) in Xe-Xe collisions, as shown in Figure 5.14 (Right), are well-described
by HIJING calculations compared to κ(p′2T ), as shown in Figure 5.14 (Left). This implies that
the fluctuations are more precisely captured by HIJING calculations in the standardized frame-
work. Since HIJING does not include any collective behavior, it raises the question of why
these similarities are observed. Furthermore, the measurements of κ̃(p′1T ) in Xe-Xe and Pb-Pb
collisions exhibit a centrality dependence, where the two measurements approach each other as
the collisions become more peripheral. This behavior suggests that the fluctuations converge to-
wards a similar value, in the peripheral collisions. While there is a change in the measurements,
it cannot be attributed to any deformation effects. Based on the presented Monte Carlo studies
on quadrupole deformation, the first-order standardized cumulants show little to no sensitivity
to either deformation strength β2 or to the triaxiality γ.
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Figure 5.14: Measurements of κ̃(p′1T ) and κ(p′2T ) of Pb-Pb (purple star) and Xe-Xe collision
(orange diamond) at

√
sNN = 5.02 TeV and

√
sNN = 5.44 TeV respectively with filling repre-

senting the associated systematic uncertainties. The anchored HIJING production is shown as
the checkered filling matching the collision system color. Left: Measurement of the second order
cumulant κ(p′2T ). Right: Measurement of the first order standardized cumulant κ̃(p′1T ).
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Based on the Monte Carlo studies, the best chance to observe any deformation effect would
be in the third-order standardized cumulants κ̃(p′3T ). However, due to the current statistics avail-
able in Pb-Pb and Xe-Xe collisions at the LHC, it is not possible to provide precise estimates for
higher-order cumulants. Furthermore, obtaining accurate measurements in Xe-Xe collisions that
are directly comparable to Pb-Pb collisions is challenging. Therefore, it is currently not possi-
ble to directly access information on the nuclear structure using the standardized cumulants of
transverse momentum fluctuations. Nevertheless, measurements of κ̃(p′3T ) in Pb-Pb collisions at√
sNN = 5.02 TeV, and Xe-Xe collisions at

√
sNN = 5.44 TeV are presented in Figure 5.15. Al-

though these measurements do not provide direct information on nuclear structure, they exhibit
certain common characteristics that can contribute to improving our theoretical understanding
of the fluctuations observed in collisions.
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Figure 5.15: Measurements of κ̃(p′3T ) in Pb-Pb (purple star) collisions at
√
sNN = 5.02 TeV,

and Xe-Xe (orange diamond) collision at
√
sNN = 5.44 TeV with filling representing the asso-

ciated systematic uncertainties

In higher orders, the HIJING calculation is off by multiple factors and is therefore not in-
cluded in the figure. In Pb-Pb collisions, a change in sign can be observed in the central regime,
followed by an almost constant trend until the 40% centrality region. This change in trend could
indicate a transition. It has been noted that only central to ultra-central collisions provide a
clear snapshot of the nuclei, while for higher centrality, the nuclear shape plays a less significant
role. In these cases, the interacting system behaves more like a large sample of binary colli-
sions, independent of the nuclear structure, without any collectivity or Quark-Gluon Plasma
(QGP) formation. As the impact parameter approaches zero, the energy density increases and
the system starts to thermalize into a confined high-density region, namely the QGP. In this
regime, the binary collisions can be considered as small background perturbations to the overall
system. This explains the decrease in the magnitude of transverse momentum fluctuations as
the collision becomes more central. Although direct evidence of accessing the nuclear structure
at the LHC was not provided in this thesis, it has been demonstrated that the novel method of
standardized cumulants κ̃(p′mT ) has the potential to provide more precise studies in the future.
This would require additional statistics, investigation of additional collision systems, and a com-
prehensive study of transverse momentum fluctuations in ultra-relativistic heavy-ion collisions.
The additional system could provide more variation in the nuclei composition, where the ratio
of neutrons and protons in the nuclei might course a noticeable effect. As additional deformed
systems are taken into account, it could also be possible to observe common effects and even
probe higher multi pole moments βn in the nuclei.
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6 Conclusion

The primary objective of this thesis was to investigate the influence of different nuclear shapes
on the final ⟨pT ⟩ spectrum and determine if these effects can be observed in ultra-relativistic
heavy-ion collisions at the LHC. To achieve this, a novel approach utilizing higher-order stan-
dardized cumulants of transverse momentum fluctuations, denoted as κ̃(p′mT ), was proposed to
analyze initial conditions, including nuclear shape. Extensive Monte Carlo studies were con-
ducted to understand the physical significance of the standardized cumulant method. The thesis
presents the first ALICE measurements of standardized cumulants κ̃(p′1T ) and κ̃(p′3T ), with NUE
correction, in both Pb-Pb and Xe-Xe collisions at

√
sNN = 5.02 TeV and

√
sNN = 5.44 TeV,

respectively. Furthermore, a framework was developed to allow for the analysis of arbitrary
orders. However, due to limited statistical data in Xe-Xe collisions, it was not possible to find
accurate evidence for nuclear deformation of the nuclei in the current collision system at the
LHC.

Simulations using the AMPT model have been performed for 129Xe collisions with different
deformations, and the measurements of κ̃(p′3T ) indicated sensitivity to both deformation strength
β2 and triaxiality γ. However, obtaining precise information from standardized cumulant ratios
would require an exact reference nucleus with known structure constants, which is currently
not available. Additionally, HIJING calculations were conducted to examine sub-event pT fluc-
tuations in Monte Carlo simulations of Pb-Pb collisions at

√
sNN = 5.02 TeV. The analysis

revealed the suppression of non-flow effects and a potential saturation point when applying a
gap of |∆η| < 0.4. However, the method did not yield meaningful results when applied to real
data and was excluded from the final analysis.

The HIJING calculations also revealed unexpected responses to the choice of momentum
range for particle selection, in the standardized cumulants. While regular cumulants exhibited
expected behavior, the process of standardization introduced new phenomena that are not yet
fully understood. This prompted the extension of the study to Pb-Pb collisions at the LHC,
where distinct and contrasting dynamics were observed in applying different pT ranges. These
measurements could potentially capture the transition from the dominant contribution of soft
and hard processes as a function of centrality. The increased fluctuations observed in periph-
eral collisions further enhance our understanding of the collectivity associated with the created
Quark-Gluon Plasma (QGP). The energy density decreases as the nuclei move apart, reducing
the probability of QGP formation. Therefore, observing a reduction in fluctuations as collisions
become more central indicates an increased probability of QGP formation. This suggests that
the created system’s energy spectrum becomes dominant, while any independent background
collision does not significantly influence the fluctuation in the QGP. Considering the current
results, it is reasonable to attempt to decompose the cumulant into various components encoun-
tered throughout the collision, from the initial nuclear structure to the final passage through
matter in the detector:

Nuclear Shape → IC → QGP → Final interaction → κ̃(p′mT )

While physically deconstructing all these components is currently not possible, it is feasible to
test some of them step-by-step through simulations.

While this thesis has primarily focused on the effect of quadrupole deformation, it is evident
that other interesting observables can also be studied. One such example is the study of surface
diffusion, as introduced in Equation 1.3, which is of great interest for investigating the neutron
skin and halo effect [68]. Though, given the multitude of observables and unknown effects that
are present in the pT spectrum, it is crucial to first gain a precise understanding of transverse
momentum fluctuations for lower orders, denoted as κ̃(p′mT ), before progressing further. By
doing so, we can advance our understanding and address the remaining challenges in this field.
Perhaps then, standardized cumulants of mean transverse momentum fluctuations may provide
a means to probe the nuclear structure in high-energy collisions.
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A EFFICIENCY CORRECTION FOR TRANSVERSE MOMENTUM

A Efficiency correction for transverse momentum

In section 3 the procedure to obtain efficiency correction by Monte-Carlo simulation where
obtained. The section includes the remaining NUE as used for each systematic check in this
thesis. On the right is the NUE as for weighting of the particles. The right side contain the
ratio between default and systematic variation. The collision system and the anchored period
is listed on each figure.
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Figure A.1: Left: Efficiency for Pb-Pb and Xe-Xe as obtained with different systematics cut.
Right: Change of efficiency with respect to the default cut used as outlined under Event selection
and Track selection.
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B Transverse momentum fluctuations

B.1 HIJING - Non-collective responses

As there where not found any advantage in using higher order cumulants in the HIJING model,
most of the observables are presented here as reference. This include up to eight order cumulants
and standardized cumulants.

Cumulants κ(p′mT ) response to momentum range
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High order κ(p′mT ) response
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Standardized cumulants κ̃(p′mT ) response to momentum
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B.2 AMPT (Default) - Collective response

This section outlines the higher order cumulants as calculated in the AMPT model with default
configuration. As the the default version of AMPT is mostly outdated these results exist purly
as reference. Unfortunately a cirect comparison of default AMPT and with string melting could
not be presented in the scope of this thesis.
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Standardized cumulants κ̃(p′mT ) response to momentum
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B.3 Deformation response

Fits of all ratios. The current figures only carries the ratio to the spherical baseline β2 = 0.0.
Ratios with respect prolate nuclei are not reproduced as the only relevant figure has been
presented on the thesis.

γ = 0. κ̃(p′1T ) κ̃(p′3T ) κ̃(p′4T ) κ̃(p′5T ) κ̃(p′6T ) κ̃(p′7T ) κ̃(p′8T )

χ2/NDF 6.275. 2.206 1.073 1.341 1.095 1.215 1.335
f(0) 0.075 0.476 0.269 0.179 0.117 0.135 0.168

Table 7: Fit of γ = 0 standardized cumulants ratios with respect to spherical baseline. Listed
with reduced χ2

γ = 27 κ̃(p′1T ) κ̃(p′3T ) κ̃(p′4T ) κ̃(p′5T ) κ̃(p′6T ) κ̃(p′7T ) κ̃(p′8T )

χ2/NDF 2.873. 2.863 1.223 1.182 1.027 1.019 1.039
f(0) 3.183 1.013 0.086 0.082 0.07 0.102 0.118

Table 8: Fit of γ = 27 standerdized cumulants ratios with respect to spherical baseline. Listed
with reduced χ2

γ = 60 κ̃(p′1T ) κ̃(p′3T ) κ̃(p′4T ) κ̃(p′5T ) κ̃(p′6T ) κ̃(p′7T ) κ̃(p′8T )

χ2/NDF 2.545. 0.809 1.573 0.759 0.566 0.742 0.764
f(0) 4.015 4.997 0.111 0.108 0.139 0.163 0.167

Table 9: Fit of γ = 60 standerdized cumulants ratios with respect to spherical baseline. Listed
with reduced χ2
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C Systematics checks

C.1 Systematics in Pb-Pb

C.2 Systematics for κ(p′2T )
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Systematics for κ̃(p′1T )
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Systematics for κ̃(p′3T )
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C.3 Systematics in Xe-Xe

C.4 Systematics for κ(p′2T )
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Systematics for κ̃(p′1T )
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Systematics for κ̃(p′3T )
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D AMPT Production

This section aims to go over AMPT model configuration used for simulating collisions of de-
formed nuclei as presented in this thesis. Additionally the post processing of data are also
reviewed as many steps are needed before it can be compared to real data. The post processing
covers initial calculation of the particles momentum to a more appropriate basis, as well as check
on the produced particles spectra, where the latter is mainly used for to make sure only charged
particles are used. Additionally, the centrality of each deformation production are calculated
based on the impact parameter of the colliding nuclei.

D.1 Coordinate basis

The track record for each event contains particle momentum (px, py, pz) and position (rx, ry, rz)
for all particles at the kinetic freeze-out. Though as the final state coordinates are given in
cartesian basis, some calculation are made for a more appropriate set of coordinates. Firstly
we let the z-axis denote the beam direction and setting z = 0 as the interaction point of the
two colliding nuclei. We define the transverse momentum as the momentum component in the
xy-plane which are calculated as

pT =
√
p2x + p2y

where px and py are the x and y-component of the momentum vector respectively. As viewed
from a moving frame the transverse-energy and transverse-momentum are conserved measures
[6, 69]. Additionally the azimuthal angle is measured around the beam line and are calculated
so every angle are in the range [0; 2π]. Here it is important to note what ”quadrant” of the
xy-plane the particle is in as calculations depends on it.

ϕ = π + arctan2(py, px)

The polar angle θ describes the relative angle of the particle with respect to the beam line.
The polar angle are not lorentz invariant quantity under boost along the beam line[6] and are
threfore not generally used in collider physics. Instead the psuedorapidity is used, which are
defined as

η = − ln [tan (θ/2)]

where the polar angle can be obtained by θ = arccos(pz/|p⃗|), with p⃗ being the magnitude of the
momentum. With this we outline the three basic track variables used in collider physics.
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Figure D.1: Illustration of track variables as obtained in local production
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D.2 Particle Yield

All final states particles in the AMPT productions are referenced by the corresponding PYTHIA
particle ID[70]. The particle ID, also referred to as PDGID, follows a Monte Carlo numbering
scheme that facilitates the particle composition and are used as a standard notation for particles
in MC event generators. The numbering scheme are updated and expanded by the Particle Data
Group (PDG)[69]. The particle yield pr. event in central collisions (0-30%) are drawn to make
sure the final state particles at freeze-out corresponds to primary particles that can be detected
in detector at the LHC and no numerical artefacts remains. External libraries are used to
reference all particle PDGID with a database from where relevant information are retrieved
such as charge and class (baryon, lepton etc.). The particles are split in neutral and charged as
the observed particles depends on the detector setup itself.25
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Figure D.3: Figure of the avg number of neutral particles species produced in AMPT simula-
tion of central (0-30%) Xe-Xe collision
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Anomalies in production

Additional to the pr. event yield of charged and neutral particles shown in Figure D.2-D.3 some
anomalies where present in terms of free quarks, gluons, diquarks and Leptoquarks (LQc), where
the former two represent theoretical particles in ”Beyond Standard Model physics (BSM). The
combined yield of anomaly particles are 0.113 pr. event, and with an average multiplicity of
≈ 16K they poses no significant effect to calculation in this thesis. Regardless it is chosen to
keep the yield fixed at SM particles and are therefore not included in any results presented.

25ALICE are a tracking detector that requires charged particle to ionise a gas along its trajectory before it can
be observed. Hence neutral particles are not observed as they do not ionise matter
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D.3 Centrality determination

To efficient evaluate the produced xenon collisions the centrality estimation is based on the im-
pact parameter. This is to reduce multiplicity fluctuation and efficiently get a faster converging,
and precisely result. As giving in [42] the centrality distribution based on the impact parameter
are giving by

cb =
1

σinel

∫ b

0

db′
dσinel

db′

A minimum bias (MB) production are made with the purpose of centrality determination. This
is also made to find a target centrality range (around 0-30%) to focus the production to central
collisions. A total of 500KMB are simulated and processed. The impact parameter b distribution
are sequently summed and normalised to calculate the cumulative distribution function as can
be seenFigure D.4. The centrality estimator where found to be very sensitive to bin width.
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Figure D.4: AMPT Impact parameter distribution with cumulative distribution function

Though it would only be observed if the bin size where too wide. With a fine granularity
bin width it where found possible to achieve a high resolution estimator by introducing and
additional interpolation step. For a giving impact parameter, a linear interpolation between
neighbouring bins would be created which creates a smoothening effect.
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Figure D.5: Efficiency of centrality estimator for local AMPT pproduction.
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E Direct calculations of multi-particle intrinsic moments

In this section, the analytical expression for obtaining the intrinsic moments of transverse mo-
mentum is provided. Following the same notation from the generic formula as presented in the
chapter Analysis method we denote the moments in a numerator and denominator decomposi-
tion as

⟨p′mT ⟩ = N⟨p′mT ⟩
D⟨p′mT ⟩

E.1

where N⟨p′mT ⟩ denotes the isolated momentum tuples and D⟨p′mT ⟩ the corresponding associated
weight for each tuple and are given by

Pk ≡
M∑
i=1

(
wip

(i)
T

)k
, Wk ≡

M∑
i=1

wk
i E.2

In the following presentation of the formulas we explicitly outline N⟨p′mT ⟩ as the denominator
D⟨p′mT ⟩ are obtained with the exact same coefficients just by letting PK → Wk in the following
formulas.

E.1 Four-particle moment

⟨p′4T ⟩ =
1

D⟨p′4T ⟩
N⟨p′4T ⟩ E.3

=
1

D⟨p′4T ⟩
[
N⟨p′3T ⟩P1 − 3N⟨p′2T ⟩P2 + 6N⟨p′1T ⟩P3 − 6P4

]
E.4

=
1

D⟨p′4T ⟩
[
P 4
1 − 6P 2

1P2 + 8P1P3 + 3P 2
2 − 6P4

]
E.5

E.2 Five-particle moment

⟨p′5T ⟩ =
1

D⟨p′5T ⟩
N⟨p′5T ⟩ E.6

=
1

D⟨p′5T ⟩
[
N⟨p′4T ⟩P1 − 4N⟨p′3T ⟩P2 + 12N⟨p′2T ⟩P3 − 24N⟨p′1T ⟩P4 + 24P5

]
E.7

=
1

D⟨p′5T ⟩
[
P 5
1 − 10P 3

1P2 + 20P 2
1P3 + 15P1P

2
2 − 30P1P4 − 20P2P3 + 24P5

]
E.8

E.3 Six-particle moment

⟨p′6T ⟩ =
1

D⟨p′6T ⟩
N⟨p′6T ⟩ E.9

=
1

D⟨p′6T ⟩
[
c− 5N⟨p′4T ⟩P2 + 20N⟨p′3T ⟩P3 − 60N⟨p′2T ⟩P4 + 120N⟨p′1T ⟩P5 − 120P6

]
E.10

=
1

D⟨p′6T ⟩
[
P 6
1 − 15P 4

1P2 + 40P 3
1P3 + 45P 2

1P
2
2 − 90P 2

1P4 − 120P1P2P3 + 144P1P5

−15P 3
2 + 90P2P4 + 40P 2

3 − 120P6

]
E.11
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E.4 Seven-particle moment

⟨p′7T ⟩ =
1

D⟨p′7T ⟩
N⟨p′7T ⟩ E.12

=
1

D⟨p′7T ⟩
[
N⟨p′6T ⟩P1 − 6N⟨p′5T ⟩P2 + 30N⟨p′4T ⟩P3 − 120N⟨p′3T ⟩P4 + 360N⟨p′2T ⟩P5

−720N⟨p′1T ⟩P6 + 720P7

]
E.13

=
1

D⟨p′7T ⟩
[
P 7
1 − 21P 5

1P2 + 70P 4
1P3 + 105P 3

1P
2
2 − 210P 3

1P4 − 420P 2
1P2P3

+504P 2
1P5 − 105P1P

3
2 + 630P1P2P4 + 280P1P

2
3 − 840P1P6 + 210P 2

2P3

−504P2P5 − 420P3P4 + 720P7] E.14

E.5 Eight-particle moment

⟨p′8T ⟩ =
1

D⟨p′8T ⟩
[
P 8
1 − 28P 6

1P2 + 112P 5
1P3 + 210P 4

1P
2
2 − 420P 4

1P4 − 1120P 3
1P2P3

+1344P 3
1P5 − 420P 2

1P
3
2 + 2520P 2

1P2P4 + 1120P 2
1P

2
3 − 3360P 2

1P6

+1680P1P
2
2P3 − 4032P1P2P5 − 3360P1P3P4 + 5760P1P7 + 105P 4

2

−1260P 2
2P4 − 1120P2P

2
3 + 3360P2P6 + 2688P3P5 + 1260P 2

4 − 5040P8

]
E.15
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F Quality Check for run periods

F.1 QA For LHC17n
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Figure F.1: QA of event selection in LHC17n for: passed triggers and Vz
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Figure F.2: QA of track selection in LHC17n for: |DCAxy|, |DCAz|, η, TPC crossed rows,
|DCAxy|, χ2 per TPC cls., χ2 per ITS cls.
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F.2 QA For LHC18qr
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Figure F.3: QA of event selection in LHC18qr for: passed triggers and Vz
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Figure F.4: QA of track selection in LHC18qr for: |DCAxy|, |DCAz|, η, TPC crossed rows,
|DCAxy|, χ2 per TPC cls., χ2 per ITS cls.
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F.3 QA For LHC15o
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Figure F.5: QA of event selection in LHC15o for: passed triggers and Vz
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Figure F.6: QA of track selection in LHC15o for: |DCAxy|, |DCAz|, η, TPC crossed rows,
|DCAxy|, χ2 per TPC cls., χ2 per ITS cls.
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G Joint cumulants

First presented in [56] a method for obtaining cumulants from moments where presented. While
this method relies on joint cumulants with multiple variables which consequently produces a
long sum of irreducible terms, the method can function as an important tool in analysis with
cumulants. While the time frame of this project where too short to introduce higher-order
cumulants in sub-events. The formulas now presented were initially going to be used for that
purpose but time ran out. While the results are already known and have been presented in more
mathematical papers, it is always nice to have the formulas close at hand. Following [41, 56] we
can derive the most general expression for cumulants up to fourth order.

One observable
With one observable X1 we simply have the one possibility.

⟨X1⟩ = ⟨X1⟩c G.1

which means the correlation of one particle is just its expectation ⟨X1⟩.

Two observable
The two observable are {X1, X2} where we can identify a correlation by themself and between
them.

⟨X1X2⟩ = ⟨X1X2⟩c + ⟨X1⟩⟨X2⟩

We recognize the first term on the RHS to be the second-order cumulant. After isolating for
⟨X1X2⟩c

⟨X1X2⟩c = ⟨X1X2⟩ − ⟨X1⟩⟨X2⟩ G.2

where RHS shows the removal of any other possible correlation, which is per definition the two-
particle cumulant.

Three observable
The three observebles are {X1, X2, X3}. Beside the correlation of all three observables and the
three independently there is also here three distinct ways to sort the genuine correlation of two
observables.

⟨X1X2X3⟩ =⟨X1X2X3⟩c + ⟨X1X2⟩c⟨X3⟩+ ⟨X1X3⟩c⟨X2⟩
+ ⟨X2X3⟩c⟨X1⟩+ ⟨X1⟩⟨X2⟩⟨X3⟩

after expanding all lower order moment in terms cumulants we obtain

⟨X1X2X3⟩c =⟨X1X2X3⟩ − ⟨X1X2⟩⟨X3⟩ − ⟨X1X3⟩⟨X2⟩
− ⟨X2X3⟩⟨X1⟩+ 2⟨X1⟩⟨X2⟩⟨X3⟩ G.3

Four observable
The four observable are {X1, X2, X3, X4}. We now consider five distinct ways to group the four
observables with multinomial coefficient.

1. ⟨XiXjXkXl⟩ (×1)

2. ⟨XiXjXk⟩ ⟨Xl⟩ (×4)
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3. ⟨XiXj⟩ ⟨Xk⟩ ⟨Xl⟩ (×6)

4. ⟨XiXj⟩ ⟨XkXl⟩ (×3)

5. ⟨Xi⟩ ⟨Xj⟩ ⟨Xk⟩ ⟨Xl⟩ (×1)

⟨X1X2X3X4⟩ =⟨X1X2X3X4⟩c + ⟨X1X2⟩c⟨X3X4⟩c + ⟨X1X3⟩c⟨X2X4⟩c
+ ⟨X1X4⟩c⟨X2X3⟩c + ⟨X1X2X3⟩c⟨X4⟩c + ⟨X1X2X4⟩c⟨X3⟩c
+ ⟨X1X3X4⟩c⟨X2⟩c + ⟨X2X3X4⟩c⟨X1⟩c + ⟨X1X2⟩c⟨X3⟩c⟨X4⟩c
+ ⟨X1X3⟩c⟨X2⟩c⟨X4⟩c + ⟨X1X4⟩c⟨X2⟩c⟨X3⟩c + ⟨X2X3⟩c⟨X1⟩c⟨X4⟩c
+ ⟨X2X4⟩c⟨X1⟩c⟨X3⟩c + ⟨X3X4⟩c⟨X1⟩c⟨X2⟩c + ⟨X1⟩c⟨X2⟩c⟨X3⟩c⟨X4⟩c

Now expanding the cumulants in term of the correlation we find

⟨X1X2X3X4⟩ =⟨X1X2X3X4⟩c
+⟨X1X2⟩⟨X3X4⟩+ ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩ − ⟨X1X2⟩⟨X3⟩⟨X4⟩ − ⟨X3X4⟩⟨X1⟩⟨X2⟩
+⟨X1X3⟩⟨X2X4⟩+ ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩ − ⟨X1X3⟩⟨X2⟩⟨X4⟩ − ⟨X2X4⟩⟨X1⟩⟨X3⟩
+⟨X1X4⟩⟨X2X3⟩+ ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩ − ⟨X1X4⟩⟨X2⟩⟨X3⟩ − ⟨X2X3⟩⟨X1⟩⟨X4⟩
+⟨X1X2X3⟩⟨X4⟩ − ⟨X1X2⟩⟨X3⟩⟨X4⟩ − ⟨X1X3⟩⟨X2⟩⟨X4⟩ − ⟨X2X3⟩⟨X1⟩⟨X4⟩
+2⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩
+⟨X1X2X4⟩⟨X3⟩ − ⟨X1X2⟩⟨X3⟩⟨X4⟩ − ⟨X1X4⟩⟨X2⟩⟨X3⟩ − ⟨X2X4⟩⟨X1⟩⟨X3⟩
+2⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩
+⟨X1X3X4⟩⟨X2⟩ − ⟨X1X3⟩⟨X2⟩⟨X4⟩ − ⟨X1X4⟩⟨X2⟩⟨X3⟩ − ⟨X3X4⟩⟨X2⟩⟨X4⟩
+2⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩
+⟨X2X3X4⟩⟨X1⟩ − ⟨X2X4⟩⟨X1⟩⟨X3⟩ − ⟨X2X3⟩⟨X1⟩⟨X4⟩ − ⟨X3X4⟩⟨X1⟩⟨X2⟩
+2⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩
+⟨X1X2⟩⟨X3⟩⟨X4⟩ − ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩+ ⟨X1X3⟩⟨X2⟩⟨X4⟩ − ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩
+⟨X1X4⟩⟨X2⟩⟨X3⟩ − ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩+ ⟨X2X3⟩⟨X1⟩⟨X4⟩ − ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩
+⟨X2X4⟩⟨X1⟩⟨X3⟩ − ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩+ ⟨X3X4⟩⟨X1⟩⟨X2⟩ − ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩
+⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩

Further it reduces to

⟨X1X2X3X4⟩c =⟨X1X2X3X4⟩ − ⟨X1X2⟩⟨X3X4⟩ − ⟨X1X3⟩⟨X2X4⟩ − ⟨X1X4⟩⟨X2X3⟩

+ 2
[
⟨X1X2⟩⟨X3⟩⟨X4⟩+ ⟨X1X3⟩⟨X2⟩⟨X4⟩+ ⟨X1X4⟩⟨X2⟩⟨X3⟩

+ ⟨X2X3⟩⟨X1⟩⟨X4⟩+ ⟨X2X4⟩⟨X1⟩⟨X3⟩+ ⟨X3X4⟩⟨X1⟩⟨X2⟩
]

−
[
⟨X1X2X3⟩⟨X4⟩+ ⟨X1X2X4⟩⟨X3⟩+ ⟨X1X3X4⟩⟨X2⟩+ ⟨X2X3X4⟩⟨X1⟩

]
− 6⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩ G.4
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