
Exam admin is t ra tors
Eksamensteam, tel 35 33 64 57
eksamen@science.ku.dk

Assessors
Heloisa Nunes Bordallo
Examiner
bordallo@nbi.ku.dk

+4535321215

Brian Kjærgaard Hansen
Co-examiner
brian@cfin.au.dk

Front page
Exam in format ion
NFYK10020E - Physics Thesis 60 ECTS, Niels Bohr 
Institute - Contract:134725 (Frederik Bay Nielsen)

Handed in  by
Frederik Bay Nielsen
dvj107@alumni.ku.dk

Hand- in  in format ion

Ti t le : Delay map modeling in a long-axial field-of-view PET/CT scanner
Ti t le ,  engl ish: Delay map modeling in a long-axial field-of-view PET/CT scanner
The sworn s ta tement : Yes
Does the hand- in  conta in  conf ident ia l  mater ia l : No



University of Copenhagen
Faculty of Science

Quantum Physics

Master Thesis

Delay map modeling in a long-axial
field-of-view PET/CT scanner

Frederik Bay Nielsen

(KU-id: dvj107)

Supervised by

Heloisa Nunes Bordallo, University of Copenhagen

Thomas Lund Andersen, Rigshospitalet

Flemming Littrup Andersen, Rigshospitalet

May 22nd, 2023



Frederik Bay Nielsen
University of Copenhagen
May 22nd, 2023

Abstract

Based on dynamic whole-body PET scans of 15 patients receiving one of three tracers:

[15O]H2O, [18F]FDG or [64Cu]Cu-DOTATATE, a single voxel delay-finding algorithm is

developed which is robust to noise and detects the presence of radiotracer by way of

fitting the time activity curve. The map produced is applied as a delay correction

method between the voxel time activity curves and the image-derived input function.

21 patients scanned with [15O]H2O as the tracer separated into two groups and blood

flow in the brain and thyroid was modeled using a one-tissue compartmental model. An

organ-specific effect on blood could be observed with a decrease of around −40% in the

thyroid (p ≈ 0.002) and no significant change in the brain; Diamox had an increasing

effect on the brain blood flow of around +40% (p < 0.0006) with no significant change

in the thyroid. The new single-voxel delay correction method appear to remove a bias

related to the conventional method of delay correcting by the mean organ TAC.
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11
Introduction

Positron emission tomography (PET) is a medical imaging technique that uses small

amounts of radioactive material to produce detailed images of biological processes inside

the body. It is primarily used to diagnose diseases such as cancer, heart disease, and

brain disorders as well as monitoring the effect of treatments [1, ch. 1]. The radioactive

material, known as a radiotracer, is made by labeling a ligand (e.g. water, glucose,

or various other molecules and hormones) with a radioactive isotope (e.g. 15O, 18F and

others). This radiotracer is injected into the patient’s bloodstream, and after circulation,

it will accumulate in certain parts of the body with a high affinity for this particular

ligand. The ligand is thus chosen depending on the property that is to be measured.

This could for instance be regions with high metabolism for the sugar analogous tracer

fluorodeoxyglucose (FDG), where one of the oxygen atoms in the glucose molecule is

replaced with the radioactive isotope 18F, which is widely used for detecting cancerous

tumors as they have a high metabolic rate due to their rapid cell growth [2, 3].

Figure 1.1 – Schematic showing the process of
isotope decay by positron emission, subsequent
scattering and finally annihilation with an elec-
tron emitting two gamma quanta of 511 keV
in opposite directions. (From Wikipedia.org
(https: // en. wikipedia. org/ wiki/ Electron%
E2% 80% 93positron_ annihilation ).)

The radioactive isotope used to label the

tracer must be a positron (β+) emitter, as

the scanner indirectly detects the presence and

location of the radiotracer via the emitted

positron. It does this from the fact that when

a positron annihilates with an electron, two

photons will be created. These are emitted

(180.0 ± 0.5)° apart due to conservation of mo-

mentum and each photon have the equivalent

energy of the rest mass of an electron, 511 keV.

The small uncertainty in the angle between the

emitted photons arises due to relative motion

that may exist between the two particles be-

fore annihilation. If they annihilate at rest, the

photons will be emitted back to back, however,

in real situations, some unbalanced momentum

will cause small deviations from being perfectly collinear. This fact plays a fundamental

role in how accurately we can determine the actual position of the decayed isotope [1,

ch. 2].

1

https://en.wikipedia.org/wiki/Electron%E2%80%93positron_annihilation
https://en.wikipedia.org/wiki/Electron%E2%80%93positron_annihilation
https://en.wikipedia.org/wiki/Electron%E2%80%93positron_annihilation
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(a) [15O]H2O (b) [18F]FDG (c) [64Cu]Cu-DOTATATE

Figure 1.2 – Coronal PET scans (maximum intensity projection) with three different tracers. Note the
high activity in the brain for FDG due to its high metabolism in contrast to the low activity in the brain
for DOTATATE as this tracer can not cross the blood-brain barrier [5, 6]. Also note for this tracer, the
high activity in the spleen and the possible tumor in the liver (arrows) due to the high concentration
of somatostatin receptors here in the spleen and in some types of tumors [7]. Water generally flows
with the blood and diffuses easily through tissue, and thus shows blood flow and supply. The images
are averaged from 1min after tracer injection to 12, 60 and 45min respectively. The scale shows the
activity relative to the mean activity within each patient.

Because PET scanners detect the number of annihilation events at a given location

within a patient, they are also a used as a quantitative measurement device, as this

number is directly related to the concentration of ligand at that location. This can

then be used to e.g. determine the metabolic rate of tumors [4]. These are the general

principles that PET scanners use to produce the detailed images that highlight the

body’s internal functions.

1.1 Tracers used in this project

There are several types of radiotracers that can be used in PET imaging [8], each with

different properties and specific applications depending on what we wish to examine, but

common for them all, as mentioned above, is that they must be β+-emitter. We will refer

to the first-pass extraction fraction of a tracer, which is a measure of how much of the

tracer will be extracted from the blood vessels and absorbed into the surrounding tissue

during its first pass [9]. It can be used to evaluate the function of organs by comparing

the extraction fraction of an unhealthy organ with a healthy one, and depends on the

type of tissue by which the tracer is passing, and therefore should be used in conjunction

with other information if used for diagnosis [10].

— 2 —
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Some commonly used radiotracers include the following, which are also the ones we

will study and use in this report:

• Fluorodeoxyglucose ([18F]FDG) is a widely used radiotracer in the field of

oncology to detect cancerous tumors with PET imaging [2] as it is analogous to

and behaves similarly to natural glucose, but cannot be fully metabolized. This

is due to the fact that FDG is labeled with the radioactive isotope 18F, hindering

the final step of metabolism. This isotope decays via β+ and therefore makes

it possible to detect and measure the cells’ uptake of the tracer with PET. As

cancer cells have a higher rate of glucose metabolism than other tissue, the tracer

will naturally accumulate in these areas of increased glucose metabolism. It is

produced

• 15O-labeled water ([15O]H2O or H2
15O) is a non-invasive way of measuring

blood flow and perfusion through organs as it is an easily diffusible molecule,

which flows freely from blood to tissue [11, 12]. [15O]H2O is particularly useful in

the evaluation of the brain and heart, as well as in the evaluation of tumors [13,

14]. For example, it can be used to detect areas of decreased blood flow, which

can indicate the presence of a blockage, for example a thrombosis or stenosis,

or another problem in the blood vessels. Due to the very short half-life of 15O

of around 2min, it is necessary that the radiotracer is produced in a cyclotron

on-site and used within a few minutes.

• DOTATATE ([64Cu]Cu-DOTATATE) is a 64Cu-labeled somatostatin analogue

that binds to somatostatin receptors. These receptors are found in the neu-

roendocrine system, but are over-expressed in neuroendocrine tumors and the

radiotracer can accumulate here by binding to the somatostatin receptors on the

tumor cells [7, 15]. The tracer is also not able to cross the blood-brain barrier [5,

6], which is also evident from the low activity in the brain in the PET scan for

DOTATATE in Figure 1.2c. [64Cu]Cu-DOTATATE has a half-life of 12.7 hours

and as such remains usable for longer in the event that there is a delay along the

way, and can easily be made in a specialized facility off-site to be delivered to the

hospital [16].

The radioactive isotopes are produced by accelerating protons in a cyclotron up to

energies of around 20MeV and bombarding a target, after which it is chemically bound to

a ligand. Each isotope has its own characteristics, such as half-life and emission energy,

which can affect the image quality, resolution and the specific information that can be

— 3 —
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Table 1.1 – Properties of common β+-emitting radiotracer isotopes (adapted from [17, Table 1]).

Isotope Half-life Mean β+ energy (keV) Mean β+ range (mm)

11C 20.4min 386 1.2
13N 10.0min 492 1.8
15O 2.0min 735 3.0
18F 110min 250 0.6
64Cu 12.7 h 278 0.7
89Zr 3.27 d 396 1.3

obtained from a PET scan [17]. For example, an isotope with a higher emission energy

will also cause the mean range of the emitted positron to increase, i.e. the positron will

travel longer before annihilating with an electron from the tissue. This non-negligible

distance between the location of the tracer, which is what we want to know, and the

point of positron-electron annihilation, which is what we are measuring, results in a

blurring around the tracer location, and a decrease in scan resolution, making it difficult

to discern fine details and the precise distribution of the tracer [18]. Some properties of

common tracer isotopes can be found in Table 1.1.

1.2 Using dynamic PET scans to study kinetics

Figure 1.3 – Example of two time activity curves
(TACs): the input function (IDIF) and a tissue
curve.

A single PET scan produces a 3-dimensional

image of the concentrations of radiotracer activ-

ity in units of Bq/mL (Becquerels per milliliter)

for many small volumes within the body. These

small volumes or voxels usually have a size on

the order of a mm3, and by capturing several

scans one after another, we obtain a dynamic

series of images and each of the voxels now has

a so-called time activity curve (TAC) showing

how the radiotracer concentration is evolving

over time for the tissue enclosed in this voxel

volume. See Figure 1.3 for examples of TACs:

the input function derived from the aorta and

a tissue voxel in the brain.

In this report we will be working with dynamic PET scans. These scans allow us to

observe how the tracer flows through the body and to measure the rate at which specific

— 4 —
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(a)
20 – 50 s

(b)
1 – 2min

(c)
5 – 8min

(d)
15 – 20min

(e)
45 – 60min

Figure 1.4 – Coronal views of a dynamic [18F]FDG PET scan (maximum intensity projection) for
various intervals after injection of the radiotracer.

biological processes occur in the body, such as metabolism, blood flow or perfusion [4,

14]. The scanner captures a series of frames over the course of several minutes which can

be used to determine these properties. Figure 1.4 shows a few frames from a dynamic

PET scan for various intervals after injection of the radiotracer [18F]FDG. The tracer

quickly circulates through the body and the organs, but after the first few minutes some

areas start to trap and accumulate the tracer. For FDG, this is usually the brain, bladder

and tumors that are the most visible.

With quantitative kinetic PET analysis we wish to study how an organ of interest

reacts to the injected radiotracer bolus over time using the dynamic scans, and model

the resulting TACs to obtain parameters that can tell us about for example the blood

flow among other properties. Ideally, the injection of radiotracer is to be administered

as a quick and intense bolus in time, however, this is in practice not possible, and it is

therefore necessary to know the actual shape of the input bolus in order to obtain useful

quantitative measurements from the kinetic modeling [19]. We will go more into detail

about this modeling in the Methods section.

The required input function can be acquired in a few different ways: by sampling

blood directly from an arterial cannulation or by deriving it from the PET images

are among the most popular techniques [20, sec. 5]. The former, the arterial input

function (AIF), involves collecting blood samples from the patient at regular intervals

after the radiotracer has been injected and measuring the radioactive concentration using

a gamma counter. It is regarded as the gold standard for retrieving the input function,

although it is rather invasive and time consuming [21]. The other method, the image

— 5 —
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derived input function (IDIF), makes use of the dynamic PET scans themselves to derive

the input function from a chosen volume of interest inside an artery. This method is on

the other hand completely non-invasive, but depends on the quality of the segmentation,

scan resolution and other effects such as partial-volume occurring between tissue and

artery [22].

1.3 The advantage of long-axial field-of-view PET scanners

The most common size of PET scanners up till today have an axial field of view of

around 25 cm – enough to cover a single organ [23]. This also means, e.g. in the case

of brain studies, that it can be difficult to obtain a good quality IDIF from the carotid

arteries. These are the largest arteries supplying the brain, but with an average diameter

of around 5mm [24] and PET resolution being around a few mm, they are too small

to reliably segment and can cause partial volume effects where the signal from a voxel

is shared by both the arterial blood and tissue [19]. However, if we instead acquire

dynamic scans using a whole-body PET scanner, it enables us to use the aorta as a

source for the IDIF instead, as it is a much larger artery, thus allowing for a better

quality segmentation and hence a more accurate image derived input function.

Note in Figure 1.3 how there is a appreciable delay between the onsets of the two

curves. This inherent delay between the input function and an organ, whether the

input function is acquired by AIF or IDIF, is due to the fact that the input function is

measured closer to the point of injection (hence also the name) than the tissue is and

has to be corrected for before we can model it, such that the two curves line up in time.

This is important because we wish to observe how the tissue reacts to the input we are

supplying it with. The way delay correction is usually done [25, 26], is to average the

TACs within the organ to be studied and find a mean delay for the whole organ, after

which all the TACs are corrected by this mean delay – essentially moving all the TACs

back by the same amount. This also means, however, in the case where there are regions

in the organ with relatively large differences in delay, that some TACs can be severely

under- or overcorrected, resulting in a biased kinetic analysis.

In addition to long-axial field-of-view scanner enabling multiple organs to be analyzed

simultaneously, they also offer lower noise due to more lines of responses being permitted

inside the scanner geometry [1], and thus more annihilation photons can be captured.

This also allows for smaller doses to be administered to the patients [27] as well as better

and low noise scans with high time resolution, which is crucial for kinetic modeling [28].

— 6 —
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1.4 Aim of the project

In this report we wish to investigate and improve on kinetic flow analysis by developing

a delay correction algorithm that can more closely match and correct for the local tissue

delays relative to the input function at a single-voxel or near-single-voxel level. This

will help to obtain more accurate and less biased results from kinetic analyses of organs

with regional delays differing considerably from the mean organ delay. We will apply

and evaluate this new delay correction method in kinetic modeling on two organs: the

thyroid and the brain, with the use of dynamic PET scans from two groups of patients:

patients with Graves’ disease and patients with carotid stenosis, and observe the effect

on blood flow in the organs after they receive a treatment or a drug.

Graves’ disease is an autoimmune disorder that affects the thyroid and causes it to be

overactive and over-perfused resulting in an overproduction of thyroid hormones, which

control how different organs use energy [29]. The treatment of this disease involves

giving the patient radioactive iodine-131 [29], which slowly kills the thyroid gland cells

and thus the activity as well as the perfusion is expected to decrease as a result.

Stenosis in an artery makes it difficult for enough blood to be supplied to an organ

or tissue, and hence there will also be a lower flow of blood to this organ or part of it,

which can cause serious health effects and pain. Stenosis differs from a blood clot in

that it is a narrowing of a blood vessel typically from a build-up on the inner walls of the

blood vessels [30]. These patients will receive the drug acetazolamide, also known as,

and referred to in this report as Diamox, which is known to increase blood flow in the

brain by way of dilating the blood vessels [31], i.e. a vasodilate. The effect of Diamox

on blood flow in different organs is, however, not yet fully documented, but with whole-

body PET scanners we can test this more easily. In this report we will however focus

only on the thyroid and brain to determine if this treatment of Graves’ disease is local

to thyroid or also affects the flow in the brain, and if the drug Diamox affects the flow

in the thyroid in the same way as it does for the brain.

In the next chapter, we will cover the theory on how flow can be modeled, and later

detailing the delay-finding algorithm.

— 7 —
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Theory

2.1 Compartmental modeling

One of the most common ways of modeling blood flow in an organ with PET is by

using compartmental modeling [32]. This is a way to separate the states in which the

tracer can be in, whether it is in the blood or the tissue or in a bound state within the

tissue, and so on for more complex models. Each compartment can allow the tracer

to flow to the other compartments and how easily the tracer does this is described

by rate constants between each of the compartments. The radioactive concentrations

in the compartments are labelled C0 through Cn with n being the number of tissue

compartments, where C0 usually represents the radioactive concentration in the blood,

while the other compartments describe the various states that the tracer can be in

inside the tissue, with Ci being the radioactive concentration of the i’th compartment.

By convention, the rate constants are named K1 for flow from the (arterial) blood

compartment (C0 or CA) to the first tissue compartment (C1 or CT ); and k2 represents

flow from the tissue back into the (venous) blood stream. If there are multiple tissue

compartments, the additional unidirectional rate constants between these are named kj

as shown in Figure 2.1.

The simplest compartmental model is the two-compartment model – or equivalently

the one-tissue compartment model (Figure 2.1a) – which has only two compartments in

which the tracer can be suspended: arterial blood and tissue, with concentrations CA

and C1 and rate constants K1 and k2 between them. The rate constant K1 has units

(mL blood)/(100 g tissue · min), i.e. the amount of blood that is flowing through 100 g

of tissue per minute; and k2 (as well as the ki’s for other higher order models) have units

1/min, representing the percentage of tracer that will flow to another compartment per

minute.

We can describe the dynamics in this model with the differential equation

dC1(t)

dt
= K1CA(t)− k2C1(t). (2.1)

The concentrations of the arterial blood compartment, CA(t), is the input function

which has been derived from the PET images as described earlier, and C1(t) is the tissue

8
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CA C1

K1

k2

(a) One-tissue compartmental model.

CA C1

K1

k2

C2

k3

k4

(b) Two-tissue compartmental model.

Figure 2.1 – Schematics of different compartmental models (adapted from [33]). CA is the tracer
concentration in the blood compartment and C1 and C2 are the concentrations of either free or bound
tracer in tissue. K1 and ki are rate constants between each of the compartments, with K1 being the rate
constant from blood to tissue.

TAC that we want to model. Because the tissue we are interested in might be placed

at a different point in time in the circulatory system than the input function is, it will

receive a delayed version of the input function, and we therefore need to correct the

TAC for this delay in order to model the flow parameters correctly. To do this, we move

the individual TACs back by their corresponding delay value found from the algorithm

described above and interpolate them to the same time points as before.

By adding an extra tissue compartment to the model, we have the two-tissue com-

partment model (Figure 2.1b), which allows a tracer to be taken up by tissue and later

enter a bound state. This bound state can be phosphorylation of glucose with the tracer

[18F]FDG. The differential equations for the concentration dynamics in this model can

be written as

dC1(t)

dt
= K1CA(t)− (k2 + k3)C1(t) + k4C2(t), (2.2)

dC2(t)

dt
= k3C1(t)− k4C2(t). (2.3)

Quantification of perfusion or blood flow with freely diffusible tracers, such as [15O]H2O,

is based on the one-tissue compartment model, while the two-tissue compartment model

is for example used to model glucose uptake and phosphorylation using [18F]FDG [33].

— 9 —
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Methods

3.1 Setup

To summarize the goal and outline the groups and subgroups of patients we will be

working with: we wish to determine the flow of blood through – or perfusion of – the

thyroid in patients with Graves’ disease and to determine if there is a change in flow

rates after the patients receive this treatment. To determine if the possible change in

flow rates caused by the treatment is local to the thyroid, the blood flow in the brain of

these patients will also be modelled. In short, Graves’ disease is causing the thyroid to

be overactive and the blood flow through it will similarly be increased.

A healthy control group will be used to compare the patients before and after treat-

ment. Although the number of patients in the control group is limited, we can also to

some degree use data from patients who had scans done for other reasons. It is, however,

important to note that these other patients are not necessarily healthy, but are diag-

nosed with carotid stenosis that might affect the results, but by making sure to include

as many of them as possible, we may be able to obtain a representative distribution of

flow rates in the thyroid for patients without Graves’ disease.

This other group of patients, diagnosed with carotid stenosis, had scans done with

and without the drug Diamox. This drug helps to dilate the blood vessels and hence

increase the flow of blood. It is known to affect the flow in the brain [31], but the

effect on blood flow in other organs is not yet fully known. We will therefore also model

Table 3.1 – Overview of patient groups. The blood flow will be
modelled for both the thyroid and brain for each subgroup.

Thyroid flow Brain flow

Graves

• Before treatment - -

• After treatment - -

• Healthy control (HC) - -

Diamox

• At rest - -

• With Diamox - -

both the brain and thyroid for these

patients to estimate the blood flow

rates and to determine if there is a

change in flow in the organs upon

receiving the drug.

We now have two groups of pa-

tients: patients related to Graves’

disease and patients related to the

drug Diamox; each of them with

subgroups: before and after treat-

ment for the Graves patients as well

10
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as the control group, and the other group at rest and with Diamox. All patients were

scanned with the radiotracer [15O]H2O, which, due to its high diffusibility, makes it a

popular choice for estimating blood flow [34]. Refer to Table 3.1 for an overview of the

patient groups involved. In the results section, figures comparing these groups will use

the corresponding colors for consistency.

We will start by detailing the delay-finding algorithm and the reason for each part,

and later detail how we will apply it for flow modeling. But first and foremost, how the

data was acquired and the tools that are used.

3.2 Data acquisition

Figure 3.1 – Schematic showing how the
body is divided into coronal, sagittal and ax-
ial planes. (From IPF Radiology Rounds
(https: // www. ipfradiologyrounds. com/
hrct-primer/ image-reconstruction/ ).)

Patients were scanned in a long-axial field of

view PET/CT scanner (Siemens Biograph Vi-

sion Quadra [35]) immediately after injection

of the radiotracer as well as a complimen-

tary CT scan used for attenuation correction

and organ segmentation. The tracers used

are the three tracers introduced in the previ-

ous section: [15O]H2O, [18F]FDG and [64Cu]Cu-

DOTATATE. Due to their different half-lives,

the total durations of the scans were different

for each of the tracers as well as the number

of frames captured in this time. Each frame or

still-image is made up of a number of planes

or slices in the axial direction, and these are

stacked to create a 3-dimensional scan.

For [15O]H2O the number of axial slices were 645 and for FDG and DOTATATE it

was 531. Since the field of view is the same for all the scans, as they were captured

using the same scanner, the voxels’ axial length varies slightly between the tracers, with

the [15O]H2O scans having voxel dimensions (coronal, sagittal, axial – see Figure 3.1 for

visual definitions) of 1.65×1.65×1.65mm3 and the FDG and DOTATATE scans having

voxel dimensions of 1.65 × 1.65 × 2mm3. This gives us a 72.6 cm view in the coronal

and sagittal directions and an axial coverage of 106 cm for all the scans, allowing us to

view all the vital organs in the same frame.
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From 0 – 40 s after tracer injection, the frame duration or integration time of each

frame was 1 s/frame. This covers the bolus onset as well as the peak of the TAC bolus.

After 40 s from the injection, the frame duration was increased to 4 s/frame and later to

10 s/frame. Refer to Table 3.2 for a summary and overview of the details of the scans

of each of the three tracers.

To make sure the PET scans are reliable, each patient was scanned twice per session,

which will allow us to test the reproducibility between the two scans and hence quickly

determine if something is wrong with either of the scans if they deviate too much. In

total, scans from 22 patients are tested, and out of these, 5 had Graves’ disease, 3 of

which also received treatment for it and 5 are healthy controls; and in the other group,

12 patients received the drug Diamox and had scans at rest and with the drug. In the

development of the delay finding algorithm, additional patients were used for testing

and to improve it. These include 5 patients who received [18F]FDG and 5 patients who

received [64Cu]Cu-DOTATATE, giving us and large interval of extraction fractions over

which to test and improve the algorithm.

All processing of data is coded using Python version 3.6.8 with Numpy v. 1.19.5 and

Scipy v. 1.5.4 for data handling. Matplotlib v. 3.3.4 is used to produce the plots, in

addition to various other modules used to load data, parallelize computations and for

debugging. For flow modeling, the scripts imgflow [36] and fit h2o [37] v. 0.7.9 written

in C and developed by Turku PET Centre [38] are used.

Table 3.2 – Scan details across the three tracers.

Tracer [15O]H2O [18F]FDG [64Cu]Cu-DOTATATE

Isotope half-life 2min 110min 12.7 h
Scan time 12min 60min 45min
No. of frames captured 64 87 84
No. of axial slices 645 531 531
Voxel dim. (cor, sag, ax) [mm] 1.65, 1.65, 1.65 1.65, 1.65, 2 1.65, 1.65, 2
Scan dim. (cor, sag, ax) [cm] 72.6, 72.6, 106 72.6, 72.6, 106 72.6, 72.6, 106
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3.3 Delay map algorithm

Figure 3.2 – Example CT scan of the location in
red inside the aorta from where the IDIF is derived.

We are interested in determining the difference

in onset times between a tissue TAC and the

input function, ∆T = Ttissue−Tinput, as this will

later be used to correct for the delayed response

of the tissue to the given input.

The input function is derived from averaging

a volume inside the aorta from the PET images

themselves (see the red area in Figure 3.2), be-

cause this is a large artery that does not move

significantly between frames as opposed to the

inside of the heart or a smaller artery. This

is the image derived input function (IDIF) and

the volume is found using a machine learning

algorithm analogous to an organ segmentation method we will introduce later on page

19.

Fitting the time activity curve

An example of a tissue TAC and an input function (IDIF) is plotted in Figure 3.3a. We

observe for both the curves that they start with an activity of 0 and around the onset

times Tinput and Ttissue, each curve starts to increase. The tissue TAC increases to a

saturation level and can be fitted well by this equation found empirically:

Atissue(t) =
a

1 + exp
(
c−t
b

) , (3.1)

where a is the amplitude or saturation level when t is large, i.e. t ≫ c; b tells how rapid

the function transitions from 0 to the saturation level, a, where b = 0 means the change

happens instantly; and c is the center point around which the function transitions.

The input function, being taken from an artery, is slightly different as it increases

rapidly after which it drops down to a steady-state level, due to the fact that an artery

transports fluid and that there is no tissue inside in which the tracer can be absorbed into

apart from the blood and plasma. Empirically, the input function, or any other arterial

time activity curve can be fitted with a slightly more involved but similar function that
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(a) (b)

Figure 3.3 – (a) shows typical time activity curves (TACs) for a single voxel tissue TAC and the
input function (IDIF), and (b) shows the cumulative sum of the same data. Note how the tissue TAC
increases due to absorption while the input function, being a blood TAC, shows a large increase in tracer
concentration before decreasing to equilibrium. Also note how the signal-to-noise ratio is significantly
improved in (b) after being summed cumulatively, making it easier to obtain a good fit.

is a sum of three Atissue:

Aartery(t) =
a1

1 + exp
(

c1−t
b1

) +
a2

1 + exp
(
− c2−t

b2

) +
a3

1 + exp
(

c3−t
b3

) , (3.2)

where the two first terms describe the exponential increase and decrease of the activity

(note the negative sign in the exponential of the latter), while the last term describes

the steady-state level. Each a, b and c describe the amplitudes of each term, how rapid

they transition and when they make this transition, respectively.

In principle, it is also possible to fit the tissue TACs with Aartery(t), however, it will

be too complicated as most of the tissue TACs do not exhibit the same shape as the

arterial TACs do, and hence we may obtain inaccurate or misleading fitting parameters.

On the other hand, all TACs exhibit the same up-slope around the transition from zero

activity to the peak or saturation level. We will therefore focus on fitting the up-slope

instead of the full TAC in order to determine the onset time.

Most single voxel TACs have a very small signal-to-noise ratios, which is also evident

in Figure 3.4, where, as we approach a single voxel, fitting the data with Equation 3.1

becomes rather difficult. However, as the noise is approximately Gaussian distributed,

summing the data cumulatively will cancel out most of the noise and we obtain a nearly

straight line which improves the fitting quality significantly. The new fitting equation is
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(a)
The whole brain.

(b)
1000 voxels.

(c)
100 voxels.

(d)
10 voxels.

(e)
A single voxel.

Figure 3.4 – The time activity curves (TACs) obtained by averaging a number of voxels within the brain
to visualize the shape of a tissue TAC and how the signal-to-noise ratio changes with smaller volumes.
Here is shown from left to right the TACs obtained from averaging 20 million voxels (the whole brain),
1000, 100 and 10 voxels and at last a single voxel. It is important to note, however, that even single
voxel TACs can look very different from each other.

then the integral of Atissue(t) (Equation 3.1) from 0 to t:

Asum(t) =

∫ t

0

Atissue(t
′)dt′ = ab ln

[
exp

(
c− t

b

)
+ 1

]
+ a(t− c), (3.3)

with the same parameters as before: a is the amplitude and b is how quickly the function

transitions around the point c.

Choosing the best fit

The resulting summed input function and tissue TAC is plotted in Figure 3.3b with

their fits using Equation 3.3. One thing to note is that especially arterial TACs (or more

generally blood TACs) will have a noticeable fall-off in the summed view, and as the

fitting equation tends to the asymptote Asum(t ≫ c) → a(t− c), we must choose a range

to fit that stops just before it falls off. Calculating the second order derivative of the

TAC will reveal points where the curve “accelerates” up as the bolus arrives and later

a “deceleration” to equilibrium. The points with a negative second derivative is where

the summed TAC will show a tendency to fall off. Here we choose 10 different ranges

of the data to fit and we can find the one that produces the best fit. The endpoints of

the 10 data ranges are chosen by the most negative second derivative first as this will

have the highest chance of being the best fit. The fit quality is determined from the R2,

defined as

R2 = 1−
∑

i (yi − fi)
2∑

i (yi − y)2
, (3.4)

where yi is the i’th observed data point with y representing the mean and fi being the

value predicted by the fit. Here we extend the fitted data range with 3 extra data points
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in the calculation of the R2 to filter out fits that blow up due to sudden large noise

spikes and other types of noise in the data and instead favor fits where the summed

TAC separates from the fit relatively slowly.

The onset time, T , can then directly be estimated using the optimal parameters from

the fit with the highest R2, and the best combination of fitting parameters was found

empirically to be T = c − 5
2
b. The parameter c determines the central position of the

curve, but as b (the tightness of the curve) changes from small (quick transition) to large

(slow transition), we need to correct for the fact that the onset time, T , lies earlier than

the center of the curve transition, c.

Bounds for the fit parameters are set to a ∈ [0.1, 2 × 107]Bq/s, b ∈ [0.01, 10]s,

c ∈ [0, 60]s, and as a rough constraint for the calculated onset time, T , it should be

within a range from when the first signal is detected to the peak of the TAC. To increase

the chance of a good fit for TACs with an onset time close to the beginning of the data

set (e.g. the parts close to the area of injection), a number of zeros are prepended to the

data before running the fitting algorithm.

Addressing other sources of noise

Some TACs will exhibit random noise spikes in the early part, and the fit might confuse

these with the actual onset time. To mitigate this, we run a plateau finding algorithm

on the cumulatively summed data to find places of 4 or more data points that lie within

a band of 1% of the peak value of the TAC. This percentage is chosen relative to the

TAC being fitted instead of a fixed value such that it accommodates both high and low

activity TACs.

In the time frame of a single scan, the patient will unavoidably move. This could

for instance be breathing or the heart pumping, as well as other small uncontrollable

movements. This could affect the data as the tissue from one voxel would shift into a

neighboring voxel, interfering with the signal and possibly causing noise in some cases.

We can average a cube of the nearest neighbors around a voxel to help smoothen the

data based on the surrounding tissue. This will help increase the chance of a better fit

for TACs where it is not possible to fit the data well due to too much noise. After the

first run of the algorithm with no nearest neighbor averaging, TACs with an R2 below

0.1 are averaged with their nearest neighbors in a cube of 5-by-5-by-5 voxels, and the

delay-finding algorithm is run again on these TACs only. This helps achieve better fits

and thus more accurate onset times in these edge cases for around 90% of the TACs
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(a) Original TAC.

(b) Cumulatively summed
TAC.

(c) 2nd deriv. of (b). Neg.
values indicate ranges to fit.

(d) Best fit among 10.

(e) Original TAC with fitted
onset.

Figure 3.5 – Steps in delay-
finding algorithm.

that had a too low quality fit.

The parameters that have been presented here can be tweaked

manually to amplify or diminish the sensitivity and response of

the specific part of the algorithm they control. Given the large

variation in the extraction fractions of different types of tracers,

in addition to many other physiological properties that may affect

the signal and shape of the TACs, there may be cases where the

optimal parameters may vary slightly from the ones presented here.

In this report, we will however use the same values throughout, as

described above.

In summary, the delay-finding algorithm employs several tech-

niques to overcome the different types of noise in the data. In short,

it works by the following steps, which are also plotted in the figures

on the right for a better visual understanding.

1. Summing the original TAC cumulatively to increase the

chance of a successful fit (Figure 3.5b),

2. Calculating the second derivative and choosing 10 ranges to

fit based on the most negative values (Figure 3.5c),

3. Finding the best of all the 10 fits from the one with the

largest R2 (Figure 3.5d),

4. Calculating the onset time from the fitting parameters:

T = c− 5
2
b (Figure 3.5e).

If all the fits for a voxel end up having an R2 less than 0.1, the

nearest neighboring voxels are averaged and the algorithm is run

again on this voxel.

Finally, the onset time that is found for the TAC is subtracted

by the IDIF onset time, found in the same way. Repeating these

steps for each voxel, we can obtain an image of the delay times in

a patient. This will be presented in the Results section.
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3.4 Modeling flow using compartmental modeling

From dynamic PET scans with a long axial field of view it is possible to model multiple

organs in the same patient simultaneously. Flow modeling can be done with compart-

mental modeling as described in Section 2.1 with a one-tissue compartment model using

the patients who were scanned with [15O]H2O as the tracer, due to its high extraction

fraction.

To model the flow in the brain and thyroid, we will be using a script developed

by Turku PET Centre: imgflow (version 0.7.9) [36], which employs a one-tissue com-

partment model to fit the delay corrected time activity curves with. We will obtain

distributions, or flow maps, over the flow rate parameters K1 and k2, where for an ex-

traction fraction assumed to be equal to 1 as for [15O]H2O, K1 will equal the blood

flow. The options given to the script are -density, which assumes a tissue density of

1.04 g/mL such that we obtain values with unit in terms of per 100 g tissue; -mL to ob-

tain values with units in terms of mL blood as opposed to the default being mL blood;

and at last, -noneg to run the model with strictly positive values for K1.

The distribution we obtain of the flow for an organ is averaged before being com-

pared with the other patients. This allows us to visualize and get an overview of how

the parameters change as we go from one subgroup of patients to another (e.g. before

treatment to after treatment).

3.5 Comparing the resulting flow between the two delay correction

methods

As mentioned in the Introduction, the conventional way of correcting for the delay is

done by averaging all the TACs within an organ or interest, such that you obtain a single

TAC for the whole organ, much like in Figure 3.4a. Then find the delay between this

organ mean TAC and the input function and move all the TACs in the PET scan back

by the same amount. The new delay correction method consists of, as described earlier,

by finding the delay for each voxel and moving them separately by their individual delay.

In order to assess the new delay correction method, we will compare the resulting

flow found by the conventional method and by the new method. Two copies of a PET

scan will be prepared, delay corrected with one of the methods each. They will both
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have their flow modeled using the technique described above in Section 3.4, and finally

the difference is visualized by subtracting the two flow maps from each other.

As discussed, carotid stenosis causes a greater difference in blood flow and delay

between the two hemispheres of the brain. From the resulting delay maps of the patients

with this diagnosis, we find a patient with a large variation in delay between the left and

right hemispheres to compare the difference in flow we obtain from the two methods:

∆K1 = Knew
1 −Kconv

1 .

3.6 Organ segmentation

(a) CT (b) MOOSE

Figure 3.6 – CT-scan (left) of a patient taken in
conjunction with a PET scan for reference and to be
used for organ segmentation (right), which is done
here using MOOSE [39]. Each organ is given a
unique number which can later be used to mask it
out in the PET scan.

A whole-body PET scan also contains a lot of

air around the patient with no usable informa-

tion. To restrict the algorithm to only the area

of the scan where the patient is, we use a mask

derived from an accompanying CT scan. The

mask is produced by a machine learning based

organ segmentation algorithm called “MOOSE”

[39], which recognizes and labels organs and the

types of tissue within a patient based on the CT

scan (see Figure 3.6). The space in which the

CT and PET scans are in differ due to how they

each capture their scans. This “space” holds

information about the positions of the voxels

in the real world, and to be able to match a

CT scan to a PET scan, it is necessary to first

transform it from its own space to the other.

As mentioned, MOOSE masks are created from

CT scans and must therefore be transformed into PET space and interpolated to match

the same resolution. After this, it is then possible to restrict the algorithm to the voxels

that lie within the edge of the patient or even single organs to study how the delay times

as well as other parameters are distributed.
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4.1 Delay map

By fitting every TAC in the patient and finding the delay between these and the input

function, we can produce a map of the tracer delays which allows us to observe how the

tracer is transported with the blood through the body to the different tissues. Examples

of delay maps are shown in Figure 4.1 for three different patients receiving a different

tracer each. The images exhibit some form of noise as is expected from the fact that

single voxels inherently do contain noise, especially for tissue with low blood flow, and

hence low signal in the PET images. However, we can still observe how the blood

flows through the body from blue to red in the figures: first from the arm in which the

injection took place to the right atrium and ventricle, next to the lungs and then to the

left atrium and ventricle after which it enters the aorta and is pumped out to the rest of

the organs and tissue. It is possible to discern the large arteries that supply the lower

torso as well as the legs.

(a) [15O]H2O (b) [18F]FDG (c) [64Cu]Cu-DOTATATE

Figure 4.1 – Examples of delay maps, here seen for a single plane, for three patients at rest, each
receiving a different tracer with extraction fractions of around 1, 0.2 and ∼0 respectively [40, 41, 42].
The gray shadow represents the patient’s projection, to serve as a guide, and the line outlines the plane
in focus. White areas in the delay map are where the algorithm could not estimate the delay time.
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(a) [15O]H2O (b) [18F]FDG (c) [64Cu]Cu-DOTATATE

Figure 4.2 – Example delay distributions in selected organs for three patients receiving one of the three
tracers. Each organ histogram has been normalized. The histograms are plotted with 400 bins in the
range (−9 s, 8 s), resulting in a bin size of approx. 43ms.

The values given to each voxel in the delay maps mark the first point in time where

the appearance of tracer is observed, and thus second pass as well as other subsequent

passes are not registered. Each of the tracers used in Figure 4.1 have different extraction

fractions, which affect the signal-to-noise ratio of the individual TACs and thus the

ability for the algorithm to correctly recognize the actual tracer appearance times. This

is especially evident in the delay map for [64Cu]Cu-DOTATATE where there is not

enough signal in the legs of the patient and only the iliac and femoral arteries, being the

largest arteries in the upper legs, show up.

With the CT derived masks made using MOOSE [39], we can isolate organs and study

the distribution of delay times in each of them. A histogram of the delay distributions

of selected organs is plotted in Figure 4.2 and the mean delay times for the same organs

are listed in Table 4.1. In the histograms we can observe two peaks for the heart, being

Table 4.1 – Mean delay times and standard deviations
obtained from the delay maps for three different patients
– one for each of the tracers.

Organ Mean delay [s]

Water FDG DOTATATE

Heart −4 ± 2 −4 ± 2 −5 ± 2

Lungs −4.6± 0.7 −4.5± 1.2 −5 ± 2

Aorta −1 ± 2 −0.6± 1.7 −2 ± 3

Kidneys 3.4± 1.4 2.6± 1.2 3.7± 1.1

Brain 2.4± 1.3 3.5± 1.8 6 ± 2

Liver 0 ± 7 0 ± 5 4 ± 11

the right and left ventricle, with the lungs re-

ceiving the tracer between these two peaks of

the heart. We also observe that this is then

followed by the aorta, and next the remain-

ing organs receive the tracer after a period of

time depending on their supply of blood and

distance from the heart consistent with the

delay maps. The liver receives both arterial

and venous blood [43], which makes it span a

broader interval until the whole organ has re-

ceived the tracer. This can also be observed

in the delay maps where the liver is colored
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(a) PET scan. (b) Delay map. (c) Flow map (K1).

Figure 4.3 – From a set of dynamic PET scans (a), we obtain a map of the tracer appearance times
(b). Using this to delay correct the PET TACs, we can model the flow and obtain a map of the blood
flow (c). In these figures are shown an example of the brain of a patient with stenosis in the left carotid
artery (hence less tracer activity, higher delay and lower blood flow in this region) receiving Diamox,
and the thyroid of a patient with Graves’ disease (note the parts with extreme flow). The outlines mark
the boundary of the organ masks. Each set of images has been normalized to increase the contrast within
the organs while still allowing for comparison between the two.

both blue and red. Each organ’s histogram has been normalized to increase the visibility

of each of them and to show the proportion of the organ receiving the tracer at a given

point in time.

4.2 Comparison of delay correction methods

Modeling flow

From a series of PET scans (an average of which is shown in Figure 4.3a for the brain

and thyroid), we have obtained delay maps of the two organs, as can be seen in Figure

4.3b. These maps are used to correct each individual PET TAC for their respective

delay before modeling the blood flow, which is shown for both organs in Figure 4.3c.

Note that the images of the brain and the thyroid in these figures are for a patient with

stenosis on their left side receiving Diamox, and a patient with Graves’ disease prior to

receiving treatment, respectively.
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The conventional method of correcting the PET TACs for tracer delay is to move

all the TACs in an organ by the same delay found from the average organ TAC [25].

This method does not take into account the regional differences there may be due to for

example the size of the organ or problems for the blood to reach certain parts such as a

stenosis or thrombosis.

The patients in the “at rest/Diamox” group are patients who have been diagnosed

with carotid stenosis, causing less flow to some regions in one of the hemispheres in

the brain. We can use this to evaluate the improvement gained by the new single-voxel

delay correction over using the conventional mean-organ delay correction method. A

scan from one of the patients in this group who has a severe case of carotid stenosis is

used, as it leads to larger differences in blood flow between the two hemispheres of the

brain, and we thus expect to observe the largest discrepancy between these two methods

here.

Figure 4.4 – Differences in mod-
elled flow using single-voxel delay
correction and conventional organ-
mean delay correction from Turku
[38], ∆K1 = Knew

1 −Kconv
1 . The pa-

tient has stenosis on their left side.

Figure 4.4 shows the absolute differences in modelled

blood flow between the two methods mentioned, ∆K1 =

Knew
1 −Kconv

1 , in an axial slice in the brain of a patient re-

ceiving Diamox with severe carotid stenosis on their left side.

The change of using the new method to correct for delay can

here directly be observed with estimated blood flow rates be-

ing biased towards more extreme values for the conventional

method, with Kconv
1 estimating larger flow rates than Knew

1

in the high-flow regions (patient’s right side), and lower flow

rates in the low-flow regions (patient’s left side).

Additionally, the differences in estimated flow rates be-

tween the two methods can be observed to have regional dif-

ferences of up to around ∆K1 ∼ 30mL/(100 g ·min), which

is about on the order of the mean flow rate in the brain for pa-

tients receiving Diamox (as per the results on the next pages,

Figure 4.6b and Table 4.2) of Kbrain
1 ≈ 50mL/(100 g ·min).
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(a) Thyroid flow in Graves group. (b) Brain flow in Graves group.

Figure 4.5 – Box plot comparison of the distribution of the mean flow parameters K1 and k2 in the
thyroid and brain between patients with Graves’ disease before and after treatment as well as a healthy
control group (HC). The black line and the black dot show the median and mean. N is the number of
patients in each subgroup.

4.3 Results from flow modeling

Finally we wish to apply the new delay correction method to patients whose flow we

can model before and after receiving treatment or drug to observe the difference and if

it aligns with expectations.

The mean value of the flow parameters K1 and k2 for the thyroid and the brain of

each subgroup of patients are listed in Table 4.2.

Figure 4.5 collects the mean flow parameters, K1 and k2, in patients with Graves’

disease before treatment, after treatment and for the healthy control group. In total

scans from 5 patients with Graves’ disease have been analyzed, 3 of which also had

scans done after receiving the treatment, and 5 patients in the healthy control group.

A noticeable drop in K1 and k2 for the thyroid can be observed in patients after

receiving the treatment, with a decrease of −35% for K1 and −42% for k2. The un-

treated patients have flow parameters that lie above the mean of the healthy controls

(abbreviated HC in the figure) with a difference of +20% for K1 and +33% for k2,

while the treated patients have flow parameters that lie below the mean of the healthy

controls with a difference of −23% for K1 and −24% for k2.

A T-test can help reveal how likely it is for two different distributions to come from

the same distribution, where small p-values less than around 1% indicate a significant
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(a) Thyroid flow in Diamox group. (b) Brain flow in Diamox group.

Figure 4.6 – Comparison of the mean flow parameters K1 and k2 in the thyroid and brain between
patients at rest and with Diamox. The black line and the black dot show the median and mean. N is
the number of patients in each subgroup.

deviation between the two distributions, while larger p-values indicate a higher similarity

between the two. To calculate the p-values we will be using Scipy’s T-test for two

independent distributions, scipy.stats.ttest ind().

The p-values between the patients before treatment and after treatment is 0.00026

for K1 and 0.0019. Between the healthy controls and the patients before treatment, the

p-values are 0.27 for K1 and 0.063 for k2, while the p-values between the healthy controls

and the patients after the treatment are 0.36 for K1 and 0.32 for k2.

For the flow parameters in the brain of the same patients, the mean flow rates between

the treatment changed −15% for both K1 and k2, although the p-values between these

Table 4.2 – Overview of the results from flow modeling. The table lists the mean value for the flow
parameters K1 and k2 in each of the subgroups.

Thyroid flow Brain flow

K1 k2 K1 k2
[mL/(100 g · min)] [1/min] [mL/(100 g · min)] [1/min]

Graves
• Before treatment 262± 15 4.6± 0.3 48± 7 0.6 ± 0.1
• After treatment 168± 13 2.7± 0.6 41± 7 0.5 ± 0.1
• Healthy control (HC) 220± 70 3.5± 1.0 46± 6 0.60± 0.09

Diamox
• At rest 190± 80 3.0± 1.1 36± 7 0.48± 0.09
• With Diamox 180± 70 3 ± 1 51± 9 0.69± 0.13
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distributions are relatively high of 26% for K1 and 30% for k2. Again, the mean of the

healthy controls lie in between before treatment and after treatment, with the difference

between the mean of HC to the mean before treatment being +3.9% for both K1 and

k2, and the change between HC and after treatment being −12% for both K1 and k2.

The p-values between the patients before treatment and the healthy controls are

relatively high at 0.71 for K1 and 0.73 for k2, while the p-values for the treated patients

and the healthy controls are lower at 0.37 for K1 and 0.41 for k2.

Figure 4.6 shows the mean flow parameters for patients before and after receiving

the drug Diamox. In total 11 patients had scans at rest and with Diamox.

In contrast to the flow through the thyroid of the patients with Graves’ disease, the

change in flow rates for these patients from at rest to with Diamox is −5.1% for K1 and

−2.9% for k2, however, the p-values show large similarity between the two of 0.77 for

K1 and 0.85 for k2.

On the other hand, the difference in flow rate is larger for the brain between at rest

and with Diamox, with K1 increasing by 40% and k2 increasing by 43%. The p-values

between these two distributions are 0.00059 for K1 and 0.00039 for k2, which is a sign

of a more significant change.
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Discussion

From the delay maps in Figure 4.1 and the histograms in Figure 4.2, we have a visual

overview of the temporal progression of the tracer – and thus also the blood carrying it

– flowing through the bloodstream into organs and tissue.

For some of the organs, the standard deviations listed in Table 4.1 are quite large.

However, as they in some cases do not describe Gaussian distributions, they should be

interpreted with care in combination with the histograms of Figure 4.2. By compar-

ing them visually to the histograms, we can describe the effect causing these standard

deviations to be this large.

Firstly, the heart is divided into two halves: the right half which pumps deoxygenated

blood to the lungs, and the left half which pumps the freshly oxygenated blood to the

rest of the body. This gives the two distinct peaks around the lungs that subsequently

lead to the larger range or standard deviation from the mean.

Secondly, the tracer appearance times in the aorta seem to be centered around a

delay time of zero, but spread out over a range of ±2 s. This is due to the fact that the

input function is derived from the descending part of the aorta, as shown in Figure 3.2

on page 13, which receives blood later than than the ascending aorta or the aortic arch.

We can easily calculate an estimate of how long time we expect it takes before blood

reaches the descending part of the aorta. Ignoring age and health effects, we can assume

the average blood velocity in the ascending aorta to be 6 cm/s [44] and the distance the

blood has to travel before reaching the descending aorta, from which the input function

is derived, to be 15 cm [45], we obtain a delay of ∆t ≈ 2.5 s. This fits well with the

histograms as well as the standard deviations listed in Table 4.1, containing delay times

for selected organs.

Thirdly, the liver is spanning almost the full length of the histograms. Its width could

partly be due to its supply of both venous and arterial blood [43], while the high activity

in the early end of the histograms are likely to be from the patient breathing and the

heart pumping, as a large part of the liver lies immediately beneath the lungs and heart.

This can cause a part of heart and lungs to shift into the voxels that had been labeled

as the liver from the MOOSE segmentation. Taking a closer look at the histograms,

there exist small but discernible bumps on the histograms, being the heart beat, which

match up between the heart and the liver, likely supporting this claim. Furthermore,
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observing the whole-body delay maps, there is a perceptible area just underneath the

heart with lower delay, which could be due to the same phenomenon, and be responsible

for the high activity in the liver at the early end of the histograms.

As discussed in the introduction, water has an extraction fraction close to 1 [40] and

DOTATATE has an extraction fraction that is very low [42], and assumed close to 0

for some tissue, due to it being a receptor based tracer, with FDG sitting in between

these two with an extraction fraction of around 20% [41]. This also means that the

signal to noise ratio is much lower for the patients receiving DOTATATE compared to

water, which propagates through to the rest of the data, e.g. the delay map in Figure

4.1 for DOTATATE which has little to no signal in the patient’s legs except for the

relatively large illiac arteries, as well as displaying more noisy histograms. On the

other hand, it is possible to discern the heartbeat especially well on the DOTATATE

histograms in Figure 4.2c, in the histograms for the heart, lungs, aorta, liver and the

brain. DOTATATE is not able to cross the blood-brain barrier [5, 6], and hence very

little activity is observed in the brain, but this also results in the heart beat being more

prevalent on the histograms in contrast to water, which diffuses through tissue without

much trouble, which is therefore why we also observe a more smooth distribution in

organ delays for this tracer.

Lastly, these values found for the delays of the organs are in line with what is expected

with the delay times for the organs being within a few seconds of delay [46, 47].

The biggest challenge with creating a single-voxel resolution delay map is the noise

associated with these small sets of data. And defining when the tracer appears in the

tissue based on the TAC of a given voxel is not trivial either. Some TACs have a slow

rising curve, i.e. tracer uptake in or supply to the tissue is slow and the value of the

fitting parameter b is large, which means that the TAC around the onset is relatively

flat and thus the uncertainty in the onset time will in turn be relatively large as well.

For the flow parameters in patients with Graves’ disease, we can observe a significant

change in the thyroid of around −40% as a cause of the treatment, amounting to a change

of ∆K1 = (−94 ± 28)mL/(100 g ·min) and ∆k2 = (−1.9 ± 0.9)/min, with p-values of

p ≈ 0.002 for both parameters. The flow in the brain had no significant change as a the

effect of the treatment with p-values p > 0.25, meaning the treatment seems to be local

to the thyroid. However, the patients prior to treatment seem to be more similar in flow

in the brain with larger p-values of p ≈ 0.7 than after treatment, where the p-values are

now p ≈ 0.4. This discrepancy suggests that we might not yet be able to cast away the
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hypothesis that the treatment is entirely local to the thyroid and that it does not affect

the blood flow in the brain.

For the flow through the brain of the patients who received Diamox, we observe a

significant change in flow rates of around +40% with p-values of p < 0.0006. On the

other hand, there was no significant change in the thyroid of the same patients after

receiving Diamox, as the p-values for K1 and k2 were around p ≈ 0.8. This means that

Diamox affects the brain and thyroid differently, with a large increase in flow through

the brain, and no effect is observed for the thyroid.

Qualitatively, these changes in flow rates are expected, with the treatment of Graves’

disease is meant to kill some of the thyroid cells [29], thus a decrease in flow should be

observed. Additionally, Diamox is known to act as a vasodilate [31] and to increase

the blood flow in the brain [48]. The behaviour of Diamox exhibiting an organ-specific

effect on the blood flow rates is also suggested in a study on rabbits, which, in response

to 12mg/kg Diamox, saw “an increase in blood flow of 82% in the brain [...], but no

change in blood flow in the liver, stomach wall or abdominal muscle.” [49]. The findings

in this report on blood flow in the brain and in the thyroid support that the effect of

Diamox on blood flow is organ-specific, with a high influence in the brain.

Finally, we can conclude that utilizing a single-voxel delay correction method when

modeling the blood flow in organs with large regional differences in delay is impor-

tant in order to achieve correct flow parameters, as is evident from Figure 4.4 on

page 23, where the difference in modeled blood flow can be as large as about ∆K1 ∼
30mL/(100 g ·min) in the brain of patients receiving Diamox, with the mean flow being

Kbrain
1 ≈ 50mL/(100 g ·min) in some cases.
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Future prospects

The next steps that can be taken with this project is to improve on the delay finding

algorithm. Due to the low signal-to-noise ratio of single voxels, especially in some parts

of muscle and skin tissue, the algorithm can have difficulty detecting which parts are

noise and which are the signal. The algorithm already flags voxels that have bad fits

and reruns these with nearest neighbor averaging to smoothen the TACs and gain more

information based on the surrounding tissue while still keeping the time component

intact. This has reduced the number of flagged voxels by around 90% in most cases,

however, more can be done to improve on the accuracy of finding the onset of low

signal-to-noise voxels.

Another aspect is the computation time. For whole-body PET scans it currently

takes around 5 hours to complete when running the calculations in parallel on 50 CPUs

(model name: Intel® Xeon® Gold 6346 CPU at 3.10GHz) depending on the tracer

used, the number of voxels included, as well as the temporal resolution of the TACs.

From timing tests, it is apparent that upwards of 98% of the running time is used to fit

the data. Reducing the number of data points used in the fit would improve the running

time, but might inadvertently affect the accuracy of the results. Another possibility is

to use a faster fitting algorithm than Scipy’s optimize.curve fit(), or even replace

the fitting equation for a simpler one.

Since Rigshospitalet acquired its long-axial field of view scanner in 2021, the number

of patients scanned in it is still fairly limited, and thus making accurate conclusions on

a subset of these patients is difficult. More data is needed to be certain, however, from

the results in this report we can already make preliminary conclusions.
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Conclusion

The algorithm outlined and developed in this report is able to robustly identify and

find the delay times for single voxels as well as generating comprehensive delay maps

for whole-body PET scans. It employs several techniques to mitigate the effects of the

noise in the data and its influence on the fits. These include:

1. Summing the time activity curves (TACs) cumulatively,

2. Detecting plateaus caused by random noise spikes,

3. Fitting the data across several ranges, and choosing the best fit based on their

R2,

4. And averaging a small volume of the nearest neighbors for TACs that were chal-

lenging to achieve good fits for, and where more information from the near tissue

was needed.

Potential areas for improvements include studying the TACs of tissue with slow tracer

uptake in detail, as these are the most challenging to define the onset due to their slow

rising and often noisy behavior, as well as implementing a more noise resistant algorithm

to help improve the accuracy of the delay maps even further.

Using scans from the newly acquired long-axial field-of-view PET/CT scanner at

Rigshospitalet enabled us to model the kinetics of blood flow in multiple organs si-

multaneously, and together with the produced delay maps, it was possible to apply a

single-voxel delay correction to the scans. Two groups of patients, diagnosed with either

carotid stenosis or Graves’ disease, were modeled prior to receiving a treatment as well

as after, in order to observe if a possible change in blood flow occurred in either or both

of the two organs of interest across all patients as a whole.

The findings would benefit from data from more patients, although, we are still able

to make preliminary conclusions. These include that the treatment of Graves’ disease

is likely to be local to the thyroid, and that Diamox affects only the brain out of the

two organs. Additionally, with the dynamic whole-body PET scans and the whole body

delay maps, it is possible to model even more organs at a time.

Furthermore, the algorithm has demonstrated its effectiveness across three differ-

ent tracers: [15O]H2O, the widely used radiotracer [18F]FDG, as well as [64Cu]Cu-
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DOTATATE. These tracers together span a broad range of extraction fractions, in ad-

dition to their individual and unique physiological properties. Moreover, due to being

applied to whole-body PET scans, the algorithm is also capable of finding delays in a

variety of organs and tissues.

This can potentially help achieving more accurate flow rates in organs with large

regional differences in delay and remove a bias that has so far been a part of the con-

ventional method of delay correction.
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