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Abstract

The vanadium kagome metals AV3Sb5 have been the subject of extensive research since
their synthesis in 2019, both theoretically and experimentally. Due to the unique geometry
of the kagome layer, their electronic structures exhibit flat bands, van Hove singularities
and Dirac cones, making them an excellent platform for investigating the interplay between
correlation effects, geometric frustration, and topology. Notably, all three compounds are
found to enter a charge density wave phase at high temperature, which breaks translational
symmetry generating a 2x2x2 supercell. Additionally, this phase is also reported to break
time reversal symmetry and exhibit a giant anomalous Hall effect despite the absence of
long-range magnetic order. The focus of this thesis lies in the study of the emergence of
said charge density wave phase from electronic interactions. A nearest-neighbour Hubbard
model on the kagome lattice is presented, which is decoupled using a Hubbard-Stratonovich
transformation. Within mean-field theory, the Ginzburg-Landau free energy is analyzed
to determine the potential order parameters of the symmetry-broken phase.
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Chapter 1

Introduction

The familily of kagome metals AV3Sb5, where A stands for the alkali atom cesium, pota-
sium and rubidium, where first synthesised in 2019 [1]. The kagome layer, which is formed
by the vanadium atoms, provides these compounds with exotic properties that still make
them a trending subject in current research. Their band structure shows Dirac cones, flat
bands and van Hove singularities, meaning the existence of potential interplay between
topologically nontrivial surface states and substantial electron correlation effects [2].

More importantly for this project, they are found to undergo a charge density wave
phase at high temperature. It is in this phase that superconductivity settles at much
lower temperatures. The symmetry of the Cooper pairing is crucial to understanding the
mechanism that drives superconductivity in this materials, reason why it is a focal point
of current experimental and theoretical discussions [3]. The possibility of this family of
materials hosting a wide range of unconventional superconducting states is still subject to
discussion, both in experimental and theoretical settings, including d+ id chiral supercon-
ductivity and f−wave spin triplet, although the common s-wave superconductivity is still
a potential option [4]. Therefore, understanding the charge density wave could also aid in
determining the symmetry of the Cooper pairing.

The origin of the charge density wave phase still remains an open question. The Fermi
level is found to be remarkably close to the van Hove singularity, point at which the Fermi
surface is hexagonal. As a result, and due to the pure character of the van Hove singu-
larity, nesting effects promote bond orders, and more generally, can trigger a multitude of
competing instabilities [5, 6]. This is the reasoning behind the widespread belief that the
charge density wave is and instability driven by the electronic degree of freedom. However,
there is no direct evidence of such a statement, and it is most probable that is it a coupling
between the phonons and the electrons which are behind this instability.

Given this introduction, the rest of the document is organized as follows: The next
chapter will dive a bit deeper in the AV3Sb5 metals and the main experimental evidence
that have been found so far, focusing specially in the charge density wave phase. Chapter
3 will present a simple nearest-neighbour tight-binding model, which will aid on the under-
standing of the main features of the kagome lattice. Chapter 4 gives an overview of some
the theoretical approaches that have been presented so far in the literature with the aim of
modelling the charge density wave in these materials. Chapter 5 shows the model and the
microscopic approach that was chosen to tackle the problem in this thesis, presenting the
mean-field solutions. Chapter 6 will continue this discussion, delving into the free energy
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CHAPTER 1. INTRODUCTION

expression and the second order term of its perturbative expansion. Finally, this work will
be wrapped up by the conclusions is Chapter 7, accompanied by an outlook into possible
ways of continuing with this research.
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Chapter 2

AV3Sb5 kagome metals

Gathering the fundamental results of the extensive research that has been done in the re-
cent years regarding the AV3Sb5 compounds has been undertaken before in the literature,
for instance in the review papers [4] and [3]. This chapter will follow this same line of
work, attempting to do an overview of the most relevant experimental findings regarding
these materials for the present project.

The compounds AV3Sb5, where A stands for the alkali atoms Cs, K and Rb, form a
layered structure, where the Vanadium atoms arrange in the kagome lattice structure, as
shown in Fig. 2.1. The antimony atoms fill the center of the V hexagons, as well as form
a honeycomb lattice both above and below this layer. Finally, a triangular layer of the
alkali atoms completes the structure. Such arrangement has six-fold rotational symmetry,
three mirror planes and inversion symmetry, making it belong to the P6/mmm space
group. The associated point group symmetry of the center point (also called Γ point) is
D6h and the Brillouin zone (BZ) is just an hexagonal prism. The point group symmetry
is translated into the reciprocal space, making it possible to define certain points in this
space that are invariant under the symmetry operations. These points define a so called
high-symmetry line, as it is depicted in Fig. 2.2(c).

(a) (b)

Figure 2.1: (a) Crystal structure of the AV3Sb5 compounds, in particular for A=K, ac-
companied by the top-down view. (b) Decomposition of the structure into the kagome
and honeycomb layers of the vanadium and antimony atoms, respectively. Figures from
Ref. [7].
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CHAPTER 2. AV3Sb5 KAGOME METALS

(c)

(b)(a)

Figure 2.2: (a) Energy bands from DFT calculations [9]. The different colors mark the
orbital projections of the wavefunctions. (b) Comparison of the Fermi surface of CsV3Sb5
from ARPES data and DFT calculations [8], which show great agreement with each other.
The hexagonal Brillouin zone is superimposed on the ARPES data. (c) Three-dimensional
BZ of the P6/mmm space group, highlighting the high symmetry line along which the
energy bands are calculated [8].

The electronic nature of the compounds have been studied through density functional
theory (DFT) calculations and angle-resolved photoemission spectroscopy (ARPES) mea-
surements. As one can see from Fig. 2.2(a), there are multiple multiple band crossings
around the Fermi level. Around Γ there is an electron-like parabolic band, that appears as
a circular electron pocket in the Fermi surface (Fig. 2.2(b)). From the orbital projections
it is apparent that it originates from the antimony pz orbitals. The Fermi contours near
the first BZ boundary at the M and K points are dominated by the vanadium atoms. At
the K point there is a Dirac cone associated with the vanadium dxy and dx2−y2 orbitals.
Connected to it there is a van Hove (vH) point very close to the Fermi level at the M
point. Also at the M point and only slightly further from the Fermi level there is a second
vH point associated with the vanadium dxz and dyz orbitals. Both ARPES and DFT
calculations show very little dispersion along kz of the Fermi surfaces [8], hinting at the
quasi-2D nature of these materials.

Said quasi-2D character can be further confirmed by electrical resistivity measure-
ments. Fig. 2.3(a) presents its temperature dependence, which shows that the out-of-
plane resistivity is around 600 times larger than the in-plane data. Additionally, a kink
can be observed at around 94K for CsV3Sb5. This kink is accompanied by a sharp peak
in the heat capacity data at this same temperature, as shown in Fig. 2.3(b), indicating
that the phase transition that the system is undergoing is of first order. The other two
compounds are also found to undergo the same phase transition, but at around 78K and
103K for the potasium [7] and rubidium [10] compounds, respectively.

Before analyzing further the charge density wave, let us discuss the electrical resistivity
measurements at lower temperatures. The zero-field curve in Fig. 2.3(c) shows a broad
transition at around 2.5K, which is suppressed by the addition of a magnetic field, hall-
mark of superconductivity. The corresponding phase transitions for KV3Sb5 and RbV3Sb5
happen at around 0.93K and 0.92K, respectively.
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(a) (b) (c)

Figure 2.3: Temperature dependent data of (a) the electrical resistivity in and out-of-
plane, showing the strong anisotropy and a kink at around 94K, (b) the heat capacity
with and without an applied magnetic field, showing a peak at this same temperature and
(c) of the electrical resistivity at low temperatures, also as a function of applied magnetic
field, showcasing the onset of superconductivity at around 2.5K. All three measurements
belong to CsV3Sb5. Figures from Ref. [8].

Elastic neutron scattering [1] and muon spin spectroscopy [11] show evidence of the
absence of long-range magnetic order, meaning that phase transition that occurs at 78-
105K derives primarily form the charge degree of freedom. Scanning tunneling microscopy
(STM) measurements performed on the antimony surface [12] reveal that upon lowering
the temperature across the critical temperature of the phase transition the unit cell gets
enlarged in both in-plane directions, as depicted in Fig. 2.4(a)-(b). This phase of matter,
which involves a redistribution of the charge that breaks translational symmetry is denom-
inated charge density wave (CDW). Said 2 × 2 in-plane modulation is further observed
in the Fourier transformed topographic images, where six additional peaks appear addi-
tional to those from the primary lattice structure. The modulation wavevectors, which
correspond to 1/2 of the Bragg peaks, correspond to the momenta of the three M -points
that can be defined in the hexagonal BZ. STM also shows an energy gap opening around
the Fermi energy of around 50meV [12], which also disappears above the transition tem-
perature (Fig. 2.4(c)). Furthermore, there seems to be a momentum structure of the gap
function [13]. As it can be observe in Fig. 2.4(d), there is a gap opening around the BZ
boundary but it disappears near the Γ point. While the in-plane modulation is widely
established, the modulation in the c direction is still debated: there is experimental evi-
dence for both 2× 2× 2 [14] and 2× 2× 4 [2] charge modulations.

Additionally, the low temperature spectroscopic data of the charge modulation vector
peaks at zero field are reported to show strong anisotropy in their intensity in all three
compounds [12, 15, 16]. A chirality can thus be defined in the direction form the lowest
to the highest vector peaks, as showed in Fig. 2.5(a) for KV3Sb5. This chirality can be
switched by an applied magnetic field along the c axis [12], changing from anticlockwise
to clockwise upon changing the magnetic field orientation. This suggest the breaking
of the time-reversal symmetry in the CDW phase, specially intriguing given the lack of
long-range magnetic order previously mentioned. Stronger evidence for the time-reversal
Symmetry breaking (TRSB) is found in the zero-field muon spin relaxation (µSR) spec-
troscopy measurements [17]. As depicted in Fig. 2.5(b), the temperature dependence of
the muon spin relaxation rates show a noticeable increases immediately after crossing the
CDW transition temperature, indicating the existence of internal magnetic fields.
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(a)

(b)

(c)

(d)

Figure 2.4: STM topographic images and their Fourier transform of the antimony surface
above (a) and below (b) the transition temperature, showcasing the 2× 2 charge modu-
lation. Figures from Ref. [12]. (c) Spectroscopic imaging data of the energy gap for the
antimony surface. Figure from Ref. [12]. (d) 3D plot of the Fermi surface and momentum
dependent structure of the energy gap at 5K. Figure from Ref. [13]. All data presented
correspond to the compound KV3Sb5.

(a) (b)

Figure 2.5: (a) Spectroscopic data for KV3Sb5 of the CDW vector peaks with and without
the presence of an applied magnetic field, showing the ability to switch the chirality with
said magnetic field. Figure from Ref. [12]. (b) Temperature dependence of the relaxation
rates from µSR experiments in KV3Sb5. Figure from Ref. [17].
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Chapter 3

The kagome lattice and the
tight-binding model

Given the experimental evidence that the physical properties of AV3Sb5 are primarily
determined by its two-dimensional structure, and in particular by the vanadium kagome
layer, a first natural step in the study of these materials is to construct a simple model
that solely accounts for this layer. Consequently, in this chapter a nearest-neighbour one-
orbital tight-binding model will be formulated. Despite its simplicity, it still showcases
the main features of the band structure, which will be key to the discussion of the charge
density wave phase in these materials. However, prior to that it is needed to outline the
basic features of the lattice, both in real and momentum space.

3.1 The kagome lattice
The kagome lattice, as shown schematically in Fig. 3.1, is a two-dimensional tripartite
lattice. This allows to divide the lattice in three subsets, which will be denoted by A, B
and C. The unit cell and its corresponding primitive lattice vectors are also depicted in
the figure. When assuming the distance between unit cells to be one, these vectors take
the values

~t1 = (1, 0) ~t2 =

(
1

2
,

√
3

2

)
. (3.1)

Taking the site A to be the origin of the unit cell, the basis vectors, which position the
three sites in the unit cell, are

~dA = (0, 0) , ~dB =
1

2
~t2 , ~dC =

1

2
~t1 , (3.2)

and the vectors that connect two sites ~aαβ = ~dβ − ~dα are

~aAB =
1

2
~t2 , ~aAC =

1

2
~t1 , ~aBC =

1

2
(~t2 − ~t1) . (3.3)

Given the translational symmetry of the real-space lattice, it becomes convenient to work
in momentum space, where one can define the reciprocal lattice. The definition of the
reciprocal lattice vectors can be derived by their relation to the primitive lattice vectors
~gi · ~tj = 2πδij , which are

~g1 = 2π

(
1,− 1√

3

)
, ~g2 = 2π

(
0,

2√
3

)
. (3.4)
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A

B

C
t1

t2

dB

dC

aAB aBC

aAC

Figure 3.1: Representation of the kagome lattice in real space. The three different subsets
of lattice sites are labeled by A,B and C and colored in blue, orange and green respectively.
The primitive lattice vectors ~ti are included and the unit cell that they define is shaded
in gray.

The spacial modulations driven by momenta that only differ an integer number of recipro-
cal lattice vectors ~gi are equivalent. Therefore, it is possible to restrict oneself to a section
of the momentum space such that all the momenta inside produce spacial modulations
that are unique, and which constructs the first Brillouin Zone (BZ). The high symmetry
points of the kagome lattice are the Γ point, in the center of the hexagonal BZ, the M
points at the center of the edges, and the K points, located at the vertices. The reciprocal
lattice and the high symmetry line are depicted in Fig. 3.2(a).

The three independent M -points that can be defined in the first BZ, and which will
henceforth be referred to as M1, M2 and M3, are defined by the vectors:

~Q1 =
1

2
~g1 , ~Q2 =

1

2
~g2 , ~Q3 = −1

2
(~g1 + ~g2) , (3.5)

respectively. One could have equivalently defined the M -points to be those located in the
opposite edges of the hexagonal BZ, since they are connected by reciprocal lattice vector.
As a result, the M -vectors verify ~Qi ≡ − ~Qi, and are represented in Fig. 3.2(b).

Having presented the basics of the kagome lattice, we are now prepared to dive into
the setup of the tight-binding model.

3.2 Nearest-neighbour tight-binding model

The kinetic energy portion of the non-interacting Hamiltonian corresponding to the elec-
trons on the lattice can be described by a tight-binding model. In its simplest form, this
Hamiltonian allows hopping between nearest neighbours with a hopping amplitude t > 0

13
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g2

g1

M K

(a)

M1

M2

M3

M5=M2

M4=M1 Q2

Q1Q3

M6=M3

(b)

Figure 3.2: (a) Reciprocal lattice of the real space kagome lattice. ~gi are the reciprocal
lattice vectors, in gray the first Brillouin Zone is shaded and in red the high-symmetry
points and line are displayed. (b) Representation of the M points and their respective
vectors in the first BZ.

that is equal between all sites. Each atom in the unit cell has four nearest neighbours: the
other two atoms in the unit cell, and two in the adjacent unit cells.

In its second-quantized form, the tight-binding Hamiltonian can be written in terms
of the fermionic creation and annihilation operators, c†~Rσα

and c~Rσβ, as follows:

HTB = −t
∑
~Rσ

∑
α 6=β

(
c†~Rσα

c~Rσβ + c†~Rσα
c~R−2~aαβσβ

)
− µ

∑
~Rσα

c†~Rσα
c~Rσα. (3.6)

Here, ~R represents the unit cell, σ denotes the spin, and α, β the sublattice site within the
unit cell. This means that the site α in the unit cell ~R is located at the position ~R + ~dα.
A neighbour β of this site located in a different unit cell is connected to it by the vector
~aβα = −~aαβ. Therefore, its position will be ~R + ~dα − ~aαβ = ~R − 2~aαβ + ~dβ, consequently
belonging to the unit cell ~R−2~aαβ. The first term in the Hamiltonian is then the intra-cell
hopping while the second term the inter-cell. Hereafter, the spin degree of freedom will
be implicitly summed over.

The solution to the Hamiltonian is most easily achieved by going to momentum space,
given that the electronic wave functions in the lattice are modulated by plane waves.
Considering periodic boundary conditions and a system with N unit cells, the Fourier
transform of the annihilation operator is c~Rα = 1√

N
∑

~k
ei
~k·~Rc~kα and the Hamiltonian then

becomes:

HTB = −t
∑
~k

∑
α 6=β

c†~kα

(
1 + e−2i~k·~aαβ

)
c~kβ − µ

∑
~kα

c†~kα
c~kα

= −
∑
~k

(
c†~kA

c†~kB
c†~kC

) µ t(1 + e−2i~k·~aAB ) t(1 + e−2i~k·~aAC )

t(1 + e2i
~k·~aAB ) µ t(1 + e−2i~k·~aBC )

t(1 + e2i
~k·~aAC ) t(1 + e2i

~k·~aBC ) µ


c~kA
c~kB
c~kC

 ,

(3.7)
where µ is the chemical potential.
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R R-2aCAR-2aAC

R-2aBC R-2aBA

R-2aAB R-2aCB

t1

t2

t

A

B

C

(a) (b)
M K

4

3

2

1

0

1

2

E
n
e
rg

y
 (
t) 0

+

Figure 3.3: (a) Pictorial representation of the hoppings in the nearest-neighbours tight-
binding model. (b) Energy bands for the nearest-neighbor tight-binding model for hopping
amplitude t = 1 and setting the chemical potential µ = 0.

Since the Hamiltonian is block-diagonal in momentum space, it is sufficient to diago-
nalize one of these blocks. This can be done analytically, yielding three eigenvalues that
represent the three energy bands:

ε0(~k) = 2t− µ (3.8a)

ε±(~k) = t

(
−1±

√
3 + 2 cos

(
2~k · ~aAB

)
+ 2 cos

(
2~k · ~aAC

)
+ 2 cos

(
2~k · ~aBC

))
− µ.

(3.8b)

The energy bands along the high symmetry line shown in Fig 3.2(a) are plotted in
Fig. 3.3.ε0 is a flat band, which means that there is no energy dispersion. Its origin is in
the wave-function localization due to destructive intereference in the lattice. ε± present
two noteworthy features that can also be identified in the DFT calculations of the energy
bands of AV3Sb5: a Dirac cone at the K point and two saddle points at the M point.
These two saddle points are van Hove singularities, since at these points the density of
states has a logarithmic divergence, as shown in Appendix A.1.

The FS at the van Hove points is a regular hexagon with its vertices on the M points
of the first BZ, making nesting effects relevant at these points. Nesting happens when
a translation by a certain wavevector ~Q (the nesting vector) leaves the energy spectrum
invariant. In other words, ξ~k ≈ ξ~k+ ~Q

over a large region of the BZ [18]. A k-point along
an edge of this hexagon is related to another k-point in the opposite edge. The vector
that connects them is the same for every k-point along a certain edge, so it is the nesting
vector.

Three nesting vectors can be defined (Fig. 3.4(a)), and it can be shown that the nesting
vectors are equivalent to the M -vectors defined previously. This is proven graphically in
Fig. 3.4(b). For example, one can look at the vector ~Q1, that connects the points marked
in the figure by the yellow and blue crosses. However, the points marked by the blue and
the green crosses are equivalent because they are connected by a reciprocal lattice vector.
Consequently, the vector that connects the yellow and green crosses (the nesting vector)
must be equivalent to the vector that connects the yellow and blue crosses (the M -vector).
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Q1

Q2

Q3

(a)

g2

Q1

Q1

g1

g1
Q2

Q2

Q3

Q3

(b)

Figure 3.4: (a) Representation of the Fermi surface at the van Hove points in gray and
the three nesting vectors that connect the edges of the hexagonal FS. (b) Graphical proof
that the three nesting vectors are equivalent to the three M-vectors.

Since the regions that are connected by the nesting vectors are part of the FS, and the
only possible excitable states at low energies lie close to it, any excitation that happens
through a wavevector equal to the nesting vector will excite a significantly larger amount of
states compared to excitations with any other wavevector. Indeed, the Lindhard response
function:

χ0(~q) =
∑
~k

f(ε~k)− f(ε~k+~q
)

ε~k − ε~k+~q

, (3.9)

will diverge when ~q is one of the nesting vectors. As a result, orders where the wavevector
matches the nesting vector will be favored by nesting.

One can wonder what does this modulation mean in real space. Let us consider an
order that is modulated by ~Q1, ∆ ~Q1

. Fourier transforming to real space, we have ∆ ~Q1
=

1√
N
∑

~R e−i ~Q1·~R∆~R, where ~R is the location of the unit cell. This vector can be written
in terms of the primitive lattice vectors, ~R = n~t1 + m~t2, and recalling that ~Q1 = 1

2~g1,
~Q1 · ~R = nπ. Thus,

∆ ~Q1
=

1√
N

∑
nm

e−inπ∆n~t1+m~t2
=

1√
N

∑
m

(
∆m~t2

−∆~t1+m~t2
+∆2~t1+m~t2

− ...
)

This means that there is a phase modulation of π in the direction of ~t1, doubling the
unit cell in this direction, as represented pictorially in Fig. 3.5. Following an analogous
reasoning, the order associated to ~Q2 is modulated along ~t2 and the one associated to ~Q3

is modulated along ~t1 + ~t2.

Additionally, it is relevant to study what kind of order is favoured by the nesting effects
at the vH point that is close to the Fermi level. To do this, one should wonder what is
the electron distribution within the real space lattice when such a modulation is happening.

When diagonalizing the non-interacting Hamiltonian, the eigenvectors

16



CHAPTER 3. THE KAGOME LATTICE AND THE TIGHT-BINDING MODEL

Q = Q2

+ + + +

++

-

- - - - - -

+

+

++ -t2

t1

R=0

R=t2 R=t2

R=t1 R=2t1

R=2t1+t2

R=0

R=t2 R=t1+t2 R=2t1+t2

R=t1 R=2t1 R=0

R=t2 R=t1+t2 R=2t1+t2

R=t1 R=2t1

Q = Q1 Q = Q3

(a) (b) (c)

Figure 3.5: Representation of the modulation of the order in the direction of ~t1, ~t2 and
~t1 + ~t2, respectively. Even if the modulation along ~t1 + ~t2 appears to double the unit cell
in both directions, a new unit cell can be defined so that the doubling only occurs in one
direction.

uη(~k) = (uAη(~k), uBη(~k), uCη(~k))
T are obtained, where η is the band index and η = +1

corresponds to the band that features the upper vH point. |uα+(~k)|2 will represent the
probability of finding the electron at each of the sublattice sites α when the measured
momentum of the electron is ~k. Projecting these sublattice weights along the Fermi sur-
face one obtains Fig. 3.6(a)-(b). From these plots, one can highlight three aspects: (1)
only one sublattice site is present at each of the M -points, giving the name of pure-type
to this vH singularity; (2) the nesting vectors are always connecting two different sites;
and (3) at each of the BZ edges there is always a sublattice site that is absent. All of
this is translated into the fact that nesting effects enhance bond orders between two sites,
allowing to relate a certain bond to a certain nesting vector when sitting exactly at the
upper vH point: ~Q1 enhances bond orders between sites A and B, ~Q2 between A and C
and ~Q3 between B and C.

One can compare this to what happens at the lower vH point, achieved with a chemical
potential µ = −2. At this point the FS is exactly the same, but nesting in this case will
promote a different type of order. The sublattice weights plotted along the FS are shown
in Fig. 3.6(c)-(d). This singularity is said to be mixed-type, since there are two sites with
equal weights at each of the M -points. Along both of the edges that are connected by a
nesting vector there is always a site that is equally present, which means that site orders
will be the ones enhanced by nesting in this case.

Looking at Fig. 3.3, one might notice that the energy bands for the kagome lattice in
the tight-binding model resemble very much those of the honeycomb lattice, with which
it shares the hexagonal symmetry. Indeed, they are identical except for the absence of
the flat band. Additionally, the FS at the saddle points is as well a regular hexagon, in
which nesting effects are also present. However, the pure and mixed type flavor of the vH
points is unique to the kagome lattice, which makes it special in this sense, and which is
the source of many of the exotic properties of the kagome based materials.
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Figure 3.6: Sublattice weights projected onto the FS at the uppper (a)-(b) and lower (c)-
(d) vH points, highlighting the fact that the upper vH point is sublattice pure, so that the
Bloch states are supported exclusively on one kagome sublattice at every M-point.
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Chapter 4

Theory of the charge density wave
phase

As briefly described in Chapter 2, all the AV3Sb5 metals enter a phase referred to as charge
density wave at temperatures around 90K, which causes a breaking of the translational
symmetry of the lattice. This symmetry breaking is sometimes found to be accompanied
by two others: rotational and time-reversal, both of which are not always found to emerge
at the same temperature as the CDW. The task of theoretically modeling this puzzling
order has been undertaken multiple times, but a theory in which a CDW phase that cap-
tures all the experimental data from the microscopic point of view is yet lacking. The
purpose of this chapter is to introduce the main known features of the theory of CDW in
these compounds, along with some of the approaches taken in the literature, which will
motivate the approach taken in this project and which is laid out in the next two chapters.

4.1 The origin of charge density wave in AV3Sb5

The formation of a charge density wave order involves the formation of a condensate of
particle-hole pairs modulated by a non-zero momentum vector that causes a breaking of
the translational symmetry of the real-space lattice. The emergence of this phase can be
driven by either an electronic instability, a softening of the phonon modes, or a coupling
between both effects.

DFT calculations [19, 20] on the phonon band structure of the pristine lattice show
a soft acoustic phonon modes at the M and L points, as depicted in Fig. 4.1(a). This
can be seen by the phonon frequencies becoming imaginary (in the figure presented at
negative for easier visualization), indication of the strong lattice instability. The M -
point phonon modes mostly cause an in-plane displacement of the vanadium atoms in the
kagome layer that creates two distinct patterns shown in Fig. 4.1(b)-(c): Star of David
(SoD) and trihexagonal (TrH), also referred to as inverse Star of David. Both of them
cause a doubling of the unit cell in the two in plane directions. The optimized SoD and
TrH structures are found to be stable (Fig. 4.1(b)-(c)) and reduce the total energy. In all
three compounds the TrH structure is found to have lower energy, as it can be seen from
Fig. 4.1(d). The doubling in the unit cell in the out-of-plane direction is given by the
phonon mode at the L-point. A π phase shift between TrH layers is found to be the most
favorable [20]. Additionally to the discussed phonon modes, [21] also finds an instability
in the U -line that connects the M and L points, which would match the 2× 2× 4 unit
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(b)

(d)(a) (b) (c)

Figure 4.1: Crystal structures and the corresponding phonon dispersions for the pristine
(a), Star of David (b), and Inverse Star of David lattices. (d) Total energy profiles of the
three kagome metals, where spin-orbit coupling has been considered. All figures from Ref.
[19].

cell modulation reported in [2]. In all three instabilities the main displacements occur on
the vanadium atoms in the kagome layer, and all of them have the same in-plane vector
modulation. This suggest that the interaction with the electronic degrees of freedom might
play an important role in the instability.

In fact, the charge density wave phase is commonly regarded as an extension of the
Peierls instability: in a one-dimensional electron gas, nesting of the Fermi surface causes a
logarithmic divergence in the bare electronic susceptibility, which causes a redistribution
of the charge, making the lattice unstable. Hence, an acoustic phonon mode becomes
unstable at a momentum equal to the nesting vector, which is exclusively driven by the
electronic instability. A derivation of the Peierls instability can be found in Appendix A.4.
As discussed in the previous chapter, the Fermi surface structure of the kagome layer at the
van Hove singularity prompt the appearance of nesting effects along the M -vectors, which
coincides with the vectors along which the charge orders. Indeed, the static particle-hole
susceptibility

χ0( ~Q) = − 1

β

∑
n

∫
~k
G0(~k; iωn)G0(~k + ~Q; iωn) , (4.1)

is shown to have a double logarithmic divergence, both from the van Hove singularity
and from Fermi surface nesting, when considering a saddle-point-like dispersion relation
in the vicinity of the M -points [22]. In (5.29), G0(~k; iωn) is the bare Green function,∫
~k
=
∫
d2k/(2π)2, and

∑
n denotes the sum over the fermionic Matsubara frequencies

ωn = (2n+ 1)π/β. This is a promising reasoning for the instability being induced by the
electronic structure. However, direct evidence is still lacking.

4.2 Patch model and Ginzburg-Landau free energy
Given that it is expected that the fermions around these saddle points will dominate the
response, patch models have been used several times to study the electronic instabilities
of the kagome plane [5, 23, 24]. They assume that the collective electronic behaviour of
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the system is determined by the saddle points at the three M -points and the interactions
between them. A patch around the Γ point can also be included in this model [23], which
comes from the antimony pz orbital, but for the present discussion it will be omitted.
In this context, the non interaction Hamiltonian is taken to be

H0 =
∑
α

∑
|~q|<Λ

c†α~q (εα(~q)− µ) cα~q , (4.2)

where εα(~q) are the saddle-point-like dispersion relations at the M -points at the upper
van Hove singularity. Since the tight-binding model in Section 3.2 presented saddle points
at the M -point, said dispersion relation can be taken to be the Taylor expansion of ε+
(the upper vH point) (4.3) around the three M -points:

ε+( ~Q1 + ~k) ≈ t

2

(
q2x −

√
3qxqy

)
≡ ε1(~q) (4.3a)

ε+( ~Q2 + ~k) ≈ t

4

(
−q2x + 3q2y

)
≡ ε2(~q) (4.3b)

ε+( ~Q3 + ~k) ≈ t

2

(
q2x +

√
3qxqy

)
≡ ε3(~q) , (4.3c)

where ~q is a small momentum measured from the corresponding M -point with a cutoff
radius Λ. 1. The annihilation and creation operators have two relevant degrees of freedom
here, in addition to the spin: the sublattice index α and the small momentum ~q measured
from the corresponding M -point of the patch. Given the pure character of the vH singu-
larity, a one-to-one correspondence between the sublattice sites and the patches around
the M -points can be established, allowing for the combination of both in the sublattice
index α.

Within this framework, all the possible electron-electron interactions between these
patches are considered, so that the interaction Hamiltonian is [5]

Hint =
1

2N
∑

|q1|,...,|q4|<Λ

[∑
α 6=β

(g1c
†
αq1σc

†
βq2σ′cαq3σ′cβq4σ + g2c

†
αq1σc

†
βq2σ′cβq3σ′cαq4σ+

+ g3c
†
αq1σc

†
αq2σ′cβq3σ′cβq4σ) +

∑
α

g4c
†
αq1σc

†
αq2σ′cαq3σ′cαq4σ

]
.

(4.4)
The listed interactions correspond to interpatch exchange (g1), interpatch (g2) and

intrapatch (g4) density-density, and umklapp (g3) scatterings. A graphical representation
of the considered BZ and the interaction between patches is shown in Fig. 4.2.

Since the charge density wave phase is a particle-hole condensate that causes the
redistribution of the charge along the M -vectors, the order parameters of this phase will
have three components α = 1, 2, 3, associated to ~Q1, ~Q2 and ~Q3, respectively. These OP
will be in general complex, so that one can define two sets of OP [5]:

Nα =
GrC

2N
∑
~q

〈
c†β~q cγ~q + c†γ~q cβ~q

〉
, (4.5)

1In [5] a more general version of the dispersion relations is taken, in which perfect nesting is not assumed,
and the shape of the saddle point is determined by two parameters. Nevertheless, the following discussion
does not rely on this perfect nesting or the lack thereof, so the expressions in (4.3) will be used.

21



CHAPTER 4. THEORY OF THE CHARGE DENSITY WAVE PHASE

(a) (b)

Figure 4.2: Pictorial representation of the first BZ (a), with the three distinct M -points
and the nesting vectors, and of the interactions between patches (b) as defined in (4.4).
Notice that their definition of the kagome lattice corresponds to a reflection across the y
axis, followed by a 30◦ clockwise rotation respect to the definitions shown in Chapter 3.
Figure from Ref. [5]

with α 6= β 6= γ, corresponding to what is referred to as a real charge density wave phase
(rCDW), and

φα =
GiC

2iN
∑
~q

〈
c†β~q cγ~q − c†γ~q cβ~q

〉
, (4.6)

also with α 6= β 6= γ and corresponding to an imaginary CDW (iCDW). GrC and GiC are
the interaction stregths corresponding to the real and imaginary CDW, respectively, and
N is the number of unit cells.

Let us analyze these order parameters and what their physical meaning is. Both order
parameters are condensates of a particle and a hole that live in two different patches.
Consequently, the associated order in real-space is bonds. Recalling our tight-binding
Hamiltonian from Section 3.2, the bond density between nearest-neighbours can be defined
as

〈δραβ〉 = Re
[〈

c†~Rα
c~R′β + c†~Rβ

c~R′α

〉]
(4.7)

Given the one-to-one correspondence between lattice sites and momentum patches, the
fermion located at the lattice site α at the unit cell ~R will be related to the fermions with
momentum ~q near ~Qα as

c~Rα =
1√
N

∑
|~q|<Λ

ei
~Qα·~Rcα~q , (4.8)

so that

〈δραβ〉 =
1

N
∑
|~q|<Λ

Re
[
e−i( ~Qα·~R− ~Qβ ·~R′)

〈
c†α~q cβ~q + c†~Rβ

c~R′α

〉]
=

1

GcR
cos
(
~Qα · ~R− ~Qβ · ~R′

)
Nγ .

(4.9)
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On the other hand, as shown in [5], the expectation value of the current on nearest-
neighbours bonds is

〈jαβ〉 = iet
〈
c†~Rα

c~R′β − c†~R′β
c~Rα

〉
=

iet

N
e−i( ~Qα·~R− ~Qβ ·~R′)

∑
|~q|<Λ

〈
c†α~q cβ~q − c†β~q cα~q

〉
= − 2et

GiC
e−i( ~Qα·~R− ~Qβ ·~R′)φγ ,

(4.10)

where t is the tight-binding hopping.

Therefore, while the order parameter of the rCDW phase (which is even under time-
reversal symmetry) is related to the bond-density modulation, the OP of the iCDW (time-
reversal odd) is associated to real-space bond currents. The question now is which con-
figurations of these bond densities and currents are preferred on the CDW phase. To
answer it, we can analyze the free energy in the mean field approach. For that purpose,
the interaction Hamiltonian, which has a quartic dependence on the fermionic operators,
needs to be decoupled. The approach taken is to perform a Hubbard-Stratonovich (HS)
transformation within the path integral formalism. In a HS transformation, the decou-
pling can be done in different channels, depending on the phase of matter that one wishes
to explore. Given that here we are focusing on the CDW phase, we want to write (4.4) in
terms of the bilinears that would provide the order parameters (4.5) and (4.6) after the
mean-field treatement. Consequently, upon defining the bilinears

ρrC,α =
1

2N
∑
~q

(
c̄β~qcγ~q + c̄γ~qcβ~q

)
, ρiC,α =

1

2iN
∑
~q

(
c̄β~qcγ~q − c̄γ~qcβ~q

)
, (4.11)

the interaction Hamiltonian can be written as Hint = HrC +HiC with [5]:

HrC = −N
2
GrC

∑
α

ρrC,αρrC,α , HiC = −N
2
GiC

∑
α

ρiC,αρiC,α . (4.12)

It can be obtained [5] that the interaction strengths of the real and imaginary CDW, respec-
tively, are GrC = −2g1+g2−g3 and GiC = −2g1+g2+g3. Notice that the only difference
between them is the sign of g3, which is the only interaction that transfers charge between
patches. Were this interaction to not exist, the two order parameters would be degenerate.

Having written the Hamiltonian in this form, the HS transformation can be performed
in both channels (real and imaginary), which allows integrating out the electrons. Since
this process (for a different model) will be the focus of the next chapter, here I will just
state the results that can be obtained in the present case. Nonetheless, the detailed deriva-
tion can be found in Appendix B.

The effective free energy is found to be

FE [N,φ] = − 1

β
Tr
(
log
(
−G−1

))
+

N
2GrC

∑
α

N2
α +

N
2GiC

∑
α

φ2
α , (4.13)

where full Green function G is defined such that

G−1 =

iωn − ε1(~q)
N3−iφ3

2
N2+iφ2

2
N3+iφ3

2 iωn − ε2(~q)
N1−iφ1

2
N2−iφ2

2
N1+iφ1

2 iωn − ε3(~q)

 . (4.14)
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Said expression can be expanded perturbatively to obtain

fCDW =

(
1

2GrC
+K1

)∑
α

N2
α +

(
1

2GiC
+K1

)∑
α

φ2
α

+K2 (N1N2N3 −N1φ2φ3 −N2φ1φ3 −N3φ1φ2)

+K4

(∑
α

(N2
α + φ2

α)
)2

+ (K3 − 2K4)
∑
α<β

(
N2

α + φ2
α

)2 (
N2

β + φ2
β

)2
=frCDW + fiCDW + fr−iCDW ,

(4.15)

where the coefficients Ki are only dependent on the temperature and the chemical poten-
tial, and whose expressions can be found in Appendix C.6.

Let us start by assuming that the only OP present is the real one. Thus, the free
energy is

frCDW = rN
∑
α

N2
α +K2N1N2N3 +K4

(∑
α

N2
α

)2
+ K̃3

∑
α<β

N2
αN

2
β , (4.16)

calling rN =
(

1
2GrC

+K1

)
and K̃3 = (K3 − 2K4). The presence of the trilinear term

means that there always exist a configuration of Nα in which K2N1N2N3 < 0 regardless of
the sign of K2. Thus, this term always lowers the energy of the configuration in which all
three components of N are present. If only one component is present, the trilinear term
will vanish, being less favorable. The possible configurations that the order parameters
can take are obtained by finding the global minima of (4.16). It can be found that the
physically relevant solutions of the mean field theory belong to the 3Q± or the 1Q phases
[5]. Let us minimize the energy for the allowed cases.

Starting from the case in which only one component is present, the absence of the
trilinear term provides a free energy in the usual Ginzburg-Landau form:

(frCDW )1Q = rNN2 +K4N
4 . (4.17)

For the energy to be bounded, K4 > 0. Taking the temperature dependence of the second
order term to be rN = αN (T − TN ) with αN > 0, the minimization of the free energy
respect to N provides that for T < TN

N0 = ±

√
−αN (T − TN )

2K4
, (4.18)

so that the free energy is

(frCDW )1Q = −
α2
N (T − TN )2

4K4
, (4.19)

which crosses zero at T = TN . As discussed in the previous chapter, an order that is mod-
ulated by one of the M -vectors will have a phase modulation of π along the corresponding
primitive vector, which will break both the translational and rotational symmetry of the
lattice. The new unit cell becomes a 2 × 1 unit cell, as shown in Fig. 4.3, giving it the
name stripe configuration.
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Figure 4.3: Pictorial representation of the 3Q± and 1Q configurations, along with the
phase diagram for the rCDW free energy. The corresponding new unit cells are shaded in
gray. Notice that the stripe phase breaks the rotational symmetry of the lattice to two-fold
and the, and the two 3Q phases correspond to a π phase shift of one of the components.

Conversely, let us consider the configuration (which will be referred to as 3Q) where
all three components are present and have equal magnitude |Nα| = N . The trilinear term
in the free energy is now present, so that

(frCDW )3Q = 3αN (T − TN )N2 + sgn(N1N2N3)K2N
3 + 3(3K4 + K̃3)N

4 . (4.20)

For the energy to be bounded in this case, u = 3K4 + K̃3 > 0 is required. By minimizing
the free energy, one can obtain

N0 =
K
8u

, with K = −sgn(N1N2N3)K2 +
√
K2

2 − 32uαN (T − TN ) . (4.21)

Since N = |Nα| > 0 and u > 0, then K > 0. Therefore, we obtain that if K2 > 0,
sgn(N1N2N3) < 0 and vice versa, meaning that, as previously argued, the system will
always choose a configuration such that the trilinear term is negative. Substituting in the
expression for the free energy,

(frCDW )3Q =
K2

2048u3
(48uαN (T − TN )− |K2|K) , (4.22)

which crosses zero at

T 3Q =
K2

2

36αNu
+ TN . (4.23)

Consequently, as long as the trilinear term is present (K2 6= 0), the system will have a
preference for entering the 3Q phase over the stripe phase. A modulation along the three
M -vectors will generate a real-space lattice in which the translational symmetry is bro-
ken along both directions in the plane, but the six-fold rotational symmetry is preserved.
However, depending on the sign of K2, two different 3Q configurations are possible: Star
of David for K2 > 0 and trihexagonal (or inverse Star of David) for K2 < 0. Both of the
3Q patterns are depicted in Fig. 4.3.
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At the transition temperature (when T = T 3Q), the order parameter experiences a
jump which is proportional to the trilinear coefficient

∆N =
K2

6u
, (4.24)

making the phase transition of first order, which matches experiments as discussed in
Chapter 2.

This discussion have established that the leading instability corresponds to the 3Q
phase. However, when K̃3 (term only present in the 3Q phase) is positive, it penalizes
the free energy. Accordingly, in the presence of the positive quartic term the stripe phase
could appear as a subleading instability that onsets at a temperature T 1Q < T 3Q:

T 1Q = − K2
2

8αNuK2
3

[√
K4(4K4 + K̃3)3) +K4(8K4 + 3K̃3)

]
+ TN (4.25)

A phase diagram for the case in which K̃3 > 0 is presented in Fig. 4.3. Entering a phase
that lowers the rotational-symmetry from six to two-fold at a temperature T 1Q < T 3Q

would actually agree reported experimental data [25].

Let us move on to the the part of the free energy corresponding exclusively to the
iCDW. From (4.15),

fiCDW =rφ
∑
α

φ2
α +K4

(∑
α

(φ2
α)
)2

+ K̃3

∑
α<β

φ2
αφ

2
β , (4.26)

with rφ = 1
2GiC

+K1. Note that there is no trilinear term, since time reversal symmetry
forbids it. Starting again with the 1Q configuration, and assuming rφ = αφ(T − Tα) with
αφ > 0, the free energy will simply be

(fiCDW )1Q = αφ(T − Tα)φ
2 +K4φ

4 . (4.27)

For the energy to be bounded K4 > 0, and the minimization of (fiCDW )1Q is analogous to
the 1Q configuration of the rCDW: the free energy crosses zero at T = Tα, and in terms
of the order parameter φ0 = ±

√
−αφ(T−TN )

2K4
, the free energy becomes

(fiCDW )1Q = −
α2
φ(T − Tφ)

2

4K4
. (4.28)

The associated real space bond current pattern in the 1Q configuration is shown in Fig.
4.4.

For the 3Q configuration, with |φα| = φ,

(fiCDW )3Q = 3αφ(T − Tα)φ
2 + 3(3K4 + K̃3)φ

4 . (4.29)

Also in this case 3K4 + K̃3 needs to be positive for the energy to be bounded. After

its minimization one finds that the order parameter is φ0 = ±
√
− αφ(T−Tφ)

2(3K4+K̃3)
and the free

energy can be written as

(fiCDW )3Q = −
α2
φ(T − Tφ)

2

4K4 +
4
3K̃3

, (4.30)
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K3
~

3Q 1Q

Figure 4.4: Pictorial representation of the 3Q and 1Q configurations, along with the phase
diagram for the iCDW free energy. In gray the new 2× 2 and 2× 1 unit cells are shaded,
respectively.

which also crosses zero at T = Tφ. The real-space bond current pattern for the 3Q phase
is depicted in Fig. 4.4.

Comparing the free energy of both phases shows that the sign of K̃3 establishes which
configuration is preferred: the 3Q phase is favorable for K̃3 < 0 while the 1Q is for K̃3 > 0.
When both the real and imaginary CDW order parameters are present, they are coupled
by fr−iCDW . The treatment of the free energy becomes too complex to perform analyti-
cally, but numerical calculations have been performed, also taking into account the orbital
degree of freedom [26].
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Chapter 5

Mean-field theory and
broken-symmetry solutions

In Chapter 4, we saw how patch models can be used to model the charge density wave
phase, where real and imaginary order parameters were considered. However, these OP
would be degenerate unless their interaction strengths were different, relying in the inter-
action g3 to break said degeneracy. It is not apparent, though, the origin of this interaction
from a more general model that starts with the interactions between fermions in real-space.
Consequently, it is our goal to study if indeed the real and imaginary order parameters
are degenerate, and how the analysis changes when starting from the simplest form of the
Hubbard model in the kagome lattice.

5.1 Model setup and decoupling of the interactions

For the non-interacting Hamiltonian, we will make use of the nearest-neighbour Hamilto-
nian developed in Section 3.2. To account for the interactions between the electrons, we
will consider an extended Hubbard model, where the on-site repulsion for the electrons on
the same lattice site are parametrized by U and the nearest-neighbours repulsion by V . If
the interaction strengths are assumed to be independent on the lattice sites the interaction
Hamiltonian in real space is:

Hint = H ′ +H ′′ (5.1)

with
H ′ = U

∑
~Rα

∑
σ 6=σ′

c†~Rασ
c~Rασc

†
~Rασ′c~Rασ′ (5.2)

H ′′ =
V

2

∑
~Rσσ′

∑
α6=β

(
c†~Rσα

c~Rσαc
†
~Rσ′β

c~Rσ′β + c†~Rσα
c~Rσαc

†
~R−2~aαββσ′c~R−2~aαββσ′

)
, (5.3)

using the same notation as in Section 3.2. The factor 1
2 in H ′′ has been added to avoid

double counting. The interactions considered are drawn in Fig. 5.1.

Fourier transforming, the Hamiltonians become

H ′ =
U

N
∑
σ 6=σ′

∑
~k~k′~q

∑
α

c†~k′ασ
c~k′+~qασ

c†~k+~qασ′c~kασ′ , (5.4)
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A

B

C
UV

Figure 5.1: Pictorial representation of the nearest-neighbour Hubbard model in the kagome
lattice.

and
H ′′ =

V

2N
∑
σσ′

∑
~k~k′~q

∑
α 6=β

(
1 + e−2i~q·~aβα

)
c†~k′βσ

c~k′+~qβσ
c†~k+~qασ′c~kασ′ . (5.5)

Here I have used c~Rα = 1√
N
∑

~k
ei
~k·~Rc~kα in order to Fourier transform the fermionic op-

erators. Nevertheless, we have the gauge freedom to use instead c~Rα = 1√
N
∑

~k
ei
~k·(~R+~dα)c̃~kα,

which provides the real prefactor cos(~q · ~aβα) in H ′′. While this initially appears to be a
better option, the fact that the Fourier-transformed fields are not periodic (e.g. c̃~k+~g1α

=

1√
N
∑

~R e−i(~k+~g1)·(~R+~dα)c~Rα = e−i~g1·~dα c̃~kα while c~k+~g1α
= 1√

N
∑

~R e−i(~k+~g1)·~Rc~Rα = c~kα)
carries complications further on.

For the study of the interactions, we will work within the path integral formalism, in
which, arising from the parallelism to classical mechanics, the partition function of our
system can be written as

Z =

∫
D[c̄, c]e−S[c̄,c] . (5.6)

The action is defined as

S[c̄, c] =

∫ β

0
dτ

∑
α~q

c̄
α~k
∂τ cα~q +

∑
αβ~k

c̄~kαhαβ(
~k)c~kβ +Hint

 , (5.7)

where hαβ(~k) is the tight-binding Hamiltonian described in (3.7), D[c̄, c] ≡
∏

λ dc̄λdcλ
is the shorthand notation for the measure of the fermionic operators c†, c, and inside the
path integral these operators have been replaced by their associated anticommuting Grass-
man numbers c̄, c.

The principal aim of this project is to obtain the order parameters favored in the
ground state of the charge density wave phase. For this purpose, a Hubbard-Stratonovich
(HS) transformation will be performed, which will provide an effective action that can
be treated within mean-field theory. As briefly mentioned in the previous chapter, the
channel in which to perform the HS transformation is dictated by the physical system
we wish to describe. Since we want to study the CDW phase, the meaningful channel
is one that involves particle-hole bilinears between different sublattice sites. Therefore,
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applying the anti-commutation relations of the fermionic operators {c†~k′β, c~kα} = δ~k~k′δαβ

and {c~k′β, c~kα} = 0, the Hamiltonian can be rewriten as

H ′′ =− V

2N
∑
σσ′

∑
~k~k′~q

∑
α 6=β

(
1 + e−2i(~k′−~k)·~aβα

)
c†~k′βσ

c~k′+~qασ′c
†
~k+~qασ′c~kβσ

+
V

N
∑
σσ′

∑
~k~q

∑
α

c†~kασ′c~kασ′ .

(5.8)

The last term in the Hamiltonian, that arises from the anticonmutation of the fields, can
be simply included with the chemical potential.

However, before continuing with the decoupling of the interaction, it is worth paying
greater attention to the two interactions that are part of our Hubbard model, and how
they affect bond orders.

5.1.1 On site vs. nearest neighbours interactions

The kagome Hubbard model has been extensively discussed in the literature [27, 24, 28],
including the discussion of how the two interactions can promote different instabilities. An
essential factor of said discussion is a mechanism called sublattice interference, which im-
pacts the nesting of the Fermi surface, affecting the possible Fermi surface instabilities [28].

Let us start by looking at the on site interaction (U) for an electron filling such
that we are at the upper vH point. Going to band space, it is enough to consider
the band that is closest to the Fermi level. Therefore, we can redefine the interaction
Ũ = U

∑
αη u

∗
αη(

~k′)uαη(~k
′ + ~q)u∗αη(

~k′ + ~q)uαη(~k
′). This interaction vertex is diagonal in

the sublattice index. However, if we are to recall the sublattice distribution along the
Fermi surface at the upper vH point (Fig. 3.6(a)-(b)), the nesting vectors at the M -points
only connect different sublattice sites. As a result, the interaction vertex will be small, so
that nesting does not enhance the particle-hole pairing for the on-site interaction, which
brings the name sublattice interference to this effect. On the other hand, as the nearest-
neighbour interactions Ṽ = V

∑
αβη u

∗
βη(

~k′)uβη(~k
′ + ~q)u∗αη(

~k′ + ~q)uαη(~k
′) are not diagonal

in the sublattice index, the sublattice interference effects are reduced, reestablishing the
nesting enhancement given by the FS geometry.

In turn, we can wonder what would happen if we were to be at the lower vH point,
which is of a mixed type (Fig. 3.6(c)-(d)). In this case, the nesting vectors connect
points in which there is same-site contributions. Hence, the on-site interaction will not
be as affected by the sublattice interference mechanism, making the interplay between
both interaction vertices more complex. Furthermore, the opposite case can be found, for
instance, in the honeycomb lattice. As previously mentioned, while possessing the same
FS geometry, the sublattice weight distribution along said surface is homogeneous. Hence,
sublattice interference effects do not take place at all, making on-site interactions the ones
that enhance the pairing, as opposed to long-range interactions.

Apart from the effect of sublattice interference on the nesting effects, one can wonder
if these interactions can promote the charge bond orders. For illustrative purposes, let us
write the usual (real-space) on-site Hubbard interaction in terms of the charge and spin
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densities:

H ′ =
U

4

∑
i

(ni↑ + ni↓)
2 − U

4

∑
i

(ni↑ − ni↓)
2

The Hubbard model is frequently presented in the context of magnetism, where the HS
transformation is done in the spin density channel. The fact that the interaction is attrac-
tive means that the RPA susceptibility exhibits the behaviour χRPA ≈ (U−1−χ0)

−1. Both
U and χ0 are positive magnitudes, so that there will be a point in which they are equal,
making the susceptibility diverge, and thus, the system is found to be unstable. However,
if one where to do an analogous decoupling in the charge density channel, the repulsive
nature of the interaction for this case means that the behaviour of the RPA susceptibility
will instead be χRPA ≈ (U−1 + χ0)

−1. Therefore, U will not cause an instability in the
charge density channel.

In the present case, from looking at (5.4) and (5.15), we can deduce that the on-site
U will not cause an instability in the bond channel.

It is for this reasoning that in the model presented in this work the on-site interactions
will be omitted and only the nearest-neighbours interactions will be treated. This allows
us to have the sum over the spins to be implicit in the remaining of the study, reducing
greatly the calculations.

5.1.2 Decoupling of the interactions

Even if we have already established that the decoupling will be done in the bond channel,
there is still different choices one can make. Now, the process of starting from a funda-
mental interaction in real space and only subsequently going to momentum space, means
having a momentum-dependent factor in front of the creation/annihilation operators in
H ′′. Determining the optimal way of dealing with this factor proved to be a greater chal-
lenge than initially anticipated.

One possibility is to include it in the definition of a momentum-dependent interaction
V αβ(~k,~k′) = V

(
1 + e2i(

~k′−~k)·~aαβ

)
. However, this would imply the definition of bilinears

of the form nαβ
~k,~q

= c†~k+~qα
c~kβ , and having bilinears with four degrees of freedom proved to

become burdensome. More importantly, doing the HS transformation with a non-scalar
interaction was very intricate and introduces issues when it came to inverting the matrix
later on in the process. The alternative is including it in the definition of the bilinears.
However, even in that case, we had to deal with the restriction α 6= β in the sum over the
sites. Initially we thought of dealing with it by including said restriction in the definition
of the interaction by defining the interaction matrix Vαβ = V (1− δαβ). This idea was also
rejected since this matrix is singular, so that the HS was not allowed to be performed.
This can easily be solved, though, by including the factor (1− δαβ) in the definition of the
bilinears and having the interaction strength to just be a constant.

An initial guess for including the momentum dependent factor in the definition of the
bilinears, was to write it in terms of sines and cosines:
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(
1 + e−2i(~k′−~k)·~aβα

)
= 2e−i~k′·~aβα cos (~k′ · ~aβα)e−i~k·~aαβ cos (~k · ~aαβ)

−2e−i~k′·~aβα sin (~k′ · ~aβα)e−i~k·~aαβ sin (~k · ~aαβ) ,

which motivated the definition of the complex bilinears:

nαβ
~q =(1− δαβ)

1

N
∑
~k

e−i~k·~aαβ cos (~k · ~aαβ)c†~k+~qα
c~kβ , (5.9)

mαβ
~q =(1− δαβ)

1

N
∑
~k

e−i~k·~aαβ sin (~k · ~aαβ)c†~k+~qα
c~kβ , (5.10)

As a result, the Hamiltonian could be written as

H ′′ = −VN
∑
~q

∑
αβ

[
(nαβ

~q )†nαβ
~q + (mαβ

~q )†mαβ
~q

]
. (5.11)

Even if we succeeded in the decoupling with this definition of the bilinears, and we
could obtain an expression for the perturbative expansion of the free energy, we found that
the order parameters associated to the bilinears were not independent. With the objective
of trying to find a set of bilinears that were independent, we tried a different approach,
which was to define the complex bilinears:

nαβ
~q =

1

N
(1− δαβ)

∑
~k

c†~k+~qα
c~kβ , mαβ

~q =
1

N
(1− δαβ)

∑
~k

e−2i~k·~aαβc†~k+~qα
c~kβ , (5.12)

Again, the decoupling process was successful but the results were not easy to interpret
since the fields were still coupled and there was not a clear distinction between real and
imaginary order parameters. Therefore, the final approach was to divide each of the
complex bilinears defined in (5.12) into their real and imaginary parts. Thus, taking
nαβ
~q = nαβ

~qR + nαβ
~qI and mαβ

~q = mαβ
~qR +mαβ

~qI , the new set of bilinears is:

nαβ
~qR =

1

2N
(1− δαβ)

∑
~k

(
c†~k+~qα

c~kβ + c†~kβ
c~k+~qα

)
= (nαβ

~qR)
† (5.13a)

nαβ
~qI =

1

2N
(1− δαβ)

∑
~k

(
c†~k+~qα

c~kβ − c†~kβ
c~k+~qα

)
= −(nαβ

~qI )
† (5.13b)

mαβ
~qR =

1

2N
(1− δαβ)

∑
~k

(
e−2i~k·~aαβc†~k+~qα

c~kβ + e−2i~k·~aβαc†~kβ
c~k+~qα

)
= (mαβ

~qR)
† (5.13c)

mαβ
~qI =

1

2N
(1− δαβ)

∑
~k

(
e−2i~k·~aαβc†~k+~qα

c~kβ − e−2i~k·~aβαc†~kβ
c~k+~qα

)
= −(mαβ

~qI )
† (5.13d)

The Hamiltonian in (5.15) can be rewritten in terms of these bilinears (as shown in
Appendix C.1), yielding

H ′′ = −VN
2

∑
αβ

∑
~q

[
(nαβ

~qR)
†nαβ

~qR + (nαβ
~qI )

†nαβ
~qI + (mαβ

~qR)
†mαβ

~qR + (mαβ
~qI )

†mαβ
~qI

]
. (5.14)
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5.1.3 Hubbard-Stratonovich transformation

Now, this Hamiltonian is formulated in the “optimal” form to perform the HS transforma-
tion in all four channels. Following the standard procedure applied to repulsive interac-
tions, for each of the channels that we wish to decouple in, we will introduce a white noise
field γαβ~qi with the action Sγi = − N

2V

∫ β
0 dτ

∑
~qαβ γ̄

αβ
~qi γ

αβ
~qi

1. Since the correlation functions
of these white-noise fields are just a constant, multiplying the original partition function
by Zγi =

∫
D[γi]e

−S[γi] will just account for a shift in the free energy of our system 2 ,
leaving its physical properties unchanged. In turn, entangling the two functional integrals
will allow for the definition of an effective action that decouples the interactions. Indeed,
after introducing a set of variables that are a combination of the white-noise fields and
the physical fields (5.13), the quadratic terms in the bilinears are cancelled. These new
set of variables

(
Nαβ

~qR , Nαβ
~qI ,Mαβ

~qR and Mαβ
~qI

)
are often referred to as Weiss fields , and the

decoupled interaction Hamiltonian becomes

H̃ ′′ = −N
∑
~qµ

(
Nαβ

~qRnαβ
~qR −Nαβ

~qI nαβ
~qI +Mαβ

~qRmαβ
~qR −Mαβ

~qI mαβ
~qI

)
+

N
2V

∑
~qµ

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)
. (5.15)

A detailed derivation of this procedure can be found in Appendix C.1.
Written in this way, it the spirit of the HS transformation is apparent: under the path

integral, the interactions can be rewritten in terms of electrons moving in the fluctuating
Weiss fields, and these fluctuations are the ones that mediate the interactions between
the electrons in this new picture. When the physical fields are prone to enter a broken-
symmetry state, the distribution function of the Weiss fields becomes concentrated around
a non-zero value, so that they can be identified with the order parameters of the broken-
symmetry phase.

Taking into account the expressions of the bilinears, this Hamiltonian is now quadratic
in the fermionic operators c†, c, so that the action (5.7) can be written as

S =

∫ β

0
dτ
∑
αβ

[∑
~k~k′

c̄~kα

(
∂τδ~k~k′δαβ +Hαβ(~k,~k

′)[NR, NI ,MR,MI ]

)
c~k′β

+
N
2V

∑
~qµ

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)
, (5.16)

where we have defined the effective Hamiltonian

Hαβ(~k,~k
′)[NR, NI ,MR,MI ] =hαβ(~k)δ~k~k′ −

1

2
(1− δαβ)

[
Nαβ

~k−~k′R
+Nβα

~k′−~kR
−Nαβ

~k−~k′I

+Nβα
~k′−~kI

+
(
Mαβ

~k−~k′R
−Mαβ

~k−~k′I

)
e−2i~k′·~aαβ

+
(
Mβα

~k′−~kR
+Mβα

~k′−~kI

)
e−2i~k·~aαβ

]
. (5.17)

Consequently, the electronic part of the partition function (5.6) has been reduced to a
Gaussian integral, which can be analitically solved, a step which is commonly referred to
as integrating-out the fermions. Essentially,

1Here and in the following, I will use the notation ∆̄αβ
~qi to refer to the operator (∆αβ

~qi )
† inside the action.

2F = −T ln(Z) = −T ln
(
ZZγi

1
Zγi

)
= −T ln(ZZγi) + T ln(Zγi).
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Z ≡
∫

D[NR, NI ,MR,MI ]

∫
D[c, c̄]e−S[c,c̄,NR,NI ,MR,MI ]

=

∫
D[NR, NI ,MR,MI ]e

−SE [NR,NI ,MR,MI ], (5.18)

where

SE [NR, NI ,MR,MI ] =− Tr (log (∂τ1+H[NR, NI ,MR,MI ]))

+
N
2V

∫ β

0
dτ
∑
~q

∑
αβ

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)
,

(5.19)

is the effective action of the Weiss fields.

5.2 Mean-field approach
The low-energy physics of the system can be extracted by performing a stationary phase
analysis, which will allow the exploration of the broken-symmetry solutions. This is done
by seeking the solutions of the saddle-point equations, which for NR take the form

∂SE [NR, NI ,MR,MI ]

∂NR

∣∣∣∣∣
NR=N

(0)
R

= 0, (5.20)

where N
(0)
R constitutes the value at the saddle point. One can define analogous saddle-

point equations for the rest of the fields, and they are the foundation of the mean-field
approach: if the free energy (proportional to the action) develops a minimum around a
non-zero value of the saddle-point solutions, the system enters a spontaneously broken-
symmetry state. These mean-field solutions constitute then the order parameters of the
broken symmetry state, and they are the starting point around which to compute the
fluctuations. Certainly, this approach will be consistent only as long as the fluctuations
are not strong enough to destroy the ordered state.

It can be shown (refer to Appendix C.2) that:

∂SE

∂Nαβ
~qR

∣∣∣∣∣
NR=N

(0)
R

=N
〈
nαβ
~qR

〉
+

N
V
N

αβ(0)
~qR = 0 (5.21a)

⇒ N
αβ(0)
~qR =

V

2N
∑
~k

〈
c†~k+~qα

c~kβ +H.c.
〉
= (N

αβ(0)
~qI )†, (5.21b)

and for the rest of the fields:

N
αβ(0)
~qI =

V

2N
∑
~k

〈
c†~k+~qα

c~kβ −H.c.
〉
= −(N

αβ(0)
~qI )† (5.21c)

M
αβ(0)
~qR =

V

2N
∑
~k

〈
e−2i~k·~aαβc†~k+~qα

c~kβ +H.c.
〉
= (M

αβ(0)
~qR )† (5.21d)

M
αβ(0)
~qI =

V

2N
∑
~k

〈
e−2i~k·~aαβc†~k+~qα

c~kβ −H.c.
〉
= −(M

αβ(0)
~qI )† (5.21e)
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Considering static configurations N
(0)
R(I)(τ) = N

(0)
R(I), M

(0)
R(I)(τ) = M

(0)
R(I), the effective

action can be written in terms of the effective mean-field HamiltonianHMF [N
(0)
R , N

(0)
I ,M

(0)
R M

(0)
I ]

and the fermionic Matsubara frequencies iωn, yielding

SMF
E =− Tr

(
log
(
−iωn1+HMF [N

(0)
R , N

(0)
I ,M

(0)
R M

(0)
I ]
))

+
Nβ

2V

∑
~q

∑
αβ

((
N

αβ(0)
~qR

)2 − (Nαβ(0)
~qI

)2
+
(
M

αβ(0)
~qR

)2 − (Mαβ(0)
~qI

)2)
. (5.22)

We can identify the factor inside the logarithm
(
iωn1−HMF (~k,~k

′)
)
= G−1(~k,~k′; iωn)

as the inverse of the propagator of the full system, and it can be split into the sum of
two terms: the inverse of the free Green function G−1

0 (~k; iωn) =
(
iωn1− h(~k)

)
, and the

scattering potential V. The matrix elements of this last term are

Vαβ(~k,~k′) =
1

2
(1− δαβ)

[
2
(
N

βα(0)
~k′−~kR

+N
βα(0)
~k′−~kI

)
+ e−2i~k′·~aαβ

(
M

αβ(0)
~k−~k′R

−M
αβ(0)
~k−~k′I

)
+ e−2i~k·~aαβ

(
M

βα(0)
~k′−~kR

+M
βα(0)
~k′−~kI

) ]
. (5.23)

Here we have used that, for an arbitrary ~q, Nβα(0)
−~qR = N

αβ(0)
~qR and N

βα(0)
−~qI = −N

αβ(0)
~qI , as

it is proved in Appendix C.3. In the following, k will denote the four-component momen-
tum (~k, iωn), and the superscript (0) in the fields will be omitted for the sake of simplicity.

If one where to manipulate the first term in (5.22), so that

Tr
(
log
(
−G−1

))
= Tr

(
log
(
−G−1

0 − V
))

= Tr
(
log
(
−G−1

0

))
+Tr(log(1 +G0V)), (5.24)

one would see that the fist term in the sum is independent of the Weiss fields. After
normalization, it just constitutes the free energy density of the non-interacting system.
The second term is associated to the change in the free energy of the fermions due to the
Weiss fields, and it can be interpreted as an infinite sum of Feynman diagrams, illustrating
the iterative scattering process off the Weiss field.

Tr(log(1 +G0V)) = Tr

(
G0V − 1

2
(G0V)2 +

1

3
(G0V)3 −

1

4
(G0V)4 + ...

)
. (5.25)

In the vicinity of the phase transition, the order parameters are small in comparisson
with the temperature, so that it is sensible to do a perturbative expansion of the action
in V.

The first term of the expansion, generally known as the Hartree contribution, must
vanish. This becomes apparent when remembering that we are expanding around an ex-
tremum. Additionally, the interaction line carries zero momentum, and N~q=0,R(I) = 0,
M~q=0,R(I) = 0.

The second order term in the expansion is significantly more interesting, and it will be
the one in which we will focus on for the remainder of this thesis.
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5.2.1 Second order term of the perturbative expansion

More specifically, written in terms of its matrix elements,

Tr
(
(G0V)2

)
=
∑
kq

∑
αα′

∑
ββ′

Gαα′
0 (k)Vα′β(~k,~k + ~q)Gββ′

0 (k + q)Vβ′α(~k + ~q,~k). (5.26)

We can start the calculation of this term by addressing the two bare Green functions
first, but for that an expression for the matrix elements of G0(k) =

(
iωn1− h(~k)

)−1
is

needed. Naively, one might think that they are just (iωn − εη~k
)−1, where η is the energy

band index. However, this is only the case in a diagonal basis, which is not the case for the
site-basis in which the current calculations are done. Hence, the inversion of the matrix is
not as straightforward. Nonetheless, a short calculation shown in Appendix A.3 provides
that all it entails is the addition of the eigenvectors of the non-interacting Hamiltonian,
so that:

Gαβ
0 (~k, iωn) =

∑
η

uαη(~k)u
∗
ηβ(

~k)

iωn − εη~k
. (5.27)

In many cases the V fields have no momemtum and Matsubara frequency dependence,
so that their coefficient, which is the Matsubara sum involving the two bare propagators,
becomes the bare susceptibility of the system. In the present case, it is a tensor in sublattice
space:

χβα′β′α
0 (~q) = − 1

β

∑
n

∑
~k

Gαα′
0 (~k; iωn)G

ββ′

0 (~k + ~q; iωn) . (5.28)

Substituting (5.27) and performing the Matsubara sum, one obtains:

χβα′β′α
0 = −

∑
ηη′

f(εη~k
)− f(εη

′

~k+~q
)

εη~k
− εη

′

~k+~q

uαη(~k)u
∗
ηα′(~k)uβη′(~k + ~q)u∗η′β′(~k + ~q), (5.29)

where f(ε) is the Fermi-Dirac distribution function and ε are the eigenvalues of the tight-
binding Hamiltonian.

The analytical expression of (5.26) for an arbitrary ~q proves to be rather complicated,
as shown in Appendix C.4. However, from the existing knowledge of the kagome lattice,
we suspect that the main contributions of ~q will be related to the M -vectors. This can be
confirmed by an analysis of the bare susceptibility (5.29), which can be calculated numer-
ically both along the high-symmetry line and over the BZ (Fig. 5.2).

The sum over the momentum index is always performed by defining a ~k-grid that cov-
ers the whole first BZ, which for all of the calculations (except for Fig. 5.2(b), done with a
grid of 150× 150) in the remaining of the thesis was chosen to be 250× 250. In addition,
the temperature is taken to be so that β = 100 and the tight-binding hopping is set to be
one. This implies that there are temperature effects that will not be accounted for in this
study. For more details on the numerical calculations, refer to Appendix C.6.

One may wonder, however, how to obtain the curves in Fig. 5.2 from (5.29), since the
latter is a (3× 3× 3× 3) tensor. Said tensor can be rewritten into (9× 9) matrix in the
sublattice basis {AA,AB,AC,BA,BB,BC,CA,CB,CC}. The diagonalization process
will provide nine eigenvalues, and it is the leading eigenvalue at each ~q that is plotted in
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Figure 5.2: Bare susceptibility plotted along the high-symmetry line (a), and over the first
Brillouin zone for µ = 0 (b). The inset in (a) shows the FS at both µ = 0 and 0.08, which
coincides with those at µ = −2 and −2.08, respectively.

Fig. 5.2.

It is worth mentioning that the particular folding of the indices of the coefficients into
this (9 × 9) matrix is important, i.e. how to arrange the indices in the reformulation
χβα′β′α → χµν matters. For instance, if taking µ ≡ αα′ and ν ≡ ββ′, diagonalizing χ0

provides both positive and negative eigenvalues. This does not make sense physically,
since the susceptibility is required to be a positive magnitude, and hence, to have all
positive eigenvalues. This was already taken into account when establishing the order of
the indices in the definitions in (5.29), so that the adequate folding follows the intuitive
fashion: µ ≡ βα′ and ν ≡ β′α.

In Fig. 5.2, one can observe a peak at the M -point at the vH points, which justifies the
restriction of the momentum transferred ~q to be only one of the three M vectors ~Qi with
i = 1, 2, 3 for the rest of the calculations. Nonetheless, from 5.2(a) the electronic structure
seems to be very sensitive to the precise chemical potential: a small deviation from the
vH point causes both a drastic reduction of the peak, and the shift of the peak from the
M -point. Therefore, even if this approximation is not ideal, it dramatically simplifies
(5.26). More specifically, at these points the fields verify:

Nβα
~QiR

= Nβα

− ~QiR
= Nαβ

~QiR
, Mβα

~QiR
= Mβα

− ~QiR
= e2i

~Qi·~aαβMαβ
~QiR

,

Nβα
~QiI

= Nβα

− ~QiI
= −Nαβ

~QiI
, Mβα

~QiI
= Mβα

− ~QiI
= −e2i

~Qi·~aαβMαβ
~QiI

.

After extensive rewriting (depicted in Appendix C.5), the second order term in the
expansion, restricted to the M points, is

Tr
(
(G0V)2

)
= βN

∑
i

∑
αα′

∑
ββ′

[
Cβα′β′α
NN ( ~Qi)

(
Nβα′

~QiR
Nβ′α

~QiR
−Nβα′

~QiI
Nβ′α

~QiI

)
(5.30)

+Cβα′β′α
MM ( ~Qi)

(
Mβα′

~QiR
Mβ′α

~QiR
−Mβα′

~QiI
Mβ′α

~QiI

)
(5.31)

+Cβα′β′α
NM ( ~Qi)

(
Nβα′

~QiR
Mβ′α

~QiR
−Nβα′

~QiI
Mβ′α

~QiI

) ]
, (5.32)
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with

Cβα′β′α
NN ( ~Qi) =(1− δα′β)(1− δαβ′)

1

βN
∑
k

Gαα′
0 (k)Gββ′

0 (k +Qi) , (5.33a)

Cβα′β′α
MM ( ~Qi) =(1− δα′β)(1− δαβ′)

1

βN
∑
k

Gαα′
0 (k)Gββ′

0 (k +Qi)e
−2i~k·(~aβ′α−~aβα′ ) , (5.33b)

Cβα′β′α
NM ( ~Qi) =2(1− δα′β)(1− δαβ′)

1

βN
∑
k

Gαα′
0 (k)Gββ′

0 (k +Qi)e
−2i~k·~aβ′α . (5.33c)

Nonetheless, it might be helpful to write the expression in terms of real fields instead,
so that after defining Ñαβ

~QiI
= iNαβ

~QiI
and M̃αβ

~QiI
= iMαβ

~QiI
,

Tr
(
(G0V)2

)
= βN

∑
i

∑
αα′

∑
ββ′

[
Cβα′β′α
NN ( ~Qi)

(
Nβα′

~QiR
Nβ′α

~QiR
+ Ñβα′

~QiI
Ñβ′α

~QiI

)
(5.34)

+Cβα′β′α
MM ( ~Qi)

(
Mβα′

~QiR
Mβ′α

~QiR
+ M̃βα′

~QiI
M̃β′α

~QiI

)
(5.35)

+Cβα′β′α
NM ( ~Qi)

(
Nβα′

~QiR
Mβ′α

~QiR
+ Ñβα′

~QiI
M̃β′α

~QiI

) ]
. (5.36)

In the remaining discussions, when referring to the “imaginary” fields, it means the
fields Ñ ~QiI

and M̃ ~QiI
, which are real but come from the imaginary fields N ~QiI

and M ~QiI
.

The coefficient (5.33a) can be identified as the bare susceptibility except for the ex-
istance of the delta functions, and the other two coefficients are weighted by exponential
factors. The fact that the coefficients of NR and ÑI , and of MR and M̃I are the same,
respectively, means that these fields are degenerate at quadratic level. Hence, there is a
symmetry that ensures that they are equal, and going to higher orders would be necessary
to break the degeneracy.

Nonetheless, even at second order one can obtain ample information regarding the
preferred ordering of the fields, a discussion that will be the focus of the next chapter.
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Chapter 6

Landau theory for the free energy

As it was mentioned for the bare susceptibility, the coefficients of Tr
(
(G0V)2

)
are (3 ×

3 × 3 × 3) tensors, which can be rewritten into (9 × 9) matrices in the sublattice basis
{AA,AB,AC,BA,BB,BC,CA,CB,CC}, as it can be seen in Fig. 6.1 for ~q = ~Q1 at the
upper vH point.

As they are, these matrices are not easily interpreted given the non diagonal elements,
making their diagonalization the first natural step. The diagonalization process will pro-
vide a set of 9 eigenvalues and 9 eigenvectors. The latter will create a basis in which the
fields can be expressed. Setting vj, ~Qi

to be the eigenvectors of CNN ( ~Qi), and wj, ~Qi
those

of CMM ( ~Qi):

Nαβ
~QiR

=
9∑

j=1

aj, ~Qi
vαβ
j, ~Qi

, Ñαβ
~QiI

=
9∑

j=1

bj, ~Qi
vαβ
j, ~Qi

,

Mαβ
~QiR

=

9∑
j=1

cj, ~Qi
wαβ

j, ~Qi
, M̃αβ

~QiI
=

9∑
j=1

dj, ~Qi
wαβ

j, ~Qi
,

(6.1)

where aj, ~Qi
, bj, ~Qi

, cj, ~Qi
and dj, ~Qi

are all real scalars, given that all of the fields are real.
All sets of eigenvectors, in turn, can be viewed as (3× 3) matrices in the sublattice basis.
For instance, both sets of eigenvectors vj, ~Qi

and wj, ~Qi
for j = 1, 2, ..., 9 are shown in Fig.

6.2 for the upper vH point.

AA AB AC BA BB BC CA CB CC
AA
AB
AC
BA
BB
BC
CA
CB
CC

CNN(Q1)
AA AB AC BA BB BC CA CB CC

AA
AB
AC
BA
BB
BC
CA
CB
CC

CMM(Q1)
AA AB AC BA BB BC CA CB CC

AA
AB
AC
BA
BB
BC
CA
CB
CC

CNM(Q1)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 6.1: Graphical representation of the coefficients in (5.33) as (9×9) matrices at the
upper van Hove point (µ = 0).
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Figure 6.2: Graphical representation of (a) vj, ~Q1
and (b) wj, ~Q1

for j = 1, 2, ..., 9 in order,
from left to right and top to bottom, at the upper vH point. The ordering is done in
reference to their associated eigenvalues, so that j = 1 correspond to the leading eigenvalue.

From (6.1) it becomes clear that the eigenvectors of the coefficients provide the sub-
lattice structure to the fields. Indeed, if we look at the absolute value squared of these
eigenvectors we will obtain the sublattice weights, in a similar fashion as we saw for the
tight-binding model in Section 3.2. In Fig. 6.3(a)-(c) the graphical representation of
|v1, ~Qi

|2 in sublattice space at the upper vH point is displayed for each of the M -vectors.

A remarkable result can be extracted from this figure. To make it apparent, let us
focus on Fig. 6.3(a), which represents |v1, ~Q1

|2. The associated transferred momentum is
~Q1, which corresponds to the nesting vector that at the upper vH connects sites A and B.
And indeed, the main sublattice weights lie on AB and BA. In contrast, one can look at
the lower vH point, as depicted in Fig. 6.3(d). Now there is still only different site contri-
butions, but now all of them have almost identical weight. Recall that the lower vH point
is of mixed-type, so that for instance ~Q1 connects points with AC and BC distributions,
and indeed, are the missing combinations, AB and BA, the ones that have a slightly lower
magnitude. A completely analogous discussion follows for Fig. 6.3(b)-(c), (e)-(f).

Consequently, even in the absence of interactions (if V = 0), the electrons already have
a preference for bond ordering, which is purely a result of the sublattice structure of the
system and nesting effects. 1

However, without the addition of interactions, there will be no instability, and conse-
quently, the system will not undergo a phase transition. Therefore, let us introduce these
coefficients into the free energy to continue the discussion.

1One could argue that the preference for bond ordering is exclusively an aftermath of the delta functions
present in (5.33), which prohibit same-site contributions in the coefficients. However, the calculation of
the coefficients without said delta functions reveal that this statement remains true even in their absence.
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Figure 6.3: (a)-(c) Graphical representation of the Fermi surface and the sublattice dis-
tribution at the upper vH point with each of the M-vectors, and the sublattice structure
|v1, ~Qi

|2 of the corresponding field N ~Qi
. This can be compared to the equivalent calcula-

tions for the lower vH point (d)-(f). The plots corresponding to |w1, ~Qi
|2 are identical.
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Figure 6.4: Graphical representation of the coefficients in (6.3) as (9× 9) matrices at the
upper van Hove point (µ = 0) for V = 0.5.

6.1 Ginzburg-Landau free energy
Within the saddle point approximation, the partition function Z = e−βNFE [NR,NI ,MR,MI ] ≈
e−SE [NR,NI ,MR,MI ], so the change in the effective free energy density of the electrons due
to the mean-fields is

∆FE [NR, NI ,MR,MI ] =
1

βN

[
1

2
Tr
(
(G0V)2

)
− 1

3
Tr
(
(G0V)3

)
+

1

4
Tr
(
(G0V)4

)
− ...

]
+

1

2V

∑
~q

∑
αβ

[(
Nαβ

~qR

)2
+
(
Ñαβ

~qI

)2
+
(
Mαβ

~qR

)2
+
(
M̃αβ

~qI

)2]
.

(6.2)
Applying the restriction of only having momentum transferred equally to the M-vectors,
the second order term of this free energy density is

(∆FE)
(2)
V =

1

2

∑
αα′
ββ′

∑
i

[ (
V −1δαα′δββ′ + Cβα′β′α

NN ( ~Qi)
)(

Nβα′

~QiR
Nβ′α

~QiR
+ Ñβα′

~QiI
Ñβ′α

~QiI

)
+
(
V −1δαα′δββ′ + Cβα′β′α

MM ( ~Qi)
)(

Mβα′

~QiR
Mβ′α

~QiR
+ M̃βα′

~QiI
M̃β′α

~QiI

)
+ Cβα′β′α

NM ( ~Qi)
(
Nβα′

~QiR
Mβ′α

~QiR
+ Ñβα′

~QiI
M̃β′α

~QiI

) ]
.

(6.3)

Now, we can define

Kβα′β′α
NN ( ~Qi) =

1

2

(
V −1δαα′δββ′ + Cβα′β′α

NN ( ~Qi)
)

,

Kβα′β′α
MM ( ~Qi) =

1

2

(
V −1δαα′δββ′ + Cβα′β′α

MM ( ~Qi)
)

,

Kβα′β′α
NM ( ~Qi) =

1

2
Cβα′β′α
NM ( ~Qi) ,

(6.4)

as the coefficients of the second order term of the free energy density. The interaction
term V −1δαα′δββ′ , which couples bonds, will add elements in the diagonal of Fig. 6.1, so
that for example for V = 0.5, this figure becomes Fig. 6.4.

Therefore, despite its complicated structure, what we have obtained is just a free en-
ergy analogous to those discussed in Chapter 4, but where the coefficients are now tensors
instead of scalars. The approach taken in said chapter was to minimize the energy, and it
was at the points that certain coefficients changed sign that marked that the instability
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was taking place. The extension to the treatment of tensors would be to diagonalize the
coefficients, and find when the eigenvalues change sign. However, there is a significant
difference here: we have a term that couples the N and M fields. The fact that this
term exists means that it is not sufficient with the diagonalization of KNN and KMM .
Furthermore, it implies that despite our efforts at the very beginning of this process to
find the optimal definition of the bilinears in which to perform the HS transformation,
the N and M fields are not the desired ones, in the sense that they will not tell us which
are the fields that order at the phase transition. However, this issue can be address by
diagonalizing the free energy in terms of the fields. Meaning, finding the combination of
the N and M fields that do not couple in the free energy.

For this purpose, we can start by writing the fields in terms of the basis of eigenvectors
of their associated coefficient as in the last section. Since the interaction matrix is diagonal,
the eigenvectors are not affected, so that using the decomposition of the fields (6.1),
equation (6.2) becomes

(∆FE)
(2)
V =

∑
i,j

[∑
αα′
ββ′

vβα
′

j, ~Qi
Kβα′β′α

NN ( ~Qi)v
β′α

j, ~Qi

] [
(aj, ~Qi

)2 + (bj, ~Qi
)2
]

+
∑
i,j

[∑
αα′
ββ′

wβα′

j, ~Qi
Kβα′β′α

MM ( ~Qi)w
β′α

j, ~Qi

] [
(cj, ~Qi

)2 + (dj, ~Qi
)2
]

+
∑
i,j,j′

[∑
αα′
ββ′

vβα
′

j, ~Qi
Kβα′β′α

NM ( ~Qi)w
β′α

j′, ~Qi

] [
aj, ~Qi

cj′, ~Qi
+ bj, ~Qi

dj′, ~Qi

]
.

The factors in brackets can be seen as the contraction of the coefficients matrices by the
vectors v, w. The first two are just the eigenvalues κNN,j( ~Qi) and κMM,j( ~Qi) of the corre-
sponding matrices, since they are contracted by their own eigenvectors. Hence, κNN ( ~Qi)
and κMM ( ~Qi) can be seen as diagonal matrices in j, j′-space additionally to being diagonal
in “field”-space.

The third term couples both the N and M fields (represented by a (b) and c (d) for
the R (I) fields), and the different eigenvectors of each. For the sake of having symmetric?
contractions, let us write this last term so that also the terms cj, ~Qi

aj′, ~Qi
and dj, ~Qi

bj′, ~Qi

appear. This is not as straightforward as it seems, since the order of the indices in KNM

is very important: a different folding of the indices of the (3 × 3 × 3 × 3) will create a
different (9× 9) matrix.

By first swapping the roles of j and j′, and later relabeling β ↔ β′, α ↔ α′, both of
which one can do because there is a sum over all of those indices, we can define

κNM,jj′( ~Qi) =
1

2

∑
αα′
ββ′

vβα
′

j′, ~Qi
Kβα′β′α

NM ( ~Qi)w
β′α

j, ~Qi
, (6.5a)

κMN,jj′( ~Qi) =
1

2

∑
αα′
ββ′

wβα′

j′, ~Qi
Kβ′αβα′

NM ( ~Qi)v
β′α

j, ~Qi
, (6.5b)

so that the second order term of the free energy becomes
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Figure 6.5: Representation of the non-diagonal (9× 9) blocks κNM ( ~Q1) and κMN ( ~Q1) at
the upper vH point.

(∆FE)
(2)
V =

∑
i,j

κNN,j( ~Qi)
[
(aj, ~Qi

)2 + (bj, ~Qi
)2
]
+
∑
i,j

κMM,j( ~Qi)
[
(cj, ~Qi

)2 + (dj, ~Qi
)2
]

+
∑
i,j,j′

κNM,jj′( ~Qi)
[
aj, ~Qi

cj′, ~Qi
+ bj, ~Qi

dj′, ~Qi

]
+
∑
i,j,j′

κMN,jj′( ~Qi)
[
cj, ~Qi

aj′, ~Qi
+ dj, ~Qi

bj′, ~Qi

]
, (6.6)

which can be written in matrix form in field-space in the following way:

(∆FE)
(2)
V =

∑
i

(
a ~Qi

, c ~Qi
, b ~Qi

, d ~Qi

)

κNN ( ~Qi) κNM ( ~Qi) 0 0

κMN ( ~Qi) κMM ( ~Qi) 0 0

0 0 κNN ( ~Qi) κNM ( ~Qi)

0 0 κMN ( ~Qi) κMM ( ~Qi)



a ~Qi

c ~Qi

b ~Qi

d ~Qi

 .

(6.7)

Here, a ~Qi
(and analogously for b ~Qi

, c ~Qi
and d ~Qi

) is considered to be the 9 components vec-
tor (a1, ~Qi

, a2, ~Qi
, ..., a9, ~Qi

); and κNN ( ~Qi), κMM ( ~Qi), κNM ( ~Qi) and κMN ( ~Qi) to be (9× 9)
blocks in j-space. To recapitulate, each of the components of, for instance, the vector a ~Qi

for µ = 0 is the coefficient that accompanies each of the matrices in Fig. 6.2.

Given that the real and “imaginary” fields are not coupled, and they couple with each
other with the same coefficients, the whole matrix is block diagonal, with the two non-zero
blocks identical. Consequently, the diagonalization process is reduced to that of a single
(18× 18) matrix. Since KNM ( ~Qi) and KMN ( ~Qi), as well as vj, ~Qi

and wj, ~Qi
, are indepen-

dent of the interaction strength, the blocks κNM ( ~Qi) and κMN ( ~Qi) are constant with V
and can be seen in Fig. 6.5, highlighting that they are non-zero so indeed the fields couple.

The diagonalization of the (18 × 18) matrix will provide a set of eigenvalues, whose
values will change depending on the interaction strength V . With increasing value of
V , the eigenvalues will decrease in magnitude and some of them will eventually become
negative, as one can appreciate from Fig. 6.6. It is at the point where the first eigen-
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Figure 6.6: (a) Eigenvalues of one of the (18× 18) block-matrices in (6.7) with changing
interaction strength for µ = 0, and (b) Comparison of the minimum eigenvalue with
changing V for different chemical potentials. Vertical dashed lines signify the critical
interaction strength Vc in each case.

value reaches zero (let us call it Vc) that we can obtain the combination of fields that orders.

The last step it to look at what is the eigenvector associated to the eigenvalue that
crosses zero at Vc. This 18 component eigenvector provides the field combination that
orders at the instability. For example, for ~Q1 at µ = 0, the 18 components pi with
i = 1, 2, ..., 18 determine the weight that each of the matrices in Fig. 6.2 have, so that in
general the combination of fields could be written like in Fig. 6.7. In this figure, distinct
colors have been used to differentiate the matrices corresponding to the N and M fields,
as it was represented in Fig. 6.2. In particular, the combination of fields arising from the
obtain eigenvector that crosses zero is:

∆ ~Q1
= 0.77 − 0.06 − 0.64 − 0.03 .

(6.8)
In conclusion, the field that orders ∆ ~Q1

is mainly a combination of the NAB
~Q1

, NBA
~Q1

,
MAB

~Q1
and MBA

~Q1
.

However, two aspects are worth noting. First of all, the matrices that are used when
making the combinations like the one showed in Fig. 6.7 change with the value of µ. This
means that from the beginning, it would not have been possible to perform the decoupling
of the interaction in a particular set of bilinears. In turn, the field that orders at the phase
transition is not a “universal” quantity of the system.

Secondly, it is important to address a result obtained in Chapter 4: contrary to the
usual Ginzburg-Landau of the free energy, where only even powers of the order parameters
appear, the OP of the rCDW phase had a trilinear term. The presence of this term meant
that it was not the changing of the sign of the coefficient of the second order term that
marked the phase transition, but that of the third order term. In this study we have only
calculated the second order term and the third order term is not expected to be zero.
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∆ ~Q1
=p1 + p2 + p3 + p4

+p5 + p6 + p7 + p8

+p9 + p10 + p11 + p12

+p13 + p14 + p15 + p16

+p17 + p18

(6.8)
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Figure 6.7: Representation of what the components of the eigenvector associated to the
eigenvalue that crosses zero means. The matrices and the color scheme is that of Fig. 6.2.

Therefore, it is not the sign change of the coefficients presented here the ones give us the
configuration of fields with minimum energy. However, what we have obtained is the field
that will order. In other words, here we have obtained the expression of the order pa-
rameter (the analogous of, for example, (4.5) for the rCDW), but what we cannot obtain
without the calculation of higher order terms is which combination of those OP is the one
with minimum energy (which would be the analogous of not knowing which configuration
(3Q+, 3Q−, 1Q, or any other) orders at the phase transition).

Finally, it is relevant to appreciate in Fig. 6.6(a) the large separation between the first
two eigenvalues, and the rest, which show a strong preference for the ordering associated
to these eigenvalues. Moreover, it is again surprising in Fig. 6.6(b) the strong dependence
of the critical interaction strength to the van Hove physics: a slight departure from the vH
singularity has a dramatic effect on the magnitude of Vc. Therefore, it can be of interest
to evaluate its dependence around the saddle point, as well as how it compares with the
case in which the system is at the lower vH point. This discussion, which is specially
interesting since the FS around both vH points is identical, can be derived based on the
information presented in Fig. 6.8.

To begin with, we can focus on the curve associated to the upper vH point. There is
a very clear drop in the critical interaction strength at exactly the van Hove point, which
does however not reach zero. The latter is probably caused by finite temperature effects,
since in theory the system is at a point in which the bare susceptibility diverges, as it was
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Figure 6.8: Interaction strength at which the instability happens as a function of the
deviation from the van Hove singularities. This deviation δµ is defined as δµ = µ−µ0 for
µ0 = 0 and δµ = µ0−µ for µ0 = −2. The values found for Vc at µ = 0 and µ = −2 are 0.9
and 1.4, respectively. For reference, the Fermi surface at the chemical potential marked
by vertical gray dashed lines are presented on top.

discussed in Chapter 4. As previously noted, the value of Vc grows rapidly when moving
away from the vH point, and in the figure one can also notice that the obtained values of
Vc are lower above than below the saddle point. Perhaps its origin could be in the different
nesting in both Fermi surfaces. In order to address this, one can calculate the Linhard
function (3.9) at two of these points, since this function is a measure of nesting. As seen
in Fig. 6.9(a), the FS is more nested above the vH point, justifying at least partly the
lower Vc. Additionally, a small kink can be seen close to µ = 0.2 in Fig. 6.8 for µ = 0. Its
source is undetermined, but it does not seem to result from system size effects, since for
a rather smaller grid of ~k-points it is still present, as shown in Fig. 6.9(b).

At the lower vH point, a similar drop at the singularity is found, but at a higher value
of Vc. Nonetheless, the curves are fairly distinct. Due to the identical Fermi surfaces, we
could naively think that the differences between the two curves stem exclusively from the
different sublattice structure of the fields. One has to be cautious, however, when address-
ing the results related to the lower vH point. At this point, as mentioned in Section 6.2(b),
it is not suitable to disregard the on site interaction, as it has been done with this model,
due to the different effect that sublattice interference causes at this point. Nonetheless, in
both curves relatively flat regions are found when deviating enough from the saddle point,
which is reasonable considering the small weight the FS has near the M -points.

At this point it is worth mentioning that while all of the discussion has been focused
on ~Q1, the three M -vectors are symmetry equivalent, so that all of the presented results
should stand for the remaining two. Nonetheless, in my numerical implementation there
are small errors, possibly resulting from the numerical evaluation of the exponential fac-
tors, that accumulate and result in slight variations in the magnitudes of the eigenvalues,
and consequently in Vc, between the three symmetry-equivalent M -points.
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Figure 6.9: (a) Linhard function at equal separation around the upper VH point. (b)
Variation of Vc with µ around the upper vH point for two different grid sizes.
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Chapter 7

Conclusions and outlook

This thesis has been focused in the study of the charge density wave phase the the family of
kagome metals AV3Sb5 are found to experience at around 90K from a microscopic point of
view. Studies of this phase using patch models motivated the use of a more general model,
with two main purposes: (1) to discover if the absence of an interaction that distinguish
the interaction strengths of the real and imaginary order parameters of the CDW phase
makes them degenerate; and (2) trying to uncover any features that might be overlooked
by the strong simplifications assumed in patch models.

For that purpose, a nearest-neighbours Hubbard model was presented, where the ki-
netic part of the non-interacting Hamiltonian is taken to be the simplest tight-binding
Hamiltonian with nearest-neighbours hopping. Since only the vanadium kagome layer
was included in the model (motivated by the quasi-2D nature experimentally found in
these materials), the present study is not restricted to the description of the AV3Sb5 ma-
terials.

A Hubbard-Stratonovich transformation was performed with the objective of obtain-
ing the expression of the free energy. Within mean-field theory, the Ginzburg-Landau
free energy up to second order was calculated, restricting the momentum transferred to
only be the M -vectors. Despite the efforts directed at decoupling in a set of independent
bilinears, the defined order parameters were found to couple in the expression of the free
energy. Furthermore, the real and imaginary order parameters where indeed found to be
degenerate at the second order level.

A diagonalization of the second order term of the free energy provided the expression
of the order parameters that would order at the CDW phase transition. At the van Hove
singularity, the OP is found to be a combination of the N and M fields, with similar but
not equal weight, and with the sublattice structure that would be expected from the Fermi
surface nesting discussion: the order modulated by ~Q1, ~Q2 and ~Q3 are mainly associated
to bonds between A−B, A− C and B − C sites, respectively.

Exclusively from the second order term the minimum energy configuration cannot be
obtain due to the presence of a trilinear term in the free energy. Hence, the calculation of
higher order terms in the free energy would be necessary. Additionally, this would allow
to see if the degeneracy between the real and imaginary order parameters is lifted.

However, the dependence of the expressions of the order parameters with the exact
value of the chemical potential represent the fact that there is not a “universal” set of

49



CHAPTER 7. CONCLUSIONS AND OUTLOOK

bilinears that can be defined from the expression of the Hamiltonian. As a result, this
approach seems to be too general for the study for the study that was proposed, since
despite the heavy approximations very complex expressions were obtained.

Nonetheless, (not presented in this report) calculations of the free energy coefficients
were performed for a different decoupling, which had sinusoidal prefactors on the fermionic
operators instead of exponential, provided much simpler coefficients in the free energy that
allowed the calculation of the coefficients for a general ~q, and not exclusively restricted
to the M -points. In turn, the classification of the fields into real and imaginary was not
possible and they were all complex. It could still be useful to do the diagonalization of
the free energy, since simpler expression might arise, and with the advantage of being
expression with less approximations.
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Appendix A

A.1 van Hove singularities and the DOS
Let us show that in two dimensions having an energy dispersion with a saddle point means
that the density of states (DOS) has a logarithmic divergence.

If we focus on the Kagome lattice, and the saddle point at for example the M1 point,
the Taylor expansion of the tight-binding energy dispersion at the upper van Hove point
is ε(~q) = aq2x − bq2y . The expression for the density of states will then be

g(ε) =

∫
|~q|<Λ

dq2

(2π)2
δ(ε− ε(~q)) (A.1)

Performing the integral becomes significantly easier if one does the change of variables
qx = q cosh(θ)/

√
a and qy = q sinh(θ)/

√
b. Then, ε(~q) = q2 and the area element becomes

d2q =
∣∣∣∂(qx,qy)∂(q,θ)

∣∣∣ dqdθ = 1√
ab
|q|dqdθ. Substituting in the DOS,

g(ε) =
1√
ab

1

(2π)2

∫
dθ

∫
|q|dqδ(ε− q2) =

1√
ab

1

(2π)2

∫
dθ (A.2)

where the integral over q has been performed by using that
∫
dxf(x)δ(g(x)) =

∑
xi

f(xi)
|g′(xi)| ,

where xi are the roots of g(x). Now all is left is to consider the integration limits of θ.
Since |~q| = q

√
1
a(cosh

2(θ) + a
b sinh

2(θ)) < Λ, considering that the integration over q has
been performed over the surface such that ε(~q) = q2 = ε and assuming perfect nesting
(a/b = 3) without loss of generality, one gets that |θ| < 1

2 cosh
−1
(
aΛ2+ε

2ε

)
. Finally,

g(ε) =
1

(2π)2

√
3

a
cosh−1

(
aΛ2 + ε

2ε

)
(A.3)

≈ 1

(2π)2

√
3

2a

(
ε

aΛ2 + ε
+ log

(
aΛ2

ε

))
(A.4)

The second line has been obtained by Taylor expading around ε = 0. In this last
equation is now trasparent that the DOS diverges logarithmically at the saddle-point
ε = 0.

A.2 Energy dispersion around the saddle points
Since it has been shown the many interesting effects that happen at the M -point when
the Fermi energy sits at the upper vH point, let us see what are the expressions that the
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energy dispersion take at each of the three M -points. In order to do this, one can set the
momentum to only move apart from ~Qi a small amount ~q. Substituting in (3.8),

ε+( ~Qi + ~q) = t

(
−1 +

√
3 + 2 cos

(
2(~q + ~Qi) · ~aAB

)
+ 2 cos

(
2(~q + ~Qi) · ~aAC

)
+ 2 cos

(
2(~q + ~Qi) · ~aBC

))
.

(A.5)

Considering the product of ~Qi and ~aµν , one gets that, in particular for ~Q1

ε+( ~Q1 + ~q) = t
(
−1 +

√
3 + 2 cos (2~q · ~aAB) + 2 cos (2~q · ~aAC + π) + 2 cos (2~q · ~aBC + π)

)
(A.6)

Using that cos(x+ π) = − cos(π) and Taylor expanding cos(π) ≈ 1− x2

2 , one can also
use the expressions of the

ε+( ~Q1 + ~q) =t

(
−1 +

√
1− (2~q · ~aAB)

2 + (2~q · ~aAC)
2 + (2~q · ~aBC)

2

)
=t

(
−1 +

√
1− 1

4

(
qx +

√
3qy

)2
+ q2x +

1

4

(
qx −

√
3qy

)2)

=t

(
−1 +

√
1 + q2x −

√
3qxqy

)
Taking that

√
1 + x ≈ 1 + x

2 ,

ε+( ~Q1 + ~q) =
t

2

(
q2x −

√
3qxqy

)
(A.7)

Doing an analogous calculation,

ε+( ~Q2 + ~q) ≈ t

4

(
−q2x + 3q2y

)
(A.8)

ε+( ~Q3 + ~q) ≈ t

2

(
q2x +

√
3qxqy

)
(A.9)

One can compare these expressions with those stated in [5]. In order to compare
them, one has to do the appropriate change of coordinates: reflection across the y axis,
followed by a 30◦ clockwise rotation. Then, doing the substitution qx → 1

2(−
√
3qx + qy)

and qy → 1
2(qx +

√
3qy) in equation (2) of [5] and assuming perfect nesting (a/b = 3):

ε1(~q) = aq2x − bq2y → 2b(q2x −
√
3qxqy)

ε2(~q) =
a− 3b

4
q2x +

√
3(a+ b)

2
qxqy +

3a− b

4
q2y → b

(
−q2x + 3q2y

)
ε3(~q) =

a− 3b

4
q2x +

√
3(a+ b)

2
qxqy +

3a− b

4
q2y → 2b

(
q2x +

√
3qxqy

)
,

which correspond to my expressions for b = t/4.
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A.3 Bare Green function
The time-ordered one-particle Green function is defined as
Gλλ′

0 (~k,~k′; t − t′) = −i
〈
Tc~kλ(t)c

†
~k′λ′(t

′)
〉
, where the expectation value is taken in the

ground state, T represents the time ordering and λ denotes the other degrees of freedom.
In the case of translationally invariant systems in which λ is a good quantum number,
Gλλ′

0 (~k,~k′; t− t′) = δλλ′δ~k~k′G
λ
0(
~k, t− t′) and one finds that in frequency space Gλ

0(
~k, ω) =

(ω − ελ~k
)−1. In the imaginary-time formalism for finite temperature systems, the Greens

function becomes Gλ
0(
~k, τ − τ ′) = −

〈
Tτ c~kλ(τ)c

†
~k′λ′(τ

′)
〉

and Gλ
0(
~k, iωn) = (iωn − ελ~k

)−1,
where τ is the imaginary time and ωn are the fermionic Matsubara frequencies.

In the case that we have present, the non-interacting Hamiltonian in momentum space
is diagonal in the energy-band basis, but not in the site basis. In the former case, the pre-
vious equations can therefore be used taking λ = η the energy band index, with η = 0,±1.
But since I will be working in the site-basis, it is necessary to obtain a new expression for
the bare Green function, which that can be obtained in terms of Gη

0(
~k, iωn).

Denoting d~kη (d†~kη
) the annihilation (creation) fermionic operators in the energy-band

space and uη(~k) = (uηA(~k), uηB(~k), uηC(~k))
T the eigenvectors of H0, the basis change of

the operators is
c~kα =

∑
η

uαηd~kη c†~kα
=
∑
η

u∗ηαd
†
~kη

(A.10)

and the Green function

Gαβ
0 (~k,~k′; τ − τ ′) = −

〈
Tτ c~kα(τ)c

†
~k′β

(τ ′)
〉
= −

∑
ηη′

uαη(~k)u
∗
η′β(

~k′)
〈
Tτd~kη(τ)d

†
~k′η′

(τ ′)
〉

=
∑
ηη′

uαη(~k)u
∗
η′β(

~k′)Gηη′

0 (~k,~k′; τ − τ ′) =
∑
η

uαη(~k)u
∗
ηβ(

~k)Gη
0(
~k, τ − τ ′)δ~k~k′

= Gαβ
0 (~k, τ − τ ′)

Gαβ
0 (~k, iωn) =

∫ β

0
dτeiωn(τ−τ ′)Gαβ

0 (~k, τ − τ ′) (A.11)

=
∑
η

uαη(~k)u
∗
ηβ(

~k)

∫ β

0
dτeiωn(τ−τ ′)Gη

0(
~k, τ − τ ′) (A.12)

=
∑
η

uαη(~k)u
∗
ηβ(

~k)Gη
0(
~k, iωn) =

∑
η

uαη(~k)u
∗
ηβ(

~k)

iωn − εη~k
(A.13)

A.4 Peierls instability
Let us show how for one-dimensional systems, an electonic instability can cause an spon-
taneous lattice instability. Below the critical temperature, there is no cost in energy to
excite a phonon, so the phonon system becomes unstable and a phase transition occurs
towards a structure that breaks translational symmetry.

Let us consider a simple tight-binding model for a 1D chain with N sites where the
chemical potential is set to be zero: H0 =

∑
kσ ξkc

†
kσckσ, where ξk = −2t cos(ak), t is the
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nearest-neighbour hopping amplitude and a the lattice constant, that we can set to one.
The first BZ is just k ∈ [−π, π].

In the low temperature regime (T � t) the retarded electronic polarization bubble is

χR
0 (q, iνn) = −

∫
dk

2π

∑
σ

1

β

∑
iωn

G(k, iωn)G(k + q, iωn + iνn) (A.14)

= − 1

π

∫
dk

1

β

∑
iωn

1

iωn − ξk

1

iωn + iνn − ξk − ξk+q
. (A.15)

Solving the Matsubara sum,

χR
0 (q, iνn) = − 1

π

∫
dk

f(ξk)− f(ξk+q)

iνn + ξk − ξk+q
, (A.16)

with f being the Fermin function. We can identify the Linhard response function.
Since kF is the momentum such that the energy is the Fermi level, ξkF = −2t cos(akF ) =

0 and 2kF = π/a. Now, we can notice that since ξk+2kF = −2t cos(ak + π) = 2t cos(ak) =
−ξk, q = 2kF is the nesting vector. Evaluating the polarization bubble at this point,

χR
0 (2kF , iνn) =

1

π

∫
dk

1− 2f(ξk)

iνn + 2ξk
. (A.17)

Performing analytic continuation and using that 1− 2f(ξk) = tanh
(
βξk
2

)

χR
0 (2kF , ω) =

1

π

∫
dk

tanh
(
βξk
2

)
ω + 2ξk

, (A.18)

and in the static? limit, when ω → 0

χR
0 (2kF , 0) =

1

π

∫ π/a

−π/a
dk

tanh
(
βξk
2

)
2ξk

=
1

π

∫ 0

−π/a
dk

tanh
(
βξk
2

)
2ξk

+
1

π

∫ π/a

0
dk

tanh
(
βξk
2

)
2ξk

,

(A.19)
and since ξk = ξ−k

χR
0 (2kF , 0) = − 1

π

∫ 0

π/a
dk

tanh
(
βξk
2

)
2ξk

+
1

π

∫ π/a

0
dk

tanh
(
βξk
2

)
2ξk

=
1

π

∫ π/a

0
dk

tanh
(
βξk
2

)
ξk

.

(A.20)
Doing the change of variables x = βξk/2:

χR
0 (2kF , 0) =

βt

2πat

∫ βt

0
dx

tanh(x)

x
√
(βt)2 − x2

. (A.21)

which for βt � 1 can be approximated to

χR
0 (2kF , 0) ≈

1

2πat
ln

(
4βteγ

π

)
, (A.22)

where γ is the Euler’s constant. Here we can see that the electronic polarization diverges
as T goes to zero.
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Now we can turn our attention to the vibrations of the underlying lattice, which can
be described by the retarded free phonon propagator, which after analytic continuation is

DR
0 (q, ω) =

2Ωq

(ω + i0+)2 − Ω2
q

, (A.23)

where under the Debye model the acustic phonon dispersion relation is given by Ωq = vD|q|.
The renormalized phonon Green function for q ≈ 2kF , ω ≈ 0 and T � t, can be obtained
by solving the Dyson equation

DR(q, ω) = DR
0 (q, ω) +DR

0 (q, ω)
g2p
V
χR
0 (q, ω)DR(q, ω) , (A.24)

with gp = i
(
λ
ΩqV
d(0)

)1/2
being the electron-phonon interaction vertex and d(0) = 1

2πat the
density of states at the Fermi level. Neglecting the momentum and frequency dependence
of the polarization bubble and approximating it by (A.22):

DR(q, ω)

(
1 +

2Ωq

(ω + i0+)2 − Ω2
q

λΩq ln

(
4βteγ

π

))
=

2Ωq

(ω + i0+)2 − Ω2
q

, (A.25)

so that
DR(q, ω) =

2Ωq

(ω + i0+)2 − Ω2
q

(
1− 2λ ln

(
4βteγ

π

)) . (A.26)

By comparing with (A.23), we obtain that the renormalized phonon dispersion relation
for q ≈ 2kF is

Ω̃2
q = Ω2

q

(
1− 2λ ln

(
4βteγ

π

))
(A.27)

This dispersion relation vanishes when decreasing the temperature below a certain
value TC

0 = 1− 2λ ln

(
4teγ

πTC

)
⇒ TC =

4teγ

π
e2λ . (A.28)

Rewriting Ω̃q in terms of TC :

Ω̃2
q = Ω2

q

(
1− 2λ ln

(
TC

T
e1/2λ

))
= 2λΩ2

q ln

(
T

TC

)
. (A.29)

Near the phase transition, ln
(

T
TC

)
= ln

(
1 + T−TC

TC

)
≈ T−TC

TC
, so that

Ω̃q ≈ Ωq

√
2λ

TC
|T − TC |1/2 . (A.30)

Thus, Ω̃q vanishes as a power law when approaching the phase transition. For T below
the critical temperature, Ω̃q becomes imaginary, which is physically meaningless, and it
is said that there is a soft phonon mode. It costs no energy to excite a phonon, so
the phonon system becomes unstable towards a spontaneous deformation with a different
lattice spacing.
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The interaction can be decoupled by means of a Hubbard-Stratonovich transformation in
both channels. The partition function can be written in the path-integral formalism as
follows:

Z =

∫
D[c̄, c]e−S[c̄,c] =

∫
D[c̄, c]e

−
∫ β
0 dτ

[∑
α~q c̄α~q(∂τ+εα(~q))cα~q+Hint

]
, (B.1)

where D[c̄, c] ≡
∏

λ dc̄λdcλ is the shorthand notation for the measure of the fermionic
operators, and inside the path integral the fermionic operators c†, c have been replaced by
the associated anticommuting Grassman numbers c̄, c.

The first step is to introduce the white noise variables ArC,α and AiC,α, with Gaussian
path integrals

ZArC(iC)
=

∫
D[ArC(iC)]e

−S[ArC(iC)] =

∫
D[ArC(iC)]e

−
∫ β
0 dτ

∑
α G−1

rC(iC)
ArC(iC),αArC(iC),α

(B.2)
Since the correlation functions of these white-noise fields are just a constant, multiplying
the original partition function by ZArC

ZAiC
will just imply a shift in the free energy

F = −T ln(Z) = −T ln
(
ZZArC

ZAiC
1

ZArC
ZAiC

)
= −T ln(ZZArC

ZAiC
) + T ln(ZArC

ZAiC
),

so it can be done without any consequence. In turn, entangling the two functional integrals
will allow for the definition of an effective action that decouples the interactions. In order to
see this, let us first notice that the product of the two integrals describes two independent
systems.

Z × ZArC
×ZAiC

=

∫
D[c̄, c]

∫
D[ArC ]

∫
D[AiC ]e

−
∫ β
0 dτ

∑
α

[∑
~q c̄α~q(∂τ+εα(~q))cα~q+H′

int

]
(B.3)

with

H ′
int =− N

2

∑
α

GrCρrC,αρrC,α −
∑
α

G−1
rCArC,αArC,α (B.4)

− N
2

∑
α

GiCρiC,αρiC,α −
∑
α

G−1
iC AiC,αAiC,α (B.5)

Written in this way, the integral over the white-noise fields are inside that of the orig-
inal fermionic operators. Therefore, for each of the white-noise fields configurations one
can consider the c̄, c fields (and therefore the ρrC , ρiC fields) as constants. Consequently,
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a variable shift of the form ArC,α = Nα − GrCρrC,α and AiC,α = φα + GiCρiC,α is al-
lowed, since the measure remains unchanged, allowing the writing of D[ArC ] = D[N ] and
D[AiC ] = D[φ].

The newly introduced variables Nα and φα, which are a combination of the white-noise
fields ArC(iC) and the physical fields ρrC(iC), are often referred as the Weiss fields. When
the bilinears ρrC(iC) are to enter a broken-symmetry phase, the ....

Then, the transformed interaction becomes

H ′
int =

N
2GrC

∑
α

N2
α +

N
2GiC

∑
α

φ2
α −N

∑
α

NαρrC,α −N
∑
α

φαρiC,α, (B.6)

in which the the new variables Nα, φα couple linearly to the bilinears.
At this point, one can substitute back the expression of the bilinears in terms of the

annihilation and creation operators, so that the action can be written as

S[c̄, c, N, φ] =

∫ β

0
dτ

[∑
βγq

c̄β~q

(
(∂τ + εβ(~q))δβγ −

1

2

∑
α

Nα|εαβγ | −
1

2i

∑
α

φαεαβγ

)
cγ~q

(B.7)

+
N

2GrC

∑
α

N2
α +

N
2GiC

∑
α

φ2
α

]
= (B.8)

=

∫ β

0
dτ

[∑
~q

c̄~q (∂τ +H[N,φ]) c~q +
N

2GrC

∑
α

N2
α +

N
2GiC

∑
α

φ2
α

]
(B.9)

H is the matrix representation of the effective Hamiltonian.
Substituting back in B.3, and inverting the order of integration,

Z =

∫
D[N ]e

− N
2GrC

∫ β
0 dτ

∑
α N2

α

∫
D[φ]e

− N
2GiC

∫ β
0 dτ

∑
α φ2

α

∫
D[c̄, c]e−

∫ β
0 dτ

∑
~q c̄~q(∂τ+H)c~q

(B.10)

The last of the integrals represents the path integral of the electrons moving in the
fluctuating fields Nα and φα. These fluctuations are the ones that mediate the interactions
between the electrons in this new picture. Furthermore, it is a gaussian path integral, so
it can be evaluated, doing what is commonly referred to as ”integrating out the electrons”,
yielding

Z = det(∂τ +H)

∫
D[N ]e

− N
2GrC

∫ β
0 dτ

∑
α N2

α

∫
D[φ]e

− N
2GiC

∫ β
0 dτ

∑
α φ2

α . (B.11)

Using the identity det(A) = elog(det(A)) = eTr(log(A)) and writing the partition function
in terms of an effective action, one obtains

Z =

∫
D[N ]

∫
D[φ]e−SE [N,φ] (B.12)

with
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SE [N,φ] = −Tr (log (∂τ +H[N,φ])) +
N

2GrC

∫ β

0
dτ
∑
α

N2
α +

N
2GiC

∫ β

0
dτ
∑
α

φ2
α (B.13)

Furthermore, it can be written in terms of the fermionic Matsubara frequencies iωn and
within the mean field approach it is sensible to assume static configurations (Nα(τ) = Nα

and φα(τ) = φα), so that the effective action is

SE [N,φ] =− Tr (log (−iωn +H[N,φ])) +
Nβ

2

∑
α

(
1

GrC
N2

α +
1

GiC
φ2
α

)
(B.14)

=− Tr
(
log
(
−G−1

))
+

Nβ

2

∑
α

(
1

GrC
N2

α +
1

GiC
φ2
α

)
(B.15)

Finally, within the saddle point approximation Z ≈ e−SE [N,φ] = e−βFE [N,φ], so the
effective free energy is

FE [N,φ] = − 1

β
Tr
(
log
(
−G−1

))
+

N
2GrC

∑
α

N2
α +

N
2GiC

∑
α

φ2
α (B.16)

with 1

G−1 =

iωn − ε1(~q)
N3−iφ3

2
N2+iφ2

2
N3+iφ3

2 iωn − ε2(~q)
N1−iφ1

2
N2−iφ2

2
N1+iφ1

2 iωn − ε3(~q)

 (B.17)

B.0.1 Mean field solutions

At this point one can look for the mean field solutions by solving the saddle-point equa-
tions:

∂SE [N,φ]

∂Nα
= 0 ,

∂SE [N,φ]

∂φα
= 0 (B.18)

Starting from the first of the equations, since ∂e−SE [N,φ]

∂Nα
= −e−SE [N,φ] ∂SE [N,φ]

∂Nα
,

∂SE [N,φ]

∂Nα
=− eSE [N,φ]∂e

−SE [N,φ]

∂Nα
= −eSE [N,φ] ∂

∂Nα

(∫
D[c̄, c]e−S[c̄,c,N,φ]

)
=eSE [N,φ]

∫
D[c̄, c]e−S[c̄,c,N,φ]∂S[c̄, c, N, φ]

∂Nα

=eSE [N,φ]

∫
D[c̄, c]e−S[c̄,c,N,φ]

−1

2
|εαβγ |

∑
~q

c̄β~qcγ~q +
N
GrC

Nα


=− 1

2
|εαβγ |eSE [N,φ]

∫
D[c̄, c]e−S[c̄,c,N,φ]

∑
~q

c̄β~qcγ~q +
N
GrC

eSE [N,φ]

∫
D[c̄, c]e−S[c̄,c,N,φ]︸ ︷︷ ︸

e−SE [N,φ]

Nα

=− 1

2
|εαβγ |

∑
~q

〈
c̄β~qcγ~q

〉
+

N
GrC

Nα = 0

1Here, and in the following, I am using the notation in [?] and [?] for the signs of the Green function,
which are the opposite of those of [5].
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Nα = GrC
|εαβγ |
2N

∑
~q

〈
c̄β~qcγ~q

〉
(B.19)

With a completely analogous calculation, one obtains that

φα = GiC
εαβγ
2iN

∑
~q

〈
c̄β~qcγ~q

〉
(B.20)

B.0.2 Free energy expansion

The inverse of the full Green function in (B.17) can be rewritten into two parts: the diag-
onal part corresponds to the inverse of the bare Green function G0, and the non-diagonal
one is the scattering potential V. Therefore, Tr

(
log
(
−G−1

))
= Tr

(
log
(
−G−1

0 − V
))

=
Tr
(
log
(
−G−1

0

))
+ Tr(log(1 + G0V)). The first of these terms, normalised by 1

β , corre-
sponds to the free energy of the non-interacting system. The second term represents the
change in the free energy due to the N and φ fields. This last term can be interpreted
as the repeated scattering off the exchange field, and can be viewed as the infinite sum of
Feynman diagrams

~k

~k

+

~k

~k + ~q

+ ~k

~k + ~q1

~k + ~q2

+

~k + ~q3

~k ~k + ~q1

~k + ~q2

+. . .

And therefore, the Tr
(
log
(
G−1

))
that appears in (??) can be expanded in the following

way:

Tr
(
log
(
G−1

))
= Tr

(
log
(
G−1
0 + V

))
= Tr

(
log
(
G−1
0 (I+ G0V)

))
=

= Tr
(
log
(
G−1
0

))
+Tr(log(I+ G0V)) ≈

≈ Tr
(
log
(
G−1
0

))
+Tr(G0V)−

1

2
Tr
(
(G0V)2

)
+

1

3
Tr
(
(G0V)3

)
− 1

4
Tr
(
(G0V)4

)
+ ...

The term Tr
(
log
(
G−1
0

))
is included in the free energy of the non-interacting system,

so the free energy density of the CDW phase up to forth order is

fCDW =
1

2GrCDW

∑
α

N2
α+

1

2GiCDW

∑
α

φ2
α−Tr(G0V)+

1

2
Tr
(
(G0V)2

)
−1

3
Tr
(
(G0V)3

)
+
1

4
Tr
(
(G0V)4

)
(B.21)

Let us now evaluate each of the terms, and write them in terms of the complex order
parameter.

The first two terms can be easily rewritten by using that Nα = |∆α| cos(θα) and
φα = |∆α|sin(θα).
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1

2GrCDW

∑
α

N2
α +

1

2GiCDW

∑
α

φ2
α =

∑
α

|∆α|2
(

1

2GrCDW
cos2(θα) +

1

2GiCDW
sin2(θα)

)
=

=
1

2

∑
α

|∆α|2
(

1

2GrCDW
+

1

2GrCDW
cos(2θα) +

1

2GiCDW
− 1

2GiCDW
cos(2θα)

)
=

=
1

2

(
1

2GrCDW
+

1

2GiCDW

)∑
α

|∆α|2 +
1

2

(
1

2GrCDW
− 1

2GiCDW

)∑
α

|∆α|2 cos(2θα)

(B.22)

Now, since G−1
0 is diagonal,

G0 =


1

−iωn+ε1(~q)
0 0

0 1
−iωn+ε2(~q)

0

0 0 1
−iωn+ε3(~q)

 (B.23)

so we can easily obtain the traces of the matrix products with the help of Mathematica:

Tr(G0V) =0 (B.24)

Tr
(
(G0V)2

)
=
1

2

∑
q∈BZ

1

β

∑
n

(
|∆1|2

(−iωn + ε2(~q))(−iωn + ε3(~q))
+

+
|∆2|2

(−iωn + ε1(~q))(−iωn + ε3(~q))
+

|∆3|2

(−iωn + ε1(~q))(−iωn + ε2(~q))

)
=

=
1

4

∑
q∈BZ

1

β

∑
n

∑
α

|∆α|2|εαβγ |
(−iωn + εβ(~q))(−iωn + εγ(~q))

(B.25)

Tr
(
(G0V)3

)
=− 3

4

∑
q∈BZ

1

β

∑
n

|∆1||∆2||∆3| cos(θ1 + θ2 + θ3)

(−iωn + ε1(~q))(−iωn + ε2(~q))(−iωn + ε3(~q))
(B.26)

Tr
(
(G0V)4

)
=

1

16

∑
q∈BZ

1

β

∑
n

∑
α

|∆α|4|εαβγ |
(−iωn + εβ(~q))2(−iωn + εγ(~q))2

+

+
1

8

∑
q∈BZ

1

β

∑
n

∑
αβ

|∆α|2|∆β|2|εαβγ |
(−iωn + εα(~q))(−iωn + εβ(~q))(−iωn + εγ(~q))2

(B.27)

Let us look at each of these expressions in more detail. The first step is to evaluate
the Matsubara sum. For that, we will follow the usual procedure. Let f be the Fermi
function and g(iωn) the function of which we want to evaluate the sum, which has poles
z of order n, and iωn are bosonic Matsubara frequencies (because they are the difference
of fermionic frequencies):

S =
1

β

∑
n

g(iωn) =

∮
dz

2πi
f(z)g(z)ezτ =

∑
z

Res[f(z)g(z), z] (B.28)

Res[f(z)g(z), z] =
1

(n− 1)!
lim
z→c

dn−1

dzn−1
((z − c)nf(z)g(z)) (B.29)

The Matsubara sum in Tr
(
(G0V)2

)
is
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S1 =
1

β

∑
n

1

(−iωn + εβ(~q))(−iωn + εγ(~q))
=

1

β

∑
n

1

(iωn − εβ(~q))(iωn − εγ(~q))
(B.30)

It has two single poles: z = εβ with residue 1
εβ−εγ

and z = εγ with residue 1
εγ−εβ

, so

S1 =
f(εβ)

εβ − εγ
+

f(εγ)

εγ − εβ
=

f(εβ)− f(εγ)

εβ − εγ
=

f(εγ)− f(εβ)

εγ − εβ
(B.31)

Tr
(
(G0V)2

)
=

1

4

∑
α

|∆α|2|εαβγ |
∑
q∈BZ

f(εβ(~q))− f(εγ(~q))

εβ(~q)− εγ(~q)
=

=
1

2

(
|∆1|2

∑
q∈BZ

f(ε2(~q))− f(ε3(~q))

ε2(~q)− ε3(~q)
+ |∆2|2

∑
q∈BZ

f(ε1(~q))− f(ε3(~q))

ε1(~q)− ε3(~q)
+

+|∆3|2
∑
q∈BZ

f(ε2(~q))− f(ε1(~q))

ε2(~q)− ε1(~q)

)
(B.32)

Further rewritting can be done if one notices that, since the sum over q involves the
whole Brillouin Zone, rotating q by ±π/3 will only rotate the energies into each other.
When rotating −π/3:

(
q′x
q′y

)
=

(
cos(α) − sin(α)
sin(α) cos(α)

)(
qx
qy

)
=

(
1
2

√
3
2

−
√
3
2

1
2

)(
qx
qy

)
=

(
1
2qx +

√
3
2 qy

−
√
3
2 qx +

1
2qy

)
(B.33)

ε1(q
′) =a(q′x)

2 − b(q′y)
2 =

a− 3b

4
q2x +

√
3(a+ b)

2
qxqy +

3a− b

4
q2y = ε2(~q)

ε2(q
′) =

a− 3b

4
(q′x)

2 +

√
3(a+ b)

2
q′xq

′
y +

3a− b

4
(q′y)

2 =

=
a− 3b

4
q2x −

√
3(a+ b)

2
qxqy +

3a− b

4
q2y = ε3(~q)

ε3(q
′) =

a− 3b

4
(q′x)

2 −
√
3(a+ b)

2
q′xq

′
y +

3a− b

4
(q′y)

2 = aq2x − bq2y = ε1(~q)

Therefore, under the sum of q over the BZ, we can do the substitution ε1 → ε3, ε3 → ε2
and ε2 → ε1 without changing the result.

Applying this result, one can see that

∑
q∈BZ

f(ε1(~q))− f(ε3(~q))

ε1(~q)− ε3(~q)
=
∑
q∈BZ

f(ε3(~q))− f(ε2(~q))

ε3(~q)− ε2(~q)
=
∑
q∈BZ

f(ε2(~q))− f(ε3(~q))

ε2(~q)− ε3(~q)∑
q∈BZ

f(ε2(~q))− f(ε1(~q))

ε2(~q)− ε1(~q)
=
∑
q∈BZ

f(ε1(~q))− f(ε3(~q))

ε1(~q)− ε3(~q)
=
∑
q∈BZ

f(ε2(~q))− f(ε3(~q))

ε2(~q)− ε3(~q)

And therefore
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Tr
(
(G0V)2

)
=
1

2

∑
q∈BZ

f(ε2(~q))− f(ε3(~q))

ε2(~q)− ε3(~q)

(
|∆1|2 + |∆2|2 + |∆3|2

)
=

=
1

2

∑
q∈BZ

f(ε2(~q))− f(ε3(~q))

ε2(~q)− ε3(~q)

∑
α

|∆α|2 (B.34)

In Tr
(
(G0V)3

)
the Matsubara sum that appears is

S2 =
1

β

∑
n

1

(−iωn + ε1(~q))(−iωn + ε2(~q))(−iωn + ε3(~q))
=

= − 1

β

∑
n

1

(iωn − ε1(~q))(iωn − ε2(~q))(iωn − ε3(~q))
(B.35)

It has three single order poles z = ε1, ε2, ε3, so equivalent to S1:

S2 = −
(

f(ε1)

(ε1 − ε2)(ε1 − ε3)
+

f(ε2)

(ε2 − ε1)(ε2 − ε3)
+

f(ε3)

(ε3 − ε1)(ε3 − ε2)

)
(B.36)

And therefore

Tr
(
(G0V)3

)
=

3

4

(
f(ε1)

(ε1 − ε2)(ε1 − ε3)
+

f(ε2)

(ε2 − ε1)(ε2 − ε3)
+

f(ε3)

(ε3 − ε1)(ε3 − ε2)

)
∑
q∈BZ

|∆1||∆2||∆3| cos(θ1 + θ2 + θ3) =

=
9

4

f(ε1)

(ε1 − ε2)(ε1 − ε3)

∑
q∈BZ

|∆1||∆2||∆3| cos(θ1 + θ2 + θ3) (B.37)

In Tr
(
(G0V)4

)
there appears two Matsubara sums. The first one is

S3 =
1

β

∑
n

1

(−iωn + εβ(~q))2(−iωn + εγ(~q))2
=

1

β

∑
n

1

(iωn − εβ(~q))2(iωn − εγ(~q))2

(B.38)

It has two second order poles z = εβ and z = εγ .

Res[f(z)g(z), z = εβ] = lim
z→εβ

d

dz

(
f(z)

(z − εγ)2

)
=

f ′(εβ)

(εβ − εγ)2
−

2f(εβ)

(εβ − εγ)3
(B.39)

Res[f(z)g(z), z = εγ ] =
f ′(εγ)

(εγ − εβ)2
− 2f(εγ)

(εγ − εβ)3
(B.40)

S3 =
f ′(εβ) + f ′(εγ)

(εβ − εγ)2
− 2

f(εβ)− f(εγ)

(εβ − εγ)3
(B.41)

When taking the sum over q of this sum, we can see that
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∑
q∈BZ

(
f ′(ε3) + f ′(ε1)

(ε3 − ε1)2
− 2

f(ε3)− f(ε1)

(ε3 − ε1)3

)
=
∑
q∈BZ

(
f ′(ε2) + f ′(ε3)

(ε2 − ε3)2
− 2

f(ε2)− f(ε3)

(ε2 − ε3)3

)
∑
q∈BZ

(
f ′(ε1) + f ′(ε2)

(ε1 − ε2)2
− 2

f(ε1)− f(ε2)

(ε1 − ε2)3

)
=
∑
q∈BZ

(
f ′(ε3) + f ′(ε1)

(ε3 − ε1)2
− 2

f(ε3)− f(ε1)

(ε3 − ε1)3

)
=

=
∑
q∈BZ

(
f ′(ε2) + f ′(ε3)

(ε2 − ε3)2
− 2

f(ε2)− f(ε3)

(ε2 − ε3)3

)

The second Matsubara sum is

S4 =
1

β

∑
n

1

(−iωn + εα(~q))(−iωn + εβ(~q))(−iωn + εγ(~q))2
=

=
1

β

∑
n

1

(iωn − εα(~q))(iωn − εβ(~q))(iωn − εγ(~q))2
(B.42)

This one has three poles, two single poles z = εα, εβ and one second order pole z = εγ .

Res[f(z)g(z), z = εα] = lim
z→εα

f(z)

(z − εβ)(z − εγ)2
=

f(εα)

(εα − εβ)(εα − εγ)2
(B.43)

Res[f(z)g(z), z = εβ] =
f(εβ)

(εβ − εα)(εβ − εγ)2
(B.44)

Res[f(z)g(z), z = εγ ] = lim
z→εγ

d

dz

(
f(z)

(z − εα)(z − εβ)

)
=

=
f ′(εγ)

(εγ − εα)(εγ − εβ)
− f(εγ)

(εγ − εα)2(εγ − εβ)
− f(εγ)

(εγ − εα)(εγ − εβ)2
(B.45)

S4 =
f(εα)

(εα − εβ)(εα − εγ)2
+

f(εβ)

(εβ − εα)(εβ − εγ)2
+

f ′(εγ)

(εγ − εα)(εγ − εβ)
+

− f(εγ)

(εγ − εα)2(εγ − εβ)
− f(εγ)

(εγ − εα)(εγ − εβ)2
(B.46)

Taking α = 1, β = 2, γ = 3 and the sum of q over the BZ of S4:

∑
q∈BZ

f(ε1)

(ε1 − ε2)(ε1 − ε3)2
+
∑
q∈BZ

f(ε2)

(ε2 − ε1)(ε2 − ε3)2
+
∑
q∈BZ

f ′(ε3)

(ε3 − ε1)(ε3 − ε2)
+

−
∑
q∈BZ

f(ε3)

(ε3 − ε1)2(ε3 − ε2)
−
∑
q∈BZ

f(ε3)

(ε3 − ε1)(ε3 − ε2)2
=

=

������������∑
q∈BZ

f(ε3)

(ε3 − ε1)(ε3 − ε2)2
+
XXXXXXXXXXXX

∑
q∈BZ

f(ε2)

(ε2 − ε1)(ε2 − ε3)2
+
∑
q∈BZ

f ′(ε3)

(ε3 − ε1)(ε3 − ε2)
+

−
XXXXXXXXXXXX

∑
q∈BZ

f(ε2)

(ε2 − ε3)2(ε2 − ε1)
−
������������∑
q∈BZ

f(ε3)

(ε3 − ε1)(ε3 − ε2)2
=
∑
q∈BZ

f ′(ε3)

(ε3 − ε1)(ε3 − ε2)
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Analogously, for α = 2, β = 3, γ = 1 and for α = 1, β = 3, γ = 2, one gets

∑
q∈BZ

f ′(ε3)

(ε3 − ε1)(ε3 − ε2)
(B.47)

Substituting these sums in (B.27):

Tr
(
(G0V)4

)
=

1

16

∑
q∈BZ

1

β

∑
n

∑
α

|∆α|4|εαβγ |
(−iωn + εβ(~q))2(−iωn + εγ(~q))2

+

+
1

8

∑
q∈BZ

1

β

∑
n

∑
αβ

|∆α|2|∆β|2|εαβγ |
(−iωn + εα(~q))(−iωn + εβ(~q))(−iωn + εγ(~q))2

=
1

8

∑
q∈BZ

(
f ′(ε2) + f ′(ε3)

(ε2 − ε3)2
− 2

f(ε2)− f(ε3)

(ε2 − ε3)3

)∑
α

|∆α|4+

+
1

4

∑
q∈BZ

f ′(ε3)

(ε3 − ε1)(ε3 − ε2)

∑
αβ

|∆α|2|∆β|2 =

=
1

4

∑
q∈BZ

(
f ′(ε2) + f ′(ε3)

2(ε2 − ε3)2
− f(ε2)− f(ε3)

(ε2 − ε3)3

)∑
α

|∆α|4+

+
1

12

∑
q∈BZ

(
f ′(ε1)

(ε1 − ε2)(ε1 − ε3)
+

f ′(ε2)

(ε2 − ε3)(ε2 − ε1)
+

f ′(ε3)

(ε3 − ε1)(ε3 − ε2)

)∑
αβ

|∆α|2|∆β|2

(B.48)

Putting it all together, we get that the free energy for the CDW complex parameter
is:

fCDW =
1

2

(
1

2GrCDW
+

1

2GiCDW

)∑
α

|∆α|2 +
1

2

(
1

2GrCDW
− 1

2GiCDW

)∑
α

|∆α|2 cos(2θα)+

+
1

4

∑
q∈BZ

f(ε2(~q))− f(ε3(~q))

ε2(~q)− ε3(~q)

∑
α

|∆α|2+

−3

4

∑
q∈BZ

f(ε1)

(ε1 − ε2)(ε1 − ε3)
|∆1||∆2||∆3| cos(θ1 + θ2 + θ3)+

+
1

16

∑
q∈BZ

(
f ′(ε2) + f ′(ε3)

2(ε2 − ε3)2
− f(ε2)− f(ε3)

(ε2 − ε3)3

)∑
α

|∆α|4+

+
1

48

∑
q∈BZ

(
f ′(ε1)

(ε1 − ε2)(ε1 − ε3)
+

f ′(ε2)

(ε2 − ε3)(ε2 − ε1)
+

f ′(ε3)

(ε3 − ε1)(ε3 − ε2)

)∑
αβ

|∆α|2|∆β|2 =

=
1

2

(
1

2GrCDW
+

1

2GiCDW

)∑
α

|∆α|2 +
1

2

(
1

2GrCDW
− 1

2GiCDW

)∑
α

|∆α|2 cos(2θα)+

+K1

∑
α

|∆α|2 +K2|∆1||∆2||∆3| cos(θ1 + θ2 + θ3) +K4

∑
α

|∆α|4 +K3

∑
αβ

|∆α|2|∆β|2
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fCDW =
rN + rφ

2

∑
α

|∆α|2 +
rN − rφ

2

∑
α

|∆α|2 cos(2θα) +K2|∆1||∆2||∆3| cos(θ1 + θ2 + θ3)+

+K4

(∑
α

|∆α|2|

)2

+ (K3 − 2K4)
∑
αβ

|∆α|2|∆β|2

(B.49)

rN =
1

2GrCDW
+K1 rφ =

1

2GiCDW
+K1 (B.50)

K1 =
1

4

∑
q∈BZ

f(ε2(~q))− f(ε3(~q))

ε2(~q)− ε3(~q)
(B.51)

K2 = −3

4

∑
q∈BZ

f(ε1)

(ε1 − ε2)(ε1 − ε3)
= (B.52)

= −1

4

(
f(ε1)

(ε1 − ε2)(ε1 − ε3)
+

f(ε2)

(ε2 − ε1)(ε2 − ε3)
+

f(ε3)

(ε3 − ε1)(ε3 − ε2)

)
(B.53)

K3 =
1

16

∑
q∈BZ

f ′(ε1)

(ε1 − ε2)(ε1 − ε3)
= (B.54)

=
1

48

∑
q∈BZ

(
f ′(ε1)

(ε1 − ε2)(ε1 − ε3)
+

f ′(ε2)

(ε2 − ε3)(ε2 − ε1)
+

f ′(ε3)

(ε3 − ε1)(ε3 − ε2)

)
(B.55)

K4 = − 1

16

∑
q∈BZ

(
f(ε2)− f(ε3)

(ε2 − ε3)3
− f ′(ε2) + f ′(ε3)

2(ε2 − ε3)2

)
(B.56)

Therefore, we obtain equation (9) with the coefficients given in (D1)-(D4)
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C.1 Hubbard-Stratonovich transformation to decouple the
interactions.

Starting from the Hamiltonian in (??):

H ′′ =− V

2N
∑
αβ

∑
~q~k~k′

(1− δαβ)
(
1 + e−2i(~k′−~k)·~aαβ

)
c†~k′β

c~k′+~qα
c†~k+~qα

c~kβ

=− V

2N
∑
αβ

∑
~q~k~k′

(1− δαβ)

[
c†~k′β

c~k′+~qα
c†~k+~qα

c~kβ + e−2i~k′·~aαβc†~k′β
c~k′+~qα

e−2i~k·~aβαc†~k+~qα
c~kβ

]
.

At first we can define the fields:

nαβ
~q =

1

N
(1− δαβ)

∑
~k

c†~k+~qα
c~kβ , (nαβ

~q )† =
1

N
(1− δαβ)

∑
~k

c†~kβ
c~k+~qα

,

mαβ
~q =

1

N
(1− δαβ)

∑
~k

e−2i~k·~aαβc†~k+~qα
c~kβ , (mαβ

~q )† =
1

N
(1− δαβ)

∑
~k

e−2i~k·~aβαc†~kβ
c~k+~qα

,

so that the Hamiltonian is

H ′′ = −VN
2

∑
αβ

∑
~q

(1− δαβ)
[
(nαβ

~q )†nαβ
~q + (mαβ

~q )†mαβ
~q

]
.

But we can also divide these fields in their real and imaginary parts as given by (5.13):

nαβ
~q = nαβ

~qR + nαβ
~qI ⇒ (nαβ

~q )† = (nαβ
~qR)

† + (nαβ
~qI )

† = nαβ
~qR − nαβ

~qI ,

where we can recall that:
nαβ
~qR =

1

2N
(1− δαβ)

∑
~k

(
c†~k+~qα

c~kβ + c†~kβ
c~k+~qα

)
= (nαβ

~qR)
† ,

nαβ
~qI =

1

2N
(1− δαβ)

∑
~k

(
c†~k+~qα

c~kβ − c†~kβ
c~k+~qα

)
= −(nαβ

~qI )
† ,

so that the associated term in the Hamiltonian is:

(nαβ
~q )†nαβ

~q =
(
nαβ
~qR + nαβ

~qI

)(
nαβ
~qR − nαβ

~qI

)
= (nαβ

~qR)
2 − nαβ

~qRn
αβ
~qI + nαβ

~qI n
αβ
~qR − (nαβ

~qI )
2

= (nαβ
~qR)

2 − (nαβ
~qI )

2 .
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Analogous for the other bilinear,

mαβ
~q = mαβ

~qR +mαβ
~qI ⇒ (mαβ

~q )† = (mαβ
~qR)

† + (mαβ
~qI )

† = mαβ
~qR −mαβ

~qI ,

where we can recall that:
mαβ

~qR =
1

2N
(1− δαβ)

∑
~k

(
e−2i~k·~aαβc†~k+~qα

c~kβ + e−2i~k·~aβαc†~kβ
c~k+~qα

)
= (mαβ

~qR)
† ,

mαβ
~qI =

1

2N
(1− δαβ)

∑
~k

(
e−2i~k·~aαβc†~k+~qα

c~kβ − e−2i~k·~aβαc†~kβ
c~k+~qα

)
= −(mαβ

~qI )
† ,

so that the associated term in the Hamiltonian is:

(mαβ
~q )†mαβ

~q =
(
mαβ

~qR +mαβ
~qI

)(
mαβ

~qR −mαβ
~qI

)
= (mαβ

~qR)
2 −mαβ

~qRm
αβ
~qI +mαβ

~qI m
αβ
~qR − (mαβ

~qI )
2

= (mαβ
~qR)

2 − (mαβ
~qI )

2 .

Now, the Hamiltonian can be rewritten as

H ′′ = −VN
2

∑
αβ

∑
~q

[
(nαβ

~qR)
2 − (nαβ

~qI )
2 + (mαβ

~qR)
2 − (mαβ

~qI )
2
]

but for the doing the HS transformation I will use the Hamiltonian in the form:

H ′′ = −VN
2

∑
αβ

∑
~q

[
(nαβ

~qR)
†nαβ

~qR + (nαβ
~qI )

†nαβ
~qI + (mαβ

~qR)
†mαβ

~qR + (mαβ
~qI )

†mαβ
~qI

]
so that in the transformation I will not use the fact that they are real or imaginary, and
all of the bilinears will be decoupled as the usual repulsive interactions.

One can introduce four white-noise fields γi with the gaussian actions

Sγ1 = − N
2V

∫ β

0
dτ
∑
~qαβ

γ̄αβ~qi γ
αβ
~qi with i = 1, 2, 3, 4. (C.1)

Then, in the action one can do the substitution

H ′′ → H̃ ′′ =
N
2

∑
~qµ

(
− V n̄αβ

~qRn
αβ
~qR + V −1γ̄αβ~q1 γ

αβ
~q1 − V n̄αβ

~qI n
αβ
~qI + V −1γ̄αβ~q2 γ

αβ
~q2 (C.2)

− V m̄αβ
~qRm

αβ
~qR + V −1γ̄αβ~q3 γ

αβ
~q3 − V m̄αβ

~qI m
αβ
~qI + V −1γ̄αβ~q4 γ

αβ
~q4

)
(C.3)

Doing the variable shifts,

γαβ~q1 = Nαβ
~qR − V nαβ

~qR , γαβ~q2 = Nαβ
~qI − V nαβ

~qI , γαβ~q3 = Mαβ
~qR − V mαβ

~qR , γαβ~q4 = Mαβ
~qI − V mαβ

~qI ,

we get that, for instance, the term corresponding to γ1 is:

V −1
∑
αβ

γ̄αβ~q1 γ
αβ
~q1 =V −1

∑
αβ

(
N̄αβ

~qR − V n̄αβ
~qR

)(
Nαβ

~qR − V nαβ
~qR

)
=
∑
αβ

(
V −1N̄αβ

~qRNαβ
~qR − N̄αβ

~qRnαβ
~qR − n̄αβ

~qRN
αβ
~qR + V n̄αβ

~qRn
αβ
~qR

)
.
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We can see that the last term will cancel the corresponding bilinear term in (C.3).
Analogous for the rest of the fields, (C.3) becomes:

H̃ ′′ =− N
2

∑
~qαβ

(
N̄αβ

~qRnαβ
~qR + n̄αβ

~qRN
αβ
~qR + N̄αβ

~qI nαβ
~qI + n̄αβ

~qI N
αβ
~qI + M̄αβ

~qRmαβ
~qR + m̄αβ

~qRM
αβ
~qR

+ M̄αβ
~qI mαβ

~qI + m̄αβ
~qI M

αβ
~qI

)
+

N
2V

∑
~qαβ

(
N̄αβ

~qRNαβ
~qR + N̄αβ

~qI Nαβ
~qI + M̄αβ

~qRMαβ
~qR + M̄αβ

~qI Mαβ
~qI

)
.

Now we can use whether they are real or imaginary to simplify some of the terms:

H̃ ′′ =− N
2

∑
~qµ

(
Nαβ

~qRnαβ
~qR + nαβ

~qRN
αβ
~qR −Nαβ

~qI nαβ
~qI − nαβ

~qI N
αβ
~qI +Mαβ

~qRmαβ
~qR +mαβ

~qRM
αβ
~qR

−Mαβ
~qI mαβ

~qI −mαβ
~qI M

αβ
~qI

)
+

N
2V

∑
~qµ

(
Nαβ

~qRNαβ
~qR −Nαβ

~qI Nαβ
~qI +Mαβ

~qRMαβ
~qR −Mαβ

~qI Mαβ
~qI

)
=−N

∑
~qµ

(
Nαβ

~qRnαβ
~qR −Nαβ

~qI nαβ
~qI +Mαβ

~qRmαβ
~qR −Mαβ

~qI mαβ
~qI

)
+

N
2V

∑
~qµ

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)
. (C.4)

Introducing this expression of H ′′ in the action, we get:

S =

∫ β

0
dτ

[∑
~kα

c̄~kα∂τ c~kα +
∑
~kαβ

c̄~kαhαβ(
~k)c~kβ −N

∑
~qαβ

(
Nαβ

~qRnαβ
~qR −Nαβ

~qI nαβ
~qI +Mαβ

~qRmαβ
~qR

−Mαβ
~qI mαβ

~qI

)
+

N
2V

∑
~qαβ

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)]
.

Substituting back the expression of the bilinears in terms of the fermionic operators:

S =

∫ β

0
dτ

[∑
~kα

c̄~kα∂τ c~kα +
∑
~kαβ

c̄~kαhαβ(
~k)c~kβ − 1

2
(1− δαβ)

∑
αβ

∑
~k~q

(
Nαβ

~qR

(
c̄~k+~qα

c~kβ + c̄~kβc~k+~qα

)
−Nαβ

~qI

(
c̄~k+~qα

c~kβ − c̄~kβc~k+~qα

)
+Mαβ

~qR

(
e−2i~k·~aαβ c̄~k+~qα

c~kβ + e−2i~k·~aβα c̄~kβc~k+~qα

)
−Mαβ

~qI

(
e−2i~k·~aαβ c̄~k+~qα

c~kβ − e−2i~k·~aβα c̄~kβc~k+~qα

))

+
N
2V

∑
~qαβ

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)]

=

∫ β

0
dτ

[∑
~kα

c̄~kα∂τ c~kα +
∑
~kαβ

c̄~kαhαβ(
~k)c~kβ − 1

2
(1− δαβ)

∑
αβ

∑
~k~q

(
Nαβ

~qR c̄~k+~qα
c~kβ

+Nαβ
~qR c̄~kβc~k+~qα

−Nαβ
~qI c̄~k+~qα

c~kβ +Nαβ
~qI c̄~kβc~k+~qα

+Mαβ
~qR e−2i~k·~aαβ c̄~k+~qα

c~kβ

+Mαβ
~qR e−2i~k·~aβα c̄~kβc~k+~qα

−Mαβ
~qI e−2i~k·~aαβ c̄~k+~qα

c~kβ +Mαβ
~qI e−2i~k·~aβα c̄~kβc~k+~qα

)

+
N
2V

∑
~qαβ

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)]
.
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We would like to have all of the terms that include the fermionic operators in terms of the
same c̄~kα , c~k′β so that we can write them all as c̄~kα( )c~k′β. Therefore, we can first asjust
the sublattice indices, which we can do by relabeling given that we are summing over all
of them. Therefore,

S =

∫ β

0
dτ
∑
αβ

[∑
~k

c̄~kα∂τδαβc~kβ +
∑
~k

c̄~kαhαβ(
~k)c~kβ − 1

2
(1− δαβ)

∑
~k~q

(
Nαβ

~qR c̄~k+~qα
c~kβ

+Nβα
~qR c̄~kαc~k+~qβ

−Nαβ
~qI c̄~k+~qα

c~kβ +Nβα
~qI c̄~kαc~k+~qβ

+Mαβ
~qR e−2i~k·~aαβ c̄~k+~qα

c~kβ

+Mβα
~qR e−2i~k·~aαβ c̄~kαc~k+~qβ

−Mαβ
~qI e−2i~k·~aαβ c̄~k+~qα

c~kβ +Mβα
~qI e−2i~k·~aαβ c̄~kαc~k+~qβ

)

+
N
2V

∑
~q

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)]
.

Now we can adjust the momentum indices in the same way:

S =

∫ β

0
dτ
∑
αβ

[∑
~k~k′

c̄~kα∂τδαβδ~k~k′c~k′β +
∑
~k~k′

c̄~kαhαβ(
~k)δ~k~k′c~k′β − 1

2
(1− δαβ)

∑
~k~k′

(
Nαβ

~k−~k′R
c̄~kαc~k′β

+Nβα
~k′−~kR

c̄~kαc~k′β −Nαβ
~k−~k′I

c̄~kαc~k′β +Nβα
~k′−~kI

c̄~kαc~k′β +Mαβ
~k−~k′R

e−2i~k′·~aαβ c̄~kαc~k′β

+Mβα
~k′−~kR

e−2i~k·~aαβ c̄~kαc~k′β −Mαβ
~k−~k′I

e−2i~k′·~aαβ c̄~kαc~k′β +Mβα
~k′−~kI

e−2i~k·~aαβ c̄~kαc~k′β

)
+

N
2V

∑
~q

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)]

=

∫ β

0
dτ
∑
αβ

[∑
~k~k′

c̄~kα

(
∂τδαβδ~k~k′ + hαβ(~k)δ~k~k′ −

1

2
(1− δαβ)

(
Nαβ

~k−~k′R
+Nβα

~k′−~kR
−Nαβ

~k−~k′I

+Nβα
~k′−~kI

+Mαβ
~k−~k′R

e−2i~k′·~aαβ +Mβα
~k′−~kR

e−2i~k·~aαβ −Mαβ
~k−~k′I

e−2i~k′·~aαβ

+Mβα
~k′−~kI

e−2i~k·~aαβ

))
c~k′β +

N
2V

∑
~q

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)]
.

Finally, defining the effective Hamiltonian

Hαβ(~k,~k
′)[NR, NI ,MR,MI ] =hαβ(~k)δ~k~k′ −

1

2
(1− δαβ)

[
Nαβ

~k−~k′R
+Nβα

~k′−~kR
−Nαβ

~k−~k′I

+Nβα
~k′−~kI

+
(
Mαβ

~k−~k′R
−Mαβ

~k−~k′I

)
e−2i~k′·~aαβ

+
(
Mβα

~k′−~kR
+Mβα

~k′−~kI

)
e−2i~k·~aαβ

]
, (C.5)

we get that the action is

S =

∫ β

0
dτ
∑
αβ

[∑
~k~k′

c̄~kα

(
∂τδ~k~k′δαβ +Hαβ(~k,~k

′)[NR, NI ,MR,MI ]

)
c~k′β

+
N
2V

∑
~q

((
Nαβ

~qR

)2 − (Nαβ
~qI

)2
+
(
Mαβ

~qR

)2 − (Mαβ
~qI

)2)]
. (C.6)
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At this point, we can substitute in the expression for the partition function and inte-
grate out the fermions

Z ≡
∫

D[NR, NI ,MR,MI ]

∫
D[c, c̄]e−S[c,c̄,NR,NI ,MR,MI ]

=

∫
D[NR, NI ,MR,MI ]e

−SE [NR,NI ,MR,MI ], (C.7)

where

e−SE [N,N̄,M,M̄ ] =

∫
D[c, c̄]e−S[c,c̄,NR,NI ,MR,MI ]

=

[∫
D[c, c̄]e−

∫ β
0 dτ c̄(∂τ1+H[NR,NI ,MR,MI ])c

]
e
− N

2V

∫ β
0 dτ

∑
~q

∑
αβ

(
(Nαβ

~qR
)2−(Nαβ

~qI
)2+(Mαβ

~qR
)2−(Mαβ

~qI
)2
)

= det (∂τ1+H[NR, NI ,MR,MI ]) e
− N

2V

∫ β
0 dτ

∑
~q

∑
αβ

(
(Nαβ

~qR
)2−(Nαβ

~qI
)2+(Mαβ

~qR
)2−(Mαβ

~qI
)2
)
.

In the last equality the Gaussian integral has been carried out. Furthermore, using
the property det(A) = elog(det(A)) = eTr(log(A)),

SE [N, N̄,M, M̄ ] =− Tr (log (∂τ1+H[NR, NI ,MR,MI ]))

+
N
2V

∫ β

0
dτ
∑
~q

∑
αβ

(
(Nαβ

~qR )2 − (Nαβ
~qI )2 + (Mαβ

~qR )2 − (Mαβ
~qI )2

)
(C.8)

C.2 Saddle-point equations and mean-field solutions.

Let us solve the saddle point equation:

δSE [NR, NI ,MR,MI ]

δNR

∣∣∣∣∣
NR=N

(0)
R

= 0 .

δe−SE [NR,NI ,MR,MI ]

δNαβ
~qR

= −e−SE [NR,NI ,MR,MI ]
δSE [NR, NI ,MR,MI ]

δNαβ
~qR

,
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so that
δSE [NR, NI ,MR,MI ]

δNαβ
~qR

=− e+SE [NR,NI ,MR,MI ]
δe−SE [NR,NI ,MR,MI ]

δNαβ
~qR

=− eSE [NR,NI ,MR,MI ]
∂

Nαβ
~qR

(∫
D[c, c̄]e−S[c,c̄,NR,NI ,MR,MI ]

)
=eSE [NR,NI ,MR,MI ]

∫
D[c, c̄]e−S[c,c̄,NR,NI ,MR,MI ]

δS[c, c̄, NR, NI ,MR,MI ]

δNαβ
~qR

=eSE [NR,NI ,MR,MI ]

∫
D[c, c̄]e−S[c,c̄,NR,NI ,MR,MI ]

(
−Nnαβ

~qR +
N
V
Nαβ

~qR

)
=−N eSE [NR,NI ,MR,MI ]

∫
D[c, c̄]e−S[c,c̄,NR,NI ,MR,MI ]nαβ

~qR︸ ︷︷ ︸〈
nαβ
~qR

〉
+

N
V
Nαβ

~qR eSE [NR,NI ,MR,MI ]

∫
D[c, c̄]e−S[c,c̄,NR,NI ,MR,MI ]︸ ︷︷ ︸

e−SE [NR,NI ,MR,MI ]

⇒ δSE [NR, NI ,MR,MI ]

δNR

∣∣∣∣∣
NR=N

(0)
R

= −N
〈
nαβ
~qR

〉
+

N
V
N

αβ(0)
~qR = 0

⇒ N
αβ(0)
~qR = V

〈
nαβ
~qR

〉
=
(
N

αβ(0)
~qR

)†
C.3 Properties of the Mean fields
This property comes from the fact that, since we are summing over all momenta in the
BZ, we can shift ~k by ~k + ~q:

N
βα(0)
−~qR =

V

2N
∑
~k

〈
c†~k−~qβ

c~kα + c†~kα
c~k−~qβ

〉 ~k→~k+~q
=

V

2N
∑
~k

〈
c†~kβ

c~k+~qα
+ c†~k+~qα

c~kβ

〉
= N

αβ(0)
~qR ,

N
βα(0)
−~qI =

V

2N
∑
~k

〈
c†~k−~qβ

c~kα − c†~kα
c~k−~qβ

〉 ~k→~k+~q
=

V

2N
∑
~k

〈
c†~kβ

c~k+~qα
− c†~k+~qα

c~kβ

〉
= −N

αβ(0)
~qI .

However, in general

M
βα(0)
−~qR =

V

2N
∑
~k

〈
e−2i~k·~aβαc†~k−~qβ

c~kα + e−2i~k·~aαβc†~kα
c~k−~qβ

〉
~k→~k+~q
=

V

2N
∑
~k

〈
e−2i(~k+~q)·~aβαc†~kβ

c~k+~qα
+ e−2i(~k+~q)·~aαβc†~k+~qα

c~kβ

〉
6∝ M

αβ(0)
~qR

M
βα(0)
−~qI =

V

2N
∑
~k

〈
e−2i~k·~aβαc†~k−~qβ

c~kα − e−2i~k·~aαβc†~kα
c~k−~qβ

〉
~k→~k+~q
=

V

2N
∑
~k

〈
e−2i(~k+~q)·~aβαc†~kβ

c~k+~qα
− e−2i(~k+~q)·~aαβc†~k+~qα

c~kβ

〉
6∝ M

αβ(0)
~qI

C.3.1 At the M point

Making use of the following relations between the ~Qi and the ~aµν we can further analyse
the M fields:
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~Q1 · ~aAB =
1

4
~g1 · ~t2 = 0 ~Q1 · ~aAC =

1

4
~g1 · ~t1 =

π

2
~Q1 · ~aBC =

1

4
~g1 · (~t1 − ~t2) =

π

2

~Q2 · ~aAB =
1

4
~g2 · ~t2 =

π

2
~Q2 · ~aAC =

1

4
~g2 · ~t1 = 0 ~Q2 · ~aBC =

1

4
~g2 · (~t1 − ~t2) = −π

2

~Q3 · ~aAB =
1

4
(~g1 + ~g2) · ~t2 =

π

2
~Q3 · ~aAC =

1

4
(~g1 + ~g2) · ~t1 =

π

2

~Q3 · ~aBC =
1

4
(~g1 + ~g2) · (~t1 − ~t2) = 0

and the fact that e±π = −1 .

Therefore, e2i ~Qi·~aαβ = e−2i ~Qi·~aαβ so we can write that at the M point

Mβα

− ~QiR
=

V

2N
∑
~k

〈
e−2i(~k+ ~Qi)·~aβαc†~kβ

c~k+ ~Qiα
+ e−2i(~k+ ~Qi)·~aαβc†~k+ ~Qiα

c~kβ

〉
=

V

2N
e2i

~Qi·~aαβ
∑
~k

〈
e−2i~k·~aβαc†~kβ

c~k+ ~Qiα
+ e−2i~k·~aαβc†~k+ ~Qiα

c~kβ

〉
= e2i

~Qi·~aαβ (Mαβ
~QiR

)† = e2i
~Qi·~aαβMαβ

~QiR

Mβα

− ~QiI
=

V

2N
∑
~k

〈
e−2i(~k+ ~Qi)·~aβαc†~kβ

c~k+ ~Qiα
− e−2i(~k+ ~Qi)·~aαβc†~k+ ~Qiα

c~kβ

〉
=

V

2N
e2i

~Qi·~aαβ
∑
~k

〈
e−2i~k·~aβαc†~kβ

c~k+ ~Qiα
− e−2i~k·~aαβc†~k+ ~Qiα

c~kβ

〉
= e2i

~Qi·~aαβ (Mαβ
~QiI

)† = −e2i
~Qi·~aαβMαβ

~QiI

Mβα

− ~QiR
= e2i

~Qi·~aαβ (Mαβ
~QiR

)† = e2i
~Qi·~aαβMαβ

~QiR
Mβα

− ~QiI
= e2i

~Qi·~aαβ (Mαβ
~qI )† = −e2i

~Qi·~aαβMαβ
~QiI

But also, at the M point, since ~Qi ≡ − ~Qi

Nβα
~QiR

= Nαβ
~QiR

Nβα
~QiI

= −Nαβ
~QiI

Mβα
~QiR

= e2i
~Qi·~aαβMαβ

~QiR
Mβα

~QiI
= −e2i

~Qi·~aαβMαβ
~QiI

Since we know that the only three independent components are αβ = AB,AC,BC,
we find that

MAB
~Q1R

= MBA
~Q1R

MAC
~Q1R

= −MCA
~Q1R

MBC
~Q1R

= −MCB
~Q1R

(C.9)

MAB
~Q2R

= −MBA
~Q2R

MAC
~Q2R

= MCA
~Q2R

MBC
~Q2R

= −MCB
~Q2R

(C.10)

MAB
~Q3R

= −MBA
~Q3R

MAC
~Q3R

= −MCA
~Q3R

MBC
~Q3R

= MCB
~Q3R

(C.11)

MAB
~Q1I

= −MBA
~Q1I

MAC
~Q1I

= MCA
~Q1I

MBC
~Q1I

= MCB
~Q1I

(C.12)

MAB
~Q2I

= MBA
~Q2I

MAC
~Q2I

= −MCA
~Q2I

MBC
~Q2I

= MCB
~Q2I

(C.13)

MAB
~Q3I

= MBA
~Q3I

MAC
~Q3I

= MCA
~Q3I

MBC
~Q3I

= −MCB
~Q3I

(C.14)
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Therefore, while NR are always symmetric in sublattice space and NI antisymmetric,
for MR,MI it depends on the components. However, if sublattice interference is exact,
MR is symmetric and MI antisymmetric.

C.4 TrLog2 for arbitrary ~q

Tr
(
(G0V )2

)
=
∑
~k~q

∑
αα′

∑
ββ′

Gαα′
0 (~k)Vα′β(~k,~k + ~q)Gββ′

0 (~k + ~q)Vβ′α(~k + ~q,~k)

=
1

4

∑
~k~q

∑
αα′

∑
ββ′

(1− δα′β)(1− δαβ′)Gαα′
0 (~k)Gββ′

0 (~k + ~q)

[
2
(
Nβα′

~qR +Nβα′

~qI

)
+ e−2i(~k+~q)·~aα′β

(
Mα′β

−~qR −Mα′β
−~qI

)
+ e−2i~k·~aα′β

(
Mβα′

~qR +Mβα′

~qI

) ]
[
2
(
Nβ′α

~qR −Nβ′α
~qI

)
+ e−2i~k·~aβ′α

(
Mβ′α

~qR −Mβ′α
~qI

)
+ e−2i(~k+~q)·~aβ′α

(
Mαβ′

−~qR +Mαβ′

−~qI

) ]
=
1

4

∑
~k~q

∑
αα′

∑
ββ′

(1− δα′β)(1− δαβ′)Gαα′
0 (~k)Gββ′

0 (~k + ~q)

[
4
(
Nβα′

~qR Nβ′α
~qR +Nβα′

~qI Nβ′α
~qR −Nβα′

~qR Nβ′α
~qI −Nβα′

~qI Nβ′α
~qI

)
+ 2e−2i~k·~aβ′α

(
Nβα′

~qR Mβ′α
~qR +Nβα′

~qI Mβ′α
~qR −Nβα′

~qR Mβ′α
~qI −Nβα′

~qI Mβ′α
~qI

)
+ 2e−2i(~k+~q)·~aβ′α

(
Nβα′

~qR Mαβ′

−~qR +Nβα′

~qI Mαβ′

−~qR +Nβα′

~qR Mαβ′

−~qI +Nβα′

~qI Mαβ′

−~qI

)
+ 2e−2i(~k+~q)·~aα′β

(
Mα′β

−~qRN
β′α
~qR −Mα′β

−~qIN
β′α
~qR −Mα′β

−~qRN
β′α
~qI +Mα′β

−~qIN
β′α
~qI

)
+ e−2i(~k+~q)·~aα′βe−2i~k·~aβ′α

(
Mα′β

−~qRM
β′α
~qR −Mα′β

−~qIM
β′α
~qR −Mα′β

−~qRM
β′α
~qI +Mα′β

−~qIM
β′α
~qI

)
+ e−2i(~k+~q)·~aα′βe−2i(~k+~q)·~aβ′α

(
Mα′β

−~qRM
αβ′

−~qR −Mα′β
−~qIM

αβ′

−~qR +Mα′β
−~qRM

αβ′

−~qI −Mα′β
−~qIM

αβ′

−~qI

)
+ 2e−2i~k·~aα′β

(
Mβα′

~qR Nβ′α
~qR +Mβα′

~qI Nβ′α
~qR −Mβα′

~qR Nβ′α
~qI −Mβα′

~qI Nβ′α
~qI

)
+ e−2i~k·~aα′βe−2i~k·~aβ′α

(
Mβα′

~qR Mβ′α
~qR +Mβα′

~qI Mβ′α
~qR −Mβα′

~qR Mβ′α
~qI −Mβα′

~qI Mβ′α
~qI

)
+ e−2i~k·~aα′βe−2i(~k+~q)·~aβ′α

(
Mβα′

~qR Mαβ′

−~qR +Mβα′

~qI Mαβ′

−~qR +Mβα′

~qR Mαβ′

−~qI +Mβα′

~qI Mαβ′

−~qI

) ]
,

which cannot really be simplified (except for the term in Nβα′

~qI Nβ′α
~qR which is equivalent

to the one in −Nβα′

~qR Nβ′α
~qI , as it is shown in the next section of the Appendix) because

there is not a expression in general that relates Mβα
−~qR(I) with M

αβ(0)
~qR(I) .

C.5 TrLog2 at the M point

Since

Nβα
~QiR

= Nαβ
~QiR

, Nβα
~QiI

= −Nαβ
~QiI

, Mβα
~QiR

= e2i
~Qi·~aαβMαβ

~QiR
, Mβα

~QiI
= −e2i

~Qi·~aαβMαβ
~QiI

,

and ~Qi is equivalent to − ~Qi, we can work first in simplifying V:
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Vα′β(~k,~k + ~Qi) =
1

2
(1− δα′β)

[
2
(
Nβα′

~QiR
+Nβα′

~QiI

)
+ e−2i(~k+ ~Qi)·~aα′β

(
Mα′β

− ~QiR
−Mα′β

− ~QiI

)
+ e−2i~k·~aα′β

(
Mβα′

~QiR
+Mβα′

~QiI

) ]
=

1

2
(1− δα′β)

[
2
(
Nβα′

~QiR
+Nβα′

~QiI

)
+ e2i(

~k+ ~Qi)·~aβα′e2i
~Qi·~aβα′

(
Mβα′

~QiR
−Mβα′

~QiI

)
+ e2i

~k·~aβα′
(
Mβα′

~QiR
+Mβα′

~QiI

) ]
= (1− δα′β)

[ (
Nβα′

~QiR
+Nβα′

~QiI

)
+ e2i

~k·~aβα′
(
Mβα′

~QiR
+Mβα′

~QiI

) ]
.

For the last equality it has been used that e2i
~Qi·~aβα′ = ±1, so e4i

~Qi·~aβα′ = 1 always.
Analogously,

Vβ′α(~k + ~Qi,~k) =
1

2
(1− δβ′α)

[
2
(
Nβ′α

~QiR
−Nβ′α

~QiI

)
+ e−2i~k·~aβ′α

(
Mβ′α

~QiR
−Mβ′α

~QiI

)
+ e−2i(~k+ ~Qi)·~aβ′α

(
Mαβ′

− ~QiR
+Mαβ′

− ~QiI

) ]
=

1

2
(1− δβ′α)

[
2
(
Nβ′α

~QiR
−Nβ′α

~QiI

)
+ e−2i~k·~aβ′α

(
Mβ′α

~QiR
−Mβ′α

~QiI

)
+ e−2i(~k+ ~Qi)·~aβ′αe2i

~Qi·~aβ′α
(
Mβ′α

~QiR
−Mβ′α

~QiI

) ]
= (1− δβ′α)

[ (
Nβ′α

~QiR
−Nβ′α

~QiI

)
+ e−2i~k·~aβ′α

(
Mβ′α

~QiR
−Mβ′α

~QiI

) ]
.

Now we can substitute these expressions into (5.26) with the objective of obtaining
(5.32).

Tr
(
(G0V )2

)
=
∑
~k~k′

∑
αα′

∑
ββ′

Gαα′
0 (~k)Vα′β(~k,~k′)Gββ′

0 (~k′)Vβ′α(~k′,~k)

=
∑
~ki

∑
αα′

∑
ββ′

Gαα′
0 (~k)Vα′β(~k,~k + ~Qi)G

ββ′

0 (~k + ~Qi)Vβ′α(~k + ~Qi,~k)

=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
αα′
0 (~k)Gββ′

0 (~k + ~Qi)[ (
Nβα′

~QiR
+Nβα′

~QiI

)
+ e2i

~k·~aβα′
(
Mβα′

~QiR
+Mβα′

~QiI

) ]
[ (

Nβ′α
~QiR

−Nβ′α
~QiI

)
+ e−2i~k·~aβ′α

(
Mβ′α

~QiR
−Mβ′α

~QiI

) ]
=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
αα′
0 (~k)Gββ′

0 (~k + ~Qi)[ (
Nβα′

~QiR
Nβ′α

~QiR
+Nβα′

~QiI
Nβ′α

~QiR
−Nβα′

~QiR
Nβ′α

~QiI
−Nβα′

~QiI
Nβ′α

~QiI

)
+ e−2i~k·~aβ′α

(
Nβα′

~QiR
Mβ′α

~QiR
+Nβα′

~QiI
Mβ′α

~QiR
−Nβα′

~QiR
Mβ′α

~QiI
−Nβα′

~QiI
Mβ′α

~QiI

)
+ e2i

~k·~aβα′
(
Mβα′

~QiR
Nβ′α

~QiR
+Mβα′

~QiI
Nβ′α

~QiR
−Mβα′

~QiR
Nβ′α

~QiI
−Mβα′

~QiI
Nβ′α

~QiI

)
+ e2i

~k·~aβα′e−2i~k·~aβ′α
(
Mβα′

~QiR
Mβ′α

~QiR
+Mβα′

~QiI
Mβ′α

~QiR
−Mβα′

~QiR
Mβ′α

~QiI
−Mβα′

~QiI
Mβ′α

~QiI

) ]
.

Now, let us see how it is possible to simplify some of the terms. First of all, let us see how
the term in Nβα′

~qI Nβ′α
~qR is equivalent to the one in −Nβα′

~qR Nβ′α
~qI , which means showing that
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TNINR
=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
αα′
0 (~k)Gββ′

0 (~k + ~Qi)N
βα′

~QiI
Nβ′α

~QiR

=−
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
αα′
0 (~k)Gββ′

0 (~k + ~Qi)N
βα′

~QiR
Nβ′α

~QiI
.

To show this I will start from the first equality, where we can use that, since we are
summing over all of the sublattice indices, we can relabel α ↔ β and α′ ↔ β′:

TNINR
=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
ββ′

0 (~k)Gαα′
0 (~k + ~Qi)N

αβ′

~QiI
Nα′β

~QiR
.

Now, in order to have the terms in the Green functions the same, we can first shift the
momentum transferred ~Qi → ~Qi, and then shift the momentum ~k → ~k+ ~Qi, which we can
do because we are summing over all momenta:

TNINR
=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
ββ′

0 (~k + ~Qi)G
αα′
0 (~k)Nαβ′

− ~QiI
Nα′β

− ~QiR
.

Finally, to match the correct sublattice indices, we can use (C.5), so that we find that
the two terms are indeed the same:

TNINR
=−

∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
ββ′

0 (~k + ~Qi)G
αα′
0 (~k)Nβ′α

~QiI
Nβα′

~QiR
.

The same steps and transformations can be used to show it for one of the terms that
has an exponential prefactor:

TNIMR
=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
αα′
0 (~k)Gββ′

0 (~k + ~Qi)e
−2i~k·~aβ′αNβα′

~QiI
Mβ′α

~QiR

=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
ββ′

0 (~k)Gαα′
0 (~k + ~Qi)e

−2i~k·~aα′βNαβ′

~QiI
Mα′β

~QiR

=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
ββ′

0 (~k + ~Qi)G
αα′
0 (~k)e2i(

~k+ ~Qi)·~aβα′Nαβ′

− ~QiI
Mα′β

− ~QiR

=−
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
ββ′

0 (~k + ~Qi)G
αα′
0 (~k)e2i

~k·~aβα′Nβ′α
~QiI

Mβα′

~QiR
.

An analogous procedure can be followed to show that the rest of the terms are equal
to the one with the fields in opposite order, simplifying the expression of Tr

(
(G0V )2

)
to

be:
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Tr
(
(G0V )2

)
=
∑
~ki

∑
αα′

∑
ββ′

(1− δα′β)(1− δβ′α)G
αα′
0 (~k)Gββ′

0 (~k + ~Qi)[ (
Nβα′

~QiR
Nβ′α

~QiR
+ 2Nβα′

~QiI
Nβ′α

~QiR
−Nβα′

~QiI
Nβ′α

~QiI

)
+ 2e−2i~k·~aβ′α

(
Nβα′

~QiR
Mβ′α

~QiR
+Nβα′

~QiI
Mβ′α

~QiR
−Nβα′

~QiR
Mβ′α

~QiI
−Nβα′

~QiI
Mβ′α

~QiI

)
+ e−2i~k·(~aβ′α−~aβα′ )

(
Mβα′

~QiR
Mβ′α

~QiR
+ 2Mβα′

~QiI
Mβ′α

~QiR
−Mβα′

~QiI
Mβ′α

~QiI

) ]
=
∑
i

∑
αα′

∑
ββ′

[
Cβα′β′α
NN ( ~Qi)

(
Nβα′

~QiR
Nβ′α

~QiR
+ 2Nβα′

~QiI
Nβ′α

~QiR
−Nβα′

~QiI
Nβ′α

~QiI

)
+ Cβα′β′α

MM ( ~Qi)
(
Mβα′

~QiR
Mβ′α

~QiR
+ 2Mβα′

~QiI
Mβ′α

~QiR
−Mβα′

~QiI
Mβ′α

~QiI

)
+ Cβα′β′α

NM ( ~Qi)
(
Nβα′

~QiR
Mβ′α

~QiR
+Nβα′

~QiI
Mβ′α

~QiR
−Nβα′

~QiR
Mβ′α

~QiI
−Nβα′

~QiI
Mβ′α

~QiI

) ]
,

with

Cβα′β′α
NN ( ~Qi) =(1− δα′β)(1− δαβ′)

∑
~k

Gαα′
0 (~k)Gββ′

0 (~k + ~Qi) ,

Cβα′β′α
MM ( ~Qi) =(1− δα′β)(1− δαβ′)

∑
~k

Gαα′
0 (~k)Gββ′

0 (~k + ~Qi)e
−2i~k·(~aβ′α−~aβα′ ) ,

Cβα′β′α
NM ( ~Qi) =2(1− δα′β)(1− δαβ′)

∑
~k

Gαα′
0 (~k)Gββ′

0 (~k + ~Qi)e
−2i~k·~aβ′α .

Furthermore, logic tells us that all of the terms that are a product of a real and an
imaginary field should be zero, since the free energy needs to be real. Let us see a way to
show that said terms are indeed zero.

Imaginary terms =
∑
i

∑
αα′

∑
ββ′

[
2Cβα′β′α

NN ( ~Qi)N
βα′

~QiI
Nβ′α

~QiR
+ 2Cβα′β′α

MM ( ~Qi)M
βα′

~QiI
Mβ′α

~QiR

+ Cβα′β′α
NM ( ~Qi)

(
Nβα′

~QiI
Mβ′α

~QiR
−Nβα′

~QiR
Mβ′α

~QiI

) ]
.

First we can transpose the fields using (C.5):

Imaginary terms =
∑
i

∑
αα′

∑
ββ′

[
− 2Cβα′β′α

NN ( ~Qi)N
α′β
~QiI

Nαβ′

~QiR

− 2e2i
~Qi·~aα′βe2i

~Qi·~aαβ′Cβα′β′α
MM ( ~Qi)M

α′β
~QiI

Mαβ′

~QiR

− e2i
~Qi·~aαβ′Cβα′β′α

NM ( ~Qi)
(
Nα′β

~QiI
Mαβ′

~QiR
−Nα′β

~QiR
Mαβ′

~QiI

) ]
,

And now we can relabel β ↔ α′, β′ ↔ α to recover the initial indices that the fields
had before:

Imaginary terms =
∑
i

∑
αα′

∑
ββ′

[
− 2Cα′βαβ′

NN ( ~Qi)N
βα′

~QiI
Nβ′α

~QiR

− 2e2i
~Qi·(~aβα′+~aβ′α)Cα′βαβ′

MM ( ~Qi)M
βα′

~QiI
Mβ′α

~QiR

− e2i
~Qi·~aβ′αCα′βαβ′

NM ( ~Qi)
(
Nβα′

~QiI
Mβ′α

~QiR
−Nβα′

~QiR
Mβ′α

~QiI

) ]
.
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We can see that all the terms have changed sign under these manipulations. Hence, if
we could show that

Cβα′β′α
NN ( ~Qi) = Cα′βαβ′

NN ( ~Qi) , (C.15a)

Cβα′β′α
MM ( ~Qi) = e2i

~Qi·(~aβα′+~aβ′α)Cα′βαβ′

MM ( ~Qi) , (C.15b)

Cβα′β′α
NM ( ~Qi) = e2i

~Qi·~aβ′αCα′βαβ′

NM ( ~Qi) , (C.15c)

we would be showing that those terms are zero. This can be done numerically, results
of which can be found in Fig. C.1 at the upper vH point. Since we find that the matri-
ces resulting from the matrix elements on both sides of each equation are the same, we
conclude that the corresponding terms in the free energy vanish. It was also verified at
different chemical potentials, although for simplicity, in C.1 only the calculations for the
upper vH point are shown.
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Figure C.1: Comparison of the matrices arising from the two different ways of defining
the matrix elements, as shown in (C.15), for µ = 0. (a)-(c) represent the graphical
representation of the matrices with the matrix elements in the left-hand-sides of (C.15)
and (d)-(f) the right-hand-sides, respectively. (g)-(i) show the difference between the two.

As a result, the final expression for the second order term of the TrLog expansion at
the M point is
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Tr
(
(G0V )2

)
=
∑
i

∑
αα′

∑
ββ′

[
Cβα′β′α
NN ( ~Qi)

(
Nβα′

~QiR
Nβ′α

~QiR
−Nβα′

~QiI
Nβ′α

~QiI

)
+Cβα′β′α

MM ( ~Qi)
(
Mβα′

~QiR
Mβ′α

~QiR
−Mβα′

~QiI
Mβ′α

~QiI

)
+Cβα′β′α

NM ( ~Qi)
(
Nβα′

~QiR
Mβ′α

~QiR
−Nβα′

~QiI
Mβ′α

~QiI

) ]
,

with

Cβα′β′α
NN ( ~Qi) =(1− δα′β)(1− δαβ′)

∑
~k

Gαα′
0 (~k)Gββ′

0 (~k + ~Qi) ,

Cβα′β′α
MM ( ~Qi) =(1− δα′β)(1− δαβ′)

∑
~k

Gαα′
0 (~k)Gββ′

0 (~k + ~Qi)e
−2i~k·(~aβ′α−~aβα′ ) ,

Cβα′β′α
NM ( ~Qi) =2(1− δα′β)(1− δαβ′)

∑
~k

Gαα′
0 (~k)Gββ′

0 (~k + ~Qi)e
−2i~k·~aβ′α .

C.6 Numerical details
The momentum grid was chosen so that in the calculation of the coefficients the greater
error made between probed grid sizes was smaller than 10−4 as depicted in Fig. C.2. The
chosen coefficient to calculate was CNN .
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Figure C.2: Comparison of the error made between different chosen k-grid sizes when
calculating the coefficient CNN .

A similar calculation was made for the bare susceptibility, the results of which are
found in Fig. C.3. There is also a comparisson between the usual grid size, 250× 250, the
one used for calculating Fig. ??(b), which shows that the qualitative information obtained
from the figure is still valid.

The calculated bare susceptibility at µ = 0.08 can also be compared to the one calcu-
lated in Ref. [29], shown in Fig. C.4. The only difference seems to be a factor of 2, which
could come from a spin sum.
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Figure C.3: Comparison of the error made between different chosen k-grid sizes when
calculating the bare susceptibility χ0 from (5.29).
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Figure C.4: Comparison of the bare susceptibility at µ = 0.08 calculated in Ref. [29] (left)
and my calculation (right).
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