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6.4.3 Kagomé lattice with anisotropy in local xy-plane . . . . . . . . . . . . . 64
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Abstract

Neutron scattering studies of Gd3Al5O12 (GAG), a frustrated material with a hyperkagomé
lattice, have shown several low lying magnetic excitations. A theoretical description of these
excitations is missing, as they cannot be modelled using conventional spin wave theory. Spin
dynamics simulations can help understanding the cause of the excitations. In this thesis we
make use of an existing simulation program Copenhagen Langevin Spin Simulation Code
(CLaSSiC), made to simulate Langevin spin dynamics. The single-ion anisotropy effect was
implemented in the program and the physical parameters were validated both separately and
in different combinations. These validations included both integration in spherical and Carte-
sian coordinates. The integration in spherical coordinates showed both instabilities and er-
rors for simulations with finite temperature when compared to theory. The integration in
Cartesian coordinates show results consistent with theoretical predictions, and using these
we can accurately simulate the dynamics of any system of spins with nearest neighbour ex-
change interaction, single-spin anisotropy, applied magnetic field and temperature effects.
Two systems were simulated in order to compare to GAG, three spins in a triangle and 3× 3
unit cells of a kagomé lattice, with various anisotropy directions and temperatures. These
simulations used the same value for the exchange interaction as GAG with a similar temper-
ature range as the neutron scattering studies. Simulating a hyperkagomé lattice would have
taken too long with the current run time of the simulations.
The triangle with no anisotropy showed two excitation peaks, with one increasing in energy
as a function of temperature, which shows a concrete example of the zero mode excitation
at finite temperatures. The triangle with anisotropy in the local z-direction showed excita-
tion peaks decreasing in energy as a function of temperature. The triangle with anisotropy in
the local xy-plane had two excitations, the low energy excitation increasing in energy with
temperature and the high energy excitation decreasing in energy with temperature. The
kagomé lattice with no anisotropy showed signs of propagating spin waves, with a dispersion
that was difficult to make out due to the low q-resolution. The three kagomé simulations
with anisotropies in the local z-axis, global z-axis and global xy-plane had energies constant
in temperature. The kagomé lattice with anisotropy in the local xy-plane showed the ener-
gies changing as a function of temperature like for the triangle with anisotropy in the local
xy-plane. In all the simulations with anisotropy the spin movements were confined by the
anisotropy.
The shape of the excitation spectra for the triangle and the kagomé lattice with anisotropy
in the local xy-plane both have two excitation peaks, with energies E = 0.02 meV and E =
0.11 meV for the triangle and E = 0.03 meV and E = 0.15 meV for the kagomé lattice.
These are close to the energies of the excitation peaks INS1 and INS2 for GAG.
These simulations are a big step in the direction of understanding the excitations in GAG.
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Chapter 1

Introduction

Magnetism stems from magnetic moments arranged on a lattice. These magnetic moments
can arrange themselves in a multitude of different ways, creating a wealth of different struc-
tures and effects. Competing interactions or geometric constraints can lead to the spins not
ordering, an effect known as frustrated magnetism [1]. Often the frustration has a simple ge-
ometric origin like with three antiferromagnetic spins in a triangle. For Ising spins where the
spins are confined to two directions, only one spin can be antiparallel to both its neighbours,
as seen in Figure 1.1. For Heisenberg spins, the spins end up with 120◦ to each other, an ex-
ample of which is seen in Figure 1.1.

?

Figure 1.1

This frustration leads to a large ground
state degeneracy [2], now considered a key
feature of frustration. Frustration can lead
to interesting new states of matter like mag-
netic monopoles, spin liquids, and hidden
order states [3], [1], [4].
Neutron scattering is an important tool in
furthering our understanding of magnetic
materials [5]. The magnetic moment of the
neutrons makes them able to interact with
magnetic materials and reveal their structure and dynamics [6], [7].

The frustrated antiferromagnet Gd3Al5O12 (GAG) is one material under investigation. GAG
has a lattice consisting of two sublattices of corner-sharing triangles, known as a hyperk-
agomé lattice as shown in Figure 2.10. The magnetic structure shows a very rich set of fea-
tures, combining long-range and short-range order [4]. The study of dynamics has just re-
cently started [4]. Inelastic neutron scattering studies have been done and several excitations
identified, but the understanding of what behaviour causes these excitations is still lacking
[4]. Due to the complexity of the system and the lack of long-range order, it is difficult to
make theoretical predictions of the dynamics of GAG. Simulations can help bridge the gap
between theory and experiments.

A simulation suite, Copenhagen Langevin Spin Simulation Code (CLaSSiC), has been writ-
ten to perform numerical simulations of any lattice with nearest neighbour exchange, exter-
nal magnetic field and temperature. The development of CLaSSiC was continued in this the-
sis by adding single-ion anisotropy and validating all of the interactions and different combi-
nations of them. In an effort to build our understanding of spin dynamics in frustrated mag-
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CHAPTER 1. INTRODUCTION

nets, and how they are affected by temperature and anisotropy strength, we simulated three
spins in a triangle with and without anisotropy. To further get an idea of how the spin dy-
namics are affected by being in a lattice structure, we simulated a kagomé lattice consisting
of 9 corner sharing triangles or 3× 3 unit cells with various anisotropy directions.

The thesis is structured as follows. In Chapter 2 a brief introduction to the field of mag-
netism is given, with a focus on magnetic dynamics. Different types of magnetic excitations
are discussed, like spin waves and the zero mode. The section finishes with a small review of
existing literature about jarosite and two frustrated garnets, the examples of physical realisa-
tions of the kagomé and hyperkagomé lattices respectively. In Chapter 3 the theory behind
neutron scattering is described and the neutron scattering cross section for magnetic dy-
namics derived. The implementation of CLaSSiC is described in Chapter 4. Chapter 5 goes
through the extensive validation of the code performed during this thesis. Results of simula-
tions of triangles and a kagomé lattice are presented in Chapter 6, along with the discussion
of these. Finally the conclusion and outlook is presented in Chapter 7.
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Chapter 2

Magnetism and Magnetic
Interactions

In this chapter the theory behind the rest of the thesis will be described. We will go through
the behaviour of a single magnetic moment, then go on to describe different interactions,
like the exchange interaction and single ion anisotropy, and how these interactions lead to
different types of magnetic order. This part of the chapter is based primarily on [8]. This
thesis is focused on spin behaviour, so we go into more depth about spin dynamics. We ex-
plain the equation of motion that describes spin dynamics with the different interactions.
The equation of motion is then used to derive dispersion relations for spin waves on a one-
dimensional spin chain, and describe zero mode behaviour in different spin systems. A quick
overview of current knowledge of a kagomé model system, jarosite, and a hyperkagomé sys-
tem in gadolinium gallium garnet is presented.

2.1 Magnetism

The fundamental object in magnetism is the magnetic moment. This can be defined with a
current loop. If there is current I around an area dS then the magnetic moment induced will
be dµ

dµ = IdS. (2.1)

The magnetic moment points perpendicular to the plane of the loop and can therefore be
parallel or antiparallel to the angular momentum of the charge going around the loop.
If there is current in a bigger loop the total magnetic moment will be equivalent to the sum
of all the infinitesimal loops within it. All the currents from neighbouring infinitesimal loops
will cancel leaving only the current running around the perimeter of the loop. Thus the total
magnetic momentum is [8]

µ =

∫
dµ = I

∫
dS. (2.2)

Since a current loop is made from electrons moving and electrons have mass and thus angu-
lar momentum, there is angular momentum associated with the magnetic moment. Thus we
can write

µ = γL, (2.3)

8



CHAPTER 2. MAGNETISM AND MAGNETIC INTERACTIONS

where γ = −gµB/~ is the gyromagnetic ratio and L is the angular momentum of the elec-
tron.
Let us consider a magnetic moment in a magnetic field B. The energy of the magnetic mo-
ment, given by

E = −µ ·B, (2.4)

will be minimised when the moment is parallel to the magnetic field. This means that there
will be a torque on the magnetic moment and using Eq. 2.2 the equation of motion is

dµ

dt
= γµ×B. (2.5)

Since the change in µ̂ is perpendicular to both µ̂ and B the magnetic moment will precess
around B. The frequency of precession can be shown to be

ωL = γB. (2.6)

This is known as the Larmor precession frequency [8].

A useful term when describing magnetism and magnetic materials is the magnetisation M.
This is defined as the magnetic moment per unit volume and is linearly proportional to the
applied magnetic field for small field values

M = χH, (2.7)

where B = µ0(H + M), µ0 is the vacuum permeability, and χ is the magnetic susceptibility.
The susceptibility tells how an applied magnetic field changes the magnetisation.

If the material has a positive susceptibility it is paramagnetic, so that an applied magnetic
field induces a magnetisation which aligns parallel with the applied field. If the susceptibility
is negative the material is dominated by diamagnetism, which means the induced magnetisa-
tion is opposite of the applied field. All materials show some degree of diamagnetism. Even
though an increase in magnetic field will tend to line up the spins, an increase in temper-
ature will randomise them. The magnetisation of a magnetic material depends on B/T . If
we look at paramagnetism semiclassically, that is ignoring that magnetic moments can only
point in certain directions due to quantisation we find that the average magnetic moment is

〈µz〉
µ

= L(y) = coth(y)− 1

y
, (2.8)

where y = µB/kBT . This is known as the Langevin function [8].

2.2 Magnetic interactions

There are multiple ways for magnetic moments to interact and potentially form long-range
order.
The most common interaction between magnetic moments is the exchange interaction. This
interaction is a form of electrostatic interaction, that arises because electrons with the same
sign charge cost energy when they are close together and save energy when they are apart.
To illustrate this interaction we will calculate it for two spins and then generalise to crystals
with a macroscopic number of spins.
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CHAPTER 2. MAGNETISM AND MAGNETIC INTERACTIONS

For two electrons the overall wave function must be antisymmetric so the spin part of the
function must be either an antisymmetric singlet state χS or a symmetric triplet state χT .
Thus the collective wave functions for the singlet and the triplet states are [8]

ΨS =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS (2.9)

ΨT =
1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χT , (2.10)

where ψa and ψb describe the states of the first and second electron respectively.
By looking at the energy difference between the two states it can be shown that

H =
1

4
(ES + 3ET )− (ES − ET )s1 · s2, (2.11)

where ES is the energy of the singlet state and ET is the energy of the triplet state. This
energy difference stems from the previously mentioned electrostatic interactions.
The constant term is unimportant and can be absorbed into other constant energy terms.
The interesting part of this is the spin-dependent term. If we define the exchange constant J
by

J =
ES − ET

2
. (2.12)

We can write the Hamiltonian as

Hspin = −2Js1 · s2. (2.13)

Writing out the energy difference using wave functions, we confirm that the exchange interac-
tion does stem from overlap in wave functions [8]

ES − ET = 2

∫
ψ∗a(r1)ψ∗b (r2)Hψa(r2)ψb(r1)dr1dr2. (2.14)

Generalising this to a many-body system is complicated, but this derivation motivates the
Heisenberg Hamiltonian written as a sum of pairwise interactions

H = −
∑
i,j

Ji,jsi · sj , (2.15)

where Ji,j is the exchange constant between the i’th and the j’th spin. It is common for the
coupling to the nearest neighbour to be stronger than the coupling to further neighbours,
due to the electrostatic interaction being strongest when the distances between interacting
particles are small. In this case everything aside from nearest neighbours can be neglected
and the Hamiltonian simplifies to

H = −2J
∑
〈i,j〉

si · sj , (2.16)

where 〈i, j〉 denotes the sum over nearest neighbours and J is assumed to be constant through
the system. Exchange interactions can also happen via non-magnetic ions like oxygen. This
is known as superexchange.
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CHAPTER 2. MAGNETISM AND MAGNETIC INTERACTIONS

Another common interaction is the interaction between a spin s and an external magnetic
field B. This is known as the Zeeman interaction and is described by

HZ = −gµBs ·B, (2.17)

where g is the electron g-factor, and µB is the Bohr magneton. If we have several electrons
in an external field we get

HZ = −gµB
∑
j

sj ·B. (2.18)

The classical solution to this Hamiltonian is seen in Eq. 2.5.

2.2.1 Single-ion anisotropy

Anisotropy is an effect causing the magnetic moment to prefer to lie along a specific plane
or axis in space. This leads to anisotropic materials having different magnetic properties de-
pending on direction. In most magnetically anisotropic materials there is an axis along which
it is easier to magnetise the material. This is known as the easy axis. There can be several
reasons why a material is anisotropic, but the most common is crystal field effects.
The Hamiltonian for anisotropy axis v̂ can be written

Hanis = − D

gµB

∑
i

(si · v̂)2 = Banis
∑
i

(si · v̂)2, (2.19)

where D is the strength of the anisotropy and v̂ is a unit vector indicating the direction of
the easy axis or the vector defining the easy plane depending on the sign of D. If D > 0 the
energy is minimised when the spins lie along v̂, and if D < 0 the energy is minimised when
the spins are in the plane perpendicular to v̂ . If the easy axis anisotropy becomes very large
the spins become Ising spins. This means that the spins are confined along the axis, and can
only have two directions.
Another way to write the Hamiltonian is describing the anisotropy axis with a matrix κ

Hanis = − D

gµB

∑
i

sTi κsi = Banis
∑
i

sTi κsi. (2.20)

The matrix is related to v̂ by

κ =

vxvx vxvy vxvz
vyvx vyvy vyvz
vzvx vzvy vzvz

 . (2.21)

2.2.2 Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya (DM) interaction or anisotropic exchange interaction is the inter-
action between the excited state of one ion and the ground state of another ion. When acting
between two spins s1 and s2 it leads to a term in the Hamiltonian equal to

HDM = DDM · (s1 × s2), (2.22)

where DDM is a vector that will lie either parallel or perpendicular to the line connecting
the two spins. This commonly occurs in antiferromagnets, with the effect of canting the spins
and introducing a weak ferromagnetic moment.
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CHAPTER 2. MAGNETISM AND MAGNETIC INTERACTIONS

2.3 Magnetic order

In the previous section different types of magnetic interactions were described. These inter-
actions lead to different possible magnetic ground states in materials. In this section we will
describe some of the different possible ground states and the interactions that cause them.

(a) (b)

?

(c)

Figure 2.1: An example of ferromagnetism, antiferromagnetism and a frustrated system.

Ferromagnetism (FM) is the effect of spontaneous magnetisation even in the absence of an
applied field, which means that all the magnetic moments align along the same direction as
in Figure 2.1a. This is due to a positive exchange constant J > 0 which means the energy
is minimised when the spins are parallel. If the temperature is increased the fluctuations will
gradually destroy the magnetisation and above a critical temperature known as the Curie
temperature TCW , the order will be destroyed. The Curie temperature is defined by

TCW =
nλµ2

eff

3kB
, (2.23)

where λ is a constant that parametrizes the molecular field as a function of magnetisation,
µeff is the value of the effective moment, and n is the number of spins in the lattice.
The ordering parameter for a ferromagnet is the magnetisation which is proportional to the
sum of the spins

mFM = 〈si〉 =
1

N

∑
si. (2.24)

Here N is the number of spins on the lattice.
The magnetic susceptibility of a ferromagnet above the critical temperature is

χ ∝ 1

T − TCW
, (2.25)

which is known as the Curie Weiss law.

Antiferromagnetism (AFM) stems from a negative exchange interaction, J < 0 which means
the energy is minimised when spins are antiparallel to their neighbours. These materials can
classically be described as having two interpenetrating sublattices, one where all the spins
point up and one where all the spins point down, see example in Figure 2.1b. Similarly to
the ferromagnetic materials order will be destroyed above a critical temperature known as
the Néel temperature defined as

TN =
n|λ|µ2

eff

3kB
. (2.26)
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CHAPTER 2. MAGNETISM AND MAGNETIC INTERACTIONS

The ordering parameter for an antiferromagnet is the difference between the number of indi-
vidual spins on each sublattice [8].

mAFM =
1

N

∑
i∈A

si −
∑
j∈B

sj

 , (2.27)

where N is the total number of spins on the lattice, s is the spin value, and the two sublat-
tices are denoted by A and B respectively.
The magnetic susceptibility of an antiferromagnet above the critical temperature can be fit-
ted to a Curie-Weiss dependence

χ ∝ 1

T − θ
, (2.28)

where θ is the Weiss temperature. If θ > 0 the material is a ferromagnet and if θ < 0 the
material is an antiferromagnet. If θ = 0 the material is a paramagnet.

Frustrated magnetism occurs when a system has competing interactions so the energy cannot
be minimised for all spins. This often leads to a degenerate ground state with many possible
variations.

Figure 2.2

An example of this is the Ising model for a triangular lattice with
antiferromagnetic spins, see Figure 2.1c. In the Ising model the
spins have two possible directions, up and down. This means the
three spins in the triangle can only be parallel or antiparallel to
each other. If two spins are antiparallel with each other, then the
third spin cannot satisfy the requirement of being antiparallel to
both neighbouring spins. Whatever choice is made one of the two
neighbours will be aligned with the third spin and thus does not
get its energy minimised.
In the Heisenberg model, where the spins can point in any direc-
tion, the spins would end up with 120◦ to each other. An example of this is shown in Figure
2.2. This state is degenerate. Keeping the top spin fixed, the two other spins can rotate an
arbitrary angle out of the plane while still maintaining an angle of 120 degrees with the other
spins.

2.4 Spin dynamics

Disregarding quantum mechanics, a magnet may be perfectly ordered at T = 0 but at non-
zero temperatures this order is disrupted by excitations. A common type of excitation is the
spin wave, which can be produced at a small energy cost. These are characterised by a dis-
persion relation, which describes how the frequency of the wave ω relates to the wave vector
q.
To describe these excitations it is useful to look at an equation of motion for the spins. In
this section the general equation of motion will be presented and we will derive dispersion
relations for simple spin systems like FM and AFM one dimensional spin chains as well as
two and three spins with AFM interactions.
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CHAPTER 2. MAGNETISM AND MAGNETIC INTERACTIONS

2.4.1 Equation of motion

To find the equation of motion we need to start with the Hamiltonian for the system. We
want to describe a system with N spins, nearest neighbour interaction J , Zeeman interaction,
and single ion anisotropy D. Including this the Hamiltonian for the i’th spin is

Hi = 2J
∑
j

si · sj −D(si · v̂)2 + gµBsi ·B (2.29)

= −gµBsi ·

 2J

gµB

∑
j

sj −
D

gµB
(si · v̂)2 + B

 (2.30)

= −gµBsi · B̃, (2.31)

Where the neighbouring spins, the anisotropy and the external magnetic field has been com-
bined into an effective field in the mean field approximation.
The effective magnetic field is given by

B̃ = − 2Js

gµB

∑
j

sj −D

vxvx vxvy vxvz
vyvx vyvy vyvz
vzvx vzvy vzvz

sxisyi
szi

+ B (2.32)

= BX −Banis + B. (2.33)

Where D is the anisotropy strength and vx, vy, vz determine the direction of the anisotropy
axis. To understand the definition of the anisotropy axis it is important to understand that
the anisotropy does not have a direction, it can only be defined along an axis. If the anisotropy
is positive, this is the easy axis and if the anisotropy is negative, the plane perpendicular to
this axis is the easy plane. This means the direction of the anisotropy has to be given by a
matrix where the diagonal represents the x, y, and z-axes and the off-diagonal is used to de-
note directions not directly along one of the three axes.
When finding the equation of motion a semiclassical approximation is used where the spins
are vectors and can point in any direction. This approximation is best for large spins, s � 1,
but is valid even for s=1/2 for 3D-systems [9]. The equation of motion is derived with the
use of Ehrenfest’s theorem

−i~dsi
dt

= [Ĥ, si]. (2.34)

The commutators of the spin operators are

[sxi , s
y
i ] = i~szi δij , [syi , s

z
i ] = i~sxi δij , [szi , s

x
i ] = i~syi δij . (2.35)

Using these equations and Eq. 2.29 the equation of motion is found the be

−i~dsi
dt

= γsi × B̃. (2.36)

A detailed derivation of the equation of motion for exchange interaction and external mag-
netic field can be found in Jacobsen’s thesis [10] and a derivation of the single-ion anisotropy
field is found in Appendix A.
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2.4.2 Spin waves

Spin wave theory is a theory where one starts from a ground state where all spins are aligned
and describes excitations as a collection of independent spin waves. In other words the the-
ory is an expansion of small deviations from the ground state. This is a useful approximation
for low temperature states, where the amplitudes of the spin waves are small and there is a
negligible interaction between them [11]. Looking at just one spin wave, we see the spins pre-
cessing around the vertical axis as in Figure 2.3.
It is possible to derive a dispersion relation for spin waves on a simple lattice. In the follow-
ing we will derive the dispersion relation for a one dimensional ferromagnetic spin chain and
for a one dimensional antiferromagnetic spin chain.

Figure 2.3: The excited state of a one dimensional ferromagnetic spin chain and the red line shows
the spin wave. From E. Lenander [12].

Ferromagnetic spin wave theory

We derive the dispersion for a semi-classical spin chain. Starting with the equation of motion
for the i’th spin in the chain in an external magnetic field, ignoring anisotropy

dsi
dt

=
1

~
si ×

2
∑
j

Jijsj − gµBB

 . (2.37)

This can be simplified by summing over nearest neighbours. We define the ground states as
s = sẑ with the magnetic field B = Bẑ. Furthermore we know that the spin wave state is a
small pertubation away from the ground state, so we can write it as

si = sẑ + δsi, (2.38)

where δ is small.
Inserting this into the equation of motion we get

~
d

dt
(sẑ + δsi) = (sẑ + δsi)× (4Jsẑ + 2J(δsi−1 + δsi+1)− gµBBẑ) (2.39)

= sẑ × 2J(δsi−1 + δsi+1) + δsi × (4Jsẑ − gµBBẑ). (2.40)

We have ignored the δsi × (δsi−1 + δsi+1) term as it is second order in δ.
Wave-like solutions are assumed for δsxi , δsyi and δszi = 0

δsxi = Axe
iωt−ik·r (2.41)

δsyi = Aye
iωt−ik·r. (2.42)

The chain is taken to be in the x-direction which means r = iax̂ where i is the spin index
and a is the distance between the spins. This gives us k · r = ikxa.
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After using this we find equations for the x and y components of the spin wave

i~ωAx = (4Js(1− cos(kxa)) + gµBB)Ay, (2.43)

i~ωAy = − (4Js(1− cos(kxa)) + gµBB)Ax. (2.44)

Solving for ω results in

~ωq = 4Js(1− cos(qa)) + gµBB. (2.45)

It can be readily shown that when adding single ion anisotropy with an easy axis in the z-
direction the dispersion will be [7]

~ωq = 4Js(1− cos(qa)) + gµBB − gµBBanis. (2.46)

The dispersions for varying B-fields can be seen in Figure 2.4. Here we see that the effect of
the B-field on the dispersion is to move the dispersion in energy. The anisotropy value has
the same effect.

Figure 2.4: The dispersion of a spinwave with J = 2K, s = 7/2, Banis = 0 and various B-field
strengths.

Antiferromagnetic spin wave theory

To find the dispersion of an antiferromagnetic one dimensional spin chain we follow the deriva-
tion in Yosida [11]. We start by deriving the general spin wave dispersion for an antiferro-
magnet. The equations of motion for the two spins in the sublattices are

−i~dsj
dt

= i(B̃j × sj), (2.47)

−i~dsl
dt

= i(B̃l × sl). (2.48)

Here j represent points on one sublattice and l represents points on the other sublattice. The
effective fields B̃j and B̃l are given by

B̃j = 2
∑
l

Jjlsl + gµBBẑ +DSjz ẑ, (2.49)

B̃l = 2
∑
j

Jjlsj + gµBBẑ +DSjz ẑ. (2.50)
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The easy axis is taken to be the z-axis, and the external magnetic field also aligns with the
z-axis.
We assume the spins to be in the ground state with a small perturbation. This means they
are pointing primarily in the z-direction with the perturbation in the xy-plane

sj = sẑ + δsj , sl = −sẑ + δsl. (2.51)

Inserting this into the equation of motion and keeping only first order terms in δsj and δsl

−~ d

dt
δsj = (−2

∑
l

Jjlsẑ + gµBBẑ +DSẑ)× δsj + 2
∑
l

Jjlδsj × sẑ, (2.52)

−~ d

dt
δsl = (2

∑
j

Jjlsẑ + gµBBẑ −DSẑ)× δsj − 2
∑
j

Jjlδsl × sẑ. (2.53)

Now that we have two coupled differential equations, we need to make a linear transforma-
tion to uncouple them so they can be solved separately. The Fourier transformation is intro-
duced

Aq =

(
2

N

)1/2∑
j

e−iq·rjδsj , (2.54)

Bq =

(
2

N

)1/2∑
l

e−iq·rlδsl. (2.55)

The equations of motion for Aq and Bq are:

−~ d

dt
Aq = (−2

∑
l

Jjlsẑ + gµBBẑ +DSẑ)×Aq + 2
∑
j

Jjle
−iq·(rj−rl)Bq × sẑ, (2.56)

−~ d

dt
Bq = (2

∑
j

Jjlsẑ + gµBBẑ −DSẑ)×Bq − 2
∑
l

Jjle
−iq·(rl−rj)Aq × sẑ. (2.57)

We assume the interaction is only present between nearest neighbour sites. We define a quan-
tity γq by ∑

j

Jjle
−iq·(rj−rl) = zJγq, (2.58)

where z is the number of nearest neighbours and γq is the Fourier transform of the exchange
term.
By adding i times the y-component to the x-component of the equations and introducing
Aq+ = Aqx + iAqy and Bq+ = Bqx + iBqy we get

~
d

dt
Aq+ = −i [(−2Jzs+ gµBB +DS)Aq+ − 2JzsγqBq+] , (2.59)

~
d

dt
Bq+ = −i [(2Jzs+ gµBB −DS)Bq+ + 2JzsγqAq+] . (2.60)

If we take the time dependency of Aq and Bq to be e−iωqt the relation determining the fre-
quency ωq is ∣∣∣∣~ωq − (2Jzs− gµBB −Ds) −2Jzsγq

2Jszγq ~ωq + (2Jzs− gµBB −Ds)

∣∣∣∣ = 0 (2.61)
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Figure 2.5: The dispersion of an antiferromagnetic spinwave with J = 2K, s = 7/2, B = 0 and various
values of D.

The solutions are

~|ω±q | =
√

(2Jzs)2(1− γ2
q ) + 4|J |zs2D + s2D2 ± gµBB. (2.62)

For a one dimensional chain it becomes

~|ω±q | =
√

(4Js)2(1− cos(qa)2) + 8|J |s2D + s2D2 ± gµBB, (2.63)

where a is the distance between the spins in the chain.
The dispersion relation can be seen plotted in Figure 2.5, with different values of D. We can
see that changing the anisotropy changes both the shape and the energy of the dispersion.
Changing the value of the magnetic field B changes the energy of the dispersion and splits
into two bands.

2.4.3 Zero mode

The zero mode excitation is a dispersionless excitation found in some frustrated materials.
These are associated with the degeneracy of the ground state, specifically the spin config-
urations where certain spins can be rotated around a specific axis without any energy cost
[13]. This dispersionless excitation strongly affects the lower temperature thermodynamic be-
haviour and leads to a persistence of spin fluctuations down to zero temperature. We here
show a few different manifestations of zero modes.

Rotor mode

θ

Figure 2.6

The rotor mode is a version of the zero mode found in nanoparti-
cles with antiferromagnetic order and two sublattices [14]. Because
of the exchange interaction the spins are at equilibrium when an-
tiparallel to each other. If they are canted away from this position
they will begin to rotate as illustrated in Figure 2.6. The frequency
of rotation can be derived from the equations of motion.
We start with the spin vectors

s0 = (cos(θ) cos(ωt), sin(θ), cos(θ) sin(ωt))†, (2.64)

s1 = (− cos(θ) cos(ωt), sin(θ),− cos(θ) sin(ωt))†. (2.65)
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We take the equation of motion from Eq. 2.36 with the effective field determined by Eq.
2.32. We have zero external field and no anisotropy, so inserting this we get

ds0

dt
= γs0 ×

(
2J

gµB
s1

)
. (2.66)

The spins will be constant in the y-direction and rotate with a constant frequency in the xz-
plane so we can set t = 0 without loss of generality 0

0
ω cos(θ)

 =
2Js

~

 0
0

2 cos(θ) sin(θ)

 . (2.67)

Taking the z-component and solving for ω

ωrot(T ) =
4Js

~
sin(θ) (2.68)

The mode can be thermally activated.

Zero mode for three spins

s0 s1

s2

Figure 2.7

There is also a version of the zero mode found in three spin sys-
tems, similar to the rotor mode for two spins. This mode can be
seen for three antiferromagnetic spins arranged in a triangle. If two
spins are canted away from equilibrium, they will begin to rotate
with a well defined frequency.
The derivation of this frequency is similar to the derivation of the
rotor mode. The main differences are the equilibrium positions of
the spins are at 120◦ to each other and there is a third spin s2 =
(0,−1, 0)† which has a constant effect on the two other spins. Thus,
in the absence of anisotropies the equation of motion becomes

ds0

dt
= γs0 ×

(
2J

gµB
(s1 + s2)

)
. (2.69)

Using the same method as for the two-spin rotor mode we find

ω =
2Js

~
(2 sin(θ)− 1), (2.70)

where θ is the angle with horizontal, so that the spins are in equilibrium when θ = 30◦. It
follows that this mode can be activated thermally just like the rotor mode.
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Zero mode in kagomé lattice

Figure 2.8

The zero mode can also be found in a kagomé lattice. This is the
case when six spins forming a ring all rotate, and the spins sur-
rounding them are stationary as illustrated in Figure 2.8. This is
one of the three possible Néel states of the kagomé lattice [15].
As with the previous two systems, we can find the equation for
the frequency of the zero mode based on the canting angle θ of the
spins. We start with the same spin positions as for the triangle but
each shows up twice, as all the moving spins have four neighbours.
Then the derivation continues as before, and we get the dispersion

ω =
4Js

~
(2 sin(θ)− 1). (2.71)

This is the same dispersion relation as for the triangle, except for a
factor two. Intuitively this makes sense as all the rotating spins are
part of two triangles.

2.5 Experiments on frustrated antiferromagnets

The previous sections derive results for systems with two specific excitations, spin waves and
the zero mode excitation, but these might not always be enough to describe the dynamics
of a given system. This is where simulations come in. With the simulation program I and
many others have helped develop, it is possible to replicate all the dynamics of a system with
the correct initial conditions. In this thesis we work on gaining a better understanding of
complex frustrated systems like the kagomé and hyperkagomé lattices.
This section is about the research on physical realisations of the kagomé lattice and the hy-
perkagomé lattice to better understand the data that we may try to replicate and explain
with simulations.

2.5.1 Jarosite

The kagomé antiferromagnet is an interesting and much studied system given its frustrated
nature and lack of long-range order. Several physical realisations of the kagomé lattice exists,
and one of the most studied groups is the jarosite family of magnets. Jarosites are a sub-
group of the alunite mineral family, which has the chemical composition AM3(SO4)3(OH)6

with A = Na+, K+, Ag+, Rb+, NH4
+, H3O+, 1

2 Pb2+ and M = Al3+, Fe3+, V3+, Cr3+ [16].
Their lattice is structured with the M-ion forming a kagomé lattice in layers, that interact
very little with each other. This makes the structure a good approximation of a 2D kagomé
lattice structure.
It has been shown to be a canted antiferromagnet with weak Dzyaloshinskii-Moriya (DM)
interaction for most choices of A cations [17]. The magnetism of iron jarosite, containing a
s=5/2 Fe3+, has been extensively studied.
Cr-jarosite, KCr3(OD)6(SO4)2, is another less studied example of the kagomé lattice. This
is a system with the magnetic moments arising from the magnetic Cr3+ ions, and spin value
s = 3/2. The low spin value makes it sit in a point between classical and quantum spin be-
haviour [17].
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A problem when studying Cr-jarosite, as with other jarosites, is the difficulty in synthesizing
pure compounds. This leads to differences in estimations of constants like the Curie-Weiss
temperature and the critical temperature for Cr-jarosite. There is a consensus on the qual-
itative magnetic behaviour, which describes Cr-jarosite as an antiferromagnet with a weak
DM-interaction. The DM-interaction leads to the spins canting out of the plane, which for all
the layers adds up to a weak ferromagnetic moment [17].

The simple kagomé antiferromagnet has a macroscopic ground state degeneracy which pre-
vents long-range ordering down to T=0, and leads to a large amount of zero-energy excita-
tions or zero modes for the lattice [16]. However in physically realized kagomé lattices there
is always additional interactions that cause ordering at finite temperatures. For the jarosites
this is the DM-interaction. This leads to spin waves below the critical temperature and a
spin wave gap due to the broken rotational symmetry [17]. Because the kagomé lattice is a
frustrated system there will be fluctuations between the degenerate ground states, which has
the appearance of low-energy excitations with broad linewidths in q and energy. The zero-
energy mode may still be present in jarosites, but the DM-interaction will lift the zero-mode
to finite energies.
The dynamics of Fe-jarosite KFe3(SO4)3(OH)6 have been investigated with neutron spec-
troscopy.

(a)
(b)

Figure 2.9: (a) χ′′(q, ω) for deuterated Fe-jarosite powder, measured using time of flight spectroscopy
at 5 K. From Coomer et al. [18]. (b) Single-crystal spin wave spectrum of Fe-jarosite measured using
neutron spectroscopy (circles and squares) from Matan et al. [19], and the best-fit theoretical spin
wave dispersion. From Yildirim et al. [15].

Coomer et al. [18] measured the imaginary susceptibility χ′′(q, ω) for deuterated Fe-jarosite
powder, shown in Figure 2.9a. The imaginary susceptibility is related to the dynamical struc-
ture factor via χ′′(q, ω) = S(q, ω)/(1 + nB(ω)) where the Bose population factor is nB(ω) =
1/(exp(~ω/kBT ) − 1). The data shows spin wave excitations emerging from q ≈ 1Å−1 and
3Å−1 with a bandwidth of about 20 meV. A flat mode with increased intensity is present
around 8 meV and phonon excitations are seen above q ≈ 6Å−1 with energies in the range
5-35 meV.
Matan et al. [19] used neutron spectroscopy on a single crystal to investigate the spin waves
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in more detail. They arrived at a spin wave dispersion seen in Figure 2.9b showing three
gapped spin waves, one of which is the 8 meV mode. Yildirim et al. performed detailed spin
wave calculations assuming a Hamiltonian with nearest neighbour and next nearest neigh-
bour exchange interactions J1 and J2 as well as a DM-interactions Dij

DM . They arrived at a
model with J1 = 3.225 meV, J2 = 0.109 meV, Dy

DM = 0.218 meV, Dz
DM = −0.195 meV and

confirmed that the DM-interaction is the better model for the spin wave gap than a single-
ion anisotropy.

2.5.2 Frustrated garnets

The hyperkagomé lattice is a three-dimensional lattice of corner sharing triangles. The way
the triangles are connected means that ten-spin loops form in the lattice, this is analogous to
the kagomé lattice where six-spin loops form. The zero mode can propagate in these loops.
An example of a hyperkagomé compound is Gd3Ga5O12 (GGG). It has a lattice consisting of
two interpenetrating hyperkagomé sublattices as shown in Figure 2.10. GGG has antiferro-
magnetic near-neighbour interactions of strength J1 = 107 mK and an anisotropic orienta-
tion of the spins that show they prefer orienting in their local xy-plane [20]. The spins show
short-range order below the Curie-Weiss temperature, and longer range correlations develop
at the lowest temperatures [21]. It was found that the dipolar interaction plays a role in this
ordering [22].

Figure 2.10: (A) Crystal structure of GGG showing only Gd3+ ions. The two sublattices are coloured
red and blue. (B) The local environment of the ions, showing the local coordinate system and the
surrounding ten ion loop. Taken from Paddison et al. [20].

Paddison et al. [20] discovered long-range hidden order from the average spin alignment on
each ten spin loop, also known as a director. The directors are highly anisotropic and align
with their local z-axis, which leads to long-range correlations. This long-range order is a re-
sult of the interplay between the antiferromagnetic interactions and the local xy anisotropy
of the spins.
The spin dynamics of a powder of GGG were investigated by Deen et al. [23] with the use of
inelastic neutron scattering. Figure 2.11 shows the scattering function S(q, ω) at 0.06K. This
shows the elastic line and three excitations labeled INS1, INS2 and INS3. The excitations do
not originate from normal spin waves, which means a theoretical description of the excita-
tions is still needed. It can be concluded from the peak-dependence on wave vector transfer q
that the peaks do not originate from local vibrational excitations or crystal-field excitations.
The integrated intensity of INS3 is well described by the intensity of a singlet-triplet exci-
tation of a dimerized state. The integrated intensity of INS1 follows the behaviour of INS3
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closely, but at low and high q the model of a singlet-triplet excitation fails. INS2 has an inte-
grated intensity with a minimum where INS1, and INS3 shows a maximum, which indicates
INS2 has a different origin from the other excitations. INS3 further shows a strong tempera-
ture dependence in energy position and excitation lifetime, corresponding to the expectations
of an optical mode. It is possible that the excitations stem from optical or soft modes with a
high-energy mode represented by INS3.
The dispersion of GGG in an applied magnetic field have been reproduced theoretically by
d’Ambrumenil et al. [24] using linear spin-wave theory on the ten ion loops. Though the
study is carried out in a magnetic field strong enough to create a ferromagnetic ground state,
which is very different to the zero-field ground state, the dispersion looks similar. Compar-
ing results suggests that INS1 originates from near dispersionless bands and INS2 consists
of multiple dispersions that overlap in reciprocal space. The equivalent of INS3 is not found
using spin wave theory, and probably has an entirely different origin.

Figure 2.11: The scattering function S(q, ω) of GGG at 0.06K. Inset is cut at wave vector transfer
q = 0.5Å−1 showing the elastic peak and two excitations. Taken from Deen et al. [23].

To learn more about the dynamics of the hyperkagomé lattice we can look at Gd3Al5O12

(GAG) which is isostructural to GGG. Jacobsen et al. [4] has done an experimental study
of the structure and dynamics of GGG and GAG.
Looking at the magnetic structure of GAG they find that antiferromagnetic near-neighbour
interactions of strength J1 = 186 mK [22] and a strong local xy anisotropy. They confirm
the existence of a long-range director state as in GGG, as the directors in GAG orient along
their local z-direction and have weak long-range correlations. Furthermore the excitation
spectrum of GAG shows three inelastic peaks INS1, INS2, and INS3. The energies of the ex-
citations are slightly higher than in GGG, which reflects the higher value of J in GAG. The
temperature dependence of INS3 is nearly identical to GGG.
On the µeV scale the spins fluctuate with a rate that decreases as T 1.5, similar to what was
found with Mossbauer spectroscopy [25] and muon spin rotation [26]. These fluctuations
have no q-dependence which is consistent both with independent spin fluctuations, or with
spin diffusion of loops.
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A lot of experimental work have been done to describe the rich and complex dynamics of
these materials [27] [28], but the theory to describe them is still lacking. The unique abil-
ity of the simulations presented here is to replicate the behaviour of the spins in a lattice as
if we had a real crystal, placed in a specific temperature and magnetic field. In addition to
replicating experimental results we also get data on all of the spin movements, which means
we can see specifically what the spins are doing that results in the different excitations, and
we can tune different parameters to see how they affect the excitation spectrum.
In this thesis we are interested in the magnetic excitations of GAG shown in Figure 2.12 and
furthering our understanding of where they stem from.

Figure 2.12: Temperature and energy dependence of excitations of GAG found from inelastic neutron
scattering on a powder of GAG. Inset shows q-integrated intensity of the higher energy excitation.
Figure from Jacobsen et al. [4].
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Chapter 3

Neutron Scattering

In this chapter we will go through the basics of neutron scattering and derive the equation
describing the neutron scattering from magnetic dynamics. The chapter is inspired by the
notes by K. Lefmann [7].

3.1 Basic scattering theory

The neutron is a neutral particle with mass mN = 1.675 · 10−27 kg and spin 1/2. Neutrons
interact with nuclei and can penetrate materials more deeply than e.g. X-rays, due to being
charge neutral. Neutrons can also be moderated to have wavelengths similar to the inter-
atomic distances in materials, and energies similar to the typical excitation energies in solids.
The magnetic moment of the neutron means that they are sensitive to magnetic order and
magnetic fluctuations of materials. Neutron scattering is therefore a powerful tool to investi-
gate the structure and dynamics of materials. To understand how we start by looking at the
flux of a neutron beam. This is defined as

Ψ =
number of neutrons impinging on surface area per second

surface area perpendicular to neutron beam direction
, (3.1)

which is usually given in units of n/(cm2s).
When doing neutron scattering experiments a beam of neutrons is directed towards a sample,
the neutrons interact with the sample, and they are measured. The results of these measure-
ments are given as cross sections. Neutrons can be both scattered and absorbed by the sam-
ple, and an absorption and a scattering cross section can be defined. We will only look at the
scattering cross section.
We define the differential scattering cross section, because we are interested in the angular
dependence of the scattered neutrons

dσ

dΩ
=

1

Ψ

number of neutrons scattered per second into solid angle dΩ

dΩ
. (3.2)

This applies when we do not measure the energy of the scattered neutrons. When doing in-
elastic scattering, where the neutrons change energy during the experiment, it is important
to keep track of this energy change. The energy dependence of the scattered neutrons is de-
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scribed by the partial differential scattering cross section

d2σ

dΩdEf
= (3.3)

1

Ψ

number of neutrons scattered per second into solid angle dΩ with energy in [Ef : Ef + dEf ]

dΩdEf
.

Here the final energy of the neutrons is given by Ef .

If we can calculate these scattering cross sections we know what to expect from experiments.
We start simple, by looking at scattering by a single nucleus, fixed in space and labeled j.
The wave function of the incoming neutron can be described as a plane wave

ψi(r) =
1√
Y

exp(iki · r), (3.4)

where Y is a normalisation constant, which is unimportant.
The scattered neutron can be described as a spherical wave leaving the nucleus

ψf (r) = ψi(rj)
−bj
|r− rj |

exp(ikf |r− rj |), (3.5)

where bj denotes the scattering length, a quantity characteristic of the specific isotope de-
scribing how strongly the isotope scatters. The above equation is only valid when |r − rj | �
bj .
Generally r is about 1 m and rj is typically on the order of 1 µm or less. This means the
density of outgoing neutrons can be approximated to

|ψf |2 ≈ |ψi|2
b2j
r2
. (3.6)

The number of neutrons per second intersecting a small surface dA is v|ψf |2dA. This means
the number of neutrons per second in the solid angle dΩ = dA/r2 is v|ψi|2b2jdΩ. The incom-

ing flux is Ψ = b|ψi|2, which leads to the expression

dσ

dΩ
= b2j . (3.7)

Since the nucleus is fixed, the energy of the neutron must remain constant which means this
is an example of elastic scattering.
Generally we are more concerned with scattering from a system of particles. We will add
complexity by looking at the scattering from two nuclei and the interference between the two
scattered waves. We assume elastic scattering and denote the nuclear scattering lengths as bj
and bj′ respectively. This means the outgoing wave can be described by

ψf (r) = ψi(rj)
−bj
|r− rj |

exp(ikf |r− rj |) + ψi(rj′)
−bj′
|r− rj′ |

exp(ikf |r− rj′ |). (3.8)

As before we assume the distance to the observer is much larger than the distance to the two
nuclei rj , rj′ � r which means we can rewrite the outgoing wave as

ψf (r) = − 1√
Y

1

r
exp(ikf · rj)(bj exp(iq · rj) + bj′ exp(iq · rj′)), (3.9)
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where we have defined the scattering vector

q = ki − kf . (3.10)

As before we have the intensity of neutrons impinging on a small area given as v|ψf (r)|2dA.
If we take the case of two identical nuclei with identical scattering lengths bj = bj′ = b, the
scattering cross section becomes

dσ

dΩ
= b2| exp(iq · rj) + exp(iq · rj′)|2 = 2b2(1 + cos(q · (rj − rj′))). (3.11)

This equation shows interference in action: the scattering cross section varies with q and the
distance between the atoms.
To find the cross section for a large number of nuclei, we would make the same calculation as
above, which means we can generalise the equation to

dσ

dΩ
=

∣∣∣∣∣∑
j

bj exp(iq · rj)

∣∣∣∣∣
2

. (3.12)

This sum will be zero unless q · r = 2πn where n is an integer.

3.2 Quantum mechanical treatment of scattering

To describe the inelastic scattering we need a quantum mechanical formulation of neutron
scattering theory. As before we start with the state of the incoming wave, which is defined as

|ψi〉 =
1√
Y

exp(iki · r), (3.13)

where Y = L3 can be identified as the normalisation volume for the state, assumed to be
enclosed in a cubic box with side length L.
The state of the outgoing wave is expressed as a plane wave, instead of a spherical outgoing
wave

|ψf 〉 =
1√
Y

exp(ikf · r). (3.14)

The scattering process itself is described by the Fermi Golden Rule which gives the rate of
change between the initial state |ψi〉 and a final state |ψf 〉

Wi→f =
2π

~
dn

dEf
|〈ψi|V̂ |ψf 〉|2, (3.15)

Where dn
dEf

is the density of states in k-space and V̂ is the scattering potential of the neu-
tron.
Inserting dn

dEf
=

Y kfmn

2π2~2 and dΩ/(4π) we get only neutrons scattered into the solid angle dΩ.

Wi→f,dΩ =
Y kfmn

(2π)2~3
dΩ|〈ψi|V̂ |ψf 〉|. (3.16)

With the number of neutrons scattered into dΩ per second, we can find the differential scat-
tering cross section

dσ

dΩ
= Y 2kf

ki

( mn

2π~2

)2
|〈ψi|V̂ |ψf 〉|2. (3.17)
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This can be used to find the same results for the scattering cross section as the semi-classical
calculations.
It can also be used to develop the formalism for inelastic magnetic scattering. When look-
ing at inelastic scattering we need to keep track of the quantum state of the sample since it
changes during the scattering process. The initial and final sample states are |λi〉 and |λf 〉
respectively. This results in the following partial differential scattering cross section for in-
elastic scattering

d2σ

dΩdEf

∣∣∣∣∣
λi→λf

=
kf
ki

( mn

2π~2

)2
| 〈λiki| V̂ |kfλf 〉 |2δ(Eλi − Eλf − ~ω), (3.18)

where the δ-function expresses explicit energy conservation and the normalisation factor Y is
omitted.
We take the potential to be a sum of nuclear potentials

V̂ =
2π~2

mn

∑
j

bjδ(r−Rj), (3.19)

where Rj is the operator for the location of the j’th nucleus. Inserting this into the matrix
element of the cross section we get

|〈λiψi|V̂ |λfψf 〉|2 =

(
2π~2

mn

)2∑
j,j′

bjbj′〈λi| exp(−iq ·Rj)|λf 〉〈λi| exp(iq ·Rj′)|λf 〉. (3.20)

The δ function is rewritten as

δ(Eλi − Eλf + ~ω) =
1

2π~

∫ ∞
−∞

exp

(
i(Eλf − Eλi)t

~

)
exp(−iωt)dt. (3.21)

Insert these in the inelastic scattering cross section:

d2σ

dΩdEf

∣∣∣∣∣
λi→λf

=
kf
ki

∑
j,j′

bjbj′

2π~

∫ ∞
−∞
〈λi| exp(−iq ·Rj)|λf 〉 (3.22)

× 〈λf | exp

(
iHt

~

)
exp(iq ·Rj′) exp

(
−iHt
~

)
|λi〉 exp(−iωt)dt,

d2σ

dΩdEf

∣∣∣∣∣
λi→λf

=
kf
ki

∑
j,j′

bjbj′

2π~

∫ ∞
−∞
〈λi| exp(−iq ·Rj(0))|λf 〉 (3.23)

× 〈λf | exp(iq ·Rj′(t))|λi〉 exp(−iωt)dt.

Here we have made use of the fact that for a Hamiltonian H with eigenstate |λ〉 and corre-
sponding eigenenergy the following is true:

exp

(
iHt

~

)
|λ〉 = exp

(
iEλt

~

)
|λ〉. (3.24)

We have further employed the time-dependent operators

Rj(t) = exp(iHt/~)Rj exp(−iHt/~). (3.25)
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In an experiment we do not observe the final state of the sample, only of the neutron. This
means in order to find the total cross section, we can sum over all the possible final states.
We furthermore only consider systems in thermal equilibrium, which means we can take a
thermal average of the cross section.
This leads us to the equation for the observable cross section

d2σ

dΩdEf
=

〈∑
λf

d2σ

dΩdEf

∣∣∣∣∣
λi→λf

〉
(3.26)

=
kf
ki

∑
j,j′

bjbj′

2π~

∫ ∞
−∞
〈exp(−iq ·Rj(0)) exp(−iq ·Rj′(t))〉 exp(−iωt)dt.

This final equation covers both elastic and inelastic nuclear scattering.

3.3 Magnetic scattering

We now look at magnetic scattering. This is the scattering that occurs when the magnetic
moment of the neutron interacts with the magnetic moments in a material. We here consider
only magnetic fields arising from the spins of electrons in unpaired atomic orbitals.
We will develop the formalism for inelastic magnetic scattering. We start with the master
equation for inelastic neutron scattering as given in Eq. 3.18. To use this we need the mag-
netic scattering potential, which we take to be the neutron interaction with the magnetic
ions. This interaction is given by the total nuclear Zeeman interaction summed over all mag-
netic sites j:

V̂ =
µ0

4π
gµBγµN σ̂ · ∇ ×

(
sj × (r− rj)

|r− rj |3

)
. (3.27)

Here we have the Bohr magneton µB = e~/(2me) and the nuclear magneton µN = e~/(2mp)
where me and mp are the masses of the electron and proton respectively.
We assume thermal equilibrium and sum over all of the possible final states |λf 〉, like we did
for nuclear scattering. Doing this and inserting the scattering potential we get

d2σ

dΩdEf

∣∣∣∣∣
σi→σf

=
kf
ki

(µ0

4π

)2 ( mn

2π~2

)2
(gµBγµN )2

∑
λi,λf

pλi (3.28)

×

∣∣∣∣∣
〈

kfλfσf

∣∣∣∣∣σ̂ · ∇ ×
(

sj × (r− rj)

|r− rj |3

) ∣∣∣∣∣kiλiσi
〉∣∣∣∣∣

2

× δ(~ + Eλi − Eλf ).

The matrix element can be simplified using the following mathematical identity

∇×
(

sj × (r− rj)

|r− rj |3

)
=

1

2π2

∫
q̂′ × (sj × q̂′) exp(iq′ · (r− rj))d

3q′. (3.29)

Inserting this into the matrix element and performing the integral over k-states we find

〈kfλfσf |V̂ |kiλiσi〉 = 4π〈λfσf |
∑
j

exp(iq · rj)σ̂ · (q̂× (sj × q̂))|λiσi〉 (3.30)

= 4π
∑
j

〈λfσf | exp(iq · rj)σ̂ · sj⊥|λiσi〉.
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Here we have defined the spin-component perpendicular to the scattering vector sj⊥ ≡ q̂ ×
(sj × q̂).

Now we look at the spin part of the matrix element to further simplify it. Assuming that the
neutrons are unpolarized, we will not observe the final spin state of the neutron. This means
we sum over σf and average over the initial state σi. Furthermore since the initial neutron
state does not correlate with the initial sample state we can factorise the inner products∑

σi,σf

pσi |〈σfλf |σ̂ · s⊥|σiλi〉|2 (3.31)

=
∑
α,β

∑
σi,σf

pσi〈σi|σβ|σf 〉〈σf |σα|σi〉〈λi|s
β
⊥|λf 〉〈λf |s

α
⊥|λi〉

=
∑
α,β

∑
σi

pσi〈σi|σβσα|σi〉〈λi|s
β
⊥|λf 〉〈λf |s

α
⊥|λi〉.

For unpolarised neutrons α = β:
∑

σi
pσi〈σi|σασα|σi〉 = 1. Likewise if we have α 6= β:∑

σi
pσi〈σi|σασβ|σi〉 = 0.

We can use this to perform the sum over σi to obtain∑
σi,σf

pσi |〈σfλf |σ̂ · s⊥|σiλi〉|2 =
∑
α

〈λi|sα⊥|λf 〉〈λf |sα⊥|λi〉. (3.32)

Summing over the final states |λf 〉 results in

〈λi|sj,⊥ · sj′,⊥|λi〉. (3.33)

We can use that the perpendicular projection is defined as sj⊥ = sj − (sj · q̂)q̂

sj⊥ · sj′⊥ =
∑
α,β

(δαβ − q̂αq̂β)sαj s
β
j′ . (3.34)

Inserting this, we get the magnetic cross section to be

d2σ

dΩdEf
= (γr0)2kf

ki

[g
2
F (q)

]2∑
α,β

(δαβ − q̂αq̂β) (3.35)

×
∑
λi,λf

pλi
∑
j,j′

〈λi| exp(−iq · rj′)sαj′ |λf 〉〈λf | exp(iq · rjsβj |λi〉

× δ(Eλi − Eλf + ~ω).

here F (q) is the magnetic form factor defined as

F (q) =

∫
exp(iq · r)ρs(r)d3r, (3.36)

and stems from the assumption that the electrons that cause the magnetism are located in
orbitals around particular ions. Here ρs(r) is defined as the normalised spin density on the
unfilled orbitals.
The prefactors have been rewritten using the classical electron radius r0 = e2µ0/(4πme).
As in the derivation of the nuclear cross section we rewrite the δ-function as an integral and
use the definition of a time dependent operator.

30



CHAPTER 3. NEUTRON SCATTERING

After making this transformation and performing the completeness sum over the final states
|λf 〉 we get the following cross section for magnetic scattering

d2σ

dΩdEf
=

(γr0)2

2π~
kf
ki

(g
2
F (q)

)2∑
α,β

(δαβ − q̂αq̂β) (3.37)

×
∑
j,j′

∫ ∞
−∞

dte−iωt〈exp(−iq ·Rj(0))sαj (0) exp(iq ·Rj′(t)s
β
j′(t).〉 (3.38)

The nuclear spin position R(t) and the atomic spin s(t) are both operators with an elastic
and an inelastic part. Since we are interested in the magnetic signal we can disregard the
contributions that are inelastic in the phonon channel. This leaves us the with magnetic
diffraction signal which is elastic in both channels and the inelastic magnetic signal which
is elastic in the phonon channel and inelastic in the spins.
This means we can replace the general nuclear position operators Rj(t) with the nuclear
equilibrium positions in a lattice, rj , multiply with the Debye-Waller factor, and use the pe-
riodicity of the lattice to find the following.(

d2σ

dΩdEf

)
magn.

=
(γr0)2

2π~
kf
ki

(g
2
F (q)

)2
exp(−2W )

∑
α,β

(δαβ − q̂αq̂β) (3.39)

×
∑
j,j′

∫ ∞
−∞

dteiq·(rj′−rj)〈sαj (0)sβj′(t)〉e
−iωt.

Going back to the semiclassical approximation where the spins can be described as vectors
we get(

d2σ

dΩdEf

)
magn.

=
(γr0)2

2π~
kf
ki

(g
2
F (q)

)2
exp(−2W )

∑
α,β

(δαβ − q̂αq̂β) (3.40)

×
∑
j

sαj (0)e−iq·rj
∑
j′

∫ ∞
−∞

dteiq·rj′ sβj′(t)e
−iωt

=
(γr0)2

2π~
kf
ki

(g
2
F (q)

)2
exp(−2W )

∑
α,β

(δαβ − q̂αq̂β)Sα,β(q, ω), (3.41)

where Sα,β(q, ω) is the scattering function defined as

Sα,β(q, ω) =
∑
j

sαj (0)e−iq·rj
∑
j′

∫ ∞
−∞

dteiq·rj′ sβj′(t)e
−iωt. (3.42)

This can be simulated and compared to experiments.
Generally we can take α = β, as performing the sums over α and β will show Sα,β = −Sβ,α
in all but a few cases with chiral symmetry.

3.4 Reciprocal space

When calculating the above cross section for the simulated spin movements it is important
to use to correct q-vectors. The amount of q-vectors we can calculate the scattering function
for is determined by the amount of unit cells simulated.
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This is relevant when simulating a spin chain, a triangle and a kagomé lattice. The kagomé
lattice is a lattice of triangles, where some spins have been taken out see Figure 3.1. For the
spin chain the unit cell consists of one spin in case of the ferromagnetic chain and two spins
for the antiferromagnetic chain. For the kagomé lattice the unit cell consists of three spins in
a triangle. Figure 3.1a shows 3× 3 unit cells.

3.4.1 Reciprocal kagomé lattice

We are interested in which q-values are relevant for the kagomé lattice. To find this out it is
helpful to find the reciprocal lattice vectors.
First the constant α is defined as α = 3.645 Å. α is the shortest distance between two atoms.

(a) The lattice vectors and reciprocal space vec-
tors for the kagomé lattice.

(b) The q = 0 ground state. A unit cell is shown
by the black dashed lines.

Figure 3.1

The lattice vectors are defined so they encompass one unit cell, as seen in Figure 3.1a.

a =

2α
0
0

 , b =

 −α√3α
0

 , c =

0
0
β

 . (3.43)

In this case we have defined β to be an arbitrary length with units Å. It is not important
exactly what this constant is since we are only interested in the plane spanned by a and b.
We can now use the lattice vectors to find the reciprocal lattice vectors. We only look at a
2D kagomé lattice, which means we can look only a the reciprocal lattice in the plane. The
reciprocal lattice vectors are defined as follows.

a∗ = 2π
b× c

a · (b× c)
b∗ = 2π

c× a

a · (b× c)
. (3.44)

Inserting the lattice vectors, gives the following reciprocal lattice vectors

a∗ =
π√
3α

√3
1
0

 b∗ =
π√
3α

0
2
0

 . (3.45)

Now when we write q = (h, k) we mean q = ha∗ + kb∗.
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We can now write the coordinates of the spins in a unit cell as follows

∆0 = 0a + 0b

∆1 =
1

2
a

∆2 =
1

2
a +

1

2
b.

3.4.2 Kagomé form factors

To find where we expect peaks in the reciprocal lattice we look at the elastic scattering func-
tion, found from Eq. 3.40

Sαα(q, ω) ∝
∑
j′

sαj′(t0) exp(−iq · rj′)
∑
j

sαj (t0) exp(iq · rj). (3.46)

This is the scattering function for α = β, because the terms for α 6= β cancel out, as the
lattice does not have chiral symmetry.
We can start by looking at one of the sums, as they are the complex conjugate of each other∑

j

sαj (t0) exp(iq · rj). (3.47)

Instead of summing over the whole lattice we can split this into a sum over the unit cells in
the lattice and the spins in a unit cell.∑

j

eiq·r =
∑
k

eiq·Rk
∑
∆

sα∆(t0)eiq·∆. (3.48)

The sum over the unit cells in the lattice is known as the lattice sum, and this gives us a δ-
function that tells us that the inserted q-vectors must be integer multiples of the reciprocal
lattice vectors. This is an example of Bragg’s law.∑

k

exp(iq ·Rk) ∝ δ(q, τ) (3.49)

The second sum is more interesting as it contains the spin directions. We will calculate this
sum in two cases. The first case is for all of the spins being parallel to each other. This is
equivalent to the nuclear scattering. We insert the coordinates of the spins in the unit cell

Fα =
(
sαeiq·

1
2
a + sαeiq·(

1
2
a+ 1

2
b) + sα

)
. (3.50)

Inserting q = ha∗ + kb∗ and sα = 1 into the form factor results in

F (h, k) = 1 + eihπ + ei(h+k)π. (3.51)

This shows us that we will have elastic peaks from nuclear scattering when h and k are inte-
ger values, with the strongest peaks at h = 0, 2 and k = 0, 2.

To see how the spins affect this, we look at Eq. 3.47 again, but this time taking the spin di-
rections into account. As we are still looking at elastic scattering it makes sense to take the
spin directions of a ground state. The ground state chosen is the q = 0 state where the spins
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have 120◦ to each other, as seen in Figure 3.1b. The spins in a unit cell have the following
coordinates

s0 =

√
3

2
x̂+

1

2
ŷ, (3.52)

s1 = −
√

3

2
x̂+

1

2
ŷ, (3.53)

s2 = 0x̂− 1ŷ. (3.54)

These are then inserted into the form factor equation to find the form factors in the x- and
y-directions.

Fx(h, k) =
3

2
− 3

2
exp(ihπ), (3.55)

Fy(h, k) =
1

2
+

1

2
exp(ihπ)− exp(i(h+ k)π). (3.56)

If we ignore the rule that only the spin component perpendicular to q is part of the scatter-
ing cross section, as we do in the simulations, we will observe the cross section

∑
α S

αα(q, ω).
This means we can take the total form factor to be the sum of the individual components
squared

|Ftot|2 = |Fx|2 + |Fy|2 = 3− cos(hπ)− cos(kπ)− cos((h+ k)π). (3.57)

We can see that |Ftot|2 = 0 when h, k are both even, and maximum |Ftot|2 = 4 when either
h or k is odd. This pattern of peaks shows a kagomé lattice, as can be seen in Figure 3.2,
showing that the reciprocal lattice also is a kagomé lattice. In this figure the scattering cross
section has been plotted for different values of qx and qy.

Figure 3.2: The cross section of a kagomé lattice with spins in a ground state. The reciprocal lattice
vectors are plotted in white, with a = (7.3, 0) Å, b = (−3.6, 6.3) Å, a∗ = (0.9, 0.5) Å, and b∗ =
(0, 1.0) Å.
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Chapter 4

Implementation of Simulations

This chapter will describe the simulation program Classical Langevin Spin Simulations Code
(CLaSSiC) [29]. The first version of this simulation tool was written in Matlab by Jakob
Garde to simulate a system of two spins with anisotropy and comparing with experimental
results [30]. This was expanded upon by Henrik Jacobsen who also compared with experi-
mental data [10]. Rasmus Tang Christensen rewrote the code in Python to be able to simu-
late more than two spins in order to investigate triangular systems and a hyperkagomé lat-
tice [31]. Jonas Peter Hyatt wrote the current version of the program, which is generalised
to work for an arbitrary spin geometry and does integration in spherical coordinates [32].
This version was further modified and validated by Emma Lenander [12] and myself. I have
further validated and extended the work by 1) Implementing single-ion anisotropy and 2) Im-
plementing integration in Cartesian coordinates.

I will outline the derivation of the equations of motion that form the basis of CLaSSiC. Then
the program will be described from a user’s perspective and finally the various results from
the simulations on systems ranging from one spin to 3 × 3 unit cells of a kagomé lattice will
be described.

4.1 Langevin spin dynamics

In Chapter 2 the semi-classical spin dynamics of spins interacting with a magnetic field,
anisotropy and each other via the exchange interaction were derived. The next step is to
include temperature effects. To add temperature we couple the spins to a heat bath. This
means the energy of the system is no longer constant, but can fluctuate. A damping term is
added to remove energy from the system and a random magnetic field is added to add en-
ergy to the system. These two terms need to be equal on average so that the system remains
in thermal equilibrium.
The damping term is proportional to the velocity of the spin precession times a constant
λ � 1 and thus has magnitude |∂si∂t |. The direction should lead to the minimum energy con-
figuration for the spin which occurs when the spin is anti parallel to the magnetic field.
The random field b(t) is added to simulate the small perturbations temperature causes to a
system.
The total time evolution of the spin is now [30]

dsi
dt

= γsi × (B̃ + b)± λsi ×
∂si
∂t
. (4.1)
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Here we have defined the random term to be

〈b2〉 =
2λkBT~dt

s(gµB)2
, (4.2)

where kB is the Boltzmann constant, dt is the simulation time step, λ is the damping fac-
tor and T is the temperature. The damping factor is typically in the order of 10−4. It is im-
portant to notice that the temperature is defined in absolute units due to the fluctuation-
dissipation theorem [33], which makes it possible to compare simulations directly to experi-
ments.
By expanding ∂si

∂t to first order in λ we get

dsi
dt

= γsi × (B̃ + b)− γλsi × (si × B̃). (4.3)

The equation has a deterministic part determined by B̃ and a random part determined by
the size of the random field b.

dsi
dt

∣∣∣
det

= γ(si × B̃)− γλsi × (si × B̃), (4.4)

dsi
dt

∣∣∣
rand

= γ(si × b). (4.5)

We numerically integrate Eq. 4.3 to find a real space trajectory for each spin, which can be
related to experiments by Fourier transformation as shown below.
The integration method used for the deterministic part is the fifth order Adams-Bashforth
method [34]. This is a linear multistep method, meaning it evaluates the next step in the
integration by using a weighted average of a single new function evaluation and the previous
four function evaluations. The equation for calculating the next step is

yn+5 = yn+4 + dt
(1901

720
f(tn+4, yn+4)− 2774

720
f(tn+3, yn+3)+ (4.6)

2616

720
f(tn+2, yn+2)− 1274

720
f(tn+1, yn+1) +

251

720
f(tn, yn)

)
.

Where f(t, y) = γ(si × B̃) + γλsi × (si × B̃).
The random part is added to this integration every time step

dsi
dt

= yn+5 + γ(si × b). (4.7)

It is important to note that the integration of the random part is done differently from the
deterministic part. This is explained the Garde’s thesis [30].
The numerical integration have been implemented both in Cartesian coordinates and spheri-
cal coordinates. The derivation of Eq. 4.3 in spherical coordinates can be found in Appendix
B. This version of the code was implemented first in spherical coordinates as it eliminated
the need to renormalise the spin after each time step, as is necessary for the integration in
Cartesian coordinates. The integration in spherical coordinates introduced other errors, like
the simulations becoming suddenly unstable and the spin starting to behave randomly, and
the temperature effects not functioning exactly as expected.

The program also includes an option to do the numerical integration using a 2nd or 4th or-
der Runge Kutta methods. However there is a bug in the current implementation, introduced
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when converting the code to Python. The bug went unnoticed until now. These methods
only give correct results for the Zeeman-interaction and do not conserve energy for the ex-
change interaction and anisotropy. This is due to the fact that the effective magnetic field B̃
does not update between time steps. In this thesis only the Adams-Bashforth integration is
used.

4.2 Scattering cross section

The goal with the simulations is to compare them with experimental data. To achieve this
we need to calculate the scattering cross section from the simulated spin movements.
We start from Eq. 3.40. The absolute value of the intensity is not important for our pur-
poses, so the prefactors have been omitted for simplicity.

Sαβ(q, ω) =
∑
j

sαj (0)e−iq·rj
∑
j′

∫ ∞
−∞

dteiq·rj′ sβj′(t)e
−iωt, (4.8)

where q = kf − ki is the scattering vector, α and β run over the Cartesian coordinates, j and

j′ run over the spins, rj and rj′ are the lattice positions of the spins, and sαj and sβj′ are the
α,β components of the j, j′ th spin.
Shifting by t0 and assuming α = β:

Sαα(q, ω) =
∑
j′

sαj′(t0) exp(−iq · rj′)
∑
j

∫ ∞
∞

sαj (t0 + t) exp(iq · rj) exp(−iωt)dt. (4.9)

The reason we can assume α = β is because performing the sums over α and β will show
Sα,β = −Sβ,α in all but a few cases.
When deriving the magnetic cross section, we saw that neutrons only observe s⊥, the com-
ponents of the spin vector perpendicular to q. In the simulations we are not limited by this,
and instead of calculating this for every time step in the simulation the cross section was cal-
culated for each component of the spin x, y, and z.

4.3 From a user’s perspective

CLaSSiC is implemented as a Python package using a class based approach, chosen to allow
for the easiest development and reuse of simulations. The simulations are implemented in a
general fashion, which means the specific systems and the framework for simulating are sep-
arate. The basic idea is to take a crystal structure provided by the user and solve the equa-
tions of motion seen in Eq. 4.3 for all of the spins.
The crystal structure is loaded via an input file containing the positions of the spins. The file
can contain one or several unit cells, and one can set periodic boundary conditions in cho-
sen axes. The nearest neighbours of the individual spins are found by the program, based on
the distance between the spins in the chosen lattice and the boundary conditions. Then a
Python class is defined which extends the simulation base class. The base class contains the
general logic of the simulations and the user class specifies the parameters:

• Size of the spin s

• The external magnetic field B
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• The nearest neighbour exchange constant J

• The anisotropy matrix Banis

• The temperature T

• The coefficient of friction λ

The spins are modelled as semi-classical vectors.
Once the parameters are loaded the user can specify the initial orientations of the spins or
they can let the program find an approximate ground state via simulated annealing [32]. The
simulation can run after specifying the timestep dt and the number of simulated datapoints
N .
The parameters can be split into the physical parameters and non-physical parameters. The
physical parameters are the ones that can be measured or controlled in an experiment: the
exchange constant J , spin s, anisotropy Banis, external magnetic field B, and temperature T .
The non-physical parameters are the ones that are artefacts of the simulation: the time step
dt, number of simulated datapoints N and friction coefficient λ.

4.3.1 Units

There are several different interactions implemented in CLaSSiC and used in the following
simulations and it is useful to have them in the same units. We have chosen Kelvin. The ex-
change interaction J and temperature T are given in Kelvin as default. The external mag-
netic field B can be calculated in Kelvin like

BK =
gµB
2skB

B, (4.10)

where BK is the magnetic field in Kelvin, s is the spin size and B is the magnetic field in
Tesla.
The anisotropy in units of Kelvin is given by [10]

D =
gµB

2s′kB
Banis, (4.11)

where D is the anisotropy in Kelvin, s′ = s − 1
2 , and Banis is the anisotropy in Tesla. As an

example a magnetic field of 5 T corresponds to 1 K.

4.4 Output of simulations

After the simulation the simulation can output different forms of data. The most straight
forward is the spin movements of all of the simulated spins, specifically the x, y, and z-components
of the spin as a function of time. These can be Fourier-transformed to find the scattering
function according to Eq. 4.9 S(q, ω) which shows the intensity as a function of the momen-
tum transfer q and energy ω. This can show the excitation energies of the system as peaks
in the intensity. The third level of abstraction is the analysis of the scattering function. An
example of this would be fitting a Lorentzian function to find the specific energies and width
of the excitation peaks. Examples of these three outputs will be shown in Chapter 5.
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Validation

This chapter shows the extensive validation of the code done throughout this thesis. We will
compare the integration in spherical coordinates with integration in Cartesian coordinates.
We will validate the implementation of the Zeeman interaction, the temperature, the nearest
neighbour exchange interaction and the single ion anisotropy. The combined effects of these
interactions are also validated on different systems, like two spins with anisotropy and ex-
change interaction, and a spin chain with exchange interaction and a magnetic field. This is
a crucial part of running simulations intended to be comparable with experimental data. We
must verify that the simulations give the correct result when simulating systems with known
behaviour, otherwise we cannot trust them to be correct when simulating more complex sys-
tems.

5.1 Zeeman interaction

B, z

x
θ

Figure 5.1: One spin in a
magnetic field B and angle
θ with the x-axis.

To validate the implementation of the Zeeman interaction a sin-
gle spin in a magnetic field was simulated, with spin value s = 7

2 ,
zero temperature and damping, and dt = 1 · 10−14 s. We ex-
pect the spin to precess around the magnetic field axis with the
Larmor frequency as illustrated in Figure 5.1. The spin com-
ponents of this simulation are shown in Figure 5.2a as a func-
tion of time. The figure shows that the spin oscillates in x and
y and stays stationary along the z-direction. This shows that
the spin does precess around the z-axis with a constant angle
as expected. To find the energy of the precession we look at the
Fourier transformation of the spin movement, also known as the
scattering function S(q, ω). This is shown in Figure 5.2b with
a Lorentzian function fitted to the peak. From this fit we can
extract the mean and width of the peak, which we take as the
energy of the oscillation and the error on the energy.
The Larmor frequency as given by Eq. 2.6 is calculated to be ~ωL = 0.5794 meV for a mag-
netic field of B = 5 T.
The simulation using Cartesian coordinates yielded a Larmor frequency of ~ωL = 0.5792 ±
0.002 meV. The simulation done in spherical coordinates gave the same frequency of ~ωL =
0.5792± 0.002 meV.
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(a) The spin components of a single spin in a mag-
netic field with field strength B = 5 T, and angle
θ = 50◦ with the x-axis.

(b) Intensity as a function of energy for one spin in a
magnetic field with field strength B = 5 T.

Figure 5.2

5.2 Anisotropy

To validate the implementation of the anisotropy, a single spin with an easy axis anisotropy
was simulated. With an easy axis anisotropy and no other interactions the spin will precess
around the anisotropy easy axis with a frequency depending on the canting angle between
the spin and the easy axis. The expected energy can be found by looking at the equation of
motion

ds

dt
= γs× (−Banis), (5.1)

where Banis is the anisotropy field.
Inserting the spin vector and setting the anisotropy direction along the z-axis

d

dt

cos(θ) cos(ωt)
cos(θ) sin(ωt)

sin(θ)

 = γ

cos(θ) cos(ωt)
cos(θ) sin(ωt)

sin(θ)

×−Banis
0 0 0

0 0 0
0 0 1

cos(θ) cos(ωt)
cos(θ) sin(ωt)

sin(θ)

 , (5.2)

⇔ ω cos(θ)

− sin(ωt)
cos(ωt)

0

 = γBanis

− cos(θ) sin(θ) sin(ωt)
cos(θ) sin(θ) cos(ωt)

0

 . (5.3)

Here Banis is the anisotropy field strength and θ is the canting angle with respect to the
anisotropy axis.
Setting t = 0

ω cos(θ)

0
1
0

 = γBanis

 0
cos(θ) sin(θ)

0

 . (5.4)

Taking the y-coordinate and inserting γ = gµB/~ we get

~ω = gµBBanis cos(θ). (5.5)

The simulated results are shown in Figure 5.3, and show excellent agreement.
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This works with the anisotropy easy axis in any direction. The easy plane anisotropy will be
tested in Section 5.5.

Figure 5.3: Energy as a function of the angle with the z-axis with anisotropy Banis = 10 T.

5.3 Temperature

When temperature is added, the spin will start fluctuating randomly. Averages of the spin
movement along a specific axis should follow the Langevin curve given by Eq. 5.6.

〈sz〉
s

= L(y) = coth(y)− 1

y
, y =

µB

kBT
. (5.6)

To test this a single spin in a magnetic field along the z-axis with non-zero temperature was
simulated. The simulation was run for N = 106 data points, long enough to make sure the
spin had reached equilibrium. After this the mean of the z-coordinate of the spin was calcu-
lated. This was done for three different magnetic fields and seven temperatures to see if the
results would follow Eq. 5.6.
The results of the simulations can be seen in Figure 5.4. Using integration with spherical co-
ordinates the data points were consistently off from the theory. The simulations with Carte-
sian coordinates show the points following the theory very well.

Figure 5.4: Mean of the z-coordinate of a single spin in a field as a function of temperature. The dots
are the simulated data and the line the Langevin curve. The simulation has dt = 10−15 s and N =
106. The left hand graph shows the simulation in Cartesian coordinates, and the right hand graph
shows the simulation in spherical coordinates.
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5.4 Exchange interaction

To validate the implementation of the exchange field two interacting spins were simulated.
We have two spins pointing antiparallel, canted with a slight angle, so they form a v as seen
in Figure 5.5a. They have antiferromagnetic interaction with exchange strength J = 2 K and
spin value s = 7

2 . This will cause them to rotate, in the rotor mode, as discussed in Section
2.4.3. The frequency of rotation as a function of canting angle follows Eq. 2.68. The simu-
lated rotation energy as a function of θ is shown in Figure 5.6. The figure shows the simu-
lated data reproducing the theoretical curve very well for both spherical and Cartesian inte-
gration.

θ

(a) Two spins canted with an angle θ performing the
rotor mode precession.

y

B2, z−x,B1

(b) Two spins started in opposite directions, with
an easy plane anisotropy B1 in the yz-plane, and an
easy axis anisotropy B2 along the z-axis.

Figure 5.5

Figure 5.6: The energies of the rotor mode as function of canting angle plotted with the theoretical
prediction, for two spins with J = 2 K. The data points plotted alternate between spherical and
Cartesian integration.

5.5 Anisotropy and exchange interaction

To further validate the anisotropy two spins with exchange interaction, easy axis and easy
plane anisotropy were simulated at zero temperature. The directions of the spins and the
anisotropies are shown in Figure 5.5b. If they had no exchange interaction the spins would
precess freely around the anisotropy easy axis, as the single spin does. However when there is
an exchange interaction the spins will have two rotation frequencies. These are described by
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the following equations [35]

ω− = gµB

√(
B2 +

4s

gµB
J

)
(B2 −B1), (5.7)

ω+ = gµB

√
B2

(
B2 −B1 +

4s

gµB
J

)
. (5.8)

Here B1 is the anisotropy field in the easy plane in Tesla, B2 is the anisotropy field in the
easy axis in Tesla, J is the exchange constant, and s is the spin value.
We see that the spins do indeed rotate with frequencies ω± as a function of D1, D2 and J in
Figure 5.7. The anisotropy strength is given in Kelvin, with the unit conversion described in
Section 4.3.1. There is excellent agreement between theory and simulations.

Figure 5.7: Varying D1, D2 and J . The solid lines are Eq. 5.7 and Eq. 5.8. The data points are plot-
ted so the ones found with spherical and Cartesian integration alternate. The fourth graph is the in-
tensity spectrum for a simulation with J = 2 K, D1 = −1.12 K, and D2 = 0.14 K

To validate the temperature for the two spins, we simulated two spins with two anisotropies
and temperature to compare with Henrik Jacobsen’s figures [10]. In his thesis he simulated
hematite nanoparticles which he then compared to neutron scattering data. A nanoparticle
is a particle with a size in the nanometer range, consisting of around 104 spins. The spins
in the hematite particles move coherently and can thus be simulated as two superspins, one
spin to represent each sublattice in the antiferromagnet. The superspins are defined by∑

m∈A
sm = SA,

∑
j∈B

sj = SB, (5.9)
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and are of the order 5
2 · 5 · 103. Here A and B denote the two sublattices.

The results of my simulations are shown in Figure 5.9. The results of Jacobsen’s simulations
are shown in Figure 5.10 for comparison. The two different simulations show near identical
results.
The data shows the peaks on the x- and y-components of the cross section that can be mod-
elled as dampened harmonic oscillators and the rotor mode is seen as a shoulder on the z-
component. This rotor mode was discovered by Garde [30] and reproduced by Jacobsen [10],
[14] and is when the spins rotate in the yz-plane as in Figure 5.5a. This can be seen when
looking at the spin components in Figure 5.8, where the y- and z-components are oscillating
at the same time.

Figure 5.8: Time evolution of one of the spins at T = 150 K. Rapid coupled oscillations within the
yz-plane are marked by the red ellipses.

Figure 5.9: Two spins simulated with s =5/2, J =242 K, B1=-44.6 mT, B2=4.46 mT, dt = 10−15 s,
N = 108, NA = 5 · 103. Temperature 50 K (left) and 150 K (right).
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Figure 5.10: Two spins simulated with s =5/2, J =242 K, B1=-44.6 mT, B2=4.46 mT, dt = 10−15 s,
N = 108, NA = 5 · 103. Temperature 50 K (left) and 150 K (right). From Jacobsen [10]

5.6 Ferromagnetic spin chain

A ferromagnetic spin chain with exchange strength J = 2 K and spin size s = 7
2 was simu-

lated in an external magnetic field at T = 0. The spins were started in a position close to the
ground state, in a spin wave excitation. The spin chain had 12 spins so there were 12 possi-
ble modes for the chain, described by

qj = 2π
(xj − n/2)

qa
x̂ (5.10)

Where n is the number of spins and xj is the mode we consider.
The spin chain will stay in the mode that it is started in when simulating in zero tempera-
ture. This means that to see the full dispersion with all 12 modes, the spin chain must be
simulated 12 different times, where each time it is started in a different mode. We did this
by starting the spins, so they pointed along the z-axis, with very small x and y components
dictated by the qj mode. The added scattering cross sections of the 12 simulations with a
magnetic field of B = 1 K ẑ are shown in Figure 5.11 plotted with the dispersion relation for
the spin wave, given by Eq. 2.46.
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Figure 5.11: The cross section for 12 different simulations of the FM spin chain added together with
exchange J = 2 K and magnetic field B = 1 K. Theoretical dispersion plotted as white dashed line.
The left panel has been started with the magnetisation aligned with the field and the right panel with
the magnetisation opposite the field.

If the spin starts antiparallel to the field the dispersion shifts downwards as seen in Figure
5.11. This is due to the fact that the ferromagnetic exchange interaction and the Zeeman
interaction work against each other, which means the Zeeman term has the opposite sign as
Eq. 2.46.
If an easy-axis anisotropy in the z-direction is added it acts like a magnetic field and will
shift the dispersion along the energy-axis. The main difference between the effect of anisotropy
and magnetic field is that since the anisotropy is not directional it will work add to the effect
of the exchange interaction no matter if the spins are in the positive z-direction or the nega-
tive z-direction.
When adding temperature to the simulations, we no longer have to simulate the spin chain
several times to get several modes. This is due to the fact that with non-zero temperature,
the energy of the system can change and thus the spin chain can jump between modes. For
small temperatures the temperature broadens the energy peaks, but they still fit the disper-
sion well as seen in Figure 5.12. For large temperatures the spins no longer form spin waves
and therefore the dispersion is not confined to modes, but a continuum in energy, banded by
the low T dispersion.

Figure 5.12: The cross section for two simulations of the FM spin chain with exchange J = 2 K and
magnetic field B = 1 K, N = 2 · 106, dt = 2 · 1015 and different temperatures. Theoretical dispersion
plotted as white dashed line. The left panel has T = 1 K and the right panel has T = 50 K.
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5.7 Antiferromagnetic spin chain

An antiferromagnetic spin chain with exchange strength J = 2 K and spin size s = 7
2 was

also simulated. As with the ferromagnetic chain the spins were started close to the ground
state in a wave formation. The modes are the same as for the ferromagnetic spin chain, but
the spins are started antiparallel to their neighbours instead of parallel.
Figure 5.13 shows the spectrum for the antiferromagnetic spin chain without temperature
and with two different anisotropies. The dashdotted line is the theoretical dispersion given
by Eq. 2.63.

Figure 5.13: The cross section for 12 different simulations of the AFM spin chain added together with
exchange strength J = 2 K. Theoretical dispersion plotted as white dashed line. The left panel has
anisotropy D = 0.4 K and the right panel has D = 1 K.

The spectrum was also simulated with a magnetic field along the z-axis and no anisotropy,
the results of which are shown in Figure 5.14. We can see here that the dispersion splits into
two when adding a magnetic field, as predicted in Eq. 2.63.

Figure 5.14: The cross section for 12 different simulations af the AFM spin chain added together.
Theoretical dispersion plotted as white dash-dotted line. The left panel has magnetic field B = 1
K and the right panel has B = 2 K.

When simulating the antiferromagnetic spin chain with anisotropy and temperature we see
that for low temperatures, the theoretical dispersion is still followed but the peaks are broader
like for the ferromagnetic chain. Figure 5.15 shows that at T = 1 K, this is the case. The fig-
ure also shows that there is a dispersion-less mode at E ≈ 1.3 meV. This suggests that some
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of the spins move independently of each other or all at the same time. The effect was not in-
vestigated further due to time constraints. The figure shows that for higher temperatures the
energies of the spins no longer follows the theoretical curve but there is a continuum of en-
ergies limited by the spin wave dispersion. It is as expected that the order of the spin chain
breaks down for higher temperatures, and the system is no longer solely described by well
defined spin waves.

Figure 5.15: The cross section of one simulation of the AFM spin chain with anisotropy D = 1 K and
temperature. Theoretical dispersion plotted as white dash-dotted line. The left panel has temperature
T = 1 K and the right panel has T = 10 K.

5.8 Triangle with anisotropy

A triangle was simulated with antiferromagnetic exchange J = 2 K and varying easy axis
anisotropy. The main results are shown and discussed in Chapter 6, but the simulation is
discussed briefly here because it demonstrates a difference between the integration in spheri-
cal and Cartesian coordinates. The integration in spherical coordinates behaves unpredictably
for certain canting angles and anisotropy values, in this case the canting angles 20◦ and 25◦

at anisotropy Banis = 1 T and Banis = 2 T. This is illustrated by the spin movement of one
of the canted spins, seen in Figure 5.16, where the spin goes from oscillating with a well de-
fined frequency to moving in a disorganised manner. This does not occur for the integration
in Cartesian coordinates.
We do not know the reason this occurs for the integration in spherical coordinates, as time
did not permit further investigation.

Figure 5.16: The spin components for a spin in a simulated triangle with anisotropy Banis = 2 T and
φ = 25◦ showing the point where the spins start moving unpredictably.
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5.9 Time step

The size of the time step in a numerical simulation is very important. If the step is too big
the results will be wrong and if it is too small the simulation will take longer time to con-
verge. A range of time steps was simulated to find the optimal time step.

(a) Two spins in zero temperature with
antiferromagnetic exchange J = 186 mK
and varying time steps.

(b) Three spins in zero temperature with
antiferromagnetic exchange J = 186 mK
and varying time steps.

Figure 5.17

Figure 5.17 shows the energy of two spins and three spins rotating for different time steps.
This figure shows that for a range of time steps the energy is seen equally well, but when the
time step becomes too large the energy of the system seems to change. This is the result of
the time step being too large to properly make out the oscillations of the spin, and instead
makes it look like the spin moves differently.

Another important parameter is the length of the simulation. If the total simulation time
N · dt is not long enough the energy resolution becomes too large to properly make out the
excitation peaks. Examples of this are seen in Figure 5.18 where the 1 ns peak is very wide
and angular, both for the two and three spin simulations. This effect can be predicted from
the Heisenberg uncertainty principle ∆E∆t ≥ ~/2. Here ∆E = 1.5 · 10−3 meV is given by the
half width at half max of the excitation peak, and ∆t = 0.38 ns is the standard deviation of
a Gaussian fit of a step function with width 1 ns. Inserting this we get

∆E∆t = 3 · 10−6 · 1.602 · 10−19J · 0.38 · 10−9s = 0.91 · 10−34J · s, (5.11)

which is larger than ~/2 = 0.53 · 10−34 J · s.
The time step was chosen to be dt = 10−13 s for both the two spins and the triangle as this
was small enough to accurately depict the energies of the system.

49



CHAPTER 5. VALIDATION

(a) Intensity spectra for the two spin simu-
lations with the shortest simulation times.

(b) Intensity spectra for three spin simula-
tions with shortest simulation times.

Figure 5.18

5.10 Total simulation time

When adding temperature to the simulations it perturbs the spin system by thermal fluctu-
ations and it is important to make sure the simulations run for long enough for the spins to
reach a thermal equilibrium. The time it takes for the spins to reach equilibrium is depen-
dent on the size of the damping factor λ and the temperature T . The larger they both are,
the faster the spins reach equilibrium, but the broader the features in the energy axis. The
damping factor can also be adjusted, but we chose to skip this to focus on more influential
factors.
To determine how long simulation time was needed to reach equilibrium we simulated a tri-
angle in temperature for 100 ns and looked at the scattering function for 10 ns intervals to
see when it stopped changing. The calculated power spectra for the scattering function are
seen in Figure 5.19a. The first 20 ns strange things show up. From 20 ns onwards we see
there are peaks at two different energies, depending on the time interval either one or both
show up. This suggests the chosen interval time is too small to get convergent spectra. Look-
ing at intervals of 30 ns instead we get the five power spectra in Figure 5.19b. These are
more similar, and it can be seen that the peak positions and the shape of the spectrum is
stable after 30 ns. There are still differences in peak shape and size in the power spectra af-
ter 30 ns. This can be helped by transforming longer time intervals to find the power spec-
tra. This is shown in Figure 5.20. These spectra are much more uniform, with similar pro-
files. This shows that the power spectra converge after about 60 ns.
All triangle simulations with temperature have run for 100 ns and the power spectra have
been calculated for the last 60 ns. The simulations of the kagomé lattice have run for 500 ns
and the power spectra have been calculated for the last 400 ns, to be absolutely sure equilib-
rium was reached and the power spectra converge.
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(a) Intensities calculated from 10 ns time intervals
from a simulation of a triangle with time step dt =
10−13 s, AFM exchange J = 186 mK, temperature
T = 20 mK and easy plane anisotropy D = 80
mK in the local xy-plane. Intensities offset with one
along the y-axis.

(b) Intensities calculated from 30 ns time intervals
from a triangle with time step dt = 10−13 s, AFM
exchange J = 186 mK, temperature T = 20 mK
and easy plane anisotropy D = 80 mK in the local
xy-plane. Intensities offset with one along the y-axis.

Figure 5.19

Figure 5.20: Intensities calculated from increasing time intervals, starting at 30 ns from a simulation
of a triangle with time step dt = 10−13 s, AFM exchange J = 186 mK, temperature T = 20 mK, easy
plane anisotropy D = 80 mK in the local xy-plane. Intensities offset with one along the y-axis.

5.11 Discussion

We have done extensive validation on the code, for physical and non-physical parameters.
The physical parameters, exchange interaction J , single-ion anisotropy D, external magnetic
field B and temperature T , were validated both for integration in spherical and Cartesian
coordinates. This was done because the simulations in spherical coordinates gave weird out-
puts. The simulations in spherical coordinates give correct results for several simulations in
zero temperature, namely for one and two spins, but become unstable when simulating three
spins in zero temperature. The results from simulations in spherical coordinates with tem-
perature also do not align with theory. We have not found the exact cause of this, but spec-
ulate that the instability might stem from the factor of 1/ sin(θ) in the equation of motion,
Eq. B.9. This factor approaches infinity for θ → 0 and thus might lead to the change in an-
gle becoming very large, invalidating the fundamental assumption that dθ and dφ are small.
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A possible work-around might be to reduce dt.
The spherical coordinates were implemented to eliminate the error introduced when nor-
malising the spin at every time step, as is necessary in Cartesian coordinates. This was not
a good solution as the normalising error is significantly smaller than the errors introduced
when simulating in spherical coordinates. Furthermore the error from normalising the spin
length can only build up, when the spins are in non-zero temperature. The addition of tem-
perature means the spins will be more affected by the temperature, than they are by the er-
ror and we can thus ignore it in this case.
The simulations using integration in Cartesian coordinates have been consistently in agree-
ment with analytical calculations over a variety of different systems with a combination of
different factors. The implementation of the Zeeman interaction, temperature, nearest neigh-
bour exchange interaction and the anisotropy interaction have all been validated indepen-
dently, and in combination. This was done by comparing to theoretical predictions. One and
two spins were simulated with different interactions and shown to faithfully reproduce the-
ory. A one-dimensional spin chain was simulated with ferro- and antiferromagnetic exchange,
magnetic field, temperature, and periodic boundary conditions. These results reproduced the
theoretical dispersion relations.
The two spin simulation with antiferromagnetic exchange, easy axis and easy plane anisotropy,
and temperature, faithfully reproduced results from Jacobsen’s thesis [10] which have been
verified by neutron scattering experiments.
We can conclude that we can accurately simulate the dynamics of any system of spins, in-
cluding exchange interactions, local and global anisotropies, applied magnetic fields and tem-
perature effects.

For the accuracy of the simulations it is also very important that the non-physical parame-
ters are correct. We have focused on three non-physical parameters, namely the size of the
time step dt, the total simulation length N · dt and the time interval included in the calcu-
lation of the power spectrum. The size of the time step needs to be small enough that it ac-
curately depicts when the spin oscillates, and that the approximations used when integrating
the equations of motion are valid. An upper bound was determined by simulating two and
three spins with antiferromagnetic exchange J = 186 mK, canted away from equilibrium,
with several different time steps and finding the excitation energy of the systems. We found
the maximum time step that still gave the correct results to be 10−12 s, any size smaller than
this would also give correct simulation results. The downside to having a small time step is
that the number of simulated points needs to increase to get the same simulated time which
means the simulations overall take longer time to run. With the exchange parameters and
anisotropy constants used in this thesis we found a reasonable compromise to be dt = 10−13

s.
The total simulated time determines the energy resolution of the power spectrum in accor-
dance with the Heisenberg uncertainty principle. Therefore it is important to have a long
enough simulation that we can make out the excitations of the system. We tested this with-
out temperature and found that the simulated time has to be at least 10 ns for the two spins
and 6 ns for the three spin simulation. We did not investigate this for bigger systems, but do
not expect these times to change significantly if all other parameters are the same.
When simulating with finite temperature another demand is placed on the total simulated
time. That is because the simulation needs to run long enough that the simulated system
reaches thermal equilibrium, and longer so a power spectrum can be calculated for the sys-
tem in equilibrium. To place a lower limit on the simulation time needed to reach equilib-
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rium, we simulated a triangle with antiferromagnetic exchange J = 186 mK, easy plane
anisotropy D = 80 mK and temperature T = 20 mK, and calculating the power spectrum
for different time intervals of the simulation. Equilibrium was clearly not reached during the
first 30 ns, as the power spectra changed drastically. Calculating the power spectrum over
different size time intervals, starting at 30 ns showed that the spectrum converged when in-
cluding at least 60 ns.
This means that when simulating without temperature it is only necessary to simulate at
least 10 ns, but when simulating with temperature it is important to simulate for at least 90
ns to make sure the system reaches equilibrium and the power spectrum of the spin move-
ment converges.
This led to the safe choice of a total simulation time of 100 ns for the triangle and 500 ns for
the kagomé lattice, with power spectra calculated from the last 60 ns and 400 ns respectively.
The kagomé simulations took approximately 8 hours on a stationary computer.
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Results

In this chapter we will describe simulations of two frustrated systems to see to what extent
they are able to replicate the observed magnetic dynamics of GAG. The systems simulated
are a triangle and 3 × 3 unit cells of a kagomé lattice with antiferromagnetic exchange and
different anisotropy directions. The results are compared with experimental data for GAG.

6.1 Triangle at zero temperature

We simulate three antiferromagnetic spins in a triangle with s = 7/2 and J = 2 K. The spins
are started with the top spin pointing along the y-axis and the two lower spins canted away
from the ground state with an angle φ as shown in Figure 6.1a. When there is no external
field or temperature this means they will move in a zero mode with a set frequency.
If there is no anisotropy this frequency depends on the canting angle as given by Eq. 2.70
where φ = θ − 30◦.
If there is anisotropy along the local z-axis of the spins this will determine the frequency of
the zero mode for small values of φ. This can be seen in Figure 6.1b. Around φ = 0 the
shape of the graph looks like the simulation for a single spin with anisotropy in Figure 5.3,
whereas for |φ| � 0 the energy dependence looks more like the theoretical energy dependence
of a triangle with no anisotropy.

−φ

φ

(a) Three spins in a triangle, two of them are being
canting with angle φ or −φ. (b) The peak energy as a function of canting angle

for different values of the easy axis anisotropy. Simu-
lated in Cartesian coordinates

Figure 6.1
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6.2 Triangles at elevated temperatures

We will move on to simulating three spins in a triangle with temperature, a system as yet
without theoretical predictions for its dynamics. To make this comparable to inelastic neu-
tron scattering data on GAG we take the spin to be s = 7/2, the antiferromagnetic exchange
constant to be J = 186 mK and temperatures in the range 1 − 200 mK. Since there is cur-
rently no data on the size of the anisotropy in GAG the anisotropy is taken to be the same
order of magnitude as the exchange to see how both influence the system.

6.2.1 Triangle with no anisotropy

Simulating a triangle in temperature resulted in a narrow peak at E = 6 · 10−4 meV at both
q = (0, 0) and q = (1/3, 1/3) and a broader, higher energy peak at q = (1/3, 1/3). The two
peaks of the q = (1/3, 1/3) spectrum can be seen in Figure 6.2a with a fit of two Lorentzian
functions for q = (1/3, 1/3) respectively. The Lorentzian functions are given by

L(x) =
AΓ2

(x− µ)2 + Γ2
, (6.1)

I(ω) = L1(ω) + L2(ω) =
A1Γ2

1

(x− µ1)2 + Γ2
1

+
A2Γ2

2

(x− µ2)2 + Γ2
2

. (6.2)

where the parameters are the amplitude A, the mean µ and the full width at half maximum
of the peak Γ. The excitation peaks are expected to have a Lorentzian line shape for finite
excitation lifetimes.
The mean µ of the Lorentzian functions were taken to be the energy of the peak and the
width Γ of the Lorentzian as the errorbar. The energies as a function of temperature is shown
in Figure 6.2b. The figure shows that the lower energy mode stays constant in temperature,
but the broader higher energy mode increases in energy with temperature. It also grows
broader and less well defined.

(a) Intensity for q = (1/3, 1/3) as a function of
energy for a simulated AFM spin triangle with J =
186 mK and T = 4 mK. A double Lorentzian fit is
plotted in dashed red.

(b) Energy of simulated antiferromagnetic spin tri-
angle with J = 186 mK as function of temperature
calculated for two different q-values.

Figure 6.2
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6.2.2 Triangle with anisotropy in local z -axis

Next a triangle with easy axis anisotropy was simulated. The anisotropy axis for each spin
was along its local z-direction as seen in Figure 6.3.

Figure 6.3: Three spins in a triangle with anisotropy axes shown by dashed lines.

To understand the simulations we start by looking at the movements of the spins in real
space, an example of which is seen in Figure 6.4a. This shows the movement of the three
spins with exchange constant J = 186 mK, temperature T = 90 mK, and anisotropy D = 80
mK. The figure shows the spins placed in the origin, but it is important to note that in the
simulations the spins are placed in the corners of a triangle. The spins oscillate around their
local z-axis, which is the ground state position of the spins. The spin distance from local z
increases with increasing temperature or decreasing anisotropy. An example of this is seen
when comparing Figures 6.4a and 6.4b where the spin movement extends much further from
the local z-axis when the anisotropy is halved. This shows the temperature pushing the spins
away from the equilibrium position. We can also conclude the anisotropy in this regime has a
larger restraining effect on the spins than the exchange interaction, when comparing with the
zero anisotropy simulation where the spin movements were significantly less well-defined.

(a) Spin movement of the three spins in the triangle
with J = 186 mK, T = 90 mK, and D = 80 mK.
The colours of the spin movements corresponds to
the same colour spin in Fig. 6.3. The local z-axes
are shown as dashed lines.

(b) Spin movement of the three spins in the triangle
with J = 186 mK, T = 90 mK, and D = 40 mK.
The colours of the spin movements corresponds to
the same colour spin in Fig. 6.3. The local z-axes
are shown as dashed lines.

Figure 6.4
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Taking a step further in the analysis, we look at the scattering cross section S(q, ω) for the
spins. Two of the scattering cross sections can be seen in Figure 6.5 along with fits of two
Lorentzian functions.
Figure 6.5a shows two sharp peaks at q = (0, 0), indicating there are two rotational modes
in the system. This is an example of when the anisotropy and/or exchange interaction was
dominating over the temperature, which resulted in well defined peaks. Figure 6.5b shows
a spectrum where the temperature dominates. The spectrum is noisy, and the peaks are
broader and less well defined.
To see how the energies of the modes behaved when changing anisotropy, temperature and
exchange constant the spectra were fitted with two Lorentzian functions for q = (0, 0) and
three for q = (1/3, 1/3). These plots are shown in Figures 6.6a, 6.6b and 6.6c.
Here we see first of all that the energies when looking at the different q-values q = (0, 0) and
q = (1/3, 1/3) are the same with the exception of the peak at E = 0 for q = (1/3, 1/3). This
peak originates from the static structure, and shows up because of the placement of the spins
in the lattice, not because of the movement of the spins.

(a) Cross section of three spin simulation with J =
186 mK, T = 90 mK, and D = 80 mK.

(b) Cross section of three spin simulation with J =
186 mK, T = 500 mK, and D = 80 mK

Figure 6.5

Figure 6.6a show that the non-zero energies increase with increasing anisotropy. The large
errorbars on the points with low anisotropy are a sign that the peaks become broad and less
well defined. This broadening of the peaks also happens for large temperatures as is seen
on the spectrum in Figure 6.5b. This indicates that when the temperature dominates over
the anisotropy interaction it leads to the spin having a short lifetime, leading to a less well-
defined oscillation and therefore a broader energy spectrum.
In contrast to the simulated triangle without anisotropy Figure 6.6b shows the energy of the
spins decreasing with increasing temperature. The two cases do have different energy scales,
E ∼ 10−3 meV for the simulations with no anisotropy and E ∼ 10−1 meV for the simulations
with anisotropy. This likely means that the two graphs represent two different excitations.
When increasing the exchange constant the energies increase as seen in Figure 6.6c. This is
as expected.
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(a) Excitation energies as a function of anisotropy
for a simulated triangle with J = 186 mK and T =
90 mK.

(b) Excitation energies as a function of temperature
for a simulated triangle with J = 186 mK and D =
80 mK.

(c) Excitation energies as a function of exchange
constant for a simulated triangle with D = 80 mK
and T = 90 mK.

Figure 6.6

6.2.3 Triangle with anisotropy in local xy-plane

Next we simulated the three spins with anisotropy in the local xy-plane. This more closely
mimics the behaviour of the spins in GGG and GAG [20]. Looking at the spin movement in
Figure 6.7 we see that the spins are no longer confined to a circle around the local z-axis.
In fact it looks more like they are pointing tangential to the triangle and rotating along the
z-axis. This makes sense because we expect the ground state for this anisotropy to be as pre-
sented in Figure 6.7c. Figures 6.7a and 6.7b show the two versions of the spin state in the
simulations. There are no clear correlations in the data between the value of the anisotropy
or temperature and which of the two states the spins have.
The spin movement narrows in x and y when the anisotropy increases or the temperature
decreases.
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(a) J = 186mK, T = 20mK, and D =
−80mK

(b) J = 186mK, T = 20mK, and D =
−160mK

(c)

Figure 6.7: (a), (b) Spin movement of the three spins in the triangle with local xy anisotropy, showing
the two possible spin configurations. The colours of the spin movements, corresponds to the same
colour spin in (c). The local z-axes are shown as dashed lines. (c) The approximate spin configuration
for the spin movement shown in (a).

As before we look at the scattering cross section of the movement, illustrated in Figure 6.8.
There are several things that are different. First and foremost the spectrum has more peaks.
At q = (0, 0) there are two main peaks and the higher energy peak has two smaller neigh-
bouring peaks. These small neighbouring peaks were quite difficult to fit, hence the fit of two
Lorentzian functions for the q = (0, 0) spectrum.
We can see that two of the peaks of the q = (1/3, 1/3) spectrum are at the same energies as
for q = (0, 0), and there is a structural peak at E = 0 as before. Four added Lorentzians
were fitted to the q = (1/3, 1/3) spectra to describe all the peaks.

Figure 6.8: Cross section of spin movement with J = 186 mK, T = 20 mK, and D = −80 mK, shown
with Lorentzian fits plotted in red. The right hand graph has q = (0, 0) and the left hand graph has
q = (1/3, 1/3).

Two Lorentzians are fitted to the q = (0, 0) data and four to the q = (1/3, 1/3) to de-
scribe the spectra. The means and widths of the peaks are used to define the energy of the
excitations and the error on this energy. These can be seen plotted in Figure 6.9 for varying
anisotropy values and varying temperature.
The high energy peak has a clear dependence on anisotropy, with the energy of the excita-
tions decreasing as the size of the anisotropy decreases.
It is difficult to say whether the placement of the lower energy peaks depend on anisotropy.
It looks like there is a decrease in energy with the decrease in anisotropy strength.
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The energy of the lower peaks seems to increase as the temperature increases. The energy of
the high peaks seem to decrease and then stay constant as the temperature increases.

(a) Excitation energies as a function of anisotropy
for a simulated triangle with J = 186 mK and T =
20 mK.

(b) Excitation energies as a function of temperature
for a simulated triangle with J = 186 mK and D =
−40 mK.

Figure 6.9

6.3 Kagomé lattice at zero temperature

A 2D kagomé lattice consisting of 27 spins was simulated with antiferromagnetic nearest
neighbour exchange. The kagomé lattice has two ground states the q = 0 mode shown in
Figure 3.1b and the

√
3×
√

3 state seen in Figure 6.10a [15].
For the simulation with zero temperature we chose to focus on the

√
3 ×
√

3 mode as it has
a zero mode moving in a loop of six spins compared to a line-shaped zero mode extending
through the whole structure in the q = 0 state. The chosen mode is akin to the previously
discussed triangle zero mode where one spin is stationary and two spins canted away from
the ground state rotate freely as illustrated in Figure 6.10a.
For the simulation at zero temperature the expected zero mode energy relation is given by
Eq. 2.71. As with the triangle the θ in the equation is the spins’ angle with the x-axis. The
canting angle is defined by φ = θ − 30◦. The simulated energy at q = 0 is plotted with
the theoretical value in Figure 6.10b. The simulated and theoretical energies show excellent
agreement.
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(a) Spin positions of the spins in the kagomé lattice
in the

√
3 ×
√

3 mode. Unit cell marked by dashed
line. The state shown has continuous degeneracy as
the spins on a hexagon can can be rotated out of the
plane as indicated by the ellipses without changing
the ground state energy.

(b) The zero mode of the canted spins in a kagomé
lattice, with s = 7/2, J = 2 K and T = 0 K, plotted
with the theoretical energy as given by Eq. 2.71

Figure 6.10

The unit cell of the lattice contains three spins in an equilateral triangle, like the system sim-
ulated earlier. To see the full behaviour of spins on a kagomé lattice, such as the

√
3 ×
√

3
mode, we need to simulate more unit cells. Three times three lattice unit cells were simu-
lated, to make sure the spins spanned the magnetic unit cell of the

√
3 ×
√

3 and the bound-
ary conditions would result in the edge spins having neighbouring spins with the correct di-
rections. It was simulated with periodic boundary conditions in the x- and y-directions to
make sure all spins functionally had four neighbours.

Simulating several unit cells means the scattering cross section can be calculated for several
relevant q-values. We found the q-values for which we could expect elastic peaks in Ch. 3.
For nuclear scattering we expect peaks at q = (0, 0), (2, 0), (0, 2), (2, 2) and for the magnetic
scattering we expect peaks when one or both of the coordinates were odd integers, for exam-
ple q = (0, 1), (1, 0), (1, 1). To find where there might be inelastic peaks, we look at the con-
straints placed by the periodic boundary conditions. This means the spin value is the same
for the 0th spin and the Nth spin. Looking at the spins along the x-axis:, we have spin coor-
dinates: r0 = 0, rN = 3a

exp(ir0 · q) = exp(irN · q) = 1 (6.3)

i2nπ = irN · q = i3a(ha∗ + kb∗) = i3h · 2π (6.4)

h =
n

3
, (6.5)

where n is an integer number. We can perform the same calculation for the y-direction with
the spin coordinate rN = 3b to get

k =
m

3
, (6.6)

where m is an integer number. This means that the relevant q-values for inelastic scattering
are q =

(
n
3 ,

m
3

)
, with n,mε0, 1, 2. Taking all of these would mean looking at a lot of different

cross sections, but due to the symmetries in the lattice there are only a few unique cross sec-
tions. We choose to focus on the (h, 0) directions: q = (0,0), (1/3,0), (2/3,0), (1,0), (4/3,0),
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(5/3,0) and the (h, h) direction: q = (0,0), (1/3, 1/3), (2/3, 2/3), (1, 1), (4/3, 4/3), (5/3,
5/3).

6.4 Kagomé lattice with temperature

We are interested in comparing simulations to GAG data on the hyperkagomé and our fist
step is to simulate this simpler system. For this reason the spin value was chosen to be s =
7/2, the nearest neighbour exchange was chosen to be J = 186 mK as for GAG [4], and the
temperatures chosen to be the same order of magnitude as the ones in the paper T=1 −
100 mK. The simulations were done both without anisotropy and with different anisotropy
configurations. Since the anisotropy strength for GAG is not given in the literature [4], the
anisotropy strength was chosen to be D = 80 mK, a comparable size to the exchange inter-
action. The four types of anisotropy simulated were anisotropy with local z-axis as the easy
axis, easy plane anisotropy in the local xy-plane, easy axis anisotropy in global z, and easy
plane anisotropy in the global xy-plane. The single ion anisotropy has strength D = 80 mK
for all of the spins.

6.4.1 Kagomé lattice with no anisotropy

First we look at the data for the lattice with no anisotropy and low temperature. The simu-
lated spectrum in Figure 6.11a suggests that there are spin waves propagating. We can make
out something that looks like an optical mode at E = 2J , and very high intensity at low
energy at q = (1, 0) while almost zero intensity at q = (0, 0). Simulations of the antifer-
romagnetic kagomé lattice have been previously been performed by Robert et al [36]. They
combined Monte Carlo and spin dynamics simulations to investigate 36 × 36 unit cells of a
kagomé lattice in temperature with no anisotropy. They simulated temperature by generat-
ing different ground states for the spins and letting the simulation run deterministically by
solving the spin equation of motion.

dsi
dt

= J(
∑
j

sj)× si (6.7)

The spectrum shows some of the same features as the data from Robert et al. [36] seen in
Figure 6.11b, like the very bright area at q = (1, 0) and the peak at q=(2/3,0) and q=(4/3,0)
that looks like the soft mode. There are a few differences in the spectra, the most obvious
of which is the q-resolution. This is due to the comparative sizes of the simulated lattices,
Figure 6.11b has been made from a lattice of 36 × 36 unit cells, a significantly bigger system
than the one simulated in this thesis. This leads to the presumed acoustic mode not being
visible on Figure 6.11a. We also see two excitations at high energies, one at E ≈ 2 meV and
one at E ≈ 2.5 meV where the latter is not present in Robert’s work. This might be due to
the smaller size or higher temperature of the lattice.
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(a) Intensity map of the scattering function vs. E and
q = (h, 0) for 3 × 3 unit cells of a kagomé lattice with
T/J = 5 · 10−3, J = 186 mK and D = 0.

(b) Intensity map of the scattering function vs. E
and q = (h, 0) for 36 × 36 unit cells of a kagomé
lattice with T/J = 5 · 10−4. From Robert et al. [36].

Figure 6.11

6.4.2 Kagomé lattice with anisotropy in local z -axis

Looking at the data with anisotropy along the local z-axis we see a few differences from the
corresponding simulations with the triangle. First and foremost the spin movement is no
longer strictly confined parallel to the easy axis, but starts to move around the global xy-
plane as the temperature increases. Figure 6.12a shows the spin movements at T = 10 mK,
where the temperature is not yet large enough that the spins move round the circle, but they
seem to have two modes. One where the spins are parallel to their local z-axis and one where
they have a 30◦ angle with their local z-axis, as illustrated in Figure 6.12b.
Calculating the scattering cross section for these data we see several excitation peaks. Each
peak was fitted with a Lorentzian function to find its position and width.

(a) Spin movement of three spins in kagomé unit cell
with J = 186mK, T = 10mK, and D = 80mK. The
colours of the spin movements corresponds to three
spins in (b). Anisotropy easy axis shown as dashed
line.

(b) The two possible spin directions in a
kagomé unit cell are plotted.

Figure 6.12

For q = (0, 0) the intensity shows three peaks at T = 100 mK, one close to zero and two
that could be separate modes. These are also represented for q = (1/3, 1/3) with different
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amplitudes. These are shown with Lorentzian fits in Figure 6.13. The peak at E = 0.08 meV
splits into two peaks at lower temperatures.

Figure 6.13: Cross section for the 3× 3 kagomé unit cells with J = 186 mK, T = 100 mK and D = 80
mK anisotropy in along the local z-axis. The right panel has q = (0, 0) and the left panel has q =
(1/3, 1/3).

The energy of these peaks are constant in temperature as seen in Figure 6.14a. At high tem-
perature T/J ≈ 0.5 the peaks become broad and difficult to distinguish from each other.
This is a contrast to the simulations of the triangle, where the anisotropy was set to the
same value D = 80 mK and there is a clear decrease in excitation energy with temperature.
Looking at the scattering cross section as a function of q, as seen in Figure 6.14b we see the
peak widths and intensities do seem to be dependent on q while the energy seems largely
independent of q. It is difficult to make out the dispersion, with the resolution of the plot.

(a) Energy of excitation peaks as a function
of temperature for two different q-values for a
kagomé lattice with J = 186 mK and D = 80
mK.

(b) Intensity map of the scattering function vs. E
and q = (h, 0) for T = 1 mK for 3x3 unit cells of a
kagomé lattice with J = 186 mK and D = 80 mK.

Figure 6.14

6.4.3 Kagomé lattice with anisotropy in local xy-plane

When the anisotropy is in the local xy-plane, the spins confine themselves to moving in an
ellipse along the global z-axis, as seen in Figure 6.15. This is the same spin movement that
we saw for the triangle with easy plane anisotropy in the local xy-plane. The spin directions
as seen in the global xy-plane are illustrated in Figure 6.15b.
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(a) Spin movement of three spins in kagomé unit cell
with J = 186 mK, T = 10 mK, and D = −80 mK. The
colours of the spin movements corresponds to three
spins in (b). Local z-axis shown as grey dashed line.

(b) The spin directions in a kagomé unit
cell with J = 186 mK, T = 10 mK, and
D = −80 mK.

Figure 6.15

For q = (0, 0) the intensity shows two peaks at T = 100 mK, one narrow and well-defined
at lower energy and one that is broader at higher energy. There are also two peaks at q =
(1/3, 1/3), they are both much broader and higher energy than the q = (0, 0) peaks. These
spectra are shown with Lorentzian fits in Figure 6.16.

Figure 6.16: Cross section for the 3 × 3 kagomé unit cells with J = 186 mK, T = 100 mK and D =
−80 mK anisotropy in the local xy-plane. The right panel has q = (0, 0) and the left panel has q =
(1/3, 1/3).

The temperature dependence of the energies excitation look like they follow a
√
T depen-

dence. The highest excitation decreases in temperature and the lowest excitation increases.
This happens for all q-vectors. The temperature dependence of the excitation energies looks
similar to the temperature dependence seen in Figure 6.9b for the triangle, at least for lower
temperatures. Figure 6.17b shows that the excitations are q-dependent, as with the easy axis
anisotropy. The figure shows two excitation bands that broaden and increase in energy to-
wards q = (1, 0) and tapers off towards q = (0, 0).
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(a) Energy of excitation peaks as a function of
temperature for two different q-values for 3x3
unit cells of a kagomé lattice with J = 186 mK
and D = −80 mK.

(b) Intensity map of the scattering function vs. E
and q = (h, 0) for T = 1 mK, for 3× 3 unit cells of a
kagomé lattice with J = 186 mK and D = −80 mK.

Figure 6.17

6.4.4 Kagomé lattice with anisotropy in global z -axis

With the anisotropy easy axis being along the global z-axis, the anisotropy contributed to
the frustration. The spins aligned themselves so one spin was parallel and two were mostly
antiparallel with this axis, as seen by Figure 6.18a. The figure suggests that the spins still
keep 120◦ between each other.

(a) Spin movement of three spins in kagomé unit cell
with J = 186 mK, T = 10 mK, and D = 80 mK in the
global z-direction. The colours of the spin movements
corresponds to three spins in (b).

(b) The spin directions in a kagomé unit
cell with J = 186 mK, T = 10 mK, and
D = 80 mK.

Figure 6.18

The energy of the spins as a function of temperature for two q-values is shown in Figure
6.19a. The energies look constant as a function of temperature, like for the simulation with
anisotropy easy axis along the local z-axis. This is likely for the same reason as with the
anisotropy in the local z-axis, namely that the total added value of the anisotropy is the
largest effect in the system and therefore dictates the dynamics of the spins.
When looking at the intensity as a function of energy and q in Figure 6.19b we can see that
the excitations are q-dependent. There are two narrow bands at q = (0, 0) which are ex-
changed by several narrow bands at q = (n/3, 0) where n=1, 2, 3, 4, and 5.
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(a) Energy of excitation peaks as a function of
temperature for two different q-values, for 3x3
unit cells of a kagomé lattice with J = 186 mK
and D = 80 mK.

(b) Intensity map of the scattering function vs. E
and q = (h, 0) for T = 1 mK, for 3× 3 unit cells of a
kagomé lattice with J = 186 mK and D = 80 mK.

Figure 6.19

6.4.5 Kagomé lattice with anisotropy in global xy-plane

When there is an easy plane anisotropy in the global xy-plane, the spins move freely in this
plane, still with 120◦ between each other, as shown in Figure 6.20a.

(a) Spin movement of three spins in kagomé unit cell
with J = 186 mK, T = 10 mK, and D = −80 mK
in the global xy-plane. The colours of the spin move-
ments corresponds to three spins in (b).

(b) The spin directions in a kagomé unit
cell with J = 186 mK, T = 10 mK, and
D = 80 mK.

Figure 6.20

Figure 6.21a shows that the energy of the spins is constant as a function of temperature.
The excitations are q-dependent, with the energy increasing towards q = (1, 0). This is seen
in Figure 6.21b.
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(a) Energy of excitation peaks as a function of
temperature for two different q-values for 3x3
unit cells of a kagomé lattice with J = 186 mK
and D = −80 mK.

(b) Intensity map of the scattering function vs. E
and q = (h, 0) for T = 1 mK for 3 × 3 unit cells of a
kagomé lattice with J = 186 mK and D = −80 mK.

Figure 6.21

6.5 Discussion

6.5.1 Triangle

We simulated four different triangle systems with antiferromagnetic exchange interactions.
The first was the triangle with no temperature and anisotropy in the local z-axis. This sys-
tem behaved as theoretically predicted for no anisotropy, where the spins were in a zero mode
with the energy depending on the canting angle, described by Eq. 5.5.
When anisotropy was added the energy of the system changed for low canting angles to look
more like the energy of a single spin with easy axis anisotropy.
A triangle with no anisotropy in low temperature showed two different excitations, visible
at q = (1/3, 1/3). One low energy excitation with energy constant in temperature, and one
broad excitation with energy increasing with temperature. The width of the broad peak sug-
gests that the peak describes several excitations.
The shape of this spectrum is very similar to that of the excitation spectrum of GAG mea-
sured with neutron scattering [4]. The key differences are that the observed high energy exci-
tation INS3 shown in the inset of Figure 6.22a does not show up in the triangle simulations,
and the energy scales are very different. The difference in energy is primarily caused by the
lack of anisotropy in the simulations.

A triangle with anisotropy in the local z-axis was simulated for several temperatures, sev-
eral anisotropy values, and several exchange values. Looking at the intensity spectra for
q = (0, 0) and q = (1/3, 1/3) we see two excitation peaks and one structural peak at E = 0
for q = (1/3, 1/3). For lower temperatures the two peaks are well-defined and at higher
temperatures they become broad and more noisy, and a broad, badly defined peak appears
at lower energy. The two excitation peaks are closer in energy to INS1 and INS2 in GAG,
but the shape of the peaks do not look very similar. INS3 is also not replicated in the trian-
gle spectrum. The dissimilarities between the two cases is not too surprising given that the
anisotropy simulated in this case is along the local z-axis and the anisotropy found for GAG
is in the local xy-plane [4].
The energies of the excitations increased with increasing anisotropy, and with increasing ex-
change interaction. This is as expected. The excitation energies decreased with increasing
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temperature, and the peak widths increased with temperature. This is the opposite relation
in the triangle without anisotropy, but since the energies of the two excitations are E ∼ 10−3

meV for the triangle with no anisotropy and E ∼ 10−1 meV for the triangle with anisotropy,
we conclude that the two represent different excitations. These different behaviours show
how the system reacts differently to increasing temperature with and without anisotropy.
In the simulation with anisotropy increased temperature get the spins further away from
the energy minimum which makes the energy decrease. When there is no anisotropy the ex-
change interaction dominates which means the energy increases with canting angle. We can-
not compare with the temperature dependence of the excitation peaks in GAG because it is
not known.

A triangle with anisotropy in the local xy-plane was also simulated for several temperatures
and several anisotropy values. The spin movement shows the spins lying perpendicular to
their local z-axes and moving along the global z-axis. The excitation spectrum shows two
and three excitation peaks for q = (0, 0) and q = (1/3, 1/3) respectively when varying
the anisotropy, as well as the structural peak seen at q = (1/3, 1/3). The energies of the
excitation peaks increased with the size of the anisotropy, like it did for the triangle with
anisotropy in the local z-axis. The higher energy peak decreases in energy with increasing
temperature, while the lower energy peak increases in energy. Both seem to approach a con-
stant at the highest temperatures. This behaviour could be due to a mix of a zero mode
which increases in energy with temperature and an anisotropy mode that decreases in energy
when the spins are not in the anisotropy plane.
The simulated intensity spectra do not resemble the shape of the excitation spectrum for
GAG. The excitations in the triangle have energy E = 0.02 meV and E = 0.11 meV, which
is lower than INS1 and INS2, and they are significantly more well defined. The energy dif-
ference is small, which makes it likely to be due to the spins in the triangle having only two
neighbours and not four like in a hyperkagomé lattice. The sharpness of the peaks is affected
by many things, among which are the lower temperatures in the simulation compared to the
experiments. Another parameter that affects the peak widths of the simulated spectrum is
the damping factor λ. If we increase λ we also increase the width of the peak. Furthermore
the peak widths of the neutron scattering data are affected by potential imperfections in the
GAG powder measured and instrument resolution, neither of which we have included in the
simulations.
As before INS3 is not reproduced by these simulations. It is expected for there to be differ-
ences in excitation spectra, as it would be highly unlikely for us to be able to reproduce the
excitations of a hyperkagomé lattice by simulating just a single triangle. We did not have the
time to simulate 3× 3 unit cells of a triangular lattice.

6.5.2 Kagomé

A kagomé lattice of 3 × 3 unit cells with antiferromagnetic exchange interactions was simu-
lated for a variety of different anisotropy configurations. The simplest system was a lattice
with zero temperature, no anisotropy and some spins canted away from equilibrium. The en-
ergy of the system showed perfect agreement with theory.
The kagomé lattice with temperature and no anisotropy showed sign of spin waves, with an
optical mode visible in the spectrum at E = 2J . The spectrum also shares many similari-
ties with the spectrum from a simulated kagomé lattice of 36 × 36 unit cells by Robert et al.
[36]. Amongst these are a very bright peak at low energy for q = (1, 0), very low intensity at
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q = (0, 0), and signs of a soft mode at q = (2/3, 0) and q = (4/3, 0). The main difference
between the two figures is the low q-resolution of our figure, which is due to the small size of
the system.

The kagomé lattice with anisotropy along the local z-axis shows the spins lying along the
local z-axis for low temperatures and moving around the global xy-plane for high temper-
atures. There is one step between the two at T = 10 mK where the spins have two states,
one along the local z-axis and one at 30◦ to it. We expect the spins to behave like the tri-
angle with anisotropy in the local z-axis, where the spins stay in the z-direction, and moved
uniformly away from it with increasing temperature. This behaviour in the kagomé lattice is
unexpected, and it is unknown if it is correct or an artefact of the way the anisotropy is im-
plemented in the code, but unfortunately there was not enough time to investigate the cause
of this effect.
Looking at the excitation spectra we see between two and three excitations depending on the
q-value. These are close to the energies of INS1 and INS2 in GAG, and resemble the shape
in that the lower energy peak is more well-defined than the higher energy peak. There is no
equivalent to the INS3 peak in the simulated intensities. The two excitation peaks for the
kagomé simulations do not overlap like the GAG excitations do. We do not expect the ex-
citation spectra to be identical, since the anisotropy is along the local z axis instead of the
local xy plane, and the lattices are different in the two cases, but it is interesting that excita-
tions happen at about the same energies. The spectrum is also closer to the GAG spectrum
than for the triangle with local z anisotropy, which shows that the lattice does have a big ef-
fect on the spin dynamics, and that a kagomé lattice is one step closer to GAG than a single
triangle.
The excitation energies are constant in temperature in contrast to the simulated triangle
with anisotropy along local z. This might be due to the fact that the anisotropy is affected
by the number of spins in the lattice, which would make the actual anisotropy strength NspinD =
27D = 2.2 K for the kagomé lattice. This is significantly more than the exchange interaction
of J = 186 mK, which means that the anisotropy dominates the system and forces the spins
to keep constant overall direction.

In the simulated kagomé lattice with anisotropy in the local xy-plane, the spins lie perpen-
dicular to the local z-axis and move along the global z-axis. This is in agreement with the
results for the triangle with anisotropy in the local xy-plane. Two excitation peaks were seen
in the excitation spectra for q = (0, 0) and q = (1/3, 1/3). As with the triangle simulation
the higher energy peak decreases in energy with increasing temperature, while the lower en-
ergy peak increases in energy. This also looks like the triangle with corresponding anisotropy.
The energies are also q-dependent, the two excitations increase in energy and broaden to-
wards q = (1, 0). The intensity spectra for T = 100 mK are the closest to GAG of all the
simulations with anisotropy, as seen in Figure 6.22. At q = (0, 0) there is a narrow peak
at E = 0.03 meV and a broader peak at E = 0.15 meV. These are close to the energies
of INS1 and INS2 as shown in Figure 6.22a. The main difference between the two spectra is
that the high energy peak for the kagomé lattice is more well-defined and the two peaks are
not merged. This could be due to a variety of factors, like the difference in lattice structure
or anisotropy value between the systems. Since the anisotropy value for GAG is not known it
is difficult to predict its effect on the spin dynamics. Jacobsen also observed that simulated
excitation peaks were sharper compared to measured data [10], so the effect is expected.
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(a) Temperature and energy dependence of excita-
tions of GAG found from inelastic neutron scattering
on a powder of GAG. Inset shows q-integrated in-
tensity of the higher energy excitation. Figure from
Jacobsen et al. [4].

(b) ntensity of triangle with antiferromagnetic ex-
change J = 186 mK, temperature T = 20 mK and
anisotropy D = −80 mK in the local xy-plane. Red
dashed line shows fit with two Lorentzian functions.

(c) Intensity of 3 × 3 unit cells of a kagomé with an-
tiferromagnetic exchange J = 186 mK, temperature
T = 100 mK and anisotropy D = −80 mK in the
local xy-plane. Red dashed line shows fit with two
Lorentzian functions.

Figure 6.22

In the simulated kagomé lattice with anisotropy in the global z-axis, the anisotropy con-
tributes to the frustration in the lattice. There is one spin in each unit cell pointing up along
the global z-axis and two spins that point mostly antiparallel to this axis, all with 120◦ to
each other. It looks like the upward pointing spin is close to stationary while the two down-
ward pointing spins rotate freely in the global xy-plane. This indicates the presence of a zero
mode. This is supported by the three excitations at E = 0.03 meV, E = 0.06 meV and
E = 0.1 meV, that are constant in q and very well defined.

For the kagomé lattice with anisotropy in the global xy-plane, the spins move freely in the
plane while still keeping 120◦ angle to each other. The excitation energies are constant in
temperature and seem to vary in q, the energy of the peaks increase towards q = (1, 0) with
the peaks splitting in two at q = (1/3, 0), (2/3, 0), (4/3, 0), and (5/3, 0).
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Conclusion and Outlook

In this chapter we will summarise the results of this thesis and provide an outlook for possi-
ble future work.

7.1 Conclusions

In this thesis we have worked with and improved the simulation suite CLaSSiC. The single-
ion anisotropy interaction was added to CLaSSiC, and extensive validations performed. The
physical parameters, exchange interaction J , single-ion anisotropy D, external magnetic field
B and temperature T , were validated both for integration in spherical and Cartesian coor-
dinates. Several errors were found when validating the simulation in spherical coordinates,
namely instabilities and the simulations in temperature being consistently off compared to
theory. Smaller errors in the simulation program were also found and corrected during the
project.
In contrast, integration in Cartesian coordinates have results that agree with analytical cal-
culations. The implementation of the Zeeman interaction, temperature, nearest neighbour
exchange interaction and the single-ion anisotropy interaction were validated independently
for one and two spins, and in combination for two spins and a spin chain. We can conclude
that we can accurately simulate the dynamics of any system of spins, including exchange in-
teractions, local and global anisotropies, applied magnetic fields and temperature effects.

We simulated three spins in a triangle with antiferromagnetic exchange interactions, and
with and without anisotropy, in an effort to build our understand of spin dynamics in frus-
trated systems, and how they are affected by temperature and anisotropy strength. The
results were compared with excitation spectra for GAG to see if a three spin system could
replicate some of the dynamics in GAG.
Three different three spin systems were simulated, one with no anisotropy, one with anisotropy
along the local z-axis and one with anisotropy in the local xy-plane. The first triangle showed
two excitation peaks, one of them increasing in energy as a function of temperature. This is
a concrete example of the zero mode excitation at a finite temperature.
For the triangles with anisotropy, the excitation energies were shown to increase with the
anisotropy strength for both cases, as we expect. For the triangle with anisotropy along the
local z-axis we further showed that the excitation energies increased with exchange strength
and that the energies decreased in energy as the temperature increased. The triangle with
anisotropy in the local xy-plane showed two different behaviours for the two excitation peaks
as a function of temperature. The higher energy peak decreased in energy, while the lower
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energy peak increase its energy as a function of increasing temperature. This could be due
to a mix of a zero mode which increases in energy with temperature and an anisotropy mode
that decreases in energy when the spins are not in the anisotropy plane.

To understand how the spin dynamics are affected by being in a lattice structure, we simu-
lated a kagomé lattice consisting of 9 corner sharing triangles or 3 × 3 unit cells with various
anisotropy directions. For the simulation with no anisotropy, the dispersion was compared
with a dispersion found by similar simulations by Robert et al. [36]. The two shared several
features, but it was difficult to follow the details of the dispersions, given our poor resolu-
tion in q. The kagomé lattice with anisotropy in the local z-axis shows an unexpected spin
movement with a mode along the local z-direction and a mode with 30◦ to the local z-axis.
It is unclear whether this is an artefact of the implementation of the anisotropy or not. The
energy of the excitations are constant in temperature, likely due to the anisotropy.
The kagomé lattice with anisotropy in the global z-axis had different amount of excitations
depending on the q-value, but they all had a constant energy as a function of temperature.
There were three well-defined excitations around E ∼ 0.5 meV, that are constant in q. This
is the sign of local modes in the lattice.
The kagomé lattice with anisotropy in the global xy-plane, showed the spins rotating freely
in the plane while keeping 120◦ to each other. The excitation energies were also constant as
a function of temperature.

Comparing the shape of the excitation spectrum of the triangle with anisotropy in the local
xy-plane with the energy spectrum of GAG shows some similarities. Both systems have two
large excitation peaks with energies around 0.1 meV. GAG also has an excitation at E ∼ 0.5
meV which does not show up in the simulations of the triangles. The triangle has lower en-
ergy peaks, likely due to the spins in a triangle having half the amount of nearest neighbours
compared to in a hyperkagomé lattice.
The kagomé lattice with anisotropy in the local xy-axis has two excitation peaks at almost
the same energies as the two lower energy excitations for GAG. This shows that some of the
excitation spectrum of GAG can be described with a simpler system like a small kagomé lat-
tice.
It was difficult to compare the dispersions of GAG and the kagomé simulations, because the
q-resolution for the kagomé dispersion is very low due to the small size of the simulated lat-
tice.

7.2 Outlook

We can split the outlook into two categories, the first one is improvements suggested for the
simulation suite itself and the second is the things we would like to simulate with the pro-
gram. Currently big simulations take a lot of time to run, it would be nice to speed this up.
The simulations of the 3 × 3 kagomé unit cells of N = 5 · 106 datapoints took eight hours to
run on a computer with a clock frequency of 3.40 GHz. Speeding this up can be done by op-
timising the central loop of the code, for example by using a faster integration method than
Adams-Bashfort or writing it in a faster code language like C [37]. Python is slower because
it is an interpreted language, where each code line is read and translated into machine exe-
cutable commands, e.g. for each step in the loop, where C compiles the code into machine
executables once and for all [38]. To further speed up the code and lessen the amount of
storage needed for simulated data, one could look into only saving e.g. every third or every
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fourth data point. This would save the time it takes to save the individual data points, and
make it faster to calculate the scattering functions for simulations.
It would be interesting to implement a dipole interaction to the simulations in order to bet-
ter describe systems like GAG and GGG which both have dipole interactions of the same
order of magnitude as the exchange and anisotropy interactions.
We simulated a kagomé lattice with 3 × 3 unit cells with different anisotropy directions. To
build on this, one could further explore the parameter space, for example by varying the
anisotropy size or simulating higher temperatures. Varying the anisotropy could have the
goal of achieving the same distribution of spin orientations as in GAG, to see how that would
affect the energy spectrum. It is also relevant to investigate the strange mode seen in the
kagomé simulations with anisotropy in the local z-axis, where the spins lay with a 30◦ angle
to local z. With a faster simulation program it would be possible to simulate more kagomé
unit cells for example 36 × 36, and get a much better q-resolution to be able to analyse the
energy dispersion of the simulations. This would be interesting to compare to neutron scat-
tering data on jarosite, like the data from Matan et al. [19]. It is also interesting to simulate
a triangular lattice with high definition in order to compare to neutron data on this system,
like the paper from Janas et. al [39].
With a faster runtime it would also be possible to simulate a 3D lattice like the hyperkagomé
lattice. With a unit cell of 24 spins it should be possible to simulate 2 × 2 × 2 unit cells or
even 4 × 4 × 4 unit cells. This could be done to further investigate GAG and see if the third
excitation in the GAG power spectrum could be reproduced in the simulations. It would also
be interesting to look at similar systems like Yb3Ga5O12 which we are interested in in the
group, see Sandberg et al. [40]. There are several interesting 3D systems to potentially sim-
ulate, for example titanates like Ho2Ti2O7 and Dy2Ti2O7 [41]. It would also be interesting
to do these simulations in absolute units so the intensities of the scattering function could be
directly compared with data.
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Appendix A

Equations of motion

The equations of motions are found from

−i d

dt
s = [H, s] (A.1)

where κ is the anisotropy matrix, s is the spin vector and we have set ~ = 1.
The commutators of the spin operators are

[sxi , s
y
j ] = iszi δij , [syi , s

z
j ] = isxi δij , [szi , s

x
j ] = isyi δij (A.2)

Some useful commutator identities are

[A,BC] = [A,B]C +B[A,C] (A.3)

[AB,C] = A[B,C] + [A,C]B (A.4)

A.1 Anisotropy

The anisotropy part of the equation of motion is

−i d

dt
s = [sTκs, s] (A.5)

=

(sx, sy, sz)

κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

sxsy
sz

 , s

 (A.6)

= [sx(κ11sx + κ12sy + κ13sz) + sy(κ21sx + κ22sy + κ23sz) + sz(κ31sx + κ32sy + κ33sz), s]
(A.7)

The x-component is

−i d

dt
sx =− iκ12sxsz + iκ13sxsy − iκ21szsx − iκ22(sysz + szsy) + iκ23(s2

y − s2
z) (A.8)

+ iκ31sysx + iκ32(s2
y − s2

z) + iκ33(szsy + sysz) (A.9)

Rewriting this we get

d

dt
sx = sz(κ21sx + κ22sy + κ23sz)− sy(κ31sx + κ32sy + κ33sz) (A.10)

+(κ12sx + κ22sy + κ32sz)sz − (κ13sx + κ23sy + κ33sz)sy (A.11)
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Similarly for the other two components we get

d

dt
sy = sx(κ31sx + κ32sy + κ33sz)− sz(κ11sx + κ12sy + κ13sz) (A.12)

+(κ13sx + κ23syκ33sz)sx − (κ11sx + κ21sy + κ31sz)sz (A.13)

and

d

dt
sz = sy(κ11sx + κ12sy + κ13sz)− sx(κ21sx + κ22sy + κ23sz) (A.14)

+(κ11sx + κ21sy + κ31sz)sy − (κ12sx + κ22sy + κ32sz)sx (A.15)

Together this can be written as

d

dt
s = −s× (κs) + (sTκ)× s (A.16)

When taking the classical limit we can rewrite to

d

dt
s = −2s× (κs). (A.17)
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Equation of motion in spherical
coordinates

We start of with the equation of motion with temperature for the spins:

dsi
dt

= γsi × (B̃ + b)− γλsi × (si × B̃) (B.1)

To convert to spherical coordinates we define the spin, the magnetic field and the random
field as follows

si = (sin(θi) cos(φi), sin(θi) sin(φi), cos(θi))
† (B.2)

B̃ = (Bx, By, Bz)
† (B.3)

b = b · (sin(θb) cos(φb), sin(θb) sin(φb), cos(θb))
† (B.4)

Inserting these into Eq. B.1 and taking the z-component, we get

− sin θi
dθi
dt

=− γ sin θi
[
(−b sin θb sinφb +Bxλ cos θi −By) cosφi (B.5)

+ (b sin θb cosφb +Byλ cos θi +Bx) sinφi −Bz sin θiλ
]

dθi
dt

=
−1

sin θi

(
− γ sin θi

[
(−b sin θb sinφb +Bxλ cos θi −By) cosφi (B.6)

+ (b sin θb cosφb +Byλ cos θi +Bx) sinφi −Bz sin θiλ
])

Taking the y-component

cos θi sinφi
dθi
dt

+ sin θi cosφi
dφi
dt

=λBxγ cosφi sinφi cos2 θi (B.7)

− λByγ cos2 φi cos2 θi

− λBzγ sin θi sinφi cos θi

− λBxγ cosφi sinφi

+ λByγ cos2 φi

+ λByγ cos2 θi

− bγ sin θi cosφi cos θb

+ bγ sin θb cosφb cos θi

−Bzγ sin θi cosφi

+Bx cos θi

81



APPENDIX B. EQUATION OF MOTION IN SPHERICAL COORDINATES

dφi
dt

=
γ

sin θi cosφi
(λBx cosφi sinφi cos2 θi (B.8)

− λBy cos2 φi cos2 θi

− λBz sin θi sinφi cos θi

− λBx cosφi sinφi

+ λBy cos2 φi

+ λBy cos2 θi

− b sin θi cosφi cos θb

+ b sin θb cosφb cos θi

−Bz sin θi cosφi

+Bx cos θi

− 1

γ
cos θi sinφi

dθi
dt

Insert Eq. B.6

dφi
dt

=
γ

sin θi cosφi
(λBx cosφi sinφi cos2 θi (B.9)

− λBy cos2 φi cos2 θi

− λBz sin θi sinφi cos θi

− λBx cosφi sinφi

+ λBy cos2 φi

+ λBy cos2 θi

− b sin θi cosφi cos θb

+ b sin θb cosφb cos θi

−Bz sin θi cosφi

+Bx cos θi)

+ γ cot θi tanφi(−b sin θb sinφb cosφi

+Bxλ cos θi cosφi

−By cosφi cos θi sinφi

+ b sin θb cosφb sinφi

+Byλ cos θi sinφi

+Bx sinφi

−Bz sin θiλ) (B.10)

The equations are kept expanded for ease of implementation. Equations B.6 and B.9 are
used for simulations.
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