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Chapter 1

Introduction

Determination of the spectroscopical redshift of distant galaxies, by means of
direct measurements of the shifts of known spectral lines, with respect to the
well known wavelenghts in an Earth laboratory, associated with a specific nu-
clear transition between states in a certain atomic configuration, is by far the
most precise method of distance estimations to distant galaxies. However,
when looking at an object, too distant, and too faint to ensure high enough
signal-to-noise ratios, some sort of indirect method, using photometry as a
starting point, has to be used in order to determine the model dependent
distance to the object. Throughout the years researchers have used differ-
ent kinds of methods, competing to obtain better and better results with
increasingly lower uncertainty than their predecessors, using technolocical
improvements to their advantage.

One of these methods, demonstrated by Lehav e.a. in 2001 [1], uses the
now easier accesible computational power to train Artificial Neural Networks
(ANN), in recognising patterns between results obtained from less faint ob-
jects, where both spectroscopy and photometry are applicable, and after-
wards applying these recognized patterns to the fainter objects, where only
photometry is possible.

The starting point of my thesis is the publication by Lehav e.a. and the
open source code (once?) available for download.! T'll demonstrate how the
program package works, both in theory and in practice with the ready-to-use
test samples, and follow up with results from newly extracted and filtered
data from the SDSS database. Later I'll add my own improved code and
demonstrate how this highly improves the results, as well as the chance of
creating a tool for future use in different parts of astronomy.

!The package used to be available for download at http://www.ast.cam.ac.uk/  aac,
but haven’t been the last couple of times, I've checked.
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Chapter 2

Astrometry

Estimation of distances to celestrial bodies, along with determination of po-
sition and movement of such, is part of the science discipline astrometry,
reaching back to the greek philosopher Hippharcus. Around 190 B.C. he
discovered the Earth’s precession, and in doing so, also invented the appar-
ent brightness scale that is the predessesor of the (slightly contraintuitive)
one still in use. Although the determination process itself can be cumber-
some and far from trivial, the discipline often receives less attention than the
fields, where the results are later used as very important inputs. However,
motivation for trying to reach further and further with increasingly lower un-
certainty is highly justified, since the results are used widely in many different
scientific fields. From fine tuning of the parameters of Big Bang theory, and
the following nuclesynthesis throughout the evolution of the Universe and
it’s inhabitants, via morphological evolution of galaxies, to a whole lot of
other fields as large scale dynamics (galaxies and clusters of such), theory
for exotic objects like black holes, white dwarves, (super)novae, gamma ray
bursts and the distribution and nature of dark matter.

2.1 The astronomical distance ladder.

The astronomical distance ladder is the common term for the different meth-
ods used for determination of distances to astronomical objects. The term
ladder is used, because each method reaches out into space one step further,
some of which have certain overlays, making intercalibration possible. [4]

In Table 2.1 on page 6 a selection of different measuring techniques are
listed along with the typical objects the methods are applied to, and the
distances they are approximately applicable for. However, it is not my in-
tension to dig further into the different steps of this ladder, but it serves as a
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‘ Method ‘ Typical object ‘ Distance ‘
Radar Inner planets / Asteroids | Solar system
Direct measurement of orbits | Planets / Comets Solar system
The parallax method Alpha Centauri 100pc
Main sequence fitting Open clusters of stars 100kpc
Bright objects Cepheids / Novae 5Mpc
Individual galaxies in clusters | Virgo Cluster 10 Mpc
The Tully-Fisher relation Large Spirals 10 Mpc
Supernovae fitting Type Ia supernovae 10%pc
Redshifts and Hubble’s Law | Distant galaxies ?

Table 2.1: methods

means of comprehending the domain of this thesis, should anyone not being
too familiar with the terms, find an interest in reading it.

2.2 Spectroscopy

By splitting up the incoming light from a distant object, suchs as a galaxy,
with a prism or a slit, into it’s different wavelengths, the object’s spectrum
will appear, showing distinct differences in intensity at each wavelenght when
measured. Some of the most striking features in the spectrum can be recog-
nized as appearing at almost, but not quite, the wavelenghts of well known
spectral lines from certain transitions of states in a specific atom, ion or
molecule, with respect to well controlled experiments in Farth laboratories.
Figure 2.1 on page 7 is an example of how to obtain the spectroscopical red-
shift. The lines marked with arrows are the hydrogen alpha, beta and gamma
lines respectively, which are associated with electron transitions from prin-
cipal quantum number levels 3, 4 and 5 to level 2 above the ground state 1.
Normally these lines would be found at 6563A, 4861Aand 4341A, but instead
they are localized at much higher wavelenghts. In other types of galaxies,
lines due to transitions in other atoms might be easier recognized.

As closer examination shows, all of these lines are shifted proportionally to-
wards the red, less energetic, end of the spectrum by an amount given by
A

2= (A= 20/ o (2.1)

where \ is a recognizable spectral line shifted from it’s resting wavelenght
given by .
Furthermore, research early in the 20th century showed the now well known
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Figure 2.1: Example of spectroscopical redshift determination

fact that the greater distance between any two galaxies, the greater their rela-
tive speed of separation from each other will be, and subsequently the greater
the shifts of the easily identifiable spectral lines towards the red (less ener-
getic) end, are. This empirically observed proportionality, nowadays known
as Hubble’s law, was established and formulated by Edwin Hubble together
with Milton L. Humason In 1929. It is consistent with the solutions of Ein-
stein’s equations of general relativity for a homogeneous, isotropic expanding
space, and can simply be writen as:

z = (Hy/c)d, (2.2)

where d is the distance to the galaxy, Hy is the so called Hubble 'constant’
which has dimensions of velocity divided by distance, the index, ’0’, refers to
the value H has now, and c is the speed of light. If the redshift is interpreted
as a measure of recession speed, v, between the objects, and v << ¢ so that

zr /e, (2.3)
then the recessional velocity will be given by:
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A rather precise calculation of the proportionality constant, using the satel-
lite Wilkinson Microwave Anisotropy Probe (WMAP) that produced the first
full-sky map of the microwave background with a resolution under one de-
gree, began in 2003, yielding a value of 71+4 (km/s)/Mpc !, which expresses
that for each mega parsec 2 away a galaxy is from us, the space between us
expands with an additional 71 km/s. The fact that all the recognizable lines
are shifted with an amount, only governed by the distance to the object is
the interesting part, since determination of the shift of the spectroscopical
lines then becomes a direct distance measurement - the further the lines are
shifted, the more the space between the object and the observer has expanded
since the light was emitted, and thus the further away the object is.

When applicable, spectroscopy is by far the most precise method for distance
estimation to extragalactic sources, but in the end it only returns a relative
order of distances to different objects that later on has to be connected to
absolute values through fine tuning of a cosmological model.[4] Obviously,
the success of spectroscopy rests on whether or not it is possible to split the
spectrum into lines, and still gain a high enough signal-to-noise ratio to pre-
cisely determine the center of easily identifiable lines known from controlled
experiments in laboratories on Earth. Since the flux density of a distant
object wears off as the square of the distance to the object [3], the success is
ultimately a matter of distance and absolute brightness of the object as well
as technical development.

2.3 Photometry - indirect methods

When spectroscopy fails, photometry usually prevails.

Photometry also involves a lens splitting up the incoming light, but now the
light is passed through different filters, allowing only photons with wave-
lenghts within a certain bandwidth to pass through, whereby you can effec-
tively measure the brightness contribution from each of the intervals at the
same time. This brightness distribution, of course, is a very coarse approx-
imation to the actual spectral energy distribution (SED), but it has both a
higher natural boundry for application than spectroscopy, and can be done
without time consuming integrations, since photometry integrates the in-
coming intensity of light from a broad interval of wavelenghts, whereas spec-
troscopy handles much smaller resolutions, such that photometry can be
thought of as a very coarse, low-resolution, spectroscopy.

So when the direct spectroscopic method shows too low signal-to-noise ratios

Lhttp i / /map.gs fe.nasa.gov Juniverse /uni.xpansion.html
21parsec = 3,27y = 3,86 * 10'm
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(or speed is a more important aspect than precision), more imaginative and
indirect methods has to be used, taking photometry as it’s starting point.
These methods are with one common term called methods of photometric
redshift determination and as we’ll see in the following sections, ANN is just
one method among many. Naturally what is gained on wider application, is
instantly lost on resolution - where spectroscopy resolves single lines result-
ing from atomic transitions, photometry integrates the incoming light from
a whole bandwith of these, thus incorporation higher unavoidable uncertain-
ties.

2.3.1 Direct shift measurement

The first who succeded in developing a method for calculating the redshift
photometrically was W.A.Baum|8], who in 1962 demonstrated it by a series
of 9 bandpass filters. The method was practically a matter of plotting the
averaged SED of a couple of galaxies in the Virgo cluster together with the
averaged SED of members of another cluster, Abell 0801, and then measuring
the displacement on a logarithmic scale. The resulting value of z=0,19 seems
incredibly close to the spectroscopical one of z=0,192 and the project was
therefore extended to other clusters out to a spectroscopical value of z=0.46,
which made a fairly accurate estimation (at the time) of the cosmological
density parameter, )y possible. However, the method relied heavily on a
rather large spectral disconitinuity feature at around 4000A, and could thus
only be applied to elliptical galaxies containing an old stellar population,
where this feature is particularly significant [7]

2.3.2 Template fitting.

Not two galaxies are alike, but nevertheless it is possible to divide the myriad
of galaxies into a number of subsets on basis of different objective empirical
parameters, first of all starting with the Hubble fork diagram as in figure 2.2
on page 10. The template fitting method starts with the user setting up
a grid of standard galaxies at different z-values. At each grid point a set
of flux values are given, representing the center of a bandwith similar to
the photometric bandwiths the galaxies, which unknown z-values are sought,
later on has to be estimated on basis of. The flux values are determined from
SEDs that are either based on empirical data or synthesised (i.e. computer
simulated) spectra. The template fitting method then becomes a matter of
breaking down the vastness of different types of galaxies into smaller and
smaller subsets, calculating their different flux values for different values of
z. Finally, when looking at a test galaxy, it is a matter of localising the
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Figure 2.2: Classical Hubble fork diagram.

grid point, closest resembling the object in focus, and thus adopting the z-
value directly from the grid - or estimating it as an interpolating between a
couple of them as some sort of a weighted average between points, where a
chi-square function is sought lowest as given by something like:

NfilteTs

=y [Fre s Memad2)] (2.5)

O'.
i=1 t

where F; and Fjepnp are the fluxes in the N filters of a test galaxy and a
grid point respectively, and o is the variance.

Obviously the big advantage of the method is speed, when first the grid has
been set up - a process however that can be very cumbersome. However ex-
tending results beyond the upper boundaries of the grid is either not possible
or not advisable. The method was originally tested by Loh & Spillar (1986),
where they gained a standard deviation of 0,12 by testing on 34 galaxies of
known redshifts all part of the same cluster. They too extended their research
to galaxies of unknown redshift (1000 in total) in an attempt to calculate the
value of €).
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2.3.3 Color-color diagrams
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Figure 2.3: Color evolutionary tracks in U-B vs. B-R for the empirically
derived template galaxy spectral types. The tracks assume no luminosity
evolution with redshift. Each point on the tracks represents a stepwise in-
crease in z of 0.05. The dotted lines show the iso-z contours for z = 0.1, 0.2,
0.3, 0.4 and 0.5.

Color-color diagrams are somewhat a form of template fitting, best de-
scribed by looking at figure 2.3 on page 11. It shows a plot made on basis of
empirically derived template galaxy spectral types (as opposed to templates
calibrated on basis of theoretical SEDs (e.g. Bruzual 1983)). Each point
corresponds to the color (total difference in flux between two neighbouring
filters) of a Hubble galaxy type at a certain redshift z. All galaxy types are
plotted at different values of z, ranging form 0.0 to 0.7, and illustrative iso-z
lines are added to the late type galaxies. B.D. Koo (1985) then testet the
validity of the method on 100 galaxies with known spectroscopical redshifts,
by addapting the redshift of the point in the template system, closest to the
point representing a test galaxy. As with all template fitting techniques, the
quality relies heavily on the resolution of the templates - small deviations
from the main classifications of the Hubble types, could result in rather large
erTors.
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2.3.4 Linear regression

Linear regression is the direct predessesor of this thesis’ main subject, ar-
tificial neural networks, as the later is basically an extended version of the
former. Both methods takes off with an assumption that the redshift, z,
can be writen as a linear combination of some sort of preselected functions
that somehow include the photometric magnitudes (or colors for that mat-
ter) as inputs, and then the physically obscure coefficients has to be found
by numerical, iteration constrained to a simple setup. In the case of linear
regression, it can either be given by a linear function:

z2=co+ Z cim; (2.6)

i=1,....N
or an extended quadratic:
zZ=cCy+ E cm; + E Cijim;, (27)
i=1,....N j=i,N
i=1,..,N

where, the ¢’s are the sought coefficients, and the m’s are the magnitude
(or color) values of each filter. Applied to a training sample of a couple of
hundred galaxies or more at the same time, the task becomes a matter of
seeking the values of the ¢’s returning the minimum total deviation for the
whole sample. Having found this then allows for using the same parametriza-
tion for a similar object that was not used in determining it in the first place.
As we will see in the following, good results rely on high resemblence between
members of training -and test samples. By training on a variety of galaxy
types, you ensure a wider usability, but add unnessesary info to the values of
the constants. When blessed with large amounts of training data, it seems
logical to include a selection mechanism, thus training on different galaxies
depending on what sort of galaxy you intend to apply the parametrization
to. In fact that’s exactly what Y.H. Zhao e.a. did as in [6] (2007), where they
used different resulting parametrizations on different types of morphological
galaxies based on the SDSS galaxy spectral type spec eClass as additional
input to the model colors.

2.3.5 Artificial Neural Networks

Artificial Neural Networks (ANN) bear their name, because one of the mo-
tivations for using them, is to obtain a better understanding of how the
neurons of the human brains function, acquire knowledge and remember this
for future use. In essence ANN recognizes patterns between data, in much
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the same way as the brain does, without leaving much insight as to how this
is actually done. However, with well sorted data, these recognized patterns
are highly efficient in working were no other method is applicable, mainly
because it is not taken into considerations, what the nature of the data is.
What the ANN basically does (in this context at least), is to recognize a
pattern in the inputs from a less precise, but more applicable method, and
the output(s) from a more precise method with applicative limitations from
the same object. It all sounds rather far fetched, but broken down, it’s just a
more complex way of doing what was outlined in 2.3.4 - in fact equation 2.6
on page 12 can be thought of as the smallest possible artificial neural network
with a X:1 architecture (see more below).

In the case of determination of photometric redshifts, results from spec-
troscopy and model color magnitudes from photometry for the same rather
large number of objects, are fed into the training program. Afterwards the
resulting pattern, the trained network, can be used to run similar objects
through, where spectroscopy is technically impossible. This nifty little trick
is what this thesis is all about, and the next chapter, will dig into, how the
theory is worked out...
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Input
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General theory of ANN
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Figure 3.1: Artificial Neural Network structure. In the topmost layer are the

input nodes, connected through weights to nodes in two hidden layers, which

themselves are connected through other weights to the output node

Artificial Neural Networks come in many variations with the supervised,
feed forward, multi layer perceptron as the simplest and wideliest used. They
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are build up as in figure 3.1 on page 14 of so-called nodes arranged in lay-
ers in a certain preselected architecture that descibes how many nodes are
placed in each layer. Each node is connected through weights with any other
node in the layers above and below. The first layer is the input layer, the
last one is the output layer and the ones in between are said to be hidden
layers. The ANN in figure 3.1 has a 5:10:10:1 architecture with 5 inputs,
1 output, and 20 other nodes divided into 2 hidden layers with 10 in each.
The resulting values, the activities of the nodes in the output layer, is what
we seek, whereas the values of the intermediate layers are of no immediate
interest, since no physical meaning can be extracted from other nodes than
the inputs (obviously) and the output(s).

The activations of the nodes in layer i above j are given by a predefined
activation function, g;(u;), which is selected corresponding to the problem at
hand. As simple a function as a linear g(u) = u can be chosen, but usually
the logistic sigmoid is preferred, since it resembles the activation responses
of neurons in the human brain. The logistic sigmoid is used in all of the
following and is given by [9]:

g(u) (9 €(0,1)) (3.1)

T ltev

The activity, u;, of any node, j, is then given as a summation of products
between the activations, g;(u;), of all the nodes, i, in the layer above, and
the strenght of the weights connected to the node, according to:

uj = Zgi(ui)wija (3.2)

where w;; is the weight of the connection between node i and j. Now, the
output of the network, y = y(x;w), is a nonlinear function of the input
vector, x, parametrized by the weight vector w. The result is therefore:

1

—_— 3.3
— (33)

y(x;w) =
The central idea of a supervised network is then this: Given examples of
a relationship between an input vector x and a target t (either scalar or
vector), we hope to make the network recognize a pattern between x and
t. A successfully trained network will, for any given x, give an output, y
(same dimensions as t), that is close (in some sense) to the target value t.
So "training” the network involves searching the weight space for a value w
that produces a function that fits the provided data well.
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3.1 Estimating photometric redshifts with ANN

Initially the strenght of the weights are randomized and the data are divided
into 3 samples named respectively training, validation and testing samples.
Common for both the training and validation samples are that the result-
ing outputs are actually known from other experiments (in this case from
spectroscopy). The testing sample is not used in the actual training proces.
By carefully calculating the activity of each node on basis of each line of in-
put (photometrical magnitudes) from both the training -and the validation
sample in a logical Feed Forward progress, the output(s) will result (the pho-
tometric redshifts in this context). The supervised part of the algorith is now
that each line of data in the training sample are associated with the actual
result (with much less uncertainty at least) known from spectroscopy. When
one cycle has ended, the standard deviation of all the residuals between the
photometric outputs and the spectroscopical results are calculated both on
the training -and the validation samples. By making a small change to the
weights and running through the networks again, the gradient and second
order derivatives that form the basis of the so-called Hessian matrix around
the point in the weight space, can be calculated on basis of the change of the
outputs of the training sample, such that the changes applied to the weights
before the next run are optimum.

If one wants to minimize a function, f(z), it’s shape around a point, a, is
given by Taylor’s expansion theorem, saying that [11] and [12]:

fzo+ Az) = f(x0) + V(o) Az + %AQJTBAJJ, (3.4)

where Az is the incremental distance from the point a, V f is the gradient, T’
the transposition, and B the square Hessian matrix composed of the second-
order partial derivatives of the function f. Now, the Taylor series of the
gradient itself as given by:

Vf(xg+ Azx) = Vf(xy) + BVz (3.5)

is called the secant equation, and as usual when seeking an extremum, setting
the gradient equal to zero, does the trick, such that:

V f(zo+ Axg) = 0, (3.6)
results in what we're looking for:

Azy = —B7'V f(z) (3.7)
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Figure 3.2: To avoid over fitting, the weight vector is selected when rms was
minimum calculated on the validation set and not the training set.

- namely that Az is the value, we need to change the x with before next
step.

When convergence is reached and the algorithm stops, a weight vector, w,
is selected. To avoid over-fitting the training sample (see below), by having
too many free parameters included in the parametrization given by a too
lavish network architecture, w is not necessarily selected from the last step
that made the algorithm converge. Instead, after each step, a root-mean-
square value is calculated on basis of all of the residuals from the validation
sample, and eventually, w is selected from the run, t, when this rms was
minimum as in figure 3.2 on page 17.
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3.2 Comittees

Exactly where in weight space the algorithm converges to, is a matter of
three things:

1. The topology of the weight space.
2. Starting point i.e. initial randomization of weights.

3. The algorithm and it’s ability to avoid local minima.

If pt. 3 is very high, i.e. the ability of the algorithm to avoid local minima
is, it should be good at converging to the global minimum, which make the
first two points less important, although they still govern the quality the
algorith should have. By running the same proces again with differently
initialized random weights, you would end at the global minimum yet
again. // If the algorith is not good enough with respect to the topology,
you could by chance localize the global minimum after the first run. But
generaly you won’t be certain that the downslope iteration has avoided
getting stuck in a local minimum, which will return unnessesary erroneous
results. Now, obviously the result of getting stuck in a local minimum,
could happen again, if you tried from a new starting point, and maybe you
wouldn’t even be able to differentiate significantly between results coming
from localization of global minimum (should this actually be found) from
local minima. The way around this problem is to incorporate all of these
possible misshaps into a so-called committee of networks. Using the average
of the results as the estimator instead of either a random one, or the
seemingly best of them, not only gives a better result on average, than you
would expect from any single training, but it also opens up the possibility
of calculating the network variance on basis of the estimations.
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3.3 Errors.

The quality of the estimations of the outputs, when working on the test
sample, are bounded by three things, which are further described below:

1. The uncertainties by which the photometric model magnitudes are
measured.

2. Quality of training. Network variance.

3. How well the test sample resembles the training sample.

1: Uncertainties in the inputs, o; , propagate via the so-called chain rule
through the layers of the neural networks to the resulting estimated output
values, giving uncertainties of size:

o? = i <5—y)202 (3.8)
! dx; /) ’

where the sum is over the N bypass filters (and other inputs if chosen).
Obviously it is necessary to select differentiable activation functions to
ensure the practical matter of actually performing the calculations of the
uncertainties of the outputs as part of the algorithm. The logistic sigmoid
as writen in 3.3 on page 15, is easily differentiable:

dg(u) d )\t
= — 1 u .
du du ( Te ) (3.9)
= (=) +e ™) (e (3.10)
1 e v
— 3.11
14+e vl 4ev ( )
Since:
1 (u) = 1 ! (3.12)
g(u) = T en )
1+e™ 1
- _ 1
1+ e u 1+ e u (3 3)
e—u
— 3.14
1+e v ( )
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We finally get:

W g1~ g(w) (3.16)

2: How well the selected (trained) parametrization actually predicts the
results, when working on data that was not used in the training process, is
also a matter of how good the algorithm is to avoid getting stuck in a local
minimum that has little or nothing to do with the global one. This has
both to do with the nature of the algorithm itself, but also of the topology
of the weight space. The greater complexity, the worse results if the
algorithm isn’t stabil enough in the sense of avoiding local minima.

A way to get a feeling for the stability of the algorithm, is by running
through the same estimations a couple of times to compare the outputs,
where the only difference in the calculations, is another initial
randomization of the weights. Chosing the mean of the outputs is on
average a better choice than you could expect from a single run, and by
calculating the average of the deviations of each of the estimations from the
mean, you get the additional benefit of an estimate of the network variance,
On:

1 N
on =y 7l (317)
i=1

where the N is now the number of runs with different initial randomization
of the weights, returning different estimations of output y.

3: This point has to do with the nature of the data. Interpolating between
points of data in parameter space is a matter of technique, but
extrapolation outside of this, demands thoughtful caretaking of method and
study of the different consequences this step might invoke. The reason to
use ANN in fields as astronomy in the first place, is to estimate parameters
that is otherwise either too time consuming to measure, or impossible
either because of a natural obscurity inherited from the underlying physics,
or because of (short term) technical difficulties in getting past a such.
When working at the boundaries of what is technically possible (at least for
the time being), the training process will always in some sense become a
matter of extrapolating beyond the boundaries of parameter space given by
the data in the training sample. There is no other way to get around this
than either to analyze the possible effects of taking this step, hope for the
best, or something in between.

An obvious problem in this context is that as a consequence of the
consistent theories of Big Bang and the following expansion of the Universe,
the redshift is interpreted as a direct measure of the amount of expansion,
the space between an object and the observer has undergone since the light
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was emitted. When extrapolating outside parameter space, estimating
photometric redshifts for fainter and fainter galaxies then eventually
becomes a matter of looking further and further backwards in time to
epochs, where the Universe and it’s inhabitants morphologically looked
different from now. Some care then has to be taken solely on this basis, but
it is not my intention to make calculations in this thesis outside parameter
space.

The total error of a single estimation of photometric redshift then becomes
a combination of the photometric noise and the network variance as above,

added in quadrature as:
op=1/0}+ 02 (3.18)



Chapter 4

Testing the existing code

As a starting point, the existing code has to be tested, and along with the
code, some example files were conveniently provided, containing data from
SDSS early data release. Specifically 12.000 objects in no particular order,
had been divided into three files containing 5000 galaxies for training, 1.000
for validation, and 6.000 for testing. The original program package provided
by Lahav e.a. consists of 3 main programs and a couple of modules:

1. annz net.f90, a Fortran90 main program creating the network
structure after inputs.

2. annz_train.c, a C++ main program that trains an ANN with the
structure chosen in annz_net on basis of all data in 2 separate files - a
training file and a validation file.

3. annz_test.f90, a Fortran90 main program used for running the
contents of a third file - the test data - through the ANN trained by
annz_train. It results in an output file containing both spectroscopical
(if available) redshifts, the estimated photometric redshifts and errors
for each galaxy in the test sample.

4. file_fns.f90, a Fortran90 external module used by annz_test.f90 to read
the number of elements contained in each of the input files.

5. annz_ann.f90, a Fortran90 external module used by annz_test.f90 to
perform the actual calculations on each test galaxy on basis of the
trained net(s).

22
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4.1 Choosing network architecture

After compilation, using the provided Makefile, the network structure has
to be decided. My choice was the obvious 5:10:10:1, since this is what
Lahav e.a. used, even though it looks like a rather arbitrary choice
probably in the it just looks good’-category. By using the same
architecture, the results of my improved code will be easier to compare with
those of Lahav e.a. However, generally you could run into problems of
over-fitting your data with a linear combination having too many
parameters (besides the obvious problem of spending way too much
valuable computer time, working with oversized and thus slower networks).
Over-fitting is not a problem in the training process itself, but might be
when you later on apply the result of the training proces to testing data.
When allowing to many degrees of freedom to the parametrization, you
allow the network not only to fit to the data, but also to the noise inherited
from the color magnitude errors. By doing so the strength of the trained
network as a means of predicting the result from a test object with respect
to the true value diminshes, or even becomes untrustworthy. Figure 4.1 on

Figure 4.1: An example of overfitting data.

page 23 is an illustration of the general problem [10] of fitting functions to a
data set (the dots in the figures), without prior knowledge of the underlying
mechanisms that governs them. The function, ¢, is clearly lacking the
ability to predict the resulting value at a certain input by any standards. It
is indeed the best fit to the data with the degrees of freedom allowed, but
as can clearly be seen, a straight line with it’s build-in limitations is a very
bad choice. The second degree function, A, is much more capable of the job.
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In fact, the data might as well be governed by a second degree function
itself, which true nature is obscured, because of uncertainties inherited from
the measuring technique. In fact, h might just be the function that governs
the data, but at least it’s a very good approximation.

The sharply drawn function in the right panel obviously fits the data even
better than the function, h. However if the data were in fact governed by
some second order functionality rule, overlapped with noise, as the dotted
line illustrates, this function will then be unnessesarily bad at estimating a
value for a certain input, only because of the lavish number of parameters,
or degrees of freedom. The function now not only fits the data, but also the
errors - errors, though, that are supposedly random and uninteresting in
this respect.

There are a couple of methods used to get around this problem of selecting
the best suited size of network. Lahav e.a. uses the early stop method as
illustrated in figure 3.2 on page 17, but a more stringent way to minimize
the problem would be to analyze what the optimum architecture should be.
The process either involves starting with an obviously too small
architecture, having too few hidden parameters and sequentially add on
more and more nodes, until the overall performance, measured by some sort
of root-mean-square value of mean deviation, is no longer improved; or by
the reverse method, starting with a way too large architecture, and
sequentially removing nodes until the overall performance is lowered.
However this process is left as future work and the architecture chosen by
Lahav e.a. is used in all of the following, when not otherwise specified.

To make the confusion complete, as of data release six, the SDSS provides
photometric z-values based on ANN on basis of a 4:15:15:15:1 network.
Interestingly the results are very much the same, as I'll discuss later on,
without I've been able to find any documentation for their seemingly lavish
choice of architecture.
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4.2 Testing on example data.

Testing the existing code is then pretty straightforward, using the provided
example data, and the ANNz User Guide [2] as follows.
The command:

annz_net

runs the network structuring program, asks for proper inputs and eventually
prepares the actual training of the networks for initialization via inputs:

annz_train ’archfile’ ’trainfile’ ’validfile’

does the job and choosing first a random number as seed for the random
generator, and then ’0.0001" as a reasonable weight decay for the
quasi-Newton converging algorithm, and 2000 as maximum number of
iteration steps, completes the initialization. 2000 steps has shown to be
sufficient to ensure the program doesn’t stop until converged, but it’s
possible to save the weights up till after each step if wanted, as can be seen
in figure 4.2 on page 35. I think it’s an excelent illustration of how the
algorithm works it’s way through the steps towards convergence. From
upper left to lower right even 4 frames is enough to get a feel for the
dynamics going on until the system settles. The run has been stopped after
10, 25, 50 and 100 steps, and then the rest is a matter of computer time,
before convergence is (hopefully) reached and the final weights can be
writen to a file.

These are the last 3 lines of output from each of the three runs. It is worth
noting that the number of iterations, before convergence is reached, is very
random, depending on the initial randomization of the weights and the
topology of the weight space around the starting point.

converged
1196 iterations, 2723 epochs
Training set: Error 2.61423 Total 3.02022 RMS (valid) 0.02604

converged
740 iterations, 1709 epochs
Training set: Error 2.61899 Total 3.00625 RMS (valid) 0.03997

converged
1839 iterations, 4099 epochs
Training set: Error 2.56002 Total 2.97803 RMS (valid) 0.03648
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The comittee consisting of the N resulting weight files is then used as inputs
in the testing program, together with the testing file with the command

annz_test ’testfile’ ’testresultfile’ ’wtsfilel’ [’wtsfile2’ ...’ ’wtsfileN’]
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finally returning the output:

ANNz: Photo-z determination

Using a committee of 3 networks.

# of inputs : b

# of outputs : 1

Sample size : 6000

Found spectroscopic redshifts.
Calculating photometric redshifts...

Output 1: Mean: 0.00006 rms: 0.02588
Photometric redshifts saved to ../EXAMPLE/sdss.ugriz.testresult

The program finishes off as seen above, by calculating the mean -and
root-mean-square deviation, rms, between the results from the network and
the spectroscopical redshifts of the members in the test sample. The mean
is given by the average residual between the spectroscopical and
photometric redshifts as:

N

1
Mean = v Z(zspec,i — Zphot.i)s (4.1)

i=1

where the sum is over the N galaxies used in each of the methods, and
Zspeei and Zpner; are the spectroscopical and photometric redshifts for the
i’th galaxy respectively. A positive mean, means that on average, the
estimated values of the photometric redshifts are too high with respect to
the measured spectroscopical ones.

The rms values is what ultimately expresses the goodness of the method in
a comparable way to other methods working in the same field (on the same
data if one should be strict):

1 N

rms = N Z (Zspec,i - thot,i)Qv (4'2)

=1

In Appendix A.1, I've added an IDL program, I’ve made, named
plot_zvz.pro that handles the results and allows you to create certain
illustrative plots as figure 4.2 on page 36. The upper panel is an illustration
of the result of the test run on the provided example data. All the points
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represent a galaxy, whose redshift has been calculated both on basis of
spectroscopy (x-axis) and with ANN on basis of photometry (y-axis). On
the plot is also shown the angular bisector that is the optimum line, where
all data points should lie, if the photometric redshift estimations were in
absolute accordance with the spectroscopical ones - something we already
know from the output of the program, they’re not. Output from the IDL
program also reveals the exact same values of mean and rms as above. In
the following, whenever a plot is presented, where it’s not emphasized how
it’s done, It’ll have been made with the abovementhioned program or one
somewhat similar to. So the program 'works’ with the provided data.
Neural networks are trained and the outputs are quantitatively as expected.
Figure 4.2 on page 37 is a demonstration of what was briefly noted in
chapter 3.3, FErrors, that the average estimation of an output based on
different trained ANNSs, a so-called committee, is generally a better
estimator than any single one of them. However in this occation, the effect
is not that obvious. In fact the first set of weights actually returns a slighty
lower rms (approximately 0,5%)than the three of them together. The two
others return rms values around 4% higher than the combined weights.
What this tells us though is that the algorith is quite stable at grinding
towards similar results. And besides that, using a committee does give you
an estimate of the network variance that is used to calculate the total error
as given by equation 3.18 on page 21.

4.3 Errors

The errors connected to the estimated photometric redshifts consists of two
parts, the noise inherited from the color magnitude errors, and the network
variance, calculated as a mean deviation of the different photometric
estimations that results from different initial randomization of the weights.
The two parts are added in quadrature as in equation 3.18 on page 21 and
are automatically writen to each line of the output file.

The calculated errors are shown for a subsample of the above testing set in
the lower panel of figure 4.2 on page 36, where every 25th data point were
selected to improve the general view.

Next step is to test on controlled data extracted directly from a database...
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4.4 Gathering data from SDSS.

The Sloan Digital Sky Survey ! is a still undergoing project aiming to
gather optical images of about one forth of the sky with the 120 megapixel
camera mounted on the dedicated 2,5m telescope, and along the way,
furthermore gather spectroscopical measurements of the observed objects.
Accessing the huge database is overwhelming at first, but soon becomes
rather easy. Some care has to be taken at all times though, in order to
extract exactly the right data.

Hocated at www.sdss.org
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After a lot of initial testing, I finally ended with extracting the following
data for each galaxy from the spectroscopy query form part of the data
access 2, thereby ensuring that all objects had already undergone
spectroscopy:

1. Limit number of output rows (0 for unlimited) to: "0’

2. Output Format: 'CSV’
Parameters to return:

3. Spectroscopy: bestObjlD, z, zConf, zErr, zStatus, zZWarning 3
4. Imaging: model_mags, model_magerrs

5. Position Constraints: None

6. Spectroscopy Constraints: Galaxy

7. Imaging Constraints *:

e Model magnitude 0 < u < 20
e Model magnitude u > 20

8. Obj type: Extended Sources (e.g., Galaxies)

What results is 2 files containing model colors with corresponding
uncertainties and spectroscopical values for in total 667609 different
galaxies. This raw catalogue is then our starting point.

Zhttp://cas.sdss.org/astrodr6/en/tools /search /SQS.asp

3The bestObjID was included to ensure later identification of the object

4This part had to be split in 2 since the database only allows you to directly extract
500.000 lines of data at a time. An arbitrary cut was made at magnitude 20 in the u-band,
where a second border was made in the bright part below 20 that it also at least has to
have a magnitude of 0 to avoid extracting very bad data points with -9999 as entries in
some or all of the magnitudes. Afterwards the data were united in one file.
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4.5 Filtering files for easy use in existing
code.

The extracted data from the SDSS database come in an unusable format
with respect to direct use in the open source code provided by Lahav e.a.
A Fortran90 coded program, 'filter.f90” was created in order to prepare
these data for the task at hand, and along the way some details were
added, giving the user control of which types of data is to be included in
the outputfiles, and how big each of those should be relative to each other.
Most of the downloaded data have undergone spectroscopy, but not all of
this was done with the same precise methods, which is marked with the
above mentioned zStatus spec data value, ranging from 0 to 12 according to
the method used. I decided to filter out all the galaxies not having the
zStatus spec equal to 4 °, and finally I chose to make the training file 10
times larger as both the validation -and the testfile. The 667609
abovementioned lines of data are then cut down to 409308 all marked with
the zStatus=4 spec (61,31%). These are then subsequently divided into the
3 needed files at random.

By taking this step, it is ensured that the training is only performed on the
best suited galaxies, where the spectroscopical measurements have the
lowest possible associated uncertainties. However, what is lost in this way,
is instead possible more interesting data from fainter objects further away,
with slightly higher uncertainties, bases on another type of measurements.
These data might especially be more interesting when working with real
data without the spectroscopical redshifts as guideline, since they asumably
are closer on average to each other in time, thus asumably resembling each
other closer morphologically. I'll make another notice about this in the
later chapter concerning "Future work’, but for now, I'll settle for the
original choice, I made.

The Fortran90 code is shown in Appendix A.2 and includes comments and
a short intro for the user.

SRedshift determined from x-corr with high confidence
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The run results in a total of 5 output files, where the numbers in
parenthesis is the number of lines of data each representing one galaxy:

Training file (368377)

Validation file (20465)

Testing file (20465)

Statistics file

Numbering file for easy reference to SDSS (20465)

The Statistics file as shown in Appendix B.1 contains information on how
many galaxies in the raw catalogue were marked by each of the different
zStatus specs, and the Numbering file contains information on which galaxy
in the SDSS database actually is connected to each line of data in the test
sample. This part was done for easy reference if it one day should be
needed to dig further into why a particular galaxy is extraordinarily
difficult to train an usable neural network for.
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4.6 Recreating the results

By following the same steps with the filtered self-extracted data as above in
chapter 4 on page 22 with the provided test data, the following output
resulted:

annz_test sdss6.test sdss6.ANNz.result sdss6_1.wts sdss6_2.wts sdss6_3.wts sdss6_4.wts

ANNz: Photo-z determination

Using a committee of 5 networks.

# of inputs : b

# of outputs : 1

Sample size : 20465

Found spectroscopic redshifts.
Calculating photometric redshifts...

Output 1: Mean: 0.00033 rms: 0.04016
Photometric redshifts saved to sdss6.ANNz.result

Note that I decided to go for 5 nets both here and later on when using the
improved code.

The rms is significantly higher (approximately 25%) than the same proces
run on last years updated SDSS5 catalogue containing a total of 557299
galaxies, 339729 of those marked with the zStatus=4 spec (60,96%),
divided into the three files as 283109, 28310 and 28310 - the rms then was
0.03120 with a mean of 0.00012 calculated on basis of a comittee of three
members. Why this is so, is rather unclear. It is also unclear why both
these rms values are significantly higher than the one Lahav e.a. originally
published as 0,0236.

As can be seen in 4.6 on page 39 that illustrates the errors relative to the
magnitudes in each filter, sorted on basis of the values in filter r, the
quantitative feel of the data are alike on the example data (leftmost frames)
and the SDSS6 data (rightmost frames) respectively. However on closer
examination these mean errors relative to the magnitudes, given by:

1 N o;
M = — —
ean N 2=

i=1

(4.3)

where the sum is over the i galaxies with magnitude M and associated error
o, are indeed greater in the SDSS6 data than in the example data that
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according to Lahav e.a. originated form the early data release of SDSS
dating back to june 2001. In fact the mean relative error is increased by
38,61%. 23.05%, 7,32%, 4,50% and 2,75% in the five filters u, g, r, i and z
from the example data to the SDSS6, which might account for the
increased rms.

As noted in the chapter about choice of network architecture, as of data
release six of june 2007, the SDSS provides photometric redshifts estimated
on basis of ANN with a lavish 4:15:15:15:1 architecture  The main result
is 4.6 on page 40 7 that are based on data reaching magnitudes in the r filter
below r > 20 as mine do. A rms value of 0.045 is presented. A point has to
be emphasized here though. What is most interesting in the following is not
the resulting rms values themselves, but the relative improvement, when
using an improved method on the exact same samples of data. Neither the
example data or the data that has been run through the 4:15:15:15:1 ANN
are the same, which makes direct comparison extremely difficult.

6In fact SDSS also provides photo-z values estimated with a template fitting technique,
but that is a totally different story.
"Taken from http://yummy.uchicago.edu/SDSS/
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Plot of redshifts for example data — ANNz
‘ : ‘ ‘ ‘ ‘ ] ‘ ‘

0.6

z—photo
T
L

0.4 0.6
z—spec
Errors for selected subset of the above data — ANNz
0 5 L B B B S R L

0.5

0.4

0.3

z—phot

0.2

A
}_H

0.1

IS

\HHH‘HH\\H\‘H\\H\H‘\\\HHH‘\HHHH‘HHH\H
H
\\\H\\H‘\\H\\H\‘H\\H\\\‘\\\HHH‘\HHHH‘HHHH\

F
(I
H_‘
H

%4

0.0

or
)]

0.3 0.4 0.5
z—spec

@]
@]
or
(@]
N

Figure 4.3: Photometric vs. spectroscopic redshift for provided data example.
Upper panel: Normal plot. Lower panel: Error plot for selected subset.



4.6. RECREATING THE RESULTS

ANNz on Exemp\e doto
T

— 1Ist weight file.
——

T

0.8 L rms = O 0257 0.8 rms = O 0270

0.6 b 0.6 b
@] o
IS ks
S 041 1 S 0.4r .
4 A

0.2 N b

0.0 ‘V-i‘f‘ o . P T N . \ . . L L .

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
z—spec z—spec

ANNz on Examp\e dOtO - Brd Weight file. ANNz on Exgmp\e dOtO — AH We\ght files.

0.8 L rms = O 027W 0.8 rms = O 0259

0.6 N 0.6 b
o L 0
S S
5 0.4r B S 0.4F 4
Lo !

N 0.2 b
. . . P B . 0.0 ‘.'ﬂ;. PP S B M .
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
z—spec z—spec
Figure 4.4: Committee effect demonstrated on example test data. Lower

37

ANNz on Exemp\e thO - Zmd we\ght file.

right frame is the results based on a combination of the other three frames.
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Figure 4.5: The SDSS 2.5-meter telescope located in Apache Point, New
Mexico, USA.
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Chapter 5

Modification of the code -
nANNz

As noted in the introductory history section, another well known method of
determining photometric redshift is the now slightly outdated method
involving template fitting, where you adopt the redshift of the galaxy
showing most similarities with the one you want to determine the redshift
for - similarities basically being galaxy type and colorspace distances given
by the chi-squared method in equation 2.5 on page 10.

My thought was then to combine this rather outdated approach with the
ANN code, by automating a selection process, selecting a subsample from
the training samle, closest resembling the galaxy at hand, thereby training
a new set, of artificial neural networks for each galaxy in the testing sample,
creating a set of weights that are unique to the test galaxy in focus, thus
hopefully effectively leaving out unnessesary information in the training
process concerning other types of galaxies.

The point is that when you train a couple of networks on all the possible
different types of galaxies, ranging form the early type elliptical ones to the
late type spiral shaped as seen in figure 2.2 on page 10, together with the
rather diffuse looking, and unclassifiable irregulars, you'll find that it IS in
fact possible to make the training process converge to a solution that solves
the problem at hand. However, what you get is a set of values for your
weights that are the basis of the unphysical parametrization, we initially
arbitrarily set up. By incorporating a wide variety of galaxies in the
training proces, we can safely apply the solution to another wide variety of
test galaxies, but the results on overall should be worse, than if we started
with a different set of values of the weights for at least each of the different
types of galaxies.

The selection mechanism, I've made, lets you choose how many galaxies

41
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should be used for training of each galaxy in the testing sample. As of yet,
there is no way to let the program select the optimum number for each
galaxy but obviously this number should depend on how special the test
galaxy at hand is, compared to the different members of the training
sample - there is no reason to include training on 1000 galaxies if only the
50 closest to it in color-space objectively resembles it morphologically.

5.1 mnearby Artificial Neural Network z-phot.

The resulting modified code consists of a new Fortran90 main program,
nANN7z.f90, that calls each of the original three (only slightly modified)
main programs as external routines, and along the way, a selection
mechanism is applied to each test galaxy, and valuable data are writen to
different files for later use and/or examination. The selection mechanism is
limited to color-space distances only, so that the G galaxies in the training
sample that has minimal values of Dy, as given by:

5

Die = \| S (M~ M., (1)

i=1

are selected for training, where M is the magnitude of filter i for
respectively training (1) -or testing (m) galaxy. The rest of the galaxies in
the training sample are left out of the current training, but will be included
in following calculations if they are close enough in color-space to another of
the galaxies in the testing sample. For the sake of future improvement all of
the color distance data related to each galaxy in the test sample are writen
to a file, and the distributions of the residues for each filter as well as the
total, for each galaxy can then be printed both to screen and PostScript
format. Figure 5 on page 42 is an illustration of how the selection is done.
I've singled out the galaxy in the test sample that returns the best (i.e.
smallest) residual and used that as example, but it could have been anyone.
All compilation is done with the command "Make’ refering to the updated
Makefile as seen in appendix A.3. After due editing of the fortran90 file
'NMANN7z.f90" and run of the network structuring program in point 1 below,
all calculations will proceed with no further ado than the command
‘main.x’.
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The structure of the nANNz-code can be listed as:

1. An initial choice of network architecture is made by running the
original annz_net.f90 program.

2. Choice of how many differently initialized networks, N, should be
trained for each testing galaxy *

3. The program nANNz.f90 is run.

4. One line of data at a time is read from the test file containing
photometric values with corresponding uncertainties, and if possible
also the spectroscopical redshift.

5. The selection mechanism is applied to the training sample, selecting
those G galaxies closest to the current test galaxy in color-space. 2

6. The relevant data for the selected galaxies are writen to a temporary
file.

7. The annz_train.c program is called, training N different networks on
basis of the same list of galaxies, but with different initially

randomized weights. Each of the networks are writen to temporary
files. 3

8. The annz_test.f90 program is called which calculates the final
photometric redshift for the current test galaxy and appends various
results to the output files.

Tess than 3 is not wise, since this makes calculation of the internal uncertainty for
each calculated distance impossible. 9 however is the maximum choice with the code as it
stands.

2G is set prior to run and has been chosen as G=1000, but this is just another choice
in the ’it just looks good’-department and logically an optimum number should exist for
each galaxy type on basis of overall resemblence to other members of the training sample.

3Thanks to Christian Vinter for help with making the coupling between the Fortran
-and C+ code parts.
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The resulting output files are:

1. Results file
2. Color space distance file

3. Network variance file

The results file contain the resulting outputs from the run along with the
spectroscopic redshift if available, and the combined error. The color space
distance file contain information of which members of the training sample
were used for training the networks for each test galaxy, and the associated
color space distances. The network variance file contain the different
outputs from each run that is the basis for the mean used as the final
photometric redshift estimator.



Chapter 6

Results.

Figure 6 on page 47 is an illustration of the main result of this thesis, as it
clearly shows the improvement, the modified code, nANNz, returns.
Common for each of the two graphs are that each point represents the
z-value for a galaxy in the test sample obtained both by spectroscopy
(x-axis) and ANN on basis of photometry (y-axis). The anglular bisector
illustrates the virtual line that all the points would lie on if the ANN based
on the photometric inputs returned the actual results given by
spectroscopy. The same galaxies have been used in both calculations and
the only difference is whether the original code provided by Lahav e.a. has
been used as in the topmost graph (ANNz), or if the modified code has, as
in the bottommost graph (nAANz).

Two important aspects are worth emphasizing right here: The first is the
obvious feature that the points overall are closer to the line using the
modified code as can be seen with the naked eye. The average improvement,
measured as a lowering of averaged residues between the two z-values are as
high as 39,60% given by:

_ TMSANNz — TTMSRANN:z

P % 100%, (6.1)

TMSANNZ

where the rms-values are calculated on basis of the results of the two
different methods given by equation 4.2 on page 27.

The other important aspect is that there is a significant decrease in
"drifters’ in the results from nANNz - points that are either largely over -or
undershot, and thus 'very far’ from the optimum line. However there are
still way too many points being flawed in this way, as to fully trust the
output based on photometry, where no spectroscopical redshift can be used
as validation. The prospects of eliminating these further, is discussed in the
later chapter named 'Future work’.
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Figure 6.1: Photometric vs. spectroscopic redshift for SDSS6 data. Upper

panel: ANNz. Lower panel: nANNz



48 CHAPTER 6. RESULTS.

Thirdly, a couple of noticable unfortunate features in the ANNz-results are
almost entirely eliminated in the nANNz-results. In the ranges from
z=0-=0.1 and z = 0.3 — 0.4 redshifts are generally overestimated, whereas
they are underestimated in the ranges from approximately z = 0.1 — 0.25
and above z = 0.4. From z = 0.5 there’s even a very unfortunate dropoff in
the ANNz-results that is almost, but not entirely eliminated in the
nANNz-results.



6.1. RE-ACCESSING SDSS DATABASE WITH BESTOBJID. 49

6.1 Re-accessing SDSS database with
bestObjID.

By means of the numbering file and the bestObjID spec, it is easy to
re-access the SDSS database to check selected objects to get a feel for why
certain types seem to gain especially bad estimation of their redshifts. The
two extreme galaxies which photometric redshifts are respectively the best
and worst estimated with respect to their spectroscopic values, can be
singled out of the sample to serve as a good exercise in working with the
SDSS database.

As it happens, they're located at lines number 14335 (minimum residual)
and 18585 (maximum residual). The color space distributions of the 1000
galaxies that are selected for training in each of the two cases can be
compared by looking at Figure 5 on page 42 and Figure 6.1 on page 52,
where it is already seen that it’s not particularly surprising if redshift
estimation goes much better for galaxy number 14335 than 18585 as the
average color-space distance from the test object to the 1000 selected
galaxies are close to 0.15 in the first example, and just below 3 in the last.
In other words the 1000 selected galaxies in the last example doesn’t really
resemble the test galaxy - and the 1000 selected are those closest to it in
color-space out of all of the 368377 that are part of the training file! In the
test numbering file it can now be found that these numbers corresponds to
the SDSS objects with ID numbers given by: 587736585505931698 and
588017109679865928 respectively, and the original images together with the
properties of the objects can then be found at:

http://cas.sdss.org/dr5/en/tools/explore/obj.asp?id=587736585505931698
http://cas.sdss.org/dr5/en/tools/explore/obj.asp?id=588017109679865928

The upper parts of figure 6.1 on page 50 and Figure 6.1 on page 51 are
screendumps of the webpages containing the relevant data of the objects.
The actual recorded spectrums can be seen in greater detail by clicking at
it below the listed data. An easy check to see if we have indeed located the
right object in the database, is to check the spectroscopical redshift value,
z, found next to the corresponding error, zErr. It is seen to be 0.199 for the
first galaxy, which corresponds to the value of line 14335 above. T've
marked the data, we already know about the galaxy and also the link in the
margin that brings you to a page listing the photo-z data that SDSS
provides as of data release six. The topmost of the PhotoZ data is in the
lower parts of the figures. For the first galaxy, it is seen that the photo-z
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lected galaxy # 14335 with lowest residual. Below is the PhotoZ data from

SDSS.
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values estimated on basis of a template fitting technique (0.264522) and
ANN (0.215248) respectively, show some resemblance to the nANNz
estimated value (0.199211) and that they’re all pretty close to the
spectroscopical value of 0.199212. For the second galaxy, it is seen that the
photo-z value estimated on basis of a template fitting technique (0.99862)
show some resemblance to the nANNz estimated value (0.757629) and that
they’'re both pretty far from the spectroscopical value of 0.225593. No
photoZ on basis of ANN is listed in the SDSS for that particular galaxy:.

6.2 Additional calculations.

Figure 6.2 on page 54 shows the calculated error bars for a random subset
of the full test sample. Nothing much to say about that really, as it should
be self-explanatory. Even though the error bars on average are smaller in
the lower frame, they’re more often striked through by the angular bisector,
which tells that the spectroscopical z-value is estimated within the
uncertainty inherited from the model magnitudes (and network varianse too
for that matter).

Since the number of galaxies selected on basis of color-space distances in
each run, was initially arbitrarily selected as 1000, primarily due to the
overall wastness of data, a swift test was made to see whether this had been
chosen unnecessarily high, making the computer runs lenghtier than
necessary. Figure 6.2 on page 55 is made on the same basis as the lower
frame of figure 6 on page 47, but instead of selecting 1000 galaxies for each
training, 50 in the upper frame and 100 in the lower was chosen.

The rms for the three runs were thus 0, 0243, 0,263 and 0, 0260 as seen,
delivering the conclusion that out of the three arbitrarily chosen numbers,
1000 worked out the best, followed by 100. It’s not easy, if not impossible,
to conclude anything more on that matter. And probably the answer is
much more complicated than just working our way into the best suitable
number, as there’s no a logic in this should exist. In fact the best suitable
number of galaxies selected for training might very well be an individual
parameter depending on the abundance of the type of galaxy for instance.
This is not something I'll look into further though, since my objective has
been fullfilled; proving that the modified code indeed does a significantly
better job.



o4

Figure 6.5: Photometric vs. spectroscopic redshift errors for subset of SDSS6

z—phot

z—phot

CHAPTER 6. RESULTS.

Errors for selected subset of testing sample — ANNz
08 ‘ T T T ‘ T T T ‘ T
0.6— —
L T ,
ol laigr? i
L 1272 i
I I Ir
L T ,
SR |
02 HE 1 .
- % |
L =5 * it 4
* *
,$ * =
0.0 ! I I I | . . . |
0.0 0.2 0.4 0.6 0.8
z—spec
Errors for selected subset of testing sample — nANNz
08 T ‘ T T T ‘ T T T ‘ T T
0.6— —
L I J
0.4 % —
L + _
_lcf
L . : J
0.2~ z —
+
[ { -
L E _
L = J
Q.0 | I I | I I |
0.0 0.2 0.4 0.6 0.8
z—spec

test sample. Upper panel: ANNz. Lower panel: nANNz



6.2. ADDITIONAL CALCULATIONS. 95

nANNz, 5 nets, 50 galaxies chosen for training
08 T T ‘ T T T ‘ T T T ‘ T
rms = 0.0263

0.6— —

z—photo

! !
0.4 0.6 0.8
z—spec

nANNz, 5 nets, 100 galaxies chosen for training
‘ ! ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0.8

L rms = 0.0260

0.6— —

z—photo

0.6 0.8

z—spec

Figure 6.6: Photometric vs. spectroscopic redshift for SDSS6 test sample.
Upper panel: nANNz. with 5 nets, where the 50 closest galaxies in color-
space were selected for each training. Lower panel: nANNz with 5 nets,
where the 100 closest galaxies in color-space were selected for each training.
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Future work.

While working on this thesis, a couple of improvements have come up that
might give promise of even smaller uncertainties in future use of ANN as a
means of estimating photometric redshifts, and thus the possibility of
getting an actual valuable and trustworthy tool in research fields where for
instance speed is an essence.

1. Optimal selection of architecture.

2. Automatic selection of optimum #Gal selected for training.
3. Inclusion of ALL zSpecs in training -and validation samples.
4. Weighted training.

5. Extraction of eClass spec from SDSS.

6. Redshift effect.

1: To avoid over fitting and unnecessary use of computer-time as noted in a
previous chapter. It can either be done by removing nodes one at a time
until huge differences in the results are seen, or by adding until the opposite
happens. The result should be a better overall performance in estimations.
2: This is probably the most important part. As noted earlier there’s no
need whatsoever to include galaxies in the temporary training sample that
does not objectively resemble the test galaxy at hand. If so, unnecessary
noise (in lack of a better term) is added to the resulting parametrization
representing the galaxy in focus. Check the figures 5 on page 42 and 6.1 on
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page 52 again. Maybe some kind of cut off could be made, when the total
color-space distance (lower right frames) has deviated some fractional
amount from the closest galaxies in this parameter space. Maybe
color-space selection isn’t even the best way to do it, or maybe it should
work side by side with other parameters for optimum selection. One thing
at least is certain, the number 1000 I initially chose and stuck with, is
completely arbitrary, and thus logically not the best choice. Nor is there a
single number that will be best choice for all types of galaxies. Galaxy
types that are numerous of in catalogue will be better off trained on a lot of
almost similar ones, than weird looking irregulars that probably will find
more unusuable information added to the training process than needed if a
too high number of galaxies are selected into the temporary training sample.
3: In the chapter concerning the filtering of the SDSS data, I noted that I'd
chosen to only include the galaxies with the zSpec set equal to 4. It
ensured, I only worked with the galaxies that had undergone the most
precise method of spectroscopical redshift determination. However logically
this is done for the relatively brighter and closer galaxies in the total
sample, whereby I effectively left out some of the probably more interesting
galaxies. Since I chose to train on 1000 selected galaxies afterwards, it
might just have been a good move in this case, but generally at least some
of the other zSpec flagged galaxies should be included.

4: By adding identical lines of data to the temporary training file, the
copied line will get more weight in the process, since the algorith will just
see it as though a lot of galaxies had this specific look. By adding a number
of copies of each line depending on how close it resembles the test galaxy in
focus, could thereby enhance the value of the information coming from the
galaxies of closest resemblence. When computer time gets even easier
available, you could even train on a temporary file including all the traing
sample galaxies in an amount depending on their resemblence. Until then,
some golden middle course should probably be used - to say the least... 5:
The spectroscopical eClass value included in the SDSS database is a number
ranging from about -0.35 to 0.5 for early- to late-type galaxies calculated on
basis of different spectroscopical values. It could be a very nice test to see
how good the nANNz is at estimating this parameter as a second output
node. Also this parameter could be included as a 6th input node in future
works. 6: When estimating distances to distant galaxies, by training on
closer ones that seemingly looks similar, you risk working on a worse subset
than optimum simply because you only compare the apparent flux values.
But according to the inverse square law, a galaxy, b, at twice the distance of
another galaxy, a that’s four times as bright, will be seen as though they’re
equally bright and thus close in color-space. On top of this, the spectrum is
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more shifted for the galaxy furthest away, which further implies that if you
had two identical galaxies at different redshifts, they would probably not be
close enough in color-space to get selected for each other’s training. This is
simply not feasible and should somehow be avoided although it appears to
include some prior knowledge to the absolute brightness of the objects,
which is sort of what we're looking for in the first place.



Chapter 8

Outro and conclusion

8.1 Outro

Artificial Neural Networks caught my eye in popular science articles many
years ago simply because of the bombastic statements that the possibility
for getting better understanding of the human brains was suddenly
possible. Frightening scenarioes were presented for the future and is alive
and kicking this day forth. When I was first presented with the possibility
of working with ANN in my master thesis by Jens, I had already read more
than enough on the topic, on a still not so detailed level though, to know
that it primarily was a mathematical tool, a numerical method involving
(second order) derivatives as a means of closing in on a global minimum in
some kind of abstract parameter space. Obviously I grabed the offer almost
instantly.

I could probably have gotten easier and faster(!) to the goal - handing in
my thesis - a lot earlier, had I chosen a not so programming technically
tough topic, with lots of obvious (in retrospect at least) time consuming
pits, where the actual data runs on top of it, also have taken many months
in total, before I finally chose (was advised) to be satisfied - a couple of the
things mentioned in the above chapter 'Future work” would be really nice to
go through, but not for me, at least not now.

However from the day I realized that I could actually produce quality
results that might even be significant in some form, either as they stand or
with someone’s following work, it has really been a thrill to work with the
topic. I find that the method itself is extremely useful, and T actually find
the main result of the thesis, figure 6 on page 47 beautiful in itself. I was
prepared to just recreate the results of Lahav e.a. and bring the same
method to other types of data sets, but in the end, to my undivided
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satisfaction, I ended with modifying their code on basis of an intuitive
feeling and some logical thinking, which turned out to work better than I
could have hoped for. Needless to say, I'm quite satisfied with the outcome.
The method of ANN could maybe even get a second boost, who knows. The
actual beauty of the method is that it is absolutely indifferent, whether it’s
working on the distance to galaxies as a function of apparent flux densities,
or something way more down to earth that the human mind realizes there’s
a connection between, but is just overwhelmed by the complexity of.
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8.2 Conclusion.

When working with distant galaxies you’d like to be able to measure their
spectrum for many reasons. One of them is because Hubble’s law, the
direct proportionality between the amount that known spectral lines are all
shifted towards longer wavelenghts, as a function of how much the space
between it and the observer has expanded since emission, makes this
redshift a direct distance measurement. When spectroscopy for some reason
isn’t applicable, other indirect methods with photometry as it’s basis, can
do the job, with somewhat higher uncertainties though. One of these
methods is the use of Artificial Neural Networks (ANN) which Lahav e.a.
in 2001 showed was highly competitive compared to other methods working
in the same field. In this thesis I've started out with walking in their
footsteps, showing how the software works and testing it on ready-to-use
example data. Later on, I’ve worked on extracting up-to-date data from the
huge SDSS database and prepared them with a filtering program for easy
use in the existing code. My main project was to incorporate a selection
mechanism, I found could logically do an even better job than Lahav e.a.’s
Artificial Neural Network z-phot (ANNz) could. What they did was to train
one set of neural network weights on all of the galaxies they had available,
thus gaining a parametrization that was later valid for each galaxy outside
the training sample. The point was that by training on galaxies where the
spectroscopical redshift was already known, one could know in advance
what kind of error to expect when later using the parametrization on real
data, where it was not. The idea behind my improved nearby Artificial
Neural Network z-phot (nANNz) code is that in the Galactic Zoo illustrated
by the classic Hubble Fork diagram as in figure 2.2 on page 10, it’s illogical
to think that one parametrization should be enough to cover the whole
bunch. And furthermore the problem is that if, say, you trained on a set of
large spiral galaxies, but incidentally added a fuzzy irregular, the latter
would get it’s saying in the final parametrization, which in the end would
make the model less valid at predicting photometric redshifts for large
spirals. What the nANNz code basically does differently then, is to look at
each galaxy in the test sample individually, and then select those in the
training sample only that resembles it the most. The selection is done only
by color-space distances, but could easily incorporate other parameters too.
Figure 6 on page 47 is the main result of this thesis, which clearly
illustrates the improvement from the ANNz-code (upper frame) to the
nANNz-code (lower frame). Both frames have been processed with the very
same data, and each dot represents a galaxy which redshift has been
plotted with the spectroscopical one extracted directly from the SDSS
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database on the horizontal axis, and the photometric redshift estimated
with either ANNz or nANNz on the vertical axis. Since it’s originally the
same parameter that’s illustrated on both axes, all dots should lie on the
angular bisector if the photometric redshifts could be estimated with as less
uncertainty as the spectroscopical ones. However uncertainties inherited
from the photometrically measured magnitudes, and the network variance
makes this impossible.

What is significant, is that on average, the dots are closer to the angular
bisector by some 39.60% in the nANNz estimations. Furthermore the
amount of drifters, i.e. points that are very far from the line, are fewer,
which makes promises for the future with respect to some day presenting a
trustworthy tool for easy and fast distance estimations to faint and distant
objects. A code similar to the ANNz is incorporated in the SDSS database
as a ready to use parameter associated to a whole lot of the galaxies that
can be found there. Maybe nANNz could indeed do a better job as my
work more than suggests?



Chapter 9

Dansk resume - danish
summary

Med spektroskopi kan man oplgse og identificere de enkelte spektrallinjer i
en galakses spektrum som veaerende straling udsendt fra overgange mellem
specifikke atomare konfigurationer som de ses i kontrollerede
laboratorieforsgg p Jorden. Tillige vil man opdage, at samtlige genkendelige
linjer i galaksens spektrum er ligeligt forskudt mod den rgde og mindre
energirige ende af spektret med en storrelse som udelukkende athaenger
proportionalt med afstanden til galaksen som formuleret af Edwin Hubble
og Milton .. Humason In 1929, hvad der idag kendes som ”"Hubbles lov”.
Nar en galakse er safjern og svag, at spektroskopi er teknisk umuligt,
maman bruge andre mere indirekte metoder med udgangspunkt i langt
mindre praecise fotometriske malinger for at bestemme rgdforskydningen,
som sammenholdt med en model for universets ekspansion, dermed bliver
et egentlig afstandsmal. I 2004 demonstrerede Lahav e.a. effektiviteten af
kunstige (artificial) neurale netvrk (ANN) til hjeelp mht. at gennemskue de
store maengder radata, hvor resultater fra relativt neerme galakser, hvor
spektroskopi er mulig, sammenholdes med fotometriske malinger pasvagere
objekter, hvor en praecis bestemmelse af afstanden kan sikre bedre
resultater i fintuningen af andre modeller af kosmologisk betydning.

Figure 6 paside 47 er en illustration af dette speciales hovedresultat, idet
jeg satte mig for at modificere Lahav e.a.’s oprindelige kode ved at tilfgje en
selektionsmekanisme med henblik pasaerskilt udvaelgelse af de bedst egnede
galakser i hver enkelt delresultat. I den oprindelige metode (ANNz)
treenedes t st neurale netveerk pabaggrund af samtlige galakser i et
treeningssample som resulterede i n linearkombination som beskrev
forbindelsen mellem en inputvektor, x og outputet y via de i det treenede
netveerk optimerede vaegte x. I den modificerede version (nANNz) tages
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der derimod udgangspunkt i hver enkelt ny galakse, man er interesseret i at
bestemme afstanden til med sigte pa, at man med tiden kan opstille et
troveerdigt veerktaj, saman rent faktisk kan benytte det ogsatil galakser,
hvor man ikke har ”facit” ud fra de spektroskopiske malinger som malestok.
Felles for de 2 grafer er, at de samme data ligger til grund for samtlige
punkter - eneste forskel er altsaden indbyggede selektionsmekanisme. Hver
prik i graferne repraesenterer en galakse hvortil afstanden er bestemt ud fra
savel spektroskopi (x-aksen) og neurale netvaerk med udgangspunkt i
fotometri (y-aksen). Den gverste graf er pabaggrund af ANNz og den
nederste nANNz. Forskellen i kvaliteten af beregningerne er ret tydelig selv
med det blotte ceje, idet punkterne beregnet med den modificerede kode i
gennemsnit ligger 39,60% teettere pavinkelhalveringslinjen, som er den
virtuelle linje punkterne ville ligge pa, hvis de neurale netvaerk kunne
treenes optimalt. Fndvidere ses en markant nedgang i antallet af punkter,
hvor de neurale netvaerk enten over -eller undershooter resultatet - en
yderst vigtig parameter, hvis man pasigt skal ggre sig forhabninger om at
opbygge et egentligt veerktej, hvis resultater, man kan have tillid til.
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Appendix A

Sourcecodes - 1n order of
appearance

A.1 plot_zvz.pro

PRO plot_zvz2

aN =2 ;Choose from list of input files

bN =6 ;0 if one file only

zvz =0 ;1 for plot of z vs. z , otherwise O
err =1 ;1 for plot of errors, otherwise O

EselA =100 ;Fraction of data selected for plot of errors in file a
EselB =100 ;Fraction of data selected for plot of errors in file b

bcol =4

Rttt bt List of usable input files—————"—--—"-"""""""77"--
; 1: 7. ./EXAMPLE/sdss.ugriz.testresult’

; 20 °../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6 . ANNz.result’

; 3¢ 7../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6 .nANNz.25_5_result’

; 4 2 ../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6 .nANNz.100_5_result’

; 52 ?../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.1000_5_result’

; Selecting file a
IF (aN EQ 1) THEN BEGIN

afil =’../EXAMPLE/sdss.ugriz.testresult’
acol =3 ;#columns in afil
ENDIF
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IF (aN EQ 2) THEN BEGIN

afil =’../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.ANNz.result’
acol =3 ;#columns in afil
ENDIF

IF (aN EQ 3) THEN afil =>../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.25_5_res:
IF (aN EQ 4) THEN afil =>../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.100_5_re:
IF (aN EQ 5) THEN afil =>../../../../d1l/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.1000_5_r

;Selecting file b
IF (bN EQ 1) THEN BEGIN

bfil =’../EXAMPLE/sdss.ugriz.testresult’
bcol =3 ;#columns in afil
ENDIF
IF (bN EQ 2) THEN BEGIN
bfil =>../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.ANNz.result’
bcol =3 ;#columns in afil
ENDIF

IF (bN EQ 3) THEN bfil =>../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.25_5_res:
IF (bN EQ 4) THEN bfil =>../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.100_5_re;
IF (bN EQ 5) THEN bfil =>../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.1000_5_r

;Creating output file according to selected parameters
IF (bN EQ 0) THEN BEGIN
IF ((zvz EQ 1) AND (err EQ 0)) THEN BEGIN

IF (aN EQ 1) THEN output =’../REPORT/figs/example_result.ps’
IF (aN EQ 2) THEN output =’../REPORT/figs/sdss6.ANNz.result.ps’
IF (aN EQ 3) THEN output =’../../../../dl/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.25_5_re:
IF (aN EQ 4) THEN output =’../../../../dl/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.100_5_r
IF (aN EQ 5) THEN output =’../../../../dl/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.1000_5_
ENDIF
IF ((zvz EQ 0) AND (err EQ 1)) THEN BEGIN
IF (aN EQ 1) THEN output =’../REPORT/figs/example_error.ps’
IF (aN EQ 2) THEN output =’../REPORT/figs/sdss6.ANNz.error.ps’
IF (aN EQ 3) THEN output =’../../../../dl/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.25_5_er
IF (aN EQ 4) THEN output =’../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.100_5_e
IF (aN EQ 5) THEN output =’../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.1000_5_
ENDIF
IF ((zvz EQ 1) AND (err EQ 1)) THEN BEGIN
IF (aN EQ 1) THEN output =’../REPORT/figs/example_both.ps’
IF (aN EQ 2) THEN output =’../REPORT/figs/sdss6.ANNz.both.ps’

IF (aN EQ 3) THEN output =’../../../../d1/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.25_5_bo
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IF (aN EQ 4) THEN output =’../../../../dl/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.:
IF (aN EQ 5) THEN output =’../../../../dl/joher/ANNz/nANNz/SDSS6/sdss6.nANNz.:
ENDIF
ENDIF
IF (bN NE O0) THEN BEGIN ;Add special cases if needed
IF ((zvz EQ 1) AND (err EQ 0)) THEN BEGIN
IF ((aN EQ 1) and (bN EQ 2)) THEN output =’../REPORT/figs/ANNresults.ps’
IF ((aN EQ 2) and (bN EQ 5)) THEN output =’../REPORT/figs/modelresults.ps’
IF ((aN EQ 3) and (bN EQ 4)) THEN output =’../REPORT/figs/numbergaleff.ps’
IF ((aN EQ 4) and (bN EQ 5)) THEN output =’../REPORT/figs/nANNz100_1000_5resu:
ENDIF
IF ((zvz EQ 0) AND (err EQ 1)) THEN BEGIN
IF ((aN EQ 2) and (bN EQ 5)) THEN output =’../REPORT/figs/modelerrors.ps’
IF ((aN EQ 4) and (bN EQ 5)) THEN output =’../REPORT/figs/nANNz100_1000_5erro:
ENDIF
IF ((zvz EQ 1) AND (err EQ 1)) THEN BEGIN
IF ((aN EQ 2) and (bN EQ 5)) THEN output =’../REPORT/figs/modelboths.ps’
ENDIF
ENDIF

; Reading files

PRINT, ’reading file a.’
=READ_ASCII(afil, DATA_START=0,
a was read: ’, afil
=atemp.fieldl
=n_elements(afil) /acol
=dblarr(GalA)
=dblarr(GalA)

=dblarr (GalA)

=dblarr (GalA)

=dblarr (GalA)
=dblarr(GalA)
=dblarr(GalA)

4) THEN BEGIN
=afil (0, *)

atemp

PRINT, ’File

afil
GalA
number_a
spec_a
photo_a
error_a
spec_a_s

photo_a_sel
error_a_sel
IF (acol EQ

number
ENDIF
spec_a
photo_a
error_a
stat_a
sumcheck=0

el

_a

=afil (acol-3,x*)
=afil (acol-2,x*)
=afil (acol-1,x*)
=spec_a-photo_a

MISSING_VALUE=9999.000, count=ant:
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MinDev_a = number_a(WHERE(ABS(stat_a) EQ MIN(ABS(stat_a))))

MaxDev_a = number_a(WHERE(ABS(stat_a) EQ MAX(ABS(stat_a))))
PRINT, ’Min_res a: ’,MIN(ABS(stat_a)), MinDev_a, ABS(stat_a(MinDev_a-1)), spec_a(MinD
PRINT, ’Max_res a: ’,MAX(ABS(stat_a)), MaxDev_a, ABS(stat_a(MaxDev_a-1)), spec_a(MaxD

;FOR i=0,N_ELEMENTS(GalA)-1 DO BEGIN
; PRINT, i, stat_a(i), stat_a(i)"2

; sumcheck=sumcheck+stat_a(i) "2

; PRINT, i, sumcheck

; ENDFOR
;PRINT, sumcheck
sum_al =MOMENT (stat_a)
sum_a2 =TOTAL((stat_a)"2)
rms_a =SQRT (sum_a2/GalA)
PRINT, #Gal in file a: ’, GalA
PRINT, ’Max z-spec a: >, MAX(spec_a)
PRINT, ’Mean a: > sum_al(0)
PRINT,’RMS a: ’, rms_a

IF (bN NE O0) THEN BEGIN
PRINT, ’reading file b.’

btemp =READ_ASCII(bfil, DATA_START=0, MISSING_VALUE=9999.000, count=antal_b)
PRINT,’File b was read: ’, bfil

bfil =btemp.fieldl

GalB =n_elements(bfil) /beol

number_b =dblarr(GalB)

spec_b =dblarr (GalB)

photo_b =dblarr (GalB)

error_b =dblarr(GalB)

spec_b_sel =dblarr(GalB)
photo_b_sel =dblarr(GalB)
error_b_sel =dblarr(GalB)
IF (bcol EQ 4) THEN BEGIN
number_b =bfil(0,*)

ENDIF

spec_b =bfil(bcol-3,*)
photo_b =bfil(bcol-2,%*)
error_b =pbfil(bcol-1,x*)
stat_b =spec_b-photo_b
sum_b1l =MOMENT (stat_b)
sum_b2 =SUM((stat_b)"~2)
rms_b =SQRT (sum_b2/GalB)

PRINT, ’#Gal in file b: >, N_Elements(stat_b)
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PRINT, ’Max z-spec b: >, number_b(WHERE (spec_b EQ MAX(spec_b))), MAX(spec_l
PRINT, ’Mean a: > sum_al(0)
PRINT, ’RMS b: >, rms_b
ENDIF
IF (bN NE 0) THEN BEGIN
; PRINT, ’Improvement of difference in percent:’, (mom_a2(0)-mom_b2(0))/(mom_a2!
PRINT, ’Improvement of difference in percent:’, (rms_a-rms_b)/rms_a*100
ENDIF

;Creating array for plotting of angular bisector
tendens =dblarr(11)

FOR j=0,N_ELEMENTS(tendens)-1 DO BEGIN
tendens(j)=3/10.

ENDFOR

;Creating error arrays
IF (err EQ 1) THEN BEGIN
sela = 0
PRINT, ’Creating errorarray_a’
FOR i=0,N_ELEMENTS(spec_a)-1 DO BEGIN
IF ((i MOD EselA) EQ 0) THEN BEGIN
spec_a_sel(sela) =spec_a(i)
photo_a_sel(sela)=photo_a(i)
error_a_sel(sela)=error_a(i)
sela=selat+l
ENDIF
ENDFOR
PRINT, ’Galaxies chosen for errorprint a’, sela
IF (bN NE 0) THEN BEGIN
selb = 0
PRINT, ’Creating errorarray_b’
FOR i=0,N_ELEMENTS(spec_b)-1 DO BEGIN
IF ((i MOD EselB) EQ 0) THEN BEGIN
spec_b_sel(selb) =spec_b(i)
photo_b_sel(selb)=photo_b(i)
error_b_sel(selb)=error_b(i)
selb=selb+1
ENDIF
ENDFOR
PRINT, ’Galaxies chosen for errorprint b’, selb
ENDIF
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ENDIF

SET_PLOT, ’x’
IF (bN EQ 0) THEN BEGIN
IF ((zvz EQ 1) AND (err EQ 1)) THEN BEGIN
l'p.multi=[0,1,2]
plot, spec_a, photo_a, psym=3, XRANGE=[0.0,0.8], YRANGE=[0.0,0.8] , TITLE=’Plot of
oplot, tendens, tendens
XYOUTS, 0.120, 0.9, ’rms = ’, /NORMAL
XYOUTS, 0.145, 0.9, rms_a, /NORMAL
ploterror, spec_a_sel, photo_a_sel, error_a_sel, PSYM=1, XRANGE=[0.0,0.8], YRANGE=[
oplot, tendens, tendens
SET_PLOT, ’ps’ ; create .ps-file:
DEVICE, filename=output, yoffset=2.5, ysize=25
plot, spec_a, photo_a, PSYM=3, XRANGE=[0.0,0.8], YRANGE=[0.0,0.8] , TITLE=’Plot of
oplot, tendens, tendens
XYOUTS, 0.120, 0.9, ’rms = ’, /NORMAL
XYOUTS, 0.145, 0.9, rms_a, /NORMAL
ploterror, spec_a_sel, photo_a_sel, error_a_sel, PSYM=1, XRANGE=[0.0,0.8], YRANGE=[
oplot, tendens, tendens
ENDIF ELSE BEGIN
l'p.multi=[0,1,1]
IF (zvz EQ 1) THEN BEGIN
plot, spec_a, photo_a, psym=3, XRANGE=[0,0.8], YRANGE=[0,0.8] , xtitle=’z-spec’, yt
oplot, tendens, tendens
XYOUTS, 0.120, 0.9, ’rms = ’, /NORMAL
XYOUTS, 0.145, 0.9, rms_a, /NORMAL
SET_PLOT, ’ps’ ; De samme plots laegges i filer til udskrift:
DEVICE, filename=output
plot, spec_a, photo_a, PSYM=3, XRANGE=[0,0.8], YRANGE=[0,0.8]
oplot, tendens, tendens
XYOUTS, 0.120, 0.9, ’rms = ’, /NORMAL
XYOUTS, 0.145, 0.9, rms_a, /NORMAL
ENDIF ELSE BEGIN
ploterror, spec_a_sel, photo_a_sel, error_a_sel, PSYM=1, XRANGE=[0.0,0.8], YRANGE=[
oplot, tendens, tendens
SET_PLOT, ’ps’ ; De samme plots laegges i filer til udskrift:
DEVICE, filename=output
ploterror, spec_a_sel, photo_a_sel, error_a_sel, PSYM=1, XRANGE=[0.0,0.8], YRANGE=[
oplot, tendens, tendens
ENDELSE
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ENDELSE
ENDIF

IF (bN NE 0) THEN BEGIN
IF ((zvz EQ 1) AND (err EQ 1)) THEN BEGIN
'p.multi=[0,2,2]

plot, spec_a, photo_a, psym=3, XRANGE=[0,0.8], YRANGE=[0,0.8] , xtitle=’z-sp

oplot, tendens, tendens
XYOUTS, 0.060, 0.95, ’rms = ’, /NORMAL
XYOUTS, 0.075, 0.95, rms_a, /NORMAL

plot, spec_b, photo_b, psym=3, XRANGE=[0,0.8], YRANGE=[0,0.8] , xtitle=’z-sp

oplot, tendens, tendens
XYOUTS, 0.560, 0.95, ’rms = ’, /NORMAL
XYOUTS, 0.575, 0.95, rms_b, /NORMAL

ploterror, spec_a_sel, photo_a_sel, error_a_sel, PSYM=1, XRANGE=[0.0,0.8], VI

oplot, tendens, tendens

ploterror, spec_b_sel, photo_b_sel, error_b_sel, PSYM=1, XRANGE=[0.0,0.8], VI

oplot, tendens, tendens

SET_PLOT, ’ps’ ; Dump to .ps

DEVICE, filename=output, xsize=20, ysize=30
lp.multi=[0,2,2]

plot, spec_a, photo_a, psym=3, XRANGE=[0,0.8], YRANGE=[0,0.8] , xtitle=’z-sp

oplot, tendens, tendens
XYOUTS, 0.060, 0.95, ’rms = ’, /NORMAL
XYOUTS, 0.075, 0.95, rms_a, /NORMAL

plot, spec_b, photo_b, psym=3, XRANGE=[0,0.8], YRANGE=[0,0.8] , xtitle=’z-sp

oplot, tendens, tendens
XYOUTS, 0.560, 0.95, ’rms = ’, /NORMAL
XYQOUTS, 0.575, 0.95, rms_b, /NORMAL

ploterror, spec_a_sel, photo_a_sel, error_a_sel, PSYM=1, XRANGE=[0.0,0.8], YI

oplot, tendens, tendens

ploterror, spec_b_sel, photo_b_sel, error_b_sel, PSYM=1, XRANGE=[0.0,0.8], VI

oplot, tendens, tendens
ENDIF ELSE BEGIN

lp.multi=[0,1,2]

IF (zvz EQ 1) THEN BEGIN

plot, spec_a, photo_a, psym=3, XRANGE=[0,0.8], YRANGE=[0,0.8] , TITLE=’ANNz’

oplot, tendens, tendens
XYOUTS, 0.150, 0.95, ’rms = ’, /NORMAL

XYOUTS, 0.225, 0.95, Number_formatter(rms_a, Decimals=4),

/NORMAL

plot, spec_b, photo_b, psym=3, XRANGE=[0,0.8], YRANGE=[0,0.8] , TITLE=’nANNz
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oplot, tendens, tendens
XYOUTS, 0.150, 0.45, ’rms = ’, /NORMAL
XYOUTS, 0.225, 0.45, Number_formatter(rms_b, Decimals=4), /NORMAL
SET_PLOT, ’ps’ ; Create .ps-file
DEVICE, filename=output, xsize=10, ysize=15
plot, spec_a, photo_a, PSYM=3, XRANGE=[0,0.8], YRANGE=[0,0.8], TITLE=’ANNz’, xtitle
oplot, tendens, tendens
XYOUTS, 0.150, 0.95, ’rms = ’, /NORMAL
XYOUTS, 0.225, 0.95, Number_formatter(rms_a, Decimals=4), /NORMAL
plot, spec_b, photo_b, psym=3, XRANGE=[0,0.8], YRANGE=[0,0.8], TITLE=’nANNz’,xtitle
oplot, tendens, tendens
XYOUTS, 0.150, 0.45, ’rms = ’, /NORMAL
XYOUTS, 0.225, 0.45, Number_formatter(rms_b, Decimals=4), /NORMAL
ENDIF ELSE BEGIN
lp.multi=[0,1,2]
ploterror, spec_a_sel, photo_a_sel, error_a_sel, PSYM=1, XRANGE=[0.0,0.8], YRANGE=[
oplot, tendens, tendens
ploterror, spec_b_sel, photo_b_sel, error_b_sel, PSYM=1, XRANGE=[0.0,0.8], YRANGE=[
oplot, tendens, tendens
SET_PLOT, ’ps’ ; De samme plots laegges i filer til udskrift:
DEVICE, filename=output, xsize=20, ysize=30
ploterror, spec_a_sel, photo_a_sel, error_a_sel, PSYM=1, XRANGE=[0.0,0.8], YRANGE=[
oplot, tendens, tendens
ploterror, spec_b_sel, photo_b_sel, error_b_sel, PSYM=1, XRANGE=[0.0,0.8], YRANGE=[
oplot, tendens, tendens
ENDELSE
ENDELSE
ENDIF
PRINT, ’An output file was created: ’, output
DEVICE, /CLOSE
SET_PLOT, ’x’

END
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A.2 filter.f90

D skeskeskskok sk ok skokskokokok ok ok skl skok skok ok ok skokskok skokoskok skokokokskskok ok ok ok skok ok ok ook sk sk ok sk ok sk sksk sk skokokok sk sk okok skok sk ok
! PROGRAM FOR FILTERING DATA FROM SDSS DATABASE FOR EASY USE I ANN-CODE *
! PROVIDED BY LAHAV E.A. *

THIS PROGRAM IS MADE BY ERLING JOHNSEN.

* ¥ ¥ *

! Run as a.out getargl-5 (See lines 21-25)
1 skok sk ok ok ok Kok ok ook oK ook ok ok ok KooK oK ok KoK K ok KK ok ok ok oK K ok oK ok K ok ok Kok o ok ok KoK ook ok K ook ok ok ook ok Kok

I

!

! Compile as ’f90 filter.f90 file_fns.f90’
I

I

PROGRAM filter

USE file_fns

IMPLICIT NONE

Variable:

INTEGER :: i, j, k, n_params, n_gals, c, sum, B(13), spec(13), spec_value, stat
REAL*16, ALLOCATABLE :: AC(:,:)

CHARACTER (1en=100) :: header, input, test_number

CHARACTER (1en=100) :: output_train, output_valid, output_test, output_stat

PRINT *, ’Opening and creating files’

CALL GETARG(1, input)

CALL GETARG(2, output_train)
CALL GETARG(3, output_valid)
CALL GETARG(4, output_test)
CALL GETARG(5, output_stat)
CALL GETARG(6, test_number)

PRINT *, ’Input: >, input

PRINT *, ’Train: >, output_train
PRINT %, ’Valid: >, output_valid
PRINT *, ’Test : >, output_test
PRINT *, ’Stat : >, output_stat

OPEN(1, file = input, status = ’o0ld’, action = ’read’)

OPEN(2, file = output_train, status = ’Replace’, action = ’write’)
OPEN(3, file = output_valid, status = ’Replace’, action = ’write’)
OPEN(4, file = output_test, status = ’Replace’, action = ’write’)
OPEN(5, file = output_stat, status = ’Replace’, action = ’write’)
OPEN(6, file = test_number, status = ’Replace’, action = ’write’)

15k ok ok sk sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok k



A.2. FILTER.F90 75

| specZstatus galaxies to include (values from 0-12 i place 1-13! *
D skeskesksk sk ok sk o ok ok ok sk skok sk sk ok ok ok ok sk skok sk sk ok ok ok sk sk sksk sk sk sk sk ok ok ok sk sk sk sk sk sk sk ok sk ok sk sk sk skok sk sk ok ok ok sk sk sk sk sk sk sk ok
spec = (/0,0,0,1,0,0,0,0,0,0,0,0,0/) !

n_params = 16

n_gals = no_of_rows(input)-1

PRINT *, ’# of galaxies: >, n_gals

PRINT *, ’# of parameters: >, n_params

ALLOCATE (A(n_params,n_gals))

CLOSE(1)

OPEN(1, file = input, status = ’o0ld’, action = ’read’)
READ(1,*) header
1j=0
DO j=0,12
I B(j)=0
'ENDDO
k=0
DO i=1,N_gals IREMEMBER A(column,row) in fortran
READ(1,*) A(:,i)
IF (MOD(i,10000) .EQ. 0) THEN
PRINT *, i!, INT(A(1,i))
ENDIF
1 sk sk ok ok o ok sk ok ok ok sk o ok ok ok o ok sk ok ok sk ok sk o ok s ok sk ok ok ok sk ok ok ok ok ok ok ok ok 3k ok o ok ok ok 3 ok sk ok ok ok ok ok ok ok ok ok ok ok
! Filtering out galaxies without the right specZstatus and negative z  *
! Good ones are distributed into 3 files *
sk sk ok ok s ok sk ok ok ook sk o ok ok ok ok ok sk ok ok ok ok sk ok ok ook sk ok ok ok sk ok sk ok ok sk ok ok ok sk ok ok sk ok o ok sk ok ok ok ok ok sk ok ok ok ok ok ok
spec_value=A(5,1)
IF ((spec(spec_value) .eq. 1) .AND. (A(2,i) .GT. 0)) THEN
j=j+1
IF (MOD(j,10) .NE. O) THEN
stat(1)=stat(1)+1
WRITE(2,*) A(7:16,i), A(2,1)
ENDIF
IF (MOD(j,20) .EQ. O) THEN
stat(2)=stat(2)+1
WRITE(3,*) A(7:16,i), A(2,1)
ENDIF
IF (MOD(j+10,20) .EQ. O) THEN
k=k+1
stat (3)=stat(3)+1
WRITE(4,*) A(7:16,i), A(2,1)



76 APPENDIX A. SOURCECODES - IN ORDER OF APPEARANCE

WRITE(6,FMT="(16,17,f22.0,f12.8)’) k, j, A(1,i), A(2,1i)
ENDIF

ENDIF
Dok ook sk ook s ook s ook sk s ook sk ok ok ok skeok ok sk sk sk sk sk sk sk sk stttk kot okt ook okokokok ok sk ok skok kok ok
! Updating counter array for specZstatus statistics *
1 sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok 3k sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok

c=A(5,i)+1

B(c)=B(c)+1
enddo
1 sk sk ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok 3k ok ok 3k ok ok 3k ok ok ok ok ok ok 3k ok ok 3k ok ok 3k ok ok 3k ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok >k ok ok 5k >k k ok >k %k >k k %k
! Creating and printing specZstatus statistics *
1 sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok k sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok

CALL DATATYPE(B, sum)
PRINT *, N_gals, sum, N_gals-sum

PRINT *, B

PRINT *, ’#gal in .train-file:’, stat(1)
PRINT *, ’#gal in .valid-file:’, stat(2)
PRINT *, ’#gal in .test-file :’, stat(3)

PRINT *, ’Total #gal in files:’, stat(l)+stat(2)+stat(3)
WRITE (5,%) N_gals, sum, N_gals-sum

WRITE (5,%) B

WRITE (5,%) ’#gal in .train-file:’, stat(1l)

WRITE (5,%) ’#gal in .valid-file:’, stat(2)

WRITE (5,%) ’#gal in .test-file :’, stat(3)

WRITE (5,%) ’Total #gal in files:’, stat(l)+stat(2)+stat(3)

CLOSE(1)

CLOSE(2)

CLOSE(3)

END PROGRAM

1 5k sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk ok ok sk Sk sk sk 3k sk ok ok Sk sk sk sk 3k sk ok sk ok k 3k 3k sk sk sk 3k ok Sk 3k 3k sk sk 3k 3k sk ok ok 5k 3k 3k 3k 3k >k ok ok ok 3k 3k 3k k >k %k k

! Subroutine to create and print the specZstatus statistics *
D sk s sk s ok s sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk s ok ok sk ok sk sk sk sk skesk sk sk sk sk sk sk sk sk sk sk kst ok kot ok ko skokoskosk sk sk sk sk sk sk sk sk sk kok sk ok

SUBROUTINE DATATYPE (B,sum)

Integer :: B(13), j, sum
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sum=0
DO j=1,13
IF (j .eq. 1) THEN
PRINT *, ’Redshift not yet measured:’
WRITE (5,%) ’Redshift not yet measured:’
ENDIF
IF (j .eq. 2) THEN
PRINT *, ’Redshift measurement failed:’
WRITE (5,*) ’Redshift measurement failed:’
ENDIF
IF (j .eq. 3) THEN
PRINT *, ’Redshift cross-correlation and emz both high confidence,’
PRINT *, ’but incosistent:’
WRITE (5,%) ’Redshift cross-correlation and emz both high confidence,’
WRITE (5,%*) ’but incosistent:’
ENDIF
IF (j .eq. 4) THEN
PRINT *, ’Redshift determined from cross-correlation and emz are’
PRINT *, ’consistent:’
WRITE (5,%*) ’Redshift determined from cross-correlation and emz are’
WRITE (5,%*) ’consistent:’
ENDIF
IF (j .eq. 5) THEN
PRINT *, ’Redshift determined from x-corr with high confidence:’
WRITE (5,%) ’Redshift determined from x-corr with high confidence:’
ENDIF
IF (j .eq. 6) THEN
PRINT *, ’Redshift determined from cross-correlation with low ’
PRINT *, ’confidence:’
WRITE (5,%*) ’Redshift determined from cross-correlation with low °’
WRITE (5,%*) ’confidence:’
ENDIF
IF (j .eq. 7) THEN
PRINT *, ’Redshift from emz plus consistent xcorr redshift ’
PRINT *, ’measurement:’
WRITE (5,%) ’Redshift from emz plus consistent xcorr redshift °’
WRITE (5,%*) ’measurement:’
ENDIF
IF (j .eq. 8) THEN
PRINT *, ’Redshift determined from em/lines with high confidence:’
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WRITE (5,%) ’Redshift determined from em/lines with high confidence:’
ENDIF
IF (j .eq. 9) THEN
PRINT *, ’Redshift determined from em/lines with low confidence:’
WRITE (5,%) ’Redshift determined from em/lines with low confidence:’
ENDIF
IF (j .eq. 10) THEN
PRINT *, ’Redshift determined "by hand" with high confidence:’
WRITE (5,%) ’Redshift determined "by hand" with high confidence:’
ENDIF
IF (j .eq. 11) THEN
PRINT *, ’Redshift determined "by hand" with low confidence:’
WRITE (5,%) ’Redshift determined "by hand" with low confidence:’
ENDIF
IF (j .eq. 12) THEN
PRINT *, ’x/corr redshift determined when EW(4000- break)>0.95:’
WRITE (5,*) ’x/corr redshift determined when EW(4000- break)>0.95:’
ENDIF
IF (j .eq. 13) THEN
PRINT *, ’Redshift determined from average of CaIl fits:’
WRITE (5,%) ’Redshift determined from average of CaIl fits:’
ENDIF
PRINT *, j-1, B(j)
WRITE (5,*%) j-1, B(j)
sum = sum + B(j)
ENDDO

END SUBROUTINE DATATYPE
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A.3 Makefile

CC = gcc
FC = £90
Frr= £77
FLAGS = -03

main.x: annz_train file_fns.o Near_ANNz.o conversion.o annz_ann.o annz_test_CV.o
$(FC) $(FLAGS) -0 main.x file_fns.o Near_ANNz.o conversion.o annz_ann.o annz_test_CV.o

annz_train: annz_vmmin.o annz_ann.o annz_util.o annz_train.o
$(FC) $(FLAGS) -0 annz_train annz_vmmin.o annz_ann.o annz_util.o annz_train.o -1lm

#Convention:
#Destination: Afhngighed
# compiler -c -o destination afhaengighed

%.0: %.£90
${FC} $(FLAGS) -c -o $0 $<

%.0: %h.c
$(CC) $(FLAGS) -c -o $@ $<

%.o: %.f
$(F77) $(FLAGS) -c -o $@ $<

clean:
rm *.mod *.0
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A.4 nANNz.f90
PROGRAM Near_ANNz
USE file_fns

IMPLICIT NONE

!Variable:

INTEGER :: i, j, k, 1, m, o, p, N_params, N_gals, N_train, N_column, c, sum, B(:
INTEGER :: spec(13), spec_value, stat(3), check,seed, N_test, N_wts, Max_ite, St
INTEGER, ALLOCATABLE :: Best2(:)

REAL*8, ALLOCATABLE :: A(:,:), T(:), Best1(:), Dist(:,:)

REAL*8 :: Decay

CHARACTER (1en=100) :: header, traindata, testdata, output_train, output_valid,
CHARACTER (1en=100) :: argumentfil, testdata_temp, test_result, arch_file, Dist:
CHARACTER (len=15), ALLOCATABLE :: wts_file(:)

REAL*8 :: snit_zerr, snit_Uerr, near, nearl, near2, near3, near4, nearb
traindata ="SDSS6/sdss6.trainvalid"

testdata ="8DSS6/sdss6.test"

arch_file ="arch.5:10:10:1.net"

output_train ="train_temp.dat"

output_valid ="valid_temp.dat"
testdata_temp ="testdata_temp.dat"

argumentfil  ="argumentfil.txt"

test_result  ="SDSS6/sdss6.nANNz.max18585.result"

Distfile ="SDSS6/sdss6_max18585.Distfile"

Photofile ="SDSS6/sdss6.nANNz.max18585 . photos"

Start =1 IStart at galaxy number start in testfile
N_train = 1000 I#selected galaxies for training for each test
N_wts =5 '# weightfiles in commitee - MAX 9!
n_params = 11 Do not change!

Max_ite = 10000 'Just any high value above 2000 will do
seed = 12974 IShould probably be changed more elegantly
Decay = 0.0001

Distchk =1 ISet=1 to create Distfile

ALLOCATE (wts_file(N_wts))

!0pen files to count data lines
PRINT *, ’Counting lines in training data file: ’, traindata
OPEN(1, file = traindata, status = ’0ld’, action = ’read’)
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N_gals = no_of_rows(traindata) !# galaxies in train sample
CLOSE(1)

PRINT *, ’Counting lines in test data file: ’, testdata
OPEN(22, file = testdata, status = ’0ld’, action = ’read’)
N_test = no_of_rows(testdata) !# galaxies in test sample
CLOSE(22)

PRINT *, ’# of galaxies in training file: >, n_gals

ALLOCATE (A(n_params,n_gals))
ALLOCATE (T(n_params))
ALLOCATE (Best1(N_train))
ALLOCATE (Best2(N_train))
ALLOCATE (Dist(8,n_gals))

OPEN(22, file = testdata, status = ’0ld’, action = ’read’)
IF (Start .GT. 1) THEN -— |

DO o=1,Start-1
READ(22,*) T(:)
ENDDO
ENDIF

DO k=Start,N_test
PRINT *, "Starting

'1 loop for each galaxy for z-phot
determination of z-phot for Gal#",k

PRINT *, N_test-k,"left after this."

READ(22,%) T(:)
PRINT *, k, T(:)

'Read right line of test galaxy data from file

OPEN(7, file = testdata_temp, status = ’0ld’, action = ’write’)

WRITE(7,*) T(:)
CLOSE(7)

IF (Distchk .EQ. 1) THEN

OPEN(8, file = Distfile

WRITE(8,*) k, N_train, T(:)

CLOSE(8)
ENDIF
DO p=1,N_wts
seed=seed+1

wts_file(p)=’wts_

file’//ACHAR (48+p)

PRINT *, wts_file(p)
IF (p .EQ. 1) THEN ISelection is only done once for each galaxy

OPEN(1, file =
DO j=1,N_train

traindata, status = ’0ld’, action = ’read’)
IReset array

, status = ’01d’, action = ’write’, Position = ’Append’
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Best1(j)=1000000. 11000 is arbitrarily chosen to be big enough
Best2(j)=0.

ENDDO

DO i=1,N_gals 'REMEMBER A(column,row) in fortran

READ(1,*) A(:,i)
near1=(T(1)-A(1,1))
near2=(T(2)-A(2,1))
near3=(T(3)-A(3,1))
near4=(T(4)-A(4,1))
nearb=(T(5)-A(5,1))
Dist(1,i)=ABS(neari)
Dist(2,i)=ABS(near?2)
Dist(3,1i)=ABS(near3)
Dist(4,i)=ABS(near4)
Dist(5,1)=ABS(near5)
near=SQRT ((nearl) **2+ (near2) **2+(near3) **2+(near4) **x2+ (near5) **2)
Dist(6,i)=near

Dist(7,i)=1
Dist(8,i)=i

IF (near .LT. Bestl(N_train)) THEN !Selects nearest galaxies in colorsp:
Dist(7,1)=2 12 is a temporary chosing of the gal. at han

DO 1=1,N_train
IF (near .LT. Best1(1l)) THEN
! PRINT *, 1, near, Best1(1l)
DO m=N_train,l1+1,-1
Best1(m)=Bestl(m-1)
Best2(m)=Best2(m-1)

ENDDO

Best1(1l)=near

Best2(1)=1i

! PRINT *, ’now exiting’
EXIT
ENDIF
ENDDO
ENDIF
ENDDO

CLOSE(1)
ENDIF
OPEN(3, file = output_train, status = ’Replace’, action
OPEN(4, file = output_valid, status ’Replace’, action ‘write’)
OPEN(6, file argumentfil , status = ’Replace’, action = ’write’)

‘write?)
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IF (Distchk .EQ. 1) THEN

OPEN(8, file = Distfile , status = ’01d’, action = ’write’, Position = ’Appen

ENDIF
DO 1=1,N_train

check=Best2(1)
Dist (7,check)=3 IParameter changed to 3 for all galaxies selected
IF (MOD(1,5) .EQ. 0) THEN!Galaxies distributed to files for train and valid
WRITE(4,*) A(:,Best2(1))
ELSE
WRITE(3,*) A(:,Best2(1))
ENDIF
IF ((p .EQ. 1) .AND. (Distchk .EQ. 1)) THEN
WRITE(8, FMT=’(5f7.3,12f12.6,f8.0)’) A(:,Best2(1)), Dist(1:6,Best2(1)), Dist(8
ENDIF

ENDDO

CLOSE(3)
CLOSE (4)
IF (Distchk .EQ. 1) THEN

CLOSE(8)

ENDIF

WRITE(6,*) seed

WRITE(6,*) Decay

WRITE(6,*) Max_ite

WRITE(6,*) "y"

WRITE(6,*) wts_file(p)

WRITE(6,*) O

WRITE(6, *)

CLOSE(6)

CALL called_train(seed)
ENDDO
CALL annz_test(testdata_temp, test_result, wts_file , N_wts, arch_file, k, photofile
PRINT *, "Calculation done - next galaxy starting!"

ENDDO

CLOSE(22)
END PROGRAM
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Miscellaneous outputs

B.1 Filter.f90 statistics

Redshift not yet measured:

00

Redshift measurement failed:

151

Redshift cross-correlation and emz both high confidence,
but incosistent:

2 28700

Redshift determined from cross—correlation and emz are
consistent:

3 198658

Redshift determined from x-corr with high confidence:
4 409308

Redshift determined from cross-correlation with low
confidence:

5 4316

Redshift from emz plus consistent xcorr redshift
measurement:

6 25010

Redshift determined from em/lines with high confidence:
7 173

Redshift determined from em/lines with low confidence:
8 151

Redshift determined "by hand" with high confidence:

9 777

Redshift determined "by hand" with low confidence:

84
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10 459

x/corr redshift determined when EW(4000- break)>0.95:
11 0

Redshift determined from average of Call fits:

12 5

667608 667608 O

0 51 28700 198658 409308 4316 25010 173 151 777 459 0 5
#gal in .train-file: 368377

#gal in .valid-file: 20465

#gal in .test-file : 20465

Total #gal in files: 409307
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