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Abstract

Magnetic frustration often leads to interesting quantum mechanical phenomena, where

the magnetic spins are incapable of relaxing into a unique, well ordered ground state even

at 0 K. Small frustrated spin systems, like the equilateral triangle, are easily modeled,

and the physics that controls them are well understood. In the extended magnetically

frustrated spin lattice, exotic phenomena, like the quantum spin liquid, are theorized to

exist. Quantum spin liquids are difficult to identify directly from experiments, and exact

theoretical models of large frustrated systems are often difficult to make.

The natural mineral boleite (KPb26Ag9Cu24Cl62(OH)48) is studied in this thesis. Boleite’s

magnetic unit cell consists of 24 Cu2+ copper ions placed in a truncated cube with its

corners replaced by triangles. The distance between the magnetic unit cells in boleite is

so large that interaction between them can be neglected. Boleite’s magnetic unit cell is

therefore a possible middle ground between large frustrated magnetic systems, which may

show phenomenas like quantum spin liquids, and the small solvable magnetic systems.

Boleite crystals were measured with a range of bulk experiments, and the boleite system

was modeled with approximate Heisenberg spin models of the 24 spin system. The models

assume a difference in exchange interaction between the magnetic ions in the triangles,

J1, and the exchange coupling between copper ions on different triangles, J2. This thesis

shows that it is possible to describe the magnetic susceptibility’s behavior with the 24 spin

model if a small paramagnetic contribution is subtracted from the raw susceptibility data.

The model is best fitted to the data when J1 = 19.4± 0.4 meV and J2 = 3.4± 0.1 meV.

From the model, we are able describe the magnetic structure of boleite: At temperatures

of ∼ 130 K, the triangles are frozen into their 4 S = 1/2 ground states, enabling the three

spins in a triangle to collectively show paramagnetic behavior, as a sort of cooperative

paramagnet. A second transition occurs near ∼ 10 K where all the 8 triangles in the

copper cube begin to interact and order into a unique singlet ground state.

The data shows that another type of boleite crystals exist. In this type, a suppression

of the interaction between the 24 spins is seen. From estimates of the paramagnetic

contribution, it is believed that this type arises due to a larger paramagnetic contribution

from crystal impurities. It is in this thesis estimated that if more than 9±2 % of the spins

are paramagnetic, the ordering of the 24 spin system is suppressed in bulk measurements

by a paramagnetic contribution.

The large amount of hydrogen in the boleite crystals prohibits us from identifying any

magnetic structures in the neutron scattering signal, and our understanding of the system

therefore relies solely on bulk measurements.

The Heisenberg spin models of the boleite system predicts a unique singlet ground state,

and a small energy gap to a pseudo-continuum of excited states. This resembles the

definition of the quantum spin liquid like behavior, called a gapped spin liquid. We

therefore characterize the small 24 spin boleite system as a quantum spin droplet.
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CHAPTER 1

Introduction

Spontaneous ordering is a fundamental phenomenon in condensed matter physics, but

sometimes it is when this ordering is suppressed that really interesting phenomena arise.

In crystals, magnetic ordering is seen when the magnetic moments of the ions suddenly

orders, for example into a so-called antiferromagnet where all magnetic moments are an-

tiparallel to their neighbors. However, the crystal structure can sometimes prohibit such

orderings in a crystal. The best example of this is in a geometrically frustrated system,

where the geometry of magnetic ions results in competing interactions that suppress the

magnetic ordering [2].

The physics of small magnetically frustrated quantum systems, like a antiferromagnetic

triangle of spins, is well understood and can easily be modeled [3]. In large magnetically

frustrated spin systems, the competing exchange interaction can give rise to exotic quan-

tum mechanical phenomena, like the so-called quantum spin liquids. Such phenomena are

difficult to measure, and numerical models are often required to properly identify them

[4]. Unfortunately, it is impossible to make exact numerical models of these large systems,

and so quantum spin liquids and other of such phenomena are difficult to study fully.

In this thesis, we study the natural mineral boleite (KPb26Ag9Cu24Cl62(OH)48). Boleite

has 24 magnetic Cu2+ copper ions [5] placed in a truncated cube with triangles in the

corners. This truncated cube forms the magnetic unit cell in boleite and is found in the

center of boleite’s large unit cell. The interaction between the copper ions in boleite is be-

lieved to be antiferromagnetic, and the triangles in the boleite system is thought to make

boleite a magnetically frustrated system. The distance between magnetic unit cells is so

large that magnetic interaction between them can be ignored, at least down to T ∼ 1.5 K.

The 24 isolated magnetic ions inside boleite’s unit cell are therefore thought to be a mid-

dle ground between the small spin systems, showing discrete states which can easily be

modeled, and the large spin systems with the interesting quantum phenomena.

Previous to this projects start, Kenneth Lønbæk’s bachelor thesis from 2014 [6] is the

only known study of the magnetism in boleite. Kenneth Lønbæk investigated the mag-

netic susceptibility measured from some boleite crystals and tried to model the magnetic

susceptibility as a system of 6 spins forming two interacting spin triangles. The interac-

tion between spins in the triangles was believed to be much stronger than the interaction

between spins on neighboring triangles. This thesis expands the work of Kenneth Lønbæk

and looks into more advanced models of the entire spin system, as well as examining the

results from other experimental techniques than magnetic susceptibility.

The boleite crystals used in this project were identified and bought on Ebay by Sonja

1



2 CHAPTER 1. INTRODUCTION

Lindahl Holm. A range of experiments were carried out before the start of this project by

Sonja Lindahl Holm, Kenneth Lønbæk, and others, but all neutron experiments and some

of the bulk experiments have been part of this thesis project.

The major results of this thesis are in progress of being published, see reference [7].

This thesis is structured as follows. The background knowledge required to understand the

work done in this thesis is presented in chapter 2 to 5. The basic background knowledge

on magnetism is presented in chapter 2. In chapter 3, some of the exotic properties of

large magnetically frustrated systems are presented, together with methods to numerically

model large magnetic systems. Chapter 4 is devoted to a short presentation of the bulk

measurement techniques used to measure boleite, and neutron scattering is explained in

chapter 5.

In chapter 6, an introduction to the boleite crystal structure is given, as well as a presenta-

tion of the identification of the boleite crystals and magnetic susceptibility measurements.

The largest part of this thesis involves the modeling of the susceptibility. An introduction

to the models and the results of the models are given in chapter 7. Experimental results

from other bulk techniques are presented in chapter 8, and the results from neutron ex-

periments are presented in chapter 9. Some of the observed results from chapter 6 to 9

are discussed in chapter 10, and the final conclusions and outlook is given in chapter 11.

1.1 Acknowledgments

I would first and foremost like to thank my supervisor Kim Lefmann for letting me work

with this project, and for always having time to answer my questions. A thanks is also

given to Tom Fennell, who invented the project, and has shared his ideas and knowledge

throughout the whole project.

The project would not have been possible with out the large effort from Sonja Lindahl

Holm and Kenneth Lønbæk, who did an enormous work with all the initial experimental

and modeling. Sonja Lindahl Holm also deserves thanks for supervising me during the

project, and for useful discussions on how to present this project.

I would also like to thank all my fellow students, and the lunch club members on the

third floor of the D-building at HCØ for fruitful discussions, and needed breaks from the

thesis. Especially, I would like to thank Henrik Jacobsen for helpful discussions during
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Finally, I would like to thank friends and family for encouragement and support, and my

girlfriend Nanna for her bearing with my distracted mind and long working days.



CHAPTER 2

Basic magnetism

The study of magnetism and magnetic materials is today a large and active scientific field.

The field is driven by an interest in a wide range of topics stretching from computer hard

disc drives and permanent magnets in engines and generators, to the quantum physical

nature of magnetism and its link to superconductivity and quantum computing.

This chapter will introduce the basic concepts of magnetism. The chapter is largely based

on the first 4 chapters of Blundell [2], with some details added from other references.

2.1 The magnetic moment

Classical electrodynamics [8] tells us that a steady electric current (moving charges) will

produce a magnetic field which is constant in time. A current loop will generate a magnetic

field, with all field lines going through the center of the loop normal to the loop plane. In

classical electrodynamics, the force that a charged particle experiences when an external

magnetic and electric field is applied, is the Lorentz force

F = q(E + v×B), (2.1)

where q is the electric charge of the particle, E is the electric field, v is the velocity of

the particle, and B is the applied magnetic field. The magnetic force will try to align the

magnetic field generated by the current loop with the external field. The result is that the

external magnetic field will apply a torque τ = µ × B, where µ is called the magnetic

moment∗. Any magnetic object can be described by its magnetic moment. In classical

mechanics the magnetic moment dµ is associated with a current I around an elementary

(vanishingly small) oriented loop of area |dA| through

dµ = IdA. (2.2)

For a loop of finite size the moment can be calculated by integrating the magnetic moment

across all the infinitesimal small and equal current loops which constitute the total current

loop. Since all neighboring infinitesimal currents cancel, it is only the current running on

the edge of the loop that contributes to the total magnetic moment

µ =

∫
dµ = I

∫
dA. (2.3)

∗Sometimes it is called the magnetic dipole moment

3



4 CHAPTER 2. BASIC MAGNETISM

The magnetic moment of an atom is proportional to its angular momentum L by

µ = γgL, (2.4)

where γg = −e
2me

is the gyromagnetic ratio, with e and me being the charge and mass of

the electron respectively.

The size of the magnetic moment of an atom is given in terms of the Bohr magneton µB.

The magnitude of the Bohr magneton is defined as the absolute value of the magnetic

moment of an electron in the ground state of hydrogen, so that

µB =
e~

2me
, (2.5)

where ~ is Planck’s constant.

2.2 The magnetization of solids

In a magnetic solid the magnetic moment per unit volume is denoted the magnetization M.

In the continuum approximation one assumes that the unit volume is big enough for M to

be a uniform field within the solid. The magnetic field can be described by the two vector

fields B and H, which in vacuum are related by B = µ0H, with µ0 = 4π × 10−7 Hm−1

being the permeability of free space. B has the units of Tesla (T) and H has the units of

Ampere per meter (Am−1). In a solid the relation between the two fields becomes

B = µ0(H + M). (2.6)

In a so-called linear material the magnetization and the H-field are related through

M = χH, (2.7)

where χ is a dimensionless quantity called the magnetic susceptibility.

2.3 Magnetism and quantum mechanics

It can be shown from classical statistical mechanics that the thermally averaged magne-

tization of a solid must be zero. This is known as the Bohr-Van Leeuwen theorem †. A

conceptual explanation of the theorem is given in figure 2.1.

Real materials experience a magnetization when an external field is applied, and due to

the failure of classical mechanics, quantum mechanics is needed in order to explain this.

As in classical mechanics, the magnetic moment of a solid in quantum mechanics is also

†It was originally proposed by Niels Bohr in his doctoral dissertation from 1911 [9], but rediscovered

by Van Leeuwen in 1919 [10]. It later came to be known as Bohr-Van Leeuwen theorem.



2.3. MAGNETISM AND QUANTUM MECHANICS 5

Figure 2.1: The Bohr-Van Leeuwen theorem. Classical mechanics predicts that

when a external field is applied, the electrons in a bulk material will undergo cyclic

motion (orange clockwise rotating arrows). On the edges, the electrons will have

skipping orbits along the surface creating a counter rotating motion (counter clockwise

blue arrows). It can be shown that the two contributions will exactly cancel, leaving

no net magnetic moment from the material.

connected with the angular moment of the electrons. The electron has two different types

of angular moment; the orbital angular momentum, related to the orbit of the electron

around the nucleus of the atom, and the spin angular momentum. The spin angular

momentum is a property of all particles (both elementary and composite particles) [11].

Traditionally the spin angular momentum of a particle is just called the spin of the par-

ticle.

In quantum mechanics the angular momentum is quantized in discrete steps [11]. The

magnitude of the total magnetic moment of an electron’s spin is in quantum mechanics

given by µs =
√
s(s+ 1)gsµB, and the magnetic moment along a given direction (by con-

vention defined as ẑ-direction) is given by −msgsµB. gs ≈ 2 and is the electron’s g-factor.

s is the quantum number for the total spin, and ms is the quantum number for the spin

along the ẑ-direction. The orbital angular momentum will also contribute to the magnetic

moment of the electron. Similar to the spin magnetic moment, the orbital angular mo-

mentum is described by the quantum numbers l and ml.

The total angular momentum is the combined contribution from the spin and orbital an-

gular momentum of the electrons and is described by the quantum number j = l + s.

2.3.1 Hunds rule and the magnetic moment of atoms

An atom or ion has a magnetic moment if it has non-zero angular momentum. The

angular momentum is primarily determined by the electrons orbiting the nucleus. The

nucleus itself also has a spin, but since the magnetic moment scales with the inverse of

the mass, the heavy nucleus plays a very small part in the total angular momentum.

Electrons are spin half, s = 1/2, particles and thereby fermions. Two identical fermions

are not allowed to be in the same quantum state, according to the Pauli exclusion principle
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[11]‡. The electron’s quantum state can be separated into a spin state and a spatial state.

When bound in an atom, the electron’s spatial states are the quantized atomic shells. The

electron only has two different spin states, denoted with ms = ±1
2 , and so there is only

room for two electrons in an atomic shell. In some atoms, the quantum ground state has

electrons in partially filled shells. It is only the electrons in the partially filled shells that

contribute to the atom’s total angular momentum, and therefore it is only atoms with

partially filled shells in the atomic ground state which are magnetic.

The sum of the combined orbital angular momentum L (quantum numbers L and mL)

and spin S (quantum numbers S and mS) of all electrons in unfilled spatial states, will

give the total angular momentum J = L + S. L and S are coupled to each other through

the spin-orbit interaction. The spin-orbit interaction affect the quantum states and will

split them into a number of different energy levels, which are labeled using the quantum

numbers of J, J and mJ . J takes values from |L− S| to |L+ S|. Each energy level has a

degeneracy of 2J + 1, where each state is labeled by mJ , which takes the value −J to J .

The ground state of an atom with a large number of electrons and a net angular momentum

can be determined by the help of Hund’s rules for partially filled shells:

� Maximize S. To minimize the Coulomb repulsion§ between the electrons by taking

advantage of the Pauli exclusion principle that prohibits electrons with the same

spin state to be in the same spatial state.

� Maximize L. To minimize the Coulomb repulsion by making the electrons rotate

in the same direction, and thereby minimize the time there the electrons are in

proximity of each other.

� If the shell is less than half full J = |L − S|, and if the shell is more than half full

J = |L + S|. This rule is made in an attempt to minimize the spin orbit energy,

and it only applies when the spin orbit interaction energy is large compared to other

effects, like for example the crystal field energy.

Hund’s rules are empirical rules, and many systems do not behave as the Hund’s rules

predict they should.

2.3.2 Atoms in magnetic fields

When applying a magnetic field to an atom, it will be more favorable for the electron’s

spin to point along the magnetic field than against it. The atom’s energy levels are split

by an energy ∆Ez from the zero field energy. The effect is called the Zeeman splitting,

‡Pauli was in 1945 awarded the Nobel Prize in Physics for the discovery that two electrons could not

have the same quantum state [12].
§Electrostatic repulsion between particles with the same charge sign.
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and is given by

∆Ez = gJµBmSB, (2.8)

where mS is the spin moment along the ẑ-direction of the atomic state. gJ is the Landé

g-factor, which can be calculated from

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (2.9)

where gS and gL are the spin and orbital momentum g-factors. For L = 0 and S = 1/2,

gJ = gS ≈ 2.

The orbital angular momentum also plays an important role for atoms in an external

magnetic field. To explain the effect, I will first consider isolated magnetic ions. The

behavior of a single atom in zero field is described by the Hamiltonian

Ĥ0 =
Z∑
i

(
p2i

2me
+ Vi

)
, (2.10)

which is the sum of the kinetic energy
p2i
2me

, and the potential energy Vi, of the i’th electron,

summed across all electrons in an atom Z.

If the external B-field is small enough, it can be treated as a perturbation to the original

Hamiltonian Ĥ0, and it can be shown that [2]

Ĥ = Ĥ0 + µB(L + gS) ·B +
e2

8me

Z∑
i

(B× ri)
2. (2.11)

The first perturbation term µB(L+gS) ·B is called the paramagnetic term, and the second

perturbation term e2

8me

Z∑
i

(B × ri)
2 is the diamagnetic term. Of these two, the paramag-

netic term is usually the largest.

The paramagnetic term describes the energy gain of an atom by aligning its total mag-

netic moment with an external field. Paramagnetism only exists when the atom has a

net angular momentum, since it depends on L and S. In a solid filled with non coupled

ions with unfilled shells, the paramagnetism will create a positive magnetization along the

external magnetic field.

If there are no unfilled shells, the diamagnetic term begins to play a part. Diamagnetism

is a purely quantum mechanical phenomena, where the external magnetic field generates

a magnetic moment that points against the external field. Diamagnetism will not be ex-

plained further in this thesis.

According to equation (2.7), it is the susceptibility that determines the sign of magne-

tization when applying a magnetic field. So if a material is paramagnetic, χ > 0 since

the magnetisation is pointing along the external field. A diamagnetic material will have

χ < 0. A paramagnetic material will have χ ∝ 1
T , in the limit µBB � kBT , where kB is

the Boltzmann constant.
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2.4 Ordering of magnetic systems

For many magnetic solids there will be a coupling between the magnetic ions, which cre-

ates a long range ordering of the magnetic moment even without any applied field. In

most cases long range order occurs when a material contains 3d transition metals or 4f

lanthanides. Of these two, the transition metals are particular easy to work with, since

often L = 0 due to crystal fields (quenching), and thereby J = S.

The simplest explanation of interaction between magnetic moments of the transition met-

als is the so called dipole-dipole interaction. Dipole-dipole interaction describes the effect

seen when the field created by one magnetic dipole affects another magnetic dipole. The

energy of two magnetic dipoles µ1 and µ2 separated by r is

E =
µ0

4πr3

(
µ1 ·µ2 −

3

r2
(µ1 · r)(µ2 · r)

)
. (2.12)

The magnetic ions in a solid are usually separated by more than 1 Å, and so the dipole

energy between two magnetic ions is typically smaller than 10−1 meV. This corresponds

to the thermal energy at temperatures of around 1 K. This means that long range order

at high T is typically not due to dipole-dipole interaction.

2.4.1 Interacting spin particles

The typical origin of long range magnetic order is exchange interactions. Since electrons

are fermions, the combined spatial and spin state needs to be antisymmetric under ex-

change (Pauli exclusion principle). In order for the combined state to be antisymmetric,

the spatial state needs to be symmetric while the spin state is antisymmetric, or vice

versa. The antisymmetric spin state is called the singlet state χS , and the symmetric is

called the triplet state χT . This means that for two electrons there are two possible state

configurations

ΨS =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS

ΨT =
1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χT . (2.13)

We will define the difference between the energy of the triplet state ET and the singlet

state ES as the exchange constant J ¶. Using this definition, it can be shown that

J = ET − ES = −2

∫
ψ∗a(r1)ψ

∗
b (r2)Ĥψa(r2)ψ

∗
b (r1)dr1dr2. (2.14)

Two coupled spins, called a spin dimer, can be parametrized using the spin operators

Ŝ1 · Ŝ2, such that ĤsχS = ESχS and ĤsχT = ETχT , where

Ĥs = J Ŝ1 · Ŝ2. (2.15)

¶Sometimes J is called the exchange integral.
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Eigenstates S mS Energy

|↑↑〉 1 1 1
4J } The triplet χT

|↓↑〉+|↑↓〉√
2

1 0 1
4J

|↓↓〉 1 −1 1
4J

|↓↑〉−|↑↓〉√
2

0 0 −3
4J The singlet χS

Table 2.1: The eigenstates and energies of Ĥs (equation (2.15)), for S = 1/2 spins. S

is the total spin magnitude and mS is the spin along the z-direction of the eigenstate.

The spin operator Ŝi can be separated into its x̂, ŷ, and ẑ components, so that Ŝi =

x̂Ŝz
i + ŷŜy

i + ẑŜx
i . The spins are typically quantized along the ẑ direction, and so

Ŝy
i =

1

2i
(Ŝ+

i − Ŝ
−
i ),

Ŝx
i =

1

2
(Ŝ+

i + Ŝ−i ), (2.16)

where Ŝ+
i and Ŝ−i are the raising and lowering operators. For a S = 1/2 spin

Ŝz|↑〉 =
1

2
|↑〉 Ŝ+|↑〉 = 0, Ŝ−|↑〉 = |↓〉

Ŝz|↓〉 = −1

2
|↓〉 Ŝ+|↓〉 = |↑〉 Ŝ−|↓〉 = 0, (2.17)

where |↑〉 is the mS = 1/2 spin state, and |↓〉 is the mS = −1/2 spin state.

A S = 1/2 spin dimer intuitively generates 4 different configurations of the spins. The 4

configuration can be written |↑↑〉, |↓↑〉, |↑↓〉, and |↓↓〉, where ↑ labels that the spin is in

its mS = 1/2 state, and ↓ labels that the spin is in its mS = −1/2 state. These intuitive

states, where the spins are quantized along the ẑ-direction, are also called the Ising basis.

The Ising basis states are not all eigenstates of the Ĥs, but the eigenstates can be written

as linear combinations of the Ising basis states.

By solving the Hamiltonian from equation (2.15) for S = 1/2, one finds that these 4

eigenstates will separate into two energy levels, a singlet state, where the spin anti align,

and a 3 times degenerate triplet state, where the spins align. The full solution is shown

in table 2.1. From the table it can be seen that it is J that determines whether it is the

singlet or the triplet that is the ground state.

When the system becomes larger than 2 atoms, and an external magnetic field is applied,

equation (2.15) can be extended to

Ĥ =
1

2

∑
i,j

JijŜi · Ŝj + gµBB ·

∑
i

Ŝi. (2.18)

This Hamiltonian is called the Heisenberg Hamiltonian. The factor
1

2
is introduced to

account for double counting of neighbors.
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Figure 2.2: Ferromagnetic (left) and antiferromagnetic (right) ordering. The

square magnetic unit cells are marked with dashed red lines. The primitive unit

cell for the antiferromagnetic ordering is marked with a dashed blue line. Notice that

the antiferromagnetic square unit cell has twice as large distance between the corners

as the ferromagnetic.

The Heisenberg Hamiltonian Ĥ, from equation (2.18), is the sum of a spin interaction

term Ĥi, and a Zeeman term ĤZ that accounts for the effect of an external magnetic field.

When the magnetic field B is applied along the ẑ-direction, Ĥi and ĤZ can be written in

terms of Ŝz
i , Ŝ+

i and Ŝ−i :

ĤI =
1

2

∑
i,j

Ji,jŜi · Ŝj =
1

2

∑
i,j

Ji,jŜ
z
i Ŝ

z
j +

J1
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
, (2.19)

ĤZ = gµBB ·

∑
i

Ŝi = gµBB
∑
i

Ŝz
i . (2.20)

There are a variety of different types of ordering of the spins in large spin systems. The

two most simple types of ordering are where all spins align, called ferromagnetism, and

where all spins anti-align, called antiferromagnetism. These two types of ordering are

illustrated in figure 2.2. In a system where the Heisenberg Hamiltonian (equation (2.18))

applies, the exchange constant Ji,j determines, which type of ordering that will occur.

For Ji,j < 0, it is favorable for the spin to be parallel, and so it results in ferromagnetic

ordering. Due to the many-body behavior of large systems, the overall spin ground state

with Ji,j > 0 is not easily determined. In transition metal oxides, where Ji,j > 0, the

quantum ground state is typically antiferromagnetic, but system with different ions and

configurations can have more exotic Ji,j > 0 ground states. A detailed calculation of the

ground state of systems with Ji,j > 0 can be found in Yosida [13].

I will in the following sections show two different types of exchange interaction between

transition metals.

2.4.2 Direct exchange

Direct exchange happens when the transition metals in a solid are close enough for the

magnetic orbitals to overlap. When two orbitals overlap, it is energetically favorable for

the atoms to form a bond. The bond creates what is called a molecular orbital, where

the electrons can either have an anti-symmetric or symmetric spatial state as long as
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O M M 

Antiferromagnetic 

Ferromagnetic 

G 

G 

Figure 2.3: Superexchange in a magnetic oxide with 4 free electrons. The elec-

trons are allowed to jump between the overlapping orbitals (colored ellipses) of the

2 transition metals (M) and the single oxygen (O). If the transition metals are anti-

ferromagnetically coupled, it is possible for electrons (arrows showing spin) to jump

between orbitals, by mixing the ground state (top G) with the excited states (green

pluses). Due to the Pauli exclusion principle, ferromagnetic ordered electrons have to

stay in their ground state (bottom G). Delocalization of the electrons across the entire

M-O-M system lowers the kinetic energy, and so the antiferromagnetic configuration

is energetically favorable.

the spin states ensure that the combined state is anti-symmetric under exchange. I will

call the anti-symmetric state of the molecular orbital for the anti-bonding state, and the

symmetric for the bonding state. It can be shown that the kinetic energy of the electrons

in anti-bonding state is higher than that of the bonding state, and the bonding state is

thereby most likely the ground state. This means that direct exchange often leads to an

antiferromagnetic ordering since the bonding state has an anti-symmetric spin state.

Direct exchange is unlikely to happen between most magnetic ions, since their magnetic

orbitals are too localized compared to the distance between them, which makes an overlap

between the orbitals very small.

2.4.3 Superexchange

When the distance between the transition metals is too large to form direct exchange

bonds, they can bond through super exchange pathways, where the electrons can travel

between transition metals through non-magnetic ions. An example is the Copper-ion’s

3d orbital, which overlaps with the Oxygen-ion’s 2p orbital. Depending on the geometry

of the system, a strong antiferromagnetic coupling can be formed between the copper

ions. The antiferromagnetic coupling will in this case allow the electrons to be further

delocalized, by allowing them to be present on both copper and oxygen states. Super-

exchange between two transition metals through a single oxygen is illustrated in figure

2.3.



CHAPTER 3

Magnetic frustration

Magnetic frustration occurs in materials where competing exchange interaction between

spins can not be simultaneously satisfied. The physical field of magnetic frustration has

been of large interest for some time due to the interesting nature of its exotic quantum

physical phenomenas, and the proposed connection between magnetically frustrated states

and superconductivity states in doped La2CuO4 [15]. This chapter will introduce the

concept of magnetic frustration and different ways of solving the Hamiltonian of large

spin systems.

3.1 The simplest frustration - a triangle of spins

The simplest example of a system with magnetic frustration is an equilateral antiferro-

magnetic triangle of spins. If S is large, classical fluctuation will dominate a spin system.

The equilateral antiferromagnetic triangle has multiple classical ground states, which en-

able the spins to reorient randomly between the states. As the thermal energy is lowered,

the fluctuation will cease since the energy barrier between the ground states becomes too

large, and the spins order into one of the ground states. Quantum fluctuations dominate

for S = 1/2 spin systems. The quantized S = 1/2 spins can either point up (mS = 1/2) or

down (mS = −1/2). In the equilateral antiferromagnetic S = 1/2 spin triangle, the quan-

tum spins will not be able to point opposite to both their neighbors, and so a degenerate

ground state arise. The degeneracy of the ground state cause the quantum spin triangle

to be frustrated, since spin fluctuations are possible even at T = 0 K. Illustrations of the

classical and quantum spin triangle can be seen in figure 3.1.

The S = 1/2 triangle system has (2S + 1)3 = 8 different quantum states. To see how

the exact eigenstates of the magnetic triangle look, the Heisenberg Hamiltonian Ĥ, from

equation (2.18), needs to be solved.

The matrix elements of Ĥ are Ĥi,j = 〈χi|Ĥ|χj〉, where Ĥi,j is the i, j matrix element and

χi is the i’th basis state. Since there for the spin triangle are 8 basis states an (8 × 8)

matrix needs to be diagonalized.

(a) 
 

 

(b) 
 

 

? 

Figure 3.1: A geometrically frustrated antiferromagnetically coupled triangle. (a)

Example of a classical ground state, where the three spins are turned 120 degrees

compared to each other. (b) Example of quantum frustration. All three spins are not

able to be antiparallel, and therefore frustration occurs.

12
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3.1.1 Solving the Heisenberg Hamiltonian

To find the eigenvalues of an (8×8) matrix, 82 = 64 matrix elements need to be calculated,

and afterwards the full matrix needs to be diagonalized. Diagonalizing an (8 × 8) can

easily be done using computational routines, but never the less, it is useful to introduce

the concept of block diagonalization, as it is a necessity when solving large spin systems.

ĤI and ĤZ , from equation (2.19) and (2.20), do not affect the total magnetization of a

state along the ẑ-direction mS , since Ŝz
j , and pairs like Ŝ+

i Ŝ
−
j can not change mS . The

Ising basis consists of spins quantized along the z-direction, and so 〈χi|Ĥ|χj〉 = 0 if the

Ising states |χj〉 and |χi〉 do not have the same total magnetization. It is therefore possible

to separate the Hamiltonian into m−subspaces, and diagonalize them separately. This is

called block diagonalization, and we call mS a good quantum number as it can be used to

block diagonalize the Heisenberg Hamiltonian.

Other good quantum numbers exist, and they can be used to further block diagonalize the

mS-subspaces. An example is the use of geometrical symmetries in a spin system. Further

details of other ways of using block diagonailazation is outside the scope of this thesis.

For a S = 1/2 system with N spins, there are N+1 different values of mS , with mS taking

the values m = −N/2,−N/2 + 1, ..., N/2 − 1, N/2. The Ising states are combinations of

spins pointing up or down, and so the number of different states with a given mS are given

by the binomial coefficient

(
N

U

)
= N !

N !(N−U)! , where U is the number of spins pointing up.

ĤZ is independent of how the spins are arranged individually, since it is only dependent

on the quantum states’ total magnetization m =
∑
i
Ŝz
i . One can therefore write Ĥ|χi〉 =

E|χi〉, where |χi〉 is both the eigenstate of Ĥ and ĤI , and E = EI + ∆EZ . EI is the

eigenenergy of ĤI , and ∆EZ is the Zeeman splitting of the eigenenergies given by ∆EZ =

gµBBm. The implication of this is that in order to solve Ĥ, only the eigenstates of ĤI

needs to be found, and ∆EZ can then afterwards be added to EI .

ĤI has no preferred spatial direction and so ĤI must be symmetric around m = 0. This

is called time reversal symmetry, and as an result subspaces with equal |ms| will have

identical solutions. This can be used to almost half the amount of subspaces that need to

be solved.

3.1.2 Solving the frustrated triangle

3 coupled spins will, as already mentioned, have 8 different Ising states. The first two

states are all spins down |↓↓↓〉 with magnetization mS = −3/2, and all spins up |↑↑↑〉 with

mS = +3/2. One of the spins for both of these two states can be flipped, which in total

gives 6 more states

m = −1/2: |1,↓〉 = |↑↓↓〉, |2,↓〉 = |↓↑↓〉, and |3,↓〉 = |↓↓↑〉,
m = +1/2: |1,↑〉 = |↓↑↑〉, |2,↑〉 = |↑↓↑〉, and |3,↑〉 = |↑↑↓〉. (3.1)
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Eigenstates S mS Energy

|↑↑↑〉 3
2 −3

2
3
4J1 } Quadruplet

1√
3
(|1,↓〉+ |2,↓〉+ |3,↓〉) 3

2 −1
2

3
4J1

1√
3
(|1,↑〉+ |2,↑〉+ |3,↑〉) 3

2
1
2

3
4J1

|↓↓↓〉 3
2

3
2

3
4J1

1√
3
(|1,↓〉+ e−|2,↓〉+ e+|3,↓〉) 1

2 −1
2 −3

4J1 } Doublet
1√
3
(|1,↑〉+ e−|2,↑〉+ e+|3,↑〉) 1

2
1
2 −3

4J1
1√
3
(|1,↓〉+ e+|2,↓〉+ e−|3,↓〉) 1

2 −1
2 −3

4J1 } Doublet
1√
3
(|1,↑〉+ e+|2,↑〉+ e−|3,↑〉) 1

2
1
2 −3

4J1

Table 3.1: The eigenstates and energies of the Hamiltonian from equation (2.19) in

the triangle system. The complex phases are e+ = ei
3π
2 and e− = e−i

3π
2 .

ĤI , from equation (2.19), can now be block diagonalized. For simplicity, I define that all

Ji,j = J1, and so ĤI |↑↑↑〉 = 3
4J1|↑↑↑〉, and hence |↑↑↑〉 is an eigenstate of ĤI with energy

3
4J1. Due to time reversal symmetry |↓↓↓〉 must also be an eigenstate of ĤI with energy
3
4J1.

To get the energies and eigenstates for the |mS | = 1/2 subspaces, the following matrix

needs to be solved

ĤI(m =
1

2
) =

 〈1,↑|ĤI |1,↑〉 〈1,↑|ĤI |2,↑〉 〈1,↑|ĤI |3,↑〉
〈2,↑|ĤI |1,↑〉 〈2,↑|ĤI |2,↑〉 〈2,↑|ĤI |3,↑〉
〈3,↑|ĤI |1,↑〉 〈3,↑|ĤI |2,↑〉 〈3,↑|ĤI |3,↑〉

= J1

 −1/4 1/2 1/2

1/2 −1/4 1/2

1/2 1/2 −1/4
. (3.2)

The above matrix has 2 eigenstates with energy −3
4J1 and one eigenstate with energy 3

4J1.

One way of representing the degenerate ground states to the |mS | = 1/2 subspaces is with

the two complex phases shown in table 3.1. Another way of representing the ground states

can be seen in reference [3].

If the triangle spins are antiferromagnetically coupled (J1 > 0) the system will have a 4

times degenerate groundstate consisting of two degenerate doublets, with an energy gap

of 3
2J1 to the excited quadruplet. If a magnetic field is applied the Zeeman splitting,

depending on mS , will split the ground states in two levels, and the excited quadruplet in

four.

3.2 Quantum spin liquids

The following section is based on the review of Quantum Spin Liquids (QSL) in reference

[4].

The ground state of the triangle system is highly degenerate with 4 different ground states,

as shown above. At low temperatures, the magnetic spins of the triangle will therefore
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(a) (b) (c)

Figure 3.2: 2D projection of lattices that in real systems have been shown to host

QSL like behavior. The blue circles represents the spin position and the lines between

them represents the exchange interaction. (a) shows the triangular lattice and (b)

Shows the kagomé lattice. (c) Shows the hyperkagomé lattice, which has two different

coupling strengths between neighboring lattice sites (dashed and solid lines). In the

real lattices, the triangles are rotated compared to each other, to form 3D structures.

fluctuate in a correlated manner and behave like a cooperative paramagnet. This type

of correlated motion is also sometimes called spin liquid states, as an analogy to the

correlated motion of molecules in real liquids.

A QSL is defined as a system with long range correlated quantum spin fluctuations all

the way down to T = 0 K, with no long range ordering of the spins. In larger frustrated

S = 1/2 antiferromagnetic spin systems, QSL behavior is caused by degenerate ground

states that enables the spins to simultaneously point in many different directions even at

the lowest temperature, much like the frustrated triangle. Since all spins behave according

to a combined quantum ground states, they are strongly correlated.

A measure for the frustration in the system is the frustration parameter f , defined by

f =
|ΘCW|
TO

, (3.3)

where ΘCW is the Curie Weiss temperature, and TO is the temperature, where the mag-

netic system freezes into a single ordered magnetic ground state. In chapter 4 the Curie

Weiss temperature and ordering temperature are further explained. If f ≈ 10 magnetic

frustration is strongly suppressing magnetic order. Magnetic order can per definition not

occur in a QSL, and so a true QSL should in principle have f = ∞. A series of com-

plications can make it difficult to get sure proof of absent magnetic order in real world

materials, and f > 100−1000 is typically seen as a strong indication of a QSL. Measuring

the frustration parameter is not the only way of identifying a QSL. A series of techniques

can be used to identify QSL behavior, but none of them can identify a QSL alone. The

entire problem with a sure proof of QSL states, is that one have to show that order in a

magnetic system is not happening, and so we look for a non-broken symmetry.

Even with the experimental difficulties, a series of different systems have been found to

be candidates for QSL states. In general, lattices which show QSL states usually consist

of connected triangles in more or less exotic forms. Examples of lattices that have shown

signs of hosting QSL are shown in figure 3.2.
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+ +…. + 
1

2
 

(a) (b) 

Figure 3.3: RVB states of the frustrated triangular lattice. (a) In RVB states,

the spins are arrange in pairs forming dimer singlet states. (b) A RVB state is a

superposition of different pairing of spins (A pairing is illustrated with a blue ellipse).

The figure is based on reference [4].

It is usually difficult to find a QSL candidate theoretical ground state(s). The problem

arise due to the size of lattice planes, and so exact solutions, like the one found for the

triangle above, are difficult. There are numerous ways of constructing ground states to the

Hamiltonian for such large systems, of which the most famous is the Resonating Valance

Bond (RVB) state. The RVB states are created by making superposition of spin dimer

singlet states, as illustrated in figure 3.3. The two spins in a pair can be separated over

great distances or be right next to each other. RVB states have in this way highly entan-

gled and fluctuating spins, even at T = 0 K. The problem with the RVB states is that

there is an almost infinite way of constructing them for every lattice, and finding the right

QSL ground state is therefore close to impossible [4].

A true QSL would have a degenerate ground state, but even systems with non-degenerate

ground states can show QSL behavior. In reference [16], Normand proposes a definition

of different types of spin liquid behaviors:

� Type 1 gapped spin liquid: The system has a non-degenerate singlet ground state,

but with a small energy gap between both the low energy singlet states, as well as

the lowest energy triplet states.

� Type 2 gapped spin liquid: The system has a continuum of low energy singlet states

with no gap to the ground state. There is still an energy gap to the triplet states.

� Gapless spin liquid: The system has a continuum of singlet, triplet and even higher

spin states, with practically zero energy gap to the groundstate.

The type 1 gapped spin liquid will at very low temperatures freeze into its ground state,

whereas the type 2 will be able to experience gapless excitations into other singlet states.

The gapless spin liquid is the most interesting case as it enables zero energy excitations,

and has in principle a degenerate ground state. All the different spin liquid behaviors have

a common feature which is that magnetic order is close to impossible, since very small

thermal energies can excite the system into a manifold of low energy states.
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3.3 Numerical solutions - solving large spin systems

It is impossible to find the exact ground state of a spin lattice of practically infinite

size by brute force diagonalizing the full corresponding Heisenberg Hamiltonian. The spin

lattice is therefore approximated by a small resembling spin lattice with periodic boundary

conditions to reduce the system size. Numerical methods are required to find the ground

state of the approximated lattice system.

Two of the most common methods of numerical calculations are Exact Diagonalization

(ED) and Quantum Monte Carlo (QMC).

QMC uses stochastic algorithms to determine the eigenstates of rather large lattices to

minimize finite system size effects. The application of QMC on frustrated spin systems

has severe restrictions [17], and it has therefore not been used on the frustrated boleite

system. QMC will not be elaborated further.

ED diagonalizes the Hamiltonian matrix to find some or all of the eigenstates of the

system. How the eigenstates of the magnetically frustrated triangle were found above is

an example of ED. The problem with ED is that the size of the Hamiltonian increases

exponentially with the number of spins. The system size therefore needs to be reduced

in order to do ED. I will in this thesis use two different types of ED. Both methods have

their advantages and disadvantages, as will become apparent in the following subsections.

3.3.1 Lanczos algorithm and RLexact

A useful algorithm to find the eigenstates of a known Hamiltonian matrix, is the Lanczos

algorithm. The description of Lanczos algorithm is based on [18]. The Lanczos algorithm

transforms a matrix Ĥ of (N×N) size into the tridiagonal matrix∗ T̂ of (M×M) size after

M iterations of the algorithm. The algorithm uses an iterative method, which generates

T̂ by constructing orthogonal Lanczos vectors vi

Ĥvi = bi+1vi+1 + aivi + bivi−1, (3.4)

where i = 1...M . bi+1vi+1, aivi, and bivi−1 are projection of Ĥvi along the two previous

orthogonal Lanczos vectors vi−1 and vi, and along a third Lanczos vector vi+1 which is

orthogonal to both vi−1 and vi.

The values of a and b can easily be calculated as shown in reference [18]. The first Lanczos

vector v0 is a random normalized vector of dimension (M × 1). For i = 0 the resulting

vector is only projected along itself and one orthogonal vector.

The tridiagonal matrix T̂ is constructed by placing a1...aM in T̂’s diagonal and b1...bM in

its off-diagonals. Diagonalizing T̂ is easily done, and it has the eigenvalues ej and eigen-

vectors sj . If M is very large, the eigenvalues ej are to a good approximation eigenvalues of

∗A matrix with only non zero elements in its main diagonal, and in the first diagonal above and below

the main diagonal.
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Ĥ. A measure of the quality of the approximation is needed in order to minimize compu-

tational time. From the Lanczos vectors, a matrix Q = [v0,v1...vM ] can be constructed,

and from Q, the Ritz-vector is define by

rj = Qsj . (3.5)

The last element of rj is called the Ritz-measure and is a good measure of the quality of

the approximation. ej and rj are to a good approximation eigenvalues and eigenvectors

of Ĥ if the last element in rj is sufficiently small.

As M is increased more and more ej will converge towards the true eigenvalues of Ĥ. The

eigenvalues with the largest absolute size will converge the fastest, and hence have a larger

chance of being found with the Lanczos algorithm.

The major advantage of Lanczos algorithm is that the eigenvalues with the largest ab-

solute size is found very quickly. M does not need to be very large. At the same time

the Lanczos algorihm can be used with a sparse Ĥ matrix, which reduces the required

computer memory. Unfortunately a standard Lanczos algorithm can not find degenerate

states, and it is not feasible to try to find eigenvalues with a small magnitude. The pro-

gram RLexact [19] was used to ED the Boleite system with the help of Lanczos algorithm.

RLexact usually has a Ritz-measure of around 10−9, and is capable of finding the ground

state of a 2D triangular Heisenberg S = 1/2 spin lattice as large as 6× 6 spins [20].

RLexact can also be used to find the neutron cross section of an eigenstate, but this will

not be elaborated further in this thesis.

3.3.2 Complete diagonalization

The second ED method is the Complete Diagonalization (CD), which could also be known

as brute-force diagonalization. With CD all eigenstates are found. The major advantage of

this is that degenerate states are identified, and thermodynamic properties of bulk system

can be calculated, since it requires all eigenstates, as shown in chapter 4. Closely related

to the advantages of CD are the disadvantages. Since all eigenstates are found, the full

Hamiltonian needs to be diagonalized, and so sparse matrix techniques are not necessarily

feasible. This reduces the size of the system which can be solved compared to the Lanczos

algorithm, since the amount of memory required to find a Hamiltonian to a system with

N spins scales with (2N )2.

The CD used in this thesis is primarily done with the eig function in MATLAB [21].

RLexact can also do CD. The CD implemented in RLexact use the complex householder

algorithm, explained in reference [22], to transform a (N ×N) matrix into its tridiagonal

form of similar size. The tridiagonal matrix can now, as done for the Lanzcos algorithm,

be diagonalized. With CD it is only possible to solve system of around 18 spins with

RLexact.



CHAPTER 4

An introduction to bulk measurements

Bulk measurement techniques are essential in investigating the magnetic properties of a

solid. The techniques do not require a large sample mass, and magnetic ordering is often

easily identified. In this chapter I will introduce some basic theory behind the magnetic

susceptibility, the magnetization as a function of field, and the heat capacity of a magnetic

solid. The chapter will also include a brief introduction to the experimental instruments

that were used.

4.1 The magnetisation of a solid

The magnitude of the total magnetization M of a solid is given by M = gµBN〈m〉, where

〈m〉 is the average magnetic moment along the ẑ-direction. If an external magnetic field

with a magnitude H is applied along the ẑ-direction the total magnetization can be written

as [24]

M = gµBN〈m〉 =
gµBN

Z

N∑
i=1

mi exp

(
−Ei −migµBµ0H

kBT

)
. (4.1)

N is the total number of states, mi and Ei are the magnetization and the energy of the

state i respectively, kBT is the thermal energy at temperature T , and Z is the partition

function which is given by

Z =
N∑
i=1

exp

(
−Ei −migµBµ0H

kBT

)
. (4.2)

4.2 The susceptibility from a solid

Any magnetic system with exchange interaction can be seen as free spins above a certain

critical temperature, where the thermal energy is large enough to excite the system into all

its excited states. Below this critical temperature, the system will experience a symmetry

break and order into its low-energy states. For a ferromagnet the critical temperature

is called the Curie temperature TC , and for an antiferromagnet it is know as the Néel

temperature TN . These critical temperatures can be identified as kinks in the inverse

susceptibility.

A completely paramagnetic system will not have a critical temperature, as the spins behave

freely all the way to T = 0 K. The result is that the inverse susceptibility of a paramagnet

19
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will follow a straight line, with 1/χ → 0 for T → 0 K. Below the Néel temperature,

an antiferromagnetic system can either have an increasing or decreasing susceptibility

depending on whether the system’s spins freeze into a degenerate or non-degenerate ground

state. If an antiferromagnet orders into a single frozen ground state χ → 0 for T → 0

K, when the external field is applied parallel to the external field. TN is in this case the

critical temperature for ordering. If the ground state is degenerate, like the magnetic

triangle described in chapter 3, the system will behave like a paramagnet below the Néel

temperature, and so it will have 1/χ→ 0 for T → 0 K.

The exchange interaction parameter of a magnetic system can classically be calculated

directly from the critical temperature. For an antiferromagnet (with S = 1/2 and L = 0)

the result is [14] ∑
i

Ji = 4kBTN, (4.3)

where
∑
i
Ji is the sum across the exchange constants per magnetic ion. For a magnetic

triangle with exchange coupling J between the spins, equation 4.3 reduces to J = 2kBTN.

4.2.1 Curie Weiss Law

A model of the inverse susceptibility at high temperature can be found from a classical

mean field approximation. In this approximation, the interaction with neighboring ions

is seen as a molecular field Bmf. In the limit where kBT � µB(B + Bmf), which is

somewhere above the critical temperature, the susceptibility can be approximated to have

a paramagnetic behavior following the Curie Weiss Law∗

χ =
C

T −ΘCW
. (4.4)

The Curie Constant, when expressed in SI-unit, is given by

C =
Nµ2Bµ0NA

kB
, (4.5)

for S = 1/2 and L = 0, where N is the number of magnetic moments per unit volume and

NA is Avogadro’s number. ΘCW is the Curie Weiss temperature. For an antiferromagnet

ΘCW < 0, for a ferromagnet ΘCW > 0, and for a paramagnet ΘCW = 0 [2]. According to

the Curie-Weiss Law, the inverse susceptibility will be linear above a certain temperature

1

χ
=
T −ΘCW

C
. (4.6)

If the Curie Weiss model is fitted to the susceptibility curve at temperatures T larger

than the ordering temperature of the system, a ferromagnet will have TC = ΘCW, and

∗The approximation is described in more detail in Blundell [2].
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an antiferromagnet −TN = ΘCW. If the model is fitted to the susceptibility curve at

temperatures too close to the ordering temperature, the mean field approximation breaks

down and |ΘCW| begins to diverge from the true critical temperatures.

4.2.2 Calculating the susceptibility

The susceptibility of a given quantum system can be solved numerically using [23]

χ =

(
∂M

∂H

)
H=0

. (4.7)

In the limit where migµBµ0H � Ei, the Zeeman term in equation (4.1) can be neglected.
The susceptibility is found by combining equation (4.7) and (4.1)

χ =
g2µ2

Bµ0N

kBT

 1

Z

N∑
i=1

m2
i exp

(
− Ei
kBT

)
−

(
1

Z

N∑
i=1

mi exp

(
− Ei
kBT

))2


=
g2µ2

BNµ0

kBT

(
〈m2〉 − 〈m〉2

)
. (4.8)

In an antiferromagnet 〈m〉 = 0 when migµBµ0H � Ei, so for an antiferromagnetic system

equation (4.8) reduces to

χ =
g2µ2

BNµ0

kBTZ

(
N∑
i=1

m2
i exp

(
− Ei
kBT

))
. (4.9)

4.3 The heat capacity of a solid

The heat capacity of an insulating, magnetic sample can be separated into two contributions

CV = Clat + CMag, (4.10)

where Clat is the contribution from thermal lattice vibrations, which in quantum mechanics are

quantized and called phonons, and CMag is the magnetic contribution.

The Clat can be described by the Debye model. The Debye model will not be described in detail,

but its basic assumptions are that the phonons can be viewed as standing waves in a box, the heat

capacity is measured at constant volume V , and that the speed of sound v is constant in the solid.

Using this, the Debye model predicts that CLat for a solid consisting of N atoms is given by [14]

CLat = 9NkB

(
T

θD

)3
xD∫
0

x4ex

(ex − 1)
2 , (4.11)

where xD = θD
T , with θD = ~v

kB

(
6π2N
V

)1/3

being the Debye temperature and x = ~ω
kBT

. ω is given

by the dispersion relation ω = vK, where K is the length of the phonon wave vector.



22 CHAPTER 4. AN INTRODUCTION TO BULK MEASUREMENTS

In the limit T � θD, equation (4.11) reduces to [14]

CLat ≈ 218NkB

(
T

θD

)3

, (4.12)

which is called the Debye T 3 approximation.

At high temperature the lattice heat capacity will normally be the by far largest contribution to

the total heat capacity. As T → 0, CLat → 0 according to equation (4.12), and here CMag begins

to play an important part.

From statistical quantum mechanics [23] it is known that CMag =
(
∂U
∂T

)
H,V

, where the total energy

U can be rewritten in terms of the average energy of a magnetic system 〈E〉 and the number of

individual, isolated magnetic systems per unit cell N . This can be used to numerically calculate

the magnetic heat capacity with

CMag = N

(
∂〈E〉
∂T

)
H,V

, (4.13)

where the expectation value of the energy is given by

〈E〉 =
1

Z

∑
i

Ei exp

(
−Ei
kBT

)
. (4.14)

By combining equation (4.13) and (4.14) the result is

CMag =
N

kBT 2

−1

Z2
·

(∑
i

Ei exp

(
−Ei
kBT

))2

+
1

Z

∑
i

E2
i exp

(
Ei
kBT

)
=

N

kBT 2

[
〈E2〉 − 〈E〉2

]
. (4.15)

4.4 Bulk measurement techniques

4.4.1 Measuring the magnetisation and susceptibility

A series of instruments located at a range of facilities were used to measure the susceptibility and

magnetization. Two of the instruments are located at Paul Scherrer Institute (PSI), two at École

polytechnique fédérale de Lausanne (EPFL), and one at Aarhus University (AU). The instruments

at AU and the first of the instruments at PSI are Physical Property Measurement System (PPMS)

from Quantum Design. The second instrument at PSI and one of the EPFL instruments are Mag-

netic Property Measurement Systems (MPMS), also from Quantum Design. The last instrument

at EPFL is an AC-susceptometer.

Both PPMS and MPMS instruments are using the Vibrating Sample Magnetometer (VSM) tech-

nique. In the VSM technique, the sample is mechanically oscillated around the center of two

superconducting pickup coils, and an external field is applied in the direction of the of the samples

motion as illustrated in figure 4.1. The principle is that a moving, magnetic sample, which is

slightly magnetized due to an applied external magnetic field, will generate an AC electromotive

force in the pickup coils placed around the sample. Two counter-wound superconducting compen-

sation coils are placed far from the pickup coils to compensate for external fields with a linear
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Figure 4.1: Illustration of the VSM technique as used in the PPMS instrument. A

sample is placed between two pickup coils and vibrated along an external magnetic

field. Two counter wound outer compensation coils minimize the impact from linear

field gradients and external magnetic fields. The AC electromotive force generated in

the coils are in the PPMS registered with a DSP [25].

gradient or non uniform external fields [25]. Combined, the pick-up coils and compensation coils

are called the detection coils.

In the PPMS, the induced AC voltage in the detection coils is directly recorded by a Digital Sig-

nal Processor (DSP) [25], whereas the MPMS use the more accurate Superconducting QUantum

Interference Device (SQUID) measurement technique [26]. The SQUID measurement technique

consists of a complex electronic circuit which includes two so called Josephson junctions, combined

with a DSP. Josephson junctions use Josephson tunneling between two superconducting materi-

als separated by a non superconducting materials †. The effect of the SQUID circuit is that its

feedback nulls the current in the detection coils while the feedback current can be recorded by the

DSP for further analyses. In this way, the noise in the detection coils can be reduced by a factor

of 10. The recorded voltage can then be translated into the systems total magnetization M [26].

By using the linear approximation, the susceptibility can be calculated from χ = M
H .

An AC-susceptometer, like the one used at EPFL, uses a fixed sample in a changing field instead of

changing the sample position in a constant DC-field. The changing field is created by superimpos-

ing an AC field on top of the DC-field. With a changing field the susceptibility is no longer linearly

dependent on the absolute value of M , but instead χ = dM
dH . The advantage of the technique is

that small magnetic shifts can be detected even at large absolute magnetization [27].

4.4.2 Measuring the heat capacity.

The heat capacity of our Boleite samples have been measured by a PPMS in AU. When the PPMS

is used for heat capacity measurements, the samples are mounted on a sample stage which is

suspended by 8 thin wires inside a heat puck. The heat puck is a metal container used for heat

reference and the electronic connections to the PPMS instrument. The 8 wires between the heat

puck and the sample stage work as leads for the embedded heater and sample stage thermometer.

†More explanation on the effects of two Josephson junction can be found in [28].
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The 8 wires also enable thermal conduction between sample stage and the heat puck. The heat

puck’s temperature is monitored with a thermometer as well.

A measurement of the heat capacity is done in 3 steps. First, the sample temperature is stabilized

to the puck temperature. Secondly, the power to the sample stage heater is turned on for a short

period while the sample stage and puck temperatures are measured. After turning off the power to

the sample stage, the sample and sample stage are allowed to cool down to the puck temperature

while measuring the temperature of both. The two temperature measurements and the heating

power are the raw data of the instrument.

Afterwards, instrument software uses two different models to estimate the heat capacity from the

raw data. One model assumes a bad thermal connection between the sample and the sample stage,

and the other model assumes a perfect connection between the sample and the sample stage. The

software then determines the heat capacity from the model which was best able to account for the

raw data [29].



CHAPTER 5

Introduction to Neutron Scattering

The neutron was discovered by James Chadwick in 1932. Already in the middle of the 1930’s, the

first neutron scattering experiments were conducted, and with the introduction of nuclear reactors

after World War II, neutron scattering techniques evolved dramatically [30]. Neutron scattering is

today a key technique in investigating magnetic samples where it can be used as a probe to measure

both the magnetic structures and dynamics inside materials. In this chapter, I will introduce the

basic theory of neutron scattering before moving on to introducing the neutron instruments that

were used in the boleite experiments.

5.1 Properties of the neutron

The neutron is a charge neutral, spin 1/2 particle consisting of two spin-down quarks and one

spin-up quark. The neutron is only stable inside the nucleus, and when it is in its free state it

will decay with a decay time of 886 s [31]. Luckily, the decay time of the neutron is of minor

importance to neutron scattering experiments which take a fraction of a second.

The neutron can interact with the lattice by either being absorbed or scattered. The de Broglie

wavelength∗ λ of cold and thermal neutron is of the length scale of inter atomic distances, which

results in wave interference effects when the neutrons interact with the crystal lattices. The

neutron’s zero charge ensures that the neutron will not feel any Coulomb repulsion from the

electron clouds of the atoms, and so the neutron is scattered by the atom’s nuclei due to the

strong nuclear force. The neutron’s spin gives it a magnetic moment, and it will therefore also

interact with magnetic structures inside a material. This makes the neutron very attractive as a

supplement probe to photons (used in light and x-ray scattering). Photons do not have a net spin

and are interacting with the electron clouds of the atoms, making photon scattering increase with

the atomic number [32]. The intensity of scattering is usually given in terms of the scattering cross

section, which will be described in the following section. The difference in the scattering cross

section of neutrons and x-rays through the periodic table is illustrated in figure 5.1.

The mass mn, speed v, wave vector k, magnetic moment µn, and energy E of the neutron are

given by [32]

mn = 1.674927 · 10−27 kg, (5.1)

v =
λh

mn
, (5.2)

E =
mnv

2

2
, (5.3)

k =
2π

λ
, (5.4)

µn = −1.04188 · 10−3µB . (5.5)

∗Wavelength of matter waves.

25
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5.2 Basic scattering

The following section is based on reference [32] and [33], with a few additional references mentioned

in the text.

5.2.1 The Scattering Cross Section

A key concept of neutron scattering is

the neutron flux ≡ Ψ ≡ IA
A
, (5.6)

where IA is the rate of neutrons through the area A. The neutron scattering cross section of a

material defines the ability of the material to scatter neutrons. The number of neutrons scattered

per second Is will naturally dependent on the flux upon the material, and therefore it is defined

that

the neutron scattering cross section ≡ σ ≡ Is
Ψ
. (5.7)

A single nucleus’ cross section can be seen as the area of the nucleus. A similar cross section is

defined for the absorption of the neutrons. The Born approximation can be used for thin samples.

In the Born approximation, it is assumed that there is zero attenuation through the sample; hence,

the scattering cross section should be proportional to the sample volume.

The detectors placed around a sample only cover a limited solid angle dΩ. The rate of neutrons

being scattered into that solid angle from the sample is given by dIs, and per definition

the differential scattering cross section ≡ dσ

dΩ
≡ 1

Ψ

dIs
dΩ

. (5.8)

The total neutron scattering cross section can be found by integrating the differential scattering

cross section across all scattering angles

σ =
1

Ψ

∫
dσ

dΩ
dΩ. (5.9)

Neutron scattering can involve change in the neutrons’ kinetic energy. The neutron will before

scattering of a sample have an incident energy Ei, and a final energy Ef after the scattering

process. The neutron can both scatter without changing its kinetic energy, Ei = Ef , known as

elastic neutron scattering, or scatter with a loss or gain of kinetic energy, ∆E = Ef −Ei, which is

known as inelastic scattering. Since there is also an energy change involved in the scattering, it is

useful to define

the partial differential scattering cross section ≡ d2σ

dΩdE
≡ 1

Ψ

dIs,dE
dΩ

, (5.10)

where dIs,dE is defined as the scattering rate of neutrons with energy of [∆E,∆E + dE] into solid

angle dΩ.
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Summer School 2007 6

X-ray and neutron cross sections
As compared with x-ray scattering cross sections, which vary as 
Z2, neutron scattering cross sections show little systematic 
variation with atomic number.

The x-ray scale has been 
reduced by a factor of 
≈1.5 as compared with 
the neutron scale.

N.B. In this talk we only consider the interaction of neutrons with 
nuclei. We ignore the magnetic interaction of neutrons with 
unpaired electrons.

Figure 5.1: X-ray and neutron scattering cross section for specific elements. The

X-ray scattering cross section depends on the amount of electrons in the atoms and

thereby the atomic number, whereas the neutron scattering cross section varies ran-

domly with atomic number and isotope. The figure is borrowed from John R.D.

Copley’s presentation [34].

5.2.2 The neutron as a wave

The direction of the scattered neutron beam has its roots in constructive interference of the neu-

tron’s wave function, due to the atomic lattice. Figure 5.2 illustrates how the neutron wave will

make constructive interference with itself when scattering off two nuclei. A materials composition

can be deduced from the scattering pattern, but a little math is needed in order to describe how.

The incoming neutrons can be described by a plane wave

|ψi〉 = |ki〉|σi〉 =
1√
Y
eiki · reiωt|σi〉, (5.11)

where Y = L3 is a normalization volume assuming that |ψi〉 is enclosed in a box with sides L, and

|σi〉 is the initial spin state of the neutron. The time dependent term of equation (5.11) is only

important for inelastic scattering, and it will therefore be omitted in the following.

The incoming flux, defined in equation (5.6), can be written in terms of the incoming wave function

as

Ψi = |ψi|v =
1

Y

~ki
mn

. (5.12)

When the neutron interacts with the sample, it will be scattered. The wave function of the neutron

after scattering will be expressed by

|ψf 〉 = |kf 〉|σf 〉 =
1√
Y
eikf · r|σf 〉. (5.13)

The summed rate of change between the neutron incoming state, |ψi〉, and the continuum of

possible final states |ψf 〉, is described by Fermi’s Golden Rule∑
f

Wi→f =
2π

~
dn

dEf
|〈ψi|V̂ |ψf 〉|2, (5.14)

where dn
dEf

is the density of final states, and V̂ is the operator responsible for the description of

the interaction. In the case of neutron nuclei interaction, V̂ is called the Fermi pseudopotential.
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The density of final states into the direction dΩ can be written dn
dEf

∣∣∣
dΩ

=
Y kfmn
~2(2π)3 dΩ, and therefore

∑
f

Wi→f,dΩ =
Y kfmn

~3(2π)2
dΩ|〈ψi|V̂ |ψf 〉|2. (5.15)

∑
f Wi→f,dΩ is the number of neutrons scattering in the direction of dΩ, and so it can be used to

calculate the differential scattering cross section by dσ
dΩ = 1

Ψ

∑
f Wi→f,dΩ

dΩ . The energy dependence

of the neutrons can also be included, and the partial differential scattering cross section is then

given by

d2σ

dΩdE

∣∣∣∣
φi→φf

=
kf
ki

(
Y mn

~2(2π)

)2

|〈ψiφi|V̂ |ψfφf 〉|2δ(E′i − E′f + ∆E), (5.16)

where φi and φf denotes the quantum state of the scattering sample, with energy E′i and E′f
respectively. ∆E is the change in neutron energy. Equation (5.16) explicitly introduced energy

conservation with the delta function.

The Fermi pseudopotential V̂ depends on which atoms that are in the scattering system, and how

they are distributed. For a single nucleus, labeled j, the Fermi pseudopotential will be

V̂j =
2π~2

mn
bjδ(r− rj). (5.17)

bj is ion-dependent, and it is usually called the scattering length due to its unit of length. Assuming

that the interaction between nuclei and neutron does not affect the spin state of the neutron

〈σf |σi〉 = 1, one can write

〈ψf |V̂j |ψi〉 =
2π~2

Y mn
bje

iq · rj , (5.18)

where q is called the scattering vector given by

q = ki − kf . (5.19)

Equation (5.18) could be extended to two nuclei by writing the Fermi pseudopotential as V̂ =

V̂j + V̂j′ , and thereby get

〈ψf |V̂ |ψi〉 =
2π~2

Y mn
(bje

iq · rj + bj′e
iq · rj′ ). (5.20)

It is clear that expanding the system to more atoms would result in the Fermi pseudopotential

being the sum across all the atoms’ scattering lengths. Before moving on to look at the case of a the

scattering from an entire single crystal, I will first introduce the concept of incoherent scattering.

Equation (5.16) can be separated into two terms

d2σ

dΩdE
=

d2σ

dΩdE, el

∣∣∣∣
coh

+
d2σ

dΩdE

∣∣∣∣
inc

. (5.21)

The label coh and inc stand for coherent and incoherent respectively. Coherent and incoherent

scattering have their roots in variation of neutron scattering length of each ion. Even though the

ions can be set to have an average scattering length 〈bj〉, there are local deviations making the
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Figure 5.2: A plane neutron wave (vertical red lines) scattering of two nuclei (yellow

discs) will create two spherical waves (purple circles), which will have constructive

interference along the green arrows.

scattering length different between every ion. The variation can both be dynamic or static and

can either be due to variations in the nuclear isotopes or the nuclear spin. The variation can

be explained very simply by assuming that the sample is large enough to represent an ensemble

average, and that the observation time is much longer than the nuclear fluctuation. The deviation

can be represented by the stochastic variable δbj , with the ensemble average 〈δbj〉 = 0, which

makes the total scattering length per ion

bj = 〈bj〉+ δbj . (5.22)

Assuming that the deviation is independent between sites 〈δbjδbj′〉 = 0. The implication is that

the coherent partial differential scattering cross section is partly dependent on the different nuclei

position at the same time, which gives rise to interference effects. The incoherent partial differential

scattering cross section does not give rise to any interference, and so it is independent of q.

The total incoherent scattering cross section, σinc from a single nuclei can be looked up in tables

like [35], where the listed σinc are originally found from thermal scattering experiments. The total

incoherent scattering cross section σinc,tot, from a system of n different nuclei in the unit cell, is

simply the sum of the individual nuclei’s incoherent scattering cross sections

σinc,tot =

n∑
i

σinc,i. (5.23)

5.3 The nuclear neutron scattering cross section

In this section, equation (5.16) will be extended to account for the scattering from a single crystal.

5.3.1 Nuclear scattering cross section of a single crystal

The coherent elastic nuclear differential neutron scattering cross section from a crystal will be the

summed scattering from all atoms’ nuclei in the crystal. The way to calculate this is to extend
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equation (5.20) to a sum across all the crystal’s nuclear scattering lengths. Luckily, the periodicity

of a crystal can be used to minimize the calculation, and the coherent elastic nuclear differential

neutron scattering cross section can be reduced to two factors [33]:

� The nuclear structure factor FN (q), which accounts for the scattering from a single unit

cell.

FN (q) =
∑
j

bje
−2Wjeiq ·∆j , (5.24)

where ∆j is the basis vector, which describes the j’th atom’s position in the unit cell.

The Debye-Waller factor e−2Wj is included to take the thermal motion of the scattering

nucleus into account. As hinted in the j index, the Debye-Waller factor is site dependent.

Fortunately, the Debye-Waller factor can be approximated to be the same for all sites [32]

2W ≈ 1

3
q2

· 〈u2〉, (5.25)

where q is the magnitude of q and 〈u2〉 is the mean square displacement of the scattering

nuclei. For the cubic lattice 〈u2〉 increases with temperature. The Debye-Waller factor is

therefore maximum one and decreases as q2 and temperature are increased.

� A factor accounting for the combined scattering of N unit cells, given by∣∣∣∣∣∑
u

eiq · ru

∣∣∣∣∣
2

= N
(2π)3

V0
δ(q− τ ), (5.26)

where V0 is the volume of one unit cell, and τ is the reciprocal lattice vector. For a cubic

lattice

τ = h
2π

a
x̂ + k

2π

a
ŷ + l

2π

a
ẑ, (5.27)

where a is the length the of cubic unit cell, and (h, k, l) are the Miller indices. The magnitude

of the reciprocal lattice vector can be written

τ = n
2π

d
, (5.28)

where d is the spacing between lattice planes and n is an integer.

The nuclear coherent differential scattering cross section is then given by a combination of the two

factors

dσ

dΩ

∣∣∣∣
coh el

= N
(2π)3

V0
|FN (q)|2

∑
q

δ(q− τ ). (5.29)

5.3.2 Bragg’s law and the Laue Condition

The delta function in equation (5.29) shows that the elastic coherent nuclear scattering only hap-

pens when

τ = q, (5.30)
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Figure 5.3: Illustration of the scattering triangle, which shows how q is defined as

the difference between ki and kf .

which is called the Laue condition. The implication of the Laue condition is that the elastic coherent

nuclear scattering will show up as peaks in the reciprocal space at integer values of (h, k, l).

Including the initial and final wave vector of the neutron τ = q ≡ ki−kf , where the angle between

ki and kf is 2θ, as illustrated in figure 5.3. For elastic scattering, the magnitude of the scattering

vectors are constant k = ki = kf = 2π
λ , and the Laue condition can be written into the magnitude

form τ = 2k sin(θ). Combining this with equation (5.28), Bragg’s law is identified

nλ = 2d sin(θ), (5.31)

where n is an integer. Bragg’s law shows that neutrons with a series of wavelengths are scattered

given by λn = 1
n2d sin(θ). Bragg’s law and the Laue condition show the same thing in two different

spaces, namely that coherent nuclear scattering only happens when the distance between the lattice

planes allow for constructive interference of scattering waves. The Laue condition describes the

scattering condition in reciprocal space, and Bragg’s law describes it in real space.

5.3.3 Bragg Peaks

The elastic scattering from a single crystal in a monochromatic† beam will not result in a delta

function when measuring at q = τ as equation (5.29) suggests. Instead a peak with non zero width

is measured, called a Bragg peak. The broadening arises from two factors: Mosaic spread of the

crystal and instrumental resolution [32].

Mosaic spread arises from the fact that a single crystal is never a perfect single crystal but can

rather be viewed as a number of small crystallites distributed around a mean direction. The

FWHM of this distribution is called the mosaic of the crystal.

Instrumental resolution is a phenomenon with many causes; the incoming neutron beam has a

natural divergence, the beam will not be completely monochromatic, and so on. All combined it

gives a broadening of the Bragg peak.

5.4 Inelastic neutron scattering cross section

Equation (5.29) describes elastic scattering from neutrons interacting with the stationary lattice.

Scattering neutrons can also absorb or deposit energy in the lattice in an inelastic processes. The

†A single wavelength.
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next two subsections will describe what the inelastic cross section looks like when the neutron is

interacting with magnetism or phonons in a crystal.

5.4.1 Phonon cross section

There are 3N different phonon modes for a lattice with N atoms in the unit cell. The phonons are

separated into two groups [14]:

� 3 modes with zero energy at the Brillouin zone center q′ = 0, and usually maximum energy

at the zone boundary q′ = π/a. Here a is the unit cell length (for simple cubic), and q′ is

the phonon wave vector magnitude. These phonons are called acoustic phonons, and their

dispersion relation follows

~ωs ∝
∣∣∣∣sin(q′ ·a

2

)∣∣∣∣ (5.32)

� The other 3(N − 1) modes are called optical phonons. Their energy are always larger than

zero, and they typical have maximum energy around the Brillouin zone center.

Since phonons are bosons, the occupation number ns of a phonon mode with energy ~ωs is given

by Bose statistics [24]

ns =
1

e
~ωs
kBT − 1

. (5.33)

When the neutron scatters off the crystal planes, it can create or absorb a phonon by depositing

energy in or gaining energy from the lattice. The coherent phonon partial differential scattering

cross section is for any lattice is given by [32](
d2σ

dΩdE

)
=
kf
ki

(2π)
3

2V0

∑
s,d,τ

e−2W

ωs

∣∣∣∣ bdMd
eiq ·d(q · ed,s)

∣∣∣∣2
× [〈ns + 1〉δ(Ei − Ef − ωs)δ(q− q′ − τ ) + 〈ns〉δ(Ei − Ef + ωs)δ(q + q′ − τ )] .

(5.34)

The sum in equation (5.34) is taken across all phonon modes, indexed s, all lattice vectors τ , and

the position of all atoms d in the unit cell. The phonon mode sum is a double sum running across

phonon wave vector, q′ and polarization index of the phonon mode p. ~ωs is the energy of the s

phonon mode with wave vector q′. Md and bd are the mass and scattering length respectively of

the atom at site d. ed,s is the polarization vector of the phonon for the s phonon mode.

The two terms 〈ns + 1〉δ(ω − ωs)δ(q − q′ − τ ) and 〈ns〉δ(ω + ωs)δ(q + q′ − τ ) represent phonon

absorption and emission through the scattering process. 〈ns〉 and 〈ns + 1〉 are the population

factors. If the temperature is approaching zero, only the lattice ground state is populated and

thereby the neutrons can not gain energy from absorbing a phonon. The neutron would still be

able to create a phonon in the scattering process. This result is also reflected by 〈ns〉 → 0 and

〈ns + 1〉 → 1 for T → 0, which shows that only phonon creation, and not absorption, that can

happen at very low temperatures.
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5.4.2 Magnetic cross section

Neutrons interact with magnetic fields inside a sample since they are spin-1/2 particles. Elastic

neutron scattering from magnetic long range ordered system resembles the nuclear coherent scatter-

ing, with Bragg peaks forming in specific parts of the reciprocal space. The magnetic peak position

will be governed by a delta function like δ(q−τ −Q), where Q is the magnetic ordering vector. In

general, antiferromagnetically ordered systems will form a bipartite lattice, as shown in figure 2.2,

and so the ordering vector is positioned on the Brillouin zone boundary (Q = nπa x̂ +mπ
a ŷ + pπa ẑ,

where n,m, p are integers). The result is that the scattering from an antiferromagnetically ordered

system will show up as peaks at half integer miller indices in the reciprocal space. A ferromagnet-

ically ordered system’s unit cell resembles the structural, and so Q is positioned in the Brillouin

zone center (Q = 0). Therefore, ferromagnetic Bragg peaks are typically at the same positions as

the structural Bragg peaks.

In systems where only short range order is possible, magnetic Bragg peaks will not form. Instead

periodic oscillating scattering in reciprocal space will show up, and it will have a periodicity of the

reciprocal length scale of the ordering system. In the following, the general (elastic and inelastic)

scattering rules for magnetic systems will be shown.

The inelastic neutron scattering processes will change the magnetic quantum system from an ini-

tial state, |λi〉 with energy Ei into a final state |λf 〉 with energy Ef . The total magnetic partial

differential cross section must be dependent on the summed probability of scattering between all

quantum states with a given neutron energy transfer ~ω.

The total magnetic neutron scattering cross section can be written [33]

d2σ

dΩdE

∣∣∣∣
magn.

=e−2W (γr0)2 kf
ki

[g
2
Fm(q)

]2
S(q, ω). (5.35)

The unitless constant γ = 1.913 comes from the relation between the nuclear magneton µN =

µB
me
mp

, and the magnetic moment of the neutron µn. me
mp

is the ratio between the mass of the

electron and proton. r0 = e2µ0/(4πme) is the classical radius of the electron.

The magnetic form factor Fm(q) describes the magnetic scattering from a single ion. The magnetic

form factor will be the summed scattering from the unpaired electron distribution around the

nucleus. The magnetic form factor is given as the Fourier transform of the normalized spin density

s(r)

Fm(q) =

∫
eiq · rs(r)d3r, (5.36)

where r is the displacement of the unpaired electron from the center of the atom. The magnetic

form factor is different for every magnetic ion but always approach 1 at small q and decays smoothly

to zero towards large q.

The magnetic structure factor is given by

S(q, ω) =
∑
α,β

(
δα,β −

qαqβ
q2

)
Sαβ(q, ω), (5.37)

where α, β = x, y, z. Sαβ(q, ω) is sometimes called the dynamic correlation function and is given

by [36]

Sαβ(q, ω) =
∑
λi,λf

pλi〈λi|V
†
β |λf 〉〈λf |Vα|λi〉δ(~ω + Ei − Ef ), (5.38)
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where λi and λf are the magnetic quantum states of the sample, with energy Ei and Ef and pλi
is the probability of the system is in λi state. Vα and Vβ are the Fourier transform of the spin

operator sαj in the α-direction.

Vα =
∑
j

e−iq · rj Ŝ
α

j , (5.39)

where rj represents the position of the j ion.

It can be shown that neutrons only sense the part of the magnetic moment that is perpendicular

to the neutron scattering vector q [33]. The factor
(
δα,β − qαqβ

q2

)
includes this in the magnetic

cross section.

Usually, only the Sxx(q, ω), Syy(q, ω), and Szz(q, ω) terms contribute to equation (5.35), the rest

of the terms will sum to zero [32], and therefore I can write that

S(q, ω) =
∑
α

(
1− q2

α

q2

)
Sαα(q, ω). (5.40)

Due to the custom that the applied field is usually applied along the z-direction, the term Szz(q, ω)

is called the longitudinal correlation function, whereas Sxx(q, ω) and Syy(q, ω) are called the

transverse correlation functions. There is no preferred direction for Heisenberg spin model in zero

field, so [36]

Sxx(q, ω) = Syy(q, ω) = Szz(q, ω). (5.41)

When a field is applied, the spin symmetry breaks down, and equation (5.41) can no longer be

assumed to be valid. Instead, the transverse correlation functions have to calculated individually

by using [36]

Sxx(q, ω) = Syy(q, ω) =
1

4

[
S+−(q, ω) + S−+(q, ω)

]
, (5.42)

where

S+−(q, ω) =
∑
λi,λf

pλi |〈λf ,mi − 1|V−|λi,mi〉|2δ(~ω + Ei − Ef )

S−+(q, ω) =
∑
λi,λf

pλi |〈λf ,mi + 1|V+|λi,mi〉|2δ(~ω + Ei − Ef ), (5.43)

where 〈λf ,mi±1| indicates that the sum across λf only needs to be taken for λf in the magnetiza-

tion subspace mi ± 1, where mi is the magnetization subspace of λi. This is due to the properties

of the raising and lowering spin operators in V− and V+

V+ =
∑
j

e−iq · rj Ŝ
+

j

V− =
∑
j

e−iq · rj Ŝ
−
j , (5.44)

which when applied to λi creates a state in the mi ± 1 subspace.

The total magnetic cross section σmag can be estimated from integrating the magnetic partial
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differential scattering cross section from equation (5.35) with respect to energy and solid angle.

By assuming elastic scattering ki = kf , that T = 0 K and thereby e−2W = 1, and Fm(q) = 1, the

elastic magnetic cross section can be assumed to be

σmag ≈ 4π
(
γr0

g

2

)2
∫ ∑

q

∑
α,β

(
δα,β −

qαqβ
q2

)
Sαβ(q, ω)dω. (5.45)

According to equation (5.41), and since all elements with α 6= β will sum to zero, the following is

valid when the cross section is measured in zero applied field∑
α,β

(
δα,β −

qαqβ
q2

)
Sαβ(q, ω) = (3− (

q2
x

q2
+
q2
y

q2
+
q2
z

q2
))Szz(q, ω) = 2Szz(q, ω). (5.46)

With my definition of the dynamical structure factor, given in equation (5.38), the sum rule reveals

[37] ∫ ∑
q

∑
α,β

Sαβ(q, ω)dω = 3

∫ ∑
q

∑
α,β

Szz(q, ω)dω = NS(S + 1), (5.47)

where N is the number of ions in the magnetic unit cell. An energy and q integrated magnetic

cross section can be deduced from combining equation (5.45), (5.46), and (5.47). For a S = 1/2

system, with g ≈ 2, the total magnetic cross section is

σmag ≈ 2π(γr0)2N. (5.48)

5.5 Polarization analysis

Polarization analysis is used to separate magnetic, nuclear coherent, and nuclear spin incoherent

scattering. This section will introduce the concept of polarization analysis.

A polarized neutron beam is a beam where all (or almost all) neutron spins are pointing along

the same direction, commonly defining to be along the z-axis [32]. Neutron spins can then either

be parallel to the polarization direction, called spin up and denoted ↑, or anti parallel, called spin

down and denoted ↓. Different scattering process will affect the spin of the neutron differently.

The neutron spin direction before and after the samples therefore needs to be measured. This

leaves us with 4 kind of differential neutron spin state cross sections to measure [32]:(
dσ↑→↑
dΩ

) (
dσ↑→↓
dΩ

) (
dσ↓→↑
dΩ

) (
dσ↓→↓
dΩ

)
. (5.49)

↑→↑ denotes that the polarization direction is ↑ before and after the scattering. The spin direction

is conserved in ↑→↑ and ↓→↓, and so this type of scattering is called Non Spin Flip (NSF)

scattering. Opposite this is the Spin Flip (SF) scattering, where the spin direction is change, as

in ↑→↓ and ↓→↑. The total differential scattering cross section can therefore be written(
dσ

dΩ

)
=

(
dσNSF

dΩ

)
+

(
dσSF

dΩ

)
. (5.50)

The polarization vector P is a measure of how many spin up and spin down neutrons are detected,

and along the z-direction P = 2f − 1, where f is the fraction of spin up and down. So all neutrons
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have spins pointing down if P = −1, and all neutron have spins pointing up if P = 1.

To separate the magnetic, nuclear spin incoherent, and nuclear coherent scattering a XYZ polar-

ization analysis can be done. In XYZ polarization analysis, the polarization alternates between

the three orthogonal directions x̂, ŷ, and ẑ, while still measuring all 4 different cross sections,

from equation (5.49), for each direction. I will in the following paragraphs introduce the principle

behind XYZ polarization analysis based on [38].

The total scattering from a system can be written in terms of(
dσ

dΩ

)
tot

=

((
dσ

dΩ

)
coh

+

(
dσ

dΩ

)isotope

incoh

)
+

(
dσ

dΩ

)spin

incoh

+

(
dσ

dΩ

)
mag

(5.51)

= N + I +M, (5.52)

where N stands for nuclear coherent, I for spin incoherent and M for magnetic scattering.

Nuclear scattering is polarization independent, and the spin orientation of the spin are conserved

so that (
dσNSF

dΩ

)(α)

coh

= N and

(
dσSF

dΩ

)(α)

coh

= 0, (5.53)

where α is the polarization direction.

A spin incoherent scattering process is also polarization independent, but there is 2/3 change of

flipping the spin and therefore(
dσNSF

dΩ

)(α)

incoh

=
1

3
I and

(
dσSF

dΩ

)(α)

incoh

=
2

3
I. (5.54)

The scattering of polarized neutrons due to magnetism is a bit more complicated since the neutrons

only scatters of the component of the magnetic moments in the sample perpendicular to q. The

relative difference between NSF and SF scattering in the different Cartesian coordinates is useful

to define as

pα =

(
dσNSF

dΩ

)(α) −
(
dσSF

dΩ

)(α)(
dσNSF

dΩ

)(α)
+
(
dσSF

dΩ

)(α)
. (5.55)

By assuming that the scattering vector is only in the xy-plane, and defining that the angle between

q and x-axis is φ, the above ratios in the three different directions are

px = − cos2(φ), py = − sin2(φ), and pz = 1. (5.56)

Using what is known about the spin incoherent and the coherent scattering together with the above

consideration of magnetic scattering, the three different scattering components M , I, and N can

be can be separated by:

M = 2

[(
dσSF

dΩ

)(x)

+

(
dσSF

dΩ

)(y)

− 2

(
dσSF

dΩ

)(z)
]
,

N =
1

6

[
2

(
dσNSF

dΩ

)(x)

−
(
dσSF

dΩ

)(x)

+ 2

(
dσNSF

dΩ

)(y)

−
(
dσSF

dΩ

)(y)

+ 2

(
dσNSF

dΩ

)(z)

−
(
dσSF

dΩ

)(z)
]
,

I =
3

2

[
3

(
dσSF

dΩ

)(z)

−
(
dσSF

dΩ

)(y)

−
(
dσSF

dΩ

)(x)
]
.
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A useful property of ferromagnetic scattering is that when applying an external field to a ferro-

magnetic sample perpendicular to the scattering plane, and parallel to P, only NSF scattering

occurs. In this configuration the NSF scattering from a ferromagnet is, however, not the same for

initial neutron spin being ↑ or ↓. In some alloys with ferromagnetic ordering, the relation is such

that almost only spin pointing parallel (or in other alloys anti parallel) will scatter. These kind of

alloys can be used as polarizers to generate an almost fully polarized beam (ie Pz = ±1).

5.6 Neutron instruments

Two types of neutron sources exist at large scale facilities: Reactor sources, which utilize the excess

neutrons from a fission process to create free neutrons, and spallation sources that use the neutrons

created when an accelerated proton beam hits a target material.

Both processes result in high energy neutrons, and in order to slow neutrons down to thermal

energies, 1 meV < E < 1 eV, which is a necessity for neutron scattering, neutron moderators

are used. When neutrons scatter off an atom’s nucleus, they will loose some of their energy to

the nucleus. In moderators successive scattering is used to slow the neutrons. A good moderator

needs to have a large scattering cross section, and a low absorption cross section. Hydrogen

possess this property, hence it is a very effective moderator. Liquid water (H2O) is the most

common moderator for thermal neutrons. To achieve cold neutrons (with energies below ∼ 10−15

meV), colder moderators are needed. Such moderators use liquid hydrogen H2 with a temperature

of 30 K.

Neutron guides are used to transport the neutrons from the source to the neutron scattering

instruments. Guides are tubes where the walls are coated with layers of materials which reflect

neutrons under a certain incoming critical angle. The critical angle of the material increase with

increasing wavelength, and the loss of neutrons therefore decrease with increasing wavelength [33].

The neutron beam will have a broad distribution of wavelengths when exiting the guide, and so

it is typically called a white neutron beam, as a reference to white light. In a Laue diffraction

instrument, the white beam is emitted directly on to the sample, and detectors are placed around

the sample to detect the scattered neutrons. Crystal symmetries can be identified from Laue

diffraction, but to detect structures and dynamics of the system, the neutron wavelength needs to

be separated and identified. The rest of this section will describe the instrument used to measure

the Boleite crystals. The neutron scattering instruments used can be separated into three different

types; triple axis spectrometers (RITA-II, IN3, IN8), the time-of-flight spectrometer IN4, and the

polarized neutron diffractometer D7.

5.6.1 Triple axis spectrometers

As the name insinuates, a triple axis spectrometer uses three scattering axes to determine initial

and final energy Ei and Ef , and scattering vectors ki and kf . The sample constitutes the second

axis of the spectrometer, whereas the first and third are the so called monochromator and analyzer.

The basic layout of a triple axis spectrometer is shown in figure 5.4.

A monochromator is built from single crystals and uses Bragg scattering from one or more crystals

to scatter a neutron beam towards the sample. Following Bragg’s law (equation (5.31)), only a

specific set of wavelengths will scatter in the direction of the sample at a certain spacing between
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Sample Guide 
Detector 

Monochromator Analyzer 

𝐴1 

𝐴2 

𝐴4 

𝐴6 
𝐴5 

𝐴3 
𝜆𝑖 

𝜆𝑓 
All 𝜆  All 𝜆 scattered  

Figure 5.4: Basic layout of triple axis spectrometers. The white neutron beam (”All

λ”) from the guide is monochromated by the monochromator which scatters neutrons

with wavelength λi towards the sample. The neutrons are scattered elastically and

inelastically at the sample (”All λ scattered”). An analyzer monochromates the neu-

trons from the sample and scatters neutrons with wavelength λf towards the detector.

Scattering vectors ki and kf can be found and changed by controlling the angles in

the system. Scattering angles (An, with n = [1, 6]) are explained in the main text.

crystal planes. The spacing depends on the monochromator’s crystals orientation. The monochro-

mators rotation around its own axis is defined as A1, and A1 = 0 is when the monochromator is

parallel to the incoming neutron beam. The rotation of the sample arm around the monochromator

compared to the incoming beam is usually called A2, and to fulfill the Bragg condition A2 = 2A1

is used.

At the sample, the neutrons will scatter in directions depending on the sample structure. De-

pending on the dynamics of the sample, the neutrons can also experience inelastic scattering. The

sample can be rotated with angle A3 around itself on an axis perpendicular to the scattering plane.

The arm heading towards the analyzer, called A4, can likewise be changed.

It would not be possible to determine the outgoing energy of the neutrons if the detector was

placed at the analyzers position. An analyzer is the same as a monochromator, but its purpose

is to determine the outgoing energy of the neutrons. The analyzer can like the monochromator

rotate around its own axis, with an angle A5, and the detector is placed in an angle A6 from the

analyzer.

We have used three different triple axis spectrometers to measure boleite. The thermal triple axis

spectrometers IN8 and IN3 at ILL, and the cold triple axis spectrometers RITA-II at PSI.

IN3 is a classical triple axis, as described above, whereas RITA-II and IN8 both used multi ana-

lyzer settings. Multi analyzers consist of a series of analyzers and a multi array detector bank as

illustrated in figure 5.5. This is done to cover multiple A4 directions at one time. RITA-II uses 9

analyzers, which is typically rotated to scatter a fixed kf , and inelastic experiments are performed

by changing ki. In the boleite experiments on IN8, the Flatcone setting was used. Flatcone is a

multi analyzer add-on to ILL triple axis spectrometers. The Flatcone add-on is illustrated in figure

5.6.

5.6.2 Time of flight spectrometer

A time of flight spectrometer uses the time of flight of the neutrons to determine initial and/or

final energy of the neutrons. A large range of different methods can be used to determine the
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Figure 5.5: The principle behind multi analyser in triple axis spectrometers. The

figure shows 7 of the 9 analysers of the RITA-II spectrometer, with an insert of the

detector measurements in top left corner [39].

Figure 5.6: The Flatcone design. Flatcone contains 31 pairs of analyzer and 31

detectors placed above the analyzers. The first analyzer in a pair (red area) is set to

scatter kf = 3 Å−1, and the second analyzer (yellow area) is set to scatter kf = 1.5

Å−1. By using a shutter, one selects whether it is the scattered neutrons from the

first or the second analyzer which reach the detector [40].
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𝐿1 𝐿2 𝐿𝑆𝐷 

2𝜃 

2𝜃 

Chopper 1 Chopper 2 Sample 

Detector 

Guide 

Figure 5.7: Basic layout of ToF spectrometers on a continuous source. Two chop-

pers are used to monochromate the white beam from the guide. The neutrons are

illustrated with colored bars, illustrating the spectrum of neutrons in space from cold

(blue) to thermal (red). A time and position sensitive detector is used to determine

the final energy Ef of the neutron and scattering angle θ.

energy from the time of flight of the neutrons, but they all use some kind of chopper systems. A

chopper is a rotating device that at a given frequency opens for neutrons to pass through.

The disc chopper is the most basic chopper. It is a rotating disc with slits distributed around its

surface. This way the disc chopper allows neutrons through every time a slit passes the neutron

beam. A single disc chopper can not alone be used for inelastic experiments as it only creates

a pulsed white beam. A series of disc choppers can be used to create a pulse with a narrow

wavelength bandwidth, which together with a time sensitive detector make it possible to do inelastic

experiments.

A simplified example of how the chopper system works is shown in figure 5.7. Only neutrons

with a small energy bandwidth will have the right velocity after the first chopper to travel the

distance between the two choppers L1, and still arrive at the second chopper when it opens for

the neutrons. The beam is in this way monochromated, and initial energy Ei and speed vi of the

neutron is known. The time that the neutron arrives at the sample can be calculated using vi and

knowing the distance L2 from the second chopper to the sample. The sample is encircled with a

time and position sensitive neutron detector, where each detector pixel corresponds to a scattering

angle. The final speed vf and energy Ef of the neutrons after scattering are obtained from the

arrival time at the detector, and by knowing that the distance from sample to the detector is LSD.

ki and kf can be determined from the neutron scattering angle and the rotation of the sample.

For our boleite experiments, we used the thermal time of flight spectrometer IN4C at the ILL

illustrated in figure 5.8. IN4C covers an energy range of 10-100 meV. IN4C is not a standard time

of flight spectrometer as it uses a double curving monochromator to monochromate the beam,

and a Fermi chopper to determine the neutron time at the sample, which combined with the time

sensitive detector array gives possibility for inelastic experiments. A Fermi chopper is a rotating

cylinder containing a collimator inside. In this way the Fermi chopper opening time is dependent
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Figure 5.8: IN4C time of flight spectrometer [42].

on the incoming angle of neutrons to the sample, which can be used to increased energy resolution

in the so called time focusing technique‡. IN4C also has two disc choppers called the background

choppers by the ILL. The disc choppers primary purpose is to remove all high energy neutrons

and gamma rays [42].

5.6.3 The polarized neutron diffractometer

A neutron polarization analysis diffractometer uses that it is possible to separate the magnetic,

nuclear spin incoherent, and nuclear coherent scattering from each other, by using polarization

analysis.

Our boleite samples were measure on the polarization analysis spectrometer D7 at ILL. Figure

5.9 shows D7’s instrument layout. The following paragraphs give a short introduction to the

components shown in figure 5.9.

D7 uses three monochromators to monochromate the neutron beam. The polarization of the

neutrons are achieved with the help of a polarizer. The polarizer used in D7 is a Schaerpf bender-

type supermirror polarizer [43]. This type of polarizer is a multi channel guide with curving

walls and coated with polarizing supermirrors. The Schaerpf bender-type supermirror polarizer is

constructed in a way that all neutrons will at least be reflected one time or absorbed by the guide

walls. To achieve a P ≈ 1, the supermirrors are coated with an absorbing anti-reflecting layer to

avoid neutrons with the wrong spin being transmitted through the polarizers’ walls [45].

A guiding field is placed between instrument components to avoid loss of polarization between

the polarizer and the sample, and the sample and the detection system. A flipper§ is placed

between the sample and the polarizer. A flipper uses a radio frequency field perpendicular to the

polarization, and it can thereby change the spin state of the neutrons from ↑→↓ or ↓→↑ [32].

The detector system consists of an array of analyzers and detectors placed around the sample. At

‡The time-focusing technique was not used for Boleite, but the interested reader can find more in Hannu

Mutka’s paper [41].
§D7’s flipper is a Mezei flipper, which are described in details in reference [46].
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Figure 5.9: D7 polarization analysis spectrometer. The different components are

elaborated in the main text [43].

D7, an analyzer consists of a Schaerpf bender-type supermirror polarizer which is only allowing

spin up through [43].

On D7, the direction of polarization of the neutrons at the sample position is altered between x̂,

ŷ, and ẑ with the help of magnetic fields generated by coils placed around the sample [43]. After

scattering off the sample, the neutron polarization direction is change back to the ẑ -direction by

the guiding fields.

When using XYZ polarization analysis, D7 is set to diffraction mode where only the scattering

angle, and not the magnitude of kf , is measured. This means that XYZ-polarization measurement

method on D7 is an energy integrated measurement.

D7 can also be set to spectroscopy mode where it can makes inelastic measurements with the

help of its Fermi choppers. It is however not possible to run the spectroscopy mode and separate

magnetic, nuclear incoherent, and coherent scattering from each other, and it was therefore not

used for our boleite samples.



CHAPTER 6

Boliete

Boleite (KPb26Ag9Cu24Cl62(OH)48) is a deep blue, natural mineral found all around the world.

Large crystals are usually found in mines in Mexico and south western USA. Boleite is usually

formed in a reaction of chlorides with sulfides in oxygenated lead-copper-deposits, but it has also

been found in smelter slag immersed in seawater [47]. I will in this chapter present the structure

of boleite, and introduce its interesting magnetic unit cell.

(a) (b) (c)

Figure 6.1: Boleite’s unit cell in a ball-and-stick model. The legend in the top right

shows the atoms’ color coding. (a) Full unit cell with all atoms. (b) The copper

atoms in the unit cell with couplings shown between them. Notice how the copper

cube is isolated in the center of the unit cell. (c) Zoom-in on one corner of the cube,

where copper-oxide bonds form intra triangle coupling J1 and inter triangle coupling

J2. The figure is contributed by Sonja Holm and presented in reference [7]. The figure

is made in VESTA[48] based on numbers from reference [5].

6.1 Properties of boleite

Boleite has a cubic unit cell in the Pm3m space group with side length a = 15.288 Å [47]. The

magnetism in boleite arises from the copper ions∗ in the center of the unit cell, as figure 6.1a shows.

The 24 Cu2+ S = 1/2 ions form a truncated cube, with 3 copper ions forming equilateral triangles

in each of the 8 corners of the cube, as seen in figure 6.1b. The distance between copper ions in a

triangle is 3.48 Å, and the distance between neighboring triangles is 2.89 Å. This is too far from

each other for direct exchange bonds to occur. Two possible types of super exchange pathways

∗Copper is the only transition metal in boleite.

43
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(a) (b) (c)

Figure 6.2: X-ray Laue diffraction pattern from boleite and pseudoboleite radiated

in the (1 1 1) direction. Theoretical estimates of X-ray Laue diffraction pattern are

made in QLaue [50]. The figures were originally presented in reference [6]. (a) Es-

timated Laue diffraction pattern from boleite. Boleite will in X-ray Laue diffraction

measurement have clear peaks in the diagonal. (b) Estimated Laue diffraction pattern

from pseudoboleite. Pseudoboleite does not have peaks in the diagonal. (c) Diffrac-

tion pattern from crystal F, which shows a diagonal line of peaks and is therefore

most likely boleite.

exist in boleite. One is through chloride ions, and the other is through the oxide ions. We believe

that the oxide pathway is the most likely of these two possibilities, as the distance between copper

and oxide ions is 1.96 Å compared to the chloride-copper distance of 2.82 Å[5]. The copper-oxide

bonds are different between inter and intra triangle copper ions, as shown in figure 6.1c. Our

expectation is that the two types of copper-oxide bonds will create two different antiferromagnetic

exchange coupling constants. I will denote the exchange coupling within triangles as J1, and the

exchange coupling between triangles as J2.

The copper cubes in boleite are isolated in the center of the structural unit cell, and the distance

between two copper cubes is ∼ 7.5 Å, which makes possible exchange interaction between neighbor-

ing spin cubes negligible. We therefore believe that long range magnetic order can be neglected in

boleite, and that the magnetism in boleite arises from the isolated 24 spin cubes clusters. The mag-

netic structure in boleite is therefore a unique possibility to study a real, and possibly frustrated,

final sized system of 24 spins.

6.1.1 Identifying proper Boleite crystals

Boleite closely resembles the mineral pseudoboleite in appearance, and the two minerals sometimes

grow on top of each other [47]. Pseudoboleite has the chemical composition Pb5Cu4Cl10(OH)8 · 2(H2O),

and it has a tetragonal unit cell in the I4/mmm space group, with side lengths a = 15.24 Å and

b = 30.74 Å [49].

Laue diffraction is an easy way to distinguish pseudoboleite from boleite, since the tetragonal unit

cell will give a different scattering pattern than the cubic, due to the different symmetries of the

unit cell. All crystals used in this project were tested with x-ray Laue diffraction to ensure that

they were boleite and not pseudoboleite. X-ray Laue diffraction only probes the surface of the

crystal, and it is assumed that the entire crystal is like its surface. Figure 6.2 shows how boleite

crystals were identified using X-ray Laue diffraction. The crystals were measured and identified

with X-ray Laue diffraction by Sonja Holm and Kenneth Lønbæk [6].
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6.2 The magnetic susceptibility

A large range of the identified boleite crystals’ susceptibilities were measured at a range of different

susceptometers. The susceptometers are presented in chapter 4. The experimental details of the

different crystals are given in table 6.1.

Type 1 crystals Type 2 crystals

Crystal Mass [mg] Measured at: Crystal Mass [mg] Measured at:

E 403 PSI PPMS A 355 PSI PPMS

H 226 PSI MPMS B 424 PSI PPMS

N 245 PSI MPMS D 605 PSI PPMS

H1 197.0 EPFL MPMS F 287 PSI PPMS

E1 137.1 EPFL MPMS K 263 PSI MPMS

S1 76.4 AU PPMS P 236 PSI MPMS

E2(†) 21.3 AU PPMS C1 118.8 EPFL MPMS

P1 9.1 EPFL MPMS

M1 84.2 AU PPMS

O(∗) 308.9 AU PPMS

C2(†) 29.9 AU PPMS

C3(†) 9.9 AU PPMS

Table 6.1: The measured crystals’ mass and place of measurement. The definition

of the crystal types used in the table are given in the main text. A number in a

crystal’s name labels that different pieces of the same crystal were measured. The

used susceptometers are presented in chapter 4. (∗) The susceptibility curve of crystal

O was only measured for T < 20 K, where it showed a clear type 2 crystal susceptibility

kink. (†) The three crystals’ susceptibility curves all showed significantly larger offset

than all other susceptibility curves.

The susceptibility curves of all crystals from table 6.1, except crystal C2, C3, E2, and O are

presented in figure 6.3. The figure shows that most data is very similar for T > 30 K. At T < 30

K, two different types of susceptibility curves are observed from the boleite crystals. I will define

the boleite crystals according to the two types of susceptibility curves:

� Type 1 crystal: The susceptibility increases as the temperature is decreased.

� Type 2 crystal: The susceptibility increases as the temperature is decreased until a kink

around 3 K. After the kink, the susceptibility decreases with decreasing temperature.

The measurements from PSI all seem to be identical at T > 200 K. What is not visible in figure

6.3 is that the PPMS data from PSI have much larger errors than the MPMS measurements done

at PSI and EPFL. The AU measurements and some of the EPFL measurements have an offset
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Figure 6.3: The mass normalized magnetic susceptibility from different boleite crys-

tals. Every crystal is given a unique marker (see legend in top right) and every instru-

ment a unique color. The crystals were measured at PSI PPMS (green), PSI MPMS

(blue), EPFL MPMS (red), and AU PPMS (Yellow). The crystal properties are given

in table 6.1.

compared to the PSI MPMS and PPMS data. The EPFL and AU measurements’ offsets are not

self consistent, in the sense that the measurements are not alike at high temperatures. Due to the

above considerations, only the 4 PSI MPMS measurements are used to test the different suscepti-

bility models in this and the next chapter.

The MPMS data from PSI is consistent when separated into the two types. In figure 6.4, the

inverse susceptibility of crystal K (type 2) and H (type 1) obtained at MPMS at PSI is shown as

an example. There are two distinct kinks seen in the inverse susceptibility of type 2 crystals, one

at T ≈ 130 K and one at T ≈ 3 K. For type 1 crystals there is only a kink at T ≈ 130 K. Since

we assume that boleite has two exchange constants, our initial guess is that the data will have

two transition temperatures, where the small spin systems, like the 8 spin triangle, are frozen into

their ground state(s).

I will denote the transition temperatures of J1 and J2 as T1 and T2 respectively. An inverse suscep-

tibility curve from a system with two transition temperatures can be expected to have two kinks.

This is the case for the type 2 crystals’ susceptibility curves.

The large temperature difference between the two kinks indicates a large difference in exchange

coupling strength. The origin of the missing kink in the type 1 crystals’ inverse susceptibility could

very well be impurities. The impurities could create imperfect cubes with free spins. The param-

agnetic behavior of the free spins could dominate the susceptibility curves, so that low temperature

kinks were hidden beneath the paramagnetic contribution. This hypothesis is tested in the next

chapter.
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The two straight parts of the inverse susceptibility curve from crystal K and P are fitted with

Curie Weiss lines (equation (4.6)), as shown in figure 6.4. The Curie Weiss line fitted to the high

temperature region has a Curie Weiss temperature ΘCW,H = −195 ± 6 K, and the fit to the low

temperature region has ΘCW,L = −10.4± 0.2 K. This indicates that both exchange constants give

rise to antiferromagnetic coupling, since ΘCW < 0 K for both fits. We expect that the spins at

the high temperature kink in the inverse susceptibility order due to either J2 or J1, and thereby

either are forming isolated dimers or trimers. As the thermal energy decreases with temperature,

the weaker of the two exchange constant forces the entire 24 spin cube cluster to order.

An antiferromagnetic triangle will, as explained in chapter 3, behave like a paramagnet at tem-

perature lower than the transition temperature with 1/χ→ 0 for T → 0 K, due to its degenerate

ground state. Unlike this, A spin dimer has a singlet ground state, and therefore 1/χ → ∞ for

T → 0 below the transition temperature, for an external field parallel to the spin direction.

In figure 6.4 a paramagnetic like behavior is observed in the inverse susceptibility at temperatures

belove the first kink. This indicates that J1 is much stronger than J2; hence, the system will

behave like 8 isolated trimers for T � T2. As the thermal energy approaches the scale of J2, the 8

trimers orders into 24 spin states. The system can therefore be viewed as being in three different

stages:

At T � T1 all spins behave paramagnetically. As the temperature is lowered, the intermediate

region T2 < T < T1 is reached. Here the spins behave as a cooperative paramagnet, since the spins

are bound in the degenerate trimer ground states. At T < T2, the entire 24 spin system orders.

The summed contribution from the coupling constants can as an approximation be estimated from

equation (4.3), by assuming that −ΘCW = TN . Following the interpretation from above, a Curie

Weiss fit to the intermediate temperature (T2 < T < T1) susceptibility should be expected to give

a Curie Weiss temperature solely dependent on J2 coupling the 8 spin triangles. At T > T1 both

J1 and J2 will contribute, and so ∑
J2,i

Ji = −4kBΘCW,L,∑
All,i

Ji = −4kBΘCW,H, (6.1)

where the sums are taken across all neighbors (
∑

All,i) or all J2 neighbors (
∑
J2,i

). Every spin has

2 J1 neighbors and 1 J2 neighbor and so

J1 =

∑
All,i Ji − J2

2
,

J2 =
∑
J2,i

Ji. (6.2)

Using this assumption the first estimate of the coupling strengths are

J1 = 36± 2 meV,

J2 = 3.6± 0.1 meV. (6.3)
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Figure 6.4: The inverse susceptibility from different boleite crystals, measured at

the MPMS at PSI. The inverse susceptibility is separated into two categories. Type

1 data is from the two type 1 crystals, H. Type 2 data is from the type 2 crystal K.

The type 2 data is fitted with two Curie Weiss lines, from equation (4.6). The legends

show the fit boundary (top left) and the fit parameters (bottom right).



CHAPTER 7

Modeling the susceptibility

A quantum mechanical S = 1/2 spin model is needed to fully understand the magnetic structures

in boleite. It is reasonable to construct the model based on the susceptibility data, since it consti-

tute the largest amount of data with a clear indication of magnetism. All eigenenergies of a system

need to be found in order to model the susceptibility, according to equation (4.8).

To calculate all eigenenergies of the boleite system, a matrix of size 224 × 224 needs to be diag-

onalized. Even though the matrix can be block diagonalized using magnetization and geometric

symmetries, the largest matrices still have a size of ∼ 219 × 219 = 2.7 · 1011. This is beyond the

limitations of complete diagonalization routines, and one has to make an approximative system of

less spins, or use other approximations to find the eigenenergies.

This chapter will show the result of complete diagonalization of smaller spin systems (≤ 12 spins),

before presenting approximative models of the full 24 spin system.

7.1 Simple models

Kenneth Lønbæk investigated the boleite system in his bachelor thesis [6]. In his thesis, Kenneth

made exact calculations of eigenvalues of a triangle of spins and a 6 spin system, like the models

shown in figure 7.1(a-b). The eigenvalues of the 6 spin model are shown in appendix A, and

the eigenvalues of the triangle model are shown in table 3.1. The theoretical susceptibility of

an antiferromagnetic system can be calculated from its eigenvalues using equation (4.9). The

theoretical susceptibility models are afterwards fitted to the raw data from a type 2 boleite crystal

by adjusting the exchange constants and multiplying a scaling parameter χ0.

Figure 7.2 presents such a fit, showing that the 6 spin model and the triangle model are alike at

high temperatures, and that both are able to account for the kink in observed crystal data at ∼ 130

K. The 6 spin model adds a kink in the susceptibility model at low temperatures compared to the

triangle model. Due to this kink, the 6 spin model resembles the data better than the triangle

model, as also seen from the reduced chi-square χ2
Red of the fits to the data at T > 3 K, which for

the triangle model and 6 spin model are χ2
Red = 4.7 · 106 and χ2

Red = 2.7 · 106 respectively. The

two models predict almost the same value of J1. The 6 spin model fit has J1 = 24.5 ± 0.2 meV

and J2 = 1.8± 0.1 meV, and the triangle model has J1 = 24.6± 0.2 meV.

The exchange constants predicted by the 6 spin model and triangle model are significantly different

to the exchange constants found by the Curie Weiss models, shown in equation (6.2). This difference

is investigated in the end of this chapter.

The behavior of the 6 spin model is consistent with the expectations of the boleite system from

chapter 6, where it was predicted that the susceptibility curve could be separated into three

temperature regions: One where the spins behave freely, another where the spins are bound in

triangle ground states, and a third where the coupling between the triangles forces the entire 24

spin to order into a collective state.

The 6 spin model shows similar behavior as the measured crystals’ susceptibility curve but does

not fit it completely. Four out of six spin sites in the 6 spin model, shown in figure 7.1b, are only

49
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coupled to neighbors through the J1 exchange constant. This is very different from the real boleite

system, where all spin sites are coupled to two neighbors through J1 and one through J2. To make

a bigger spin model which resembles boleite better, a computer routine is needed.

J1 J2 

J1 

J1 J2 

J1 

J2 J2 

J2 J1 

J1 J1 

(a) (b) (c)

Figure 7.1: The model spin systems. The spins (colored circles) are positioned in the

corner of the triangles. The coupling strengths between sites are shown with colored

lines, with similarly colored labels (J1 and J2). (a) The spin triangle model. (b) The

6 spin model with two coupled spin triangles. (c) The 12 spin model with periodic

boundary conditions. The spins in the corners of the system are coupled with J2 to

their cross diagonal counterpart (dashed lines).
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Figure 7.2: The inverse susceptibility from the type 2 boleite crystal K compared to

the susceptibility predicted by the triangle model (a) and the 6 spin model (b). The

dashed lines illustrates the upper and lower bound of the exchange constants. The

models are presented in the main text. The fit parameters are given in the legends.

The reduced chi-square of the fits to the data at T > 3 K are for the triangle model

χ2
Red = 4.7 · 106 and for the 6 spin model χ2

Red = 2.7 · 106. The large χ2
Red is discussed

later in this chapter.
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7.2 Mexact

A primitive version of RLexact (RLexact was described in chapter 3) complete diagonalization

algorithm was made in Matlab to efficiently calculate the susceptibility of a small S = 1/2 system

with multiple exchange constants. I will call this algorithm for Mexact.

As it is the case with RLexact, Mexact uses the Ising basis to find the eigenstates of the Heisenberg

Hamiltonian’s interaction term ĤI (equation (2.19)) for a given spin system. The individual spin’s

spin eigenstate is in Mexact labeled with 0 or 1, where 0 and 1 corresponds to a spin up state

(mS = +1/2) and a spin down state (mS = −1/2) respectively. An Ising state of the full system

is then written as a series of ones and zeros. As an example, the 4 spin square lattice system basis

state |ψi〉 = |1001〉, labels that spin 1 and 4 points up, and spin 2 and 3 points down.

It is easy to translate |1001〉 into a binary number. In a system with N spins, any unique configu-

ration of Ising spins can be translated into a unique binary number between 1 and 2N , where any

binary number is a unique spin configuration. Mexact first writes all states, then identifies their

magnetization, and then sorts states according to it.

Mexact uses time reversal symmetry and block diagonalization. For every m-subspace the Hamil-

tonian is written into its matrix form Ĥm, by computing all elements 〈ψj |ĤI |ψi〉, where i and j

run across all Ising basis vectors in the subspace. Applying ĤI to an Ising state will result in a

superposition of different Ising states

ĤI |ψi〉 =

N∑
j

ci|ψj〉, (7.1)

where N is the number of Ising states in the given subspace. Mexact uses that all Ising states

are orthogonal and normalized so that 〈ψj |ψi〉 = δi,j . By identifying all non-zero ci, all non-zero

elements 〈ψj |ĤI |ψi〉 are identified for every state |ψi〉.
As an example, lets take a quick look at the result from applying the Heisenberg Hamiltonian’s

interaction term ĤI to the m = 0 state |1001〉, for nearest neighbor exchange constant J :

ĤI |1001〉 =
J

2
(|0101〉+ |1010〉) . (7.2)

This shows that the matrix elements 〈1010|ĤI |1001〉 and 〈0101|ĤI |1001〉 will be J
2 . By repeating

this for all states with m = 0, the full matrix Ĥm=0 is identified. Afterwards Mexact uses Matlab’s

eig-function to diagonalize Ĥm=0.

Mexact’s validity was tested on a range of small spin systems. The results were compared to the

results from RLexact, and the results presented by Haraldsen [3]. All tests showed a complete

correspondence between the two algorithms and Haraldsen. Mexact is therefore assumed to find

the correct eigenvalues of a spin system.

The largest, boleite resembling spin system that can be diagonalized using Mexact is a 12 spin

system with periodic boundary conditions, as illustrated in figure 7.1c. The periodic boundary

conditions are made such that all triangles are directly coupled through J2 to each of the 3 other

triangles. Using Mexact, all eigenvalues are found for the 12 spin model. The susceptibility is af-

terwards calculated from the eigenvalues using equation (4.9), and fitted to the data by adjusting

the exchange constants and multiplying a scaling parameter χ0.

In figure 7.3, the result from fitting the 12 spin model is shown. The best fit of the 12 spin model
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Figure 7.3: The inverse susceptibility from the type 2 boleite crystal K compared to

the susceptibility predicted from the Mexact result for the 12 spin model. The dashed

lines illustrates the upper and lower bound of the exchange constants. The model is

presented in the main text. The fit parameters are given in the legends. The fit to

the data at T > 3 K has χ2
Red = 2.4 · 106.

only gives slightly different values of J1 and J2 compared to the 6 spin model shown in figure 7.2.

The two model almost fit the data equally well, both qualitatively and according to χ2
Red-values

of the fit to the data at T > 3 K. The 6 spin model and 12 spin model have χ2
Red = 2.7 · 106 and

χ2
Red = 2.4 · 106 respectively.

The next sections will introduce an approximative way of calculating the low temperature suscep-

tibility of the full boleite system, to see how much it affects the result.

7.3 The variational model

In the previous section, it can be seen that the triangle model, the 6 spin model, and the 12 spin

model describe the high temperature susceptibility equally well. This can be used to divide the

model of the boleite system into a high and a low temperature model, where the triangle model

describes the high temperature part of the susceptibility. A model of the low temperature region

of the full 24 spin S = 1/2 system is introduced in the following sections.

7.3.1 Variational method

The low temperature model uses the variational method, which is based on the variational principle.

The variational principle states that any state |B〉 of dimension N , will have [11]

〈B|Ĥ|B〉 = E ≥ Eg, (7.3)

where Ĥ, dimension N ×N , is the Hamiltonian that describes the system. Eg is the ground state

of Ĥ. By picking a random test state |B〉, an upper bound of the ground state energy can be
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Figure 7.4: The 6 spin system. The numbers show the labeling of the spin sites.

The coupling strengths between sites (J1 and J2) are shown with colored lines.

determined. The upper bound can be tightened by varying this random state.

The variational method introduces a way to choose the test state in a smart way. In the variational

method, the test state |B〉 is written as a linear combination of random, orthogonal states |bj〉, so

that

|B〉 =
∑
j

cj |bj〉, (7.4)

where cj is a coefficient. cj is determined by exact diagonalization of the matrix Ĥs, with matrix

elements 〈bj |Ĥ|bi〉 [51]. The variational method has the additional benefit that not only is the

lowest eigenvalue of Ĥs an upper bound of Eg, but the larger eigenvalues of Ĥs are upper bounds

of the exited states of Ĥ as well. To optimize the method, and tighten the estimated upper bounds,

physical insight in the system can be used.

In the boleite system, the physical insight is that the system can be separated into a low and a

high temperature system. A single Heisenberg spin triangle has 4 excited states with E = 3J1

4 , and

a 4 times degenerate ground state with E = − 3J1

4 . At low temperatures, the gap between these

two energy levels becomes much larger than the available thermal energy kBT � J1, which makes

it improbable to excite the triangles.

It is likely that the ground state and the low energy excited states of the full boleite system are

a linear combination |T 〉 of isolated triangle ground states |tj〉, since J1 � J2. I will therefore

construct a model which estimates the low energy states of a coupled triangle system, by making

linear combination of the isolated triangle ground states.

I will call this new model the variational model, since it is based on the variational method. I

will in the following sections introduce the variational model, and show that it can model the low

temperature susceptibility.

7.3.2 Notation and basic concept

The eigenstates and eigenenergies of a single triangle were calculated in chapter 3, and the results

were shown in table 3.1. To introduce the variational model, I will use it to find the low energy

eigenvalues of a 6 spin system, illustrated in figure 7.4. In order to show how the variational model

works, the spins need to be labeled. In the following, I define spin number 1 to 3 to be in one

triangle and spin number 4 to 6 to be in another. The two triangles are coupled through spin 3
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and 4. To simplify the calculations, the two individual triangles |m| = 1/2 will be relabeled, as

given in table 7.1. The |m| = 3/2 states are not relabeled as they will always be removed.

Triangle 1-3

m = −1/2 subspace m = 1/2 subspace

State Energy State Energy4

↓
= 1√

3
(|1,↓〉+ |2,↓〉+ |3,↓〉) + 3

4J1

4

↑
= 1√

3
(|1,↑〉+ |2,↑〉+ |3,↑〉) + 3

4J14x
= 1√

3
(|1,↓〉+ e+|2,↓〉+ e−|3,↓〉) − 3

4J1

4x

= 1√
3
(|1,↑〉+ e+|2,↑〉+ e−|3,↑〉) − 3

4J14y
= 1√

3
(|1,↓〉+ e−|2,↓〉+ e+|3,↓〉) − 3

4J1

4y

= 1√
3
(|1,↑〉+ e−|2,↑〉+ e+|3,↑〉) − 3

4J1

Triangle 4-6

m = −1/2 subspace m = 1/2 subspace

State Energy State Energy

4↓ = 1√
3
(|4,↓〉+ |5,↓〉+ |6,↓〉) + 3

4J1 4↑ = 1√
3
(|4,↑〉+ |5,↑〉+ |6,↑〉) + 3

4J1

4x = 1√
3
(|4,↓〉+ e+|5,↓〉+ e−|6,↓〉) − 3

4J1 4x= 1√
3
(|4,↑〉+ e+|5,↑〉+ e−|6,↑〉) − 3

4J1

4y = 1√
3
(|4,↓〉+ e−|5,↓〉+ e+|6,↓〉) − 3

4J1 4y= 1√
3
(|4,↑〉+ e−|5,↑〉+ e+|6,↑〉) − 3

4J1

Table 7.1: |m| = 1/2 triangle eigenstates of the upper triangle (point-down triangle

with spin 1 to 3) and lower triangle (point-down triangle with spin 4 to 6) of the 6

spin system in figure 7.4, with the new type of labeling. The constants e+ = e+i 2π
3

and e− = e−i
2π
3 . The Ising states, eg. |1,↓〉 etc. are given in equation (3.1)

When calculating the matrix elements of the Hamiltonian, the variational model uses that the zero

point of the energy is equal to the sum of the ground state energies from two individual triangles.

The model effectively sets J1 →∞, which makes it impossible to excite the triangles.

The Heisenberg Hamiltonian’s interaction term from equation (2.19) can for this low temperature,

two triangle system be rewritten into

Ĥ6 = J2Ŝ3 · Ŝ4 = J2Ŝ
z
3 Ŝ

z
4 +

J2

2
(Ŝ−3 Ŝ

+
4 + Ŝ−4 Ŝ

+
3 ). (7.5)

The new Hamiltonian only has 16 eigenstates (4 ground states on each triangle giving a total of

42 = 16 configurations). The diagonalizing of the Hamiltonian is done in a basis consisting of all

possible configuration of outer products between the isolated triangle ground states. The basis has
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the following orthogonal and normalized basis states4x
⊗4x ,

4x
⊗4y ,

4y
⊗4x ,

4y
⊗4y } m = −1,

4x

⊗4x,

4x

⊗4y,

4y

⊗4x,

4y

⊗4y } m = +1,

4x
⊗4x,

4x
⊗4y,

4y
⊗4x,

4y
⊗4y, } m = 0.4x

⊗4x ,

4x

⊗4y ,

4y

⊗4x ,

4y

⊗4y

(7.6)

For the full boleite system, this new variational model will reduce the number of states by a factor

of 28 = 256 (i.e. from 224 to 48 = 216). Together with block diagonalization, this will reduce the

problem so that the largest matrix that needs to be diagonalized for the 24 spin system will be

∼ 212 × 212. This can be done on a desktop computer.

7.3.3 Calculation the spin 6 system

The 6 spin system has in the reduced low temperature form only three m-subspaces, m = [−1, 0,+1].

I will use the m = +1 subspace as an introduction on how the full 6 spin system is calculated. The

Hamiltonian Ĥ6 first needs to be written into its matrix form. The matrix elements are given by

〈i|Ĥ6|j〉, where i and j are the basis states presented in equation (7.6). All matrix elements are

found by applying the Hamiltonian to each of the 4 states to see which states they map into. As

an example (The Ising notation, like |1,↑〉 or |6,↑〉, is taken from equation (3.1)):

Ĥ6

( 4x

⊗4x

)
=
J2

3
Ŝ3 · Ŝ4( |1,↑〉+ e+|2,↑〉+ e−|3,↑〉)⊗ (|4,↑〉+ e+|5,↑〉+ e−|6,↑〉)

=
J2

3
Ŝ3 · Ŝ4( |1,↑〉|4,↑〉+ e+|1,↑〉|5,↑〉+ e−|1,↑〉|6,↑〉

+ e+|2,↑〉|4,↑〉+ e−|2,↑〉|5,↑〉+ |2,↑〉|6,↑〉

+ e−|3,↑〉|4,↑〉+ |3,↑〉|5,↑〉+ e+|3,↑〉|6,↑〉)

=
J2

12
( − |1,↑〉|4,↑〉+ e+|1,↑〉|5,↑〉+ e−|1,↑〉|6,↑〉

− e+|2,↑〉|4,↑〉+ e−|2,↑〉|5,↑〉+ |2,↑〉|6,↑〉

+ e−|3,↑〉|4,↑〉 − |3,↑〉|5,↑〉 − e−|3,↑〉|6,↑〉)

=
J2

12
(|1,↑〉+ e+|2,↑〉 − e−|3,↑〉)⊗ (−|4,↑〉+ e+|5,↑〉+ e−|6,↑〉)

=
J2

36

( 4x

− 2e+

4y

− 2e−

4

↑
)
⊗
(
4x− 24y− 24↑

)
. (7.7)

The raising and lowering operators do not affect the m = 1 states since they only give a non-zero

result when the combined single triangle states (like |2,↑〉|4,↑〉), contain either |3,↑〉 or |4,↑〉. As

an example Ŝ−3 Ŝ
+
4 |2,↑〉|4,↑〉 = |1,↓〉|↑↑↑〉4−6, whereas Ŝ−3 Ŝ

+
4 |2,↑〉|5,↑〉 = 0. When the raising and

lowering operators give a non zero result for the m = 1 basis states, they will always lead to
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combined single triangle states containing |↑↑↑〉. This state is an excited isolated triangle state,

and is not possible to reach since J1 → ∞. The Ŝz3 Ŝ
z
4 also couples the state to excited triangle

states (i.e.4↑ and

4

↑
), which are also removed due to J1 →∞. The final result is:

Ĥ6

( 4x

⊗4x

)
=
J2

36

( 4x

− 2e+

4y)
⊗
(
4x− 24y

)

=
J2

36

( 4x

⊗4x− 2

4x

⊗4y− 2e+

4y

⊗4x+ 4e+

4y

⊗4y

)
. (7.8)

When these calculations are done for the three other m = +1 states, the results are:

Ĥ6

( 4x

⊗4y

)
=
J2

36

( 4x

⊗4y− 2

4x

⊗4x− 2e+

4y

⊗4y+ 4e+

4y

⊗4x

)
, (7.9)

Ĥ6

( 4y

⊗4x

)
=
J2

36

( 4y

⊗4x− 2

4y

⊗4y− 2e−

4x

⊗4x+ 4e−

4x

⊗4y

)
, (7.10)

Ĥ6

( 4y

⊗4y

)
=
J2

36

( 4y

⊗4y− 2

4y

⊗4x− 2e−

4x

⊗4y+ 4e−

4y

⊗4x

)
. (7.11)

Using equations (7.8) to (7.11), I can write the Hamiltonian in matrix form:

Ĥ6,m=+1 =

4x

⊗4x
4x

⊗4y
4y

⊗4x
4y

⊗4y



( 4x

⊗4x

)†
1 −2 −2e− 4e−( 4x

⊗4y

)†
−2 1 4e− −2e−( 4y

⊗4x

)†
−2e+ 4e+ 1 −2( 4y

⊗4y

)†
4e+ −2e+ −2 1

·

J2

36
(7.12)

Diagonalizing Ĥ6,m=+1 gives the following eigenvalues:

Em=+1,1 = −J2

12
Em=+1,2 = −J2

12
Em=+1,3 =

J2

36
Em=+1,4 =

J2

4
(7.13)

The exact same is found for Ĥ6,m=−1, as could be expected from the time reversal symmetry of

the Heisenberg Hamiltonian.

For m = 0, it becomes significantly more complicated, since all 8 states couple to all 8 states.

An example of what happens when the Hamiltonian Ĥ6 is applied to a basis state can be seen in
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appendix B. Below, the full Hamiltonian of the m = 0 subspace is shown:

Ĥ6,m=0 =

4x
⊗4x

4x
⊗4y

4y
⊗4x

4y
⊗4y

4x
⊗4x

4x
⊗4y

4y
⊗4x

4y
⊗4y



( 4x
⊗4x

)†
−1 2 −4e− 2e− 2 −4 8e− −4e−( 4x

⊗4y
)†

2 −1 2e− −4e− −4 2 −4e− 8e−( 4y
⊗4x

)†
−4e+ 2e+ −1 2 8e+ −4e+ 2 −4( 4y

⊗4y
)†

2e+ −4e+ 2 −1 −4e+ 8e+ −4 2( 4y
⊗4y

)†
2 −4 8e− −4e− −1 2 −4e− 2e−( 4y

⊗4y
)†

−4 2 −4e− 8e− 2 −1 2e− −4e−( 4y
⊗4y

)†
8e+ −4e+ 2 −4 −4e+ 2e+ −1 2( 4y

⊗4y
)†

−4e+ 8e+ −4 2 2e+ −4e+ 2 −1

·

J2

36

(7.14)

The eigenvalues to Hm=0 are the following:

Em=0,1 = −3J2

4
Em=0,2 = −J2

12
Em=0,3 = −J2

12
Em=0,4 = −J2

12

Em=0,5 =
J2

36
Em=0,6 =

J2

4
Em=0,7 =

J2

4
Em=0,8 =

J2

4
(7.15)

It should be mentioned here that relabeling the triangle spin sites, so that for instance 1 and 5 are

the spins that couples with J2, gives the same eigenvalues.

7.3.4 Comparison to complete diagonalization

Now let us compare the result found in the above section to the result found when diagonalizing

the full Hamiltonian. The full 6 spin system has been diagonalized by hand in reference [6]. In

table 7.2, the low lying eigenvalues from the complete diagonalization is compared to the results

obtained by the variational model. The table shows that the two results are identical when the

approximation J1 � J2 is applied.

7.4 The variational model and 24 spin boleite system

To calculate all low lying eigenenergies of the full boleite system, the variational model needs to

be implemented in a computer algorithm.

In the computer algorithm, it is no longer useful to keep the triangle notation, from table 7.1, as

we do not no longer need to only distinguish between the ground states of two coupled triangles.
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Complete diagonalization

Complete diagonalization

Variational modelfor EG(J2 = 0) = 0

and J1 →∞

E|m|=1 ≈ { −3
2J1 + 1

4J2 2 states 1
4J2 2 states 1

4J2 2 states

−3
2J1 + 1

36J2 2 states* 1
36J2 2 states* 1

36J2 2 states

−3
2J1 −

1
12J2 4 states* − 1

12J2 4 states* − 1
12J2 4 states

E|m|=0 ≈ { −3
2J1 + 1

4J2 3 states 1
4J2 3 states 1

4J2 3 states

−3
2J1 + 1

36J2 1 states* 1
36J2 1 states* 1

36J2 1 state

−3
2J1 −

1
12J2 3 states* − 1

12J2 3 states* − 1
12J2 3 states

−3
2J1 −

3
4J2 1 state −3

4J2 1 state −3
4J2 1 state

Table 7.2: Comparison between the variational model used on a 6 spin system, and

the complete diagonalization of a 6 spin system. Left: The complete diagonalization

results for the 6 spin system. Only states of energy ∼ − 3
2J1 are shown. Exact

diagonalization results are taken from [6], and the full results can be seen in appendix

A. Center: The complete diagonalization results for the 6 spin system, where the

ground state of two non coupled triangles is set as the zero point energy, EG(J2 =

0) = 0, and J1 → ∞. Right: Full result of variational model. * marks that this

energy is only valid when J2
2 � J2

1 .

Instead, we need to distinguish between the 4 ground states of 8 different triangles. To do so, each

triangle ground state will have a number and be relabeled with

|0〉 = | − 1/2, 1〉 =
1√
3

(|s(1,t),↓〉+ e+|s(2,t),↓〉+ e−|s(3,t),↓〉),

|1〉 = | − 1/2,−1〉 =
1√
3

(|s(1,t),↓〉+ e−|s(2,t),↓〉+ e+|s(3,t),↓〉),

|2〉 = |1/2, 1〉 =
1√
3

(|s(1,t),↑〉+ e+|s(2,t),↑〉+ e−|s(3,t),↑〉),

|3〉 = |1/2,−1〉 =
1√
3

(|s(1,t),↑〉+ e−|s(2,t),↑〉+ e+|s(3,t),↑〉). (7.16)

The labeling |m, r〉 shows the magnetization m and the rotation direction r of a single triangle’s

state. Rotation refers to the order of the phase factor (1, e+, and e−) in equation (7.16). si,t is the

number (integer from 1 to 24 for the full boleite system) of the i’th spin in the t’th triangle. The

Ising states, like |s(1,t),↓〉 and |s(2,t),↑〉, are equivalent with the definition in (3.1). The triangle

ground states depend on the numbering of the individual spins, but the final eigenenergies is

independent of the numbering of the spins.

The full system’s variational model’s basis states will be a combination of the numbers 0 to 3,

revealing the state of each triangle. As an example, we have for the m = 0 state: |1/2, 1〉 ⊗ | −
1/2,−1〉 = |12〉.
An example of a 4 triangle system could be the m = 1 state |1021〉. Here triangle 1 is in a

|1〉 = | − 1/2,−1〉 state, triangle 2 is in a |2〉 = |1/2, 1〉 state, triangle 3 is in a |0〉 = | − 1/2, 1〉
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state, and triangle 4 is in a |1〉 = | − 1/2,−1〉 state.

By using this triangle ground state numbering, all the 4N unique basis states from a system with

N triangles, can be written as |000.....0〉 to |333.....3〉.
The Heisenberg Hamiltonian from equation (2.18) is reduced to the spin interaction terms between

inter triangle neighbors (int) as

ĤN = J2

int∑
〈i,j〉

Ŝi · Ŝj . (7.17)

When the spin operators (Ŝzj , Ŝ+
j , and Ŝ−j ) are applied to a variational model basis state, it will

apply to each individual triangle Ising state like |si,t,↑〉 and |si,t,↓〉 which contains spin si,t = j. In

the variational model basis states, each triangle Ising state has a phase factor, i.e. 1, e+, and e−,

as seen in equation (7.16). I will use Psi,t to denote the phase factors in front of the Ising states,

like |si,t,↑〉 and |si,t,↓〉, in any given triangle t’s ground state |m, r〉.
When the operator Szj is applied to a triangle ground state, it is the phase factor of triangle Ising

state with s(i,t) = j that becomes important since

Ŝzj |m, r〉 = 2m|m, r〉 − 4mP ∗j |m,−r〉, (7.18)

where P ∗j is the complex conjugate of the phase factor in front of the Ising state j = si,t (|j,↑〉 or

|j,↓〉) in triangle state |m, r〉.
For the raising and lowering operators, it is again the phase factor of the si,t = j Ising state that

becomes important when applying the spin operator to the j’th spin.

For Ŝ+
j , the magnetization of the state is changed as well as the spin rotation

Ŝ+
j |m, r〉 = −| −m, r〉+ 2P ∗j | −m,−r〉 For m = −1/2 (7.19)

Ŝ+
j |m, r〉 = 0 For m = +1/2. (7.20)

The opposite is true for the Ŝ−j

Ŝ−j |m, r〉 = −| −m, r〉+ 2P ∗j | −m,−r〉 For m = +1/2 (7.21)

Ŝ−j |m, r〉 = 0 For m = −1/2. (7.22)

The above shows that two coupled triangles need to be of opposite magnetization for the lowering-

raising operator term to give a non zero result.

The computer algorithm needs the above math to calculate all matrix elements in 〈i|ĤN |j〉. The

algorithm uses the orthogonality of the basis states to do this. When ĤN is applied to a specific

coupling, the basis state |i〉 will be mapped into NB other basis states labeled |Bn〉. NB = 4

triangle states in the coupling have the same magnetization, and NB = 8 if they have opposite

magnetization. This was also seen in the calculations of the two coupled triangles above. The

algorithm locates the NB matrix elements 〈Bn|ĤN |i〉 and adds the pre-factor in front of |Bn〉 to

the elements. The pre-factor is found together with the NB states from computing ĤN |i〉.
The m = +1 basis state |1021〉 from a 4 triangle system can be used as an example of how the

algorithm finds the matrix elements.

There will be a coupling between triangle 1 and 2, and I define that it is the spin number 3 from

triangle 1 that couples to spin number 4 from triangle 2 (the result is of course independent of
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numbering). Spin triangle one is in state |1〉 = | − 1/2,−1〉 = 1√
3
(|1,↓〉 + e−|2,↓〉 + e+|3,↓〉), and

spin triangle two is in state |2〉 = |1/2, 1〉 = 1√
3
(|4,↑〉+ e+|5,↑〉+ e−|6,↑〉). It is only triangle 1 and

2 that are affected by Ŝ3 · Ŝ4, since spin 3 and 4 reside in triangle 1 and 2. When applying the

operators to the exchange coupling the following happens

J2

(
Ŝz3 Ŝ

z
4 |1021〉+

Ŝ+
3 Ŝ
−
4 + Ŝ+

4 Ŝ
−
3

2
|1021〉

)

=
J2

36

(
−|1021〉+ 2|1031〉+ 2e−|1020〉 − 4e−|1030〉+ 2|1003〉 − 4|1013〉+ 8e−|1012〉 − 4e−|1002〉

)
(7.23)

In this way the 8 matrix elements in ĤN have the following pre-terms added:

J2

36
is added to: 〈1021|ĤN |1021〉, J2

16
is added to: 〈1003|ĤN |1021〉,

J2

16
is added to: 〈1031|ĤN |1021〉, −J2

8
is added to: 〈1013|ĤN |1021〉,

J2e
−

16
is added to: 〈1020|ĤN |1021〉, J2e

−

4
is added to: 〈1012|ĤN |1021〉,

−J2e
−

8
is added to: 〈1030|ĤN |1021〉, −J2e

−

8
is added to: 〈1002|ĤN |1021〉.

(7.24)

The above procedure is repeated for every state and every coupling, and in that way all non zero

elements 〈i|ĤN |j〉 in the matrix are found and calculated. In the end all eigenenergies of ĤN ,

from equation (7.17), are found by complete diagonalization.

7.4.1 The result

To estimate the accuracy of the variational model, it is compared to the exact diagonalization of

the full 24 spin boleite system done with Lanczos algorithm, using RLexact. Lanczos algorithm

only finds the lowest energy states, and only one state for each set of degenerate states, as explained

in chapter 3.

RLexact and the new variational model’s result of the 24 spin system, and the Mexact results of

the 12 spin model (presented in figure 7.1c) are compared in figure 7.5. The figure shows that

the lowest eigenenergies of the full 24 spin boleite system predicted by the variational model and

RLexact resemble each other closely. The eigenenergies of the 12 spin model found by Mexact is

on the other hand quite different from the two. It is seen from the figure that for small values of

J2/J1 = 0.026, the lowest eigenvalues from the variational model and RLexact are almost the same

with an average difference of only 1.19 ± 0.04 % of the RLexact values. This is of course keeping

in mind that degenerate states are not found by RLexact. As J2/J1 is increased to 0.175, the

variational model eigenenergies begin to have increasingly larger values than the RLexact eigenen-

ergies. The average difference between the RLexact results and the variational model results for

J2/J1 = 0.175 is 7.8 ± 0.2 % of the RLexact values. The variational model relies on the approxi-

mation J2/J1 � 1, and the above observation shows that when this approximation becomes less

valid, the variational model gives an increasingly looser upper bound.

Other interesting things are also seen from figure 7.5. Most noticeable is that the system seems
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RLexact:
24 spin
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12 spin

(a)

J1 = 19.4 meV

J2 = 0.5 meV
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(b)

J1 = 19.4 meV

J2 = 3.4 meV

Figure 7.5: The ground state and the lowest excited states divided by J2 predicted

from the 12 spin model with Mexact, and the full 24 spin system with the variational

model and RLexact. (a) and (b) show the results for two different values of J2 and

fixed J1 (given to the right of the figure). RLexact results are obtained with Lanczos

algorithm. Lanczos algorithm only finds one state in a degenerate set, and only one

value from the RLexact result is plotted for every degenerate state found by the

variational model. The E/J2 = 0 corresponds to the ground state of non coupled

triangles (J2 = 0 meV). The eigenenergies from the 12 spin model is multiplied with

2, to account for the half number of spins in the 12 spin system.

to have a unique non-degenerate ground state, with a gap of 0.16 J2 to a group of 8 states with

almost the same energy including some degenerate states. From the 10th state we reach a pseudo-

continuum of excited states, where the lowest energy is 0.31 J2 larger than the ground state.

The susceptibility of a system can be calculated from the eigenenergies of the corresponding Hamil-

tonian as according to equation (4.8). The variational model only finds the low energy states, and

so it can only give an estimate of the low temperature region of the susceptibility, where the ther-

mal energy kBT is of a similar size or less than J2. The initial guess was that the triangle model

could describe the high temperature region of a coupled triangle system when J2/J1 is small.

To test the variational model, it is used to predict the low temperature susceptibility of 4 coupled

triangles. The result is compared to the susceptibility of a 12 spin model without periodic bound-

ary condition and with a 4 isolated triangles model, both predicted from complete diagonalization

with Mexact. The comparison is shown in figure 7.6. Three temperature regions are identified

from the figure:

� T > 80 K: The 12 spin model and the 4 isolated triangles model give almost the same result.

The variational model disagree as expected.

� 40 K < T < 80 K all three models agree.

� T < 40 K The variational model and the 12 model are very close. At temperatures below 2

K, the 12 spin model gives an infinite inverse susceptibility, whereas the variational model

does not. The 4 isolated triangle model does as expected not fit the 12 spin system at these

temperatures.
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Figure 7.6: Different models of a 12 spin half boleite cube compared to each other.

The half boleite cube is illustrated in the top right corner, with yellow triangles and

purple inter triangle couplings. The three different models are: ”12 spin model”, which

is based on the eigenvalues of the full 12 spin system found with Mexact. ”Triangle

model - 4 tria.”, which is based on the eigenvalues of 4 isolated triangles found with

Mexact. The ”Variational model - 4 tria.”, which is based on the variational model’s

prediction of the eigenvalues of 4 coupled triangles. The models have J1 = 24.6 meV

and J2 = 1.6 meV. The inserted plot is a zoom-in on low temperatures.

Taking the above into account, a good estimate is that the full 24 spin boleite system can be

described by a combined model:

� T > 50 K: The susceptibility is calculated from eigenenergies of the 8 isolated triangles

model.

� T ≤ 50 K: The susceptibility is calculated from eigenenergies of the variational model used

on 8 coupled triangles.

This combined 24 spin model will in short be denoted the CVT (Combined Variation and Triangle)

model.

A comparison between the boleite susceptibility data and the CVT model is seen in figure 7.7. As

was the case for the 12 spin model, the CVT model gives a susceptibility that is quite different from

the data. The 12 spin model, fitted to the inverse susceptibility data in figure 7.3, and the CVT

model, shown in figure 7.7 give almost the same result both in terms of the qualitative appearance

of the susceptibility curve and exchange constants. The 12 spin model predicts J1 = 24.6±0.2 meV

and J2 = 1.6± 0.1 meV, whereas the CVT model predicts J1 = 24.9± 0.2 meV and J2 = 1.3± 0.1

meV. Looking at the χ2
Red value of the two fits, the CVT model fits the data at T > 3 K slightly

better, with a χ2
Red = 1.6 · 106 compared to the 12 spin model’s χ2

Red = 2.4 · 106. From the χ2
Red-

values and the predictions of the low eigenenergies seen in figure 7.5, the 24 spin CVT model seems

to be the best model, of the ones presented, to account for the boleite system.

In the next section, I will show how a paramagnetic contribution can give rise to the difference

between the data and the models.
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Figure 7.7: The measured inverse susceptibility from the boleite type 2 crystal

K (data) fitted with the CVT model used on the full 24 spin Boleite cube. The

full boleite cube is shown in the top right corner, with yellow triangles and purple

inter triangle couplings. The CVT model consists of a model of 8 isolated triangles

(Triangle model - 8 tria.), which is controlled by J1, and the variational model used

on 8 coupled triangles (Variational model - 8 tria.), which is controlled by J2. The

models are fitted together by keeping the scaling parameter 1/χ0 = (4.86±0.02) · 105

mol/m3 the same. The best fit is found at J1 = 24.9 ± 0.2 meV and J2 = 1.3 ± 0.1

meV. After fitting, the two models are forced to overlap at T = 50 K by adjusting

the triangle model’s scaling parameter. The scaling parameter is adjusted less than

∼ 3 %. The insert plot is a zoom in on low temperatures. The best CVT fit to the

data at T > 3 K has χ2
Red = 1.6 · 106.

7.5 Adjusting for the paramagnetic contribution
Figure 7.3 and 7.7 show that the susceptibility models of the boleite system do not match the

measured susceptibility. An explanation of this mismatch could be that the samples contain a

small amount of paramagnetic spins, coming from disorder in this natural system.

If the samples contain paramagnetic spins as well as interacting spins, the susceptibility curve

should be a combination of the two. A combined susceptibility model based on a combination of

paramagnetic spins and triangles of antiferromagnetic coupled spins are therefore fitted to the data.

The combined model takes the weighted sum of the susceptibility from a triangle of spins χtria,

coupled with J1, and the susceptibility of three paramagnetic spins χpara. Hereby the susceptibility

can be fitted accordingly

χfit = χ0 ((1− ρ)χtria + ρχpara) , (7.25)

where ρ ∈ [0, 1] is the weight factor, and χ0 is the scaling factor. ρ directly gives the percentage of

paramagnetic spins compared to antiferromagnetic triangle spins, since χpara is the susceptibility

of three paramagnetic spins. The model is not taking the J2 coupling into account, and so it is

only valid where kBT � J2.

The data from a sample (in this case crystal K measured at PSI MPMS) is first fitted between

T = 60 K and T = 300 K with a combined model, as shown in figure 7.8. The figure shows
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Figure 7.8: The susceptibility (a) and inverse susceptibility (b) from sample K

measured at PSI MPMS (data). The data is fitted according to equation (7.25)

(combined fit), with J1 = 19.9 meV and ρ = 0.062. The contribution to the combined

model from the single triangle model χ(ρ−1)χtria (Triangle) and paramagnetic model

χ(ρ− 1)χpara (Paramagnetic) are shown in the figures as well.

that it is possible to describe the susceptibility above T = 60 K by adding a small paramagnetic

contribution to the triangle model. In the case with the crystal K presented in figure 7.8, the

data seems describable if 6.2 % of the total number of spins are paramagnetic. From the fit, the

paramagnetic contribution to the susceptibility, χ0ρχpara, can be found and subtracted from the

raw data χ accordingly

χadj = χ− χ0ρχpara. (7.26)

In figure 7.9, χadj is shown together with the triangle contribution to the fit χ0(1− ρ)χtria.
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Figure 7.9: Adjusted data 1/χadj from sample K found according to equation (7.26).

The paramagnetic contribution, which was used to find 1/χadj, is found from fitting

according to equation (7.25). The adjusted data is over plotted with the triangle

contribution to the fit 1/(χ0(1− ρ)χtria) (Triangle), where J1 = 19.9 meV.
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Figure 7.9 shows that at low temperatures T < 2.5 K, the inverse susceptibility data have negative

values. The negative values arise from the subtraction of the paramagnetic contribution. In the

low temperature limit, the paramagnetic contribution as well as the crystal susceptibility data

are very large, but the difference is very small. Due to this, a small misfit of the paramagnetic

contribution gives a negative value of 1/χadj in the low temperature limit.

χadj was found for all measured samples. Appendix C shows how the paramagnetic contribution

was found and subtracted from the raw data for all samples.

7.5.1 Fitting the CVT model to the adjusted data

The boleite crystals were in chapter 6 separated into two different types, showing different sus-

ceptibility. In the following the two types are analyzed separately. The CVT model (described

in the previous section) was attempted fitted to the 1/χadj curves, from all crystals where the

paramagnetic contribution was present (ρ > 0). The CVT model and the 1/χadj curves are shown

for type 1 and type 2 crystals in figure 7.10 and 7.11 respectively. Similarly to what was observed

for crystal K above, the figures show that the subtraction of the paramagnetic contributions fail

at very low temperatures for all crystals, resulting in negative 1/χadj values.
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Figure 7.10: Type 1 crystals’ 1/χadj, found according to equation (7.26), fitted

with the CVT model. Only data from crystals where it was possible to fit the CVT

model are included. The result of the fits are given in table 7.3. The instrument used

to measure the data is given by the colors, where green is PSI PPMS, red is EPFL

MPMS, and blue is PSI MPMS. The red and blue rectangle show different zoom-in

on the low temperature area.
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Figure 7.11: Type 2 crystals’ 1/χadj, found according to equation (7.26), fitted with

the CVT model. The result of the fits are given in table 7.3. The data color reflects

the instrument used to measure the data, where green is PSI PPMS and blue is PSI

MPMS. The red and blue rectangle show different zoom-in on the low temperature

area. Only data from crystals where it was possible to fit the CVT model are included

in this figure. Each of the crystals’ data and fits can be seen separately in appendix

C.

The results of the fits from figure 7.10 and 7.11 are shown in table 7.3. As the table shows, it was

possible to fit the CVT model to the susceptibility curve from all type 2 crystals with ρ > 0. For

type 1 crystals, it was not possible to fit all 1/χadj curves with the CVT model even when ρ > 0.

Both the EPFL MPMS and the PSI MPMS measurement of crystal H showed that the adjusted

data had 1/χadj → 0 when T → 0 K, making it impossible to fit a CVT model with J2 > 0 meV.

The success of the subtraction of the paramagnetic contribution seems closely connected with what

instrument the susceptibility curve was measured at. For 8 out of 9 susceptibility curves measured

at the two PSI instruments, it was possible to find and subtract the paramagnetic contribution

from the data. For the EPFL measurements, it was only 2 out 4 curves where a paramagnetic

contribution were identified. No paramagnetic contribution could be identified in the AU data.
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Type 1 crystals Type 2 crystals

Crystal m

[mg]

ρ J1
[meV]

J2
[meV]

χ2
Red Crystal m

[mg]

ρ J1
[meV]

J2
[meV]

χ2
Red

E‡ 403 0.119 19.6 2.5 0.3 A‡ 355 0.038 20.2 3.3 1.4

H§ 226 0.065 - - - B‡ 424 0.037 18.9 3.3 1.0

N§ 245 0.054 17.7 3.0 4.3 · 106 D‡ 605 0.000 - - -

H1∗ 197 0.015 - - F‡ 287 0.037 20.3 3.2 0.4

E1∗ 137.1 0.124 21.9 2.9 7.3 · 105 K§ 263 0.062 18.2 3.7 1.3 · 105

S1† 76.4 0.000 - - P§ 236 0.048 19.3 3.4 1.4 · 105

C1∗ 118.8 0.000 - - -

P1∗ 9.1 0.000 - - -

M1† 84.2 0.000 - - -

Table 7.3: The results from adjusting the data for the paramagnetic contribution.

ρ is found from fitting χfit from equation (7.25) to the raw susceptibility data. The

paramagnetic contribution is subtracted from the raw data according to equation

(7.26), and χadj is obtained. The χadj data was fitted with CVT model. J1 and J2

are given where the fit converge. and where the fit did not converge is marked with

”-”. The χ2
Red is given for every fit that converged, and is estimated for T > 3 K.

The large difference is commented upon in the main text. The susceptometer used to

measure the data is given by the marker in the crystal name: ‡ - PSI PPMS, § - PSI

MPMS, ∗ - EPFL MPMS, and † - AU PPMS.

In table 7.3 a large difference between the values of χ2
Red is observed. The large difference origi-

nates from the instrument, where the PSI PPMS (crystal E, A, B, and F) has an average error per

measuring point of the inverse susceptibility of δPPMS ≈ 2 · 105 mol/m3, the PSI and EPFL MPMS

(crystal N, H1, K, P) have an average error of δMPMS ≈ 6 · 102 mol/m3. The squared ratio of errors

from the two instruments are Rδ =
(
δPPMS

δMPMS

)2

≈ 1 · 105. Due to the small error on the MPMS data,

even small systematic uncertainties in the χadj data, of which one is the paramagnetic subtraction,

can create a large χ2
Red. These systematic uncertainties will not be studied further. It is however

clear from the consistency between the range of type 2 crystals’ datasets and the models, that the

behavior of the data in figure 7.11 is well described by the model above T = 3 K.

To compare the two different instrument types’ data sets, a new normalized MPMS χ2
Red is defined

as χ2
A = χ2

Red/Rδ.

The procedure with finding the paramagnetic contribution, and subtracting it from the raw data,

seems to work well for the type 2 crystals. As figure 7.11 shows, the CVT model fits the type

2 crystals’ 1/χadj very well above T > 3 K with χ2
A < 1.4, and for the crystals with ρ > 0, the

1/χadj curves are almost identical. For type 1, the procedure seems to be less efficient, as the

CVT model does not fit the data very well. For 2 of the 3 type 1 crystals where it was possible

to fit the CVT model, it resulted in a very large χ2
Red. For crystal N χ2

A = 43 and E χ2
A = 7.3.

The CVT model therefore seems to fit the type 2 crystals’ χadj better than the type 1 crystals’ χadj.

In table 7.4, the results from table 7.3 are averaged, and afterwards compared to the results
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from the CVT model fit to the raw data and the Curie Weiss fit to both the raw data and the

χadj. The CVT model fits χadj much better than the raw data: When the CVT-model was fitted

to the raw data from sample K it revealed a χ2
Red = 1.6 · 106. The CVT model fitted to the χadj

of sample K had χ2
Red = 1.3 · 105.

The average result of the CVT model fitted to the type 2 crystals’ χadj seems to be the best

estimate of the exchange constants in the boleite system. The CVT model predicts, from the type

2 crystals’ χadj curves, that J1 = 19.4 ± 0.4 meV and J2 = 3.4 ± 0.1 meV. The estimate gives a

ratio J2

J1
= 0.175 ± 0.005. This is somewhat on the limit for the assumption that J2

J1
� 1, which

the CVT model relies on, as illustrated in figure 7.5. Even so, the exchange constants found from

fitting the CVT model to the type 2 crystals’ χadj are the best estimate of the actual size of the

exchange constants in boleite.

Taking the average of weight factor of paramagnetic spins ρ from table 7.3 for each of the two

types where the fit succeeded, we find ρ̄1 for type 1 crystals and ρ̄2 for type 2 crystals:

ρ̄1 = 0.09± 0.02,

ρ̄2 = 0.044± 0.005. (7.27)

The average only includes the datasets where the CVT model could be fitted after the subtraction

of the paramagnetic contribution. From the result, it is clear that there is a significant difference

in the amount of paramagnetic spins between type 1 and type 2 crystals.

The two different boleite crystal types have quite similar average coupling constants, as shown

in table 7.4. Combining this with the size of ρ̄1 and ρ̄2, it seems to indicate that the difference

between the two types of crystals is due to a paramagnetic contribution to the susceptibility. This

will be discussed further in chapter 10.

Curie Weiss

model (type 2

crystals - raw

data).

Curie Weiss

model (type 2

crystals -

χadj).

CVT model

(type 2

crystals - raw

data).

CVT model

(type 1

crystals -

χadj).

CVT model

(type 2

crystals -

χadj).

J1 [meV] 36± 2 35± 2 24.9± 0.2 20± 1 19.4± 0.4

J2 [meV] 3.6± 0.1 3.6± 0.4 1.3± 0.1 2.8± 0.2 3.4± 0.1

Table 7.4: Comparison between fit results from five different susceptibility models.

The five models are: The Curie Weiss fit to the raw susceptibility data from the two

type 2 crystals K and P, as shown in figure 6.4. The CVT model (the combined

isolated triangle and variational model) fitted to the raw susceptibility data from the

two type 2 crystals K and P, as shown in figure 7.7. The average result of fitting the

CVT model and the Curie Weiss models to all crystals’ χadj data. χadj is given in

equation (7.26). The results from fitting the CVT model to χadj from type 1 and type

2 crystals are both included. The fit parameters for each of the fits of the crystals’

χadj are given in table 7.3, and the fits are shown in figure 7.10 and 7.11.
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7.6 The flaws of the Curie Weiss model
Table 7.4 shows that there is a discrepancy between the results obtained when fitting the boleite

type 2 crystals’ data with Curie Weiss models and when fitting with the quantum mechanical

models.

The problem is twofold, and the result is that the estimate of the coupling strength from the Curie

Weiss lines is wrong, since the assumption TN = −ΘCW is not valid, which is a requirement to

use equation (4.3). In the following the ordering temperature TN will be used for the transition

temperature where the small 12 spin and 3 spin system is undergoing a transition into their low

energy states. TN is calculated according to the prediction of the ordering temperature in long

range ordering systems from equation (4.3) so that TN =
∑
i Ji

4kB
.

The first problem is that the fits are made too close to TN . The problem is illustrated in figure

7.12a, where the expected inverse susceptibility from a triangle of spins is fitted with a Curie

Weiss line both at extremely high temperatures 40 TN > T > 42 TN and close to the transition

temperature 2 TN > T > 3 TN . It is clearly seen from the figure that the inverse susceptibility does

not follow a straight Curie Weiss line all the way from TN < T < 40 TN , and that the deviation

becomes significant below 3 TN . The closer to TN the Curie Weiss line is fitted to the data, the

larger −ΘCW becomes, and thereby also the estimated exchange constant. When fitting a Curie

Weiss line to temperature of 2TN > T > 3 TN , the result is that the Curie Weiss estimate of

the exchange constant is around twice the size of what the actual exchange constant is. It is also

seen that even when fitting the Curie Weiss model to extremely large temperatures, the estimated

coupling strength still deviates around 5% from the actual exchange constant used in the model.

The second problem is the assumption that the full boleite spin system is in a paramagnetic state in

the region between the two transition temperatures. The behavior of the low temperature inverse

susceptibility of the spin triangles is like a paramagnet, but unlike a normal S = 1/2 paramagnet

the triangles still have 4 degrees of freedom. Additionally, the Ŝ+
3 Ŝ
−
4 inter triangle term does not

behave as the Ŝ+
1 Ŝ
−
2 term for free spins.

Combined, the two problems result in a miscalculation of the exchange constants J2 and J1 from

the Curie Weiss models. The size of the problem is illustrated in figure 7.12b, where Curie Weiss

lines are fitted to a 12 spin model like the model presented in figure 7.1c. The exchange constants

are found from the Curie Weiss fits in the same way as they were for the boleite system, where

they were calculated according to equation (6.2). The result is that the estimated J1 is twice as

large as the J1 used in the model, which corresponds with what was found for the single triangle

model when fitted to close to TN . The estimated J2 coupling is reasonably close to the models

actual J2.

Using this knowledge, it is likely that the results from equation (6.3) are wrong, and that the Curie

Weiss model overestimates J1 by a factor of ∼ 2. This is indeed what is observed in e.g. table 7.4.
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Figure 7.12: Discrepancy between the actual coupling constants, and the ones found

from Curie Weiss fits when fitted to the expected inverse susceptibility from a system

with spin triangles. The models’ parameters are given in the legends. The fits’ Curie

Weiss temperature ΘCW and the exchange constant calculated from ΘCW are given in

the inserted text. The exchange constants are calculated according to equation (6.2).

(a) A single triangle model as function of temperature normalized to TN = J1

2kB
=

116.05 K, fitted with a Curie Weiss line at extreme temperatures and close to TN . A

zoom in on the temperature region −2.5 TN < T < 3.5 TN is shown in the inserted

figure. (b) Curie Weiss fits to low and high temperature regions (given in legends) of

a 12 spin model.



CHAPTER 8

Other bulk experiments

The DC-susceptibility experiments revealed a clear magnetic signal, which in the previous chapter

showed to be describable with the variational model. This chapter will in brief introduce the results

and models of other bulk measurement techniques.

8.1 The heat capacity

The heat capacity at constant pressure CP of the boleite type 2 crystal M1 was measured at the

AU PPMS. The temperature normalized heat capacity CP (T )/T from crystal M1 is shown in figure

8.1. The thermal expansion of boleite is assumed small enough that CV ≈ CP . The heat capacity

should hence be describable with the model CV = CLat + CMag, from equation (4.10).

The lattice heat capacity CLat can be calculated from equation (4.11). The magnetic heat capacity

is calculated using equation (4.14). To minimize the amount of variables, the magnetic contribution

is calculated from a model which combines the heat capacity from the 8 isolated triangles and the

variational model with fixed J1 = 19.4 meV and J2 = 3.4 meV. The fitted model therefore only

needs 3 parameters; two scaling parameters (a, b) and the Debye temperature ΘD, so that

CV = aCLat(ΘD) + bCMag. (8.1)

The importance of the scaling parameters has not been assessed. The model is shown fitted to the

data in figure 8.1a, and both model and data show a clear upturn with decreasing temperature in

the measured CP /T at low temperatures. Debye’s model of the heat capacity (equation (4.11)),

predicts that the lattice heat capacity normalized with temperature CLat/T at low temperature

should follow a T 2 behavior. An upturn with decreasing temperature is therefore a clear indication

of a magnetic contribution to the heat capacity of the crystal.

In the figure, the CV model seems to show a similar pattern as the data, but it has not been able

to make a complete fit. The model shows that the magnetic contribution to the heat capacity is

very small compared to the lattice contribution, except at low temperatures. The magnetic heat

capacity causes a significant increase in the combined heat capacity as the temperature is lowered.

It is impossible to find the exchange constants from a single heat capacity measurement on a boleite

crystal, but it is possible to get some information of the magnetic system from the heat capacity.

Figure 8.1b shows that the increase in CMag/T is caused by the ordering of the 24 spin system at

low temperature. The temperature normalized heat capacity from a spin triangle decreases with

decreasing temperature at T < 100 K, whereas the temperature normalized heat capacity of the 8

coupled triangles, predicted by the variational model, increases with decreasing temperature.

As a consistency check, figure 8.1b also shows the predicted temperature normalized heat capacity

from the 12 spin model presented in the previous chapter in figure 7.1c. The combined result

of the variational model and the triangle model predicts a similar heat capacity normalized with

temperature as the 12 spin model at T > 10 K as is clearly seen from the figure. There is a small

discrepancy between the variational model and the 12 spin model at T < 10 K. The observation

is consistent with the observed behavior of the susceptibility calculated from the three models,

presented in chapter 7.

71
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Figure 8.1: The heat capacity of boleite. (a) The measured heat capacity from

crystal M1 (Data) fitted with a heat capacity model (Combined) according to equation

(8.1). The magnetic heat capacity model (Magnetic) is calculated with exchange

constants fixed at J1 = 19.4 meV and J2 = 3.4 meV. The lattice contribution (Lattice)

is calculate from the Debye model in equation (4.11), and the best fit shows ΘD =

166.8 K. The scaling parameters of the shown fit are a = 0.04 and b = 7.9. (b) The

magnetic heat capacity contribution CMag separated into its two components, plotted

together with the 12 spin model’s prediction of the heat capacity (12 spin model).

The magnetic model is a combined model of a triangle model (Triangle model) and

the variational model (Variational model). All models are normalized to the number

of spins in them. The insert is a zoom-in on small CMag/T .

8.2 The magnetization as function of field

Crystal E1’s and P1’s magnetization as function of magnetic field were measured on the EPFL

MPMS at T = 1.5 K. E1 is a type 1 crystal, and P1 is a type 2 crystal. The results of the exper-

iments are shown together with the result from the variational model with J2 = 3.4 meV and a

spin triangle model with J1 = 19.4 meV in figures 8.2 and 8.3. Due to the small variation in the

magnetization data compared to a straight line, the comparison between the models and crystal

magnetization is made in three steps: First a straight line is fitted to the model and crystal data.

Secondly, the straight line is subtracted from the data. Last, the residual of the model data is

scaled to the residual of the crystal data.

It was not possible to fit the data properly with the models, but a clear tendency is seen from the

figures. The type 1 crystal’s magnetization curve follows a behavior around a straight line which

resembles the one seen from the triangle model. It should be mentioned that at temperatures of 1.5

K and an external field |B| ≤ 7.9 T, the magnetization curve of a triangle model, with J1 = 19.4

meV, and a paramagnetic model are completely alike in shape.

The type 2 crystal’s magnetization curve seems to behave more like the variational model’s mag-

netization curve. The variational model shows a large deviation from the data at |B| > 4 T. The

deviation could originate from a paramagnetic contribution to the magnetization curve of the type

2 crystal, similar to the paramagnetic contribution seen in the susceptibility data.
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From the magnetization as function of magnetic field at T = 1.5 K, it seems that ordering of

the 24 spins is suppressed in the type 1 crystals. The type 2 crystal’s magnetization shows an

ordering, but also a contribution from what might be paramagnetic spins. The observation is in

correspondence with the observed behavior from the susceptibility in chapter 7.
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Figure 8.2: Magnetization as function of field at T = 1.5 K of the type 1 crystal

E1 compared to the expected magnetization of the 24 spin variational model with

J2 = 3.4 meV, and a spin triangle model with J2 = 19.4 meV. (a-c) have a common

x-axis, and the legend is given on top of the figures. (a-b) The raw magnetization

data and theoretical magnetization models fitted with straight lines f(H) = aH.

(c) Difference between magnetization curve and fitted line ∆M = M − f(H). The

theoretical models are scaled to fit the data.

8.3 The AC-susceptibility.

Dilution fridge cooling was used to measure the magnetic susceptibility down to temperatures of

T ∼ 0.29 K. It has only been possible, within the time frame of this project, to have one successful

measurements at the EPFL AC-susceptometer at dilution fridge temperatures. The measured

crystal was the type 1 crystal H1. Crystal H1 showed in the previous chapter to behave differently

from most other crystals, since it was not possible to fit the CVT model even after the paramagnetic

contribution was removed. In this section, the amount of impure defect spins (ie. paramagnetic

spins) is found from the AC susceptometers dilution fridge data. The procedure to do this has

been tried on other systems like Spangolite in reference [52].

I will in the following call crystal H1 susceptibility measured on the MPMS at EPFL, for the

MPMS susceptibility. The AC susceptibility measured at dilution fridge temperatures will be

called AC-dilution susceptibility. The MPMS susceptibility is measured within the temperature

range 1.5 K < T < 300 K. The AC-dilution susceptibility is measured within the temperature

range 0.3 K < T < 8 K. As mentioned in chapter 4, the AC-susceptometer finds the susceptibility
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Figure 8.3: Magnetization as function of field at T = 1.5 K of the type 2 crystal

P1 compared to the expected magnetization of the 24 spin variational model with

J2 = 3.4 meV, and a spin triangle model with J2 = 19.4 meV. (a-c) have a common

x-axis, and the legend is given on top of the figures. (a-b) The raw magnetization

data and theoretical magnetization models fitted with straight lines f(H) = aH.

(c) Difference between magnetization curve and fitted line ∆M = M − f(H). The

theoretical models are scaled to fit the data.

by measuring the change in magnetization. This results in the AC-dilution susceptibility is scaled

and offset differently from the MPMS susceptibility.

Using the exact same approach as in reference [52], the AC-dilution susceptibility is scaled to fit

the MPMS data in their overlapping temperature region, T = 1.5 K < T < 8 K. The scaling can

be seen in figure 8.4a. The scaling is performed by first fitting a straight line to the inverse of the

MPMS susceptibility. The inverse of the AC-dilution susceptibility is forced to fit this straight line

by subtracting a constant background, then multiplying a scaling parameter, and last offsetting

the data.

The combined inverse susceptibility data is covering the entire range 0.3 K < T < 300 K. The

scaling of the dilution data works reasonably well, but the correspondence between the two datasets

is not perfect. The combined inverse susceptibility shows a kink at T ∼ 2.5 K, and below this

kink a linear dependency of temperature is observed, with 1/χ → 0 for T → 0. This behavior is

sometimes referred to as a Curie tail. A curie tail in the susceptibility can be caused by defect

spins.

The combined data’s Curie tail is fitted with a Curie Weiss line (equation (4.6)), as shown in figure

8.4b. The best fit has a Curie Weiss temperature of ΘCW = 0.29±0.03 K, which indicates that the

defect spins are slightly ferromagnetic. This could, however, be due to the scaling of the dilution

fridge data. Using equation (4.5), the number of participating magnetic spins per unit volume,

that causes the Curie tail, is found to be N = 3.0± 0.1. Comparing this to the expected number
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Figure 8.4: Inverse susceptibility from crystal H1 measured on the AC-

suscpetometer at temperatures 0.3 K < T < 8 K (AC-dilution) and MPMS suscepti-

bility measured at 1.5 K < T < 300 K. Both experiments were performed at EPFL.

The inserted plots are zoom-ins on low temperatures. (a) The inverse AC-dilution

susceptibility is scaled to fit the inverse MPMS susceptibility in the overlapping tem-

perature region, as explained in the main text. (b) The inverse of the combined

AC-dilution and MPMS susceptibility (red points) is fitted with a Curie Weiss line

(black line) below T < 2.5 K, according to equation (4.6). The parameters of the

fitted line are C = (1.39± 0.04) · 10−5 m3/mol and ΘCW = 0.29± 0.03 K.

of magnetic spins in the boleite unit cell, ie. 24, the ratio of defect spins to the total spins is

ρD = 0.123± 0.004. (8.2)

The small error comes from the error on the fit to the adjusted dilution data, and it does not

include possible systematic errors from fitting the dilution data to the MPMS data. ρD is almost

30 % larger than the average amount of paramagnetic spins found in the preceding chapter where

the type 1 crystals ρ̄1 = 0.09± 0.02. ρD is also much larger than the ratio of paramagnetic spins

in crystal H1 ρH1 = 0.015, found by fitting a combined paramagnetic and triangle model in the

preceding chapter.

The Curie Weiss line found from the dilution data can be subtracted from the raw data, as done for

the paramagnetic contribution in the previous chapters. The resulting defect-spins-adjusted data

can be seen in figure 8.5. The defect-spins-adjusted data can afterwards be fitted with the CVT

model. In the figure, the CVT model is tried fitted with fixed J1 = 19.4 meV and J2 = 3.4 meV.

The fit is very bad with a χ2
Red = 1.0 · 108, which is 1000 times larger than the fit to 1/χadj. The

best fit to the defect-spins-adjusted data is found at J1 = 15.4 meV and J2 = 1.8 meV, which is

significantly different from the results seen in the previous chapter. The CVT model is not fitting

the high temperature susceptibility very well, and the fit to the MPMS data at 3 K < T < 300

K has χ2
Red = 3.7 · 105. This is 3 times larger than the χ2

Red from comparable results from the

CVT model fit to the type 2 crystals’ 1/χadj. At temperatures T < 100 K, the fit is decent, but

as it was the case with the subtraction of paramagnetic contribution in the previous chapter, the

subtraction result in a negative susceptibility values.
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Figure 8.5: The inverse of the defect-spin-corrected susceptibility (red). The defect-

spin-corrected susceptibility is found from subtracting the Curie Weiss line, with

C = (1.39 ± 0.04) · 10−5 m3/mol and ΘCW = 0.29 ± 0.03 K from the combined

AC-dilution and MPMS susceptibility from figure 8.4. The inverse of the defect-spin-

corrected susceptibility is fitted with the CVT model (black). The parameters of

the best fit result is J1 = 15.4 meV and J2 = 1.8 meV. The best fit has χ2
Red =

3.7 · 105. The CVT model is also plotted with fixed J1 = 19.4 meV and J2 = 3.4 meV

(blue). The fixed CVT model has χ2
Red = 1.0 · 108. The inserted plot is a zoom-in

on the low temperature susceptibility. The χ2
Red is in both cases calculated from the

correspondence with the EPFL MPMS data 3 K < T < 300 K.



CHAPTER 9

Neutron scattering results

To further investigate the magnetic structure in boleite, a series of neutron scattering experiments

were conducted. The aim was to identify elastic and inelastic structures, which could confirm

our theories on the boleite system. This chapter will show the results obtained from neutron

experiments, as well as introducing theoretical estimates of the scattering from boleite.

9.1 The expected magnitude of the neutron signal

It is expected that the magnetic scattering from boleite is very weak compared to the nuclear

incoherent scattering due to the large amount of hydrogen in boleitef.

The expected total nuclear incoherent scattering cross section of boleite is calculated to be σinc,tot =

4285.2 · 10−24 cm2 using equation (5.23) and table 9.1. The magnetic scattering cross section is

found from equation (5.48) and is σmag = 43.8 · 10−24 cm2. The ratio between the magnetic signal

and the incoherent background is

σmag

σinc,tot
= 0.010. (9.1)

This shows that the magnetic scattering from boleite should be very weak.

9.2 Neutron experiments

A large variety of neutron scattering experiments were conducted to try to detect a signal arising

from magnetic ordering and excitations in boleite. Temperature dependence of the elastic scat-

tering was measured on the triple axis spectrometer RITA-II and IN3, as we looked for possible

magnetic ordering. The magnetic component of the total diffraction signal was extracted with

Element Number in boleite’s

unit cell

σinc [10−24 cm2] σcoh [10−24 cm2]

H 48 82.03 1.7568

O 48 0.008 4.232

Cl 62 5.3 11.5257

K 1 0.27 1.69

Cu 24 0.55 7.485

Ag 9 0.58 4.407

Pb 26 0.003 11.115

Table 9.1: The incoherent σinc and coherent σcoh neutron scattering cross section

from elements in boleite. The elements’ cross sections are from reference [35].

77
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(a) (b)
Figure 9.1: Pictures of the sample holders used in the neutron scattering exper-

iments. (a) Sample holder 1: The 6 boleite crystals are glued to the sides of two

aluminum bars. (b) Sample holder 2: The 7 boleite crystals are suspended from the

”roof” and ”floor” of the sample holder, and held by flat aluminum wires squeezed

around the crystals. The ”roof” and ”floor” are kept apart by 3 aluminum pillars.

Sheets of cadmium cover the top and bottom of the sample holder in the picture.

polarized neutron scattering on D7. RITA-II was also used to examine the magnetic field depen-

dence of elastic and low energy inelastic scattering. Furthermore, the temperature dependence of

the inelastic scattering was measured using the triple axis spectrometer IN8 and the time of flight

spectrometer IN4 to look for high energy magnetic excitations arising from excited states of the

triangles. Descriptions of the instruments are given in chapter 5. All neutron scattering intensities

will be given in arb. unit.

9.2.1 Constructing the sample

To increase the scattering intensity, type 2 crystals were carefully coaligned along (h 0 0) and (0

k k). Two different aluminum sample holders were used:

� Sample holder 1 contains 6 crystals (A, B, D, F, K, and P) with a total crystal mass of 2165.

Sample holder 1 was used at RITA-II measurements of the elastic scattering from boleite.

� Sample holder 2 contains 7 crystals (A, B, D, F, K, O, and P) with a total crystal mass of

2474 mg. Sample holder 2 was used at all measurements at ILL (IN3, IN4, IN8, and D7),

and RITA-II measurements of the behavior of elastic and low energy inelastic scattering

from boleite in an external magnetic field.

The sample holders are shown in figure 9.1. The construction of the sample holders and coalignment

of the crystals were carried out by Sonja Holm and Kenneth Lønbæk before the start of this master

thesis project.
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Figure 9.2: The expected S(q, ω) from 8 isolated triangles of spins, arranged as in

boleite’s truncated copper cube, in zero field and T = 0 K. (a) Surface plot of the

elastic structure factor S(q, 0) as function of (h k k). The inelastic structure factor

is similarly shaped but with a zero scattering intensity as minimum. (b) Elastic

and inelastic structure factor along (h 0 0). The inelastic scattering should be at

∆E = 3
2J1

9.3 The elastic structure and low energy excitations

The magnetic structure factor S(q, ω) can be calculated from the eigenstates of a system, according

to equation (5.37) and (5.38). The structure factor is a good measure for the total scattering cross

section since d2σ
dΩdE |magn. ∝ S(q, ω) according to equation (5.35).

Mexact can be used to calculate the eigenstates from a given system. I constructed an algorithm

which could calculate S(q, ω) for an isolated triangle system in an external magnetic field applied

along the ẑ-direction, at T = 0 K, using equation (5.39) to (5.44). The algorithm was used to

calculate S(q, ω) for a system of 8 isolated triangles, with lattice parameters as the 8 triangles in

the truncated boleite cube. The resulting S(q, ω) is shown in figure 9.2. The length scale of the

elastic S(q, 0) is of the order of (6 0 0) r.l.u. It has not been possible to calculate the S(q, ω) of the

entire 24 spin system within the time frame of this project. However, it is possible to estimate the

length scale of the scattering pattern from the size of the boleite copper cube. A boleite copper

cube has side length 7.15 Å compared to a unit cell of 15.288 Å, which should mean that the

scattering should be periodic function along (h 0 0) of reciprocal length scale (∼ 2 0 0) r.l.u.

Elastic neutron scattering from boleite, measured at RITA-II, revealed a bulge shape scattering

intensity along the (h 0 0) direction, as shown in figure 9.3a. The bulge shape pattern found on

RITA-II decreases as temperature is increased from T = 1.5 K to T = 300 K. On IN3, temperature

scans were made for different points in q-space, revealing a general trend of decreased elastic

scattering intensity as the temperature was increased, as shown in figure 9.3b. A bulge shape is

also seen in the elastic scattering measured at IN8, as shown in figure 9.4.

Magnetic scattering should decrease with increasing temperature, and at first the shape of the

bulge shape in RITA-II data resembles the expected shape of the magnetic structure factor shown

in figure 9.2b. The center of the bulge shape found at RITA-II is however placed at (5 0 0) r.l.u.

whereas the theoretical estimate is that the peak intensity should be at (3.1 0 0) r.l.u. The bulge
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shape has not been measured beyond (6 0 0) r.l.u., and it is therefore not possible to determine if

it is periodic. If it is periodic, its length scale seems to be too large to be magnetic according to

our understanding of the system. The total magnetic cross section is predicted to be around 1 %

of the incoherent background, and hence, the change in intensity as function of temperature seen

in both RITA-II and IN3 data is also too large to be of magnetic origin.

The bulge shapes seen in the IN8 data seem asymmetric around the (h 0 0) and (0 k k) lines. In a

cubic lattice, it is expected that magnetic scattering should be symmetric around the (h 0 0) and

(0 k k) lines, as the theoretical model in figure 9.2a also predicts.

We did not expect long range magnetic order to occur due to the long distance between the

magnetic unit cells in boleite. The neutron data do not contradict this theory, as no magnetic

Bragg peaks are identified in the elastic measurements.
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Figure 9.3: Elastic neutron scattering intensity from boleite. (a) Scattering intensity

as function of (h 0 0) for T = 1.5 K (blue) and T = 300 K (red) measured at RITA-II.

Data from all 9 analyzer blades have been combined, the Bragg reflections have been

removed, and the data have been binned. (b) Temperature dependence of scattering

intensity at 5 different points in reciprocal space (legends), measured on IN3.

Figure 9.4: Elastic scattering at T = 1.5 K measured on IN8. The color scale is

shown in the right colorbar, where the intensity is given in arbitrary units. The red

grid marks integer values of (h 0 0) and (0 k k) in r.l.u. The figure shows clear

structural Bragg peaks. The two large intensity rings are aluminum powder rings

from the sample environment. The clear pattern of two large regions with higher

intensity is investigated in the polarization analysis section.
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Figure 9.5: The magnetic scattering component from boleite. The intensity is

normalized to peak intensity of the NSI scattering component, for T = 1.5 K. The

magnetic and NSI scattering components are separated with polarized neutron anal-

ysis on D7. (a) Magnetic scattering component as function og (h k k), at T = 1.5

K. (b) Powder average of magnetic scattering component of the total scattering from

boleite, at T = 1.5 K (blue) and T = 300 K (red).

9.4 Polarization analysis

Using XYZ polarization analysis on D7, the magnetic, nuclear coherent, and NSI (Nuclear Spin

Incoherent) components can be separated from the total energy integrated neutron scattering

intensity. The magnetic neutron scattering component does not show any structures in (h k k), as

shown for T = 1.5 K in figure 9.5a. Figure 9.5b shows that even when taking the powder average of

the magnetic component there is no clear difference between T = 1.5 K and T = 300 K. Integrating

the magnetic component across q, we are able to detect a total magnetic cross section significant

larger than zero at T = 1.5 K of 6 ± 2 arb. unit. The total magnetic cross section increase with

temperature to around 15± 3 arb. unit. at T = 300 K.

The NSI scattering component was found to be much larger than the magnetic. We find that the

total energy and q integrated magnetic cross section is only 0.10± 0.05 % of the total energy and

q integrated NSI cross section. From equation (9.1), the expectation was that the total energy and

q integrated magnetic cross section should be 1.0 % of the total energy and q integrated nuclear

incoherent scattering cross section. Hence, the measured ratio between magnetic and NSI is 1
10 of

this.

A pattern of low and high NSI intensities at T = 1.5 K in (h k k) is visible in figure 9.6a. A similar

pattern was found between Bragg reflections in elastic scattering intensity from boleite measured

on IN8 as seen in figure 9.4. When the temperature is increased to T = 300 K, the NSI pattern of

low and high intensity becomes less clear as seen in figure 9.6b.

We suggest that the pattern arises from absorption by the sample holder. Sample holder 2 was

used for both the experiments on IN8 and D7, and it has three aluminum pillars in the scattering

plane, as seen in figure 9.1b. The aluminum pillars absorb some of the incoming and outgoing

neutrons from the sample. Figure 9.6(a-b) shows an illustration of how a single pillar’s absorption



82 CHAPTER 9. NEUTRON SCATTERING RESULTS

(a) (b)

(h 0 0) [r.l.u.]
0.0 2.0 4.0 6.0

I
[a
rb
.
u
n
it
]

  0.0 

  0.2 

  0.4 

  0.6 

(0 k k) [r.l.u.]
0.0 1.0 2.0 3.0 4.0

I
[a
rb
.
u
n
it
]

  0.0 

  0.2 

  0.4 

  0.6 

(c) (d)

Figure 9.6: The NSI neutron scattering component separated from the total scatter-

ing from boleite by polarization analysis on D7. (a-b) Color plot of energy integrated

NSI neutron scattering intensity at T = 1.5 K (a) and T = 300 K (b). The color

scale, shown to the right of the plots, are given in arbitrary units. The overlayed

colored and curved lines represent the position in (h k k) of a single sample holder

pillar’s absorption of incoming (red) and outgoing (purple) neutrons from the center

of the sample holder. The overlayed straight black lines show the area in q-space of

the 1D plot of the NSI scattering intensity along (h 0 0), shown in (c), and (0 k k),

shown in (d). The NSI scattering intensity in (c-d) is binned and shown for both

T = 1.5 K (blue) and T = 300 K (red).

of incoming and outgoing neutrons from the center of the sample holder would affect the detector

signal. The absorption lines of a single pillar seem to follow the same kind of curving trend as the

low intensity pattern in the NSI scattering component. It is difficult to model the exact absorption

pattern from the pillars since multiple parameters contribute to the total absorption: As example

one would have to know the exact position and shape of the 7 crystals and aluminum wires squeezed

around them, the exact width of the beam, the width of the pillars, and the absorption cross section

of all these things.

The NSI scattering components of the total scattering along (h 0 0) and (0 k k) for low and high

temperatures are shown in figure 9.6(c-d). The figures reveal that the energy integrated NSI signal

can give rise to larger signal at T = 1.5 K than at T = 300 K. This is most clearly seen in the
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Figure 9.7: Expected S(q, ω), from the 8 isolated spin triangles in the truncated

boleite cube, in a field applied along the ẑ-direction, at T = 0 K. (a) S(q, ω) at B = 8

T as function of (h 0 0) and ∆E. (b) Elastic scattering S(q) along (h 0 0) at two

different field strengths, given in the legends.

NSI component along (0 k k) in figure 9.6c, where the T = 300 K is largest for small q, and the

T = 1.5 K is largest above k = 3.5 r.l.u.

It has not been possible to come up with an explanation of the temperature dependence of the

NSI scattering observed in D7, as well as the temperature of the elastic signal from RITA-II. The

shape of NSI scattering should be different in the elastic scattering signal measured at RITA-II,

since different sample holders were used. This hypothesis was not properly tested by measuring

the scattering from sample holder 2 on RITA-II.

9.4.1 Applying an external field

Figure 9.7 shows the expected S(q, ω) from the 8 isolated triangles in a boleite configuration when

an external field is applied at T = 0 K. The degenerate ground state is split into two states by the

external field, and the excited quadruplet is spit into 4, where only 3 states are reachable for the

neutron scattering from the ground state. Magnetic scattering only happens between states where

the difference in magnetization is |∆m| ≤ 1 according to conservation of angular momentum. From

the triangle model, it is expected that the elastic signal will decrease significantly, since the applied

field breaks the degeneracy and hence moves scattering from the elastic line, and into the inelastic

spectrum.

It has not been possible to calculate S(q, ω) from the variational model. Instead, figure 9.8 shows

how the variational model’s 100 lowest eigenenergies of each of the magnetization subspaces will

be affected by an external field. The result shows that for J2 = 3.4 meV, a field of B ∼ 12 T is

required for the ground state to switch from the m = 0 subspace to the m = 1 subspace. It is

therefore, from this model, not expected to see any difference in scattering signal when the external

field is changed from B = 0 T to B = 7.9 T.

The two boleite models’ validity was tested by applying an external magnetic field to the boleite
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Figure 9.8: The 100 lowest eigenenergies of each of the magnetization subspaces as

function of magnetic field, according to the variational model.

sample. The elastic signal was measured at (h k k)=(3.1 0 0) r.l.u. at RITA-II as the external

field was change from B = 0 T to B = 7.9 T. No change was found in the elastic line.

To test if possible low energy magnetic excitations were present, and affected by an external field,

the inelastic spectrum was measured at different field strengths. The low energy inelastic signal

was measured at (h k k)=(3.5 0 0) r.l.u. between ∆E = 0 meV and ∆E = 2.1 meV. We expect

that no phonons are present at the Brillouin zone boundary within this energy range, since the

lowest energy acoustic phonon is believed to be at ∆E = 2.15± 0.06 meV. The phonon dispersion

relation was measuring around the (0 4 4) Bragg peak. The mapping of the phonon dispersion

relation is shown in appendix D.

No significant difference was found in the inelastic scattering intensity between B = 0 T and

B = 7.9 T, as shown in figure 9.9. A peak in intensity with center at 0.89 ± 0.03 meV is seen

at both field strengths. The peak is placed slightly differently from what we would expect from

the energy levels predicted by the variational model, with J2 = 3.4 meV, as seen in figure 9.8.

According to the variational model, the 4 lowest lying energy levels are placed between E = 0.56

meV and E = 0.66 meV. The peaks independence of field could be justified from the variational

model, as seen from its predictions of the low energy states in figure 9.8. The peak is most likely not

a phonon, as acoustic phonons are predicted to be located above ∆E > 2.15 meV, at a Brillouin

zone boundary. Unfortunately, the measurement was not repeated at (-3.5 0 0) r.l.u. to see if the

signal was also present here, which would be expected from the cubic structure of boleite.

The peak seen in figure 9.9 comes from a strong signal detected in 2 of the 9 analyzer blades

in RITA-II detection system. This shows that the peak is localized in reciprocal space. This is

not likely to be magnetic, since we expect broad shaped scattering patterns from the inelastic

scattering as well as the elastic scattering.
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Figure 9.9: Inelastic neutron data measured at RITA-II along (h 0 0) direction for

B = 0 T (purple) and B = 7.9 T (green). All RITA-II’s 9 analyzer blades intensity are

summed. The instrument resolution tail from the elastic line is visible at ∆E ≤ 0.5

meV. The insert plot shows the raw scattering intensity at B = 0 T from the 9

analyzer blades as function of energy in a color plot. Each analyzer blade has its own

position in (h 0 0). Notice how the bulge shape, seen in the 1D data, only appears in

analyzer blade 5 and 6.

9.5 The search for high energy excitations

With an exchange constant J1 = 19.4 meV, an inelastic scattering signal should be placed around

∆E = 19.6 meV ·
3
2 = 29.1 meV, due to the high energy excitation, according to the 8 isolated

triangles model. The inelastic scattering signal from IN4 is seen in figure 9.10. A range of bands of

high intensity scattering can be seen in the figure. Around 29.1 meV, there are two high intensity

bands, one at ∼ 27 meV and one at ∼ 33 meV. The intensity of the bands are increasing with

q. Magnetic scattering would decrease with q, due to the magnetic form factor, whereas phonons

scattering intensity increase as q2. It is therefore likely that the observed high intensity scattering

bands are phonons. Unfortunately, the phonons are dispersed along the entire expected energy

range of the high energy magnetic excitations. As the temperature is increased to T = 250 K, it

is clear from figure 9.10 that the phonon scattering intensity is broadened in energy. This means

that a simple subtraction of high and low temperature shows an uneven signal, which effectively

prohibited us from identifying any magnetic excitations in the high energy region.
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Figure 9.10: Inelastic neutron scattering from boleite measured at IN4. The sample

was rotated 360 degree while measuring. Color plot of inelastic scattering from boleite

at T = 1.5 K (a) and T = 250 K (b). The color scales shown to the right of the

plots are in arbitrary units. Black lines mark 1D cut through. (c) 1D cut of IN4

data at Q = 3 ± 0.4 Å for T = 1.5 K (blue) and T = 250 K (red). The difference

∆I = IT=1.5 K − IT=250 K is shown on right axis (purple).



CHAPTER 10

Discussion

In chapter 6 and 7, it was shown that the magnetic susceptibility measured on boleite could be

explained by an isolated magnetic unit cell formed as a truncated cube of 8 coupled copper ion

triangles. The system was found to have two different exchange coupling strengths: J1 = 19.4±0.4

meV, between the copper ions in the triangles, and J2 = 3.4 ± 0.1 meV, between the copper

ions on neighboring triangles. The large difference between the exchange constants leads to the

interpretation that boleite at kBT � J1 behaves as a collection of paramagnetic spins. When the

temperature is decreased to J2 < kBT < J1, the spins are bound in isolated triangle ground states.

At kBT � J2, the 24 spin system orders into a unique singlet ground state.

However, a lot of questions are left unanswered. In this chapter, I will discuss the offset of the

susceptibility data, the two different boleite types, the paramagnetic spins, and the missing neutron

scattering results. In the end of the chapter, I will define the concept of a quantum spin droplet,

and discuss how it relates to boleite.

10.1 The offset in the susceptibility data

The susceptibility measurements on the boleite crystals showed an inconsistent offset, as seen in

figure 6.3. To quantify the offset, I define

χmax = 〈χ(T > 285K)〉, (10.1)

where 〈χ(T > 285K)〉 is the mean of the susceptibility at 285 K < T < 300 K. Additionally, a

Curie Weiss line is fitted to the inverse susceptibility at 180 K < T < 300 K, for all crystals, and

the Curie Weiss temperature ΘCW is found for each Curie Weiss line. In figure 10.1 1/χmax and

−1/ΘCW are shown as function of the crystal mass.

Figure 10.1 shows that there is a clear correlation between 1/χmax and the mass. A similar,

although not as clear, correlation is seen between −1/ΘCW and the mass. The susceptibility is

mass normalized, and 1/χmax should therefore be constant as function of mass. −1/ΘCW should

not depended on the mass normalization and should be the same for all measurements.

The different instruments allowed for different size of samples, and hence the mass is correlated

with the instrument used. It has not been possible to examine how much the instrument affects the

measurement. It is however clear that the small mass samples measured at the EPFL MSPM and

AU PPMS have significant smaller 1/χmax than the samples measured at PSI PPMS and MPMS.

The small mass samples are typically powder or small pieces obtained from the surface of the

crystals. Assuming that the offset is an effect originating from the crystal, and not an instrument

artifact, a possible explanation could be that small pieces of different crystal forms are found on

the surface of the crystal. A general malfunction of the MPMS at EPFL and the PPMS at AU

could also be the reason. We know from the AU instrument-responsible that it was indeed the

case for some AU measurements (E2, C2, and C3). It could also be a systematic problem with

the PPMS and MPMS instruments when used on small mass boleite sample that causes the offset.

To examine the mass correlation further, measurements of a large boleite crystals should be done

together with powder and small pieces from the same crystal at the MPMS at PSI.
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Figure 10.1: Mass dependence of the susceptibility. (a) Mean inverse susceptibility

at 285 K < T < 300 K, χ−1
max, defined in equation 10.1, as function of mass. (b) The

negative inverse Curie Weiss temperature −Θ−1
CW of a Curie Weiss line fitted to the

inverse susceptibility at 180 K < T < 300 K K, as function of mass.

10.2 The two boleite types and the paramagnetic spins

In chapter 6, two types of boleite crystals were defined. The definition of crystal types separates

the crystals by a kink in the susceptibility around T ∼ 5 K. In this section, I will look into the

behavior of the two crystal types and the paramagnetic contribution as seen from the bulk mea-

surements.

We saw in chapter 7 that the missing kink could be explained by a suppression from a paramag-

netic behavior. When this behavior was subtracted from the susceptibility, the type 1 crystals’

susceptibility became more alike the type 2 crystals’ susceptibility. For some of the crystals, the

two types could be fitted with the CVT model, and both types show a similar result, as seen in

figure 7.10 and 7.11.

We believe that the difference in type 1 and 2 crystals are due to a different amount of impurity

(or defect) paramagnetic spins, since a difference in average amount of impurity spins is found in

equation (7.27). The amount of impurity spins needed to suppress the transition into the ground

state of a system of 24 spins is not determined accurately. A lower bound of the required amount

of defect spins can be approximated to be given by the average result of fitting a paramagnetic spin

model together with the triangle model to the susceptibility of type 1 crystals. The estimate is that

if the amount of defects is above 9±2 %, the low temperature transition in the bulk measurements

is suppressed by the paramagnetic contribution.

It is, however, a quite naive estimate, as we can see an overlap between the number of impurity

spins in type 1 and type 2 crystals in table 7.2. As an example, the type 1 crystal N is found to

have 5.4 % impurity spins, and the type 2 crystal K is found to have 6.2 %. The result indicates

that a sharp transition between the two types of crystal as function of number of impurities might

not exist, or/and that the estimate of the number of impurity spins are quite uncertain.

The type 1 crystal H1 was measured with an AC-susceptometer at dilution fridge temperatures at

EPFL, as seen in figure 8.4 and 8.5. The low temperature (T < 1 K) susceptibility shows a clear

Curie tail, which is a direct indication of a paramagnetic behavior. The dilution fridge data and
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the fitting of a combined paramagnetic and spin triangle model thereby both indicate the existence

of spins that behave paramagnetically. The estimated amount of paramagnetic spins varies greatly

between the measurements of H. From the fitting of a combined paramagnetic and triangle model

to crystal H raw data, the amount of paramagnetic spins is estimated to 6.5 % for crystal H and

1.5 % for crystal H1. From the analysis of dilution fridge data of crystal H1, it was estimated that

there was 12.3 ± 0.4 % paramagnetic spins. The difference in the crystal H results show that the

estimate of the amount of paramagnetic spins is quite rough, since different crystals and techniques

result in different results. Crystal H is, however, a special case as it was the only crystal where the

CVT model could not be fitted after the subtraction of paramagnetic spins in chapter 7, and we

should therefore be skeptical about all results measured on crystal H.

It would have been a major improvement on the estimate of the amount of paramagnetic spins

in the boleite crystals, if more susceptibility measurements at dilution fridge temperatures could

be performed. Especially, it would have been interesting to see if a Curie tail was present in the

type 2 crystals’ susceptibility at low temperature, which we would expect if paramagnetic spins

were present. More susceptibility measurements at dilution fridge temperatures might also reveal

possible inter cube ordering, which should reveal a third kink in the susceptibility and only occur

at very low temperatures.

Our hypothesis, that the type 1 and 2 crystals’ different behaviors are due to a difference in the

amount of impurity spins, is strengthened by the measurements of magnetization as function of

magnetic field. In figure 8.2 and 8.3, it is clearly seen that the type 2 crystal behaves more like

the variational model, and the type 1 crystal like the triangle model. This indicates that the type

2 crystals undergo ordering into the low energy states of the full 24 spin system, whereas this

ordering is suppressed in the type 1 crystals’ magnetization curve.

The heat capacity of the boleite type 2 sample M1 could not be modeled fully but revealed a

magnetic contribution. According to the variational model and the triangle model, the observed

magnetic signal at low temperatures, seen as an upturn in heat capacity divided by temperature in

figure 8.1, is due to the coupling of the 8 triangles. From the understanding gained from the sus-

ceptibility, and the magnetization as function of field, we would expect that a type 1 crystal would

not show this upturn. It has however not been possible to measure a type 1 crystal. A problem

with the heat capacity measurements is the uncertainty at the size of the lattice contribution. A

method to separate the magnetic and lattice contribution could be to measure the heat capacity

at different field strengths, since only the magnetic contribution should be affected.

It has not been established where the hypothesized paramagnetic contribution comes from. It is

likely that random impurities in the boleite unit cell occur. As an example the magnetic Cu2+ ions

could randomly be replaced with the non magnetic Zn2+, creating imperfect cubes. It could also

be possible that the paramagnetic impurities originate from small pieces of other crystal structures

growing together with the boleite crystals. X-ray and neutron diffraction experiments might be

able to resolve if other crystal structures are growing in between boleite crystals, and chemical

composition analysis might resolve if Zn2+ ions are present in the crystals.

10.3 The neutron result

No magnetic structures could be identified in the neutron scattering data, where phonon and in-

coherent scattering created a too large background for the expected short range order magnetic

scattering to be seen, as shown in chapter 9.

From the polarization analysis, we found that the total magnetic cross section is 0.10± 0.05 % of
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the total nuclear spin incoherent cross section for T = 1.5 K. This does not correspond with the

theoretical estimate of around 1 %. The theoretical estimate could be slightly wrong as it relies

on a range of assumptions, like Fm(q) = 1. The average magnetic form factor 〈Fm(q)〉 is within

any given q-range smaller than 1, since the magnetic form factor decreases from 1 to 0 as q is in-

creased. The approximation Fm(q) = 1 therefore results in an overestimation of the total magnetic

scattering cross section. At the same time, XYZ-polarization analysis is a complex method with 6

different polarization measurements per measuring point, as well as normalization measurements

of cadmium, vanadium, and an empty aluminum container. In any of these measurements small

assumptions are made, and it could affect the observed size of a very weak magnetic signal. It is

therefore reasonable to have certain doubts of the estimated ratio of spin incoherent and magnetic

scattering from the D7 measurements, as systematic uncertainties could affect the ratio. It is in any

case clear that the magnetic scattering is extremely small compared to the incoherent background,

and that no magnetic structures were observed in the magnetic component seen in figure 9.5.

Combining the results from all neutron experiment, it is evident that it has not been possible to

detect magnetic structures in the neutron data, and that it is difficult, if not impossible, to detect

magnetism in natural boleite using neutrons.

A way to optimize the chances of seeing the short range order magnetic scattering would be to

minimize the incoherent background. This could be achieved if the boleite crystals were deuter-

ated (i.e. replacing hydrogen 1H with deuterium 2H). Deuterium has an incoherent scattering

cross section of 2.05 · 10−24 cm2 compared to 80.02 · 10−24 cm2 of hydrogen [35]. There is however

still 62 chlorine atoms in the sample with a incoherent scattering cross section of 5.3 · 10−24 cm2,

and the total incoherent scattering would even for a deuterated sample be 446.2 · 10−24 cm2. This

means that the magnetic scattering cross section would be 9.8 % of the incoherent background,

according to our theoretical estimate of the magnetic contribution. In other words, the magnetic

scattering cross section would be 10 times larger, if the boleite crystals were deuterated compared

to non-deuterated. If the theoretical estimate is wrong, and the ratio of magnetic scattering from

the non-deuterated sample is of the order of 0.10± 0.05 %, as the D7 data suggests, the magnetic

signal of a deuterated sample would only be around 1 % of the background. It is not within

the authors knowledge possible to assess if the sample could be deuterated, but given the above

discussion, it is not even certain that it would be worth the try.

10.4 Boleite - A quantum spin droplet

All the experimental results indicate that the boleite system behaves as a 24 spin system, and

that the magnetic spins in different magnetic unit cells do not feel the presence of each other.

This effectively prohibits long range interaction, the frustration parameter f (equation (3.3) ) is

in principle infinite, if the long range order temperature is defined to TO = 0 K. The lack of long

range interaction paths, however, also excludes that boleite is a true Quantum Spin Liquid, since

a QSL needs long range quantum fluctuations.

In chapter 3, three different types of spin liquid behaviors were defined. Since the variational model

describes the low temperature bulk data most accurately it is our best model of the low energy

states of the system, and its results are usable in this discussion. In figure 7.5, it was shown that

the variational model has a unique singlet ground state with an energy gap to a small continuum

of the first excited singlet states ∆E ∼ 0.66 meV. Above ∆E > 1.1 meV, there is a continuum of

excited singlet, triplet, and higher spin states. This can also be seen in figure 9.8, which shows the

field dependence of the 100 lowest energy states of all magnetization subspaces with m ≥ 0.
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The behavior of boleite seems very close to the definition of a type 1 gapped spin liquid. At T = 0

K, the cube will freeze into its ground state, but at temperature of just a few degrees, the 24 spin

system will be able to be in multiple states.

The above discussion shows that the boleite system has a spin liquid like behavior, according

to the quantum mechanical Heisenberg spin model, but it can not be a true spin liquid since the

magnetic system only consist of 24 spins. We therefore invent the new term a quantum spin droplet

to describe the boleite system. A quantum spin droplet is in this way defined as a quantum spin

system that shows a spin liquid like behavior, but consists of too few interacting spins to be a real

spin liquid.



CHAPTER 11

Conclusion

In this thesis, the magnetic structure of the natural mineral boleite was examined with the bulk

measurement techniques: DC and AC-susceptibility, magnetization as function of field, and heat

capacity. The data from these experiments have with varying success been shown to be describable

with a combined Heisenberg spin model consisting of a low temperature model of the 24 magnetic

spins, and a model of a triangle of spins. An estimated small contribution from paramagnetic spins

was necessary to subtract from the raw data for the model to fit the magnetic susceptibility data.

The model of the experimental data, in particular the magnetic susceptibility, shows that the mag-

netism in boleite is controlled by two different competing exchange interaction in between the 24

copper ions in the magnetic unit cell: J1 = 19.4 ± 0.4 meV between the copper ions in a triangle

and J2 = 3.4 ± 0.1 meV between the copper ions on different triangles. The two competing ex-

change interactions result in two transition temperatures. At the high transition temperature, the

triangles freeze into their ground states. At the second transition temperature, all the 24 spins in

the copper cube begin to interact, and the system falls into a unique singlet ground state.

When the amount of paramagnetic impurities in the crystal becomes to large, we observe a sup-

pression of the interaction between all 24 spins in bulk experiments. The system instead behaves

as if it was 8 isolated triangles. We estimate that if the amount of defects magnetic spins is above

9± 2 % of the antiferromagnetic spins, the low temperature transition is suppressed.

The magnetism in boleite has not been measurable with neutrons, due to a large incoherent scat-

tering background primarily originating from hydrogen in the crystal. It has therefore not been

possible using this technique to get experimental evidence of how the magnetic structure is in

boleite.

The model of the 24 spins in boleite revealed a gapped spin liquid like behavior. Due to the lack

of long range interaction paths between the magnetic spin cubes in boleite, boleite can not be a

true quantum spin liquid. Instead, the boleite system is in this thesis defined as a new type of

quantum system, a (gapped) quantum spin droplet.

11.1 Outlook

The quantum spin droplet, boleite, is an interesting system which is a middle ground between small

frustrated systems, like a single, equilateral triangle, and the frustrated lattice with quantum spin

liquid behavior.

The nature of quantum spin droplets have only properly been examined with bulk measurement

techniques. The thesis shows that neutron experiments are very difficult to use on boleite, and it is

believed that even a deuterated boleite crystal still have significantly larger incoherent background

than magnetic signal. It is therefore worth to consider if other techniques, like muon spin rotation

spectroscopy or NMR could be used to measure the magnetic structure in boleite.

A lot of possible further bulk experiments could be performed. The boleite crystals magnetic

susceptibility showed to have an offset correlated with the mass of the sample. This phenomena
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would be interesting to examine further with tests of different pieces of the same crystal on the

same susceptometer. Likewise, experimental data of the boleite crystals susceptibility below 1.5 K

is greatly needed to insure that the models are correct, and to evaluate the amount of paramagnetic

spins in a different way. It could also be used to establish if long range order occurs in boleite at

very low temperatures.

The amount of paramagnetic spins is an interesting topic. As this thesis shows, there is a transition

when the amount of paramagnetic spins becomes to large, where the interaction between all 24

spins are suppressed. It could be interesting to see if the transition could be determined accurately

from more bulk measurements. X-ray and neutron diffraction measurement could be used to try to

determine if the origin of these paramagnetic spins is due to random impurities or small quantities

of other crystal structures growing together with boleite.
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APPENDIX A

Complete solution to the 6 spin system

The complete diagonalization result of the 6 spin system is shown in this appendix. The result was

calculated by Kenneth Lønbæk and originally presented in [6]. Below, all 26 = 64 states of the 6

spin system are shown categorized by their magnetization:

E(m=3) = E(m=−3) =

{
3

2
J1 +

1

4
J2 1 State

}
2× 1 States (A.1)

E(m=2) = E(m=−2)

O
(
J2
2
J2
1

)
≈


3
2J1 + 1

4J2 1 State
3
2J1 − 1

12J2 1 State∗

1
4J4 3 States

− 5
12J2 1 State∗


2× 6 States (A.2)

E(m=1) = E(m=−1)

O
(
J2
2
J2
1

)
≈



3
2J1 + 1

4J2 1 State
3
2J1 − 1

12J2 1 State∗

3
2J1 − 11

36J2 1 State∗

1
4J2 4 States
1
36J2 1 State∗

− 5
12J2 3 States∗

− 3
2J1 + 1

4J2 1 State

− 3
2J1 + 1

36J2 1 State∗

− 3
2J1 − 1

12J2 2 States∗


2× 15 States (A.3)

E(m=0)

O
(
J2
2
J2
1

)
≈



3
2J1 + 1

4J2 1 State
3
2J1 − 1

12J2 1 State∗

3
2J1 − 11

36J2 1 State∗

3
2J1 − 5

12J2 1 State∗

1
4J2 4 States
1
36J2 1 State∗

− 5
12J2 3 States∗

− 3
2J1 + 1

4J2 3 State

− 3
2J1 + 1

36J2 1 State∗

− 3
2J1 − 1

12J2 3 States∗

− 3
2J1 − 3

4J2 1 States



1× 20 States (A.4)

All states marked with a * are first order approximations assuming J2/J1 � 1.
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APPENDIX B

Calculating the m = 0 subspace

In this appendix, I will show an example of what happens when the Hamiltonian Ĥ6 from equation

(7.5) is applied to a m = 0 basis state of the 6 spin system shown in figure 7.4. I will calculate

what happens when the Hamiltonian Ĥ6 is applied to

( 4x
⊗4x

)
. In the case of the m = 0

subspace, the raising and lowering operators (Ŝ+
3 Ŝ
−
4 ) will couple this basis state with the basis

states of opposite rotation, eg.

( 4x
⊗4y

)
. This happens because the isolated triangle Ising

states |1,↓〉|5,↑〉, |2,↓〉|5,↑〉, |1,↓〉|6,↑〉, and |2,↓〉|6,↑〉 are flipped into other non excited states. The

|3,↓〉|4,↑〉 state is also affected by Ŝ+
3 Ŝ
−
4 , but it is flipped into an excited spin m = 3/2 state, and

it is therefore removed. All other isolated triangle Ising states, have spin 3 and 4 pointing in the

same direction, and are therefore not affected by Ŝ+
3 Ŝ
−
4 .

The full result when applying the Hamiltonian is

Ĥ6

( 4x
⊗4x

)
=

1

3
Ŝ3 · Ŝ4(|1,↓〉+ e+|2,↓〉+ e−|3,↓〉)⊗ (|4,↑〉+ e+|5,↑〉+ e−|6,↑〉)

=
J2

12
( |1,↓〉|4,↑〉 − e+|1,↓〉|5,↑〉 − e−|1,↓〉|6,↑〉

+ e+|2,↓〉|4,↑〉 − e−|2,↓〉|5,↑〉 − |2,↓〉|6,↑〉
− e−|3,↓〉|4,↑〉+ |3,↓〉|5,↑〉+ e+|3,↓〉|6,↑〉)

+
J2

6
( |1,↑〉|5,↓〉+ e−|1,↑〉|6,↓〉+ |2,↑〉|5,↓〉

+ e+|2,↑〉|6,↓〉)

=
J2

12
(−|1,↓〉 − e+|2,↓〉+ e−|3,↓〉)⊗ (−|4,↑〉+ e+|5,↑〉+ e−|6,↑〉)

+
J2

6
(|1,↑〉+ e−|2,↑〉)⊗ (|5,↓〉+ e+e−|6,↓〉)

=
J2

36

(
−

4x
+ 2e+

4y
− 2e−

4

↓
)
⊗
(
4x− 24y− 24↑

)

+
J2

18

(
2

4y

− e−

4x

− e+

4

↑
)
⊗
(
−e+4x + 2e+4y − e+4↓

)
.

(B.1)
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100 APPENDIX B. CALCULATING THE M = 0 SUBSPACE

Again the excited states like4↓ are removed and

Ĥ6

( 4x
⊗4x

)
=
J2

36
(−

4x
⊗4x+ 2

4x
⊗4y+ 2e+

4y
⊗4x− 4e+

4y
⊗4y

− 4e+

4y

⊗4x + 8e+

4y

⊗4y + 2

4x

⊗4x − 4

4x

⊗4y ). (B.2)

Similar results are found for all other states, and the combined result is that the Hamiltonian is

given in equation (7.14).



APPENDIX C

Subtracting the paramagnetic contribution.

This appendix illustrates how the paramagnetic contribution was found and subtracted from the

raw data for each sample. The fitting of the paramagnetically adjusted data with the CVT model

is also included for the type 2 boleite crystals.

The paramagnetic contribution is found by fitting a combined triangle model and paramagnetic

model according to equation (7.25), as shown in figure C.1.

After the paramagnetic contribution is found, it is subtracted from the raw data. The results of

all fits are given in table C.1.

The data which has been adjusted for paramagnetic contribution is fitted with the CVT model.

In figure C.2, the CVT model is fitted to each of the type 2 crystals’ data where the paramagnetic

contribution could be subtracted.

Type 1 susceptibility Type 2 susceptibility

Crystal m

[mg]

ρ J1
[meV]

Crystal m

[mg]

ρ J1
[meV]

E 403 0.102 22.7 A 355 0.038 23.2

H 226 0.065 23.2 B 424 0.037 22.1

N 245 0.054 21.1 D 605 0.000 21.9

H1 197 0.016 22.8 F 287 0.037 20.5

E1 137.1 0.124 22.5 K 263 0.062 19.9

S1 76.4 0.000 19.1 P 236 0.048 21.5

C1 118.8 0.000 19.8

P1 9.1 0.000 16.9

M1 84.2 0.000 15.6

Table C.1: The crystal data and the fit parameters from fitting a combined model

according to equation (7.25). The names of the crystals where the fitting of the

combined paramagnetic and spin triangle model resulted in ρ = 0 are written in

bold.
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Figure C.1: Fitting a combined paramagnetic and triangle model. The fitting is

shown for all samples that was measured at PSI and EPFL. The sample are separated

into susceptibility type 1 (a) and susceptibility type 2 (b). Top legend shows the

crystal names and bottom legend the fits. Parameters to the combined fits and the

crystal masses are given in table C.1.
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Figure C.2: Fitting the CVT model to the type 2 crystals’ 1/χadj, found according

to equation (7.26). Figure (a) to (e) show the 1/χadj data from each crystal fitted

with the CVT model (CVT fit). The crystal names are given in the figures. The

result of the fits are given in table 7.3. The data color reflects the instrument used to

measure the data, where green is PSI PPMS and blue is PSI MPMS. Only crystals

where it was possible to fit the CVT model is included in this figure.



APPENDIX D

Acoustic phonon dispersion.

The acoustic phonon dispersion relation was identified to ensure that acoustic phonons did not

show up when trying to identify low energy inelastic magnetic scattering.

Equation (5.34) shows that neutron scattering from phonons depend on the phonon polarization

ed,s along the phonon wave vector q′. The polarization of phonons can be described by separated

into two types [33].

� Longitudinal phonons have a polarization ed,s pointing along q′.

� Transverse phonons have ed,s perpendicular to q′. Generally, transverse phonons have less

energy than longitudinal.

The above has a very large implication on how phonons are measured with neutrons, since the

partial differential scattering cross section of phonons includes a q · ed,s term. This shows that

neutrons will not interact with transverse phonons when q‖q′, and with longitudinal phonons

when q ⊥ q′.

To map the phonon dispersion relation in boleite, a (h k k) scan was done around the (0 4 4) r.l.u.

Bragg peak at T = 100 K. A transverse and longitudinal acoustic phonon were identified in a scan

around the Bragg peak at neutron energy transfer ∆E = 0.7 meV, as seen in figure D.1a. The

longitudinal phonon seems to have a much steeper dispersion relation than the transverse phonon.

The longitudinal phonon is for ∆E = 0.7 meV located at |k| = 0.03 r.l.u., and the transverse

phonon is located at |h| = 0.1 r.l.u. The result is that the transverse phonon will have less energy

at the Brillouin zone boundary q′ =(0.5 0 0) than the longitudinal. It was therefore decided to

follow the transverse phonon, and map its dispersion relation, to get a lower bound of the acoustic

phonons dispersion relation.

The transverse phonon was located at ∆E = 1.0 meV and ∆E = 1.5 meV as shown in figure

D.1b-c. The average scattering in RITA-II’s central analyzer blades were fitted with Gaussian

distribution function as shown in figure D.2. To locate the phonon at the Brillouin zone boundary,

an energy scan was made at (0.5 4 4) r.l.u., and the average scattering from all RITA-II’s 9 analyzer

blades was fitted with a Gaussian, as shown in figure D.3.

From the 3 scans in (h k k) and the energy scan, the transverse phonon was identified in 5 different

positions in the Brillouin zone. The 5 points was fitted with a simple phonon dispersion relation

which fulfill equation (5.32)

~ωs = ∆E0 sin(q′π), (D.1)

which is valid for the phonon wave vector length q′ in r.l.u. In this case the q scans were done

along the (h 0 0) direction at (0 4 4) r.l.u. and so q′ = h.

The fitted dispersion relation is shown in figure D.4, and showed that the transverse phonon

dispersion relation’s peak energy is ~ωs(q′ = 0.5) = ∆E0 = 2.15± 0.06 meV.

The result from this analysis of the phonon dispersion relation is that at a Brillouin zone boundary,

the transverse phonon will have the least energy, with ~ωs(q′ = 0.5) = 2.15± 0.06 meV.
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Figure D.1: Acoustic phonons at T = 100 K, in RITA-II (h 0 0) scans around

Brillouin zone center at (h k k)=(0 4 4) r.l.u. for different energy transfers. RITA-

II’s 9 analyzer blades result in 9 lines at different values of (0 k k) for every (h 0

0) position of the central blade 5. (a) ∆E = 0.7 meV. A ring of higher intensity

scattering is seen. The longitudinal phonon shows up in the (0 k k) direction with

peak intensity around k = ±0.03 r.l.u., and the transverse phonon is seen in the (h 0

0) direction with peak intensity around h = ±0.1 r.l.u. (b) Following the transverse

phonon out along the (h 0 0) direction as energy is increased to ∆E = 1.0 meV. (c)

At ∆E = 1.5 meV the transverse phonon still shows up.
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Figure D.2: Transverse acoustic phonon at T = 100 K in RITA-II central analyzer

blades at different energies around (0 4 4). The raw data are shown in figure D.1. (a)

Inelastic scattering in RITA-II’s analyzer blade number 5 at ∆E = 0.7 meV around

(0 4 4) r.l.u. The data is fitted with two Gaussian functions. (b) Summed inelastic

scattering from RITA-II analyzer blades number 4 to 6 at ∆E = 1.0 meV around

(-0.2 4 4) r.l.u. The data is fitted with one Gaussian function. (c) Summed inelastic

scattering from RITA-II analyzer blades number 4 to 6 at ∆E = 1.5 meV around

(-0.3 4 4) r.l.u. The data is fitted with one Gaussian.
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Figure D.3: Energy scan at T = 100 K at the Brillouin zone boundary (0.5 4 4) r.l.u.

RITA-II’s 9 analyzer blades result in 9 values in (h 0 0) (a) Raw data in false color

plot. Transverse acoustic phonon is seen as higher intensity around ∆E = 2.3 meV

(b) Average analyzer blade intensity as function of energy fitted with a Gaussian.
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Figure D.4: Transverse acoustic phonon dispersion relation ~ωs from equation (D.1)

(red). The dispersion relation is fitted to the 4 identified positions of the transverse

acoustic phonon from the 4 fitted Gaussians to the (h 0 0) scan results in figure D.2

(blue), and the position of the phonon in the energy scan from figure D.3 (black).

∆E0 = 2.15± 0.06 meV.
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