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Abstract

The soliton theory of the nerve pulse is presented with focus on the case of density dependent dispersion.

The density dependent dispersion coefficient has been derived previously by Mosgaard [56] and involves the

excess heat capacity of the membrane that needs to be expressed in terms of density for the model to be

self-contained. The heat capacity is modelled using thermodynamics. Using MATLAB®’s ODE-solvers and

table values from DPPC bilayers I solve the self-contained model alongside two cases of constant dispersion

and a density-dependent approximation to the self-contained model where the heat capacity is fitted from

experimental data of DPPC bilayers. The initial conditions were optimized for solitary solutions using the

bisection method. In the case of a constant dispersion coefficient I found a maximum density change of ≈ 20%

relative to equilibrium, in agreement with literature [33, 44]. The solitons of the self-contained model had widths

of approximately 1 meter and and maximum relative density changes of ≈ 8%. In comparison the widths of

the density dependent model with experimentally fitted heat capacity are approximately 0.5 m, and maximum

relative density changes are ≈ 17%. In both cases of density dependent dispersion some velocities had two

solutions of similar dimensions. The difference in dimensions between the self-contained theoretical model of

the heat capacity and the experimental approximation is due to differences in cooperativity. I attempted to

investigate the effect of cooperativity in the self-contained model but only managed to find solitary solutions for

a small range of cooperativities due to numerical instability. Suggestions on how to improve my methods are

included in the discussion. Through a literature review I bridge a connection between the soliton theory and

the therapeutic effect of lithium on a variety of human conditions, in particular bipolar disorder. Studies that

have looked into the thermodynamics of lithium ions have found remarkable effects on anionic lipid bilayers

and the heat generation of nerves. This suggests lithium’s prophylaxis might be connected to the interaction

between the ion and the lipids in the nerve membrane. I investigated lithium’s effect on zwitterionic lipid

bilayers by measuring the heat capacities, thermal volume expansion coefficients and relaxation times of DPPC

LUV suspended in water containing either lithium, sodium or potassium. The meaurements were performed by

differential scanning calorimetry and pressure pertubation calorimetry. The lithium sample had a simpler heat

capacity profile than sodium, potassium and control sample and showed a greater proportionality between the

relaxation times and the heat capacity profile. The proportionality constants of all four samples were within the

range of literature with values of 5·10−10 m3

J −9·10−10 m3

J and standard deviation of 3·10−10 m3

J −6·10−10 m3

J . From

the relationship between relaxation times and heat capacities I derived Onsager’s phenomenological constant for

each sample, they were all in the magnitude of 108 J·K
s·mol − 1010 J·K

s·mol , which is in agreement with literature. The

subtle differences between lithium and sodium, potassium and control is compared to lithium’s unique ability

among the monovalent cations to induce order in anionic lipid membranes. However, the effect of lithium on

lipid membranes in vitro cannot directly be extrapolated to the prophylaxis of lithium since the metabolic

response of the human body must be taken into account.
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1 Preface

Like any production made for broad audiences within the last 50 years, I will start with a disclaimer. In

literature on the soliton theory, the terms adiabatic and isentropic are used interchangeably when deriving

thermodynamic properties, since the nerve pulse is assumed to be a reversible process. In this thesis I try to

stick to isentropic just to avoid confusion. Some mathematicians [16] have complained the term ’soliton’ is

misused since collisions between nerve pulses are not fully elastic. This claim is likely based on a single study

by Tasaki from 1949 [74], but Heimburg and associates have recently documented several predominantly elastic

nerve pulse collisions [21, 56]. Pulses based on the soliton model has likewise been shown to pass through each

other generating only a small amount of noise [4], so I decide it is reasonable to stick to the term, though it

might anger some purists.
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2 Introduction

2.1 The physics of nerve excitation

Nerve signaling is a commonly used term for our body’s ability to pass information along the nerves of the body.

It is a crucial part of controlling our bodily functions and its concepts has been the inspiration of technological

innovations such as neural networks. Nevertheless many fundamental processes associated with this mechanism

has yet to be fully understood.

The most extensively studied phenomenon taking place during the nerve signal is the electrical changes,

dicovered already in the late 1800s by Galvani and Volta [31]. During a signaling event the transmembrane

voltage increases approximately 100 mV, followed by a small hyperpolarization where the voltage lies slightly

below that of the initial resting state. These changes in membrane potential are denoted ’the action potential’

and are associated with a decrease in membrane resistance [78] and capacitance (of about 50%) [75, 32] and

an increase in transmembrane current [35]. The increase in transmembrane current is caused by an increase

in ion permeability for cations such as Na+, K+ and Ca2+ [78, 79, 35]. These fluxes are very small compared

to the concentrations in the external environment [1, 81], but in relative terms quite impressive: sodium and

potassium each go through an approximately 100 fold increase in permeability with individual time courses

during the signaling event [1]. The influx of Ca2+ ions is much less than that of Na+ and K+ [79], but Ca2+

are by no means less important to the existence of the nerve signal: Removal of external calcium abolishes the

nerve signal [79].

A lesser known feature is the mechanical changes accompanying the nerve signal. Swelling and contraction

have been extensively documented by Tasaki and associates in a various nervous tissues such as squid axon

and olfactory nerves of frogs and fish [39, 77, 80]. The cause of the swelling is not entirely clear. It might

partly be caused by altered membrane hydration due to the changing concentrations of metal ions during the

nerve pulse [75]. This cannot be the whole story though, since there is a net volume expansion of the nerve

during the nerve pulse that cannot be explained by internal movement of water of the system [76]. It might

instead indicate that structural changes are taking place in the nerve membrane [81, 33]. Another indicator of

this is that the nerve pulse alters the optical properties of the membrane, changing the order and orientation

of membrane lipids [81, 32]. These transient alterations are practically adiabatic in the sense that for both

myelinated and unmyelinated nerves the majority (> 80%) if not all of the net heat produced during the signal

is absorbed back into the system [75, 34, 65]. Since the measured temperature change is in the µK range [65],

which is minuscule relative to ambient temperature (≈ 300 K), the signal must furthermore be isentropic: The

second law of thermodynamics states that for reversible processes in closed systems dQ = TdS. With approxi-

mately reversible heat transfer and constant temperature, we then have
∮
dQ ≈ 0→

∮
dS ≈ 0 [29, chap. 18.2.1].

The many phenomena of the nerve signal are coupled, which can be illustrated by the fact that though

studies usually induce nerve signals using electricity, they can equally as well be initiated through mechanical

stimulation [31] or local cooling [34]. Trying to explain the workings of nerve signals by focusing on one or

two aspects of the mechanism, such as electrical changes and ion conduction [35, 75], would be to disregard
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the internal coupling between the processes and one would not have a complete understanding of the overall

mechanism.

This thesis will concern itself with the soliton theory, a well-established theory that manages to unify the

many aspects of nerve signaling. Through the formalism of linear non-equilibrium thermodynamics it explains

the couplings of the permeability, electricity and heat changes during the nerve signal. The theory has great

predictive abilities, as an example it can explain how anesthesia renders the membrane inexcitable and why

this can be reversed by pressure [34, 30, 42]. It is based on the idea that the nerve signal includes a longitudal

density wave in the nerve membrane, causing the lipids of the membrane to transition temporarily from a liquid

crystal to a gel with a variety of thermodynamical implications. Originally proposed by Kaufmann [37], it

inspired Heimburg to formulate a theory for the thermodynamic excitation of nerves, which in collaboration

with Jackson was put into mathematical formalism in their 2005 paper [33]. The initial mathematical model

was based on hydrodynamics and is a 4th order variation on the wave equation with a density-dependent prop-

agation speed and a constant dispersion coefficient. The equation produces single or repeated localized pulses

with permanent wave profiles [83], better known as ’solitons’.

Since 2005 there has been notable theoretical contributions by ex. Villagran-Vargas et al. [83] and Lautrup

et al. [44] on the properties and stability of the soliton equation, and more recently by Mosgaard [56] on

incorporating density dependence into the dispersion coefficient. I have continued the work of Mosgaard and

will present numerical solutions to the soliton model of density dependent dispersion, alongside a motivation

on the potentially thermodynamic nature of lithium’s therapeutic effect on various human conditions such as

bipolar disorder.

2.2 Introduction to the soliton theory

A simpler and more common term for isentropic density waves is simply: ’sound’. In the next chapter I will go

through the basics of sound propagation in membranes with brief introductions to the necessary thermodynamics

to understand the soliton theory.

2.2.1 Dynamic susceptibilities and sound

Studies on membranes of single cell organisms and mammalian tissues have found their melting temperature to

be consistently 10◦ − 20◦C below physiological temperature of the associated species [33, 60, 58]. The melting

profiles are very wide, often with a half width of ≈ 15◦C. A biological membrane is therefore close to phase

transition under normal physiological conditions. Membrane phase transition creates non-linear compressibilities

and dispersion, which is the criteria for the existence of solitons [29, chap. 18.3.1].

The original Heimburg-Jackson model from 2005 [33] proposes density pertubations travel like mechanical

waves along the membrane in the following manner:

∂2∆ρA

∂t2
=

∂

∂x

((
cA
(
ρA
))2 ∂∆ρA

∂x

)
− h∂

4∆ρA

∂x4
(1)

Where the speed of sound, cA, is dependent on the local area density, and there has been added spatial

dispersion with a constant dispersion coefficent h. The soliton theory models the nerve axon as approximately
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one-dimensional and infinitely long in order to simplify the problem. Since a single motor neuron in the human

body has a diameter of approximately 0.1 millimeter and can grow up to 1 meter [19], this is not completely

without reason. The superscript ’A’ for ’area’ is to denote the changes are taking place in the plane.

In fluids, the speed of sound given by the Newton-Laplace equation [84]:

c =
1

√
κSρ

Here κS is the isentropic compressibility and ρ the density of the media. The isentropic compressibility κS

has great influence on the speed of sound near phase transition. Density decreases monotonically with increasing

temperature, more rapidly in transition than outside [13]. The speed of sound is not a monotonic function,

it has a marked local minimum at transition [23, 28, 69]. This is due to a local maximum in the isentropic

compressibility at the same temperatures [23]. To illustrate why the isentropic compressibility shows a maxi-

mum during phase transition I will demonstrate how it can be directly related to the changes in the system’s

heat capacity. This relation is an important feature of lipid bilayers at phase transition. I begin by relating

isothermal and isentropic volume compressibilities of a lipid bilayer in an aqueous reservoir. The derivation is

identical to derivation for volume compressibility in Heimburg [29, chap. 4.12].

Volume compressibilities describes the relative rate at which the volume of a system changes when subjected

to pressure under certain constraints, such as constant temperature (isothermal) or entropy (isentropic).

κVT = − 1

〈V 〉
d〈V 〉
dp

∣∣∣
T
, κVS = − 1

〈V 〉
d〈V 〉
dp

∣∣∣
S

The variables I need to connect between the two equations are volume, entropy, pressure and temperature.

These variables can be related by approximating the change in volume and entropy for small changes in pressure

and temperature.

d〈V 〉 =

(
∂〈V 〉
∂p

)
T

dp+

(
∂〈V 〉
∂T

)
p

dT and dS =

(
∂S

∂p

)
T

dp+

(
∂S

∂T

)
p

dT = 0 (2)

Since the process is isentropic, the second part of equation 2 is equal to zero. I can use this equation to

express dT in terms of entropy:

dT = −

(
∂S
∂p

)
T(

∂S
∂T

)
p

dp and d〈V 〉 =

(
∂〈V 〉
∂p

)
T

dp−
(
∂〈V 〉
∂T

)
p

(
∂S
∂p

)
T(

∂S
∂T

)
p

dp

The change in entropy with respect to temperature can be related to the heat capacity of the system:

∂S

∂T
=

∂Q

T∂T
=
cp
T

Using Maxwell’s relation, ∂S∂p T
= −∂〈V 〉∂T p

, the entropy change with respect to pressure can be rephrased:

(
∂〈V 〉
∂p

)
S

=

(
∂〈V 〉
∂p

)
T

+

(
∂〈V 〉
∂T

)2

p

T

cp

Multiplying the above with − 1
〈V 〉 leads to the following expression for the isentropic compressibility:
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κVS = κVT −
T

〈V 〉cp

(
∂〈V 〉
∂T

)2

p

(3)

αV = 1
〈V 〉

(
∂〈V 〉
∂T

)
p

is the thermal volume expansion coefficient of the membrane. This coefficient is propor-

tional to the heat capacity due to an empirical proportionality between the change in volume and change in

entalpy with respect to temperature for lipid bilayers close to transition [2, 28]:

1

〈V 〉

(
d〈∆V 〉
dT

)
p

=
γV
〈V 〉

(
d〈∆H〉
dT

)
p

, i.e. αV =
γV
〈V 〉

∆cp (4)

Where ∆cp signifies the excess heat capacity. In order to insert this into equation 3, I need to justify that

the volume change close to transition is dominated by lipid melting, such that I can ignore contributions from

the surroundings. Water changes very little at these temperatures, but the pure gel and fluid phases do expand

measurably on their own [23, 28]. Yet these expand in a slow, linear manner, which will just cause an small

offset in the compressibility that can be corrected for. I set
(
d〈∆V 〉
dT

)
p

= ∂〈V 〉
∂T p

and insert this into equation 3:

κVS = κVT −
T

〈V 〉cp
(γV ∆cp)

2
(5)

It is now time to take a look at the isothermal compressibility, κVT . Isothermal compressibility can be related

to the variance in volume fluctuations at equilibrium if I express the average volume, 〈V 〉, in the definition of

isothermal compressibility as the average of all microstates of the system, [29, chap. 4.9 & 4.10.1]:

κVT = − 1

〈V 〉

(
∂〈V 〉
∂p

)
T

= − 1

〈V 〉
d

dp

∑
i

ViPi, where Pi =
exp (−Hi/kBT )

Z
, Hi = Ei − pVi

= − 1

〈V 〉

− 1

kBT

∑
i

V 2
i Pi +

1

kBT

(∑
i

ViPi

)2


=
〈V 2〉 − 〈V 〉
〈V 〉kBT

Variances are additive, which means I can split the isothermal compressibility into volume changes related

to lipid melting and reservoir contributions:

κVT = κVT,0 +
〈(∆V )

2〉 − 〈∆V 〉2

〈V 〉kBT

If one assumes the proportionality between volume change and entalpy in equation 4 holds for all temper-

atures, it follows from mathematical arguments that the proportionality must be upheld by each microstate of

the system [28], i.e.

∆Vi = γV ·∆Hi

As a natural consequence, the variances in volume change and entalpy change must also be proportional:
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∑
V 2
i exp(−Hi/kBT )

Z
=

∑
(γVHi)

2
exp(−Hi/kBT )

Z

i.e. 〈(∆V )
2〉 = γ2

V 〈(∆H)
2〉

and 〈(∆V )
2〉 − 〈∆V 〉2 = γ2

V

(
〈(∆H)

2〉 − 〈∆H〉2
)

Where Z is the partition function of the system. I can therefore express the isothermal compressibility as a

function of variance in entalpy:

κVT = κVT,0 +
γ2
V

(
〈(∆H)

2〉 − 〈∆H〉2
)

〈V 〉kBT

The heat capacity can be related to the variance in equilibrium entalpy fluctuations in the same manner as

isothermal compressibility relates to volume fluctuations:

∆cp =
d〈∆H〉
dT

=
〈(∆H)

2〉 − 〈∆H〉2

kBT 2
(6)

Thus I can use the heat capacity to express the isothermal heat capacity:

κVT = κVT,0 +
γ2
V T

〈V 〉
∆cp (7)

Where the second term is the contribution of the melting transition, and the first term covers the rest.

Following the argumentation made by Mosgaard et al. [57] I split cp in equation 5 into the excess heat

capacity ∆cp and the reservoir heat capacity cRp (cRp also contains contributions from other lipid degrees of

freedom than melting). Since the heat capacity of the aqueous environment greatly exceeds that of the lipid

membrane,
(
∆cp + cRp

)−1 ≈
(
cRp
)−1

.

κVS =

(
κVT,0 +

γ2
V T

V
∆cp

)
− T

V
(
∆cp + cRp

) (γV ∆cp)
2

=

(
κVT,0 +

γ2
V T

V
∆cp

)
− Tγ2

V

V

(∆cp)
2

cRp

= κVT,0 +
Tγ2

V

V
∆cp ·

(
1− ∆cp

cRp

)
(8)

This equation was derived in Mosgaard et al. [57]. It relates the isentropic compressibility directly to the

excess heat capacity for lipid bilayers in phase transition, thus making it possible to obtain information about

elastic properties of the system by measuring thermodynamic quantities. It also shows how the ratio between

the membrane and reservoir heat capacities influence the compressibility of the membrane. In general the isen-

tropic compressibility is lower than the the isothermal compressibility, which constitutes the upper limit to the

isentropic compressibility in the case of an infinite reservoir. In the limiting case, both compressibilities follow

the excess heat capacity closely, and since the excess heat capacity of lipid bilayers changes many orders of
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magnitude [23], so does the compressibility, predicting a minimum in the speed of sound [28]. If instead the

reservoir heat capacity is finite and comparable in size to the membrane heat capacity, the compressibility will

be strongly reduced. High frequency of sound has a similar effect as a limited reservoir [57]. This is related

to the relaxation time of fluctuations in the lipid membrane and surrounding water, and to explain this well I

need to give a short introduction to the field of linear, non-equilibrium mechanics.

Using the general expression for internal energy of a thermodynamic system, one can express the entropy

of the system as the sum of contributions from each of the system variables divided by T . These terms are

referred to as ’reaction variables’ [29, chap. 4.3]:

dS =
dE

T
+
p

T
dV +

(
Π

T
dA+

F

T
dx+

Ψ

T
dq +

1

T

∑
i

µidni...

)

Linear non-equilibrium mechanics builds on the approximation that close to equilibrium, entropy can be

treated as a quadratic potential of these reaction variables, denoted ξi, with thermal equilibrium at the top

(subscript 0) [34, chap. 4.13]:

S ≈ S0 +
1

2

∑
i

∑
j

(
∂2S

∂ξi∂ξj

) ∣∣∣
ξi,0,ξj,0

(ξi − ξi,0) (ξj − ξj,0) (9)

The slopes of the entropy potential, Xi = ∂S
∂ξi

, are named thermodynamic forces (notice the unconventional

sign of the potential), and the changes in reaction variables over time, Ji = ∂ξi
∂t , are named thermodynamic

fluxes. The use of classic terminology gives a more intuitive feel for the system: Small displacements in a given

variable induces a restoring force towards the maximum of the potential, equilibrium. Close to equilibrium, the

fluxes are linearly related to the thermodynamic forces, following Onsagers reciprocal relations:

Ji =
∑
j

Li,jXj , Li,i > 0, Lij = Lj,i, and
Lij

Li,iLjj
≤ 1 (10)

Where Lij are phenomenological coupling constants between reaction variables.

I will now apply this formalism to investigate how a small fluctuation in a lipid bilayer relaxes back to

equilibrium. In the case of melting lipid bilayer membranes, area and volume changes are linearly related

to entalpy fluctuations, such that there is essentially only one reaction variable, entalpy. Any fluctuation is

reversible, so the total entalpy of the system 〈H〉, is conserved. The distribution of possible system states

depend only the entropy, which in the case of maximum entropy can be related to the fluctuations of the system

using equation 9:

Psystem = exp

(
− (H − TS)

kBT

)
∝ exp

(
S

kB

)
= exp

((
∂2S

∂ (∆H)
2

)∣∣∣
H0

(∆H)
2

2kB

)
(in case of maximal entropy)

(11)

Where ∆H = H − 〈H〉 is a fluctuation in entalpy.
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If the system is large enough, there is a sufficient number of possible states to approximate this distribution

with a Gaussian:

Psystem (∆H) ≈ 1

σ
√

2π
exp

(
− (∆H)

2

2σ

)
∝ exp

(
− (∆H)

2

2cp · kBT 2

)
(close to maximal entropy) (12)

I mentioned earlier (equation 6) that the variance, σ2, in entalpy fluctuations in equation 11 is equal to cp ·kBT 2.

Comparing the exponents of equation 11 I conclude:

(
∂2S

∂ (∆H)
2

)∣∣∣
H0

≈ − 1

T 2cp
(13)

Multiplying equation 13 with ∆H, the thermodynamic force, ∂S
∂∆H , is found:

− ∆H

T 2cp
=

∂S

∂∆H
=

(
∂2S

∂ (∆H)
2

)∣∣∣
H0

∆H =
∂S

∂∆H

Using Onsager’s relations (equation 10) I relate the entalpy flux and force and arrive at a final expression

for the change in entalpy over time:

∂∆H

∂t
= L · ∂S

∂∆H
= −L ∆H

T 2cp
(1st order ODE)

→ ∆H (t) = ∆H0 exp

(
− L

T 2cp
t

)

I see that the time scale of equilibration, or, ’relaxation time’, is proportional to the heat capacity of the

system:

τ =
T 2

L
cp ≈

T 2

L
∆cp (at phase transition) (14)

.

When the heat capacity increases during phase transition, the time it takes for the membrane to equilibrate

fluctuations are similarly prolonged. The approximation is made on the basis that the entalpy changes related

to melting are magnitudes larger than contributions from the reservoir. By looking at Monte Carlo simulations

of relaxation processes, Mosgaard et al. [57] finds that when a system doesn’t have the time to relax properly

because it is pertubed at a frequency much faster than the time scale of the equilibrium relaxation, the process

does not access the full heat capacity of the system as if the size of the reservoir was reduced. Thus the isentropic

compressility is reduced and the speed of sound is coupled to frequency of sound, causing dispersion.

Returning to the soliton model in equation 1, it must be mentioned that the density of the membrane is de-

scribed by the distance between lipid headgroups at the membrane surface, and the dimension perpendicular to

the membrane surface is essentially ignored. The speed of sound depends on the area density, ρA, and isentropic

area compressibility, κAS , instead of volume density and isentropic volume compressibility. Currently a linear
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empirical relation for area and entalpy haven’t been documented, 〈∆A〉 = γA · 〈∆H〉, since area is difficult to

measure accurately alongside changes in entalpy, but it is generally assumed to exist [28], such that isentropic

area compressibility can be related to the heat capacity of the system following the same line of argument as

for the isentropic volume compressibility.

To simplify things, Heimburg and Jackson [33] leaves out the influence of dispersion in the speed of sound,

c of the soliton model. The dispersion is instead taken care of by adding the term −h∂
4∆ρA

δx4 and adjusting the

parameter h. They fit a quadratic function to empirical measurements of the speed of sound as a function of

density in the low frequency limit [33]:

c2 = c20 + p ·∆ρA + q ·
(
∆ρA

)2
+O

(
∆ρA

)3
(15)

∂2∆ρA

∂t2
=

∂

∂x

((
c20 + p ·∆ρA + q ·

(
∆ρA

)2) ∂∆ρA

∂x

)
− h∂

4∆ρA

∂x4

=
(
p+ 2 · q ·∆ρA

)(∂∆ρA

∂x

)2

+
(
c20 + p ·∆ρA + q

(
∆ρA

)2) ∂∆2ρA

∂x2
− h∂

4∆ρA

∂x4
(16)

The coefficients in the following expression for the speed of sound is therefore dependent on the reservoir

size of the experimental setup used. The fit coefficients used in the work presented in this thesis can be found

in the list of table values in appendix D.

2.2.2 Modelling dispersion from thermodynamic properties

Though the constant dispersion coefficient h in equation 1 is shown to only influence the width of the pulse

[33], it is still a free parameter. In order to achieve a self-contained, thermodynamical model, Mosgaard [56] has

managed to express the dispersion in terms of thermodynamic variables of the system close to phase transition

in the limit of small amplitude pertubations, drawing on many of the equations I’ve just introduced in this

chapter. He expresses the new h in terms of limiting velocities,

(c1(ρ))
2 ≡ 1

ρAκA,0T

High frequency limit

(c2(ρ))
2 ≡ 1

ρA
γ2
AT

A ∆cp
Component related to lipid melting

(c0(ρ))
2 ≡ 1

(c1(ρ))
−2

+ (c2(ρ))
−2 Low frequency limit

(17)

Here κA,0T is the isothermal area compressibility without contribution from membrane melting, and A is the

area of the membrane. The new dispersion coefficient is then:

h = ∆c2p

(
T 2 (c0 (ρ))

3

2L

)2[
4c22 + 3c21
c22(c22 + c21)

]
(18)

Where T is the temperature of the system and L is Onsager’s phenomenological constant. For full derivation,

see appendix A.1. Instead of deriving a relation between area density and κA,0T , the high frequency speed of

sound is approximated by fitting a quadratic function to experimental data similarly to the approximation of
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the low frequency speed of sound in equation 15 in the previous section:

(c1(ρ))
2 ≈ k · c20 + f ·∆ρA + g ·

(
ρA
)2

+O
(
ρA
)3

These fit coefficients can also be found in the list of table values in appendix D.

For the dispersion coefficient to be exclusively dependent on density, ρA, the excess heat capacity must be

expressed in terms of ρA. In the following I will derive the approximated relationship between heat capacity

and membrane density that I’ve implemented in the numerical work of this thesis. To make the derivation less

messy, I abbreviate ρA with ρ.

ρ, or more specifically, 〈ρ(T )〉, can be written as:

〈ρ(T )〉 = f(T ) · 〈ρfluid(T )〉+ (1− f(T ))〈ρgel(T )〉

Where f is the fluid fraction. Since the membrane is close to melting transition, the initial state of the nerve

isn’t likely to be completely fluid. If you add a small change in the fluid fraction, ∆f , you get:

(f + ∆f) · 〈ρfluid(T )〉+ (1− (f + ∆f)) 〈ρgel(T )〉

= f · 〈ρfluid(T )〉+ (1− f)〈ρgel(T )〉+ ∆f (〈ρfluid(T )〉 − 〈ρgel(T )〉)

= 〈ρ(T )〉+ 〈∆ρ(T )〉 where 〈∆ρ(T )〉 = ∆f (〈ρfluid(T )〉 − 〈ρgel(T )〉)

→ ∆f =
〈∆ρ(T )〉

〈ρfluid(T )〉 − 〈ρgel(T )〉

Assuming that the molar mass of a lipid doesn’t change from fluid to gel phase (ex. due to changes in water

content), the molar mass is constant, M .

Now the question is, can I express 〈ρfluid(T )〉 = 〈 2·M
Afluid(T ) 〉 as = 2·M

〈Afluid(T )〉 (factor of 2 due to BI-layer) and

likewise for the gel-phase? If I Taylor-expand ρ = 2·M
A around the mean, 〈A〉 I get:

ρ = 2 ·M
(

1

〈A〉
+
−1

〈A〉2
·∆A+O(∆A)2

)
=⇒ ρ =

2 ·M
〈A〉

(
1− ∆A

〈A〉

)

As long as the relative change in area with respect to temperature is low for each type of lipid state, such that

the majority of the area change is due to the change in distribution of fluid and gel lipids, this is approximately

equal to ρ = 2M
〈A〉 . Is this the case? Outside of transition there is an observed proportional relationship between

temperature and relative area change in both fluid and gel phase, so the thermal area expansion coefficients are

constant [28] and approximately equal to αgel = 0.0026/K, αfluid = 0.0042/K for DPPC (MLV, [28]). Measuring

the thermal area expansion coefficients inside of transition is much more difficult. In the case of volume expan-

sion coefficients, the coefficients for pure lipid and gel phase are are a magnitude less than the largest coefficients
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during transition, αgel = 0.00088/K, αgel = 0.001/K for DPPC (MLV, [28]) versus αtransition = 0.03/K (LUV,

[27]) and αtransition = 0.17/K (MLV [27]), so the expansion of the pure phases are relatively small. Since the

area change during phase transition in DPPC is estimated to be much larger than the volume change, 24.6%

vs. 4.7% [33], I assume the area changes inside and outside transition to differ similarly or more. Furthermore

the full melting transition is quite wide, including a small pre-transition called the ’ripple’ phase several degrees

below the main transition. There might therefore be contributions from lipid transitions in the experimentally

determined thermal expansion coefficients for the fluid and gel phases, such that the true expansion of each

phase is even smaller than expected. This argument is similar to the argument in the previous section of the

pure lipid phase contribution to volume expansion close to phase transition.

I then have an expression for the change in fluid fraction, which I need in the following derivation of the

average molar area:

First I use the same procedure as for the molar density to derive an expression for the molar area:

〈A(T )〉 = f · 〈Afluid(T )〉+ (1− f)〈Agel(T )〉

= (f + ∆f) · 〈Afluid(T )〉+ (1− (f + ∆f)) 〈Agel(T )〉

= (f · 〈Afluid(T )〉+ (1− f)〈Agel(T )〉) + ∆f (〈Afluid(T )〉 − 〈Agel(T )〉)

= 〈A(T )〉+ 〈∆A(T )〉 where 〈∆A(T )〉 = ∆f (〈Afluid(T )〉 − 〈Agel(T )〉)

→ 〈∆A(T )〉 = ∆f (〈Afluid(T )〉 − 〈Agel(T )〉)

Here I do not divide the area by a factor of 2 since the bilayer of the membrane is accounted for in the area.

Then I insert the expression for the change in fluid fraction:

〈∆A(T )〉 =
〈∆ρ(T )〉

2 ·M
·
(

1

〈Afluid(T )〉
− 1

〈Agel(T )〉

)−1

(〈Afluid(T )〉 − 〈Agel(T )〉)

=
〈∆ρ(T )〉

2 ·M
·
(
〈Agel(T )〉 − 〈Afluid(T )〉
〈Afluid(T )〉 · 〈Agel(T )〉

)−1

(〈Afluid(T )〉 − 〈Agel(T )〉)

=
〈∆ρ(T )〉

2 ·M
· (−1) · 〈Afluid(T )〉 · 〈Agel(T )〉

To determine 〈Afluid(T )〉 and 〈Agel(T )〉 I exploit the approximate proportionality between relative change

in area and change in temperature (per Kelvin) described by the intrinsic thermal area expansion coefficient for

gel and for fluid (denoted with X’s).

〈Afluid(T )〉 = [XA,fluid ·∆T1 + 1] · 〈Afluid(T1)〉 and,

〈Agel(T )〉 = [XA,gel ·∆T2 + 1] · 〈Agel(T2)〉

Here ∆T1 = T −T1, where T1 is the temperature far from transition where 〈Afluid,1(T )〉 is obtained, similarly
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with T2.

Summarizing, I get:

〈∆A(T )〉 =
〈∆ρ(T )〉

2 ·M
· (−1) · [XA,fluid ·∆T1 + 1] · 〈Afluid(T1)〉 · [XA,gel ·∆T2 + 1] · 〈Agel(T2)〉 (19)

Following the argument from previous section, let us assume that area and entalpy fluctuations are propor-

tional:

〈∆A(T )〉 = γA〈∆H(T )〉 (20)

I model the melting transition as a discrete system with two possible states, each lipid is independent and

identically distributed, and I have the probabilities:

Pfluid =
K(T )

K(T ) + 1
for a fluid lipid, and Pgel =

1

K(T ) + 1
for a gel lipid

where K(T ) = exp(−n∆G

kBT
) = exp(−n∆H0 − T∆S

kBT
)

H0 is the entalpy difference of the fluid (reference state) and gel state of a lipid, Hfluid −Hgel. For a sharp

transition I can write ∆S = ∆H0

Tm
(set ∆G = 0 in K).

〈∆H(T )〉 for one lipid is calculated by
∑
i ∆HiPi. The reference state for the density change is the fluid

state, so ∆H = −∆H0 for gel, ∆H = 0 for fluid:

〈∆H(T )lipid〉 = −∆H0 ·
1

K(T ) + 1
+ 0 · K(T )

K(T ) + 1
(21)

By plugging formula 19 into formula 20 and subsequently into formula 21 I can obtain the temperature of

the system, T :

solve
(
− γA ·∆H0 ·

1

exp(n∆H0

kB
( 1
T −

1
Tm

)) + 1
=
〈∆ρ(T )〉

2 ·M
· (−1)

· [XA,fluid ·∆T1 + 1] · 〈Afluid(T1)〉 · [XA,gel ·∆T2 + 1] · 〈Agel(T2)〉, T
)

(22)

This equation can be solved numerically using MATLAB®’s variable precision solver. The temperature can

then be inserted into the following equation based on Van’t Hoffs law [29, chap. 6.2] to obtain the single lipid

contribution to the excess heat capacity:
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∆cp,lipid =

(
d〈∆H(T )lipid〉

dT

)
P

= −∆H0 ·
−K(T )

(K(T ) + 1)2
· n∆H0

kBT 2

=
n(∆H0)2

kBT 2

K(T )

(K(T ) + 1)2
(23)

The heat capacity of a mole of lipids is then Avogadro’s number times the lipid heat capacity, NA ·∆cp,lipid.

It should be mentioned that the cooperativity, n, has a rather strange unit since it is expressed for a single

lipid. It is the cooperativity of a single lipid as if it were ’in a mole of lipids’.

2.2.3 Membrane permeability and electricity

So how does the soliton theory connect density pulses to the other processes taking place during nerve signaling,

as mentioned in section 2.1? To give a few examples, I will briefly go through the case of voltage changes and

and altered permeability.

Density change is coupled to the change in trans-membrane voltage and capacitance through the alteration

of the charge density of the bilayer. The electrical potential of a monolayer is approximately proportional to

its charge density, Ψ ∝ σ, which then is proportional to area density, σ ∝ ρA [29, chap. 18.3.2.2]. The charge

density covers lipids, proteins and other charged constituents of the membrane and can be strongly modulated

by ions in the environment.

In case of a constant dispersion coefficient, the soliton model predicts an ≈ 20% increase in area density in

case of a pure DPPC bilayer [33], transitioning from fluid to solid and going through 85% of the phase transition

[29, chap. 18.3.2.2]. Since area density is proportional to the charge density, one would expect a 20% increase

in charge density as well, which in case of charged membranes can have a considerable effect on membrane

potential [29, chap. 18.3.2.2]. To illustrate this, Heimburg and Jackson measured the voltage and area changes

of charged lipid bilayers undergoing phase transition. The outer monolayer consisted purely of uncharged lipids,

whereas the inner monolayer contained 40% charged lipids. This asymmetrical charge distribution is common

for biological membranes such as mitochondria [36]. They measured ≈ 50 mV voltage changes across the mem-

brane, which is in the same order of magnitude as action potentials [29, chap. 18.3.2.2].

The relative change in membrane thickness during phase transition is also quite large. As an example, the

thickness of pure DPPC bilayer decreases ≈ 16%. Furthermore area changes ≈ 24.6 % [29, chap. 18.3.2.2]. If

the nerve membrane is approximated as a simple plate capacitor, the capacitance is directly proportional to area

and inversely proportional to the distance between charges on either side of the membrane: C ∝ A
d . Changes

in membrane capacity is therefore a natural consequence of the altered area and thickness during the nerve pulse.

Increases in permeability during nerve pulses are likewise related to the impact of phase transition on the

membrane. Permeability is linearly related to isothermal compressibility, κT [29, chap. 17], and isothermal

compressibility follows the heat capacity, also in a linear manner (see equation 5). Thus phase transition

should have a strong effect on membrane permeability, which is affirmed by empricial studies [29, chap. 17].
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According to Heimburg [30], sodium permeability increased factor 100 in DPPG and DPPC membranes near

phase transition [30], matching the 100-fold increase in permeability of sodium during the nerve signal reported

by Abbott et al. [1]. It is therefore likely that the altered membrane permeability during the nerve pulse can

be fully explained by soliton induced lipid phase transition. Antonov et al. [3] has among others shown how

phase transition can induce discrete, ion-channel-like events in pure lipid membranes. It is unlikely for strongly

hydrated ions to diffuse directly through the hydrophobic lipid core, instead one can imagine the spontaneous

formation of lipid pores due to increased thermal motion at phase transition [29, chap. 17], exacerbated by the

presence of domain interfaces, protein clusters and other defects in the lipid bilayer.

2.3 Summary

In the previous chapter I have briefly listed some of the characteristics of the nerve pulse such as electrical,

mechanical and permeability changes. I have given a short introduction to the thermodynamics of sound

propagation in lipid membranes and derived an expression for the dispersion of the soliton model through the

thermodynamic quantities adiabatic compressibility and heat capacity. These results will be applied in the

following chapters where I present my work.

3 Numerical endeavors

The initial objective of this thesis was to solve the self-contained soliton equation presented in the previous

chapter for as wide a range of propagation speeds as possible. This version has been documented to be difficult

to solve by [61, chap. 4.5] (and by Heimburg and Mosgaard though not in print). I intended to approach the

problem in steps, first solving the cases of constant dispersion coefficient (in two steps), then an approximation

to the density dependent problem (Gaussian approximation for density-dependent heat capacity) and lastly the

self-contained model itself (thermodynamic model for density-dependent heat capacity). In reality the process

was a lot more muddled, but I will nevertheless present it in this order for clarity’s sake.

3.1 Solving ordinary differential equations in MATLAB®

All numerical work has been done using MATLAB® tools. I saw no reason to spend time trying to implement

an algorithm on my own before knowing the problem better. MATLAB is one of the most widely used if not the

most widely used environment for solving differential equations numerically [26, chap. 1.4.2]. It has an extensive

catalog of powerful solving procedures based on well-established algorithms, with the caveat that one has to go

through the source code to gain insight into their actual implementation. The major obstacles I encountered

while working on the self-contained soliton equation were:

Stiffness: Typically occurs when there is a mismatch between time scales of the different terms in the differential

equation [26, chap. 9.3.4] such that there comes a point where a slowly varying solution is overpowered by

divergence and ’runs wild’. Very small changes in initial conditions or error can lead the algorithm from

a well-behaved solution into an adjacent, divergent solution. In this case the density dependent problems

show stiffness by presenting with smooth, well-behaving solutions within a limited variable interval, but

for certain points tiny changes in initial conditions or numerical error can introduce large variations in

the solution behaviour and manner of divergence (e.g. divergence from - ∞ to + ∞, see figure 7). This

17



is very demanding for the ODE solver that needs to recognize these problematic areas and implement

algorithms of increased accuracy. Non-stiff numerical methods involving adaptive step sizes usually get

stuck at these points. I tried patching several methods together in order to tailor the numerical method

to the problem, but the intermediary steps of the ODE solvers are not easily accessible to the user, so it

led to quite a loss of information at the intersection of the two methods.

Solving the heat capacity: For intermediate or true steps of solving the self-contained problem, the ODE-

solver needs to obtain the heat capacity using a numerical solver.

Systematic storage and retrieval of data: Due to the nature of the initial condition optimization, large

amounts of data are generated. Because of the stiffness of the problem, it is very important to store

information in a way least prone to machine error. MATLAB® has its own ’.mat’ files for this purpose.

Optimizing for initial conditions: I do not have adequate information to obtain a soliton-like solution up

front in any of the cases.

The soliton equation is a 4th order PDE both in the case of constant and density-dependent dispersion

coefficient. I followed the footsteps of Heimburg and Jackson [33] and transformed it into an ODE by changing

the coordinate system to follow the pulse, z = x− vt:

v2 ∂
2∆ρA

∂z2
=

∂

∂z

((
c20 + p ·∆ρA + q ·

(
∆ρA

)2) ∂∆ρA

∂z

)
− h∂

4∆ρA

∂z4
(24)

=
(
p+ 2 · q ·∆ρA

)(∂∆ρA

∂z

)2

+
(
c20 + p ·∆ρA + q

(
∆ρA

)2) ∂∆2ρA

∂z2
− h∂

4∆ρA

∂z4
(25)

I’ve tried different MATLAB®’s ODE-solvers for each problem to see which works the best. The following

list includes the solvers I chose to work with:

ODE solvers:

All solvers incorporate multistep methods starting from a single initial point.

ODE 15s MATLAB®’s ODE15s is a multistep method using variable order numerical differential formulas

(1st - 5th order) and adaptive step sizes [51]. That is the rather non-descriptive information given in

the MATLAB documentation, I did not take the time to read the source code and cannot disclose more

information. It is the only solver of theirs by which I was able to obtain solutions for the self-contained

model, and concurrently their stiff solver of highest accuracy [50].

ODE 23tb For the Gaussian approximation of the heat capacity I have worked with ODE23tb [52] in parallel

to ODE15s. It is a method of two stages: An implicit Runge-Kutta with trapezoidal rule governed step

size in the beginning and later a switch to some second order backwards differentation method when it

sees fit.

ODE 45 The constant dispersion coefficient cases did not have these difficulties, here the classical, explicit

Runge-Kutta (4,5) with adaptive step sizes (ODE45, [53]) did well, alongside the stiff equation solvers

ODE15s and ODE 23tb.
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3.1.1 Analytical integration of the soliton model in case of a constant dispersion coefficient

I did not implement the constant dispersion coefficient case directly (a 4th order ODE). Instead I integrated

the equation twice and thrice analytically before I solved the resulting 2nd and 1st order equations numerically.

I’ll briefly go through the analytical preparations underneath, which can also be found in Lautrup et al. [44]

and Villagran-Vargas et al. [83]. While integrating I impose conditions such that the original 4th order problem

requiring 4 initial conditions transforms into a 2nd or 1st order problem requiring 2 and 1 initial condition(s),

respectively.

Integrating equation 24 from the previous section once, I get:

∫
v2 ∂

2∆ρA

∂z2
dz =

∫
∂

∂z

[ (
c20 + p ·∆ρA + q(∆ρA)2

) ∂∆ρA

∂z

]
dz − h

∫
∂4∆ρA

∂z4

→ v2 ∂∆ρA

∂z
=
(
c20 + p ·∆ρA + q(∆ρA)2

) ∂∆ρA

∂z
+ h

∂3∆ρA

∂z3
+K1

K1 can be set to 0 since I assume ∆ρA and its derivatives to tend to 0 at ±∞ [83].

Integrating once more, I get:

∫
v2 ∂∆ρA

∂z
dz =

∫ (
c20 + p ·∆ρA + q(∆ρA)2

) ∂∆ρA

∂z
dz +

∫
h
∂3∆ρA

∂z3
dz

→ v2∆ρA = c20∆ρA +
p

2
(∆ρA)2 +

q

3
(∆ρA)3 − h∂

2∆ρA

∂z2
+K2

→ h
∂2∆ρA

∂z2
=
(
c20 − v2

)
∆ρA +

p

2
(∆ρA)2 +

q

3
(∆ρA)3 (26)

Likewise K2 is set to 0. If K2 > 0, the solutions become periodic [83]. Multiplying with ∂∆ρA

∂z and integrating

leaves:

∫
v2∆ρA

∂∆ρA

∂z
dz =

∫ (
c20∆ρA +

p

2
(∆ρA)2 +

q

3
(∆ρA)3

) ∂∆ρA

∂z
dz

− h
∫
∂2∆ρA

∂z2

∂∆ρA

∂z
dz +

∫
K2

∂∆ρA

∂z
dz

→ v2

2
(∆ρA)2 =

1

2
c20(∆ρA)2 +

p

2 · 3
(∆ρA)3 +

q

3 · 4
(∆ρA)4 − h

2

(
∂∆ρA

∂z

)2

+K3

→ h

(
∂∆ρA
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(27)

K3 is set to zero too, though it has no influence on the solutions [83].

The equation of 1st order has a squared derivative, meaning the solution is constrained to be either even

or odd. This was not the case for the second order equation. None of the equations above has an explicit

dependence on z, see appendix A.2. Since this is the case for the density-dependent dispersion coefficient

equation as well, I center all solutions around zero by locating the maximum amplitude of the non-centered

solitons and translating the z-axis. Lautrup et al. [44] has found an analytical solution to the soliton model in
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the case of constant dispersion coefficient. This is convenient, since I can compare shape and behaviour of my

solutions to the true soliton for different ODE-solvers.

3.1.2 Linearization and ODE solvers

The ODE solvers of MATLAB® require the differential equation to be expressed as a first order linear system [50]

. A brief description of this can be found in Heath [26, chap. 9]. Initial conditions are then expressed as a vector

of the system. The number of initial conditions I need to specify is then equal to the size of the linearized system.

For the twice integrated constant dispersion coefficient equation, the linearization results in a system of size

2:

U =

y
y′

 =

u1

u2

 and U′ =

y′
y′′

 =

 u2

g(u1, u2)

 (28)

Where the density change y is differentiated with respect to z = x− vt, and g is the equation describing the

system (adapted from equation 26 in the previous section):

y′′ = h−1
(

(c20 − v2)y +
p

2
y2 +

q

3
y3
)
→ g(u1, u2) = h−1

(
(c20 − v2)u1 +

p

2
(u1)2 +

q

3
(u1)3

)
For the thrice integrated equation, I just have a single equation:

U = y and U′ = y′ = g(u1) (29)

The system is described by the following equation (adapted from equation 27 in the previous section):

g(u1) =


√
h−1

(
(c20 − v2)u2

1 + p
3u

3
1 + q

6u
4
1

)
if z ≤ 0

−
√
h−1

(
(c20 − v2)u2

1 + p
3u

3
1 + q

6u
4
1

)
if z > 0

(30)

After taking the square root, I need to consider the sign of the derivative. A symmetrical derivative leads to

sigmoid solutions, whereas alternating signs leads to pulses. Since I want the pulse to be positive and centered

around z = 0, I set y′ > 0 below z = 0 and vice versa.

For the density dependent dispersion coefficient the system is of size four:

U =


y

y′

y′′

y′′′

 =


u1

u2

u3

u4

 and U′ =


y′

y′′

y′′′

y′′′′

 =


u2

u3

u4

g(u1, u2, u3)

 (31)
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Where g is now including the density dependent dispersion coefficient term h(y) = h(u1) from equation 18.

The system equation is adapted from equation 25 from the previous section:

g(u1, u2, u3) = h(u1)−1
((
c20 − v2 + p · u1 + q · (u1)2

)
· u3 + (p+ 2 · q · u1) · (u2)2

)
3.1.3 Solving the heat capacity

For the case of the Gaussian approximation of the density dependent excess heat capacity, I estimated the

parameters for a scaled Gaussian from sonicated LUV DPPC data in Mosgaard et al. [58] using guides in GIMP

as rulers. The result can be seen in fig. 1. A Gaussian shape was chosen simply because the data was bell

shaped and parameters can be easily determined. The non-zero intersection with the y-axis indicates that the

lipids are partly in transition in the membrane’s ground state, so that the the initial state of the membrane

isn’t fully fluid. One has to bear in mind that the direction of the transition in a plot of heat capacity versus

density change is flipped compared to the usual plot of heat capacity versus temperature. The membrane is in

a fluid state at low density changes to the left and solid at large density changes to the right.

Figure 1: Heat capacity as a Gaussian function of relative density change based on sonicated LUV DPPC data
from Mosgaard et al. [58].

As for the thermodynamic model for the heat capacity I needed to solve equations equations 23 and 22 in

section 2.2.2. Since the table values for the average areas are per lipid and not per mole, I calculate everything

per lipid until the end, where I scale the system to per mole. I could not find an analytical solution to the

heat capacity equations 23 and 22. Attempts with symbolic solvers in MATLAB®, Maple and Wolfram-Alpha

were unsuccesful. MATLAB’s numerical solver fsolve (floating point arithmetic) also didn’t return a solution.

MATLAB’s vpasolve (variable precision arithmetic) yielded results but is slow and not always succesful. Since

I incorporated vpasolve into the input of the ODE solver, the latter would crash if vpasolve returned empty-

handed. To prevent loss of information I encapsuled the ODE solver in a ’try-catch’ maneuvre, saving the

workspace for each run of the ODE solver, succesful or not, alongside a log of error messages (the messages

I had implemented myself, that is). A log file is generated in txt-format in the same directory as the data,

documenting the approximate initial condition of the problem and whether the solving was succesful or not.

This feature cannot be turned off since it has many dependants in the rest of the code, and unfortunately it

can accumulate a lot of data.
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In figure 2 is a plot of the calculated heat capacity curves for DPPC and e. coli membranes as a function

of both relative density change and system temperature. The parameters for the DPPC curve are included in

appendix D. I mainly use table values from Heimburg [28]. The cooperativity n = 80 is a choice I made since

I can obtain solutions for a decent range of velocities for this value. In the case of e. coli the cooperativity n,

melting entalpy, ∆H0, and melting temperature, Tm, were obtained using a Van’t Hoff fit (see equation 23) of e.

coli mealting profiles from Mužić et al. [60, fig.3], these parameters are also included in appendix D. The rest of

the parameters for the e. coli run were set to DPPC values. In figure 2 the melting profile of DPPC membranes

matches fairly well with melting profiles of extruded DPPC LUVs in literature [28, 22], so the choice of n = 80

might not be too unrealistic. The widths of the curves of the self-contained model are smaller, and the heights

larger, than the Gaussian approximation based on sonicated LUVs, which corresponds well to extruded DPPC

LUVs having more cooperative transitions than sonicated LUV’s [28]. Because of this the thermodynamically

modelled heat capacity might not be directly comparable to the Gaussian approximation.

The DPPC transition peak is approximately 12 times larger than peak of the e. coli membrane. Gener-

ally the cooperativities of pure lipid membranes are much higher than in mixed membranes [23] and biological

membranes [60]. The structure of the vesicles can also alter the cooperativity greatly, a good example is the

differences between melting peaks of MLVs, extruded LUVs, sonicated LUVs of DPPC seen in the 1998 paper

by Heimburg [28, fig. 2].
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Figure 2: Calculated heat capacity curves as a function of relative change in density and of temperature for
DPPC and e.coli membranes.

Finally I calculated the density-dependent dispersion coefficient for DPPC using both the Gaussian ap-

proximation and the thermodynamical model of the heat capacity for different values of the phenomenological

constant L. The results are displayed in figure 3. The Gaussian approximation yields dispersion coefficient

curves with similar size and shape as previous results by Panagiotis [61, chap. 4.4, fig. 4.3], though my curves

do not intersect the y-axis at zero, which is a reflection of the non-zero excess heat capacity of the ground state,

see figure 1. The curves of the thermodymic model are noticeably taller and does not have any intersection worth

mentioning, due to the increased cooperativity. The abrupt increment is likely contributing to the stiffness of

the problem.
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Figure 3: Dispersion coefficients as a function of relative density. LEFT: Gaussian approximation of density-
dependent heat capacity. RIGHT: Thermodynamic model for density-dependent heat capacity (bottom).

3.1.4 The initial value problem

At this point I have described the full implementation of the 4 different ODEs in MATLAB®. What remains is

to find initial conditions that produces a single, localized pulse. I decided not to complicate things more than

necessary, so my methods are brute force and based on observation.

For each problem I start out by producing solutions for a broad range of initial conditions and manually

deciding what features indicate that a solution is close to solitary behavior. I then create a procedure that

calculates all solutions for a manually defined interval of initial values and automatically picks out the solutions

closest to solitary behavior. If it manages to find two solutions whose initial conditions presumably constitutes

an interval around the initial condition of a soliton, the procedure stores their associated initial conditions and

further minimizes the interval using the bisection method. If only one boundary of the interval can be deter-

mined, the procedure determines in which direction to search for the second. If it is succesful, the interval of

initial values is subsequently minimized likewise using the bisection method. As previously mentioned, vpasolve

causes the ODE-solver to crash quite often, so for each step in the bisection method the bisection interval is

divided into 10 steps, and the procedure searches for a solution among these steps before assuming no solution

can be found and stopping the optimization. The steps alternate across the middle of the initial value interval

in order to preserve as much of the bisection as possible.

Each case of constant dispersion coefficients have their individual optimization procedure, whereas the same

optimization procedure is used for both of the density dependent cases. In the following I will briefly go through

the initial values and the optimization criteria.

The case of constant dispersion coefficients, twice integrated (equation 28):

I start the solver from what I assume is the maximum of the density amplitude, since the maximum point is

easy to estimate. The caveat of this strategy is in case of flat amplitudes, such as the ones obtained by Lautrup

et al. [44, fig. 1], the solution changes too little for the precision of the algorithm. It has not been a major

issue here. The system is size 2, see equation 28, but since the second derivative at maximum is zero always, I

effectively have only 1 initial value to define, which is the amplitude, ∆ρmax:
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U0 =

y0

y′0

 =

∆ρmax

0


In Heimburg and Jackson [33] all the solutions have a maximum relative density change around ∆ρmax

ρ0
=

[0.04, 0.20], a depending on the velocity in question. This is the interval I used for optimization.

Figure 4 is a representation of the two types of solutions I get from the twice integrated constant dispersion

coefficient case when iterated from the maximum. Too small amplitudes leads to oscillatory solutions, whereas

too large amplitudes causes the solution to diverge. The largest amplitude of the oscillatory solutions and the

smallest amplitude of the divergent solutions constitutes lower and upper boundary for a soliton solution. I

have included the full optimization scheme in appendix F.7.

Figure 4: Range of solutions to illustrate the twice integrated bisection method, ODE23tb, h = 50m4

s2 . The
upper boundary for bisection would for this velocity be an amplitude of ≈ 3.20 and the lower amplitude ≈ 3.34.

The case of constant dispersion coefficient, thrice integrated (equation 29):

In this case the system is size 1, see equation 29, so I only need to define the amplitude, ∆ρmax, start my

iteration:

U0 = y0 = ∆ρmax

I search for solitons using the same range of amplitudes as for the twice integrated case of constant dispersion

coefficient. In figure 5 we see a different picture than in figure 4. The small amplitudes now lead to localized

pulses that are only distinguishable from the localized pulses at larger amplitudes by the lack of oscillating
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tails. The oscillations are the real part of a complex oscillation created by the square root in the system, see

equation 29. The bisection interval is upwards bounded by the smallest amplitude with oscillating tails, while

the adjacent lower amplitude constitutes the lower bound.

Figure 5: Range of solutions to illustrate the thrice integrated bisection method, ODE23tb, h = 50m4

s2 . The
oscillating tails of the high amplitude solutions are not easy to tell from the straight tails of lower amplitude,
here the black crosses indicate minima and maxima does exist. One sees how increasing the amplitude causes
the ends to diverge downwards (amplitude 7.03, 8.07). The divergent tails also oscillate, though not depicted
here.

Density dependent dispersion coefficient cases (equation 31):

The density dependent dispersion coeffcicient cases are systems of size 4 and therefore needs 1st, 2nd and 3d

derivative defined in addition to the density. I do not know the size of the third and fourth derivative at the

maximum. What I do know is that I want the solution to be a localized pulse. If I assume the soliton is

exponentially localized as in the original paper by Heimburg and Jackson [33], I can start the solver at the

asymptote, which is modelled as an increasing exponential. If we write the exponential as f(x) = exp(a · x),

the general expression for the n’th derivative is given by f (n)(x) = an exp(a ·x) = anf(x), where a in this thesis

is denoted ’the amplitude’ of the exponential (This amplitude is different from the amplitude of the solitons).

As long as I am on an exponential tail, I can express all derivatives of the initial conditions in the terms of

amplitude and initial density:

U0 =


y0

y′0

y′′0

y′′′0

 =


∆ρend

a ·∆ρend

a2∆ρend

a3∆ρend


To make sure I stay as far out on the asymptote as possible, I am keeping ∆ρend at a minimum, 10−2.2 ·∆ρ0
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as default. I optimize boundary conditions by adjusting the amplitude, a.

In figure 6 and figure 7 I’ve included representative ranges of solutions for the self-contained model and the

density dependent dispersion coefficient with a Gaussian approximation for the heat capacity. Both showed a

wider range of behavior that was less consistent than the constant dispersion coefficient cases, which is illustrated

in the Gaussian approximation case, see figure 6. It seemed that all the interesting behavior is concentrated

around an area of negatively diverging solutions with a single maximum. I dubbed this area ’The valley’ due

to the behavior of its maximum (see figure 7). On either side of the valley is an area showing potential for

a localized solution, where the oscillating, upwards divergent solutions meet the single maximum, downwards

divergent solutions of the valley. These sides are referred to as ’left’ and ’right’ side, corresponding to large and

small amplitudes.

Figure 6: Range of solutions to illustrate the Gaussian bisection method, ODE15s. Example of inconsistent
behaviour: For 0.70 c0 (top), the valley, left and right sides can all be determined. In the case of 0.80 c0
(bottom), right side oscillatory solutions has not been found. These are not found by further optimization
either, and the final result in fig. 13 does not have a right side boundary.
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Figure 7: Range of solutions to illustrate the thermodynamic bisection method, ODE15s, cooperativity = 80.
The left side is here presented by amplitudes ∈ [3.2, 6], the valley by amplitudes ∈ [0.5, 2.6] and the right side
for amplitude < 0.5. If one looks at the first maximum of each solution, it obtains a minimum value inside of
the valley, hence the name.

3.2 Results

Solutions differ depending on the ODE-solver used, and therefore the initial values are specific to the ODE-solver.

The differences in solutions can be quite large. In appendix E.1 I’ve included a comparison of three different

ODE-solvers solving the case of the thrice integrated soliton model with a constant dispersion coefficient. The

solutions are similar at very high velocities, ' 0.95 · c0 (figure 35) and large dispersion coefficients, h ' 50m4

s2

(figure 36). In order to be able to compare results I stick to the same ODE-solver. For the constant dispersion

coefficient I use ODE23tb unless otherwise notified and for the density dependent dispersion coefficient ODE15s

proves to be the best.

I solve each dispersion case for a handful of velocities in the range [0.65 · c0, 1 · c0], where c0 = 176.6 m
s (see

appendix D). Some solutions do not have both boundaries of the initial value defined. I do not regard these

solutions as well-defined, but include them for intuition. To give the reader a picture of how slow the convergence

of each problem is, I calculate at what decimal the upper and lower boundary of the bisection interval differs at

the end of the optimization, ∆amp. Neither the soliton equation nor the dispersion coefficients have an explicit

z-dependency (sketch of proof in appendix A.2), so I choose to center all solutions around zero.

I also attempted to run the e. coli heat capacity in figure 2. Unfortunately I did not obtain any wave-like

solutions, see fig. 39 in appendix E.3. This does not mean a solution doesn’t exist. In case of a constant

dispersion coefficient there is a direct relationship between the width of the pulse and the size of the dispersion

coefficient, see figure 12). This implies that small dispersion values due to broader heat capacity profiles will

result in narrower waves. Since I’m solving from the asymptotic end, the stark increment between tail and

amplitude is likely hard for the ODE solver to handle. Instead I chose to explore the role of cooperativity at

values close to the default cooperativity of n = 80.
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3.2.1 Determining the width of the pulses

In order to compare solitons of different velocities or parameter setups, I need some rough measures of shape

and size. I decided to use FWHM as a simple measure of the width of localized solutions, maximum being the

amplitude of the soliton. For density dependent dispersion coefficient cases, there is an offset in the solutions

caused by the initial density y0 = ∆ρend being too large, see fig. 13 and 14. For the constant dispersion

coefficient cases the ends tend to 0, ∆ρend = 0, so there is no offset (fig. 9 and 10). Half max is taken to be

half way between the asymptotic ends and the maximum density of the pulse, disregarding any offset in the data.

Since all methods I’ve worked with use adaptive step size, I cannot be sure that there are data points close

to half max. I therefore define a tolerance margin around half max. For the twice and thrice integrated constant

dispersion coefficient case it is 0.05 times the maximum density relative to the asymptotic ends and the density

dependent cases both have a margin of 0.025 times their relative maximum density.

Finding the maximum of the pulse: Though it is a localized solution, the ends might oscillate or diverge

such that they contain points exceeding that of the maximum I’m interested in. In the constant dispersion

coefficient case, the maximum I am looking for happens to be at the initial point, y0 = ∆ρmax. In the density

dependent cases, I search for the first maximum in the direction of evaluation.

Find all points within the margin of FWHM using the criteria:

abs(∆ρ− 1

2
∆ρmax) < margin

If I have a perfectly localized solution, I end up with two intervals of points, one for each side of the pulse.

But as with finding a maximum, the tails of the solution might contain points that fit this criteria, causing

more intervals to appear in the output. Since I centered the solution around 0, the intervals belonging to the

left and right side of the pulse will be the intervals of lowest z-values.

The points inside the interval are often irregularly distributed, so I decide to make a linear extrapolation

between the boundaries of the interval and determine the z-value belonging to the value ycenter = y1+y2
2 , where

y is the density relative to the asymptotic ends and subscript 1 and 2 denotes the two boundaries.

zcenter = z1 +
ycenter − y1

∆y/∆z

This is done for both sides of the pulse. FWHM is then 2 times the mean value of zcenter for the left and

right side. If a localized, symmetric pulse hasn’t been found, such as in the case of velocities {0.80 · c0, 0.85 · c0}

in fig. 13, the FWHM obtained using this method does not align with the graphs, since one side is wider than

the other and the FWHM is an average of the two.
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Figure 8: Twice integrated, ODE15s, h = 50m4

s2 . Red crosses mark the first maximum, in the constant dispersion
coefficient case coincidentally the initial point. Grey circles mark the boundaries of the intervals where points
are inside the tolerance margin of half max. The black crosses mark the final FWHM.

3.2.2 Constant dispersion coefficient

The solutions for the twice and thrice integrated constant dispersion coefficients are displayed in figure 9 and

figure 10, respectively. Both cases have a broad range of well-defined solitary solutions. My solutions have

dimensions of similar to what is found in literature [33, 44] and [56, chap. 1.2.2, fig. 1.9], though these studies

have chosen h = 2m4

s2 and therefore have a slightly smaller width. The amplitudes decrease as the speed of sound

increases, and the widths obtained by the method in section 3.2.1 display a U-shaped velocity dependence with

a minimum in the low end of the velocity range, see figure 11. The lowest velocity with a well-defined, solitary

solution is 0.6499 · c0 for the twice integrated case and 0.6500 · c0 for the thrice integrated case. The highest

velocity with a well-defined, solitary solution is 0.9500 · c0 for the twice integrated case and 1.0000 · c0 for the

thrice integrated case. The limit velocity for solitary solutions is in the twice-integrated case in the range of

[0.6498 · c0, 0.6499 · c0], and the thrice-integrated limit velocity is somewhere in the range of [0.6450 · c0, 0.65 · c0],

which fits well with the analytically derived limit velocity of ≈ 0.649851 · c0 found by Lautrup et al. [44], using

the same parameters from Heimburg and Jackson [33]. Lautrup et al. [44] find the width of the analytical

solution diverges for both low and high velocities with a minimum at ≈ 0.734761 · c0, which matches well with

the U-shaped velocity-dependence of the widths in figure 11. The thrice integrated solutions are generally

taller and more narrow than the twice integrated solutions, this is very evident for the velocity of 0.70 · c0
in figures 9 and 10. Both the solutions of the upper and lower bound on the initial value are represented in

these plots, and these are indistinguishable. I therefore think it is unlikely that the difference between twice

and thrice integrated solutions has to do with inadequate convergence. This issue also appeared when I varied

the dispersion coefficient h for a fixed velocity, see figure 12. The twice integrated case looks similar to results

obtained by Panagiotis [61, chap. 3, fig. 3.3] and Mosgaard [56, chap. 5 fig. 5.1], where the dispersion term

influences the width but not the amplitude of the solution. The thrice integrated case on the other hand

doesn’t adhere to this and ODE23tb doesn’t even reach a proper solution for small h. I believe the ODE-solver

introduces the variation because it has a difficult time with the square root in equation 30.
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I fitted the tails of the solutions to see if they decayed exponentially. Since the solutions are obtained by

running the ODE-solver from maximum amplitude towards the asymptote and then mirroring the data, there

only exists one unique tail. Plots of the fitted tails are included in figure 42, appendix E.5. I didn’t find a way

to create a good test statistic for data generated by an analytical algorithm, so I just assert that by eye the fits

seem to follow the data well.

Figure 9: Localized density pulses for constant dispersion, twice integrated, ODE23tb, h = 50.

Figure 10: Localized density pulses for constant dispersion, thrice integrated, ODE23tb, h = 50.
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Figure 11: Velocity dependence of widths and amplitudes for constant dispersion coefficient. In both cases,
solutions were obtained using ODE23tb. These plots include the widths and amplitudes of all solutions, also
the ones that are not well-defined, with the purpose of giving a qualitative idea of the behaviour.

Figure 12: Varying the constant dispersion coefficient h, ODE23tb. ABOVE: Twice integrated. BELOW:
Thrice integrated.

3.2.3 Density-dependent dispersion coefficient

In figure 13 and 14 I present the solutions to the density dependent dispersion coefficient in case of the Gaussian

approximation and the thermodynamic model of the heat capacity. In both cases the tails are modelled by an

exponential below the initial density threshold. The solutions therefore appear much more well-behaving than
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the raw data from the ODE-solver with wildly diverging ends. I have included the raw curves with divergences

in appendix E.2, figure 37 and 38. Two things immediately strikes the eye when looking at figure 13 and 14: The

widths of the solutions are quite large, and some velocities have two solitary solutions. The full wave profiles in

case of the self-contained model are about 2 meters long, which is a bit larger than what can be estimated from

experiment. The nerve pulse takes about 10 milliseconds to pass when measuring the action potential. In case

of a myelinated nerve, the pulse travels at approximately 100 m
s , which is equivalent of 1 meter nerve profiles.

Since the speed of sound is much smaller in non-myelinated nerves, 1m
s -5m

s , about 1 meter is the largest one

would expect a nerve pulse to be (values from [29, chap. 18.1]). As mentioned previously, the disparity is most

likely caused by difference in cooperativity between biological and pure lipid membranes.

The maximum area density change in case of the self-contained is ≈ 8% relative to ρ0. This is quite small

compared with the estimated 25% change in area density for pure DPPC bilayers undergoing phase transition.

It is also much less than in the case of the Gaussian approximation for the heat capacity and both cases of

constant dispersion, resulting in ≈ 17% and ≈ 20% relative changes. Since the widths of the solitons in case

of the Gaussian approximation are about half the size of the widths in case of the self-contained model, this

difference in maximum density change is likely a result of the previously stated difference in cooperativity

between the thermodynamic modelled heat capacity and the Gaussian approximation from experimental data.

Double solutions can be seen for the velocities {0.7000 ·c0, 0.7250 ·c0} in case of the Gaussian approximantion

and {0.7500 · c0, 0.7750 · c0, 0.800 · c0, 0.8250 · c0} in case of the thermodynamical model. Overall the doubles are

very similar. By the look of figure 15, it would seem that the left side amplitudes constitute an upper bound to

the amplitudes on the right side, and the left widths are a lower bound on the right side widths. This claim is

largely based on the lower half of the plot for self-contained model, since the right side solutions belonging to

the self-contained of velocities larger than 0.8500 · c0 and almost all of the right side solutions of the Gaussian

model aren’t well-defined solitary solutions and therefore can’t be trusted too much. Judging only from left

side data the solutions seem to get wider and amplitudes smaller as velocity goes up, but the relative changes

are very small except for the amplitudes of the self-contained model.

In both cases the right side solutions show an offset, so that they do not converge to 0. It is most prominent

in case of the self-contained model, which coincidentally has larger number of double solutions. I suspect these

issues might be related. I attempted to decrease the initial density from 10−2.2 ·ρ0 to 10−2.6 ·ρ0 by increasing the

tolerance an order of magnitude to see if that would lead to convergence in the tails. I was unable to obtain any

solutions in the case of the self-contained model. The Gaussian approximation led to a few solitary solutions,

both in case of ODE15s and ODE23tb, see appendix E.4, figure 40 and 41. The solvers yielded different results,

for ODE15s I was only able to evaluate two almost identical velocities and found an almost identical doublet.

In the case of ODE23tb there are no doublets and I was able to evaluate solutions for a much larger range of

velocities. Common for both solvers is the fact that left and right solitary solutions converge nicely towards

zero, so lowering the initial condition did solve the issue of convergence. Whether it also fixes the issue of double

solutions is difficult to say, since there hardly seem to be any solutions at all.

I fit the tails of the raw ODE-data in appendix E.2, figure 37 and 38, to an exponential, and the plots are

included in appendix E.5, figure 43 and 44. The fits of the decreasing ends do not converge as well as for the

increasing ends, which is not surprising if one takes a look at how quickly the raw solutions from the ODE-solver

diverges in appendix E.2.
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Figure 13: ODE 15s, this plot contains a selection of the solution for the density dependent dispersion coefficient
in case of Gaussian approximation of the heat capacity. For all solutions see appendix E.2, figure 37.
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Figure 14: ODE 15s, cooperativity of 80. This plot contains a selection of the solution for the density dependent
dispersion coefficient case in case of the self-contained model for the heat capacity. For all solutions see E.2,
figure appendix 38.

Figure 15: Velocity dependence of widths and amplitudes for the density dependent dispersion coefficient.
In both cases, solutions were obtained using ODE15s. These plots include the widths and amplitudes of all
solutions displayed in appendix E.2, not just the ones in the sparse plots in figure 13 and 14, and also the
ones that are not well-defined or fully solitary, with the purpose of giving a qualitative idea of the behaviour.
Not fully solitary solutions are: All right side velocities but velocities of {0.7000 · c0, 0.7250 · c0} in case of the
Gaussian approximation, and all right side velocities {0.8500 · c0, 0.8750 · c0, 0.9250 · c0, 0.9500 · c0, 0.9750 · c0}
in case of the self-contained model.
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3.2.4 The role of cooperativity in the self-contained model

Last but not least I investigated the role of cooperativity in the self-contained model for the velocity v = 0.80·c0.

I wasn’t able to alter the default cooperativity of n = 80 much, so the resulting heat capacity profiles all have

similar widths and maximum heat capacities within the same order of magnitude, see figure 16. The solutions

are very close and can hardly be distinguished from each other in figure 17. I note that all solutions are solitary

doublets and the left side tails converge badly. The widths and amplitudes are displayed in figure 18. As

opposed to figure 15, these solutions are all well-defined. The widths and amplitudes of the left side solution

follow a similar cooperativity dependence as the right side solutions. Again the left side amplitudes constitutes

the upper boundary to the right side amplitudes, and the left side widths constitutes the lower boundary to the

right side widths. For both sides, there is a transient decrease in the widths and increase of the amplitudes at

low cooperativities, followed by a minor increase in widths and decrease in amplitudes. It would be interesting

to compare cooperativity plots for different velocities to see if the transient behaviour is a persistent feature.

Overall the range of cooperativities is too small for there to be enough variation in the widths and amplitudes

to claim that the solutions reflect the inverse relationships between the width and height of the melting profile

and the width and amplitude of the soliton.
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Figure 16: Thermodynamically modelled heat capacities for DPPC bilayers at different cooperativities, n.
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Figure 17: Solitary solutions for the self-contained soliton model at different cooperativities n at propagation
speed v = 0.80c0, ODE 15s. The corresponding heat capacity plots are displayed in fig. 16.

Figure 18: Widths and amplitudes belonging to the solitons in fig. 17. Varying cooperativity n at v = 0.80c0,
ODE 15s.
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3.3 Discussion

I have reproduced the solutions to the soliton equation in case of a constant dispersion coefficient reported by

Heimburg and Jackson [33] and Lautrup et al. [44]. The twice integrated version seem to have most reliable

solutions, since ODE solvers differ at small h or medium to low sound velocities in case of the thrice integrated

constant dispersion coefficient. The amplitudes and widths show the same velocity dependence as previously

found for the analytical solution [44].

I managed to find solitary solutions for a narrow interval of parameters for the density dependent dispersion

coefficient in case of both the Gaussian heat capacity approximation from experimental data and the self-

contained model. The numerical framework for the two cases is the same and can therefore be applied to other

models of heat capacity if needed. I found double solutions that are almost identical in size and shape and

could be taken as the same solution though they appear at different initial conditions. The doublets might be

an artifact of the numerical method, since improving initial conditions causes the doublet to either disappear

or become even more identical. Unfortunately the solving procedure simultaneously crashes, so difficult to say

if these findings are significant.

In order to solve a wider range of parameter sets it is necessary to improve my current solving procedure

for the density dependent dispersion. There are several paths one may try. One could try to scale the problem

or make it dimensionless to decrease the effect of round-up errors in the calculations. This is not a straight

forward task in the case of the self-contained model, where the heat capacity of the dispersion term is described

by an equation that has yet to be analytically solved.

The most effective way to improve things is likely to implement an alternative optimization scheme for the

initial value, and currently I have two ideas: The first idea was given to me recently by Andrew Jackson, who

proposed to iterate from both tails until first maximum is reached from either side. The task is then to build

an algorithm that optimizes the amplitude of the exponentially decreasing ends until the solutions meet at the

maximum. Assuming exponentially localized solutions only have a single maximum, this procedure will converge

towards solitons, and one avoids the issue of optimizing the stiff, divergent ends. Another idea was proposed

to me by Thomas Heimburg, which was to use Newton-Raphson’s method and improve on an approximated

soliton or solution from the case of constant dispersion coefficient. This method relies on the terms of the

differential equation being differentiable, so in case of the thermodynamical model of the heat capacity it would

be necessary to approximate the heat capacity equations, unless an analytical solution has been found.

The use of pseudo spectral methods such as the fast Fourier transform to speed up calculations is very

common in the field of numerical analysis, and has been applied to the soliton model in case of non-constant

dispersion terms before [17]. I did not actively implement any such methods, but they might already have been

included in an approximate sense in the ODE solvers, in order to know this one would have to study the source

code. One could also look into the possibility of transforming boundary conditions into initial values [71, chap.

9] or integrate the initial conditions away like what is done in the constant dispersion coefficient cases. Again it

is necessary to find an analytical expression for the heat capacity equations in case of the self-contained model.

Before going further into depth with the current version of the dispersion coefficient in the self-contained

model, it might be of interest to ask wether any improvements can be done to Mosgaards dispersion coefficient. If

the membrane area changes ≈ 25% during phase transition in DPPC membranes, and the nerve membrane goes

through 85% of the phase transition during a soliton - does the small amplitude assumption that the dispersion
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coefficient relies on still hold? It has also been pointed out by Engelbrecht et al. [16] that the dispersion relation

leads to an unbounded group velocity at high frequencies. They propose the use of a mixed dispersion term to

fix this issue, ∂4∆ρA

∂x2∂t2 , and continues their work using this version in later papers [17]. Unfortunately they then

loose the self-contained, thermodynamic nature of the soliton theory, which is a big part of its appeal.

4 The influence of lithium ions on the phase behavior of lipid mem-

branes and the excitability of nerves

The soliton theory has many applications with regards to drugs. In the framework of the soliton theory any

component that influences the thermodynamics of the nerve membrane will have an impact on the propagation

of the nerve pulse. The typical example is the role of freezing point depression in anesthesia [33, 30, 31]. Another

well-known medicament worth consideration is the element lithium.

Lithium salts have been tested on a wide range of human conditions, from gout and mental illness [8]

to viruses [59, 66], cluster headaches [62] and cancer [41], with varying levels of success. Most notable is

its preventative effect on bipolar disorder, being the most well-established and effective treatment currently

available [48]. Since lithium therapy was implemented in the 1960’s, there have been numerous studies of its

beneficial impact on the brain, such as the entrainment of the circadian rythm, regeneration and preservation

of grey and white matter, remyelination of nerves and prevention of bipolar-related dementia [48]. Other

studies have found a mitigating effect on mitochondria dysfunction in the brain related to bipolar disorder

[48, 54, 63, 41]. Using a promising new neural model for bipolar disorder created by stem cell differentation,

researchers have found that hippocampal neurons formed from bipolar patients were hyperexitable compared

to the general population, and lithium reversed this trait only in patients responding to lithium treatment,

indicating differences in underlying pathophysiology [54, 72, 67]. It would be tempting to conclude lithium

responders suffer from some dysfunctional microbiological pathway mitigated by lithium, but one would still

need an explanation for the myriad of other non-differential effects lithium has on the body, such as kidney

function, cancer prevention [41] and antiviral effects [59, 66]. It is generally difficult to tell if lithium-induced

changes are specific to bipolar patients, especially on the cellular level, and to this day there is no known

molecular mechanism of action for lithium [48]. I will attempt to make the case that a general, thermodynamic

effect is behind lithium’s restorative effect on the human psyche, connecting the impact of lithium on membrane

phase behaviour with nerve signaling using the soliton theory.

4.1 Lipid phase behaviour in presence of lithium ions

Lithium’s remarkable effect on structure and phase transitions of lipid bilayers has been documented several

times [24, 25, 9, 64, 46, 14], but has yet to be fully clarified. In the early 80s Hauser and Shipley [24] [25]

compared melting temperatures of anionic DMPS bilayers at 5.8-7.0 pH and various concentrations of sodium,

potassium and lithium. They discovered the addition of ≈ 1M lithium increased the melting temperature of

the lipid membrane 40◦C – 50◦C. In comparison > 1M concentrations of sodium or potassium only changed

the melting temperature a few degrees. At 0 M – 0.7 M concentrations, lithium ions would partially crystal-

lize and dehydrate the DMPS bilayers, inducing lateral phase separation of lipid-ion complexes and ion-free

lipids, which also wasn’t observed in sodium and potassium, but similar results have been reported for calcium
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[25, 40]. Though it is generally known that water content in macromolecules such as fatty acids and proteins

is strongly affected by metal ions [75], the dehydrating effect of lithium is quite unexpected, since water tend

to associate strongly with small metal cations [5]. This behaviour mildly resembles that of protons [9] (pH

titration) or ions of larger ionic radius and valence such as calcium ions [40]. Usually the primary effects of

monovalent cations are attributed to non-specific screening [14], but lithium seems to have an affinity for the

lipid membrane unlike other monovalent cations [41, 46], associating specifically to lipids head groups, locally

altering conformation and hydration and thereby stabilizing the solid lipid phase [9, 14, 24, 25]. Anionic lipids,

such as phosphatidylserines, show the strongest reactions. Phosphatidylserines are coincidentally (or not) one

of the primary lipids of excitable membranes [24, 46], and their strong reaction to lithium causes Hauser and

Shipley [24, 25] to propose this as a potential mode of action in pharmacological treatment.

Empirical and theoretical studies indicate that structure changes related to lipid phase transition caused by

lithium binding correlate with decreased hydration of the lipid [10, 41]. This is generally seen as a consequence of

lithium binding to the lipid head-groups of the membrane [25, 9, 64, 14]. In their molecular dynamics simulation

of DPPS vesicles in the presence of lithium from 1997, López Cascales and Garcia de la Torre [46] find that

lithium interacts strongly with the water at the interface of the membrane, dispels parts of the hydration

water, breaks hydrogen bonds, slows down the diffusion of water into the membrane and effectively screens the

membrane’s electrical potential. Some of these effects have been reproduced experimentally [41], but not all.

Among the monovalent cations, lithium’s ability to dehydrate and alter the membrane structure of lipids is only

exceeded by protons [41, 5, 11, 9]. Ranking ions according to their ability to change lipid interaction with water

is referred to as the ’lyotropic series’, a lipid analogy to the Hofmeister series which ranks ions according to

their ability to precipitate proteins in solution [5]. The series emerge in other contexts, and indicates a possible

connection to water interaction. As an example, the conductances of monovalent ions in pure lipid membranes

have been shown to follow the lyotropic series close to melting temperature, lithium having a remarkably larger

conductance than the other ion species [30] [29, chap. 17.3.1]. Coincidentally, lithium has been documented

to alter the permeability of the membrane [24] and other transport functions of cell membranes [24]. This is

not suprising in the view of the thermodynamics presented in this thesis, and further studies into the central

mechanisms of lipid phase behaviour in presence of lithium ions could possibly help the understanding of these

phenomena.

4.2 Nerve excitation in presence of lithium ions

How a certain cation influences a nerve can vary greatly depending on whether it’s inside or outside of the

nerve membrane, and on the concentrations of surrounding ions. Experiments by Tasaki and associates [78, 79]

show that in general, monovalent ions in the external medium are not essential for the existence of an action

potential, but have a great impact on its amplitude and shape [79, fig. 3]. In comparison a lack or surplus of

divalent cations in the external medium, Ca2+ specifically, can abolish the action potential completely. On the

other hand the intracellular concentrations of monovalent cations can have a great importance for the nerve

signal. In their paper from 1966 Tasaki et al. [78], a nerve that has been rendered inexitable after being soaked

in Ca2+-ions regains its excitability by intracellular perfusion of Cs+ ions. This did not work for intracellular

perfusion of Rb+, Na+ or K+, so not only is the balance between mono- and divalent cations important, ion
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species matter too.

Howarth et al. [38] conducted a number of experiments with nerves in a buffer where sodium had been

replaced with lithium (154 mM, pH 7.2). They were able to produce a full action potential under the same

conditions as with a sodium buffer, concluding that lithium ions are interchangeable with sodium ions in nerves

similarly to what has been found for muscles [43]. There were differences between the two ions, however.

Lithium delayed the action potential and initial heat about 20% and slowed down the repolarization of the

membrane [38, fig. 16l]. Yet the most obvious differences were seen in the heat generation [38, fig. 9]. The heat

production of the nerve is biphasic with an initial heat production coinciding with the membrane depolarization

[75], followed by heat reuptake/negative heat and a afterheat/recovery heat production [1]. Lithium effectively

eliminated the recovery heat, causing the total positive heat to go down ≈ 20%. Contrarily the negative heat

is increased by ≈ 20%. As a comparison, removing potassium from the original buffer led to a 10% increase

in positive heat and a doubling in the negative heat causing a temporary cooling of the nerve, but it did not

abolish the recovery heat. This could be an indicator of lithium’s ability to stabilize anionic lipids more towards

the solid phase mentioned in the previous section 4.1, though one has to be careful making direct comparisons

between pure lipid membranes and complex biological membranes on limited information. Further investigation

(through of literature or by experiment) of the response in nerves subjected to immediate or long-term lithium

exposure phrased in general, thermodynamic variables could potentially reveal some very interesting perspec-

tives.

4.3 DSC and pressure pertubation experiments of DPPC membranes in presence

of sodium, potassium and lithium

I investigated the thermodynamic properties of DPPC bilayers through pressure pertubation of membranes in

suspension. This is done in a differential scanning calorimeter where temperature and, in less degree, pressure,

can be precisely monitored. Pressure pertubation calorimetry, abbreviated PPC, exploits the well-known effect

that increasing the pressure on a material increases the melting temperature and vice versa, to obtain information

about relaxation times and thermal volume expansion coefficients of the system. Small decreases or increases in

pressure at constant temperature causes lipids to move towards or further from transition. Close to transition a

small move in either direction causes a manifold change in heat capacity. The lipids respond with a measurable

uptake or release of heat, which the calorimeter must compensate for in order to stabilize the temperature while

the system relaxes towards the new equilibrium. Previously I showed how the relaxation time of the system is

proportional to the excess heat capacity, see section 2.2.1, equation 14:

τ ≈ T 2

L
∆cp (at phase transition) (32)

.

By comparing PPC measurements with differential scanning calorimetry measurements for a given sample, I

can obtain values for the phenomenological coupling constant L. Likewise thermal volume expansion coefficients

can be derived from the heat and pressure changes in the PPC experiments using the following relation between

heat changes and pressure changes from Heerklotz and Seelig [27]:
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αV = − ∆Qrev

T 〈V 〉∆p
(33)

These can then can be compared to DSC scans to obtain the empirical proportionality constant seen in

section 2.2.1, equation 4:

αV =
γV
〈V 〉

∆cp

4.3.1 The method

I prepared bulk solutions of 100 mM NaCl, KCl and LiCl in MilliQ water to be used in the lipid dispersions of

LUV DPPC. I predicted the approximate weight of salt needed for 60 ml of each saline solution in the following

way:

needed weight = molar weight x molarity x volume (34)

Since it is hard to be precise when measuring such small quantities of dry material, I corrected the volume

MilliQ needed using the same relation (34):

measured weight

molar weight x molarity
= corrected volume (35)

For the control sample plain MilliQ water was used. List of materials can be found in appendix C.

Following the same procedure I predicted the weight of frozen, dry DPPC lipid needed for a 1 ml sample

of 10 mM DPPC. For each of the four samples, the lipid was weighed in the same glass vial later used for

the dispersion. For each vial (labeled) the weight was noted, and the corrected volume of saline or control

was calculated. Saline (or control) was added, the sample sealed with PARAFILM®, before it was repeatedly

heated up and vortexed with a MS1 Minishaker from IKA®, until no residue was stuck on the surface of the

vial. The sample was heated by holding it under a hot faucet or placing it in a container filled with hot tap wa-

ter. The water destroyed the labels, so they had to be replaced. The samples where refrigerated until sonication.

Sonication disrupts the multilammelar lipid vesicles (MLVs) formed immediately after hydration, and the

lipids change into another stable conformation of large unilamellar vesicles, LUVs. The particles in the suspen-

sion changes size from much larger than wavelength of visible light � 700 nm, to about 20 nm (transparent

after sonication). The particles then quickly fuses to about 100 - 140 nm vesicles, which gives the samples a

slightly opalescent hue. Color and transparency is thus a good indicator for adequate sonication. I discovered

the Branson Sonifier® cell disruptor B15 was faulty during the process. A program shifted between two modes

of high and slightly lower power. During the high power mode, the sample did not get warmer or clearer,

opposed to the low power mode. During the MilliQ sample, the machinery started making a loud, tooting

sound. It took several attempts to sonicate the samples, all along I had to be careful of evaporation, excessive

bubbling and contamination. A few white specks were visible in NaCl, LiCl and MilliQ series that I could not
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get rid off. The samples where subsequently refrigerated and ready for analyzation.

The time course of the sample preparation was as follows (year 2020): Samples prepared on 26th of Novem-

ber. Sonication 27th of November. NaCl, KCl and MilliQ samples sonicated again 30th of November since

they looked milky and had visible specs when removed from the fridge (not the case for LiCl). After LiCl had

been through DSC and PPC and subsequently refrigerated for a while, the samples looked similar (MilliQ more

milky than the rest).

Samples and reference were degassed for about 15 minutes before they were added to the cells. This was

mostly for the sake of the lipid samples that had been through vortexing and sonication, though they had all

been refrigerated for at least 48 hours before analyzation, which also decreases the gas content of the dispersion

considerably. The same water reference was used for all samples analyzed. When changing the lipid samples,

capillaries were cleaned by pumping 70 % ethanol through the sample capillary followed by demineralized water

and then removing residual water with a syringe.

The heat capacity measurements were performed using a VP-DSC MicroCalorimeter from MicroCal ™ Incor-

porated with tantalum cells. Since it is a differential scanning calorimeter, it has two cells, one for the sample and

one for reference (MilliQ). The contribution of salts on their own is approximately ≈ 5R
2 ·100mM·1ml = 0.0021 J

K ,

so their contribution to the heat capacity of the solvent of the dispersion is considered negligible. Any difference

between reference and sample cell is predominantly caused by ion interaction with the lipid dispersion and not

the ions themselves. For each sample I would run 3 DSC scans at a scan rate of 5 Kelvin per hour: first for

increasing, then decreasing and then again increasing temperatures. These scans are not always alike, see figure

20 and appendix E.6. Hysteresis can occur between up- and down-scans since the calorimeter isn’t able to

control cooling as well as heating, such that the system does not get to equlibrate properly at each temperature.

Differences in between up-scans can be caused by changes in hydration of the lipids. Initially the samples might

not be fully hydrated. Melting the lipids exposes the chains more to ions and water, which can cause changes

in structure and transition temperatures that remain after transition back to gel state [9, 14]. The scans were

run in high feedback mode, where the caloriemeter uses past heat inputs to calculate the next, which allows for

higher resolution of the curve.
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Figure 19: Example of raw DSC curve, LiCl sample.

Figure 20: The two DSC up-scans (scan 1 and 3) and down-scan (scan 2) of the LiCl sample.

I ran the pressure pertubation calorimetry scan right after the DSC scan without removing the sample in

question from the caloriemeter. The same manufacturer that has produced the calorimeter has also developed

the extension to the calorimeter I used for pressure pertubation calorimetry. The device is connected by plastic

tube to an air supply from Air Liquide S.A. at around 3 bars pressure. The device controls the pressure jump

and release. It requires a different software setup to run, which allows for costumizable programs like the DSC

scans. Since it is of most interest to investigate pressure pertubation close to melting temperature, I obtained

approximate main- and pretransition temperatures from the previously obtained DSC scan of the same sample

and focused the pressure pertubation runs in the determined range. I ran into problems when trying to initiate
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the PPC program for all but the last sample. The interface showed wildly fluctuating temperatures. I found

it necessary to restart the computer and caloriemeter after changing from DSC to PPC mode, wait for a few

hours and then return.

The time course of the DSC and PPC scans was as follows (year 2020): 30th of November to December 2nd,

LiCl. 2nd of December to 4th of December, MilliQ. 4th of December to December 8th, KCl. 8th of December

to 10th of December, NaCl.

It should be mentioned that this was not the only series of samples I ran, though it was the most succesful.

I discarded a whole sample set after discovering how the lids (Chromacol 12-SCS 12 mm screw caps, solid top,

lot# 42000979 from Thermo Scientific) of the vials would leave small pieces of plastic residue in the sample after

unscrewing. This is a problem I have encountered in previous work, though I do not recall the manufacturer

from before (bachelor’s thesis). Before working with the LUV’s I had conducted a series of experiments with

MLV’s. These show very high cooperativity and peaks magnitudes larger than that of LUVs (see also Heimburg

[28]). When changing to LUV samples, I found a small contamination of residual MLVs at 314.6 K. After

throrough cleaning some of the residue remained, which can be detected in the DSC and PPC runs of pure

MilliQ water. I later use this measurement to remove any offset between the cells in my sample data. I suspect

the contamination to have dissappeared over time with the changing content and cleaning of the sample cell, so

I include the peak in the fit of the reference in order for the fit to converge, but omit the peak when subtracting

the reference from the data. I did not run another water sample to verify the contamination had disappeared,

since the integrated entalpy of this peak is about 2 orders of magnitude less than the sample entalpies at the

same temperature, see the table in appendix D.

4.3.2 Data analyzation

DSC

I fitted temperature versus time with a linear fit and got scanrates of 5.01− 5.04 Kelvin per hour, which are

in good agreement with the setting of 5 K/hr. I then converted all data to the SI units. The heat capacity per

mole lipid is obtained by dividing the differential power by the scanrate and the number of lipids in the sample,

in moles:

∆cp =
differential power

scan rate x Nmol
(36)

As mentioned in the previous section, there is visible differences between the three scans, though both up-

scans look similar. I chose to use the 2nd up-scan for data analyzation, since up-scanning is least prone to

hysteresis and the lipids should all be properly hydrated after having gone through the transition once. I fitted

the reference with a 3d order polynomial describing the slow changing baseline and a Gaussian for the small

contamination peak (see figure 21). By removing the contamination from the reference data, I was able to obtain

a rough RMS of the noise on the data, see figure 22. There were still artifacts left from the contamination peak

and the odd ends of the baseline had not been properly fitted, so I estimated the noise to be less than 9 J
mol · K .

I then subtracted the baseline polynomial from the four samples with no visible effect on the curves (compare

fig. 19 to fig. 23).
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Figure 21: Fit of the slightly contaminated pure MilliQ sample using a polynomial of 3rd order and a Gaussian
peak.

Figure 22: Size of noise: Residuals of the pure MilliQ water run when the data fit from figure 21 has been
subtracted.
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Figure 23: Example of data set where the offset fit has been subtracted. Hardly any difference can be seen.

Next step was to correct the baseline in the four samples. At first I omitted the melting region from the

baseline fit and fitted the ends only, but then there were no points to guide the fit in the absent melting region.

I decided to try to separate the melting behaviour from the baseline in the melting region and include the

resulting points in the fit. Since the baseline is minute and slow changing compared to the extreme peaks of

the lipid melting process in the four samples, it is difficult to fit peaks and baseline simultaneously as I did with

the reference. I decided to fit the peaks and subtract them from the dataset before fitting the baseline using a 5

order polynomial. The data have all been normalized to be per mole of lipids. If we assume that all lipids pass

through all of the transitions present in the melting profile, each of the peaks must contain a mole of lipids,

which can be fitted using van’t Hoff’s law (see equation 23):

∆cp,lipid =
n(∆H0)2

RT 2

K(T )

(K(T ) + 1)2
, K(T ) = exp

(
−n∆H0 − T∆S

RT

)
Here n is the cooperativity of the peak and ∆H0 is the melting entalpy per mole. An example of the full fit

for the LiCl sample can be seen in fig. 24, and the individual fit components in fig. 25.
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Figure 24: Full Van’t Hoff fit of the DSC scan of the LiCl sample.

Figure 25: Fit components of the LiCl DSC data fit in figure 24. Since the convergence of MATLAB®’s
fitting procedure fitnlm wasn’t smooth, these plots helped me asses precise initial parameter guesses to ease the
optimization.

Unfortunately the peaks weren’t fitted well enough to be properly subtracted. At the tails of each peak,

the discrepancies between the fit and the data were so large that they created artificial outliers in the data, see

fig. 27. In hindsight it might have been better to manually remove peak data in order to avoid this problem.

Instead I developed a weighing procedure to correct for this issue. It depended on two weight types, I named

’value’ and ’position’, in the following manner:
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w =
√
w2

value + w2
position

The value-weight is a penalty on data points with large heat capacities. The influence of a point decreases

exponentially with increasing heat capacity value:

wvalue = wvalue,max · exp (avalue · abs(∆cp))

Where the amplitude avalue is given by:

avalue =

log

(
w0

wvalue,max

)
∆cp,0

, where ∆cp,0 = 0.01 ·∆cp,max (37)

and w0 = 0.01, wvalue,max = 1 (38)

The rate at which the exponential decays is adjusted by ∆cp,0.

The position-weight causes the end points (< 299 K and > 318K) to have the maximum influence of 1, since

these points almost purely consist of the baseline. Since I see no reason to distinguish between the two ends, the

weight is the same on both sides. From either end the weight then decreases exponentially towards a decided

center point of lowest weight at 315 Kelvin, around main peak/peaks.

For either end,

wposition =

{
wvalue,end · exp (aposition · (Tcenter − Tend))

The amplitude for each end is calculated from:

aposition =
log
(
wcenter

wend

)
Tcenter − Tend

, where Tend = 299 K if T ∈ [299 K, 315 K]

or Tend = 318 K if T ∈ [315 K, 318 K]

and wcenter = 0.001, wend = 1

Fig. 26 shows the individual weights and the final product. The same weight parameters where used to fit

all samples.
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Figure 26: Weights used for fitting the baseline in figure 27.

Figure 27: Fitted DSC baseline after subtracting the fit peaks seen in figure 25, LiCl sample. The negative heat
capacity values are artifacts created by subtraction of inadequately fitted peaks.

Finally the fitted baseline was subtracted from the reference-corrected sample data, and the final plots can

51



be seen in figure 28. The melting entalpies for the four samples were obtained by numerically integrating the

heat capacity curves. The numbers vary within 28.1 kJ
mol − 37.6 kJ

mol , which is on the lower side of what is re-

ported for DPPC membranes in literature: 35− 39.2 kJ
mol (see appendix D). Usually one would expect elevated

melting entalpies due to sample sedimentation in the cell from the compartment above [14]. Consistently lower

entalpies are likely to be a fault in the sample preparation and handling, like adding too much solvent or that

the lipids weren’t properly in suspension when part of the sample is moved to the cell. I measured the melting

temperatures, maximum entalpies and FWHM of the various peaks in the four plots manually using guides in

GIMP as rulers. The values are listed in table 1 in appendix B. Each sample has its own characteristic profile,

though all 4 samples shared 3 transitions at ≈ 314.6 K, ≈ 314 K, and ≈ 308 K. The transitions at ≈ 314.6 K,

≈ 314 K resembles an overlap between the sonicated LUV and MLV data from literature [28]. MLV’s are highly

cooperative membranes with very narrow transitions (widths less than ≈ 0.1K) that appear at slightly higher

melting temperature than the main transition of the LUV [28]. The maximum heat capacity for a mole of MLV

membranes in main transition is roughly 50 times larger than for sonicated LUVs. In comparison, the MLV

peak is only 2.5 times larger than the LUV main transition in my own samples, so the transition at ≈ 314.6 K

is likely caused by a very small residue of multilamellar vesicles left over from inadequate sonication.

The LUV main transitions for the ion samples all have distinguishable peaks as opposed to the pure water

sample. The main transition peak of the sodium sample is especially apparent and has a notably lower melting

temperature than the rest of the ion samples, indicating melting point depression. Unfortunately the pure water

sample is clouded by the MLV contamination, so the control melting point hasn’t been determined precisely

enough for me to compare lithium and potassium. But it is likely that the way the ions set the main transition

apart from the MLV contamination is by shifting the melting point of the main transition downwards.

All samples show a pre-transition around 308 K. The pre-transition causes a visible structure change in the

gel bilayer from flat to periodic ripples [68, 22]. This transition has been documented to show similar proportion-

ality between entalpy and volume changes as does the main transition [22], so it is assumed to be an initial step

in the phase transition of lipid bilayers. The lithium sample has an especially well-defined pre-transition. Pure

water, potassium and sodium samples all seem to have a separate transition going on in between pre-transition

and main transition that obscures the individual peaks. I used the term ’sub-transition’ for this area in the

table 1 in appendix B (The term has been used before but not necessarily about the same phenomena [14]).

Though it is inside of the melting region, the origin of the sub-transition is not clear. Not all features of the

melting region are necessarily entalpy changes directly brought by chain melting. The reduced elastic constants

and increased membrane area during transition increases the interaction and effect of ionic solvent on the lipid

bilayer, which can bring about changes in membrane morphology [68].

Overall lithium, sodium and potassium all have visible effects on the melting behaviour. Lithium does not

have as strong an effect on zwitterionic DPPC bilayers as in anionic membranes such as DPPS [24, 25]. Yet

the heat capacity curve of the lithium sample stick out from the other ion samples by its simplicity, the melting

region consists only of a main transition and pre-transition (apart from the MLV contamination). The sub-

transition recorded in the pure water sample is gone. Schneider et al. [68] achieved a similar effect by increasing

the chain length and thereby coherence of the lipids in an anionic DMPG bilayer. For short lipid chains the

melting region consisted of a pre-transition, a main transition and a broad range of heat capacity features. The
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latter two were gradually gathered into a single peak as chain lengths increased, and this peak shifted towards

higher temperatures. Longer chains increases membrane coherence, and increased membrane coherence is a

hypothesized consequence of lithium’s dehydrating abilities in anionic lipid bilayers [46]. It is possible that

what is seen in the zwitterionic DPPC sample containing lithium is a remnant of the stabilizing, dehydrating

effect on the lipid gel phase that has been documented in anionic lipids. The effect is not strong enough to

move the phase transition out of experimental range, but enough to reduce auxiliary entalpy contributions from

thermally induced structural changes during melting.

Figure 28: The final heat capacity profiles.

PPC

All data has been converted to SI units. I calculated the thermal volume expansion coefficient using the

aforementioned relation between heat changes and pressure changes:

αV = −∆Qrev

TV∆p
(39)

I assume the average volume V of the lipids to be constant, since the gel and lipid specific volumes are
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comparable in size, 0.947 · 10−3 m3

kg , and 0.999 · 10−3 m3

kg [28]. I thus don’t have to estimate the lipid-gel fraction

at every temperature. I use the volume of the gel phase without much reasoning. In the nerve the phase changes

from fluid to solid going ≈ 85 % through the transition, so generally lipids might primarily be in the fluid state.

The temperature used was the mean temperature after pressure pertubation.

An example of a full PPC run for the KCl sample is given in figure 29. The temperature does seem to

respond to the pressure pertubation, dropping ≈ 0.02 K, which is ten-fold of the variation mentioned in the

paper by Grabitz et al. [22] (though a similar drop in temperature can be spotted in their data, fig. 3). Cooling

of the sample is a sign that the calorimeter cannot compensate for the heat changes and the system state might

not be well defined during pertubation [22]. Yet the size of the drop, ≈ 0.02 K, seems to be very consistent over

all runs, regardless of the the system’s proximity to phase transition and thereby the size of the heat uptake.

The new temperature is stable throughout the equilibration, varying ≈ 0.005K, thus the relaxation times are not

likely to be affected by this. But the formula used for the expansion coefficients rely on the pressure pertubation

being an isothermal process, and underestimation of the heat decreases the sizes of the coefficients. Conversely

an underestimation of the temperature will increase the size of the coefficients. Whether this issue is related to

the calibration malfunction mentioned in the previous section is uncertain.

Figure 29: Scan 42. The points marked ’pressure release’ covers the pre-equilibration of the sample, the sudden
drop in pressure and subsequent equilibration to the new state. The last points of the equilibration from the
pressure release is included as the pre-equilibration in the ’pressure jump’ data, that additionally covers the the
sudden increase in pressure and following relaxation.

As in the case of the DSC down-scans of the previous section, the calorimeter is less able to compensate for

a release of heat to the surroundings during pressure jump than heat uptake during pressure release [22], so I

focus my analyzation on pressure releases. The lipid relaxation is not immediately available in the differential
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power data, instead the differential power signal is a convolution of the lipid heat transfer to the water reservoir

(lipid relaxation), and the instrument response. I follow the deconvolution practices of Grabitz et al. [22], where

it is assumed that the instrument response primarily consists of the heat transfer from the water to the cell

wall of the calorimeter, and the heat transfer from cell wall to detector. The analytical representation of the

convoluted signal, Pexp, is then:

Pexp =

∫ t

τ=pertbation time

Plipid(τ)Rinst(t− τ)dτ + PH2O(t) (40)

Where Plipid(τ) is the instant lipid heat release at the time of pressure pertubation, decaying exponentially:

Plipid(t) =

0 t < pertubation time

P 0
lipid exp(−klipidt) t ≥ pertubation time

(41)

The relaxation time is the inverse of the rate of lipid relaxation, τ = (klipid)
−1

. Rinst(t) is the ’normalized

instrument response function’ modulating the lipid heat release:

Rinst(t) =

0 t < pertubation time

k1·k2
−k1+k2

(exp(−k1t)− exp(−k2t)) for t ≥ pertubation time

(42)

Where k1 is the rate of heat transfer from the water to the cell wall of the calorimeter, and the rate of

heat transfer from cell wall to detector is k2. Lastly, PH2O(t) is the background water response to the pressure

pertubation. Coefficients k1 and k2 are obtained by fitting a PPC run at a low temperature where the system is

still outside of the lipid phase transition during pressure pertubation, so the lipid relaxation time is small and

the lipid contribution to the heat uptake or release negligible.

PH2O(t) =

0 t < pertubation time

P 0
H2O (exp(−k1t)− exp(−k2t)) t ≥ pertubation time

(43)

In figure 30 I’ve plotted the individual fit components and final signal for a PPC run at approximately 40.1◦

C.
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Figure 30: KCl sample, scan 32 deconvolution components T = 40.1◦ C.

In figure 31 I have picked out a few scans to illustrate the variation in heat uptake and relaxation amplitudes

through the temperature range. Not all fits converged as nicely as the ones presented. Currently only one

relaxation process is allowed at a given temperature in the fit, but the heat capacity data from the DSC scans

in fig. 28 indicate that the transition contains several overlapping processes.

56



Figure 31: Examples of pressure releases Equilibration temperatures, scan 1: 25.3◦ C, scan 2: 26.0◦ C, scan 22:
39.0◦ C, scan 42: 41.1◦ C, scan 62: 41.6◦ C, scan 82: 42.3◦ C.

Proportionality

The LiCl sample show some kind of contamination resulting in a linear increment in the PPC data. I miti-

gate this by fitting the data with a linear fit and correct for the slope, but not the intersection, from the points.

I fit points outside of the melting regime, since melting peaks would disrupt fit convergence and I learned from

my previous mistakes not to subtract inadequately fitted peaks and create artifacts in the data. This correction

does not have much influence on the proportionalities γV and L between heat capacity and thermal expansion

coefficients and heat capacity and relaxation times respectively. Secondly I adjust the offset in all samples, a

task that takes some preparation: Most of the temperature ranges of both DSC and PPC measurements are

outside of the melting regime, where the data does not match up well due to the precision of the calorimeter

and resolution of the deconvolution procedures. I therefore define a ’range of proportionality’ for each constant

of each sample, and the offset is calculated as the mean of the two points at the boundaries of this interval.

Correcting for the offset has a large impact on γV and L for the lithium sample. I scale the curves of thermal

volume expansion coefficients and relaxation times to match the heat capacity profile within the proportionality

range defined for each the given data- and sample type. The final plots of the measured thermal expansion co-

efficients and relaxation times and their proportionalities can be seen in fig. 32 and fig. 33. The proportionality

constants γV and L are calculated within the range of proportionality. Since the temperature ranges don’t align,

I bin the data every 0.1 K and plot γV and L as a function of temperature to see if they are truly constant.

The plots are included in in appendix E.7 and appendix E.8. I readjust the range of proportionality for each

sample based on these plots and rerun the data analyzation. From the look of it I am not convinced that γV

and L are actually constant during the main transition. γV consistently go through one or two local minima
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reflecting the peaks of the main transition and the MLV contamination in the thermal expansion coefficient

data. The variations surrounding the minima are much larger than the minima though. The L-data is more

noisy than the γV -data (reflecting the variation in the relaxation times), but still it displays a single maximum

corresponding to the main transition and MLV peak in the relaxation data. There are effectively no other

quantities involved in the proportionality between ∆cp and thermal expansion coefficients or relaxation time

than temperature, since the average volume included in the expression for the thermal expansion coefficient

cancels out in the proportionality with ∆cp, see section 4.3. Furthermore the issue is likely caused by a shared

dependency, since both constants display similar features. If this is an artifact, it could be linked to the exper-

imental issue involving temperature measurements. For each sample I calculate the mean value and standard

deviation of γV and L across the proportionality range, which are the numbers included in figure 32 and figure 33.

The thermal expansion coefficients follows the major features of the heat capacity curves in all four samples.

Pure water, sodium and potassium samples show good proportionality throughout the whole of the melting

region, from pre-transition past the MLV contamination. The lithium sample is less adherent, here the thermal

expansion coefficients undershoots the heat capacity curve at temperatures lower than the main transition. I

previously noted the consistent temperature change of ≈ 0.02 K during pressure release, see figure 29. Appar-

ently the underlying error is consistent enough that any underestimation of the heat uptake or temperature

doesn’t disturb the proportionality visibly. All 4 proportionality constants, γV , within range of each other and

similar to previously measured [28, 69]. Of the relaxation data, the lithium sample shows the best adherence

with respect to the heat capacity of all the samples. It is also the only sample without a visible sub-transition

in the heat capacity profile. It could be that the sub-transition relaxes at a different rate than the main tran-

sition and MLV contamination, such that the lower temperature melting region cannot be fitted with a single

exponential relaxation. The phenomenological constants L are in the order of ∼ 108 J·K
s·mol to ∼ 109 J·K

s·mol which

also aligns with previous studies [70] and [22, errata].
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Figure 32: Thermal volume expansion coefficients of lithium, sodium, potassium and control samples measured
with PPC. The raw lithium data is plotted along with the fit of the increment (grey points, black dotted line).
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Figure 33: Relaxation times of lithium, sodium, potassium and control samples measured with PPC. The raw
lithium data is plotted along with the fit of the increment (grey points, black dotted line).

4.4 Discussion

All four samples have their own distinguishable features, which is most evident for the heat capacity profiles and

thermal volume expansion coefficients. During melting transition, changes in membrane area and morphology

[68] increases the exposure to the solvent, so it makes sense that the differences in membrane interaction between

ion species are especially evident during transition.
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The lack of auxiliary melting features in the heat capacity of the lithium sample is similar what is seen in

anionic DMPG bilayers when the chain length of the lipid is increased, or when sodium ions (0-500 mM, 7.5 pH)

are added [68]. As chain length or sodium concentration is increased, the broad and complex melting profile of

pure DMPG is stepwise reduced to a localized pre- and main transition. It would be interesting to reproduce

results for DMPG using lithium instead of sodium, and conduct a similar series of experiments in zwitterionic

lipids using LUV’s made from DLPC, DMPC, DPPC and DSPC (chain length and melting temperature increases

to the right). This would hopefully lead to a more thorough understanding of the effect of lithium on anionic and

zwitterionic lipid membranes, especially if compared with identical experiments involving sodium and possibly

calcium.

In section 4.2 I mention a study showing how lithium reduces and almost extinguishes the recovery heat in

nerves. The recovery heat has been attributed to metabolism in literature [32]. It is possible that lithium toxicity

abolishes the recovery heat by killing off metabolism in ways unrelated to the disorder of the lipid membranes.

Yet lithium’s extraordinary stabilizing effect on the gel-phase of anionic lipid bilayers, and it’s potential ability

to remove additional transition peaks of zwitterionic lipid bilayers makes me wonder whether the recovery heat

is related to thermodynamic membrane fluctuations, such as curvature changes of the membrane, and these

effects therefore disappear with additional lithium-induced membrane coherence. Yet I am comparing a single

experiment to a single study so results need to be reproduced and further investigated before a decent hypothesis

can be presented.

One should be careful with extrapolating the prophylaxis of lithium in bipolar disorder and other ailments

from its immediate effect on lipid membranes or nerve excitation. López-Corcuera et al. [47] conducted an

experiment on long-term lithium treatment in rats, showing how neural plasma membranes becomes disordered

after chronic lithium treatment at therapeutic levels, partly due to changes in membrane saturation, which

increases the membrane fluidity. If these findings are reproducible, lithium might be provoking a metabolic

response reversing its own effects. Changes in lipid metabolism during long-term lithium treatment such as

lipid peroxidation, [63, 48] and inositol breakdown inhibition [55, 12, 47, 48, 41] has been discussed extensively

in literature.

The idea of changes in membrane fluidity as a metabolic response to lithium exposure is interesting in relation

to co-administration of other drugs such as ouabain and anesthetics. Studies have shown how pre-administration

of lithium decreases the toxicity of ouabain in rat hippocampal neurons and living rats [15, 45], and ouabain has

been proposed as a model for bipolar disorder in rats for this reason. If lithium is administered shortly before

ouabain in HeLa cell cultures, the cells’ ability to bind ouabain is decreased. Conversely long-term lithium

administration causes the cells to bind more ouabain [7]. On a slightly different, but possibly related note,

the authors on the previously mentioned study on nerve heat [38] found ouabain to also abolish the recovery

heat. One might suspect ouabain and lithium interact with the nerve membrane in a similar manner, so long-

term administration of one of the drugs leads to increased tolerance of both. The opposite mechanism might

be behind the drug interaction between lithium and anesthetics. Anesthesia stabilizes the fluid state through

melting point depression [34, 30], whereas the immediate effect of lithium is to stabilize the solid state, and one

would therefore expect an increased dose of anesthesia is needed in patients in chronic lithium treatment. Yet

lithium reduces the requirements of anesthetics [62]. This makes sense if lithium induces a metabolic response

increasing the membrane fluidity.
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5 Conclusion

I have provided solitary solutions to the self-contained soliton model in case of a pure DPPC bilayer. The

widths of the solutions are approximately 1 meter and maximum density changes relative to equilibrium is

of ≈ 8%. I also reproduced the solutions of the soliton in case of the constant dispersion term, and found a

maximum relative density of ≈ 20% in agreement with previous studies. The maximum relative density in case

of constant dispersion is independent of the value of the dispersion constant, so I can conclude that in general the

amplitudes are quite larger in case of constant dispersion than the self-contained model, despite using the same

parameters. Furthermore I solved a not quite self-contained soliton model, where the heat capacity term in the

dispersion term of the self-contained soliton model had been approximated from experimental data of DPPC.

With this model I obtained widths of approximately 0.5 m, and maximum relative density changes of ≈ 17%.

The differences between the self-contained model and the pseudo-self-contained model is due to the first having

a slightly more cooperative transition than the other. Both cases are wide in comparison to experimental data

from nerves. Pure DPPC bilayers have a much higher cooperativity than heterogeneous biological membranes,

that consists of various lipid species [60, 69] and proteins [30] contributing to the disorder of the membrane,

which broadens the phase transition and shifts the melting point towards lower temperatures. It would be of

great interest to solve the self-contained model in case of a more realistic membrane, unfortunately I wasn’t

able to change the cooperativeness of my model by much due to instability, let alone run the parameters for an

e. coli membrane. In order to do be successful it will be necessary to improve my method, possibly by following

the suggestions I’ve mentioned in the discussion.

I have presented literature suggesting a potential connection between the curative effect of lithium in bipolar

disorder and the thermodynamics of lithium interaction with the lipid bilayer of the nerve membrane within the

framework of the soliton theory. Most of the studies investigating membrane properties in presence of lithium

were quite old, so it would be best to reproduce their findings using modern day equipment. I investigated the

effect of lithium, sodium, potassium on the heat capacities, thermal volume expansion coefficients and relaxation

times of zwitterionic DPPC LUVs suspended in water. For three ion species and control I found the empirical

proportionality between heat capacity thermal volume expansion coefficients to be within the range of literature

with values of 5·10−10 m3

J −9·10−10 m3

J and standard deviation of 3·10−10 m3

J −6·10−10 m3

J . From the relationship

between relaxation times and heat capacities I determined the Onsager’s phenomenological constant for each

sample, they were all in the magnitude of 108 J·K
s·mol − 1010 J·K

s·mol , which is in agreement with literature. The

sample containing lithium had a notably different heat capacity profile. Lithium removed auxiliary transition

features from the melting profile, so that pre- and main transition appeared much clearer, an effect similar to

increasing the chain length of the lipid. There was no remarkable shift in melting temperature as reported for

anionic lipid membranes in literature, but part of lithium’s ability to induce order is likely present in zwitterionic

lipid membranes. Lithium’s ability to induce order and stabilize the gel state of the lipid membrane will likely

move the nerve membrane closer to transition at physiological temperatures, which will directly affect the

propagation of solitons. Yet one cannot tell the full story without accounting for the metabolic response to

long term treatment of lithium. Overall the documentation on lithium’s interaction with lipids and living

membranes is still too scarce to build a thorough hypothesis for the thermodynamic prophylaxis of lithium, but

it is a promising area for further research.

Thermodynamically coupled pulses are not necessarily restricted to nerve cells. Action potentials exists
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in other excitable tissues in the body, such as muscles. Keynes and Swan [43] have documented increased

permeability during the action potential spike in frog muscle tissue, similarly to the nerve membrane. E. coli

membranes have been documented to undergo melting transitions, accompanied by an increase in transport

rates [82], and there has been observed cell deformation during action potential in plant cells [20]. Nerve pulses

might in that sense only be a highly optimized version of a basic cellular mechanism common to most living

organisms. The soliton theory thus has many exciting prospects extending further than nerve signaling if one

only accepts its physical premises and resists the temptation to merge it with currently accepted nerve models

as what is done by Engelbrecht et al. [18] and Tamm et al. [73].
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A dditional derivations

A.1 Density dependent dispersion coefficient

Mosgaard [56] finds an expression for the density dependent dispersion coefficient in case of small amplitude

sinusoidal pertubations.The following is a walk-through of the calculations.

For low amplitude sound (small ∆ρA), the Heimburg-Jackson model from section 2.2.1, equation 1 is ap-

proximately linear, meaning the sound velocity is independent of density and I have the equation:

∂2∆ρA

∂t2
=

∂

∂x

(
c2(ρA)

∂∆ρA

∂x

)
− h∂

4∆ρA

∂x4

=
∂

∂x
c2
∂∆ρA

∂x
+ c2

∂2∆ρA

∂x2
− h∂

4∆ρA

∂x4

= c0
∂2∆ρA

∂x2
− h∂

4∆ρA

∂x4
(44)

I can then derive a dispersion relation for the soliton model for of low amplitude periodic solutions of the

form ∆ρA = ∆ρA0 e
iω(t− x

c ). I insert the solution into equation 44 and get:

(iω)2 = c20 ·
(
−iω
c0

)2

− h
(
−iω
c0

)4

→ −ω2 = c20 ·
(
−ω2

c20

)
− h

(
ω4

c40

)
→ ω2

k2
= c20 + h

ω2

c20
(45)

Thus the phase velocity or propagation speed c(ω) = ω
k is given by the dispersion relation:

c2 (ω) ≈ c20 + h

(
ω2

c20

)
(46)

Mosgaard [56, chap. 5.1] then derives an expression for the propagation speed in the melting regime as a function

of thermodynamic variables. The frequency dependent speed of sound is expressed as a complex quantity, ĉ,

which is a function of a real density ρA and a complex compressibility, κAS :

ĉ (ω) =
1√

κAS (ω) ρA
(47)

The source of the dispersion is the nonlinear interaction between the frequency of sound and the relaxation

time of the membrane. This is expressed through a frequency dependent, complex excess heat capacity:

∆ĉp (ω) =

(
1− iωτ

1 + (ωτ)2

)
∆cp

Where τ is the characteristic time of the exponential relaxation of the membrane and ω is the frequency of

pertubation/sound. The transfer function describing the available part of the excess heat capacity is given by

a Debye-term due to the sinusoidal nature of the low amplitude sound.

In section 2.2.1 equation 8 I’ve shown how the isentropic compressibilty in the limit of large reservoirs is

directly dependent on the heat capacity:
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κVS = κVT,0 +
Tγ2

V

V
∆cp

Combining the previous two equations, I get:

κAS = κA,0T + b

(
1− iωτ

1 + (ωτ)2

)
, b =

γ2
AT

A
∆cp (48)

The effective speed of sound in equation 46, c, is related to the modulus and real part of the complex speed

ĉ in the following manner:

c =

(
Re(ĉ)

ĉ 2

)−1

(49)

Mosgaard [56] ends up at the following expression for the effective speed of sound:

c2(ω) = (ρA)−1 2

Re(κAS ) + |κAS |
(50)

I’ll briefly show that equation 49: and 50 are equal (thanks to Andrew Jackson).

Equation 49 I express the speed of light in it’s Cartesian form ĉ = r + is. The effective speed of sound in

eq. 49 is then given by:

c2 =

(
Re(r + is)

r + is 2

)−2

=

(
r2 + s2

r

)2

Equation 50: Inserting the cartesian form into κAS =
(
c2ρA

)−1
, and expanding the fraction, I get:

κAS =
1

(r + is)
2
ρA

=
(r − is)2

(r2 + s2)
2
ρA

If I evaluate the speed of sound in eq. 50 using the above expression for the compressibility, I get the same

expression as with eq. 49:

c2 =(ρA)−1 2

Re
(

(r−is)2
(r2+s2)2ρA

)
+
∣∣∣ (r−is)2

(r2+s2)2ρA

∣∣∣
=

2

r2−s2
(r2+s2)2

+

√
(r2+s2)2

(r2+s2)2

=
2
(
r2 + s2

)2
2r2

=

(
r2 + s2

r

)2

The full expression for the effective speed of sound (suqared) is then found by inserting the complex com-

pressibility (equation 48) into equation 50.

Next step is to expand the full expression for the speed of sound squared to 2nd order around ω = 0. By

comparing the Taylor-expansion to the dispersion relation in equation 46, which is also a polynomial of second
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order, one can derive an expression for h as a function of adiabatic compressibility and density.

I determine the differentials of the functions Re(κAS ) and |κAS | needed for the expansion:

Re(κAS ) = κA,0T +
γ2
AT

A

(
∆cp

1 + (ωτ)2

)
→ ∂Re(κAS )

∂ω
=

b(−2ωτ2)
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2 , b =
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AT

A
∆cp
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Re(κAS )
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+ b2
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)2
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2
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S )
∂ω + b2 ωτ
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[
τ

1+(ωτ)2 + (−2ω2τ3)

(1+(ωτ)2)2

])
2

((
Re(κAS )

)2
+ b2

(
ωτ

1+(ωτ)2

)2
)1/2

Thus I have the first derivative of the squared velocity:

∂c2

∂ω
=(ρA)−1 −2(

Re(κAS ) + |κAS |
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·

[
b(−2ωτ2)
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2
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2
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(
ωτ
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]

For the second derivative things get slightly tedious. Differentiating once again using the chainrule (f · g)′ =

f ′ · g + f · g′, where:

f = (ρA)−1 −2(
Re(κAS ) + |κAS |

)2
g =

[
b(−2ωτ2)

(1 + (ωτ)2)
2 +

2
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2
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(
ωτ
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)2
)1/2

]

one realizes that g evaluated at ω = 0 is zero, meaning the second term of (f ·g)′ cancels, and I am left with:

∂2c2

∂ω2
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0
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Re(κAS ) + |κAS |

)2
[(
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2 + 0

)

+

(
0 + Re(κAS ) b(−2τ2)

(1+(ωτ)2)2
+ 0
)

+
(
b2 τ
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)

((
Re(κAS )

)2
+ b2

(
ωτ
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]

The zeros are to mark derivatives that dissappear when evaluated at ω = 0.
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= (ρA)−1 −2τ2(
2

ρAc2(ω=0)

)2

[
− 2b+
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κA,0T + b

]

=
τ2c4(0)

2
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1
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]

To simplify things Mosgaard [56] rephrases his expression using the following velocity components:

(c1(ρ))
2 ≡ 1

ρAκA,0T

High frequency limit

(c2(ρ))
2 ≡ 1

ρAb
Melting component

(c0(0, ρ))
2 ≡ 1

(c1(ρ))
−2

+ (c2(ρ))
−2 Low frequency limit

By multiplying nominator and denominator with 1

ρAκA,0
T b

, he can fully substitute all mentions of density and

compressibility:

=
τ2c40

2
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4 1
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+ 3 1
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1
ρAb

( 1
ρAb

+ 1

ρAκA,0
T

)

]

=
τ2c40

2

[
4c22 + 3c21
c22(c22 + c21)

]

The second derivative is set equal to the 2nd order coefficient in the dispersion relation, equation 46:

h

c20
=

1

2!

∂2c2

∂ω2

∣∣∣∣
0

=
1

2!

τ2c40
2

[
4c22 + 3c21
c22(c22 + c21)

]

↔ h =
τ2c60

4

[
4c22 + 3c21
c22(c22 + c21)

]

Using the relationship τ = T 2

L ∆cp, one finds the approximate relationship between h and ∆ρ, where ∆ρA =

ρA − ρ0 is the change in density from the unpertubed membrane state:

h = ∆c2p

(
T 2c30
2L

)2
[

4c22 + 3c21
c22(c22 + c21)

]
(51)

This is the density dependent dispersion coefficient used in the self-contained soliton model. Checked in

Maple using Physics package (’Parameters’) and evaluating assuming all constants are positive and real.
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A.2 Invariance under translation

I verify the differential equation is invariant under translation, z 7→ u = z+a ∀ a ∈ <. Since there is no explicit

dependency on z, one only needs to show that the derivatives are independent too:

1st)
∂

∂z
=

∂

∂u

∂u

∂z
=

∂

∂u
2nd)

∂2

∂z2
=

∂

∂u

(
∂

∂u

)
=

∂2

∂u2
4th)

∂4

∂z4
=

∂2

∂u2

(
∂2

∂u2

)
=

∂4

∂u4

In figure 34 I have illustrated the invariance by starting the ODE-solver for 3 different initial z-values for a

fixed range of initial values. The plots are indistinguishable from each other.

Figure 34: ODE15s, same range of initial values for 3 different initial z.
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B Table of DSC values

Sample
type

Melting temperature,
[K]

Maximum heat capacity,
[

J
mol·K

]
FWHM,
[K]

MLV residual peak

MilliQ 314.5 3.8 · 104 0.4

LiCl 314.7 3.1 · 104 0.2

NaCl 314.7 2.0 · 104 0.2

KCl 314.6 2.1 · 104 0.3

Reference 314.6 1.3 · 102 0.3

Main transition, LUV

MilliQ 314 ±0.25 1.6 · 104 -

LiCl 314.2 1.1 · 104 1.6

NaCl 313.7 7.4 · 103 2.3

KCl 314.1 9.5 · 103 2.0

Pre-transition, LUV

MilliQ 307.8 9.4 · 102 -

LiCl 307.4 8.2 · 102 0.9

NaCl 308.0 9.0 · 102 -

KCl 308 ±0.25 9.9 · 102 -

Sub-transition, LUV

MilliQ 311 ±0.25 1.7 · 103 -

KCl 311.3 [3.0± 0.5] · 103 -

Additional bump, LUV

KCl 293.0 4.1 · 102 1.1

Table 1: The values were obtained from the heat capacity curves in figure 28. The numbers have been rounded
to the approximated accuracy.

C List of materials

DPPC lipids - 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine

Molar weight 734.05 fracgmol

Avanti Polar Lipids, Inc, lot #: 160PC-250 (to be stored at -20◦ C).
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Lithium chloride - LiCl

Molar weight 42.39 g
mol

Merck, article number 5679, lot # 2330343

Sodium chloride - NaCl

Molar weight 58.44 g
mol

AnalaR NORMAPUR, lot # 16E114102

Potassium chloride - KCl

Molar weight 75.55 g
mol

Fluka Analytical, lot # BCBF3016V

MilliQ water - Obtained from a Direct-Q® 3 UV

Demineralized water - From tap in the Niels Bohr institute

D List of table values

Constant dispersion coefficient, dispersion constant h = 50m4

s2 .

Thermodynamic heat capacity parameters (DPPC)

Avogadro’s number: NA = 6.02214076 · 1023 mol−1 (Google)

Melting entalpy: ∆H0 = 38.1 · 103 J
mol (I’m not sure of the origins of this number, but it’s not far from values

found in literature. Examples from literature are: ∆H0 = 39.2 · 103 J
mol [28], ∆H0 = 35 · 103 J

mol [32] and

36.4 · 103 J
mol [6]. The first number is for MLVs and includes a pretransition of 5.26 · 103 J

mol . The vesicle

structure and whether pretransition is included is not known for the latter two.)

Melting temperature: Tm = 41.3 + 273.15 K (Ebel et al. [13])

Intrinsic thermal expansion coefficient, fluid phase: Xfluid = 0.0042 K−1 (Heimburg [28])

Intrinsic thermal expansion coefficient, gel phase: Xgel = 0.0026 K−1 (Heimburg [28])

Area per lipid, fluid phase: 〈Afluid(T1)〉 = 62.9 · 10−20 m2, T1 = 50 + 273.15 K (Heimburg [28])

Area per lipid, gel phase: 〈Agel(T2)〉 = 47.4 · 10−20 m2, T2 = 25 + 273.15 K (Heimburg [28])

Boltzmann’s constant: k = 1.38064852 · 10−23 J
K (Google).

Gas constant: R = 8.31446261815324 J
K·mol (Wikipedia)

Cooperativity: n = 80 (own choice);

Proportionality constant: γA = 0.893 m2

J ; (Heimburg [28])

Molar weight: M = 734.039 · 10−3 kg
mol (Google)
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Additional parameters (DPPC)

Temperature: T = 45 + 273 K (Mosgaard et al. [58])

Reference density, Taylor expansion of the low freqency velocity: ρ0 = 4.035 · 10−6 kg
m2 Also used as reference

frequency in simulation, (Mosgaard et al. [58])

Small amplitude velocity of soliton: c(ρ0) = 176.6 m
s (Mosgaard et al. [58])

Molar area of DPPC, fluid phase: A = 0.5 · 62.9 · 10−20 · 6.022 · 1023 m2 (Heimburg [28])

Taylor-expansion coefficient of low frequency velocity: p = −16.6 · c(ρ0)2

ρ0
(Mosgaard et al. [58])

Taylor-expansion coefficient of low frequency velocity: q = 79.5 · c(ρ0)2

ρ20
(Mosgaard et al. [58])

Reference density, Taylor expansion of the high freqency velocity: ρ′0 = 4.107 · 10−6 kg
m2 (Mosgaard et al. [58])

Taylor-expansion coefficient of high frequency velocity: k = 1.22 (Mosgaard et al. [58])

Taylor-expansion coefficient of high frequency velocity: f = 2.3 · c(ρ0)2

ρ′0
(Mosgaard et al. [58])

Taylor-expansion coefficient of high frequency velocity: g = 20.9 · c(ρ0)2

(ρ′0)2 (Mosgaard et al. [58])

Onsager’s phenomenological constant: L = 0.5 · 1012 J·K
s·mol (Mosgaard et al. [58])

Gaussian heat capacity parameters

Loosely fitted from DPPC data in figure 3 of Mosgaard et al. [58]

Scaling: Maximum heat capacity = (1472− 140.5)/1662 · 20 · 103 J
mol·K

Full width at half max: FWHM = 1613/1754 · 0.6 · 10−6 kg
m2 , use FWHM to derive the standard deviation,

σ = FWHM(2
√

log(2) · 2)−1

Mean: µ = 0.4 · 10−6 kg
m2

Thermodynamic heat capacity parameters, E. Coli membrane

Overwrites some of the DPPC default values. Van’t Hoff fit of figure 3 in Mužić et al. [60].

Cooperativity: n = 5.5;

Melting entalpy ∆H0 = 35 · 103 J
mol ;

Melting temperature: Tm = 20.65 + 273.15 K
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E Additional plots

E.1 Numerical analysis: Differences in ODE solvers

Figure 35: Solitary solutions for velocities in the range (large amplitudes to small): {0.65 · c0, 0.70 · c0, 0.75 ·
c0, 0.80 · c0, 0.85 · c0, 0.90 · c0, 0.95 · c0, 1.00 · c0} obtained by three different solvers. Both boundaries of the
bisection interval for each solution are plotted, differ at 0.65 · c0 in the case of ODE15s and ODE 23t.

Figure 36: Varying the constant dispersion coefficient h in the thrice integrated case. ABOVE: ODE23tb.
BELOW: ODE45.
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E.2 Numerical analysis: Full velocity plots

Figure 37: ODE 15s

Figure 38: ODE 15s, cooperativity of 80
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E.3 Numerical analysis: E. coli run

Figure 39: ODE15s run of e. coli parameters included in appendix D.

E.4 Numerical analysis: Improving initial conditions, Gaussian heat capacity

Figure 40: ODE15s, Gaussian heat capacity, decreasing initial density from y0 = ∆ρ = 10−2.2 · ρ0 to 10−2.6 · ρ0
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Figure 41: ODE23tb, Gaussian heat capacity, decreasing initial density from y0 = ∆ρ = 10−2.2 ·ρ0 to 10−2.6 ·ρ0

E.5 Numerical analysis: Fitting ends

Figure 42: Fit of ends for twice and thrice integrated soliton model with a constant dispersion coefficient,
ODE23tb.
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Figure 43: Fit of ends of both right and left side solutions for the soliton model with a density-dependent
dispersion coefficient containing a Gaussian approximation of the heat capacity density dependence, ODE15s.
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Figure 44: Fit of ends of both right and left side solutions for the self-contained soliton model´, ODE15s
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E.6 Experiment: Up- and down scans

Figure 45: Up- and down-scans of . Similar plot for the LiCl-sample found in section 4.3.1, figure 20.
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E.7 Experiment: Binned γvol data plots

Figure 46: γvol binned for every 0.1 K. The subplot zooms in on the range of proportionality.
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E.8 Experiment: Binned L data plots

Figure 47: L binned for every 0.1 K. The subplot zooms in on the range of proportionality.
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F Guide to the MATLAB directory

Directories are ordered alphabetically. I’ve used relative paths so things should run smoothly as long as the

directory is kept intact. I’ve used the special character ’:’ in directory names while on Ubuntu which caused

trouble when switching back to macOS. I’ve corrected ’:’ to the mutually compatible ’-’ wherever I could find

it, but in case directory problems arise this might be the source.

If the word ’solution’ is mentioned in a description, what is meant is the density curve produced by the

ODE-solver, not a soliton, which is the end product after further optimization.

This manual includes all dependencies of a given script or function. Dependants can be found by searching

through all the dependencies listed under each function for mention of the specific script or function in question

using a pdf viewer search tool.

MATLAB® functions allows you to add new outputs to a function without having to backtrack every in-

stance where the function has been called to correct assignments. One simply adds the output to the output

list after ’function’ has been declared. If a function has four outputs but you only assign three variables in your

script, the fourth is simply ignored. If one needs to skip an output in the list, ∼ is used as a placeholder.

F.1 The main directory

Contents of the MATLAB folder is as follows:

1. Constant dispersion coefficient

(a) Previous versions of code

(b) Thrice integrated

(c) Twice integrated

2. DSC and PPC analyzation

3. Density dependent dispersion coefficient

(a) Gamma heat capacity

(b) Gaussian heat capacity

(c) Thermo heat capacity

4. Shared functions

Constant dispersion coefficient and Density dependent dispersion coefficient are the directories for

solving the soliton model for constant and density dependent dispersion respectively.
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DSC and PPC analyzation is the directory for analyzation of data from the heat capacity and pressure

pertubation experiments.

Shared functions includes functions shared by the above three directories, such as recordings of experimental

parameters and table values.

The directories 1c and 3a are intermediate steps of the work process and will not be discussed further.

F.2 Shared directory structures

The directories share similarities on different levels. The directories 1a, 1b, 2, 3b, 3c all share a similar overall

structure of their content:

Archived This folder is for manually storing content produced by the master scripts. For most parts divided

into the subdirectories Data and Plots.

Data Data produced by the master scripts can be set to automatically be saved to this folder. Sometimes

the data is divided into subfolders through directories generated by the master script itself. This data can

afterwards be moved manually to the Archived folder.

Functions This folder contains the majority of scripts used by the master scripts. The remainder are located

in Shared functions (4).

Master scripts This is not a subdirectory, but a collection of files in the top directory from which the code is

run.

Plots Plots produced by the master scripts can be set to automatically be saved to this folder. These plots

can afterwards be moved to the Archived folder.

Previous versions of code Some of the mentioned directories contain a folder with intermediate steps of the

work process as mentioned before. This content will not be discussed further.

Since the approach to each of the four versions of the soliton model has been practically the same, the

directories 1a, 1b, 3b and 3c shares most of their structure, content and naming of their scripts. The only

major differences can be found in the scripts themselves such as the different linearization schemes, the nature

of the bisection method used to optimize the initial conditions and the appearance of the ’valley’ for the density

dependent density curves, which creates a need for parallel treatment of two density curves instead of just

one. In the following subsection the full structure for these 4 subdirectories is described, and the subsections

afterwards takes on the full structure of the DSC and PPC analyzation directory and the Shared functions

in that order.

F.3 Full structure of soliton directories

Of the directory list in the previous section Functions and the master scripts need a more thorough expla-

nation.
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F.3.1 Functions

calculate equation parameters This function is used by dydt eq to calculate different components of the

linearization.

Dependencies:

- heat capacity.m (Gaussian and Thermo heat capacity only)

- Shared functions/load table values.m

dydt eq Linearization of the differential equation. Along with the initial values this function describes the

system to be solved. Called by the ODE-solver in generate data.m.

Dependencies:

- calculate equation parameters.m

- heat capacity.m (Gaussian and Thermo heat capacity only)

- Shared functions/load table values.m

finding optimization interval This function is called in the master script single velocity optimization.m

and determines in what area among the initial values and with what method optimizing data.m will

optimize density curves for soliton behaviour.

No dependencies

generate data.m Generates the density curve related to every initial value (amplitude) in a specified range for

a given velocity. Automatically saves data files and log file of the file names and properties to Data/Raw

data, can amass quite an amount of data. The automatic saving was implemented since the numerical

solver in heat capacity.m for Thermo heat capacity contains a numerical solver that crashes often.

If the ODE solving breaks down for some initial value, the whole script is halted, and all of the previous

work achieved by generate data.m up until the crash is lost. One can circumvent this issue by wrapping

the ODE-solver in a ’try-catch’ command in generate data.m and saving the workspace after each run

of the ODE-solver regardless if the solving was successful or not.

Dependencies:

- ODE options.m

- calculate equation parameters.m

- dydt eq.m

- heat capacity.m (Gaussian and Thermo heat capacity only)

- jacobian.m

- stop events.m (Gaussian and Thermo heat capacity only)

- Shared functions/load table values.m

heat capacity.m (Gaussian and Thermo heat capacity only) Provided with a density it calculates the heat

capacity. Called by dydt eq. The expression for the Thermo heat capacity isn’t analytical and is

approximated using the build-in numerical solver vpasolve which crashes quite a lot.
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Dependencies:

- Shared functions/load table values.m

jacobian.m According to MATLAB documentation [49] providing the ODE-solver with a description of the

jacobian of the linearization will increase accuracy and speed of the solver.

Dependencies:

- calculate equation parameters.m

- heat capacity.m (Gaussian and Thermo heat capacity only)

- Shared functions/load table values.m

load data.m Function for loading a set of data files generated by generate data.m. Takes the directory and

ID of the log file as input.

No dependencies

load opt structs from table.m Used in plot velocities.m to load optimized data from many different di-

rectories specified manually in a table.

Dependencies:

- Shared functions/exponential.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

ODE options.m A separate script for defining ODE options so one does not have to edit generate data.m.

Builds a settings menu containing predefined ODE-option configurations saved to a MATLAB® struct.

These configurations are defined in the bottom and can then be called in the top of the document. If one

wants to try a new settings configuration it can easily be added to the struct and one does not have to

delete previous settings configurations. Instead just name the new configuration something unique and

change the settings call in the top of the document.

Dependencies:

- calculate equation parameters.m

- jacobian.m

- heat capacity.m (Gaussian and Thermo heat capacity only)

- jacobian.m

- stop events.m (Gaussian and Thermo heat capacity only)

- Shared functions/load table values.m

optimizing data.m Optimizes density curves by iteratively providing initial values of generate data.m and

analyzing the output in search of soliton behaviour. The starting point of the optimization is provided

by finding optimization interval. Contains the bisection method individual to each of the four soliton

directories. The output struct is automatically saved to Data/Optimized data. OBS: If you resume

optimizing on some previously calculated data, make sure to set the same ODE options settings!
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Dependencies:

- ODE options.m

- calculate equation parameters.m

- dydt eq.m

- generate data.m

- heat capacity.m (Gaussian and Thermo heat capacity only)

- jacobian.m

- load data.m

- stop events.m (Gaussian and Thermo heat capacity only)

- Shared functions/load table values.m

plot opt struct.m Plots the density curves of the optimized data structure from optimizing data.m.

Dependencies:

- ODE options.m

- calculate equation parameters.m

- heat capacity.m (Gaussian and Thermo heat capacity only)

- jacobian.m

- stop events.m (Gaussian and Thermo heat capacity only)

- Shared functions/load table values.m

- Shared functions/plot settings.m

plot opt structs from table.m Used in plot velocities.m to plot the density curves from many different

structs of optimized data. The data directories are specified manually in a table.

Dependencies:

- Shared functions/load table values.m

- Shared functions/plot settings.m

plot raw data.m Plots all density curves from a set of data files loaded with load data.m.

Dependencies:

- Shared functions/load table values.m

- Shared functions/plot settings.m

stop events.m (Gaussian and Thermo heat capacity only) This function is included in the ODE-settings by

ODE options.m. The ODE-solver runs it parallel with the algorithm. If the criteria stated in the

stop events.m are met at a given step of the algorithm, the algorithm is stopped.

No dependencies
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F.3.2 Master scripts

heat capacity curve.m The directories Gaussian heat capacity and Thermo heat capacity contain this

script for plotting their respective heat capacity curves as a function of density for various parameter

setups. This script also includes velocity- and dispersion coefficients plots.

Dependencies:

- Functions/heat capacity.m (Gaussian only)

- Shared functions/load table values.m

- Shared functions/plot settings.m

- Shared functions/plot settings.m

plot ode solvers.m The Integrated directory contains a script for exploring the effect of different ODE-

algorithms.

Dependencies:

- Functions/load opt structs from table.m

- Functions/plot opt structs from table.m

- Shared functions/exponential.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

plot velocities.m This script plots and analyzes multiple sets of optimized data generated by single velocity optimization.m.

One has to manually add the directories of the optimized data. The data sets can be stored conveniently

in the data subfolder of Archived.

Dependencies:

- Functions/load opt structs from table.m

- Functions/plot opt structs from table.m

- Shared functions/exponential.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

single velocity optimization.m The optimization script for generating solitons. This script can generate

quite an amount of data. Both intermediary density curves and the final optimization MATLAB® struct

are automatically saved to the Data folder in the subfolders Raw data and Optimized data respectively.

Dependencies:

- Functions/ODE options.m

- Functions/calculate equation parameters.m

- Functions/dydt eq.m
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- Functions/finding optimization interval.m

- Functions/generate data.m

- Functions/heat capacity.m

- Functions/jacobian.m

- Functions/load data.m

- Functions/optimizing data.m

- Functions/plot opt struct.m

- Functions/plot raw data.m

- Functions/stop events.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

testing ODE option.m This script can be used to test different settings of the ODE-solver through Func-

tions/ODE options.m This script generates and automatically saves density curves but does not opti-

mize to obtain soliton behaviour, thus the output is not as immense as single velocity optimization.m.

Dependencies:

- Functions/ODE options.m

- Functions/calculate equation parameters.m

- Functions/dydt eq.m

- Functions/generate data.m

- Functions/heat capacity.m

- Functions/jacobian.m

- Functions/load data.m

- Functions/stop events.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

F.4 Full structure of DSC and PPC directory

Of the directory list in section F.2, only Functions and the master scripts need a more thorough explanation.

F.4.1 Functions

decreasing exponential.m General function describing a decreasing exponential. Used by dependencies in

fit data PPC.m for constructing relaxation time fits.

No dependencies

94



experimental parameters.m Experimental parameters and quantities used for unit conversion in the DSC

and PPC experiments can be logged here. It is possible to save multiple sets of parameters. The parameter

index should correspond to the data index in load data.m.

No dependencies

fit data DSC.m Fit peaks in DSC data with or without baseline. Initial values are specified in initial gues DSC.m.

2 types of peaks are specified (Gaussian, Van’t Hoff), more can be added. The baseline is modeled by a

nth order polynomial. This fit will not converge if the order of the peaks is much larger than the baseline

(likely any other data set than contaminated references). Fit the major peaks using this function and

proceed with subtract peaks DSC.m and remove baseline DSC.m instead.

Dependencies:

- Hoffs law.m

- Hoffs law with baseline.m

- fit data DSC.m

- gaussians.m

- gaussians with baseline.m

- pol.m

- Shared functions/load table values.m

fit data PPC.m Fit relaxation times for every sample type in an experiment. For each sample type one has

to predefine what file is to be used as water reference and add the index in the struct ’water indexes.list’

in the master script PPC analyzation.m. Each relaxation time is fitted with a numerical convolution,

so the process is very slow and sensitive to the initial guess of parameters.

Dependencies:

- P exp.m

- P lipid.m

- P water.m

- R instr.m

gamma function.m Not used.

No dependencies

gaussians.m General function describing a sum of gaussians. Used by fit data DSC.m for fitting peaks.

No dependencies

gaussians with baseline.m General function describing a sum of gaussians and a polynomial baseline. Used

by fit data DSC.m for fitting data.

Dependencies:
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- gaussians.m

- pol.m

Hoffs law.m General function describing a sum of single melting events modeled by Hoff’s law. Used by

fit data DSC.m for fitting peaks.

Dependencies:

- Shared functions/load table values.m

Hoffs law with baseline.m General function describing a sum of single melting events modeled by Hoff’s

law and a polynomial baseline. Used by fit data DSC.m for fitting data.

Dependencies:

- Hoffs law.m

- pol.m

- Shared functions/load table values.m

initial guess DSC.m Initial guesses for parameters fitted in fit data DSC.m. The initial guess defines the

fit. For instance one can add an extra peak to a specific fit by increasing ’n peaks’ with 1 and adding the

extra set of parameters in ’initial guess array’.

Dependencies:

- Shared functions/load table values.m

initial guess PPC.m Initial guesses for relaxtion time fit parameters. fit data PPC.m will attempt to fit

all run files for which an initial guess for the parameters has been made.

No dependencies:

linear.m General linear function used in load data.m to fit the scan rate in the DSC experiment.

No dependencies

load data.m Loads all data for both DSC and PPC experiments into three outputs: A DSC struct, a PPC

struct and a data menu describing the sample names in each set of experiments.

Dependencies:

- experimental parameters.m

- initial guess DSC.m

- initial guess PPC.m

- linear.m

P exp.m General function describing the power output of the PPC experiment. Used for fitting data in

fit data PPC.m. Contains a numerical convolution.
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Dependencies:

- P lipid.m

- P water.m

- R instr.m

P lipid.m General function describing the lipid relaxation output of the PPC experiment. Part of P exp.m

used in fit data PPC.m.

No dependencies

plot all scans DSC.m Plots the DSC scans for a selection of experiments (i.e. up- and downscans) of a

certain data type as to compare for hysterisis and hydration effects.

Dependencies:

- Shared functions/plot settings.m

plot data DSC.m Plots raw data of the DSC experiment.

Dependencies:

- Shared functions/plot settings.m

plot data PPC.m Plots raw data of the PPC experiment.

Dependencies:

- Shared functions/plot settings.m

plot eq release and jump.m Plot the full run from a single PPC file (equilibration, pressure relase and

jump).

Dependencies:

- Shared functions/plot settings.m

plot fit DSC.m Plot the fit obtained in fit data DSC.m.

Dependencies:

- Shared functions/plot settings.m

plot total fit PPC.m Plot the water reference fit and the relaxation time fits obtained in fit data PPC.m

on top of data. One can choose only to plot a certain range of fits.

Dependencies:

- Shared functions/plot settings.m

pol.m General function describing a polynomial of nth order. Used by fit data DSC.m for fitting data.

No dependencies
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print PPC parameters in Command Window.m This function is very practical for determining good

initial guesses for parameters when fitting relaxation times. Prints the parameters of all fitted run files

for a given sample in the command window.

No dependencies

P water.m General function describing the water reference of the PPC experiment. Part of P exp.m used

in fit data PPC.m.

No dependencies

remove baseline DSC.m Subtracts a previously fitted baseline from a specified set of data. ’n peaks’ and

’pol order’ specifies what fit to take the baseline from.

Dependencies:

- pol.m

R instr.m General function describing the normaliized instrument response function in the PPC experiment.

Part of P exp.m used in fit data PPC.m.

No dependencies

split fit DSC.m When one is fitting multiple peaks and maybe an additional baseline, this function can be

used to plot each fit component on top of each other instead of summing them together.

Dependencies:

- Hoffs law.m

- gaussians.m

- pol.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

split fit PPC.m This fit plots the total relaxation time fit and its components: Water reference fit, instrument

response fit and lipid response fit in separate subplots.

Dependencies:

- P lipid.m

- R instr.m

- Shared functions/plot settings.m

subtract peaks DSC.m This function is the preliminary stage to remove baseline DSC.m in case baseline

and peaks cannot be fitted in one go. First it removes the peaks fitted with fit data DSC.m. Then

it fits the baseline with a polynomial of the requested order. The fit is weighted such that data on the

edges have exponentially more influence and high heat capacities have exponentially less influence, plots

of these weight distributions can be activated by setting ’plot weights’ to 1 in DSC analyzation.m.
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Dependencies:

- Hoffs law.m

- Hoffs law with baseline.m

- fit data DSC.m

- gaussians.m

- gaussians with baseline.m

- plot fit DSC.m

- pol.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

subtract reference DSC.m Fits the reference with the requested fit, then determines the RMS of the resid-

uals. This function also defines the weights used to in fit data DSC to be uniformly 1
RMS2 (in the

subfunction ’subtraction’), so currently the data fitting taking place is de facto not weighted, but the

structure is prepared.

Dependencies:

- Hoffs law.m

- Hoffs law with baseline.m

- fit data DSC.m

- gaussians.m

- gaussians with baseline.m

- plot fit DSC.m

- pol.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

F.4.2 Master scripts

DSC analyzation.m Analyzes DSC data. Converts the differential power data in the data file to heat capacity

data, subtracts reference data, corrects the baseline and saves the final data to a MATLAB® file. Plots

of the initial, intermediate and final steps can be activated. Currently only one experiment of 4 samples

is being analyzed, but the code can be expanded to contain more than one experiment.

Dependencies:

- Functions/load data.m

- Functions/Hoffs law.m

- Functions/Hoffs law with baseline.m
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- Functions/fit data DSC.m

- Functions/gaussians.m

- Functions/gaussians with baseline.m

- Functions/plot data DSC.m

- Functions/plot fit DSC.m

- Functions/pol.m

- Functions/remove baseline DSC.m

- Functions/split fit DSC.m

- Functions/subtract peaks DSC.m

- Functions/subtract reference DSC.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

Plot fit parts.m Plots Functions/P exp.m, Functions/P lipid.m, Functions/P water.m and Func-

tions/R instr.m for manually defined sets of parameters. One can then by eye compare these plots to

raw data or fit plots of PPC analyzation.m to obtain good initial guesses or improve the fitting process

for the relaxation time.

Dependencies:

- Functions/P exp.m

- Functions/P lipid.m

- Functions/P water.m

- Functions/R instr.m

- Functions/decreasing exponential.m

- Shared functions/plot settings.m

plot proportionality.m Plots the relaxation times and thermal volume expansion coefficients obtained with

PPC analyzation.m on top of the heat capacity curves from DSC analyzation.m for all samples in

an experiment. It also derives the phenomenological constant L and the proportionality constant γV .

Dependencies:

- Functions/experimental parameters.m

- Shared functions/load table values.m

- Shared functions/plot settings.m

PPC analyzation.m Analyzes PPC data. Fits relaxation times for pressure release only at the current mo-

ment, but the structure permits for pressure jump fits to be added without difficulty. Data is saved to

a MATLAB® file. Plots of the initial, intermediate and final steps can be activated. The fitting pro-

cess involves a convolution and is very slow and sensitive to initial guess of parameters. Currently only

one experiment of 4 samples is being analyzed, but the code can be expanded to contain more than one

experiment.

100



Dependencies:

- Functions/load data.m

- Functions/P exp.m

- Functions/P lipid.m

- Functions/P water.m

- Functions/R instr.m

- Functions/fit data PPC.m

- Functions/plot data PPC.m

- Functions/plot total fit PPC.m

- Functions/split fit PPC.m

- Shared functions/plot settings.m

F.5 The ’Shared Functions’ directory

exponential.m General function describing an exponential. Mainly used by load opt structs from table.m

in plot velocities.m in the soliton directories to fit the ends of the solitons.

No dependencies

load table values.m Contains table values used in the thermodynamic model for heat capacity and the gaus-

sian approximation and more. Build as a settings menu like the Functions/ODE options.m-file in order

to test the effect of various parameters. OBS: If you resume optimizing on some previously calculated

data, make sure to set the same load table values.m settings!

No dependencies

plot settings.m General plot settings such as font sizes and color cycles for iterative plotting.

No dependencies

F.6 Filenames and overwriting

Since I am running the ODE-solver repeatedly in each optimization, one can easily overwrite previously saved

data from the same run if the files are not named systematically. This is prevented by wrapping the data in a

subdirectory of date and time on the form:

’year month day/hour min/sec/filename.filetype’

Example: ’2021 1 12/19 53/22.38/v 0.800 amp 1.2553e-07.mat’.

It is done consistently for all data, also for the DSC PPC analysis directory. Plots and data can be linked

by these directories if the system is not disrupted afterwards. Initially I chose to nest the output instead of

creating elaborate file names since different operating systems handle delimiters in file names differently, and a

time stamp down to milliseconds with no delimiters can make a file name difficult to read. I have changed my

mind, but haven’t corrected this issue.
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F.7 Bisection methods

Optimizing has 2 modes: If the optimization interval has been detected, bisection method (mode 1). Here a

new solution is being generated in between the boundaries of the interval to be correctly classified as either

upper or lower boundary of new, smaller interval.

Else keep searching for the other boundary by linearly changing the initial condition (mode 2).

Bisection method, twice integrated

Finding optimization interval :

Lower boundary: Oscillating solution, sum of maxima ≥ 2.

Upper boundary: Diverging solution, one maximum and ∆ρend ≤ 0, or one minima and ∆ρend ≥ 0.

Optimizing initial condition:

Mode 1: Bisection method

New lower boundary: Oscillating solution, sum of maxima > 1.

New upper boundary: Diverging solution, one maximum or one minima.

Mode 2: Search for second boundary

Look for lower bound: Find oscillating solution, sum of maxima > 1.

Look for upper bound: Find diverging solution, one maximum or one minima.

Bisection method, thrice integrated

Finding optimization interval :

Lower boundary: Any solution not fitting the criteria of upper boundary.

Upper boundary: Complex solutions, detected by > 1 minima or > 1 maxima.

Optimizing initial condition:

Mode 1: Bisection method

New lower boundary: Any solution not fitting the criteria of upper boundary.

New upper boundary: If > 1 minima or > 1 maxima.

Mode 2: Search for second boundary

Look for lower bound: If precisely 1 maximum and no minima.

Look for upper bound: If > 1 minima or > 1 maxima.

Optimization method, Gaussian or thermodynamic heat capacity

Finding optimization interval :

Find the valley: Valley solutions have one maximum and the end of the curve is lower than the initial value,

∆ρend,stop ≤ ∆ρend,start.
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Find a direction: The solution of largest amplitude in the valley constitutes the lowest boundary on the left

side interval, whereas the solution of smallest amplitude is set to the highest boundary on the right side

interval. I look for an indication of direction in the valley in the following way:

Look for a valley bottom: At the bottom of the valley, the maxima of the solution, ∆ρmax, reaches a

minima out of all solutions in the valley.

Detect sides: If the valley bottom isn’t found, try looking for the sides instead.

Valley left side: ∆ρmax of the solutions are increasing with increasing amplitude.

Valley right side: ∆ρmax of the solutions are decreasing with increasing amplitude.

If valley bottom or side is found: Look for nearest oscillating solution to the valley side(s):

Valley left side: Sum of minima and maxima > 1, amplitude of solution larger than that of highest valley

amplitude. Upper boundary on the left side interval.

Valley right side: Sum of minima and maxima > 1, amplitude of solution less than that of lowest valley

amplitude. Lower boundary on the right side interval.

Optimizing initial condition:

Mode 1: Bisection method

Right side:

New lower boundary: If sum of minima and maxima > 1.

New upper boundary: If sum of minima and maxima = 1.

Left side:

New lower boundary: If sum of minima and maxima = 1.

New upper boundary: If sum of minima and maxima > 1.

Mode 2: Search for second boundary: I optimize from the inside of the valley and out, so regardless of direction

I only need to act when an oscillating solution arises, meaning sum of minima and maxima > 1. In this

case:

Right side: Lower boundary is found.

Left side: Upper boundary is found.
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