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Abstract. This thesis is concerned with the exact dynamics of test particle motion
in axisymmetric black hole spacetimes. The contents of this work can be largely
divided into two halves, the first concerning itself with deriving analytic solutions
to plunging geodesics in Kerr, in a form that can be implemented practically. The
second half then explores the phenomenology of dyonic particles in Kerr-Newmann
spacetimes. In the case of the Kerr solution, we derive closed-form solutions for the
generic class of plunging geodesics in the extended geometry using Boyer-Lindquist
coordinates. We also specialise to the case of test particles plunging from the innermost
precessing stable circular orbit (ISSO) and unstable spherical orbits. We find these
solutions in the form of elementary and Jacobi elliptic functions parameterised by
Mino time. These solutions have been included in the KerrGeodesics package of
the Black Hole Perturbation Toolkit as to be readily useful for application. In the
latter half of this work, relating to Kerr-Newmann spacetimes, we analyse in depth
the previously unstudied, modified Penrose process which can occur in magnetically
charged spacetimes. Here we discover previously unseen, simply connected, ergoregions
that are disconnected from the horizon. We also determine conditions on maximising
these extended ergoregions given a fixed extremality. The content of this work
is based on two pre-prints that were completed in the first half of 2023, namely,
arXiv:2302.03704 and arXiv: 2306.15751, both of which are currently under peer-
review.
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1. Introduction

Analysing the geodesic structure of a spacetime is one of the foundational means of
understanding strong field dynamics in an unperturbed state. This is apparent in the
fact that the geodesics of the Kerr/Kerr-Newmann spacetimes have been extensively
studied since their original derivations [4, 5]. Notably if one considers the coupling
of gravitation to electromagnetism, described by the Einstein-Maxwell action, then
the most general axisymmetric, asymptotically flat, stationary solution is given by
the well-known Kerr-Newmann (KN) solution [4, 5]. The KN family of solutions
contains four independent parameters, mass M , spin a, electric Q and magnetic P

charges [6–9]. Notably in the limit {Q,P} → {0, 0}, one smoothly recovers the Kerr
metric. Most astrophysical black holes will be neutral. This is due to the fact that any
accumulated charge on the hole is expected to be quickly neutralised by vacuum pair
creation or interaction with the interstellar medium [10]. There are however well-known
mechanisms, such as the Wald mechanism, whereby black holes immersed in constant
magnetic fields can accrue a stable electric charge [11, 12], these charges are expected
to be extremely small [13]. Given this, in most contexts, a physicist can have peace
of mind in setting Q and P to zero when modeling astrophysical situations. This is
how we shall proceed in the first half of this work. The intention here, to derive the
analytic solutions to generic plunging geodesics in Kerr in support of current progress
on perturbative calculations of two-body dynamics. This is not to say that dyonically
charged black holes are uninteresting. KN black holes have captured the interest of
theoretical astrophysicists for decades [14–19], and nowadays in the dawn of gravitational
wave astronomy they play a prominent role in searches of beyond vacuum GR physics
from ringdown analysis [20, 21], in modelling signatures of dark matter [22–32]. In
addition, no known laws of physics prevent the existence of magnetic charges, and the
incorporation of them into test particle motion in KN leads to rich and qualitatively
new phenomena [1]. It is the responsibility of a theorist to explore these avenues and
understand them to a full extent. This is the focus of the latter half of this work.

In solving analytically for generic timelike geodesics in Kerr. A critical step was the
discovery of a fourth constant of motion, the Carter constant Q [33], which along with
the mass shell condition, the conserved energy E and the angular momentum L allow
for the full integrability of the geodesic equations of motion. Exact solutions for various
special cases had been derived in the past [34, 35] no real effort was made to tackle
the generic case until the start of the 21st century [36]. The introduction of the Mino
time parameterisation [37] subsequently allowed for the full decoupling of the problem
in a much simpler manner to previous approaches [33]. This opened the door for finding
analytic solutions to generic bound geodesics in Kerr [38] as a system of piecewise smooth
functions, which were then notably simplified through analytic continuation [39].

The full class of analytic solutions to Kerr-Newmann, Kerr-de Sitter and Kerr-
anti-de Sitter space-times has been found generically [40, 41]. However, these solutions
are presented in the form of Weierstrass elliptic and hyperelliptic Kleinian functions,
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which can make them cumbersome to deal with. Recently, [42] has derived a much
simplified analytic solution for the special case of equatorial plunging timelike geodesics
which asymptote from the innermost stable circular orbit (ISCO). In this work, they
also provide a simple expression for the equatorial radial inflow from the ISCO relevant
to the study of accretion disk dynamics. In practice, these systems will not always
be confined to the equatorial plane, motivating the generalisation of this result to the
inclined (i.e. non-spin aligned or precessing) case, as we will do in this paper. In the
interest of completeness, we also provide solutions for plunges starting from a general
(inclined and eccentric) last stable orbit (LSO), i.e. asymptoting from a generic unstable
spherical orbit (USO).

The work here on generic plunges is motivated by the role that geodesics play in
the gravitational self-force approach to solving the relativistic dynamics of binary black
holes [43]. In this approach, the dynamics are expanded in powers of the mass ratio
between two black holes. In this scheme, the zeroth approximation to the motion of
the lighter secondary component is given by a geodesic in the Kerr geometry generated
by the (heavier) primary black hole. At higher orders, this motion is corrected by
an effective force term, the gravitational self-force, causing the system to evolve. [44–
46]. Consequently, the recent realisation that waveforms from the self-force formalism
may be usable in the more comparable mass regime has led to a renewed interest in
modeling the transition between bound and plunging motion of the secondary [47–53].
So far this effort has focused mostly on special cases involving quasi-circular (possibly
precessing) inspirals. As the work progresses towards fully generic inspirals, there is a
need for generic solutions for plunging geodesics. This work provides these by solving
for completely generic closed-form analytic solutions for plunging geodesics in an easy-
to-evaluate form.

Beyond analysing uncharged Kerr, the dyonically charged regime of KN provides
a rich playground for understanding the qualitatively new dynamics which can occur
in a simple, well-founded, extension to pure vacuum GR. One of the many reasons
for interest in these systems is that charged black holes may play an important role
in high-energy astrophysical phenomena such as cosmic rays [54], through an enhanced
Penrose process. In charged KN, the enhancement of the Penrose process in the presence
of an externally applied magnetic field (known as magnetised black holes) has been
extensively studied for some time [55]. In practice, these magnetised systems can be
quite difficult to model accurately and must be unphysically taken to exhibit a constant
magnetic field at infinity. This presents multiple issues, one such being that magnetically
charged black holes cannot be described in these setups (as they would lead to infinite
accelerations on the hole). Additionally, these fields must either be regarded as test
fields ignoring backreaction on the metric or lead to non-asymptotically flat solutions
[56, 57]. Dyonically charged KN does not present these issues, acting as a completely
well-defined asymptotically flat solution to the Einstein field equations. Much of the
literature in the past has focused on charged black hole dynamics in the absence of
magnetic charges. The primary motivation of the work in the latter part of this thesis
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is to fill this gap and glean a concrete understanding of the qualitative differences which
occur when one does not set the magnetic charge P to zero.

This thesis is outlined as follows, in section 2 we begin with an introduction to the
Kerr-Newmann solution and the dyonic geodesic equations of motion, making manifest
duality invariance. Using these quantities we will make explicit, definitions for the
related conserved quantities. In section 4 we then restrict our attention to that of
neutral particles in the Kerr spacetime. Here our attention will focus on the special cases
of plunging timelike geodesics which asymptote from the innermost stable precessing
circular orbit (ISSO) and plunges from unstable spherical orbits.‡ From these equations
we determine the exact and two approximate expressions for the rate of radial inflow
from the ISSO to the horizon. We then go on to determine the fully analytic solutions
to these geodesic equations for ISSO plunges. In section 5 of this work, we go on to
determine novel, fully analytic, expressions for generic timelike plunging geodesics in the
Kerr spacetime in terms of elementary and (Jacobi) elliptic functions. These solutions to
generic plunges are presented in a manifestly real form such to be easily implementable,
supporting current work in the self-force community on the aforementioned transition
to plunge. Following this, in section 6 we broadened our attention again to the full class
of dyonically charged particle motion in KN. Here we derive the novel set of timelike
geodesic in terms of elementary and Jacobi elliptic equations for bound and plunging
motion. The motion of electric particles around electrically charged black holes has
been extensively studied in the past. Given this, we restrict our attention to that of
electric particles orbiting magnetic black holes. In particular, we find new necessary
conditions for a particle to hit the singularity and show how the Carter constant loses
its naive interpretation as a measure of orbital inclination in this set up. Additionally,
we also show how these configurations lead to angular momentum being stored in the
electromagnetic field and see how at extremality no geodesics crossing the horizon exist
which would break cosmic censorship. Finally in section 7 we explore in depth the
Penrose process in dyonically charged spacetimes. In particular, we discover previously
unseen, simply connected ergoregions, which are disconnected from the horizon. We
also determine conditions for maximising these extended ergoregions given a fixed
extremality and show how in theory the efficiency of this process can become arbitrarily
high. We work in geometric units where G = c = 1.

2. Kerr-Newmann and the Duality Invariant Equations of Motion

Kerr-Newmann is the most general, axisymmetric, asymptotically flat, stationary
solution to Einstein-Maxwell action. The metric of this solution is given by the line

‡ In this paper, we use the acronym ISSO to refer to the general case of the last stable circular orbit
for spherical (i.e. inclined precessing) orbits. The term ISCO will be used exclusively for the special
case of circular equatorial last stable orbits.
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element,

ds2 = −∆− a2 sin2 θ

Σ
dt2 − 2a sin2 θ

(
r2 + a2 −∆

Σ

)
dtdϕ

+

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdϕ2 +

Σ

∆
dr2 + Σdθ2,

(1)

where
∆ = r2 − 2Mr + a2 +Q2 + P 2, and Σ = r2 + a2 cos2 θ. (2)

The corresponding Maxwell potential is given by,

A = −Qr

Σ

(
dt− a sin2 θdϕ

)
+

P cos θ

Σ

(
adt− (r2 + a2)dϕ

)
. (3)

With M and a = J/M being the spacetimes ADM mass and Angular Momentum
respectively. The quantities P and Q are the magnetic and electric charge of the
spacetime defined by,

Q =
1

4π

∫
S2

⋆F , P =
1

4π

∫
S2

F , (4)

respectively, where S2 is any surface of constant r §. Provided the condition
M2 ≥ a2 + Q2 + P 2, the horizons of KN are given by,

r± := 1±
√

1− a2 −Q2 − P 2. (5)

In stationary, analytic, asymptotically flat vacuum black hole spacetimes, H+(given by
r = rp) is a Killing horizon [58]. In KN the killing vector associated with the outer
horizon is given by,

k = ∂t + ΩH∂ϕ, (6)

where ΩH = a/(r2H + a2) is the angular velocity of the black hole as measured by an
observer at infinity. Given a dyonically charged particle, that is a particle with both
electric (e) and magnetic (g) charge the equations of motion for the particle in KN are
given by,

ua∇aub =
1

m
(eFba − g ⋆ Fba)u

a . (7)

The key step in understanding particle motion in these spacetimes is in general to then
take Eqs 7 and express them as a system of decoupled first-order ODEs. This was firstly
achieved by Carter [59] and later by others [40, 60]. Here we will begin by outlining an
alternative derivation of this decoupled equation which keeps all quantities manifestly
duality invariant.

In the dyonic KN one finds an explicit symmetry arises in the field equations, known
as electric-magnetic duality. This symmetry corresponds to rotations between electric
and magnetic charges by SI

J ∈ SO(2) and can be thought of as a fundamental property
§ Here ⋆F is the Hodge dual of the Maxwell tensor given in components as, ⋆Fab := 1

2!ϵabcdF
cd, with

ϵabcd being the volume form of the manifold.
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of Einstein-Maxwell theory. Here we make this symmetry explicit by re-writing the
equations in terms of duality invariant quantities. We first begin by collecting certain
electric-magnetic quantities into two-component vectors,

F I =

(
F

⋆F

)
, QI =

(
P

Q

)
, qI =

(
g

e

)
, (I = 1, 2) , (8)

and introduce the euclidean and symplectic metrics

δIJ =

(
1 0

0 1

)
, ΩIJ =

(
0 1

−1 0

)
, (9)

which are the generators of the infinitesimal symmetry group of SI
J ∈ SO(2). Under

these transformations the metrics (9) remain invariant, that is,

δIJ = SK
IS

L
JδKL , ΩIJ = SK

IS
L
JΩKL . (10)

Defining these invariant quantities the equations of motion (7) now take the form,

ua∇aub =
1

m
ΩIJF

I
baq

Jua (11)

which is manifestly duality invariant. In order to reduce the above system of second-
order ODEs in terms of first-order ODEs we must re-write the equations of motion
in terms of quantities conserved along the trajectories governed by 11. Taking,
PI

ξ = (Pξ, P̃ξ), to be the duality vector given by ξ. Defined such that the components
of PI

ξ can be found explicitly through the equation,

∇aPI
ξ = −ξbF I

ba . (12)

Then if ξ is a Killing vector of the background which also leaves the Maxwell tensor
invariant we can construct a conserved quantity by,

Cξ = uaξ
a +

1

m
ΩIJPI

ξ q
J . (13)

Taking the boundary conditions to be given by
∫
S2
∞
PI

ξ dΩ = 0 then PX and P̃X

directly correspond to the electric and magnetic momentum maps of ξ in line with the
terminology of [61–63]. In particular, taking ξ = k (the generator of the outer Killing
horizon) and evaluating on H+ these quantities become precisely the electromagnetic
potentials of the black hole.

Additional constants of motion can also exist if the spacetime admits a Stackel-
Killing tensor Kµν [59, 64], defined to satisfy,

Kab = Kba , ∇(aKbc) = 0 , (14)

the standard Killing tensor conditions, along with the additional algebraic constraints,

Kc(aF
c

b) = 0 , Kc(a ⋆ F
c

b) = 0 (15)
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which are required in the presence of the additional Maxwell fields. If such a tensor
exists, then

C = Kabu
aub, (16)

gives as a further conserved quantity. Often left unmentioned is that the metric satisfies
this Killing-Stackle condition, giving rise to the usual mass shell condition for a test
particle.

The time ∂t and azimuthal ∂ϕ Killing vectors and their associated duality vectors,
give rise to two constants of motion through 13. With the electric momentum maps of
the Killing vectors given by,

Pt(P,Q) =− Qr − Pa cos θ

Σ
, and (17)

Pϕ(P,Q) =
Qar sin2 θ − (a2 + r2)P cos θ

Σ
. (18)

The associated magnetic momentum maps are then found through the simple relations,
P̃t(P,Q) = Pt(Q,−P ) and P̃ϕ(P,Q) = Pϕ(Q,−P ). The calculation of these momentum
maps in an explicitly duality invariant manner was primarily the work of my collaborator
David Pereñiguez. Finally one can also determine a Carter-like constant in Dyonic KN
spacetimes through the existence of the non-trivial Stackle-Killing tensor[59, 65, 66],

Kab = 2Σl(anb) + r2gab . (19)

Where

l =
r2 + a2

∆
∂t + ∂r +

a

∆
∂ϕ , and (20)

n =
1

2Σ

[
(r2 + a2)∂t −∆∂r + a∂ϕ

]
(21)

are the principal null directions of the Kinnersly tetrad [67]. These constants of motion
can then be found explicitly as ∥,

E ≡ −ua (∂t)
a − 1

m
ΩIJPI

t q
J

= −ua (∂t)
a +

rδ − aΩcos θ

mΣ
, (22)

L ≡ ua (∂ϕ)
a +

1

m
ΩIJPI

ϕq
J

= ua (∂ϕ)
a +

arδ sin2 θ − Ω(r2 + a2) cos θ

mΣ
, (23)

K ≡ uaubKab − (L − aE)2 (24)

m ≡ −uaubgab . (25)

∥ One is always free to shift these conserved quantities by any constant value they wish. Here we elect
to choose a constant shift in K of (L − aE)2. This is a common choice in Kerr as it is this shifted
quantity that gives precisely equatorial orbits when zero. We make the same choice in dyonic KN for
the sake of consistency and to later make explicit some subtle differences that arise in this quantity in
dyonic KN from Kerr.
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Where here we have defined the duality invariant quantities,

δ = δIJQ
IqJ = Qe+ Pg , and Ω = ΩIJQ

IqJ = Pe−Qg . (26)

Here the δ term can be thought of as a measure of “electric-electric” interaction whereas
Ω can be thought of as a measure of “Magnetic-electric” interaction. Then, inverting
the relations for the conserved quantities, using the Mino–Carter time dτ = Σdλ [37] as
a curve parameter and introducing z = cos θ, the equations of motion can be decoupled
and cast in the form(

dr

dλ

)2

=
(m(E(r2 + a2)− aL)− rδ)

2

m2
−∆(r2 + (aE − L)2 +K)

≡R(r) , (27)

(
dz

dλ

)2

=K − z2K − z2(Ω2 +m2L2) + 2mΩLz
m2

+ az(1− z2)
2EΩ− amz(1− E2)

m

≡Z(z) , (28)

dϕ

dλ
=
Ωz +m(L − aE(1− z2))

m(1− z2)
− a

m∆
(δr + amL −m(a2 + r2)E) , (29)

dt

dλ
=(a2 + r2)

m(a2 + r2)E − amL − δr

m∆
+ a

m(L − aE(1− z2)) + Ωz

m
. (30)

3. Plunging Motion in Kerr

Sections 3, 4 and 5 of this thesis will be concerned with plunging motion in Kerr,
hence with the exception of section 7 we set the quantities {e, q, P,Q} = {0, 0, 0, 0}. In
particular, this reduces the geodesic equations of motion to the form, [33],(

dr

dλ

)2

= (E(r2 + a2)− aL)2 −∆(r2 + (aE − L)2 +K)

= (1− E2)(r1 − r)(r2 − r)(r3 − r)(r − r4)

≡ R(r),

(31)

(
dz

dλ

)2

= K−z2(a2(1− E2)(1− z2) + L2 +K)

= (z2 − z21)(a
2(1− E2)z2 − z22)

≡ Z(z),

(32)

dt

dλ
=

(r2 + a2)

∆
(E(r2 + a2)− aL)− a2E(1− z2) + aL , (33)

dϕ

dλ
=

a

∆
(E(r2 + a2)− aL) + L

1− z2
− aE , (34)
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where, now in the absence of external forces, due to the equivalence principle we can take
m = 1 without loss of generality. By taking advantage of the Mino time parameterisation
the equations of motion completely decouple and can be solved hierarchically. This is
done by first solving for r(λ) and z(λ) then naturally solving the equations in the form
t(r, z, λ) = tr(r) + tz(z) − aEλ and ϕ(r, z, λ) = ϕr(r) + ϕz(z) + aLλ. The solutions for
r(λ) and z(λ) can be directly substituted to obtain t(λ) and ϕ(λ).

Analysing the radial equation in its explicit form (31), one can see that the
distinction between bound and plunging orbits is fully determined by the root structure
of the fourth-order polynomial R(r). In particular, plunges occur when we have bound
motion between some roots ri, rj of R(r) with ri < r− < r+ < rj. In this work,
we restrict to geodesics with E < 1, which implies that the radial potential R(r) is
negative in the limit r → ∞, ensuring that the geodesic is bound to the Kerr black
hole. Moreover, since R(r±) > 0 it guarantees that there is at least one real root of R(r)

outside r+. A less obvious implication comes from the polar equation (32). Rewriting
the polar potential as

Z(z) = (1− z2)K−z2(a2(1− E2)(1− z2) + L2), (35)

it becomes apparent that when E < 1 the polar equation has solutions with −1 < z < 1 if
and only if K ≥ 0. For the radial potential, this implies that R(0) ≤ 0, and consequently
that there exists at least one real root of the radial equation between r = 0 and the inner
horizon. We thus find that for any values of E < 1 and K ≥ 0, there exists a plunging
geodesic. It is important to note that the case of E > 1 with K < 0 also contributes
to a small subset of parameter space for which a real solution is allowed. Its dynamics
are quite interesting as by a brief analysis of the equations of motion one can see that
this would give a test particle which plunges from infinity, poloidally oscillating around
some z0 ̸= 0.

Generically, a plunging geodesic will eternally oscillate between two turning points
of the radial potential and return to the same radial point after a finite amount of Mino
(and proper) time. Geometrically, this corresponds to a geodesic diving into the Kerr
black hole and passing through the two horizons before being scattered back out, passing
the horizons in reversed order and exiting in a different asymptotically flat region of the
maximally extended Kerr solution, as shown in the Penrose diagrams in Fig. 1.

Exceptions to this picture occur for equatorial trajectories and when one of the
bounding roots has a multiplicity greater than one. In the first case K = 0, one finds
that r = 0 is a root of the radial equation. If this is the inner turning point of the
geodesic, the plunge will end on the singularity after a finite amount of Mino (and
proper) time. In the second case, approaching a root with higher multiplicity takes an
infinite amount of Mino (and proper) time. In Section 4, we will see the physically
relevant case where the outer turning point of the solution is a triple root, i.e. lies on
the ISSO, where the radial solution takes a particularly simple form generalising the
result of [42]. The right panel in Fig. 1 shows this edge case trajectory in a Penrose
diagram.
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Figure 1. Penrose diagrams of the maximally analytic extension of the Kerr metric
showing different plunge trajectories. Left Image: A generic plunging orbit whereby
the solutions oscillate between the largest root of R(r) which is less than r− and the
smallest root of R(r) greater than r+. These trajectories correspond to geodesic motion
entering the black hole, reaching a turning a point, and exiting the white hole into a
different asymptotically flat region. Each point on the dashed lines in region I and
I ′ correspond to a spacelike 2-surface of constant radius corresponding to the outer
turning point. Right Image: A plunge which asymptotes to rI as λ → ±∞, where γ(λ)

represents the geodesic in question. On the Penrose diagram, these trajectories begin at
past spacial infinity i− and end at future spacial infinity i+ in a different asymptotically
flat region. Each point on the dashed lines in region I and I ′ correspond to a spacelike
2-surface of constant radius corresponding to the ISSO radius rI

In the generic case, we know at least two of the four roots of R(r) are real. The
other two roots are either both real or both complex. If the other two roots are real,
they come in a pair that lies either entirely outside the outer turning point, entirely
between the inner turning point and r = 0, or entirely in the r < 0 region. In the first of
these cases, the plunging orbit exists inside of a normal bound orbit, a case sometimes
referred to as a “deeply bound” orbit. The solutions for cases with 4 real roots turn out
to be a straightforward generalisation from the solutions of [38, 39]. The derivation of
the solution for the complex case will turn out to be substantially more involved.

4. The Innermost Precessing Stable Circular Orbit in Kerr

Before determining the solutions to fully generic plunges in Kerr we begin by solving for
plunges which asymptote to the ISSO. In this case the radial potential R(r) is imbued
with a triple root at the ISSO radius r = rI . Two of these roots come from the fact
that the ISSO must be a (precessing) circular orbit and the additional root arises from
the fact we are looking specifically at the innermost of these orbits meaning R(r) must
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also inflect at this point. As a result, we determine a radial equation of the form(
dr

dλ

)2

= (1− E2)(rI − r)3(r − r4). (36)

By equating Eq. (31) with Eq. (36) one immediately obtains the result,

r4 =
a2K

(1− E2)r3I
. (37)

The roots of the polar equation can be found to be given by [68],

z1 =

√√√√√1

2

1 +
L2 +K

a2(1− E2)
−

√(
1 +

L2 +K
a2(1− E2)

)2

− 4K
a2(1− E2)

, and (38a)

z2 =

√√√√√a2(1− E2)

2

1 +
L2 +K

a2(1− E2)
+

√(
1 +

L2 +K
a2(1− E2)

)2

− 4K
a2(1− E2)

. (38b)

Finally, we define
kz = a

√
(1− E2)

z1
z2
, (39)

as a quantity which will recurrently show up throughout this work.¶
Naturally, geodesics asymptoting to the ISSO must also share the same constants of

motion as the ISSO. We can therefore identify a plunging geodesic of this type with those
of a particular ISSO, which has two degrees of freedom. These two degrees of freedom
can be set by picking a black hole spin (a) and maximum orbital angle of inclination
θmax ∈ (−π

2
, π
2
). This then determines a unique rI . One can also invert this relation

to set the parameterisation in terms of (a, rI). Making this choice one finds for each
value of a there exists a range of allowed rI ’s each of which corresponds to a unique
inclination either in prograde or retrograde. The innermost and outermost of these
quantities correspond to the equatorial ISCOs in prograde and retrograde respectively.
Defining A = (27− 45a2 + 17a4 + a6 + 8a3(1− a2))

1
3 and B =

√
3 + a2 + 9−10a2+a4

A
+ A

the range of possible rI values for a given a are,

RI,min/max = 3+B ∓ 1

2

√(
72 + 8(a2 − 6)− 4(9− 10a2 + a4)

A
− 4A+

64a2

B

)
. (40)

Forms of these bounds have been known in the literature for some time [69]. If one wishes
to parameterise by inclination, one can use the KerrGeodesics package in the Black
hole perturbation theory toolkit [3] to find E ,L and K parameterised by (a, θinc), where
θinc runs from 0 for equatorial prograde orbits to π for equatorial retrograde orbits [70].

¶ Note that the definition of kz (and later kr) differs from the conventions used in [39].
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In parameterising the conserved quantities by (a, rI) we begin with the expression for
the marginally stable spherical orbits K written in terms of rI [71] which gives,

K = r
5
2
I

(
√

(rI − r+)(rI − r−)− 2
√
rI)

2 − 4a2

4a2(
√

(rI − r+)(rI − r−) +
√
rI − r

3
2
I )

. (41)

Equating the remaining coefficients between Eq. (31) and Eq. (36) we obtain the
equations,

E =

√
a2K−2r3I + 3r4I√

3r2I
, and (42)

L = ±
√

3a2K−a2r2I −2
I +3r4I + a2r2IE2 − 3r4IE2

rI
. (43)

Where the ± is determined by whether or not the rI picked corresponds to a prograde
or retrograde orbit respectively. The correct sign is determined by the condition,

Sign =

{
+, if rI ≤ Lroot

−, if rI > Lroot

, (44)

where, defining κ =
√
a2 − 2r + r2, the value of Lroot is given as the root of the function

α(r) = a6 − 3a2r
5
2 (3r

3
2+κ(6− 2r)) + r

9
2 (r

1
2 (20− 11r) + κ(5 + 3r))

+ a4(r(3r − 4) + κr
1
2 (1 + 3r)),

(45)

which is real and closest to r = 6. Eq. (45) has been given in a form such that the
root can be found numerically to high precision which is not the case for Eq. (43). It is
worth noting that as E ,L, and K have all been determined in terms of rI , and z1 is the
root that defines the maximum range of oscillation allowed for a given rI , our solution
immediately defines a spacelike surface (r, z, ϕ) = (rI , z1(rI), u) for rI ∈ (rImin,Lroot)

and u ∈ (0, 2π) inside which no stable spherical orbits can exist. Taking our exact
solution for this spacelike surface to the extremal limit also provides us with the ISSO
surfaces found in the near-horizon extremal Kerr geometry previously found in both [72]
and [73].

We are now ready to begin analysing the physical consequences of extending the
results of [42], regarding equatorial ISCO flow to inclined orbits. The exact solution
to this equation includes functional dependence on certain Jacobi elliptic functions. In
order to simplify the results we provide two approximate forms of the inflow. The first,
approximated to a modified form of the equatorial inflow equation which removes all
dependence on Jacobi elliptic functions. The second, a polar averaged form which
simplifies the functional dependence on the Jacobi elliptic functions to a constant
dependence for any given set of parameter values. We find the modified equatorial
flow to be given by,

dr

dt

∣∣∣∣
Equatorial

=
−
√

(1− E2)(rI − r)3(r − a2 K
(1−E2)r3I

)

aL+ (r2+a2)
∆

(E(r2 + a2)− aL)− a2E
. (46)
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Figure 2. Plot of differing radial inflow equations from the ISSO to horizon, for
parameter values (a, rI) =(0.9,4) for plot range (r+, rI) on the radial axis. The lightly
oscillating purple line corresponds to the exact solution exhibiting small oscillations
over each polar period. The blue and orange dashed lines correspond to the equatorial
and polar averaged approximations respectively. The Radial flow measured on the y-
axis is given by the dimensionless quantity dr/dt for each of the three flow equations.

In the equatorial limit (K = 0), this reproduces the result of [42], but gives an improved
representation of the radial inflow for inclined disks where Q, E ,and L are given by
their true values Eqs. (41),(42) and (43) respectively. Next, we go on to determine the
form of the radial inflow when averaged over the polar period, this is found to be

dr

d⟨t⟩z

∣∣∣∣
PolarAvg

=
−
√

(1− E2)(rI − r)3(r − a2 K
(1−E2)r3I

)

aL+ (r2+a2)
∆

(E(r2 + a2)− aL)− a2E +
z22E
1−E2

(
1− E(k2z)

K(k2z)

) . (47)

Where K(·) and E(·) are the complete elliptic functions of the first and second kind
respectively. We have defined the polar average as follows, given some function f(λ)

that (partially) depends on λ through z such that f(λ) = F (r(λ), z(λ), λ), we take

⟨f⟩z(λ) =
1

Λz

∫ Λz/2

−Λz/2

F (r(λ), z(λ+ δ), λ)dδ, (48)

where
Λz =

4K(k2
z)

z2
, (49)

is the polar period. For example when we have an equation of the form t(r, z, λ) =

tr(r) + tz(z) + aLλ then ⟨t⟩z(λ) = tr(r(λ)) + ⟨tz⟩z(λ) + aLλ. Here the purpose of
taking this average is to integrate out the oscillatory dependence and isolate the secular
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Figure 3. Left Image: Plot of the maximum relative error between the equatorial and
true flow over the range (r+, rI). Right Image: Plot of the maximum relative error
between the polar averaged and true flow over the range (r+, rI). Both plots give the
error over the entire parameter space (a, xinc).

dependence in λ of terms originally containing polar dependence. Finally, we give the
exact equation for the radial inflow as,

dr

dt
=

−
√

(1− E2)(rI − r)3(r − a2 K
(1−E2)r3I

)

aL+ (r2+a2)
∆

(E(r2 + a2)− aL)− a2E(1− z21sn
2
(

2z2
√
r−r4√

(1−E2)(rI−r)(rI−r4)2

∣∣k2
z

)
)
. (50)

Where sn(·|·) is the Jacobi sine function.
In Fig. 2, which depicts the radial flow from the differing equations, we see an

improvement of accuracy in the polar averaged approximation over the equatorial
approximation. We also provide a brief error analysis comparing our approximated
solutions to the true solution Eq. (50) over the entire parameter space. Here we
parameterise our space using (xinc, a) where xinc = cos θinc such that (xinc, a) ∈
({−1, 1}, {0, 1}). From Fig. 3 we see that over the parameter space, the equatorial
approximation confines the error to be below 5% whilst the polar averaged form provides
a bound of 2% maximum relative error. In reality, this is a generous upper bound and
for the majority of parameter space the error of the approximated particle inflow will
be notably smaller, as can be seen in Fig. 3.

At this stage we are now ready to solve the equations of motion. In the generic case
we expect the solutions to arise in terms of elliptic functions. In the ISSO case however,
we find that the triple root significantly simplifies the terms with radial dependence to
the form of elementary functions. For convenience the solutions for the entirety of the
ISSO case are given with initial conditions (t(λ), r(λ), z(λ), ϕ(λ))|λ=0 = (0, r4, 0, 0). The
full solution can be easily reconstructed using Eq. (51). Solving Eq. (36) and inverting
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the solution gives

λ(r) =
2
√
r − r4√

(1− E2)(rI − r)(rI − r4)2
, and (51)

r(λ) =
rI(rI − r4)

2(1− E2)λ2 + 4r4
(rI − r4)2(1− E2)λ2 + 4

, (52)

respectively. The polar solution is unchanged from the generic bound case [39] and given
by

z(λ) = z1 sin ξz(λ). (53)

Here we have defined,
ξz(λ) = am(z2λ|k2

z), (54)

where am(·|·) is the Jacobi amplitude function. Conveniently for the remaining equations
of motion, the polar and radial dependence in the time and azimuthal equation fully
decouple from each other in Mino time. This means we are only required to resolve the
radial component as the polar part will simply remain the same as has already been
found for bound orbits in [38, 39]. The polar dependence still remains in the form of
elliptic integrals where F(·), E(·) and Π(·) are the elliptic integral of the first, second
and third kind respectively. Going on to solve the azimuthal component we first rewrite
Eq. (34) as

dϕ =
−a

∆

E(r2 + a2)− aL√
(1− E2)(rI − r)3(r − r4)

dr

+
L

1− z2
1√

(z2 − z21)(a
2(1− E2)z2 − z22)

dz − aEdλ.
(55)

We then integrate each of the terms individually. The component comprising of r
dependence is found to be given by,

ϕr(λ) = a
(E(r2I + a2)− aL)λ
(rI − r−)(rI − r+)

+
a√

(1− E2)

(
(E(r2− + a2)− aL)

2
√
r− − r4(rI − r−)

3
2 (r+ − r−)

×

log

((
2
√
r− − r4 + λ(rI − r4)

√
(1− E2)(rI − r−)

)2(
2
√
r− − r4 − λ(rI − r4)

√
(1− E2)(rI − r−)

)2
)

+ (r− ⇐⇒ r+)

)
,

(56)

where the arrow notation denotes taking the other term within the shared brackets and
swapping all occurrences of r− with r+. The component with z dependence is then given
by,

ϕz(λ) =
L
z2

Π(z21 ; ξz(λ)|k2
z). (57)

The polar average form of this solution can also be found and dramatically simplifies
the functional dependence,

⟨ϕz⟩z(λ) =
L

K(k2
z)

Π(z21 ; k
2
z)λ, (58)
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where Π(·, ·) is the complete elliptic integral of the third kind. Thus, we find the full
azimuthal solution to be given by

ϕ(λ) = ϕr(λ) + ϕz(λ)− aEλ. (59)

We perform a similar separation in the integration of the equation of motion for
coordinate time giving,

tr(λ) =
(a2 + r2I )(E(r2I + a2)− aL)λ

(rI − r−)(rI − r+)
+

2(rI − r4)
2Eλ

4 + (1− E2)(rI − r4)2λ2

− (r4 + 3rI + 2(r+ + r−))√
(1− E2)

E arctan

(
λ(rI − r4)

√
(1− E2)

2

)

+

(
(a2 + r2−)(E(r2− + a2)− aL)

2
√
r− − r4(rI − r−)

3
2 (r+ − r−)

√
(1− E2)

×

log

((
2
√
r− − r4 + λ(rI − r4)

√
(1− E2)(rI − r−)

)2(
2
√
r− − r4 − λ(rI − r4)

√
(1− E2)(rI − r−)

)2)+ (r− ⇐⇒ r+)

)
.

(60)

Next we find the polar dependent part of the time solution to be given by,

tz(λ) =
E

1− E2

(
(z22 − a2(1− E2))λ− z2 E(ξz(λ)|k2

z)
)
, (61)

and the polar averaged form of this solution is given by,

⟨tz⟩z(λ) =
z22E

1− E2

(
1− a2(1− E2)

z22
− E(k2

z)

K(k2
z)

)
λ. (62)

This is the expression that was necessary to derive the polar averaged radial flow in
Eq. (47). Putting this all together we then find the time solution to be given by

t(λ) = tr(λ) + tz(λ) + aLλ. (63)

We find that all of the novel radial integrals which are required to be solved can be done
so without too much issue through the use of partial fractions. They can then be fully
analytically continued by applying some simple trigonometric substitutions.

Additionally one can follow this approach to find the solution for proper time as a
function of Mino time along a plunging ISSO geodesic,

τr(λ) =

(
r2I +

2(rI − r4)
2

4 + (1− E2)(rI − r4)2λ2

)
λ

+
(r24 + 2r4rI − 3r2I ) arctan(

λ(rI−r4)
√

(1−E2)

2
)√

(1− E2)(rI − r4)
,

(64)

τz(λ) =
z2

(1− E2)

(
F (ξz |k2

z)− E(ξz |k2
z)
)
, with (65)

τ(λ) = τr(λ) + τz(λ). (66)
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Figure 4. Orbital plots of plunging geodesics which asymptote to the ISSO in the
infinite past with (a, rI) = (0.9, 2.6) and θ = arccos(z). Here the cyan and orange
planes are the azimuthally co-precessing and poloidally co-rotating planes respectively.
Examples of the projection on these planes are shown in Fig. 5.

From Fig. 4 it can now be seen explicitly that enforcing the triple root places us
in a regime where these geodesics asymptote from the ISSO and subsequently plunge
in through the horizon. This showcases a number of properties of the plunge in Boyer-
Lindquist co-ordinates. The structure of these geodesics is more easily depicted when
orthogonally projected onto azimuthally co-precessing and poloidally co-rotating planes
fixed to a particle as it follows the geodesic. In Fig. 5 we see that the azimuthal
coordinate diverges at both the inner and outer horizons. Analysis of the coordinate
time solution shows it also diverges at these points, this occurs for a similar reason as to
the coordinate time divergence at the horizon in Schwarzschild coordinates for a non-
spinning black hole, i.e. due to the infinite redshift. In much the same way as we have
an infinite redshift on the horizon one can intuitively think of this azimuthal divergence
occurring as a consequence of the infinite redshift on the horizon forcing the geodesics
to also co-rotate with the black hole an infinite number of times before passing through
the horizon. Naturally this is only a co-ordinate singularity and the process occurs in
finite Mino and proper time. Due to this discontinuity care must be taken in the choice
of branch between r+ and r−. The solutions depicted in 4 and 5 seem to invert between
the horizons but it can be checked that our solutions conserve E ,L and K throughout
their parameterisation, confirming we have chosen the correct branch. In the equatorial
(K = 0) limit, these solutions are found to agree with the results of [42].

In the interest of completeness, we also derived the solutions for plunging geodesics
asymptoting from a generic USO. In the phase space of geodesics, the USOs denote
the separatrix between eccentric inclined bound orbits and generic plunges. As such,
they play a key role when considering the transition of generic inspirals to plunge. As
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Figure 5. Co-rotating orbital plots of plunging geodesics which asymptote to the ISSO
in the infinite past with (a, rI) = (0.9, 2.6) . Left Image: orthogonal projection of ISSO
plunge onto the co-precessing azimuthal plane. Right Image: orthogonal projection
of ISSO plunge onto co-rotating polar plane. The cyan and orange frames represent
the projection onto the planes seen in 4 as they track a particle following the geodesic
trajectory.

mentioned previously the components of the solutions depending on the polar angle
are left unchanged by restricting to this special case so we are only required to solve
for r(λ), ϕr(λ) and tr(λ) . In particular, plunges from an USO occur when the radial
potential obtains a double root as opposed to a triple root (which arises in the ISSO
case). Explicitly the USO plunge occurs when the radial potential admits a form,

R(r) = (1− E2)(r − r2)(r1 − r)(rs − r)2 , (67)

with r2 < r− < r+ < rs < r1. Where rs is the radius of the USO. Specifically,
the solutions we present provide bound motion for r ∈ (r2, rs). The Penrose diagram
depicting this class of motion is the same as in Fig. 1 for the ISSO plunges. As we have
imbued the radial potential with a double root we have reduced one degree of freedom
in our systems parameterisation. A natural choice of parameterisation for USO plunges
is then given by {a, rs,K}. Teo [71] has determined expressions for E and L as functions
of {a, rs,K} for the case of USOs which are given as,

E =
r3s(rs − 2)− a(aK−

√
A)

r2s

√
r3s(rs − 3)− 2a(aK−

√
A)

, (68)

L = − 2Mr3s + (r2s + a2)(aK−
√
A)

r2s

√
r3s(rs − 3)− 2a(aK−

√
A)

, (69)

where

(70)

A = r5s −K(rs − 3)r3s + a2K2 .
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As USO plunges asymptote from the USO they must share the same constants of motion.
Similarly to the case of the ISSO the reduced complexity in the root structure of the
radial potential allows one to find solutions to the radial integrals fully in terms of
elementary functions of Mino time. Following the procedure shown explicitly in section
4 and defining,

ξr(λ) =
1

2
λ
√
1− E2

√
r1 − rs

√
rs − r2 , (71)

the solution for the radial coordinate is found to be given by,

r(λ) =
r2 (r1 − rs) + r1 (rs − r2) tanh

2 (ξr)

r1 − rs + (rs − r2) tanh
2 (ξr)

. (72)

Writing the azimuthal equation in the form ϕ(λ) = ϕr(λ) + ϕz(λ) − aEλ and the time
equation in the form t(λ) = tr(λ) + tz(λ) + aLλ we find that for the case of timelike
geodesics asymptoting from an USO,

ϕr(λ) =
2a√
1− E2

(
λ
√
1− E2 (a2E − aL+ Er2s)
2 (rs − r−) (rs − r+)

(73)

+

(
a2E − aL+ r2−E

)
log

((√
(r−−r2)(r1−rs)+

√
(r1−r−)(rs−r2) tanh(ξr)

)
2(√

(r−−r2)(r1−rs)−
√

(r1−r−)(rs−r2) tanh(ξr)
)
2

)
4 (r− − r+)

√
r1 − r−

√
r− − r2 (r− − rs)

+

(
a2E − aL+ r2+E

)
log

((√
(r−−r2)(r1−rs)+

√
(r1−r+)(rs−r2) tanh(ξr)

)2(√
(r+−r2)(r1−rs)−

√
(r1−r+)(rs−r2) tanh(ξr)

)
2

)
4 (r+ − r−)

√
r1 − r+

√
r+ − r2 (r+ − rs)

)
,

and,

tr(λ) =
1√

1− E2

(
λ
√
1− E2 (a2 + r2s) (a

2E − aL+ Er2s)
(rs − r−) (rs − r+)

(74)

+

(
a2 + r2−

) (
a2E − aL+ r2−E

)
log

(
(
√
r−−r2

√
r1−rs+

√
r1−r−

√
rs−r2 tanh(ξr))2

(
√
r−−r2

√
r1−rs−

√
r1−r−

√
rs−r2 tanh(ξr))2

)
2 (r− − r+)

√
r1 − r−

√
r− − r2 (r− − rs)

+

(
a2 + r2+

) (
a2E − aL+ r2+E

)
log

(
(
√
r+−r2

√
r1−rs+

√
r1−r+

√
rs−r2 tanh(ξr))2

(
√
r+−r2

√
r1−rs−

√
r1−r+

√
rs−r2 tanh(ξr))2

)
2 (r+ − r−)

√
r1 − r+

√
r+ − r2 (r+ − rs)

+
(r1 − r2) E

√
(r1 − rs) (rs − r2) tanh (ξr)

−
(
(r2 − rs) tanh

2 (ξr)
)
− rs + r1

− E (2 (rs + r− + r+) + r1 + r2) tan
−1

(√
rs − r2 tanh (ξr)√

r1 − rs

))
.

Where ϕz and tz are left unchanged from Eqs. 57 and 61. In the equatorial limit (K = 0)
these solutions agree with the equatorial plunging orbits described in section V.C of [74],
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where the radius of the unstable circular orbit is chosen between the innermost bound
circular orbit (IBCO) and the ISCO.

5. Fully Generic Plunging Orbits in Kerr

We now move on to the case of generic timelike plunging geodesics in Kerr with no
restriction on the root structure of the effective radial potential. In this regime the
integrals we need to compute are notably more involved, separating into two primary
classes. The first being when the radial potential admits four real roots and the second
being when the radial potential admits two real and two complex roots. In the case with
R(r) having four real roots (r4 < r3 < r2 < r1) with r4 < r− < r+ < r3 < r2 < r1 the
solution can be directly borrowed from the bound orbit case [38, 39] with the substitution
r1 ⇐⇒ r3 and r2 ⇐⇒ r4. In addition, in the case of 4 real roots (r4 < r3 < r2 < r1) with
r4 < r3 < r2 < r− < r+ < r1 then the solutions can again be found from [38, 39], this
time with no modification. Naively, in the case of two real and two complex roots (the
interesting case for self-force plunges) one may think it to be sufficient to simply take the
previously found bound solutions and analytically continue them to allow for complex
values of the radial roots. With care this can be done to give correct answers, however
intermediate terms in the evaluations give rise to large cancellations between complex
numbers affecting numerical accuracy and evaluation speed. To find these solutions in
a manifestly real, easy-to-evaluate, and practical manner, we are required to begin the
procedure of solving the complicated elliptic integrals from scratch.

In calculating the integrals for this case we follow the procedure outlined in [75] and
give an overview of the steps involved. We begin by again noting that only the radial
components of each of the equations need to be solved as the other remaining terms are
identical to those already found in the ISSO case above. Recall we now have the general
expression R(r) = (E(r2 + a2) − aL)2 −∆(r2 + (aE − L)2 + K) where E , L and K are
all independent quantities. At this stage the integrals of concern are given by

λ = −
∫

dr′√
R(r′)

,

tr(r) = −
∫

(r′2 + a2)(E(r′2 + a2)− aL)dr′

∆
√

R(r′)
, and

ϕr(r) = −
∫

a(E(r′2 + a2)− aL)dr′

∆
√
R(r′)

.

(75)

Although these integrals look to be of the same form as those we just solved for in the
ISSO case without much mention, the cause for the substantial increase in complexity
is due to the fact that R(r), in general, no longer contains any double or triple roots.
This forces us to much more carefully consider the elliptic integrals at hand. The key
idea in the procedure we wish to apply is to reduce the integrals of Eq. 75 such that we
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must only solve integrals of the form,

λ = −
∫

dr√
R(r)

, Ir =

∫
rdr√
R(r)

,

Ir2 =

∫
r2dr√
R(r)

, and Ir± =

∫
dr

(r − r±)
√

R(r)
.

(76)

We solve these integrals in terms of the radial co-ordinate r, which can then be
parameterised in terms of Mino time by inverting the solution for λ(r). We begin
solving these integrals by first continually applying partial fractions to the radial parts
of the ϕ and t equations until arriving at the forms,

ϕr = a

(
(E(r2− + a2)− aL)

(r− − r+)
Ir− + (r− ⇐⇒ r+)

)
+ aEλ, and (77)

tr = E(r2+ + r2− + r+r− + 2a2)λ+ E (Ir2 + Ir(r− + r+))

+

(
(r2− + a2)(E(r2− + a2)− aL)

r− − r+
Ir− + (r− ⇐⇒ r+)

)
− aLλ.

(78)

At this point we can now concentrate on calculating the four elliptic integrals defined
in Eq.(76). We do this my applying a transformation given for the case of two
complex roots in [75]. This procedure begins by letting R(r) have two real roots
r2 < r1 and two complex roots r3 and r4. We then rewrite R(r) in the form
R(r) = (1− E2)(r1 − r)(r − r2)(r

2 − 2ρrr + ρ2r − ρ2i ) where ρr = ℜ(r3) and ρi = ℑ(r4).
Further we define

A =
√

(r1 − ρr)2 + ρ2i , B =
√

(r2 − ρr)2 + ρ2i ,

f =
4AB

(A−B)2
, kr =

√
(r1 − r2)2 − (A−B)2

4AB
, and

p2 = r2A
2 + r1B

2 − (r1 + r2)AB.

(79)

Next, motivated by the tables provided in [75], we make the substitution in the integrals
Eq. (76) of the form,

r(y) =
p2y

2 + 2(r1 + r2)AB + 2(r1 − r2)AB
√

1− y2

(A−B)2y2 + 4AB
. (80)

Applying this transformation to Eq. (76) and again repeatedly applying partial fractions
we find each integral reduces to a sum over elliptic integrands and rational polynomials.
The solutions we then obtain are only analytic on the range r ∈ (r2,

r1A+r2B
A+B

) where for
convenience we have set the initial conditions to be given by (t(λ), r(λ), z(λ), ϕ(λ))|λ=0 =

(0, r2, 0, 0, ). Next we analytically extend these solutions through the point r = r1A+r2B
A+B

by use of trigonometric and elliptic substitutions providing a fully analytic solution on
the range r ∈ (r2, r1). The fully analytical solution to these integrals is then given by∫

dr√
R(r)

=
1√

(1− E2)AB
F

(
π

2
− arcsin

(
B(r1 − r)− A(r − r2)

B(r1 − r) + A(r − r2)

) ∣∣∣∣k2
r

)
, (81)
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Ir(λ) =
Ar2 −Br1
A−B

λ− 1√
(1− E2)

arctan

(r1 − r2)

2
√
AB

sin(ξr)√
1− k2

r sin(ξr)
2


+

(A+B)(r1 − r2)

2(A−B)
√

(1− E2)AB
Π

(
− 1

f
; ξr |k2

r

)
,

(82)

Ir2(λ) =
(Ar22 −Br21)

(A−B)
λ+

√
AB

(1− E2)
E
(
ξr |k2

r

)
− (A+B)(A2 + 2r22 −B2 − 2r21)

4(A−B)
√

(1− E2)AB
Π(− 1

f
; ξr |k2

r)

−
√
AB(A+B − (A−B) cos(ξr))

(A−B)
√

(1− E2)

sin(ξr)
√

1− k2
r sin(ξr)

2

(f + sin(ξr)
2)

+
A2 + 2r22 −B2 − 2r21

4(r1 − r2)
√
(1− E2)

×

arctan

(
f − (1 + 2fk2

r) sin
2(ξr), 2 sin(ξr)

√
1− k2

r sin
2(ξr)

√
f(1 + fk2

r)

)
,

(83)

and,

Ir±(λ) =
(A−B)λ

A(r2 − r±)−B(r1 − r±)

+
(r1 − r2)(A(r2 − r±) +B(r1 − r±))Π

(
1

D2
±
; ξr |k2

r

)
2
√

(1− E2)AB(r± − r2)(r1 − r±)(A(r2 − r±)−B(r1 − r±))

−
√
r1 − r2

4
√

(1− E2)(r1 − r±)(r± − r2)
×

log

((
D±

√
1−D2

±k2r+
√

1−k2r sin(ξr)
2 sin(ξr)

)2
+
(
kr(D2

±−sin(ξr)
2)
)2(

D±
√

1−D2
±k2r−

√
1−k2r sin(ξr)

2 sin(ξr)
)2

+
(
kr(D2

±−sin(ξr)
2)
)2)√

(A2(r± − r2)− (r1 − r±)(r22 −B2 + r1r± − r2(r1 + r±))
.

(84)

Where we have defined,

D± =

√
4AB(r1 − r±)(r± − r2)

A(r± − r2) +B(r± − r1)
, and (85)

ξr(λ) = am(
√

(1− E2)ABλ|k2
r). (86)

In the above we have suppressed the explicit dependence of ξr on λ in the interest of
readability. The arctan function seen in Eq. (83) is the two argument arctan function
which tracks the sectors of the numerator and denominator.

The solution for Eqs. (81)-(84) for the elliptic integrals can then be readily
substituted back into Eq. (77) and Eq. (78) giving the full form of the solutions to
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Figure 6. Orbital plot of a generic plunging geodesic with parameter values
(a, E ,L,K) = (0.9, 0.94, 0.1, 12) and θ = arccos(z). The larger black sphere gives
the horizon of the black hole where as the smaller sphere simply gives a point along
the geodesics. Here the cyan and orange planes are the azimuthally co-precessing and
poloidally co-rotating planes respectively.

generic plunges. We present all solutions parameterised in terms on Mino time (λ),
which is done by inverting the solution to Eq. (81) to obtain r(λ) then substituting the
solution for r(λ) everywhere r appears in Eqs. (82)-(84) . These solutions are provided
in a fully analytic form. The radial equation is first found by inverting the solution for
Eq. (81) to give,

r(λ) =
(A−B)(Ar2 −Br1) sin(ξr)

2+2AB(r2 + r1)− 2AB(r1 − r2) cos(ξr)

4AB + (A−B)2 sin(ξr)
2 . (87)

The solutions to the polar equation remain the same as for the ISSO case. Taking
Eq. (77), the solution to the azimuthal equations of motion can then immediately be
found from the solutions of Eq. (76)

ϕ(λ) = ϕr(λ) + ϕz(λ)− aEλ. (88)

Similarly, from Eq. (78) we can now obtain

t(λ) = tr(λ) + tz(λ) + aLλ, (89)

where both ϕz and tz can be taken from the ISSO case. The solution for proper time as
a function of Mino time can also be found as,

τ(λ) =τr(λ) + τz(λ), with (90)

τr(λ) =Ir2(λ), and (91)

τz(λ) =
z2

(1− E2)

(
F (ξz |k2

z)− E(ξz |k2
z)
)
. (92)
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Figure 7. Co-rotating orbital plots of a generic plunging geodesic with parameter
values (a, E ,L,K) = (0.9, 0.94, 0.1, 12). Left Image: orthogonal projection of generic
plunge onto the co-precessing azimuthal plane. Right Image: orthogonal projection of
generic plunge onto co-rotating polar plane. The cyan and orange frames represent
the projection onto the planes seen in 6 as they track a particle following the geodesic
trajectory.

Having obtained the full set of solutions for generic plunges we plot the spatial
component depicting the orbital evolution of the generic plunging geodesics Fig. 6.
More informatively, the orthogonal projection onto the azimuthally co-precessing and
poloidally co-rotating planes in Fig. 7 again show the divergences at either horizon in
the ϕ coordinate. Importantly, once we have constructed these solution, we check that E
and L are indeed still conserved by evaluating −uνgµν

(
∂
∂t

)ν and uνgµν

(
∂
∂ϕ

)ν
explicitly.

We confirm this is the case for all values of λ, not only acting as a consistency check
of our equations, but also showing we have selected the correct branches of the solution
between each of the horizon divergences. As a final consistency check, we substitute our
solutions back into the equations of motion for both the ISSO and generic case and find
that our solutions do in fact solve the original equations. Finally, from our solutions
the radial and polar frequencies with respect to Mino time for a generic plunge can be
found to be,

Υr =

√
AB(1− E2)

2K(k2
r)

, and (93)

Υz =
π K(k2

z)

2z2
. (94)

6. The Particle Motion and Cosmic Censorship in Dyonic KN

The fundamentally novel motion which can occur in dyonic KN spacetimes as opposed
to the neutral Kerr configuration is one that has seen little exploration in the past. Here
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we attempt to shed light on the dynamics of these systems. Doing so we now reinstate
the parameters {e, g, P,Q} as being nonzero quantities. Using similar methods to those
outlined in section 5 we solve the dyonic equations of motion in KN analytically for
generic plunging and bound geodesics in terms of Jacobi Elliptic functions. In carrying
out this work we also developed a Mathematica package implementing these solutions
which is now publically available on Github. The code is built using the same structure
as the KerrGeodesics package of the Black Hole Perturbation Toolkit [3].

The purpose of this section however is not to outline how the equations of motion
were solved, as the process follows very closely to that of section 5. Instead, the
focus here will be to outline some of the key differences between dyonic motion in
KN and particle motion in Kerr. Firstly we note in the dyonic case both the energy
and angular momentum defined in 22 and 23 receive non-trivial contributions from
the electromagnetic momentum maps. Notably, if Ω ̸= 0 the angular momentum of
the system is nonzero, even if the particle exhibits purely radial motion along the axis
(θ = 0, π). Another difference also presents itself in the interpretation of K. In the case
of neutral particles, one finds that bound (E2 < 1) geodesics with K = 0 are necessarily
confined to the equator (z = 0). This is clearly no longer the case if Ω ̸= 0, even if
the black hole is non-rotating a = 0. Thus, unless the configuration is purely electric
or neutral, K can no more be interpreted as a measure of off-equatorial motion. We
also find that in KN if charged or neutral particles wish to hit the curvature singularity
(the ring r2 + a2z2 = 0) they must have K = 0 and L = aE , as follows immediately by
requiring that R(0) ≥ 0 and Z(0) ≥ 0, the second of these constraints does not arise in
Kerr.

In the analysis of the gravitational and electromagnetic fields one finds that the key
factor which leads to qualitatively new dynamics is the existence of a dipolar electric
field which is induced by the spinning magnetic charge. This leads to an equatorial
asymmetry in the sign of the field strength tensor,

Fµν (r, π − θ) = −Fµν (r, θ) . (95)

An immediate consequence of this asymmetry is that, unlike in rotating magnetised

Figure 8. This figure shows the evolution of two pairs of electric particles on a
magnetic KN black hole. Each pair has two particles with identical initial conditions
at the equator, but opposite charge signs. As discussed in the text, the motion of
positive and negative charges are the mirror image of each other with respect to the
equator.

https://github.com/ConorDyson/DyonicKNGeodesics
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electric black holes, rotating magnetic ones will not tend to grow a net Wald charge
when immersed on an ionised homogeneous medium. This fact can be understood as
a consequence that every point on the horizon which accretes some charge q will have
a corresponding point under reflection in the equatorial plane which accretes precisely
the opposite amount of charge −q which can be seen in Fig. 8 . This conclusion also
follows by inspection of the black hole’s electric potential, ϕ, which is given by,

ϕ = −Pk|H+ , (96)

where k is the Killing vector that generates H+, and Pk is the associated electric
momentum map given by Eq. (17). If the black hole has no electric charge, as in our
case, then ϕ vanishes indicating that accretion of a net electric charge is not energetically
favored, thus a hole imbued with magnetic charge will remain globally neutral with
respect to electric charges even when immersed in an ionised homogeneous medium.

Restricting our attention solely along the axis one can also glean some profoundly
novel consequences of the dyonic KN structure. Namely, for an electrically charged
particle, confined to exhibit radial motion along the axis of a magnetically charged KN
black hole the angular momentum of the particle, given by Eq. 23, is found to be,

L =

{
−Pe/m ( θ = 0)

+Pe/m ( θ = π)
. (97)

This result, which at first may seem to be quite striking, has however a basis in the
physics of the early 20th century. In fact, if one considers the non-gravitating case of
a static electric and magnetic charge held at a fixed radius from one another, one also
arrives at a system with non-vanishing angular momentum. These systems were first
studied by Thompson in 1904 (henceforth referred to as Thompson dipoles) [76] who
pointed out that, in spite of being axially symmetric and static, the electromagnetic
field in these setups possesses a non-vanishing angular momentum which is independent
of the distance between charges. It is given by

J⃗ =
1

4π

∫
R3

r⃗ ∧
(
E⃗ ∧ B⃗

)
dx3 = −eg r̂ , (98)

where r̂ is the unit vector pointing from the magnetic charge into the electric one. This
surprising fact provides a way of obtaining Dirac’s quantisation condition by assuming
that |J⃗ | is quantised in half-integer units of h̄ [77, 78], so

2ge/h̄ = 0,±1,±2, ... ∈ Z . (99)

One way of generalising this picture to include gravitation consists in replacing the
magnetic point charge g by a magnetic black hole with charge P . This was first
considered in [79] and independently later in [80], where the authors considered the
process of dropping an electric charge radially into a non-rotating magnetic black hole
(see also [81]). Initially, when the charge and the hole are infinitely far apart the total
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angular momentum is precisely that of a Thomson dipole (98). As the particle falls
radially, the electromagnetic field exerts a torque on the hole, which starts spinning.
The initial angular momentum keeps being transferred into the hole until, eventually,
the particle crosses the horizon and what is left is a dyonic Kerr–Newman black hole
with angular momentum equal to that of the initial Thomson dipole. In other words,
one can spin up a non-rotating magnetic black hole by dropping radially an electric
particle into it. By returning the geodesic equation of motion 11 one can extend this
understanding to the case of spinning KN black holes. This is done by first determining
the lorentz force acting on particles along the axis in these spacetimes, which can be
found to be given by,

uµ∇µu
r =

e

m
F r

νu
ν = aL 2r∆(r)

(r2 + a2)3
ut. (100)

Outside the horizon ∆(r) > 0 and a future-directed timelike trajectory has ut > 0,
so the force (100) is repulsive or attractive depending on whether a and L have equal
or opposite sign, respectively. It can then be seen that it is this spin-spin repulsion
force that causes, a rotating magnetic black hole to tend to accrete charges whose
angular momentum differs in sign with that of the hole itself, thus reducing its angular
momentum.

In fact, it is also this spin-spin repulsion force that plays a key role in the protection
of cosmic censorship in dyonic KN, this can be seen by first considering the extremal
case of dyonic KN given by,

M2 = a2 + P 2 +Q2. (101)

At extremality, for cosmic censorship to be respected, naturally one requires that any
perturbations along the KN family of solutions must satisfy, δM ≥ δ(

√
a2 + P 2 +Q2),

which can be expanded as,

(M2 + a2)δM ≥ M(QδQ+ PδP ) + aδJ. (102)

Otherwise one would arrive at an over-extremised black hole with a naked singularity.
By considering the conserved quantity relating to the generator of H+, and recalling

that ka and the 4-velocity of any physical geodesics (ua) must be causal and future
directed, then we have the condition −muaka ≥ 0. If we take the conserved energy and
angular momentum defined by some geodesic trajectory to be δM and δJ respectively
and evaluate the right-hand side of the conserved quantity at H+. Then through the
causal condition, one immediately arrives at 102. Meaning at extremality no causal
future-directed geodesic trajectories crossing the horizon exist which can lead to a
violation of weak cosmic censorship.

In practice if we restrict to the case of an electrically charged particle in radial
motion along the axis of a spinning magnetic black hole. Then there is no centrifugal
or direct charge repulsion forces present, in this case it is precisely the electromagnetic
spin-spin repulsion force which is protecting cosmic censorship in this context.
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7. Penrose Process in dyonic KN

Since its conception [82], the Penrose process has played a prominent role in guiding our
intuition when studying dynamical systems involving black holes. In its original and
simplest version, it consists in extracting “rotational” energy from the hole by mining
the so-called ergoregion, a region in the vicinity of the hole where particles are allowed
to be in “negative energy states” relative to asymptotic observers.

At first sight, the Penrose process seems to provide a simple explanation of some
high-energy phenomena in which black holes are expected (or known) to be involved,
such as active galactic nuclei, relativistic jets and high- and ultra-high-energy cosmic
rays. However, it was soon realised [83, 84] that, in order to be a viable process for
extracting energy and angular momentum from the hole, the velocities of the decays (or
break ups) at the ergoregion need to be in the relativistic regime v > 1/2, and in any
case the efficiency of the process is bounded to <∼ 20%. This is true for the mechanical
Penrose process, which only involves a neutral rotating black hole. A much different
situation arises if the black hole is immersed on an homogeneous magnetic field [11],
yielding the so-called magnetised Penrose process, which was first envisaged in [55]. In
this case, the resulting electric field (due to the twisting of magnetic field lines induced
by the hole’s rotation) enhances the Penrose process if the particles resulting from a
decay are charged. Assuming that the magnetic field is created by reasonable matter
orbiting the hole, the break up velocities in the decay no longer need be relativistic for
the magnetised Penrose process to be viable, and efficiencies can be much larger than the
aforementioned 20% [54]. However, it is well known that a rotating black hole immersed
in an homogeneous magnetic field will accrete a net amount of electric charge, and this
turns out to suppress significantly energy extraction [85]. Besides this, the fact that the
magnetised Penrose process relies on having a black hole which is not in isolation makes
the system quite difficult to model. Alternatively, one could enhance energy extraction
while keeping the hole in isolation by allowing it to possess a net amount of electric
charge. Unfortunately, in that situation the hole would quickly discharge via Schwinger
pair creation [10].

Here we consider endowing the hole with magnetic charge. This is qualitatively
different from the cases discussed above, since energy extraction is greatly enhanced (as
shown below) while keeping the black hole in isolation, and no discharge mechanism is
expected to neutralise the hole since magnetic monopoles are less likely to pair create
than electric charges. Of course, as discussed in the introduction the price to pay is the
a priori exotic primordial origin of the magnetic charges. In the sake of completeness,
we shall derive the main equations for the most general charge configurations first, and
then restrict them to the case of a magnetic black hole and electrically charged particles.

The four-velocity of a particle at a given point can be parametrised using ur, uθ,L,
while the fourth degree of freedom is fixed using the timelike condition and requiring that
the particle’s trajectory is future-oriented, which in BL coordinates simply ammounts
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to imposing ut > 0.+ Then, the energy per unit mass is no more a free parameter but
a function given by

E(ur, uθ,L) =− 1

m
ΩIJPI

t q
J − gtϕ

gϕϕ

(
L − 1

m
ΩIJPI

ϕq
J

)

+

√√√√∆sin2 θ

gϕϕ

(
1 +

(
L − 1

m
ΩIJPI

ϕq
J
)2

gϕϕ
+ grr(ur)2 + gθθ(uθ)2

)
.

(103)

It is easy to see that outside the event horizon there are states with E < 0 (of
course, as in the usual Penrose process, this is not in contradiction with having positive
kinetic energy with respect to a local inertial observer). We want to find the regions
of spacetime where particles with a given angular momentum L can be in a negative
energy state, since it is in those regions where decays or break ups could lead to energy
and angular momentum extraction. From (103), it is clear that the minimal energy
states are those with ur = uθ = 0. So, with that choice, the zero-energy level sets given
by (103) enclose the regions where negative energy states are allowed.

Let us focus on the case of an electric particle with charge e and a purely magnetic
black hole of charge P , so Q = g = 0. We fix the overall scale by setting M = 1 and
introduce the extremality parameter

ϵ =
√
1− a2 − P 2 , (104)

so ϵ = 0 for extremal black holes and ϵ = 1 for neutral, non-rotating ones. We find
negative energy states for values of L with opposite sign to that of a, similarly to the
mechanical Penrose process. There are two regimes of L, defined by the value of the
angular momentum of the Thomson dipole (see Figure 9):

• 0 < |L| < |Pe/m| : in this regime the presence of the magnetic charge deforms the
region of negative energy states by enlarging it along the directions determined by
certain conjugate values of the axial angle, θ0 and π − θ0, with θ0 ∈ (0, π/2). θ0
goes from the equator θ0 = π/2 for |L| ≈ 0 (where there are no negative energy
states) and approaches the rotation axis θ0 = 0 as |L| → |Pe/m|.

• |L| = |Pe/m| : when the angular momentum is precisely that of the Thomson
dipole, we find that the region of negative energy states includes the rotation axis.
This leads to the quite remarkable possibility of extracting angular momentum (and
of course energy) from a hole in a process that is entirely axisymmetric (e.g. a decay
happening along the axis). This condition is also the requirement one finds for the
existence of motion on the axis.

• |L| > |Pe/m| : in this case we find a similar situation to that of the first regime,
where now θ0 → π/2 as |L| → ∞, and the region of negative energy states converges

+ This can be seen by defining the so-called zero angular momentum observer U = − dt√
−gtt

, which is

timelike and future-oriented everywhere outside the hole. The requirement that a timelike trajectory
uµ is also future-oriented is 0 > Uµu

µ = −ut/
√

−gtt.
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to the mechanical ergoregion. This is as expected, since for large L at fixed a, P
and e the mechanical effects dominate over the electromagnetic ones.

For all values of L, we notice that the region of negative energy states at the equator
θ = π/2 is unaffected by P , since the momentum maps vanish there (we recall that in
this discussion the electric black hole charge is set to Q = 0)

Pt(θ = π/2) = Pϕ(θ = π/2) = 0 . (105)

On the other hand, for |L| = |Pe/m| there exist negative energy states along the rotation
axis. Such states do not exist in the mechanical case, and furthermore carry angular
momentum. Expanding in powers of e/m (which may be motivated by the fact that
for an electron e/m ≈ 2× 1021) one finds that the negative energy states along the axis
extend up to

rmax ≈
√
|aPe/m| , (106)

which is largest when aP is maximised (as expected since the magnitude of the electric
field is roughly given by aP ).

For a fixed extremality parameter ϵ, this happens at a = P =
√
(1− ϵ2)/2, so for

small ϵ one has a = P ≈ 0.707. The magnification of the region of negative energy
states for that choice of parameters can be clearly seen in Figure 9.

We shall also comment on the case that the black hole is endowed not only with
magnetic but also electric charge (then the particle can be chosen to be purely electric
without loss of generality due to electric magnetic duality). The monopolar electric field
enhances the Penrose process and allows both energy and charge extraction even if the
black hole is nonrotating. If, in addition, the black hole rotates and possesses magnetic
charge the electric field picks a dipolar piece which, in the neighbourhood of one of
the components of the rotation axis (θ = 0 or θ = π) opposes to the monopolar one.
Interestingly, this balance of electric fields leads to the existence of “floating” regions
of negative energy states (see Figure 10). That is, after a decay one of the products
can reach a negative energy state which is an orbit confined to a neighbourhood of the
axis and that never crosses the horizon. Even though that particle never falls into the
hole, the other product of the decay can reach infinity and energy is extracted from
the system (in such a process there is also extraction of electric charge, but not of
angular momentum). Regions of negative energy states that are disconnected from the
horizon were also found recently in [85] in the case of rotating magnetised black holes
(i.e. rotating black holes immersed in an external magnetic field). Those are toroidal
regions centered around the hole and symmetric with respect to the equator, while the
ones found here associated to magnetic black holes are simply connected bubble-shaped
regions and centered at a point of the axis.

Particles trapped in negative energy regions which are disconnected from the
horizon are expected to release more energy via synchrotron radiation, and follow an
evolution driven by electromagnetic radiation-reaction [86, 87]. This is a potential topic
of interesting future work.
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We conclude this section with some remarks about the bounds on the velocity of
the break up and the efficiency of the Penrose process. For completeness, we shall do
so for the most general charge configuration of both the hole and the particle. A simple
computation shows that the specific energy E of a particle with mass m and charge qI

that is the product of a decay of a particle with specific energy E0, mass m0 and charge
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Figure 9. Regions of negative energy states of an electric particle with e/m = ±100

(red for positive, green for negative) in a rotating magnetic black hole with M = 1,
Q = 0, ϵ = 10−3. The columns correspond to the spin parameters a = 0.3, 0.707, 0.99

and the corresponding positive value of magnetic charge P determined by (104),
while rows display different values of the particle’s angular momentum mL/P |e| =
−0.9,−1,−1.1. The contours show the regions of negative energy states given by
(103) with ur = uθ = 0 (see text). The outermost contour is the zero energy level,
and subsequent inner curves decrease by ∆E = −0.5 the value of the energy level,
following the colour scale. In the same conventions, blue contours correspond to a
neutral particle, so they are associated to the mechanical Penrose process.
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qI0 must satisfy [55, 84]

− 1

m
ΩIJPI

t q
J + γ(v)

E0 + 1

m0

ΩIJPI
t q

J
0 − v

√
gtt +

(
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ΩIJPI
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ΩIJPI
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ΩIJPI
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0 + v

√
gtt +

(
E0 +

1
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ΩIJPI
t q

J
0

)2
 , (107)

where v is the absolute value of the velocity of the product in the frame of the decaying
particle and γ(v) = 1/

√
1− v2 the Lorentz factor. Applying (107) to the decay of a

neutral particle into electric charges along the rotation axis of a magnetic black hole, one
finds that the lower bound can be negative (and therefore energy extraction is actually
possible) only if v satisfies

v >
1− α2

1 + α2
, α ≡ (e/m)aP

(e0/m0)aP + (r2H + a2) E0
. (108)

In particular, v can be arbitrarily close (or equal) to zero if |α| ≥ 1. This is true for
a process taking place along the rotation axis, and similar conclusions can be deduced

Figure 10. Region of negative energy states for a black hole with parameters M = 1,
a = 0.9, Q = −0.085 and P = −0.16. The particle’s charge to mass ratio is e/m = 100

and its angular momentum per unit mass is L = −Pe/m = 16. The outermost red
contour corresponds to the zero-energy surface and the successive inner ones decrease
the energy by −0.1, following the color scale. The purple contour is the mechanical
ergosurface. As explained in the text, the attractive gravitational and coulomb forces
are compensated by the repulsive dipolar force, thus leading to disconnected regions
of negative energy states.
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for processes in the enlarged regions of negative energy states. As noted above, one
exception are processes happening at the equator θ = π/2, where (105) holds and the
bounds on v are the same as in the mechanical Penrose process. Similarly, it is easy to
see from (103) and (107) that the efficiency of energy extraction η ≡ (mE −m0E0)/m0E0
can be made significantly larger than that of the mechanical Penrose process for decays
happening off the equator, while at the equator the bounds on the efficiency remain the
same.

Finally, we remark that similarly to the mechanical Penrose process the amount of
energy that can be extracted from the hole is bounded by the irreducible mass, defined
as M2

IRR = AH/16π = (a2 + r2H)/4 where AH is the area of a spatial section of the
horizon. Indeed, in a Penrose process involving the decay of a charged particle one has
δMIRR ≥ 0 (in agreement with the second law of black hole mechanics). At the same
time,

M2 =

(
MIRR +

P 2 +Q2

4MIRR

)2

+
J2

4M2
IRR

≥ M2
IRR, (109)

so the amount of energy that can be extracted from the hole is necessarily smaller than
M −MIRR.

8. Discussion

The work in this thesis has provided a comprehensive analysis and many novel extensions
to the understanding of test particle motion in Kerr and dyonic KN spacetimes. In the
first half of this work which focused on the uncharged Kerr solution, we have solved
for the closed-form analytic solutions to generic bound plunging geodesics in Kerr. We
have also paid particular attention to the special cases of plunges starting asymptotically
from the innermost stable processing circular orbit and from unstable spherical orbits, in
which the solutions take a particularly simple form. This generalises the result of [42, 74]
to inclined motion. The general expression for the inflow in this case, is more involved
due to oscillations coming from the polar motion. Therefore we have provided two
simplified approximations for the inflow rate. We have also found that the geodesics
asymptoting from the ISSO can be parametrised purely in terms of black hole spin and
the radius of the ISSO. We expect these solutions to have applications in the modeling
of accretion flow in Kerr spacetimes. In addition to the special case of ISSO plunges.

We expect the provided generic solutions for plunging geodesics to find practical
use in modeling the inspiral of binary black holes since in the small mass-ratio limit
they will describe the final phase of the inspiral before merger. As small mass-
ratio methods are applied to more equal mass systems, including this phase becomes
increasingly important. For ease of application, we have incorporated our results in
the KerrGeodesics package in the Black hole perturbation toolkit [3]. We are aware
of multiple members of the self-force community who are already making use of these
results and packages we have provided.

In the second half of this thesis, we reinstate the charge parameters {e, q,Q, P}
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and analyse in depth the little-studied phenomenology which can occur in these dyonic
KN configurations. In particular, we study in detail how a particle in radial motion
along the rotation axis actually acquires a non-zero angular momentum. We also show
how this contribution to the angular momentum leads to the existence of a spin-spin
repulsion force which acts to lower the spin of the hole when immersed in an ionised
medium. Additionally, we also analyse in depth the modified Penrose process which
occurs in dyonic KN, showing the existence of bubble-shaped ergoregions disconnected
from the hole and providing a novel understanding of the scaling of these regions with
respect to spin and angular momentum at fixed extremalities. Finally, we have also
developed a package implementing our generic solutions to bound and plunging motion
in dyonic KN in terms of Jacobi elliptic functions.

https://github.com/ConorDyson/DyonicKNGeodesics
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