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Abstract

The coherent nature of X-ray Free Electron Laser (XFEL) radiation results in speckle

formation during short acquisition times, enabling time-resolved dynamic light scat-

tering experiments like XPCS. These experiments, conducted at a 4.5 MHz FEL repe-

tition rate (available at the European XFEL), offer insights into nano or micro-scale

sample dynamics, particularly for timescales between the micro and femtosecond

regime. Speckle analysis experiments have the potential to visualize and understand

molecular dynamics in various scientific fields such as protein mechanics in biology

and strain propagation in solid-state physics, and the presence of resolvable speckles

is essential for these studies. Interestingly, the physical size of speckles in reciprocal

space is inversely proportional to the spot size of the probing beam. Quantifying this

relation would allow for direct recovery of beam size without the need for additional

measurements, hence optimizing the experimental setup. With experimental data

taken using both dynamic (LUDOX® with dynamic timescale ≈ 1 µs) and static

(Vycor) SiO2 samples at the Materials Imaging and Dynamics (MID) instrument at

the European XFEL, this report details the progress made in investigating speckle

phenomena in Small Angle X-ray Scattering (SAXS) with the help of X-ray scattering

simulations written in Python. The goal of the experiments was to vary the beam

size of the incident FEL either by changing its energy or applying nano-focusing

optics to study the corresponding speckle patterns obtained from the samples. In

addition to performing a SAXS analysis, the spatial intensity autocorrelation function

of the scattering pattern was used to characterize speckle size. Results showed an

inverse relation between the incident beam and speckle size, supported by simulated

data. Additionally, the Rayleigh formalism was applied to describe the XFEL beam’s

divergence using speckles.
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1Introduction

Over the past few decades, synchrotron facilities have provided a gateway into

understanding the nano-scale structure and dynamics of soft and condensed matter

through the scattering of high energy X-rays [1]. In recent years, a new generation

of X-ray sources consisting of a linear accelerator (LINAC) rather than a circular

storage ring has ushered in a new era of X-ray scattering. Through a process called

Self Amplified Spontaneous Emission (SASE), the accelerated electron bunches

undergo magnetic dispersion as they experience accelerating forces due to alternating

magnetic and electric fields along the undulator path. This causes microbunching of

the individual electrons in an electron bunch, allowing for the electromagnetic (EM)

radiation to radiate constructively in a coherent manner [2].

The machines based on the SASE process are termed X-ray Free-Electron Lasers (XFEL)

due to their laser-like coherence properties. Coherent radiation is characterised by a

well-defined phase relationship across the wavefront, resulting in a scattered intensity

pattern that depends on the spatial distribution of illuminated scatterers. The typical

wavelength of XFEL beams ranges from 0.5 − 2.5 Å (5 keV−24 keV) [3], making it

ideal for probing structures on an atomic length-scale. The photon flux of XFELs is on

average 105 times greater than 3rd generation synchrotrons (as illustrated in Fig. 1.1)

but can have a much larger peak brilliance (∼ 1030 photons/s/mm2/mrad2/0.1%BW)

[4].

The European X-ray Free-Electron Laser (EuXFEL) in Hamburg, Germany, is the

world’s first hard X-ray laser facility operating at MHz repetition rate. While syn-

chrotron facilities are limited to X-ray pulses on the length-scale of picoseconds

(∼100 ps), a LINAC makes it fundamentally possible to produce X-ray pulses with a

duration as short as 10 femtoseconds (fs) [5], allowing for a variety of time-resolved

experiments such as X-ray Photon Correlation Spectroscopy (XPCS). Paired with its

high coherence property, the evolution of the spatial distribution of electrons within a
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dynamic sample can be studied to quantify any dynamical heterogeneity that occurs

both with or without a pump-probe element.

Figure 1.1: Development of the brilliance of emitted radiations from different light sources
over the years. For free-electron lasers, we plot the average brilliance. Flux can
be used to characterise the number of photons emitted by an SR source. The flux
has units of photons/sec/0.1%bandwidth (BW), which is typically ∆λ/λ ≈ 10−3

for XFELs, with λ representing the wavelength. The brightness of the source is
characterised as the flux per unit of solid angle of the emitted beam, with units
of photons/sec/0.1%BW/mrad2. When taking the beam dimension into account,
the brilliance can be used to define the intensity. It is simply the brightness per
mm2 of the source size. (Adapted from Jens Als Nielsen’s Elements of Modern
X-ray Physics [4].)

Diffraction-before-destruction is a further feature of scattering experiments with

XFEL. Biological samples are extremely sensitive and undergo coulomb explosion

when exposed to ionising radiation such as high energy density X-rays [6]. With

fs pulses the state of the molecule both before and after the destruction can be

probed and studied, which allows experimenters to evade the radiation damage, all

without the expense of flux due to the brilliance of FELs. In the case of a ps pulse,

the destruction time could be much shorter and the results would only reflect the

aftermath of the interaction. At EuXFEL time-resolved measurements of molecular
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dynamics, lattice strain determination under extreme conditions, and single-particle

scattering images are now achievable goals [7].

Scattering experiments performed with coherent XFEL radiation have resulted in the

experimental phenomena known as speckles, which have been studied at large in

the application of visible laser light but are still novel in synchrotron light source

facilities. Speckles occur when the reflected or diffracted light interferes to produce

small variations in the intensity of the diffracted pattern and are often visually

described to resemble noise grains. To resolve speckles, the difference in the scattered

radiation’s path lengths must be smaller than the longitudinal coherence length of

the incident beam [8]. For a highly ordered sample, the scattered intensity displays

dominating Fourier frequencies like Bragg reflections. For a sample of randomly

spatially distributed scatterers, the relative position of the scatterers, as well as the

number of emitters within a sample, do not affect the size of speckles in a diffraction

pattern [9]. In fact, it is only the width of the incident beam size that has a direct

inverse relation to the speckle size.

In this thesis, theoretical results obtained from a speckle pattern simulator as well as

experimental data taken at the Materials Imaging and Dynamics (MID) instrument at

EuXFEL are used to characterise the relationship between incident beam width and

speckle size by autocorrelating the images. So far synchrotrons and XFELs mainly use

wire scan systems or screens to profile beam size [10]. However, as XFEL radiation

varies slightly in property from pulse to pulse [2], only a general beam size can

be concluded with such techniques if the XFEL beam does not destroy the material

first. If beam size can be recovered through speckle analysis, the illumination size of

individual pulses can be quantified without requiring any additional experimental

procedures, which could become important in fast beam dynamic behavior investiga-

tions. Being able to precisely recover experimental conditions, like the beam width,

by analysing speckle size in diffraction patterns would allow for faster development

in the operations and machine abnormality studies at XFEL.

Furthermore, with a more sophisticated characterization and comprehension of

speckles, XPCS analysis where X-rays instead of visible light is utilized in the context

of Dynamic Light Scattering (DLS) experiments [11] can be refined to improve

results obtained in both small and wide angle configuration. For example, a colloidal

suspension exhibiting Brownian motion on a characteristic timescale on the order of

10 µs (see Sec.7.2) would have highly resolvable dynamics studied under EuXFEL’s

fs radiation exposure time. Critical fluctuations near phase transitions in fluids can

also be realised with experimental data using XFEL beams.

3



2Theory

2.1 X-ray Interaction with Matter
Electromagnetic (EM) radiation can be used to study and resolve meso and nano-

scale objects in experimental physics [Scheffold and Cerbino]. To study objects

on a nanoscale, such as proteins and crystal lattice structures, we would need

wavelengths of similar order (10−8 − 10−12 m), which falls in the range of X-ray

radiation. The energetics of EM radiation has the following relation between energy

E and wavelength λ:

λ[Å] = hc

E
= 12.4

E[keV ] , (2.1)

where h is Planck’s constant and c the speed of light. The index of refraction describes

how the propagation of EM radiation changes with varying material and is given by

[12]:

n = 1 − δ + iβ . (2.2)

The real and imaginary parts describe the photon refraction (δ) and attenuation (β)

and can be rewritten as:

δ + iβ = reλ
2

2π
ρatf = reλ

2

2π
ρat(f1 − if2) , (2.3)

where re ≈ 2.817 × 10−5 Å is the classical electron radius and ρat the atomic density.

The atomic scattering factor f = f1 − if2 represents the dispersion and attenuation

of photons, respectively. As radiation energy increases, f1 approaches the number of

electrons per atom and ρatf1 → ρe, the electron density [12].

For X-rays, the real part of the refractive index is slightly smaller than unity. Therefore,

to focus the beam, concave lenses are used instead of typical convex lenses. δ is

typically on the order of 10−5 [13], and decreases with increasing X-ray energies

δ ∝ λ2. For decreasing δ, n → 1 and the beam is less focused.
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The dominating X-ray and matter interaction process is photoelectric absorption

for photon energies ≲ 50 keV (see Fig. 2.1) and high Z materials [14]. When

an XFEL beam illuminates a scattering volume, the important scattering process is

Thomson and Rayleigh scattering, in which no energy is lost during the process and

the scattered light is coherent. There is also a definite phase relationship between the

incident and scattered beam [15]. In some cases, a loosely bound electron can absorb

a fraction of the incident photon’s energy causing inelastic scattering (Compton

scattering). The scattered light has a longer wavelength and is considered incoherent.

In these experiments, the inelastic scattering contributes to a background diffraction

pattern which can reveal structural and dynamic information similar to coherent

scattering but is unwanted in speckle experiments.

Figure 2.1: Photon cross section of lead (Pb) as a function of energy. The total photon cross
section is expressed as σtot (circular markers), with individual contributions from
photoelectric absorption τ , coherent/Rayleigh scattering σcoh, incoherent/Comp-
ton scattering σincoh, photonuclear absorption σph and electric κe and nuclear κn

pair production (Reproduced from J. H. Hubbell [16], with the permission of
AIP Publishing).

2.2 Generation of XFEL beams
Although first, second, third, and fourth-generation synchrotrons rely on circular

storage rings to produce high-energy X-rays, XFEL facilities such as EuXFEL in

Hamburg, Germany, use LINACs to achieve higher electron energy and radiation

brilliance. While circular storage ring-based fourth-generation synchrotron facilities

such as the MAXIV laboratory in Lund, Sweden, can produce X-ray radiation up to

2.2 Generation of XFEL beams 5



104 keV with a brilliance at least one order of magnitude higher than third-generation

synchrotrons [17], EuXFEL can deliver up to 100 million times more brilliance with

an electron energy of 17.5 GeV and a higher degree of transverse coherence [18].

The production of FELs starts upstream of a linear tunnel stretching 3.5 km from

the experimental hutches at EuXFEL [18]. The injector, located at the DESY campus

in Hamburg, Germany, consists of a solid cathode that emits bunches of electrons

when excited by a laser. The bunch is accelerated to 120 MeV using an electron

Radio Frequency (RF) gun and gets directed into a 1.6 km long LINAC. The LINAC

consists of three main RF cavity stations using synchronised oscillating electric fields

to accelerate the passing electron bunches. Two bunch compressors, one located after

the first RF station (electron bunch at 0.5 GeV) and one after the second (electron

bunch at 2.0 GeV), aid in driving up the current of the electron bunch in order

to reach an energy of 17.5 GeV before exiting the accelerator. With the ability to

accelerate a large number of electron bunches per RF period, the beamlines at EuXFEL

can work with an impressive X-ray pulse repetition rate. Figure 2.2 illustrates the

X-ray train and pulse structure. For 17.5 GeV, the trains containing individual X-ray

pulses are delivered at a rate of 10 Hz, with each train containing up to 2700 pulses

(4.5 MHz per train) [18].

Figure 2.2: Photon beam structure at the EuxFEL with pulses of X-rays delivered in trains at
a rate of 10 Hz. Each train contains a pulse rate up to 4.5 MHz with a ∆t = 220
ns spacing between single pulses.

At almost the speed of light, the electrons get directed into a notably long undula-

tor where X-ray radiation is produced through a free-electron process called Self

Amplified Spontaneous Emission (SASE). An undulator is an insertion device com-

mon in third generation light source facilities that contain periodic magnetic dipoles

(see Fig. 2.3) that induce spontaneous emission of X-rays from passing electrons

2.2 Generation of XFEL beams 6



[7], due to transverse acceleration from the Lorentz force applied by the magnetic

fields. Located underground in the electron tunnel, the SASE-2 undulator produces

XFELs for multiple beamlines operating at EuXFEL, namely the Materials Imaging

and Dynamics (MID) and High-Energy Density (HED) stations [5]. Consisting of 35

consecutive 5 m long variable-gap components, the 175 m SASE-2 undulator is able

to produce hard X-rays ranging from 5 to 25 keV.

Figure 2.3: Illustration of the Self Amplified Spontaneous Emission (SASE) process in an
undulator courtesy of M. V. Kovalchuk & A. E. Blago, taken with the permission
of Springer Nature Publishing [19].

As EM light always travels faster than the electrons, when the radiation is ahead of the

electrons by a distance λ, a resonant condition is met where the EM field produced

by the moving charges in one part of the electron bunch create an instability in the

moving charges in another part of the bunch. This instability modulates the electron

density along the undulator to achieve complete microbunching, as illustrated in

Figure 2.3. For an electron bunch without a microstructure, the radiation power is

proportional to N . In the case of microbunching, the radiation power scales with

N2 as the radiation field is self amplified through coherent emission [18]. At the

end of the undulator, the electrons are stopped at the beam dump and the radiation

continue towards the photon tunnels.

Although XFELs are considered chaotic sources based on spontaneous emission,

a near laser-like coherence is created with the SASE process and improved with

adequate beam apertures and bandwidth selection using monochromators. Figure

2.4 shows a comparison of the typical energy spectra of an XFEL with that of a visible

light laser. Similarities can be observed in terms of the harmonic modes of emission

and in both cases the bandwidth remains below 10−2. For an unfiltered XFEL beam,

also known as the “pink beam”, the energy bandwidth is on the order of 10−3 keV.

2.2 Generation of XFEL beams 7



Using Si(111) and Si(220) monochromators narrows the bandwidth of the FEL down

to the order of 10−4 and 10−5 respectively.

Figure 2.4: Comparison of typical spectral emissions for Top: a semiconductor laser (figure
courtesy of O. Svelto [20]), and Bottom: a single-shot [black line] and average
shot [red line] SASE XFEL (figure courtesy of A. Madsen et al. [5]).

The main difference between the two (other than their energies) is that visible laser

light is oscillated within a reflective cavity, creating standing waves that purify the

spectra, and the result is stimulated emission where the phase can be well defined

at any point. XFEL beams are produced in a single run-through process that results

in the spontaneous emission of short discrete pulses of radiation. Thus, for XFEL

beams, the spectra is not as well defined and vary slightly with each pulse. While the

transverse coherence of XFEL beams is excellent, the longitudinal coherence length is

limited by the spectral bandwidth ∆λ/λ through the following formula [2]:

ll = λ

2∆λ/λ
(2.4)

2.2 Generation of XFEL beams 8



2.3 X-ray Optics
Due to their laser-like properties, it is reasonable to assume that XFEL beams follow

the same physical principles as visible laser light. The main type of optics used for

focusing the X-rays are Compound Refractive Lens (CRLs) made of the stable low-Z

element Beryllium (Be) for minimum absorption and scattering [21]. The melting

point of Beryllium is also moderately high (1287 ◦C) [22], giving it good strain

resistance against the XFEL beam.

The simple lens formula that describes the relationship between focal length f , the

distance between the source and the lens p, and distance between the lens and the

sample q, is given by [23]:

1
f

= 1
p

+ 1
q

. (2.5)

If p = ∞ or p ≫ q (which is the case for XFEL since the source is about 1 kilometer

away from the lenses, and the lens to sample distance is 30 cm), then Eq(2.5)

becomes f = q.

In optics, a beam with a Gaussian-distributed amplitude envelope in the transverse

direction is considered a Gaussian beam. If the transverse coherence length is

greater than or equal to the beam size (full transverse coherence), the beam is also

considered diffraction limited, where the minimum beam width is restricted only

by the diffraction properties of the radiation. Since an XFEL beam has complete

transverse coherence, we can assume the following applies to beam properties at

EuXFEL beamlines.

The radius of a Gaussian beam’s spot size after focusing is defined by the beam width,

w(z), and depends on the position, z, centered at the focal point along the direction

of radiation propagation [24]:

w(z) = w0

√√√√1 +
(

z

zR

)2

. (2.6)

Schematically shown in Figure 2.5, w0 is the minimum spot size at z = 0. As XFEL

beams are diffraction limited [25], we can only expect the beam size to decrease

linearly with distance until w(z) ≈
√

2w0, whereby the evolution of beam size follows

Eq.(2.6). The regime under which this holds true is determined by the Rayleigh

length [24]:

2.3 X-ray Optics 9



zR = πw2
0

λ
, (2.7)

which depends on the wavelength of the beam as well as the minimum beam radius.

Figure 2.5: Beam width w(z) of a Gaussian laser beam as a function of the propagating
direction z. At the focal point z = 0, the beam waist is w0, and the Rayleigh
length zR is indicated.

The smallest beam width, w0, at position z = 0, is then located at a distance q

downstream of the focusing lens. A sample placed at that position is illuminated by

the smallest possible beam size, while moving the sample ∆z further upstream or

downstream increases the volume of illumination.

2.4 X-ray Scattering
Small-angle X-ray Scattering (SAXS) is an experimental technique employing the

interaction of hard X-rays with matter to probe the distribution of electrons within a

sample on the nano or meso-scale. The electrons scatter the incident photons elasti-

cally, acting as spherical wave sources, which then interfere to create a diffraction

pattern. Similarly to how the diffraction pattern of a Young’s double slit experiment

performed with coherent laser light can reveal the distance between grating slits

[26], the scattering pattern of a SAXS experiment can reveal the structural form of

soft and nano-scale matter. This is because the combined coherent scattering ampli-

tude carries information about the distribution of scattering electrons with spatial

preservation. Although the phase and amplitude is unrecoverable in an experiment,

the squared modulus of these terms is realised in the form of a scattering pattern,

detectable with a photosensitive detector.

The scattering pattern, I(Q), is measured in terms of intensity and is often expressed

as a function of momentum transfer, Q:

2.4 X-ray Scattering 10



Q = |k − k′| , (2.8)

where k and k’ are the incident and emergent wave vectors respectively. For elastic

scattering: |k| = |k′| = 2π/λ. The magnitude of the momentum transfer is related to

the scattering angle, 2θ through [4]:

Q = 2|k| sin 2θ

2 = 4π

λ
sin 2θ

2 , (2.9)

where the wavelength, λ, is inversely proportional to Q. The shorter the wavelength,

the larger the momentum transfer. Similarly, the greater the scattering angle, the

greater the momentum transfer. A schematic diagram of a standard SAXS experimen-

tal set-up is illustrated in Figure 2.6.

Figure 2.6: Schematic representation of a typical scattering experiment with a sample placed
at a distance L from the detector plane. The incident and scattered beams are
represented with their respective wave vectors k and k’ with a scattering angle
of 2θ. The resultant momentum transfer Q is illustrated, as well as the distance r
of the detected photon from the center of the detector.

The scattering amplitude in small angle scattering is nothing else than a Fourier

Transform (FT) of the electron charge density, ρ(r). The FT of a scattering volume

is visualised with the reciprocal space. The reciprocal space, also called the Fourier

space, is mathematically conceptualised with an infinite number of periodically

repeating reciprocal lattices. The spacing between each reciprocal lattice point is

inversely related to the smallest resolvable distance in real space, d with Q = 2π/d

[27]. If the distances in real space have a dimension of length L, in reciprocal space

the unit would be L−1.

For a single atom, the scattering amplitude within a radius of |r| from the center of

the atom is represented by [4]:

2.4 X-ray Scattering 11



F 0(Q) =
∫

ρ(r)eiQ·rdr . (2.10)

For Q → 0, F 0(Q) = Z as the integral should equal the total number of electrons in

the atom, and for Q → ∞, F 0(Q) = 0. Since the scattering amplitude is a complex

number, when referring to the scattered intensity pattern, the absolute square of the

scattering amplitude is taken to remove the imaginary phase contribution [28]:

I(Q) = |F (Q)|2 . (2.11)

Often times the scattering intensity is also called the form factor, which is the mathe-

matical representation of the density distribution of electrons in reciprocal space.

For an arrangement of isolated particles suspended in a solvent, meaning any inter-

particle interactions can be neglected, the form factor takes a similar form to the

atomic form factor (Eq.(2.10)) except the electron charge density ρ(r) is replaced by

the scattering contrast density ∆ρ = (ρp − ρs), where both the particle and solvent

are assumed to have uniform scattering length densities:

F (Q) = 1
Vp

∫
Vp

∆ρ eiQ·r dVp . (2.12)

From this, it is apparent that the form factor depends on the size and shape of the

particle as the integral is performed over the volume of the particle, Vp. A general

expression for the scattering intensity of suspended particles could then be [29]:

I(Q) = NpV 2
p |F (Q)|2 (2.13)

where the intensity is also weighted by the number of particles, Np in the sample.

To analyse these equations numerically can prove challenging depending on the

required parameters within the integral. One simple case is the scattering intensity

for a monodisperse sample of spheres, which is discussed later in Section 3.3.

2.5 Speckles
Going back to drawing upon similarities between XFEL radiation and visible laser

light, Goodman describes in his book: Speckle Phenomena in Optics, that speckles

arise as a consequence of constructive and destructive interference from fine-scale

2.5 Speckles 12



differences in the path length of scattered X-rays [8]. As such, a vital condition for

the observation of speckles is that the longitudinal coherence length (Eq.2.4) of the

incident beam is longer than the size of fluctuations in the scattered radiation’s path

lengths. The longitudinal coherence length of XFEL beams are long enough for high

contrast resolvable speckles to manifest in SAXS experiments [25], at wide-angle

configurations, speckle visibility becomes increasingly challenging due to larger path

lengths at higher angle.

The measured intensity exhibits granular noise that has a direct correlation to the

spatial positioning of the scatterers. The number of scatterers does not affect the

characteristics of the speckles [9], instead, it is the volume of illumination that

affects the size of the speckle granules, which is determined by the spot size of the

beam. Therefore, developing an understanding of the nature of speckles in XFEL

experiments can lead to new ways of characterising beam profiles.

In the case of a dynamic sample, the change in the spatial orientation of atoms

and electrons will result in a change in the spatial orientation of speckles in our

scattering image. XPCS experiments are then possible under the condition that the

characteristic timescale of the dynamics of the sample is longer than the exposure

time of the scattering image. The spatial evolution of speckles with time then contains

information regarding structural changes within the sample. For EuXFEL’s 4.5 MHz

repetition rate, single-shot images corresponding to one pulse of radiation will result

in a scattering pattern with visible speckles, similar to the left half of Figure 2.7.

For an image acquisition time longer than the dynamic timescale of the sample, the

speckles become washed out and the SAXS pattern only contains information related

to the form factor. This is displayed on the right side of Figure 2.7, where the image

is averaged over 50 consecutive single-shots.

2.5 Speckles 13



Figure 2.7: X-ray scattering pattern from a colloidal sample. On the left, a coherent pat-
tern from a single-shot image is displayed, revealing notable spatial intensity
fluctuations. On the right half of the image, the scattering ring generated from
the summation of 50 consecutive shots is exhibited. The circular shadow at the
center of the image is caused by the beam stop, which obstructs the direct beam
from reaching the detector. (Figure modified from Sooheyong Lee et al [30])
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3Methods

3.1 Experimental data
The SAXS experiments were conducted at the Materials Imaging and Dynamics (MID)

station at EuXFEL. The X-ray pulses are delivered in “trains” operating at a repetition

rate of 10 Hz. As shown in Figure 2.2, each train consists of up to 2,700 pulses and a

repetition rate of 4.5 MHz. This means that MID can deliver 27,000 pulses/second.

In our experiment, we used a repetition rate of 2.25 MHz [5]. Depending on the

experimental conditions, the energy of the X-ray beam can be tuned within a range

of 5 to 25 keV. Two silicon monochromators Si(111) and Si(220) are situated after

the SASE2 undulator and optics hutch but were not required in this case. The pink

beam was used with a bandwidth of 10−3 keV. Each single-shot image is labeled with

a pulse ID and train ID number.

MID has three main experimental configurations illustrated in Fig. 3.1: Large field-of-

view (LFOV) (2θ ≤ 23◦), Wide-angle X-ray scattering (WAXS) (14◦ ≤ 2θ ≤ 55◦) and

SAXS (2θ ≤ 14◦) - which is the configuration used for our experiments. Each of these

configurations in the experimental hutch is illustrated in Fig. 3.1. While speckle

analysis is of interest in both small and wide-angle scattering, the characterisation of

speckles can be better analysed in the SAXS configuration where the data obtained

has considerably higher intensity and distinguishable speckle patterns. In addition,

for analysis in WAXS configuration, a detector with a smaller pixel resolution and

higher photon sensitivity would be required to provide enough speckle contrast as

well as good resolution for image analysis since speckles can get as small as standard

SAXS detector pixels.

An Adaptive Gain Integrating Pixel Detector (AGIPD), which consists of 16 modules

(512 × 128 pixels each) forming 4 motor-controlled quadrants, is used to measure

the intensity of scattered light. The pixel resolution is 200 µm × 200 µm, with a high

range of photon sensitivity ranging from one to 104 photons [31]. For our SAXS

experiments, the detector was placed at a distance of 7.9 m away from the sample

using the adjustable Large Detector Arm (LDA).
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Figure 3.1: 3D CAD-model of MID’s optics and experiment hutch. Components are indi-
vidually labeled including insets of the detector arm in various experimental
geometries: A) SAXS configuration. B) WAXS configuration. C) Large Field of
View configuration. Modified from: European XFEL/Rey.Hori [5]

Two experiments with different Si samples were used to obtain speckle data. In

the first experiment, our independent variable is the energy of the incident beam.

From Eq.(2.2) and (2.3) in the theory of X-ray interaction with matter, we know

that increasing the energy of the photons causes the refractive index n to decrease.

Combining with Eq.(2.5), we can observe how the focal length is dependent on the

energy of the beam: f ∝ 1
δ

∝ 1
λ2 ∝ E2 . Thus, by increasing the beam energy, we

expect to notice an evolution in the size of the speckle patterns. Figure 3.2 provides

an illustration of how the focal point z0, and thus the beam size at the sample,

changes for varying energy. The photon energy of the FEL beam was changed in

discrete steps of 0.1 keV from 8.7 keV to 9.2 keV, and the scattered intensities were

recorded.
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Figure 3.2: Schematic diagram illustrating the change in beam width at the sample when
applying a change in energy to the beam that is focused before the sample at
position z0. A) Beam is focused at position z0 before the sample with a specific
beam width at the sample position. If the sample is downstream of the focal
point as in the figure, decreasing the energy shortens the focal length of the
beam increases the beam width at the sample (B), while increasing the energy
increases the focal length, which in turn decreases the beam width (C).

A colloidal suspension of spherical LUDOX® Silicon dioxide, SiO2, nanoparticles (R

= 25 nm) was chosen as our sample. Since the experimental data is related to the

structure of the individual particles, a sample of monodisperse spheres produces

easily analysable (familiar and distinguishable) results that allow us to focus on

experimental and data features related to the speckles. Silica particles have a high

electron density compared to water. For SiO2 nanoparticles suspended in water, the

electron density of the spheres is ≈ 2.4 times that of water (see Sec. 7.3), so our

sample ensures a good contrast to observe the scattering from the spheres. Keeping

in mind that a single train spans 600 µs and contains 2700 pulses, with a diffusion

coefficient of 0.905 × 10−11 m2/s which translates to a µs dynamics timescale (see

Sec. 7.2), we expect the speckles to get washed out when averaging over more than

5 single shot images. For analysis related to the structure of the sample (modeling of

the form factor), we can simply average over multiple shots to get a high-intensity

pattern. For analysis of speckles, single-shot images (corresponding to 2.25 MHz

X-ray pulses on the sample) are used.
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For the second experiment, we kept the energy of the X-ray at 9 keV and opted to

insert CRLs to adjust the beam width. A NanoCRL Focusing (NaFo) lens was placed

30 cm before the sample in the experimental hutch along the beam’s direction of

propagation, z. Computer-controlled motors were used to adjust the position by

±10 mm in steps of 100. According to Eq.(2.5) the focal point is dependent on the

position, q, of the NaFo lens. Taking Eq.(2.6), we can substitute z for z − z0:

w(z) = w0

√√√√1 +
(

z − z0

zR

)2

, (3.1)

where z0 is the position of the NaFo lens that sets the focal length at the position of

the sample (f = q) and w(z0) = w0.

As NaFo lenses create small focused beams, a highly concentrated amount of radiation

is deposited to the sample, which in the case of LUDOX® would cause excess heating

and sample destruction. To avoid this, we used a 10 nm Vycor glass sample produced

by EuXFEL collaborators at the Technical University of Hamburg (TUHH). Vycor is a

high thermal resistant glass composed of 96% SiO2 and 4% Boron trioxide, B2O3 [32].

Notably, Vycor has a temperature resistance of up to 900◦C, making it an excellent

choice for this experiment where we intend to measure the smallest achievable

beam size with our set-up. Vycor glass is produced by soaking the material in acid,

which dissolves the B2O3 and forms porous cavities within the silica glass that act as

scatterers. The sample thickness is about 20 µm and has a porosity of ∼70%.

3.2 Simulating speckles
Simulations help provide theoretical results that can aid in the comparison of ex-

perimental results. To obtain some expected results for our experimental data,

we simulated the scattering pattern of our first sample - a spherical monodisperse

nanoparticle sample (R = 25 nm). The simulation and computational analysis were

written in Jupyter Notebooks using Python code that can be found in Ref. 7.1.
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Figure 3.3: A single 25 nm circular nanoparticle with pixel value 1 simulated on an null
matrix.

Figure 3.4: A) Randomly generated 4096 × 4096 matrix sample image with 1500 particles
(R ≈ 25 nm) and a pixel resolution of 2 nm. B) Sample image with an isotropic
Gaussian illumination applied to simulate a finite beam size. C) Fourier Trans-
form of B) with log-scale color bar for better visibility. D) Zoomed-in image of
the red contoured area in C) with visible speckles.

To start, a 2D image of a suspended nanoparticle can be mimicked using circular

particles (represented by ‘1’s) on a zero matrix of dimension Ndim with a pixel

resolution of 2 nm (see Fig. 3.3). To observe speckles, we then added more identical

particles into our simulation. Using numpy.random.randin, we can generate the
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positions of the center pixels of our particles and have the simulation fill in the

surrounding pixels to create a grid of randomly oriented pixilated circles. In order

to assure no overlap between the particles, a mask was implemented to remove any

possible center pixels that would result in a circle that overlapped with any already

generated circles. In our simulation, we used a 4096 × 4096 sample image consisting

of 1500 25 nm particles, displayed in Figure 3.4A.

Assuming a Gaussian profile for the transverse amplitude envelope of an incident

XFEL beam, a Gaussian “illumination” in the form of a Gaussian kernel can be applied

to the sample matrix (Fig. 3.4B) to simulate the experimental condition of varying

an XFEL’s beam width. The 2D Gaussian kernel is a convolution of two identical

1D Gaussian arrays. It follows that the standard deviation for the 2D Gaussian is

dependent on the 1D Gaussian as follows [33]:

σ2D =
√

2 σ1D . (3.2)

We characterise the physical radius of the simulated beam to be the Full Width Half

Maximum (FWHM) of our 2D gaussian kernel:

w = 2
√

2 ln 2 σ2D × (2 × 10−9 m), (3.3)

where 2 × 10−9 m is our detector pixel size. Figure 3.5 illustrates a contour of what

we consider the “beam size” in the case of a Gaussian beam profile, using Eq.(3.3)

above.

Figure 3.5: Contour (black solid line) of characterised beam size for a Gaussian kernel of
σ2D = 282 pixels (1.3 µm) on a 1400 × 1400 matrix.

A scattering pattern can be obtained by summing up all individual electromagnetic

wavelets (which is every non-zero valued pixel) described with the mathematical
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equation: E(x) = A(cos (kx − ωt) − i sin (kx − ωt)). A is the amplitude of the wave,

which is measured experimentally as the pixel intensity and depends on the distance

traveled, x and time, t to the detector. For large matrices, as is the case for our

generated sample, this task becomes incredibly time-consuming to run without

advanced optimization of the simulation code. Alternatively, knowing that the

scattering pattern is an FT of the spatial distribution of scatterers, we can use the Fast

Fourier Transform (FFT) function: scipy.fft.fft2 to obtain the scattering image.

The function takes the FT of a 2-dimensional array and returns an array with the

corresponding complex coefficients [34]. From Eq.(2.11), we know that taking the

square of the absolute value of the complex coefficients will return the intensity.

Plotting the image on a log scale (Fig. 3.4C) highlights the scattering pattern from

the sample while zooming in (Fig. 3.4D) allows one to clearly observe the speckle

interference.

To accurately represent the momentum space axis in our simulated images and

plots, the Q-range was determined through understanding that the smallest unit

of resolution in real space, the detector pixel size d, is related to the largest value

in reciprocal space Qmax via d = 2π/Qmax. The momentum transfer is centered at

the origin of our image, so Q ranges from [−π/d, π/d]. When plotting in Q for data

analysis, one then uses np.linspace(0, π/d, t) with step size t equal to the dimensions

of the dependent variable.

3.3 Form factor fitting
The scattering pattern is recorded on the 2D detector AGIPD. Performing an Azimuthal

Integration by which the intensities around the circumference of a circle are defined

by a radius Q and centered at the middle of the scattering pattern, we can translate

the 2D image into a 1D function that describes the distribution of scattered photons as

a function of momentum space. Computationally, a circular mask of the 2D scattering

pattern matrix is created where the intensity of all the pixels that fall within the

masked area is averaged. The resolution of the azimuthal integration depends on

the thickness of the circular mask, which has a minimum threshold of
√

2d where d

is the detector pixel size. Experimentally, the AzimuthalIntegrator function in the

‘EXtra-geom’ EuXFEL Python library performs the azimuthal integration automatically

for data taken and stored on the Maxwell server.

Up until now, the scattering intensity has mainly been defined as the square modulus

of the scattering form factor. Since photons are the source of information in these
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experiments, the scattering intensity can also be defined as the differential scattering

cross-section, which is the number of scattered photons per unit time at momentum

transfer, Q, relative to the incident flux of photons and has units of area per solid

angle [4]. It is mathematically described as:

dσ(Q)
dΩ = I(Q) = Np × (∆ρ)2 × V 2

p (R) × |Fp(Q, R)|2 , (3.4)

where Np is the number of particles, ∆ρ the scattering contrast, Vp the particle volume

and Fp(Q, R) is the particle form factor that depends on Q and the particle radius, R

[35]. For a monodisperse colloidal sample of silica (SiO2) spheres, the form factor is

governed by the Bessel function:

|Fp(Q, R)|2 =
(

A(Q, R)
V (R)

)2

=
4π

∫ R
0

sin (QR)
QR

r2dr
4
3πR3

2

=
3sin (QR) − QR cos (QR)

(QR)3

2

,

(3.5)

where A(Q, R) is the radial integration of the zeroth order of the spherical Bessel

function [36] for a sphere particle.

In the case that the silica spheres are not perfectly monodisperse, we can substitute

the Bessel function in Eq.(3.4) to include the influence of size polydispersity in the

sample. Larger spheres will contribute more scattering than small ones which can be

represented with the Schulz(-Zimm) distribution function [37]:

n(R) = [(z + 1)/R0](z+1)Rz

Γ(z + 1) exp −
[

(z + 1)
R0

]
R , (3.6)

where z is the integer parameter that describes the width of the distribution, and R0

is the average particle size. Figure 3.6 illustrates how the z parameter in the Schulz

distribution changes the weight of polydispersity as well as how it differs from a

Gaussian distribution for high z.
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Figure 3.6: Left: The Schulz distribution n(R) for various values of z. Right: The Schulz dis-
tribution with z = 120 (orange solid line) plotted next to a Gaussian distribution
(dashed line) of equal mean radius R0.

The scattering intensity is then given by integrating the monodisperse form factor

over Eq.(3.6):

I(Q) = N(∆ρ)2
∫ ∞

0
VP (R)2

[
3sin (QR) − QR cos (QR)

(QR)3

]2

n(R)dR . (3.7)

Eq.(3.7) above was solved in Aragón and Pecora’s 1976 article on Dynamic Light

Scattering (DLS) for the Schulz distribution [37] and implemented as functions in

Python for modeling polydispersity.

3.4 Autocorrelation Function
To characterise the spatial variation and homogeneity of an image, it can be useful to

study the correlation of the image with itself - also known as an autocorrelation. To

study the spatial structure of speckles, we can investigate the degree of correlation

a speckled image has against itself for varying spatial separations ∆x = x1 − x2

and ∆y = y1 − y2 for positions (x1, y1) and (x2, y2) on the detector plane. The

autocorrelation function ΓI describes how rapidly the distribution of scatterers varies

from point to point. Intuitively, we expect total correlation for two images that have

no spatial separation (∆x = ∆y = 0), and for the correlation to fall to zero with

an increase in spatial separation [38]. The rate at which the function falls to zero

reveals to us the degree of correlation, which is related to the size of the speckles.
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Figure 3.7: Demonstration of the 2D autocorrelation, ΓI(∆x, ∆y), of two Gaussian kernels
along with a horizontal 1D slice of the autocorrelation. Left: 2D Gaussian kernels
representing two different spot sizes with a color bar displaying the intensity.
Middle: 2D autocorrelation, ΓI(∆x, ∆y), of the images on the left. Right: y-cut
of ΓI(∆x, ∆y) for ∆x = 0.

In his book, Goodman [8] used a complex correlation coefficient to describe the

degree of correlation between two values of the same variable at a spatial offset of

(∆x, ∆y):

µ(∆x, ∆y) = ΓA(∆x, ∆y)/ΓA(0, 0) (3.8)

where µ(0, 0) = 1. The square modulus of the complex correlation coefficient is used

to obtain the normalised intensity autocorrelation function:

ΓI(∆x, ∆y) = 1 + |µ(∆x, ∆y)|2 (3.9)

Since we are interested in the speckles present in the scattered image and not the

enveloping scattering pattern describing the form factor, we zoom in on a Region Of

Interest (ROI) centered at a specific Q value. For our analysis, we chose an ROI with

high speckle intensity (64 × 64 pixels) centered at Q = 0.01 Å−1.

ΓI(∆x, ∆y) was computed using scipy.signal.correlate2d, which works well for

large arrays. After obtaining the 2D-autocorrelation function, a vertical (∆x = 0) or

horizontal (∆y = 0) slice through the origin of the autocorrelation function was taken
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to analyse the central peak feature. Figure 3.7 demonstrates the autocorrelation

of two different images, where the central peak is featured in the 1D plots of the

horizontal slice. At ∆x = ∆y = 0, Eq. (3.9) takes the maximum value of 1, and we

expect larger speckle features to exhibit broader central peaks. The Full Width Half

Maximum (FWHM) of the correlation peak is considered a reasonable measurement

to characterise the speckle size [38]. Since the width of the autocorrelation function

is
√

2 larger than the speckle size of the individual image due to the convoluding

nature of the operation. In the Gaussian approximation, FWHM/
√

2 is then a good

estimate of the speckle size, S.
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4Results & Discussion

4.1 Speckle simulator and SAXS analysis
For our 4096 × 4096 sample matrix of 1500 randomly generated 25 nm circular

particles, we are able to successfully simulate the occurrence of a speckle pattern. For

a Gaussian beam of w = 4 µm, zooming in on an ROI in the Q range [0.007, 0.014]

Å−1 provides a good inspection of the speckles. Figure 4.1 compares this with an ROI

in a similar Q range for the experimental data of 25 nm LUDOX® at 9.0 keV. The

speckles from the experimental data are much smaller than that of the simulation,

which suggests the experimental beam size was larger than 4 µm.

(a) (b)

Figure 4.1: a) Simulated speckle pattern ROI for a Gaussian beam of w = 4 µm centered
around Q = 0.01 Å−1. b) Experimental single shot image ROI for E = 9.0 keV
centered around Q = 0.01 Å−1.

An example of a simulated SAXS pattern is displayed in Figure 4.2 and shows the

well-expected concentric circles for scattering from spherical objects. The first four

dark fringes from the center of the pattern have a smooth circular profile, but this

begins to break down at larger Q. This is expected as the squiggly profile of the dark

fringes toward the edges of the pattern reflects the pixilated nature of the circles (see

Fig. 3.3) in our matrix image of the sample. At high Q, short distances are probed in
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real space, which would result in the expression of the jagged nature of the particle

shapes when zoomed in.

Figure 4.2: Fourier transform of a Gaussian illuminated matrix sample to simulate the SAXS
pattern of 25 nm circular particles with a log-scale colorbar.

4.1.1 Scattering pattern
Performing an azimuthal integration of the scattering pattern, we can analyse the

validity of our simulation by comparing the computer-generated curve with the

theoretical form factor of monodispersed hard-spheres (Eq.(3.5)). The two curves

are plotted together in Figure 4.3, where they exhibit a large degree of similarity

up until just after the first dark fringe. Past that point, it can be noted that the

simulated scattering curve has a stretched period of oscillation as well as some

dampening. Selecting a radius parameter of 258 Å for the model returned the best

visual results for the fit of our simulated data, which coincided well with the nature

of our generated sample, which consisted of 25 nm circles.

The dampening of the fringes at high Q is attributed to the squiggly dark fringes that

can be observed towards the outer corners in Figure 4.2. When performing the radial

averaging at high Q, the intensities had larger fluctuation along the circular mask,

causing the contrast between dark and bright fringes to decrease.
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Figure 4.3: Comparison of simulated SAXS pattern with the monodisperse fit (hard-sphere
form factor). The result from the simulated scattering curve of a 2D matrix
image of spherical 25 nm nanoparticles (black line) is superimposed with the
theoretical monodisperse hard-sphere form factor (red line).

Figure 4.4: Simulated scattering intensity data multiplied by Q2 as a function of Q. The
dashed horizontal line is used as a guide for the eye to show I(Q) ∝ Q2 for
Q > 0.06 Å−1.

Form factors are highly dependent on the dimensionality of the particle due to the

integral element in Eq.(2.12). The broadening observed in our simulated data is

most likely due to the 2D nature of our simulation, while Eq.(3.5) is used to describe

3D scattering. This can be examined by performing a Porod analysis. For a sphere,

the element of integration is the unit volume, dV = 4πr2dr, where r is the particle

4.1 Speckle simulator and SAXS analysis 28



radius. From this, we can tell that the form factor will evolve with r2. For a 2D

disk, the element of integration is the area dA = 2πrdr, and the form factor evolves

with r [4]. Recalling that I(Q) ∝ |F (Q)|2 and r ∝ 1/q, we can conclude that while

I(Q) ∝ 1/Q4 in the Porod regime for 3D spheres, we should expect I(Q) ∝ 1/Q2 for

our 2D matrix of circles. figure (4.4) below is the same simulated scattering curve

plotted as a product of Q2. The horizontal slope at high Q suggests a I(Q) ∝ 1/Q2

which supports the proficiency of our simulation.

4.1.2 Experimental SAXS Analysis
The scattering images obtained from LUDOX® were averaged over 500 pulses for

E = 9 keV to acquire better statistics and remove the speckles for a consequently

smoother curve. Figure 4.5 is an example of a SAXS pattern averaged over multiple

shots taken at MID for our sample. In the averaged image, the scattering pattern of

the spherical nanoparticles is made clearly visible with a log-scale color bar to make

low-intensity outer rings more prominent. A dark detector image is taken at the

beginning of the experiment to use in the data correction pipeline, mainly to remove

any background and detector noise. Occasionally, the AGIPD will have temporary hot

pixels with bright intensities that are unrelated to the scattered photons (exhibited

on the right side of the bottom module in the upper right quadrant in Fig. 4.5). To

correct this, a rectangular mask the size of the area with dysfunctional pixels is used

to remove the erroneous intensities from our data.

The image was then radially integrated using the pyFAI library and unfolded over the

entire Q-range to obtain the scattering cross-section plot displayed in Figure 4.6. Up

until the fourth oscillation, the scattering curve exhibits a smooth trend with noise

prominence starting around 0.04 Å−1.
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Figure 4.5: Experimental SAXS pattern of 25 nm LUDOX® taken with an energy of 9 keV,
averaged over 500 single shot AGIPD images (color bar in log-scale) at the MID
station the European XFEL.

Figure 4.6: Scattering intensity I(Q) of 25 nm LUDOX® taken with an XFEL beam (E = 9
keV), averaged over 500 single shot images.

4.1.3 Porod Analysis
A Porod analysis of the SAXS curve can be performed to investigate whether the

data at high Q contain any background intensity unrelated to the elastic scattering.

At high Q, the intensity is proportional to the surface area of the sphere [4], which
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means I(Q) ∝ Q−4. To check this, the intensity was plotted as a product of Q4, which

for I(Q) ∝ Q−4 means the slope will be flat.

Figure 4.7 shows I(Q) × Q4 versus Q in log-log plots. In Fig. 4.7a, the intensity

has a flat gradient up until Q ≈ 0.05 Å−1. The intensities above the dashed line are

contributions from background and inelastic scattering. This can easily be removed

from our data by simply subtracting a constant, I = 10−3, from I(Q). Fig. 4.7b shows

the scattering curve after correction. After subtraction, we chose to focus our data

analysis and fitting in the Q range up to 0.05 Å−1.

(a) (b)

Figure 4.7: Porod analysis of the radially integrated scattering intensity data multiplied by
Q4 for 25 nm LUDOX®. A horizontal dashed line is used for visual reference.
(a) Scattering pattern before subtracting a constant background intensity. (b)
Scattering pattern after subtracting a constant of 10−3. Arrows indicate the
maximum Q value included in our statistical fitting.
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4.1.4 Form Factor fitting
Fitting the corrected data with the monodisperse form factor described in Eq.(3.5),

we were able to get the result displayed in Fig.4.8 with a dashed line. Upon inspec-

tion, it was clear that there was some smoothing to the experimental data that the

monodisperse hard-sphere form factor does not take into account. In experimental

results, there is often data smearing due to elements such as beam bandwidth, ∆λ,

or the finite resolution of a detector.

Figure 4.8: Experimental scattering intensity of 25 nm LUDOX® acquired at European XFEL
fitted with the spherical monodispersed model (dashed line) with parameters:
R = 271 Å, scale = 4.7 × 10−8. Applying the Q-resolution smearing to the
same model provided an alternative fit (solid line) with a Q-resolution smearing
ranging from [2 - 12]%.

AGIPD has a finite resolution that depends on the size of the pixel (200 µm × 200

µm) as well as the distance of the detector from the sample (7.9 m). To apply

instrument smearing to our scattering cross-section equations, we can convolve the

monodisperse model with a Gaussian function that had a sigma depending on the

smallest resolvable solid angle subtended by one pixel. The Q resolution was found

by differentiating Bragg’s law (Eq.2.9) with respect to the scattering angle:

dQ
d(2θ) = 2π

λ
cos

(
2θ

2

)
(4.1)

⇒ dQ = 2π

λ
cos

(
2θ

2

)
d(2θ) , (4.2)
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where d(2θ) ≈ AGIPD pixel resolution
sample-detector distance ≈ 0.0015◦ using the small angle approximation.

Dividing d(2θ) by 2
√

2 ln 2 is a reasonable approach to characterising the resolution

smearing. This way, the standard deviation of the Gaussian allows us to take into

consideration systematic errors like charge sharing between neighboring pixels. When

performing the fit, this magnitude of smearing created over-dampened oscillations,

so we multiplied dQ by 0.43 to obtain the correct level of smearing. This resulted

in a dQ/Q with a range of [2 - 12]%. The results of the smeared fit were visibly an

improvement from the simple monodisperse model (see solid black line in Fig. 4.8),

however, deviations around the local minima still exist for the second and third dark

fringes.

We then also decided to fit using a polydisperse model in the case that the spherical

particles are not identical in size. Using the Schulz distribution to model for poly-

dispersity, we were able to get the following results displayed in Fig. 4.9 using the

evaluated version of Eq.(3.7) given in Aragon and Pecora’s article [37].

Figure 4.9: The fitted curve of experimental scattering intensity of 25 nm LUDOX® acquired
at European XFEL using the polydisperse spherical shell model (R = 266 Å, z =
120, scale = 4.2).

For a mean radius of 263 Å and a polydispersity size distribution of z = 120, the fit

in black dashed lines was visibly more smooth than our experimental data, which

suggests a Schulz distribution with z = 120 is too high a degree of polydispersity.

In Python, factorials of numbers greater than 120 become computationally challeng-

ing in our defined function. We then turned to Sasview, a black box SAXS curve

fitting software, to obtain the optimal values for particle radius, R. The data was
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imported to SasView and evaluated with four different variations of the hard sphere

model: monodisperse, monodisperse with instrument smearing, polydisperse, and

polydisperse with instrument smearing. The polydispersity model in SasView had a

Gaussian distribution for R. The degree of polydispersity, PD, was defined as [39]:

PD : σ/R̄ , (4.3)

where σ is the standard deviation of the normal distribution, and R̄ the mean radius.

The polydisperse hard sphere model with instrument smearing is displayed in Figure

4.10, and the three other models and their plots can be found in the Appendix in

Section 7.5.

Figure 4.10: Sasview fitting of the scattering intensity of 25 nm LUDOX® acquired at the
European XFEL with a Gaussian polydisperse hard sphere model (PD: 0.03 ±
0.03) Å including dQ/Q = 5% instrument resolution smearing.

The fitted parameters for each Python and SasView model are presented in Table

4.1 below along with weighted χ2 values. With intensity plotted in log-scale, the

residuals calculated at high Q will not have the same impact as residuals at low Q.

This is due to the intensity ranging across three orders of magnitude for our recorded

scattering angles. To correct for this, a weight factor is introduced to the χ2 equation

[40]:
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χ2 =
∑

i

(Yi − theoryi)2/weight2
i (4.4)

=
∑

i

(Yi − theoryi)2/Yi . (4.5)

In the case of our goodness of fit, we normalised the residual by weighting it with

the square root of the observed intensity. For a good fit, χ2 tends to 0. The fitting

performed in Python does not include optimisation of fitting parameter errors. We

assumed parameter uncertainties for the Python fits based on the condition that the

χ2 is doubled from its minimum value for each of the parameter’s error limits.

Table 4.1: Fitting parameters for LUDOX® SAXS data for variations of the hard-sphere model.
The distribution of polydispersity is Schulz for Python (Eq.(3.6)) and Gaussian
for Sasview.

Model variations Radius R [Å] Scale* [×10−5] χ2

Python

Monodisperse 271 ± 6 (4.7 ± 0.3) ×10−3 0.08

Monodisperse

+ smear**
268 ± 10 (1.5 ± 0.3) ×10−6 0.01

Polydisperse

(z = 120)
266 ± 5 (4.2 ± 0.3) ×105 0.07

Sasview

(hard

sphere

model)

Monodisperse 272 ± 3 1.7 ± 0.2 0.05

Monodisperse

+ smear***
274 ± 3 1.9 ± 0.2 0.01

Polydisperse

(0.075 ± 1.15)
270 ± 4 1.9 ± 0.3 0.009

Polydisperse

+ smear***

(0.03453 ± 2.336)

274 ± 4 1.9 ± 0.3 0.009

*The scale parameter includes the electron density contrast ∆ρ as well as Vp.
**dQ/Q = (2 − 12)%.
*** dQ/Q = 5%.

Out of the three Python fits performed, the monodisperse model with instrument

smearing resulted in the best goodness-of-fit (χ2 = 0.01). This result coincides

4.1 Speckle simulator and SAXS analysis 35



with the results obtained for a monodisperse fit with similar instrument smearing

evaluated in SasView. The fit with the best goodness-of-fit in Sasview turned out

to be the two Gaussian distributed polydisperse hard sphere models (χ2 of 0.009

each).

When applying instrument smearing, the accuracy with which one can match the

theoretical model and experimental data decreases, and we would expect this to

reflect in the errors of the recovered parameters. In both the monodisperse and

polydisperse models, applying instrument smearing increased the uncertainty in

radius by 0.62 Å and 0.02 Å respectively. For the monodisperse model, applying

a 5% instrument smearing improved the χ2 value of the fit, while it had no effect

on a polydisperse model’s χ2. In fact, the inclusion of instrument smearing for the

polydisperse fits was able to reduce the degree of polydispersity estimated, however,

this is compensated by an increase in average radius by 4 Å compared to a model

without smearing.

The scaling factor of each model, which includes parameters such as the density

contrast and particle volume (for monodisperse models), all fall within the same

range when taking into account the error limits. While our own monodisperse model

with instrument smearing recovered a radius range closest to 25 nm, the recovered

radius from the SAXS fits are all larger in dimension than expected. This could be due

to the simplicity of our model not including other parameters such as smearing due

to the XFEL radiation bandwidth ∆λ/λ, even though dQ/Q from radiation bandwidth

is negligible compared to resolution smearing.

Overall, with a notable increase in goodness-of-fit from monodisperse to monodis-

perse with smearing seen in Table 4.1, we can conclude that while there could be a

degree of polydispersity in our sample, the larger contributing factor to the dampened

oscillations is the Q-resolution smearing from instrument limitations.

4.2 Speckle Analysis
First taking a look at the speckles from our simulated SAXS patterns, 40 beam sizes

ranging from 2.33 µm to 6 µm were simulated and applied to the sample to show a

trend in the evolution of speckle sizes with changing beam size. An ROI centered

around Q = 0.01 Å−1 (Fig. 4.1) in each FT image was then selected for performing

the autocorrelation. Computing the autocorrelation returns a 2D matrix with the

corresponding correlation coefficients for each spatial delay ∆x or ∆y (in units of

pixel, which can be converted to units of Å−1). By taking a 1D slice of the matrix
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down the middle column, we make a one-dimensional y-cut of the autocorrelation to

investigate. Note the central peak feature over a large pedestal background in the

right image in Fig. 4.11.

Figure 4.11: Left: 2D spatial autocorrelation of the ROI of a simulated speckle pattern for
25 nm sphere particles with beam size w = 1.7 µm. Right: Normalised central
y-cut of the 2D-autocorrelation of the simulated speckle pattern.

For the simulated data, the 1D autocorrelation function for various beam sizes all

exhibit the same pedestal feature which arises from the average background intensity

provided by the structure of the sample. We can remove this background by fitting it

with a Gaussian and subtracting it from ΓI(∆y, 0). Figure 4.12 below shows ΓI(∆y, 0)
after background subtraction as well as a zoomed-in plot to better show the variation

in peak widths for different Gaussian beam illuminations.

Figure 4.12: Left: Background subtracted y-cut of the 2D-autocorrelation of the simulated
speckle pattern for various Gaussian beam sizes w. Right: Zoomed in plot of
central peak feature in the left plot

In the experimental data set, ⟨ΓI⟩ represents the averaged y-cut autocorrelation func-

tion for 18 consecutive single-shot images. Since speckle patterns are independent of
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the spatial position of scatterers, averaging over multiple ΓI(∆y, 0) will still display

the speckle features. On the other hand, Γ⟨I⟩ represents the y-cut autocorrelation

function for an averaged image of the scatter pattern, so the correlated function

only carries the signature of a time-averaged structure factor. ⟨ΓI⟩ − Γ⟨I⟩ results in a

ΓI(∆x,y, 0) function where the background is removed (shown in Fig. 4.13).

After subtraction, we are left with just the central peak, which is related to the size of

the speckles. To characterise the central peak, we can fit a Gaussian to the zoomed-in

plot of the central peak (to remove any influence from the wings of the function) and

extract the standard deviation σ to find the FWHM using:

FWHM = 2
√

2 ln 2σ ≈ 2.355σ .

The results of each individual fit of the background subtracted ΓI peaks for the

simulation can be found in Section 4.2.2 in the appendix. The experimental ΓI peaks

are fitted and the speckle width, S, is characterised as FWHM/
√

2.

Figure 4.13: y-cut of autocorrelation function of experimental ROI for 25 nm LUDOX®.
Left: Blue solid line for ⟨ΓI⟩. Orange dashed line for Γ⟨I⟩. Right: Normalised
autocorrelation function with average intensity subtracted.

4.2.1 LUDOX® experiment (∆E)
The goal of the LUDOX® experiment was to vary the energy and investigate whether

the speckle size is truly inversely proportional to the beam size or not. The results for

an energy range of (8.7 - 9.2) keV showed speckles that were significantly smaller

in resolution compared to the speckles resolvable in our simulation (visible in Fig.

4.1). This translated into a central peak feature that had a sharp delta-like profile

upon performing the autocorrelation of the ROI. This was a feature that arose as a
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consequence of the FWHM of the peak residing on the same order of magnitude as

one pixel. In the case of our simulated data (where our detector resolution is 104

times higher), large speckles translate to a central peak feature in ΓI that is more

Gaussian in profile, which is also easier to fit using scipy.optimize.curve_fit.

From inspection, the broad pedestal intensity was removed with better accuracy

for the experimental data (Compare Fig. 4.12 Left with Fig. 4.13 Right). This is

judged based on the lack of fluctuation on either side of the background subtracted

autocorrelation function’s central peak.

Plotting the extracted speckle widths for both the simulation and the LUDOX®

experiment, we observe in Figure 4.14 that for both simulated and experimental

results the speckle size reduced with increasing beam size. While it was possible to

plot the speckle size as a function of beam size in our simulations, the absolute beam

size could not be inferred from just the energy of the XFEL beam in the experiment.

For the experimental data, speckle size was plotted as a function of energy squared,

E2. Assuming that the beam size varies linearly with focal length, we can derive

the relation between focal length and energy with the theory presented in Sec. 2.1.

From Eq.(2.1), (2.2) and (2.3) about the refractive properties of X-rays, it is known

that E ∝ 1
λ

and 1
λ2 ∝ 1

δ
. The focal length of a lens is inversely proportional to δ [21],

which leads us to f ∝ E2.

(a) (b)

Figure 4.14: Scatter plot of speckle size S as a function of beam width b or energy squared
E2. The data was fitted with inverse functions and the parameter values are
listed. (a) Results obtained from simulation. (b) Results obtained from varying
the energy of the beam using 25 nm LUDOX®.

For the simulated results (Fig. 4.14a) the scaling parameter, a in f(x) = a/x was

fitted with Iminuit and found to be 15.74 ± 0.59. The magnitude of a is not as

important as the sign - which tells us whether the focal point is before or after the
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sample in our set-up. In the experimental results, a ≈ −117 ± 28 has a negative sign.

An increase in speckle size due to a larger focal length meant that at E0, the focal

point of the XFEL beam was before the sample in order for the beam size to decrease

with increasing E (see Fig. 3.2).

Plotting S(E2) and fitting with an inverse function (with scaling parameter a, b and

c), we obtained a χ2 of 3.7304, and with 3 degrees of freedom that corresponded to

a p value of 0.2921. With these statistics, we can assume that this result provided

evidence of an inverse relation between speckle and beam size. This is expected as

large dimensions in real space correspond to small dimensions in reciprocal space.

For a Gaussian beam, we expect the beam size to evolve following Eq.(2.6). The

function w(z) is symmetric around z = 0, which is also the focal point of the beam.

In Figure 4.14 both cases only show one of the solutions. If we increased the energy

beyond 9.2 keV, at some point we expect the symmetric profile displayed in Fig.

2.5.

4.2.2 Vycor experiment (NaFo Lens)
A more experimentally efficient way to vary the beam size is to apply a NaFo lens

before the sample in the experimental hutch. With the Vycor experiment at MID,

we were able to create a scan of how the speckle size changes with varying beam

size by moving the NaFo lens up or down the direction of beam propagation. With a

greater variation of beam sizes, we expect to fit the evolution of w using Eq.(2.6). A

static sample was chosen to produce results with static speckles as the purpose of

this experiment was unrelated to scattering dynamics. Figure 4.15 shows a typical

SAXS pattern taken at MID of our 10 nm Vycor sample.

The process of analysis is almost identical to that of the LUDOX® experiment. There

is, however, a limited amount of experimental data for Vycor where only the first 100

pulses of each train were recorded. Each pulseID should correspond to a single-shot

image, yet in our set of images, some lacked the sufficient intensity to use for analysis.

This could be a result of low intensity due to poor transmission resulting from flux

attenuation from the NaFo lens. The XFEL beam’s spectral inconsistency could also be

a factor. As a result, This meant that our automated data processing script could not

be used to its full extent as each ROI had to be inspected by eye before processing.

Due to time constraints, this meant that in this thesis only one image was taken for

each NaFo lens position to obtain a ΓI function to fit.
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Figure 4.15: Experimental single-shot SAXS pattern of 10 nm Vycor glass taken with a beam
energy of 9 keV using the AGIPD (color bar in log-scale) at the MID station at
European XFEL.

The autocorrelation was performed with the same procedures as for the LUDOX®

analysis - where the broad pedestal feature is subtracted with the autocorrelation

function Γ⟨I⟩ averaged over 500 single-shots (which washes away speckles even

for a static sample) for the background intensity features of the SAXS pattern (see

Fig.4.16). The computer motors adjusted the lens position at a rate that matched

the frequency of train deliveries, which meant that each train represented a different

beam size. 30 train IDs were sampled at equally spaced intervals along the range

of motor positions (referred to as “lotz” at MID), and the fit results are displayed in

Figure 4.17.
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Figure 4.16: y-cut of autocorrelation function of ROI in Vycor experimental data. Left: y-cut
of ΓI function of ROI (blue solid line). The orange dashed line represents the
background to be subtracted, Γ⟨I⟩. Right: Normalised autocorrelation function
with average intensity subtracted (blue solid line). The orange dashed line is
the Gaussian fit for characterising the width of the peak.

The central peak was the most challenging to fit in this experiment. Due to the

inconsistency in scattering pattern quality, in order to obtain enough ROIs for an

average autocorrelation function, ⟨ΓI⟩, a large amount of time would need to be

allocated to hand-selecting ROIs for each lens position. Thus multiple ROIs per lens

position were not included in this work as a result of time constraints, which meant

attaining proper statistics is a priority in any follow-up investigation. Nevertheless,

we still present the following results as we believe it shows great promise in our

endeavor to characterise speckles and use them in experimental analysis.

The speckle size, S recovered from the Gaussian fits was dependent on the distribu-

tion’s standard deviation, which was processed in units of pixels. The FWHM/
√

2
multiplied by the angle subtended by one pixel (≈ 0.00003 rad for AGIPD) is then

considered the angular speckle size, Sθ. Using the trigonometric relation between Sθ

and the distance of the detector, L, we then determined the width for the speckle on

the detector plane with the following calculation:

S = Sθ × L .

Now our speckle size has units of length. We know that the speckle size is indeed

inversely proportional to the beam size from our results in Section 4.2.1 and that

they also depend on the wavelength of the FEL beam. Thus, we can consider the

following equation for relating the speckle size to the beam size:
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S = λL

w
⇐⇒ w = λL

S
. (4.6)

Figure 4.17: Preliminary plot showing the evolution of beam width as a function of lens
position w(z). The beam size was quantified as the inverse speckle size of
single-shot SAXS patterns taken at various lens positions using 10 nm Vycor.
The data were fitted with the Gaussian beam width equation using the listed
parameter values.

In this experiment, we wanted to use the speckle pattern to study whether an XFEL

beam’s quality is comparable to that of a Gaussian laser beam. Taking the entire

range of motor positions, we first made a preliminary plot for observing whether the

data indeed follows the expected trend. As the motor position changes, we expect

the focal point to shift from before the sample to behind it. This translates into a

symmetric plot where the illuminating beam decreases to a minimum beam size

before increasing again (reflected in Fig. 4.17).

With the help of Figure 4.17, we knew the minima was around the motor position

-222. We then sampled across a shorter range of motor values along the Rayleigh

regime to better extract the parameters for w(z) with a statistical fit. Choosing the

range [-224, -220], we autocorrelated and fitted the size of speckles in 30 new ROIs

and used Eq.(4.6) to determine the beam radius.

In the Rayleigh regime, we still observed a minima, albeit the data was less symmetric

than expected. In the right half of Figure 4.18, the data appears to follow the trend

of a Gaussian beam defined in Eq.(3.1). The data on the left half of the plot exhibit

large deviations from the theoretical expectation and can be a sign of temporarily

reduced beam quality for the corresponding sets of trains.

4.2 Speckle Analysis 43



Figure 4.18: Evolution of beam width as a function of lens position w(z) around the Rayleigh
regime. The beam width was recovered from the size of speckles in single-shot
SAXS patterns taken with 10 nm Vycor. The data were fitted with the Gaussian
beam width equation using the listed parameter values.

If the deviations are in fact a reflection of beam quality deterioration, then we can

speculate that the cause is similar to how intracavity distortions cause beam quality

deterioration in lasers [41]. Beam quality can deteriorate from aberrations in optical

elements along the photon tunnel, optics or experimental hutch; or distortion of

beam quality that originated in the XFEL gain medium (LINAC or undulator) during

the SASE process. If beam quality was not the issue, then alternatively the deviations

could be an issue related to poor fitting in our data analysis scripts, although this

seems less likely as the analysis was done with an automated program and the

right half of the data provided expected results. Both points would require further

investigation.

To get a better convergence on optimal fitting parameters in Iminuit, we chose to

fit Eq.(3.1) to only the right half of all the data points. Since only one ROI for each

beam size was used, our data lacks proper sampling. In this case, we manually set

the uncertainty in our data to ± 0.00125 µm for Iminuit to evaluate our fit, which

resulted in a χ2 of 9.5775. With 13 degrees of freedom, that corresponds to a p value

of 0.7281. If the deviation in the left half of the data points is a result of instrument

distortions or poor fitting, we can assume that XFEL beams indeed possess laser-like

beam quality when no instrument defects are present. The minimum beam radius

w0 was found to be (3.2784 ± 0.0007) µm, and the Rayleigh length is ≈ (1.9 ± 0.2)
mm.
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5Conclusion

In both simulation and experimental cases, we were able to successfully demonstrate

the inverse relationship between incident radiation beam size and the resultant

speckle size. Starting with a basic SAXS pattern simulation for 2D samples, we

obtained a scattering intensity that was compared to a 3D scattering model for

monodispersed hard-spheres. While the 3D model was able to fit the first oscillation

of the scattering intensity, there were major differences (damping and increased

periodicity) in the simulated data that were attributed to the 2D and pixilated nature

of our simulation.

Experimental SAXS patterns for monodisperse hard spheres were taken and fitted

to further develop an intuitive understanding of the similarities and differences in

theoretical and experimental data. While simulations are able to provide a visual

guide of what is expected, experimental results often include artifacts, such as noise

and smearing that defer from expectation. Having both to compare allows researchers

to distinguish which features come from the interactions of interest and which from

experimental limitations. In our case, while it is likely that there is a small degree

of polydispersity in the LUDOX® sample, we concluded that the main difference

between the theoretical and experimental SAXS intensities was a result of instrument

smearing.

The autocorrelation function’s central peak indeed revealed information regarding the

speckle size, and we were able to successfully characterise this size with the FWHM

of a fitted Gaussian. Upon characterising the speckles, we investigated the focusing

properties of XFEL beams by assuming the Rayleigh formalism in the evolution of

the beam size with optical focusing. By analysing the speckle size, we were able to

characterise how the beam size changed with the use of a nano-focusing lens. Fitting

the Gaussian beam size function to the acquired data, we provided evidence that

supports the notion that XFEL beams are Gaussian and diffraction limited in nature

under the condition that no internal distortions occur before scattering. More so, we

demonstrated how one can expand on speckle analysis to study a large variety of

experimental parameters related to X-ray scattering.

The main challenge manifested in the peak fitting process of Vycor. In order to fit

the central peak, the large background pedestal as a result of the scattering structure
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of the sample had to be subtracted. Without an average autocorrelation function

⟨ΓI⟩, using Γ⟨I⟩ to subtract the background results in fluctuations on either side of

the central peak. This becomes an obstacle, especially for delta-like central peaks as

our defined Gaussian function struggles to fit accurately in those cases. Therefore,

given the time, one should always use averages: ⟨ΓI⟩ and Γ⟨I⟩ to analyse the spatial

autocorrelation of speckle patterns.

Having gained some insight into how simulations can aid in experimental preparation

and analysis, it would be beneficial to refine our 2D simulation into producing 3D

results as a follow-up project. Obtaining beam time at large-scale facilities such as

EuXFEL is competitive and valuable, so one should utilise all resources to ensure

quality experimental data is taken. With a scattering pattern simulation, one can

familiarise themselves with the expected results or vary parameters to find the optimal

experimental configuration for the best results.

As a final note, it would be interesting to demonstrate how DLS analysis techniques

are applied in the X-ray regime in XPCS to study the dynamics of our LUDOX® sample.

So far, we investigated how static speckles can be used to profile XFEL beams. With

XPCS, we can study the Brownian motion of our nanoparticles by noting the spatial

evolution of speckles in the detector plane over time. XPCS is used mostly to study

the dynamics of a sample but is also able to provide information regarding the sample

itself, like a secondary measurement of the particle radius, for example.

With the continuation of forefront speckle characterisation, we hope that refined

methods of photon correlation experiments can provide a deeper understanding of

the dynamical behaviour in soft and condensed matter, visible only with X-rays. A

well characterised relationship between speckle and beam size should also aid in the

profiling and conditioning of various scattering experiments to simplify and optimize

the process of acquiring scientific data.
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7Appendix

7.1 Github repository
Python script used to simulate and analyse the Fourier transform scattering pattern

of a monodispersed nanoparticle sample can be found at:

https://github.com/christineandersson/Speckle-Simulation

Python script used to access and analyse experimental data taken from EuXFEL can

be found at:

https://github.com/christineandersson/XFEL-speckle-analysis

7.2 Calculating the diffusion coefficient of 25
nm LUDOX®

For a system of nanoparticles suspended in a liquid at thermal equilibrium, we can

assume any inter-particle interactions to be negligible. The change in the particle’s

position is then expected to follow a stochastic process known as Brownian motion

- where the pattern of motion is completely random due to the surrounding many-

particle interactions causing no net direction of force.

For 25 nm SiO2 particles suspended in water, the mean translational diffusion coeffi-

cient, D in the Stokes-Einstein equation for Brownian motion is given by [42]:

D = kBT

6πηr
, (7.1)

where kB is the Boltzmann constant, T the temperature of the system, η the viscosity

of the liquid suspension and r the radius of the nanoparticle.

The conditions of LUDOX® at room temperature (r = 25 nm, T = 295 K, η = 0.9544
mPa·s ) then result in a diffusion coefficient of:

D = (1.38 × 10−23 J · K−1)(295 K)
6π(0.9544 × 10−3 kgm−1s−1)(25 × 10−9 m)

= 0.905 × 10−11 m2/s .
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The mean square displacement, x̄2, of the particle is related to the timescale and Dif-

fusion coefficient by x̄2 = 6Dt [2], which for a mean square displacement equivalent

to the diameter of a particle (50 nm) gives us a characteristic timescale of:

(
2π

50 nm

)2

× 6D = 1
t

⇐⇒ t ≈ 1.2 × 10−6 s .

7.3 Calculating the electron density of SiO2

and H2O
To find the electron density of a molecule, the following equation can be used:

Ne × 1
M

× ρ × Ag ,

where Ne is the number of electrons, M the molar mass, ρ the mass density and Ag is

Avogadro’s constant. To double check the consistency of this equation, we can look

at the units:

[
electrons

1

]
×
[

mol
g

]
×
[

g

Å
3

]
×
[

1
mol

]
=
[

electrons

Å
3

]

For SiO2, there are 30 electrons per molecule and a mass density of 2.65 × 10−24 g/Å3.

The molar mass of SiO2 is 60.08 g/mol, which gives us an electron density of:

30 ×
(

1
60.08 g mol−1

)
× (2.65 × 10−24 g Å

−3
) × (6.02214 × 1023 mol−1)

≈ 0.797 electrons / Å
3

The same logic can be applied to H2O, which has 10 electrons per molecule and a

density of 1 × 10−24 g/Å3. The molar mass of water is 18.02 g/mol, which results in

an electron density of:

10 ×
(

1
18.02 g mol−1

)
× (1 × 10−24 g Å

−3
) × (6.02214 × 1023 mol−1)

≈ 0.334 electrons / Å
3
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From the electron densities calculated, we can tell that materials made of SiO2 have

approximately 2.4 times higher electron density than it’s surrounding environment

of H2O.
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7.4 Fitting of the central peak feature in the
y-cut autocorrelation functions for the
simulated speckle pattern ROI.
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7.5 Sasview fitting with various hard-sphere
models for 25 nm LUDOX® nanoparticles.

Figure 7.1: Sasview fitting of the scattering intensity of 25 nm LUDOX® acquired at the
European XFEL with a monodisperse sphere model.

Figure 7.2: Sasview fitting of the scattering intensity of 25 nm LUDOX® acquired at the
European XFEL with a monodisperse sphere model including dQ/Q = 5% instru-
ment resolution smearing.
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Figure 7.3: Sasview fitting of the scattering intensity of 25 nm LUDOX® acquired at the
European XFEL with a Gaussian polydisperse hard sphere model (PD: 0.06 ±
0.01) Å.
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