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Abstract

The fractional quantum Hall effect occurs in clean two dimensional electron gases

subjected to a perpendicular magnetic field. This rich system is 34 years after its

discovery still not fully understood. Several problems still remain open after many

years of serious attention from both experimentalists and theorists. It is therefore

wroth investigating the seemingly basic questions, from which we still have a lot

to learn. In this thesis investigations of excitations in the fractional quantum Hall

effect is presented.

In Chapter 1 I give an introduction to the two dimensional electron gas, the classical

Hall effect and the quantum Hall effect. Chapter 2 is devoted to the quantum point

contact (QPC). Firstly I give an introduction to the basics of the QPC, followed by

data showing many robust conductance steps at zero bias and a link between the

0.7 structure in the first subband and finite bias features in the second.

Quasi particle tunneling can provide us with crucial information about the origin

of the host state and help us distinguish between different proposed wavefunctions

for the lesser understood states. In the first part of Chapter 3 I present quasi particle

tunneling measurements of ν = 1/3 in a QPC. The last part of Chapter 3 is reserved

for measurements of several fractional states in the strong backscattering regime.
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Chapter 1

Introduction

Many of the most fascinating quantum mechanical phenomenons are seen in many

body systems, such as the ones found in nano sized semiconducting devices. In these

systems the phenomenons can be probed by simple electrical measurements, without

the need of multi billion dollar particle accelerators. Most of these phenomenons

originate from the electron-electron interaction, governing the subtle and sometimes

fragile physics that gives rise to these amazing effects. An example is Supercon-

ductivity, where the electron-phonon interaction mediates an attractive electron-

electron interaction. This makes it favorable for the electrons to form Cooper pairs

and Bose condense[1]. The striking experimental signature is electrical conductance

without dissipation (zero resistance). Another intriguing effect is found in Mott in-

sulators. Here electron-electron interactions lead to band gap insulators in partially

filled band materials[2].

The most interesting effect of them all, is the quantum Hall effect (QHE). The

richness of this system exceeds all other, which manifests itself in the fact that even

today, 341 years after its discovery, scientists are still far from understanding the full

extent of the physics influencing the system. Apart from the interger quantum Hall

effect (IQHE), which is a single particle effect, all other features associated with

the QHE are governed by the electron-electron interaction. The fractional quan-
1The fractional quantum Hall effect was discovered in 1981, by D. C. Tsui and coworkers[3].
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Chapter 1. Introduction 2

tum Hall effect (FQHE) originates from electron-magnetic flux interaction, which

reduces the effective Coulomb repulsion between the electrons[4]. The re-entrant

interger quantum Hall effect (RIQHE), seen at filling factor ν > 2. The effect is

believed to arise from bubble phases, where electrons, in the partial filled spin split

Landau level (LL), form super Wigner crystals in order to reduce the Coulomb re-

pulsion between individual crystals[5]. And lastly the stripe phases, responsible for

anisotropic transport, seen at half filling in the second and third LL[5].

In this thesis I present the results of several experiments I have performed dur-

ing my Masters. The experiments range from studies of quantum point contacts

(QPCs) to quasi particle tunneling in the fractional quantum Hall regime. In the

rest of the Introduction (Charter 1), I will explain the basics of the two dimensional

electron gas (2DEG). The theory needed to understand the Hall effect, classical and

quantum, will also be presented. Chapter 2 will detail the studies I have done in

QPC geometries, showing zero bias anomalies at low conductance and 0.7 structure

physics at elevated temperatures. Chapter 3 will be devoted for quasi particle tun-

neling in QPCs, both in the weak and strong backscattering regimes. The main

focus of the weak backscattering experiments is on filling factor ν = 1/3, whereas a

broader range of states are studied in the strong backscattering regime.

Appendix A will detail my fabrication recipes, as well as my thoughts and consid-

erations concerning semiconductor fabrication.

1.1 The two dimensional electron gas

The two dimensional electron gas is the perfect host system for measuring quantum

mechanical effects, such as quantum dots, QPCs and of cause the quantum Hall

effect. As the name suggest the 2DEG, is a strictly two dimensional system of free

electrons. The "free" part should be taken literally, as the electrons in these systems

can have a mean free path on the order of millimeters. One of the best features of



Chapter 1. Introduction 3

the 2DEG is the possibility of gating. Metal gates can be used to define areas where

the density can be locally changed, which can be used to define small islands with

reduced dimensionality as needed for structure like quantum dots and QPCs.

The most common ways of achieving a 2DEG are by using a metal-oxide-

semiconductor field-effect transistor (MOSFET) or a semiconducting heterostruc-

ture. The MOSFETs are not used anymore due to poor 2DEG qualities. The best

2DEGs are found in gallium arsenide/aluminium gallium arsenide (GaAs/AlGaAs)

heterostructures. The different band gaps of GaAs and AlGaAs can be used to form

a potential well, in which the electron gas resides. The small difference in lattice

constants between GaAs and AlGaAs insures that there is a minimum of strain

between the layers in the crystal. Strain induces crystal imperfections, which will

reduce the electrons mobility by scattering.

All GaAs/AlGaAs heterostructures are grown with atomic layer precision using

molecular beam epitaxy (MBE), typically a wafer is grown on an existing GaAs

substrate. Directly on top of the substrate a superlattice, of many thin alternating

GaAs and AlGaAs layers, are grown. The purpose of the superlattice is to trap any

impurities from the substrate, which would otherwise act as scattering sites for the

electrons in the 2DEG[6]. Am AlGaAs spacer layer is put on top of the superlattice.

Here electron doners, typically Silicon atoms, are added in a single atomic layer

(δ-doping). There are two doping methods, either the Si atoms are put directly into

the space layer or they are introduced in small doping wells. The wells consist of

aluminum arsenide (AlAs) covered a thin layer of GaAs on both sides.

There are pros and cons involved in using either of the two doping schemes.

Putting the doping atoms directly into the spacer layer will create DX centers. DX

centers are a lattice defect induced by the donor atom. The extra electron, from

the Si atom, is tightly bound to the defect site, which makes it less likely to diffuse

to the 2DEG[7]. Therefore this method is often used for low density 2DEGs. The

drawback is a reduced mobility, because the donor atoms act as scattering sites for
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the 2DEG electrons[8]. The doping wells offer a solution to the reduced mobility

problem. Not all the extra electrons will diffuse to the 2DEG, a lot will stay in the

doping wells, screening the donor atoms[7]. However, the left over donors in the

doping wells are less tightly bound, which can result in gate stability issues.

The main quantum well, holding the 2DEG, is grown next. This can either be

a symmetric well, using an AlGaAs/GaAs/AlGaAs sandwich or a asymmetric well

formed on the boundary between an AlGaAs and an GaAs layer. The GaAs layer

used for the symmetric well is usually 30 nm to 50 nm wide. More donors can be

introduced in a similar fashion as below the 2DEG and the full structure is caped

with a layer of GaAs. A schematic of a typical wafer composition, with symmetric

doping directly inserted in the AlGaAs spacer layer, along with a energy diagram is

shown in fig. (1.1).

In order to ensure a 2 dimensional system, the Fermi level must lie between the

ground state and first excited state of the quantum well. The bandgap difference

between AlGaAs and GaAs is 300meV to 400meV[9], depending on the Al concen-

tration. If we assume that this energy is much bigger than anything else and ignore

the curved bottom, we can approximate the quantum well with an infinite square

well. The allowed energies are:

En =
n2π2~2

2m∗d2
,

where d is the width of the well and m∗ = 0.067me is the effective electron mass in

GaAs[9]. The energy of the two first energy levels for d = 50 nm, is E1 = 2.25meV

and E2 = 8.99meV. The Fermi energy in two dimensions is EF = ~2πn
m∗ , where

n is the electron density. Using a typical density of n = 1× 1011 cm−2 yields a

Fermi energy of EF = 3.54meV, well within the limit. When typical operating

temperatures (not higher than 100mK = 8.6 µeV) are taken into account, is it clear

that the second energy level of the well never will be populated.
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Figure 1.1: GaAs/AlGaAs quantum well structure, with corresponding energy dia-
gram. The red dashed line shows the Fermi level. The energy diagram was calculated
using a Schördinger/Possion solver.

1.2 The quantum Hall effect

Long before the discovery of the quantum Hall effect, E. Hall discovered the clas-

sical Hall effect in 1879[10]. He did so by running a current through a gold leaf,

while measuring the voltage drop across the current direction. He measured a finite

constant voltage when turning on a perpendicular magnetic field. A similar setup

is shown in fig.(1.2a), where the voltage drop E. Hall measured is labeled Vxy.

E. Halls discovery can be understood in the context of the Drude model[11],

here simplified to two dimensions. The equation of motion for an electron in an
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Figure 1.2: a) Schematic representation of a measurement of the classical Hall effect.
The voltage Vxy will only be non-zero when a perpendicular magnetic field is present.
The current run in the 2DEG, blue layer below the surface. b) Measurement of the
longitudinal resistance, obtained from the voltage along the current. 70mT marks the
transition from classical to qauntum.

external electric and magnetic field is described by the Lorentz force:

m∗
dv
dt

= −|e| (E + v×B) . (1.1)

The solution of eq. (1.1) is valid in between scattering events. Pointing the magnetic

field in the z direction, B = (0, 0, B), and the electric field along the x direction,

E = (E, 0, 0) and introducing a mean scattering time τ , we can calculate the drift

velocities[12]:

v̂x = −E µ

1 + ω2
cτ

2

v̂y = vD
ω2
cτ

2

1 + ω2
cτ

2
, (1.2)

where ωc = |e|B/m∗ is the cyclotron frequency, vD = E/B, and µ = |e|τ/m∗ is

the mobility. Using the relationship between applied electric field and the current
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density:

Ex
Ey

 =

 ρxx ρxy

−ρxy ρxx


jx
jy

 , (1.3)

where jα = −|e|nv̂α, ρxx is the resistivity along the x direction and ρxy is the resis-

tivity along the y direction. Using eq. (1.2) and eq. (1.3) we can find an expression

for the resistivities:

ρxx =
m∗

ne2τ

ρxy =
B

|e|n
. (1.4)

The first 70mT of fig. (1.2b) shows a measurement of a 2DEG in the classical regime.

The classical Hall measurement is widely used to determine the carrier density and

mobility, as well as the sign of the carriers.

In our high purity samples, the classical theory is only valid for < 70mT. For

B > 70mT quantum effects takes over, which strongly modifies the response of the

system. The first sign of the transition from classical to quantum are the Shubnikov-

de Haas (SdH) oscillations. The SdH oscillations are seen in the longitudinal resis-

tivity when the Landau level splitting becomes larger than the broadening due to

scattering and disorder. When this happens the density of states (DOS) will show

modulations, which will result in an oscillating longitudinal resistivity. At higher

magnetic fields, where the energy quantization becomes dominant, marks the onset

of the integer quantum Hall effect.

1.2.1 The integer quantum Hall effect

Before getting into quantization of Hall effect and what that implies to the mea-

sured resistances, is it worth solving the Schrödinger equation for electrons in a
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perpendicular magnetic field. The Hamiltonian describing the system is:

H =
1

2m∗
(p + |e|A)2 + V (z), (1.5)

where p = −i~∇ is the canonical momentum, A is the vector potential and V (z)

is the confinement potential in the z direction. The Schrödinger equation is gauge

invariant, which means we have the freedom to choose a vector potential as long as

it fulfills ∇×A = B. Lets choose the perpendicular direction to be the z direction.

Furthermore lets choose to work in the Landau gauge, A = −Byx̂, this leads to a

separable Hamiltonian,

H = Hz +Hxy

Hz =
pz

2m∗
+ Vz

Hxy =
1

2m∗
(
(px − |e|By)2 + p2y

)
. (1.6)

SolvingHz gives the solution to in the confinement potential with energies Ez = ~kz
2m∗ .

As noted in sec. (1.1) only the ground state in the z direction will be occupied and

we can ignore this contribution going forward.

The Hamiltonian in the plan, eq. (1.5), commutes with px and we can therefore

replace px = ~kx by its eigenvalue. Rewriting eq. (1.5) in terms of the cyclotron

frequency, ωc = |e|B
m∗ , and the magnetic length, l2 = ~

|e|B , we arrive at:

Hxy =
~ωc
2

(
(lkx)

2 +
(y
l

)2
− 2kxy +

lp2y
~

)
. (1.7)

Identifying new variables, ȳ = y
l
− lkx and p̄y = lpy

~ , eq. (1.7) simplifies to[4]:

Hxy =
~ωc
2

(
ȳ2 + p̄2y

)
, (1.8)
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the one dimensional harmonic oscillator, with center coordinate y0 = l2kx. The

allowed energies for a harmonic oscillator are:

En = ~ωc
(
n+

1

2

)
, (1.9)

with eigenstate described by plane waves in the x direction and a localized harmonic

oscillator in the y direction,

ψn,kx(x, ȳ) = eikxxχn,kx (ȳ) (1.10)

χn,kx(ȳ) =
1√
2nn!

(
1

πl2

)1/4

e−
ȳ2

2l2Hn(ȳ).

Hn are the Hermite polynomial of order n. The energy levels in eq. (1.9) are called

Landau levels (LL) and if we include the Zeeman splitting the eigenenergies then

are:

En = ~ωc
(
n+

1

2

)
± 1

2
g∗µBB, (1.11)

where µB = ~|e|
2me

and g∗ is the effective g factor. Fig. (1.3) shows the evolution of

the DOS as a magnetic field is turned on and disorder is introduced. Disorder will

broaden the δ-function shaped DOS peaks and close the energy gaps, fig. (1.3d).

The states lying the tails of the broadened DOS are localized and will not take part

in the transport, gray regions in fig. (1.3d). Only states close to the maxima are

extended and hence can contribute to transport[4]. We say that the localized states

form a mobility gap.

The LL energies, eq. (1.9), do not depend on kx and each LL will therefore be

highly degenerate. In order to calculate the degeneracy of each LL, we must assume

periodic boundary conditions in the x direction[4], eikx(x+Lx) = eikxx. This gives us

the allowed value of kx = 2π
LxN

, where N is an integer. By remembering that the

states are localized at y = kxl
2, we can count the number of available states in an



Chapter 1. Introduction 10

Figure 1.3: a) DOS of a 2DEG. b) δ-function shaped DOS in a perpendicular mag-
netic field (LL). c) Splitting of the DOS by the Zeeman term. d) The spin split LL
broadened by disorder, gray areas are localized whereas brown areas are extended
states.

area A = LxLy. The state at y = 0 is labeled by N = 0 and the state at y = Ly by

kx = Ly/l
2. This leads to:

N =
LxLy
2πl2

, (1.12)

the number of states in an area A. The degeneracy per unit area is then:

nL =
1

2πl2
=
B

φ0

, (1.13)

where φ0 = h/e is the flux quantum. Because the degeneracy is proportional to the

magnitude of the magnetic field, the available space in each LL will increase as the

magnetic field is increased, hence the LL’s will depopulate.

The filling factor is defined as, ν = n/nL, the number of electrons per flux quan-

tum penetrating the sample. The filling factor is used to keep track of the number of

occupied spin split LL. At ν = 1 the lowest spin split LL is fully occupied, whereas

at ν = 2 the first LL is fully occupied.

As discovered by K. von Klitzing et. al. in 1980[13], the resistance measured
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Figure 1.4: Measurement of the IQHE. Rxx (orange) is zero whenever Rxy (blue) is
at a plateau. The plateaus corresponding to ν = 4− 8, are marked.

across the current direction, Rxy, is quantized in multiples of h/e2:

Rxy =
1

ν

h

e2
. (1.14)

They also found that the resistance along the current direction, Rxx, was zero when-

ever Rxy was quantized. The non-zero width of these quantized plateaus (and the

corresponding regions with zero resistance) is due to the mobility gap. When increas-

ing the magnetic field away from the exact filling, the states that are depopulated

are localized states, which do not contribute to transport. Only after all the local-

ized states are depopulated will the quantization be broken by the depopulation of

extended states. The quantization of the integer plateaus have been measured to a

relative accuracy of 10−8. This is also why the quantum Hall effect is used to define

the Ohm. Fig. (1.4) shows a measurement of the integer quantum Hall effect.

In many systems this fact is not very important, but in order to understand

the quantum Hall effect the edges are essential. This was realized shortly after K.
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von Klitzings discovery [14]. At the sample edge the LL’s must bend up because the

potential energy of the confinement diverges. The bending of the LL’s are schemat-

ically shown in fig. (1.5a-c). The LL’s intersect with the Fermi energy close to the

edge and form one dimensional conduction channels. These channels are dissipa-

tionless due to the chirality of the edge states and the exponential suppression of

the backscattering across the bulk. In the bulk of the sample the occupied LL’s are

now energetically far away from the Fermi energy, which leaves the internal part

of the sample insulating. The electrons in the edge states propagate with a group

velocity determined by the confinement potential Vcon and is given by[12]:

vx =
1

~
∂Vcon
∂kx

, (1.15)

and each edge state contribute h/e2 to the measured resistance.

In 1992 D. B. Chklovskii et al.[15] improved the edge state theory, by taking

electron-electron interaction into account. They showed that the simple picture of

bending LL’s near the edge was too crude and lacked the ability to explain relaxation

between copropagating edge states. Their results are presented in fig. (1.5d-f).

Instead of one dimensional edge channels, they found strips of finite width, where

the LL’s get pinned to the Fermi energy. These regions are compressible due to

the existence of unoccupied extended states. In the compressible strips the varying

potential is well screened by the extended states and therefore the density increases

smoothly, going away from the sample edge. In the regions where the LL’s have

a slope they found incompressible strips, where no extended states are available.

The lack of screening in these regions lead to a varying confinement potential, but

a constant density. In the model by Chklovskii et al. the density profile in the QH

regime is only slightly modified compared to the zero field density profile. Whereas

the naive bending picture produces very abrupt changes in the density profile, see

fig. (1.5c,f).
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Figure 1.5: a)-c) Naive edge state picture. a) Top view onto a 2DEG near an edge.
b) Bending of the LL’s due to the confinement potential. Circles represent local filling.
c) Density profile close to the edge. d)-f) The Chklovskii/Shklovskii/Glazman edge
state picture. d) Top view onto a 2DEG near the edge. Alternating incompressible
(gray) and compressible (white) strips. Arrows shows the direction of the electron
flow. e) Bending of the potential and LL’s near the edge. Circles represent local
filling. f) Density profile close to the edge. Compressible strips have a non-uniform
density profile and carry the flow of electrons. The incompressible strips have constant
density that matches the filling factor. Adapted from [15].

1.2.2 The fractional quantum Hall effect

What happens after ν = 1 you may ask. In terms of LL’s nothing should happen.

All electrons are already contained in the lowest spin split LL, so increasing the field

should not change anything, apart from increasing the number of available states.

Some people may have thought that to be the full story in the time after K. von

Klitzings discovery. But in May 1982, D. C. Tsui et al.[3] published a paper in which

they reported the an extra plateau corresponding to a filling factor ν = 1/3. Today

we know that there are a lot of fractional states and not only in the first LL but also

in the second LL (2 < ν < 4). Fig. (1.6) shows a measurement of many fractional
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Figure 1.6: Measurement of the FQHE. Apart from all the integer plateaus, seen
from 0-4T, a lot of fractional plateaus are also visible. ν = 1/2, the symmetry point
responsible for the development of the composite fermion theory is also labeled.

quantum Hall states.

Electron-electron interactions play a crucial role in the fractional quantum

Hall effect. The interactions are needed in order to explain the emergence of a

gapped ground state in a partially filled LL. Shortly after D. C. Tsui and colleagues

discovery, R. B. Laughlin proposed a wavefunction that could explain the newly

found fractional state[16]. It is widely believed that his wavefunction is the ground

state wavefunction of all fractional states with a filling factor ν = 1/m, m must be

odd. The wavefunction, Laughlin proposed is:

ψ1/m =
∏
j<k

(zj − zk)m e−
1
4

∑
i |zi|2 , (1.16)

where zk = xk + iyk is the complex coordinate of the electrons and
∏

j<k (zj − zk)m

is called the Laughlin-Jastrow factor that insures a minimization of the Coulomb

energy by vanishing if two electrons share the same coordinate. The exponent m has

to be odd in order to insure a antisymmetric wavefunction under electron exchange.
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A generally exciting outcome of Laughlins wavefunction is that excitations above

this ground state carry a fractional charge, e∗ = e/m.

There are many other fractional states that do not fall into the 1/m category.

Several different schemes have been proposed in order to explain more than the 1/m

states[17, 18, 19, 20], but the one that captures the most states are the Composite

Fermion (CF) theory developed by J. K. Jain[4, 21]. The main motivation for the

CF theory is found in the resemblance between the IQHE around small magnetic

fields and the FQHE centered around ν = 1/2, they are pretty much indistinguish-

able. It is strange that this resemblance even exists. The IQHE is to a very good

approximation a single particle effect, whereas the FQHE is a very strongly corre-

lated effect. The CF theory has the answer! It describes the FQHE as an IQHE

for some new particles made from an electron and 2p flux quanta. Attaching 2

flux quanta to the electrons will completely remove the external magnetic field at

ν = 1/2, which means these new particles should behave like electrons in zero mag-

netic field. Amazingly, that is exactly what they do. This leads to the two most

important equations within the CF theory:

ν =
ν∗

2pν∗ ± 1
(1.17)

B∗ = B − 2pnφ0. (1.18)

Eq. (1.17) relates the CF filling factor, ν∗, to the electron filling factor, ν. The ±

corresponds to positive/negative values of the effective magnetic field B∗, eq. (1.18).

ν = 1/3 is obtained by setting 2p = 2 and ν∗ = 1 in eq. (1.17). This means that

ν = 1/3 for electrons is ν∗ = 1 for CF. There is a sequence that originate from

ν = 1/2, ν = 1/4 and ν = 1/6. The difference is how many flux quanta there

is attached to each electron, 2, 4 or 6. Table (1.1) gives an overview of the main

sequences. Whereas electrons order them selves in LL’s, the newly created CF’s

order in Lambda Levels (ΛL). The ΛL’s play the role of LL’s for CF’s.
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ν/ν∗ 1 2 3 4 5 6

ν 1/3 2/5 3/7 4/9 5/11 6/13
2pCFν∗ 2CF1

2CF2
2CF3

2CF4
2CF5

2CF6

ν 1/5 2/9 3/13 4/17 5/21 6/25
2pCFν∗ 4CF1

4CF2
4CF3

4CF4
4CF5

4CF6

ν 1/7 2/13 3/19
2pCFν∗ 6CF1

6CF2
6CF3

ν 1 2/3 3/5 4/7 5/9 6/11
2pCFν∗ 2CF−1 2CF−2 2CF−3 2CF−4 2CF−5 2CF−6
ν 1/3 2/7 3/11 4/15 5/19 6/23
2pCFν∗ 4CF−1 4CF−2 4CF−3 4CF−4 4CF−5 4CF−6
ν 1/5 2/11 3/17
2pCFν∗ 6CF−1 6CF−2 6CF−3

Table 1.1: Table connecting the ν to ν∗. Adapted from [4].

There exists fractions that can not be explained by any CF sequence, e.g. ν =

4/11 and ν = 5/13. These two fractions lie in between ν = 2/5 and ν = 1/3, so

it would be convenient to describe them in terms of two flux quantum attachment,

2CF states. The only way this is possible is by letting the 2CF interact and form a

FQH like ground state of 2CF[4].

Another state that can not be described by a CF sequence is ν = 5/2. In order to

incorporate this into the CF theory we need to construct a BSC like parring of CF.

This is done by G. Moore and N. Read[22], by introducing the wavefunction:

ψ5/2 = Pf

(
1

zj − zk

)∏
j<k

(zj − zk)2 e−
1
4

∑
i |zi|2 , (1.19)

where Pf( 1
zj−zk

) is called the Pfaffian which is the antisymmetrized sum over all pairs

1
zj−zk

. Apart from the Pfaffian the wavefunction is the exact same as the Laughlin

wavefunction, with one very important difference: The exponents are 2, not 3. The

even exponents give the wavefunction the wrong exchange symmetry, but it is saved

by the Pfaffian, which makes it fully antisymmetric.



Chapter 2

The Quantum Point Contact

2.1 Introduction

The quantum point contact (QPC) is one of the simplest structures that can be

realized in a 2DEG by constraining it to a small region and thereby reducing the

dimensionality of the system from 2D to 1D. Apart from being an interesting system

in it self full of exciting physics, the QPC is also the fundamental "building block"

of most other devices realized in 2DEGs. In quantum dots they are used as the

"gate keepers" isolating the small island from the leads[23], they are used as charge

detectors[24], and in electronic interferometers they play the role of the mirrors,

partially reflecting incoming electrons[25].

A QPC can be defined by negatively charged strips of metal on the surface of

a GaAs/AlGaAs heterostructure, so called top gates. The negatively charged gates

deplete the electron gas underneath, thereby defining a 1D channel electrostatically

see fig. (2.1).

In 1988, B. J. van Wees et. al[26] and D. A. Wharam et. al[27] both reported

measurements of a QPC at cryogenic temperatures. They both found that the

conductance through the QPC exhibited steps as a function of the applied gate

17
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Figure 2.1: An illustration of a QPC defined on a GaAs/AlGaAs heterostructure.
The 2DEG below is depleted when a negative voltage is applied to the gates.

voltage. They reported that the quantization of the conductance was described by

G =
2e2

h
N, (2.1)

where N is an integer depending on the gate voltage.

Even through the first QPCs where measured 26 years ago there are still aspects

of the system that are not fully understood and subject to ongoing research. Of

those the 0.7 anomaly is properly the most interesting. At elevated temperatures

a plateau at 0.7 × 2e2/h develops, which can not be explained by a simple quanti-

zation in 1D. A lot of theory and data have been published in order to explain the

anomaly including spontaneous spin polarization[28, 29], a Kondo-like correlated

spin state[30, 31], and Wigner crystallization[32]. More resent measurements using

scanning gate microscopy, does not provide more certainty as one measurement fa-

vors Kondo or Wigner physics[33], while another rule out localization effect as the

origin of the 0.7 anomaly[34].

2.2 The conductance of a QPC

The quantization of the conductance through a QPC is only observed in the ballistic

transport limit. The QPC is ballistic when the mean free path le of the electrons are

much larger than the length L and width W of the QPC. Furthermore, the Fermi

wavelength λF ] must be comparable to the width of the QPC and the temperature
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2DEG

Gate

Figure 2.2: a) Schematic sketch of the QPC and contacts. b) A plot of subband
energy versus wave vector kx.

must be low compared to the level spacing ∆E of the transverse modes, defined by

the confinement, in the QPC[12]. The full set of conditions are:

le � L,W

λF ≈ W

∆En � kBT (2.2)

Assuming that the top gates produce a parabolic confinement potential and that

the transition from QPC to 2DEG is smooth[35] (called the adiabatic approxima-

tion), we can write down a simple Hamiltonian to describe the system,

H =
−~2

2m∗
(
∂2x + ∂2y

)
+ eV (y). (2.3)

Where V (y) are the confinement potential in the y direction. The energies of the

solution are:

En(x) = En +
~2k2x
2m∗

, (2.4)
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where En is the energy of the n’th subband due to the confinement in the y-direction.

Fig. (2.2) shows the dispersion along the x direction. The current density can be

found by using the following formula:

jn,kx(x, y) =
−|e|~
2im∗

[
ψ∗n,kx(x, y)∇ψn,kx(x, y)− ψn,kx(x, y)∇ψ∗n,kx(x, y)

]
. (2.5)

ψn,kx(x, y) is the wave function that solves eq. (2.3) and∇ is the differential operator.

The total current can then be found by integrating eq. (2.5) over kx and summing

over all subbands n.

In order to take the finite length of the QPC into account, a non-zero reflection

coefficient must be incorporated. There is a finite scattering probability when an

electron enters or exits the QPC. The reflection coefficient can be incorporated by

looking at the current on the source side of the QPC, see fig. (2.2) for a sketch

of the QPC and contacts. Right moving electrons (kx > 0) originating from the

source contact, occupied according to the Fermi-Dirac distribution of the source

contact, all reach the QPC. Electrons moving left are either reflected electrons,

described by the Fermi-Dirac distribution of the source contact, with probability

Rn(E) or transmitted electrons, from the drain contact described by the Fermi-

Dirac distribution of the drain contact, with probability 1-Rn(E). This all lead

to[36]:

I = 2|e|
∑
n

(∫ ∞
0

dkx
2π

vx(kx)f(E − µS)

+

∫ 0

−∞

dkx
2π

vx(kx)
[
Rn(E)f(E − µS) + (1−Rn(E)) f(E − µD)

])
= 2|e|

∑
n

∫ ∞
0

dkx
2π

vx(kx)Tn(E)
[
f(E − µS)− f(E − µD)

]
, (2.6)

where vx(kx) = ~kx
m∗ is the group velocity of the electrons, f is the Fermi-Dirac

distribution of the source/drain contact, and the factor 2 comes from spin de-

generacy. The transmission coefficient is related to the reflection coefficient by
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(1−Rn(E)) = Tn(E). In general Tn(E) =
∑

m |tmn(E)|2 is the probability of trans-

mitting through the QPC in mode n from all possible modes m at energy E. In

the adiabatic approximation, where all modes are assumed to be decoupled, this

simplifies to: Tn(E) = |tnn|2. Changing integration variable to energy dkx = dE
~vx(kx)

yields,

I =
2|e|
h

∫ ∞
−∞

dE
∑
n

Tn(E)
[
f(E − µS)− f(E − µD)

]
. (2.7)

It is clear from eq. (2.7) that the current will be zero without a bias applied, hence the

Fermi-Dirac functions will cancel. Moving to Linear response and looking at small

bias voltages, the Fermi-Dirac functions can be expanded: f(E−µS)−f(E−µD) ≈

−∂f(E−µS)
∂E

|e|VSD, where |e|VSD = µS − µD. The final result for the conductance is:

G =
I

VSD
=

2e2

h

∫ ∞
−∞

dE
∑
n

Tn(E)

(
−∂f(E − µS)

∂E

)
, (2.8)

the last term reduced to a delta function in the limit T → 0 and we get

G =
2e2

h

∑
n

Tn(E). (2.9)

If all transmission probabilities are 1 or 0, the sum reduced to N , the number of

occupied modes, in agreement with eq. (2.1) observed in experiments. The width

of the last factor in eq. (2.8) is ≈ 4kBT [37], so the steps disappear as the subband

spacing ∆E approaches 4kBT .

2.3 Transport in lithographically square QPCs

In the following section I present transport measurements of square QPCs of different

lengths. The QPCs are defined by Ti/Au top gates on a high mobility GaAs/AlGaAs

quantum well heterostructure. The 2DEG has a bulk density of n = 7.1× 1010 cm−2
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and a mobility of µ = 5.2× 106 Vs/cm2, measured in the dark.

The QPCs are designed to fulfill the two first constraints listed in eq. (2.2). The

lengths of the QPCs measured are 600nm and 800nm respectively and the width of

them both are 400nm. The mean free path of the 2DEG electrons are le ≈ 23 µm,

which takes care of the first constraint. The Fermi wavelength is λF ≈ 100 nm,

which is close to the width of the QPCs. Fig. (2.3a) shows an SEM image of a QPC

similar to the ones measured. Both QPCs measured has a middle gate, designed to

change the local potential landscape. All measurement reported are with the middle

gate fixed to ground.

All measurements were preformed in a cryofree dilution refrigerator with a base

temperature of ≈ 10mK1. The conductance were measured using a 4-wire lock-in

technique, with a small constant ac voltage bias of Vac < 10 µV. Non-linear con-

ductances were measured by applying a dc voltage up to Vdc = ±2mV on top of

the small ac bias. The general measurement setup is shown in fig. (2.3b). The data

Figure 2.3: a) SEM image of a QPC similar to the two QPCs measured. b) Overview
of the general measurement setup.

measured on both QPCs are quantitatively the same, therefore only data from the

longer QPC are shown, unless otherwise stated.

Conductance quantization in both QPCs are shown in fig. (2.4a). The long
1Measured using a nuclear orientation thermometer.
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QPC shows quantized steps until ≈ 15× 2e2/h, where as the short QPC only shows

steps until ≈ 10 × 2e2/h. Fig. (2.4b) shows the evolution of the conductance steps

in the short QPC as the temperature is increased. At low temperature the conduc-

tance shows fully developed plateaus and a small hint of the 0.7 anomaly is visible.

The 0.7 anomaly shows up as shoulder-like flattening of the conductance, just below

the first spin degenerate plateau. At higher temperatures the regular steps become

more washed out, because the energy of the thermal excitations is comparable to

the level spacing. The 0.7 anomaly strengthen with temperature and it will persist

to temperatures where all other plateaus are completely gone[38]. This "reversed"

temperature dependence suggests that the 0.7 anomaly is not a ground state of the

perfect transmitting system, but rather an emerging state in a not perfectly trans-

mitting system, facilitated by some spin polarization mechanism[39], which still lacks

a microscopic theoretical explanation.
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Figure 2.4: a) Conductance steps in the long (orange) and short (blue) QPC’s. b)
Temperature dependence of the conductance in the short QPC. The steps get less
pronounced with higher temperature.

2.3.1 Non-linear transport

Non-linear transport data are shown in fig. (2.5a,b) as a waterfall plot, where each

line is a conductance versus source/drain voltage trace. Each line is separated by

∆Vqpc ≈ 1.8mV and no artificial offset. Looking along Vsd = 0mV we find dense
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clusters of lines whenever there is a plateau in the conductance. Moving to finite

bias, Vsd = ±1mV, we find "half" integer plateaus (g = {1/2, 3/2, 5/2} × 2e2/h)

where there is an extra mode available on either the source or the drain side. The

integer and half integer steps can be understood in the context of non-interacting

electrons in a QPC, as schematically depicted in fig. (2.5c,d,e,f). When the source

or drain chemical potential reach the first subband we see the first half conductance

step plateau at finite bias, fig. (2.5c). Aligning the source and the drain to the

hight of the first subband will bring us to the first conductance plateau at zero bias,

fig. (2.5d). The 1.5×2e2/h plateaus are seen when the second subband is in between

the two chemical potentials, fig. (2.5e). Finally raising both the source and the drain

to the second subband pushes the conductance to 2× 2e2/h, fig. (2.5,f).

There are more line clusters in fig. (2.5a), the most prominent are the 0.7

anomaly, which at finite bias raises to 0.8×2e2/h. At low temperatures the anomaly

is not developed at Vsd = 0mV, hence the clusters are only visible at finite bias.

Connected to the lack of a plateau at 0.7 × 2e2/h is the zero bias anomaly (ZBA).

The peaks between the first plateau and pinch-off (zero conductance though the

QPC), seem to raise the conductance at zero bias, exactly making sure the plateau

at 0.7 × 2e2/h does not form. At elevated temperatures the peaks die out and the

0.7 plateau start forming at zero bias, see fig. (2.5b). Zero bias peaks are also visible

below the second plateau and if one looks closely a cluster-like formation of lines

starts to develop at g = 1.8 × 2e2/h on both sides of zero bias. The cluster-like

formation persists at higher temperatures, fig. (2.5b). This is the second subband

equivalent of the 0.7 structure.

The feature in the second subband is much weaker than the first subband counter-

part, this could be due to screening by the fully transmitting first subband. Another

interesting feature is the 1/2 plateau, which persist to much higher bias than the

higher half plateaus. It is also far from the expected conduction value, instead of

0.5×2e2/h it is found at 0.25×2e2/h. There is one more striking difference between
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the first half plateau and the rest: The higher plateaus all bend up with increasing

bias, whereas the first is flat. S. Ihnatsenka et. al[40] can within their calculations

explain both differences. The bending of the higher half plateaus is explained by

screening effects of the lower fully transmitting subband modes. The local potential

in the QPC show very little dependence on the bias voltage, which leads to an en-

hanced transmission of the partially reflected subband at finite bias. Furthermore,

is the lower value of the half plateau found to originate from pinning effects. The

lack of screening when only one subband is within the bias window, leads to an

increase in electron-electron interaction, which in turn show pinning of the energy

levels to the Fermi energy. Even taking these findings into account one can not

explain the last feature in fig. (2.5a), the flat plateau at g = 1.5 × 2e2/h and very

high bias, −2mV < Vsd < −1.2mV. This plateau is only seen here and not at higher

conduction values2.

Another way of viewing the non-linear transport data is achieved by taking

the derivative (numerically) of the conductance with respect to the gate voltage,

∂g/∂Vqpc called the transconductance. This highlights the transitions from plateau

to plateau, seen as red strips. The plateaus are seen as big black (dark) diamond

shaped areas. The first few integer and half integer plateaus are labeled in fig. (2.6a).

Starting at the transition between the second and the third plateau, raising/lowering

the chemical potential of the source corresponds to moving diagonally along the dot-

ted blue line. Whereas the dotted green line marks the raising/lowering of the drain

chemical potential. Following this method it is possible to map out almost all dark

regions in fig. (2.6a). The remaining dark regions are the 0.7 structures, in the

first and second subbands, marked by their finite bias conductance, ≈ 0.8 × 2e2/h

and ≈ 1.8 × 2e2/h. The extra 3/2 plateau is marked 1.5∗. The transitions lines

between the 0.7 structure and the first plateau have a downward curvature, hinting

to the different physical origin of this transition. A similar curvature is seen in
2This feature has also been observed by others[41, 42]
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Figure 2.5: a) Waterfall plot of the non-linear differential conductance, at many
different gate voltages. Dense clusters of lines indicate a plateau. The zero bias
anomaly (ZBA) is clearly seen as peaks below 1× 2e2/h. The plateaus at 0.8× 2e2/h
and at 1.5 × 2e2/h at high bias are not expected when the non-interacting model.
The 0.8 will at high temperature develop into the 0.7 structure. We speculate that
the plateau at 1.5× 2e2/h is closely connected to the 0.7 structure. b) Waterfall plot
of the non-linear differential conductance at 200mK. The ZBA is almost gone and
a small hint of the 0.7 plateau is visible at Vsd = 0. c)-f) Energy alignment with
the source/drain chemical potentials span all the "normal" plateaus. c) Source/drain
chemical potentials placed so the first plateau is visible. d)-e) Half plateaus are visible
when a energy level lies in between the source/drain chemical potentials. f) When
two energy levels lie below the source/drain chemical potentials, the second plateau is
visible.

the transitions lines in the second subband. Fig. (2.6b,c) shows the regions with

0.7 structures in both QPCs. It is clear that the curved, 0.7 transition crosses the

transition line between 1 × 2e2/h and 1.5 × 2e2/h, seen as an enhancement of the

transconductance. Furthermore, it cuts the 1.5×2e2/h diamond in two, leaving two

1.5× 2e2/h plateaus. One of the curved transition lines are marked by a thin green

guiding line, fig. (2.6c). The enhancement of the transconductance is also visible in

the second subband, but the transition is too weak in order for a second 2.5× 2e2/h

plateau to form. The two 1.5 × 2e2/h plateaus are vastly different. The "normal"

plateau is bending, whereas the new is flat. This means that the screening by the
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Figure 2.6: a) Transconductance (∂g/∂Vqpc) as a function of Vsd, in the long QPC.
Dark regions mark plateaus and red lines the transition between them. The first few
plateaus are marked by there conductance. The 0.8 and 1.8 regions are connected the
to emergence of a 0.7 structure (in both subbands) at higher temperatures. The extra
1.5 plateau (marked 1.5*) seems to be related to the 0.7 structure in the first subband.
b) Zoom in of data from the long QPC. A clear enhancement of the transconductance
is visible when the 0.7/1 transition crosses the 1/1.5 transition, cuting the 1.5 plateau
into two. c) Zoom in of the same region, in data from the short QPC. The same
features are also seen in this QPC. The left transition line is marked by a green guide
line.

lower subband is balanced by some extra mechanism, which makes the local QPC

potential drop linearly with bias, as needed for a flat plateau.

Information about the subband spacing can be extracted from the widths of the

zero bias plateau diamonds. Within linear response (Vsd ≈ 0) the following equation

holds for the difference in chemical potentials: µs − µd = Vsd|e|. This leads to an

equation for the subband spacing: ∆Vsd = 2∆Esb/|e|, where ∆Vsd is the width of

the diamond along Vsd, see fig. (2.6a). Because the diamonds have the same size

through the whole range, from g = 0× 2e2/h to g = 7× 2e2/h, the individual level
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spacings are also the same. Equidistant level spacing is exactly the fingerprint of

a harmonic confinement potential. The level spacing of the long QPC is 1.1meV,

whereas the short QPC have a level spacing of 1.45meV.

2.4 Conclusion

I have measured two different QPC’s, one with a length of 800nm the other a bit

shorter, only 600nm long. We find nice conductance plateaus until 15×2e2/h in the

long QPC and 10× 2e2/h in the short. Non-linear transport revealed the existence

of a 0.7 structures in the two lowest subbands, as well as an extra 1.5×2e2/h plateau

at high bias. We argue that the formation of this extra plateau must involve extra

mechanisms to balance the screening by the lower subband and is closely connected

to the 0.7 structure in the first subband. Finally we find that the confiment potential

in both QPCs are highly harmonic, resulting in an equidistant level spacing of

1.1meV and 1.45meV for the long and short QPC respectively.



Chapter 3

Quasi Particle Tunneling

3.1 Introduction

One of the most amazing things about the FQHE is the fractionally charged quasi

particles found in all fractional states. These quasi particles are gap less excita-

tions above the ground state that emerges when the system is moved away from

a quantized plateau. Moving to the low field side of a plateau will decrease the

degeneracy of the LL and leave an excess of electrons, which in the CF picture can

be seen as an quasi particle. A quasi hole will be generated on the high field side of

a plateau where there is an excess of magnetic field quanta[4]. We will from now on

not distinguish between quasi particle and hole, but simply call them quasi particles.

Fig. (3.1) show the transition from ν = 1/3 to ν = 2/5 in terms of CF’s.

From Laughlin’s wave function we get that the charge of the quasi particles

in 1/m, m odd, fractions should be e∗ = e/m[16]. Jain has with the CF theory

extended this argument to all fractions produced in the CF sequences. In general a

fraction ν = ν∗/(2pν∗±1) will have quasi particles with charge e∗ = e/(2pν∗±1)[4].

This result implies that all 3rd fractions (1/3, 2/3, 4/3, 5/3) have a quasi particle

charge of e∗ = e/3. Experimentally this has not always been the case. The quasi

particle charge at ν = 2/3 have been measured to be e∗ = 2e/3 using an antidot and

29
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Figure 3.1: Transition from ν = 1/3 to ν = 2/5. a) The system is in the ν = 1/3
state, all CF are in the first ΛL. b) As the field deviates from the exact filling the
degeneracy of the ΛL’s decrease and a single CF is pushed to the second ΛL. c) This
process continues when the field is further reduced. d) The ν = 2/5 state is reached
when the two lowest ΛL’s are filled.

in shot noise measurements[43, 44]. Others have measured the quasi particle charge

to be e∗ = e/3[45] and it therefore suggests that more work is needed in order to

fully understand if the general theory is correct.

In this chapter we present measurements of quasi particle tunneling in a QPC.

We present data in both the weak backscattering (WB) and the strong backscat-

tering (SB) regime. In the WB regime quasi particles are tunneling between edge

channels in the QPC. The QPC allow us to bring the two edge channels into close

proximity and thereby obtaining a non zero tunneling coupling. The transmission

coefficient of the tunneling edge channels should only be reduced by a few percent

in order to remain in the WB regime. In the SB regime will the tunneling be across

the QPC, where the transmission coefficient is almost zero. The tunneling particles

in this regime are electrons, because they have to tunnel through a vacuum region

in the QPC. Both situations are schematically depicted in fig. (3.2).

The theory describing the physics controlling tunneling in the WB regime was

developed by X. G. Wen[46, 25]. The tunneling conductance as a function of the
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Figure 3.2: Schematically sketch of the two different tunneling regimes. Blue regions
are a QH fluid and the white regions are depleted 2DEG, achieved by applying a
negative voltage to the two gates (gray). a) The weak backscattering regime. Here the
edge states of the QH fluid is weak backscattered across the constriction, marked by
the black dashed line. b) The strong backscattering. The 2DEG in the constriction is
completely depleted and tunneling happens along the QPC.

source/drain voltage is given by:

gtun(Vsd, T ) = AT 2g−2F

(
g,
e∗Vsd
kBT

)
(3.1)
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2π
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2π

)
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2

)
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2

)
Im
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2π

)})
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where A is a constant, B is the beta function, Ψ is the digamma function, e∗ is

the fractional quasi particle charge and g is the Coulomb interaction parameter.

Tacking the hight of the tunneling peak at different temperatures allow us to extract

the Coulomb interaction parameter, g, without fitting the full functional form of

eq. (3.1). This is possible because eq. (3.1) at Vsd = 0 gives gtun(0, T ) ∝ T 2g−2. e∗

can only be found by fitting to the full functional form of eq. (3.1). In practice we

never measure the conductance but the resistance. The two can be related by[47]

gtun =
RD −Rxy

R2
xy

, (3.2)

where RD is the a measure of the local filling factor in the QPC given by RD =

1
νc

h
e2
[37]. If the bulk and constriction are not at the same filling factor, Rxy can in

eq. (3.2) be exchanged with R∞, the resistance at high source/drain voltage. At high

source/drain voltage can the tunneling contribution to the resistance be neglected,
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which mean that RD(Vsd 6= 0) → Rxy or R∞ if the bulk and constriction are not

aligned.

For the SB case the theory was developed by several people[48, 49]. Later A.

V. Shytov et al.[50] expanded the theory to include tunneling into a compressible

quantum Hall edge, filling in the gaps left by the first theories that only dealt with

incompressible edges. The theory predicts that the tunneling current, Itun, for a

voltage bias between the two edges shall follow a power law dependence

Itun ≈ V α, (3.3)

at low temperature, eV � kBT . Furthermore, shall the linear conductance exhibit

a nonlinear dependence on temperature

G(T ) ≈ Tα−1. (3.4)

The exponent α is predicted to show a stepwise increases as a function of 1/ν (ρxy),

see fig. (3.3). For 0 < 1/ν < 1 the predicted exponent is 1 (full curve not shown

Figure 3.3: Power law exponent, α, as a function of 1/ν (ρxy). α shows a stepwise
dependence on the inverse of the filling factor. Steps appear when the relative magnetic
field felt by the CF shifts negative to positive. If ρxx is not zero, the shape of the curve
depends on the strengths of the short range interactions, U. Taken from [50].
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in the figure), for 1 < 1/ν < 2 α increases linearly to 3 where it plateaus until

1/ν = 3. The onset of the plateau is due the sign change of the effective magnetic

field felt by the CF’s. The value p indicated on the figure is equal to the 2p factor in

eq. (1.17), which count the number of flux quanta attached to each electron. Four

different curves are shown, three curves show the deviation away from the simple

result without any longitudinal resistivity. Here U and κ0 is a short range interaction

and the CF compressibility.

3.2 The weak backscattering regime

A lot of data have been published on measurements of the quasi particle charge as-

sociated with a large range of different fractions. The first tunneling data published

were mostly focused on ν = 1/3, which according to theory should have a quasi par-

ticle charge e∗ = e/3 and a Coulomb interaction parameter g = 1/3[51, 52]. These

early papers did not report any extracted numbers for the quasi particle charge,

but did find g = 1/3. The quasi particle charge of e∗ = 1/3 was measured in

Shot-noise measurements some years before the first tunneling measurements were

reported[53, 54].

Apart from ν = 1/3, a single reported measurement of ν = 1/5 has been published[55],

whereas much attention have been given ν = 5/2, because of the possibility that

this fraction will carry quasi particles with non-Abelian exchange statistics[56, 57,

58, 59, 47, 60].

We will focus on tunneling measurements of the quasi particle charge associated

with ν = 1/3. In the following section we present tunneling measurements of two

square QPCs of different lengths, 800nm and 600nm respectively. The QPCs are

defined by Ti/Au top gates on a high mobility GaAs/AlGaAs quantum well het-

erostructure. The 2DEG has a bulk density of 7.1× 1010 cm−2 and a mobility of

5.2× 106 cm2/Vs, measured in the dark.
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All measurements were preformed at cryogenic temperatures, using a cryofree di-

Figure 3.4: The measurement setup consists of four lock-in amplifiers, all phase
locked, measuring the the three voltages Rxx, Rxy and RD. The last lock-in are used
to measure the current through the sample. All voltage signals goes through a pre-
amplifier with a very low noise floor before entering the lock-in’s. The current is
converted to a voltage signal through a current amplifier. The voltage on the QPC
gates are delivered by a DAC, which also feeds the dc voltage used in nonlinear mea-
surements.

lution refrigerator with a base temperature, T ≈ 10mK. The resistances, both bulk

and the local QPC resistance, RD, were measured using a 4-wire lock-in technique,

with a small ac bias, Vac < 10 µV applied. Nonlinear tunneling data were measured

using an additional dc bias, Vdc = ±1mV along with the ac bias. The measurement

setup is shown in fig. (3.4). The setup allows for simultaneous measurements of Rxy,

Rxx and RD. An SEM image of a similar QPC as the ones measured can be seen in

fig. (2.3a).

Fig. (3.5a) shows the bulk resistances, Rxy and Rxx in the full magnet range

(0T-12T). We see many well developed fractions, as well as ν = 1/3 at 12T.

Fig. (3.5b) show a zoom in of Rxy around ν = 1/2, along with the resistance of the

QPC, RD, with −0.8V on the short QPC gates. The bulk and constriction densities

does not match when the QPC gates are depleted. We see hints of tunneling in RD
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Figure 3.5: a) Bulk measurement of Rxy and Rxx as a function of magnetic field, B.
ν = 1/3 can just be reached in the bulk at 12T. b) Zoom-in at region around ν = 1/2
in the bulk. RD shows the filling of the QPC which is energized at −0.8V.

at the end of νc = 1/3, where the plateau develops two small consecutive bumps.

These tunneling features strongly suggest that we are able to measure tunneling of

ν = 1/3 quasi particles even though they only live in the close vicinity of the QPC.

Similar behavior is seen in the longer QPC as well.

Looking at the nonlinear behavior of these tunneling peaks provide the needed
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Figure 3.6: a) 2D surface plot of a tunneling peak in the short QPC. Dark region to
the left is the end of νc = 1/3 The slight darkening of on the sides of the tunneling
peak indicates an undershoot. b) Similar plot for the long QPC.

information to determine the origin of the features seen at zero bias. We are looking

for zero bias peaks that emerge right when the plateau stops, which is exactly the

place where quasi particles are created and where the fully transmitting edge states

start to turn around, i.e. finite backscattering. Two 2D surface plot of RD as a
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function of Vsd and B on the high side of νc = 1/3 are shown in fig. (3.6). Fig. (3.6a)

shows data from the short QPC, where the gates are held at −1.21V. The data

shown in fig. (3.6b) is from the long QPC, with the gates held at −1.28V. In both

cases a tunneling peak raises to ≈ 4e2/h right after the plateau ends. The peaks

stretches over ≈ 100mT which is also the length others have observed (for other

fractions)[57, 59]. It is also wroth noticing that both peaks have a small undershoot

on both sides, seen as a slightly darker blue region. These undershoots are char-

acteristic for tunneling peaks in the WB regime and are seen for fractions with a

Coulomb interaction parameter, g, below 1/2.

The non-peak feature seen in fig. (3.6b), at ≈ 8.87T is also present in the data

from the short QPC (not seen in fig. (3.6a)) and there are in general a lot of smaller

alternating dips and peaks further away from the ν = 1/3 plateau in both devices.

These features suggests that other mechanisms also are at play. The fact that the

tunneling peaks are seen just after the plateau ends and that they stretch over a

long range in field, makes us more confident that these other mechanisms does not

alter the tunneling significantly.

Fig. (3.7) shows the result of fitting the tunneling peaks, from fig. (3.6),

to eq. (3.1). Fig. (3.7a,b) shows the 1D cuts, taken along the dashed lines in

fig. (3.6a,b), at several temperatures. Inserts show the peak hight as a function

of temperature. The peak hight is defined as the distance from peak max to the

peak base line, R∞. The hight follow a power law dependence, ∝ T 2g−2, where g

is the Coulomb interaction parameter. For the two tunneling peaks we find g to

be 0.43 and 0.51 for the short and long QPC respectively. The result of fitting

the data in fig. (3.7b) are shown in fig. (3.7c), here six different temperatures are

shown. The fits are obtained by simultaneously fitting all the curves in fig. (3.7b)

and minimizing, in the least square sense, with respect to A, g, R∞ and e∗/e. We

are only interested in g and e∗/e, which are the physical parameters we can relate

to theoretical predictions. The best fit parameters are (g, e∗/e) = (0.61, 0.31). The
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Figure 3.7: a)+b) Tunneling peak as a function of source drain voltage, for multiple
temperatures. Data are taken at the positions of the dashed lines in fig. (3.6). Inserts
show the peak heights as a function of temperature. The height follow a power law,
giving values for g. For the short QPC (fig. (3.7a)) we obtain g = 0.43 and g = 0.51 is
extracted for the long QPC. c) Result of fitting eq. (3.1) to the data in fig. (3.7b). Best
fit parameters are (g, e∗/e) = (0.51, 0.31). d)+e) Fit error as a function of g and e∗/e.
Error is obtained as the sum of the squared residuals, normalized by the maximum
error.

data in fig. (3.7a) are fitted in the same way (not shown), with one exception. The

extra bump developing at smaller temperatures around Vsd = 0.3mV are not in-

cluded in the fit. The bump is always seen in the this QPC, although we have no

good explanation to why or what courses it. The best fit parameters obtained for

the data in fig. (3.7a) is (g, e∗/e) = (0.43, 0.23).
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Fig. (3.7d,e) show normalized fit errors as a function of g and e∗/e. The plots are

obtained by fixing g and e∗/e and then fitting for the best A and R∞. The sum of

the squared residuals, normalized to the maximum error value, are used to indicate

the best fit. The theoretical predicted values for g and e∗/e, (g, e∗/e) = (1/3, 1/3),

are marked on both figures.

We find reasonable agreement between the g extracted from the peak height and

the g given directly from the fit to eq. (3.1). The values for e∗ obtained are both

close to the predicted value, e∗ = 1/3. The predicted value for g = 1/3, is not

in accordance with our values for g. The values obtain for g, from the two data

samples, are also not close to the same value. We speculate that this spread in g

may have to do with the non-peak features mentioned earlier. If the quasi particles

tunnel through a more complicated landscape, and not just from edge to edge, it

may alter the effective interaction but it should not alter the charge of the tunneling

particles itself.

3.3 The strong backscattering regime

When X. G. Wen[61] predicted that the edge state excitations in the fractional

quantum Hall regime could be described as a chiral Luttinger liquid[62], he started

avalanche of experimental and theoretical research. One of the first experimental

papers to be published on the subject was by F. P. Milliken et al.[63]. They looked

at tunneling through a QPC while holding the bulk at ν = 1/3. They found at lot

of sharp resonances that decayed and narrowed rapidly with temperature. Espe-

cially was it found that the FWHM of the resonances decreased with a power law

described by the exponent 2/3. This result was on of the first that showed the X. G.

Wens prediction was true. Shortly after A. M. Chang et al.[64] reported I-V mea-

surements supporting the results found by F. P. Milliken. They utilized a new type

of sample grown by L. N. Pfeiffer, the cleaved edge overgrowth technique (CEOG).
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Figure 3.8: a) SEM image of a similar the device as the one measured. b) Only
the two gates highlighted in orange were used, the rest were fixed to ground. b) The
measurement setup used to measure tunneling in the SB regime.

This type of sample have a much cleaner tunneling barrier, than one can produce

with a QPC. The CEOG type of samples have become a standard system for these

type of measurements. A. M. Changs found the voltage exponent in eq. (3.3) for

ν = 1/3, to be 2.7 and the temperature exponent in eq. (3.4) to be 1.75, consistent

with theory.

To everybodys surprise was it by 1997 clearly established that experiment and

theory only agreed in the case of ν = 1/3 and ν = 1, which was shown to have

a exponent α = 1 (not a Luttinger liquid). M. Grayson et al.[65] reported mea-

surements on 4 samples that together with some new data from Chang showed a

linear increase in α starting from ν = 1 and not a stepwise increase as predicted,

see fig. (3.3). Recently M. Hike et al.[66] have measured the transition from Fermi

liquid to Luttinger liquid in the vicinity of ν = 1. They showed that α = 1 all the

way from B ≈ 0 to ν = 1, confirming that part of the theory.

We present measurements in the SB regime probed with a QPC defined on

a high mobility GaAs/AlGaAs quantum well heterostructure, with a density of

8.9× 1010 cm−2 and a mobility of 25× 106 cm2/Vs. The sample is cooled in a cry-

ofree dilution refrigerator, with a base temperature of ≈ 10mK. The tunneling
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measurements are done by applying a dc voltage Vsd = ±1mV and measuring the

current in a dmm, through a current amplifier. No ac bias was applied to the sample

during the measurements. Fig. (3.8a) shows the setup used. The dc bias and QPC

gates were controlled by a DAC (digital/analog converter) with a max output of

±10V . A similar device as the one used are shown in fig. (3.8b). Only the two gates

highlighted in orange were used, while all other gates were fixed to ground.

The QPC were operated in the range of -2V to -3V in order to achieve a tunnel-

ing barrier across the QPC. The QPC pinches off at ≈ −3.7V and in the voltage

range used 4-8 spin degenerate modes were seen in zero field measurements of the

QPC.

The results are highlighted in fig. (3.9). a) shows an I-V measurement of the

tunneling curve with ν = 1/3 in the bulk. The black line is the best fit to the slope,

which gives an exponent α = 3.75± 0.15. A similar measurement with ν = 1 in the

bulk are shown in the insert. The extracted value for α is 1.03±0.001. The value for

α found for ν = 1 agree with a already know fact, the QH fluid at the integers are

Fermi liquids and should therefore have linear I-V curves. Theory predicts that the

exponent for ν = 1/3 should be 3. The measured value is some what consistent with

the theory value. Others have reported tunneling exponents that are not consistent

from sample to sample[66, 67] which indicate that these tunneling exponents are

very sensitive to the barrier shape.

Fig. (3.9b) shows a set of I-V curves at different temperatures taken at an inter-

mediate filling fraction ν = 0.26. At the highest temperatures the I-V curves are

almost linear. Fitting the linear regime of the tunneling curves (flat parts around

zero bias) allows an extraction of the linear conductance G. The value found for G

are plotted in fig. (3.9c), where a power law fit gives the best exponent. Theory tells

us that we can relate the voltage exponent found by fitting single I-V curves with the

exponent extracted from the linear conductance. The linear conductance exponent

are according to eq. (3.4) given by α− 1. Using this relation gives α = 2.13± 0.18.
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Figure 3.9: a) I-V curve for ν = 1/3 in the bulk. The extracted value for α is
3.75± 0.18. The insert show the same measurement for ν = 1, here α is 1.03± 0.001.
b) I-V curves for a large range of temperatures. c) Values of the linear conductance
obtained from fit the the I-V curves in b). The exponent found can theoretically be
related to the voltage exponent. d) Values for α plotted as a function of inverse filling.
The values found at ν = 1, 2/3, 2/5, 1/3 all fall on a straight line. Insert also show
that value obtained for ν = 2/7.

Fig. (3.9d) shows all the values for α found both on well defined fractions and off.

The insert also shows the value for α obtained at ν = 2/7. Ignoring the ν = 2/7

value for a second, the four value found at ν = 1, 2/3, 2/5, 1/3 all fall on the straight

line as seen by others[64, 66, 65]. These four values are all from single I-V curves,

whereas the last two values at low filling both are obtained via the linear con-

ductance. We therefore find that the theoretically found relation between the two

exponents not are supported by our data. As for ν = 2/7, we speculate that we

have hit a resonance, which would alter the tunneling signal profoundly.
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3.4 Conclusion

I have measured quasi particle tunneling in the ν = 1/3 state in two QPCs of different

length. Both gave fractional charges close to the predicted value, e∗ = 0.31e and

e∗ = 0.23e. The Coulomb interaction parameter g was not found to be consistent

with theory, but reasonable agreement was found between g values extracted from

peak height fit and the full fit. I speculate that the effective interaction may be

altered by multiple tunneling event or by other interactions as the quasi particles

tunnel.

Several fractions are measured in the strong backscattering regime. I found that

values of α found from single I-V curves fall on a straight line and that this data

does not support the theoretical link between the voltage exponent and the exponent

found from the linear conductance.
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Device Fabrication

When first encountering the world of semiconductor based sample fabrication, you

will properly find yourself completely overwhelmed. Not only because there are so

many new things to learn, also peoples apparent attention to detail will likely seem

unnecessary or even crazy to begin with. You will soon learn that the attention to

detail is the single most important part of fabrication. It is the details that guide

you when trying out new designs or when a fabrication step fails, which they will.

Writing everything down is therefore crucial, also when things go as according to

plan.

This section contains the recipes I have used, along with my comments and con-

sideration. Most of the recipes are in many ways very similar to the ones found

in Douglas McClures Ph.D thesis[68]. As these served as a starting point for my

fabrication.

A.1 Removal of Ga from the backside of the wafer

All GaAs wafers are grown on a blank GaAs substrate. A blank GaAs substrate is

the best starting point, because it insures a perfect crystal without defects or strain

from the first atomic layer. In order to glue the substrate to the holder inside the

43
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MBE (Molecular beam epitaxy), pure Ga are used.

Because Ga has a very low melting point, 29.8 ◦C, the backside of the wafer will

constantly change and might cause problems during fabrication. Removing the Ga

is therefore the first step in any fabrication process.

1. Spin a single layer of your favorite photo resist on the top side of the wafer. I

use AZ4511, spun at 4000 rpm for 45 s.

2. Bake at 115 ◦C for 2min.

3. Place the wafer face down on a clean room wipe and wipe off as much Ga you

can (should be almost al of it). It can be necessary to reheat the Ga, but do

it on a colder hot plate, so you do not hard bake the resist.

4. Etch in HCl (full strength) for ∼3min. Etch time depend on the amount of

Ga left on the backside.

5. Rinse in MQ to stop the etch.

6. Rinse off the resist in Acetone. Hold the wafer over a beaker and use a squeeze

bottle to remove most of the resist. This prevents any Ga from sticking on the

top surface.

7. Strip resist fully by soaking in Acetone for 10min.

It is very important to be careful that no Ga ends up on the surface of the wafer.

It is impossible to remove, without damaging the surface and may completely ruin

the part of the wafer it landed on. Before starting this fabrication procedure, you

must have received the correct acid training.

A.2 Mesa formation

The first step is to cleave a suitable size chip off of the wafer. A good size is 6mm

by 7mm. This leaves room for 16 mesas of standard size with enough space to the
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sides, that the outer most mesas are sufficiently far away from the cleaved edges.

There are two ways to cleave a piece off a wafer. Using a scriber insures high

precession, but may leave a lot of small particles along the scribe, which can be very

hard to get off again. If precession is not a problem, I strongly recommend cleaving

by making a small "notch" at the very edge. If one applies a bit of force, while

resting the notch over a sharp edge, the chip will break along a crystal direction,

leaving a nice clean cut.

Mesas are so big that e-beam lithography is overkill and will take a very long time.

With photo lithography the time spend on this step is reduced from many hours, to

1 hour.

I will recommend using a piece of pure GaAs as a test chip throughout the hole

mesa formation process, in order to test the etch rate before etching the real chip.

The junk chip can also come in handy because it stops you from wasting a chip in

case of bad resist or old developer.

1. Three solvent clean. Sonicate for 4min in TCE (trichloroethylene), acetone

and IPA (isopropanol). Below dry with nitrogen.

2. Bake at 185 ◦C for 5min, in order to thoroughly dry the chip.

3. Spin a single layer of AZ4511 at 4000 rpm for 45 s.

4. Bake at 115 ◦C for 2min.

5. Expose the chip in the mask aligner for 10 s (100 µJ/cm2).

6. Develop in 1:3 AZ400K/H2O for 60 s. Contentiously move the chip around in

the developer.

7. Rinse in water for 15 s and blow dry with nitrogen.

8. Etch in 240:8:1 H2O:H2O2:H2SO4. Etch the junk chip for 60 s.

9. Rinse in H2O for 15 s. Blow dry with nitrogen.
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10. Strip the resist on the junk chip, by soaking it in acetone for 10min. Rinse in

IPA and blow dry with nitrogen.

11. Measure the mesa hight using the Profilometer, the etch rate should be roughly

3 nm/s.

12. Etch the real chip, using the precise rate.

13. Strip the resist on real chip, by soaking it in acetone for 10min. Rinse in IPA

and blow dry with nitrogen.

14. Measure the mesa hight on the real chip.

The hight of the mesas are needed when connecting top gates and bond pads.

It is important to let the etch rest for at least 15min before using it. I recommend

using a magnet stirrer. For most wafers it is sufficient to etch past the first donor

layer, in order to isolate the mesas at cryogenic temperatures. If the second donor

layer (below the 2DEG) is heavily doped, it may be necessary to etch all the way

past that donor layer as well. Just as with the Ga removal procedure, it is important

that you have received the correct acid training before starting this fabrication step.

A.3 Ohmic contacts

Next step after formation of the mesas are ohmic contacts. The contacts have to

be annealed and that process may damage any small gates, which is why the ohmic

contact patterning must come first.

The contacts are so large, 135 µm×135 µm, that photo lithography is well within

range. Nevertheless we have all ways used e-beam lithography, because it is a

extremely reliable process.

1. Three solvent clean. Sonicate for 4min in TCE (trichloroethylene), acetone

and IPA (isopropanol). Below dry with nitrogen.
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2. Bake at 185 ◦C for 5min, in order to thoroughly dry the chip.

3. Spin a layer of PMMA 495 A8, at 4000 rpm for 45 s.

4. Bake at 185 ◦C for 4min.

5. Spin a layer of PMMA 495 A8, at 4000 rpm for 45 s.

6. Bake at 185 ◦C for 6min.

7. Spin a layer of PMMA 950 A4, at 4000 rpm for 45 s.

8. Bake at 185 ◦C for 8min.

9. Pattern using the Elionix ELS-F100, acceleration voltage 100 kV, beam current

40 nA, 250 µm aperture, 600 µm write field, 20 k dots, dose 1200 µC/cm2.

10. Develop in 1:3 MIBK/IPA for 90 s.

11. Rinse in IPA for 15 s and blow dry with nitrogen.

12. Plasma clean for 60 s.

13. Prepare the metal evaporator for loading. The next steps must be done fast.

14. Etch in 7% HF for 5 s, in order to remove any oxide.

15. Rinse in H2O for 10 s and blow dry with nitrogen.

16. Run to the evaporator, load the sample and pump out the load lock. You can

take it easy from now on.

17. Evaporate the appropriate amount of metal. See A.3.1.

18. Lift off in 80 ◦C NMP (n-methyl-2-pyrrolidone) for 60min.

19. Using a small pipette, gently blow warm NMP over the chip (still in the beaker)

to remove most or all the unwanted metal. If some does not come of, transfer

the chip to room temperature acetone for a few hours.
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20. Finish lift off by rinsing in IPA. Blow dry with nitrogen.

21. Anneal sample in the AccuThermo AW610 rapid thermal annealer. See A.3.2.

The tri-layer resist stack is very high, ∼1200nm, which is needed for the metal stack

forming the ohmic contacts. For most metal stacks, it is properly sufficient to use

a single layer of A8 under the A4, but I have found that it reduces likelihood of

getting a nice and easy lift off.

HF is a serious chemical, which needs special attention. You should always have

somebody with you in the clean room, when using HF. The extra person have the

added advantage, that he/she can load the chip into the evaporator immediately

after the etch, while you clean up.

A.3.1 Metal stacks for ohmic contacts

We have had success with two different metal stacks, Pt-Ge-Au and Ni-Ge-Au.

Although lately the Pt based metal stack have been given us some problems. The

chip gets very hot when evaporating Pt and it causes the A8 resist to reflow, which

shifts the position of the window in the different resist layers. Because the Ni based

stack also gives us good contact, we have abandoned the Pt based stack.

The most important aspect in a Ge-Au based contact stack is the ratio between

Ge and Au, it should always be 1:2. This ratio forms an eutectic alloy that have

been proven to be vital when forming ohmic contact to GaAs(ref to Williams). The

Pt/Ni serves as a wetting agent and is believed to enhance the diffusion of Ge into

the GaAs, which makes the contact to the 2DEG. A top layer of Au makes the

Pt/Ni move efficient, but it also provides a contact surface that is easy to bond to.

Ni-Ge-Au Because of the Ni this metal stack has to be evaporated using the old

E-gun evaporator.

1. 5 nm Ni
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2. 135nm Ge

3. 270nm Au

4. 112nm Ni

5. 100nm Au

This stack gives a good contact (∼200 Ω) to 2DEG’s located, down to, 250nm be-

low the surface. If the 2DEG is located below 250nm, we have had success with

increasing the thickness of the top layer to 150nm.

Pt-Ge-Au This metal stack can be evaporated using either AJA’s (ATC 1800-

HY). Be aware that the chip heats up when evaporating Pt, keep the rate low.

1. 5 nm Pt

2. 200nm Au

3. 100nm Ge

4. 73 nm Pt

5. 100nm Au

6. 50 nm Ge

7. 55 nm Pt

Because this metal stack was only used a few times, it is an exact reblica of the

recipe used by Douglas McClure[68].

A.3.2 Anneal recipes

The anneal recipe we use is adapted from a recipe developed by James Medford[69].

We always anneal in a Forming gas (N2/H2) atmosphere and we use nitrogen as

flushing gas. The final temperature and time depends on the wafer. We have used
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temperatures between 400 ◦C and 460 ◦C and annealing times between 20 s and 2min.

A good starting point, which is almost always close to a good time/temperature pair,

is 60 s at 440 ◦C.

The recipe as it is defined in the RTP (AccuThermo AW610) can be found below.

The actual annealing step is #11.

# Function Time (s) Temperature (◦C) N2 (slpm)1 N2/H2 (slpm)

1 Delay 30 0 5.0 0.0
2 Delay 30 0 0.0 2.0
3 Ramp 20 120 0.0 2.0
4 Steady 50 120 0.0 2.0
5 Ramp 20 220 0.0 2.0
6 Steady 20 220 0.0 2.0
7 Ramp 10 300 0.0 2.0
8 Ramp 10 360 0.0 2.0
9 Steady 20 360 0.0 2.0
10 Ramp 20 440 0.0 2.0
11 Steady 60 440 0.0 2.0
12 Delay 120 0 0.0 3.0
13 Delay 700 0 5.0 0.0

Table A.1: Anneal recipe

A.4 ALD - Oxides

It can be a good idea to put down a layer of oxide, using the ALD, before any

top gates, especially if you need positive gate voltages. The easiest is just to put a

layer covering the hole chip, because this saves a e-beam step and it is easy to bond

through the oxide layer.

We have found that gate bond pads does not stick to the chip surface and will come

off very easily, when bonding, if there is oxide between the bond pad and chip. I

therefore recommend putting down resist and opening windows where the oxide is

needed. ALD oxide covers all surfaces, so even though the actual layer is only a few

nm thick, it can be hard to lift off. Using more then one layer of resist usually helps.
1standard litres per minute
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There are generally one parameter that matters when growing oxides, the temper-

ature. Increasing the temperature will allow the process to go faster, but will also

incorporate more stacking faults/imperfections. I have always grown my oxides at

90 ◦C, but higher temperatures may also give working oxides.

HfO2 This recipe gives good oxides on both ALD machines.

1. Inner and Outer heaters set to 90 ◦C. Let them stabilize.

2. Set N2 flow to 20 sccm.

3. Pulse Hf precurser for 0.2 s.

4. Wait 60 s.

5. Pulse H2O for 0.02 s.

6. Wait 60 s.

7. Repeat 3. to 6. until desired hight is reached.

8. Turn off heaters and N2 flow.

The hight of one layer is ∼1.2Å.

A.5 Top gates

Putting down top gates is last step before the chip is done and ready to cool down.

I have always done this step in two rounds. First defining the small gate on top of

the mesa and in a second step connecting to bond pads. The bond pads are big and

need much more metal, than the small gates, in order insure reliable bonding. It

may seem like the wrong order at first, but the small gates can easily break if you

try putting them on top of the much thicker bond pad arm.
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A.5.1 Small gates

In order to save time on the e-beam step, I only expose the smallest features with

a low current. I use 100pA or 500pA depending on the size and how close the fea-

tures are to each other. You should only use 100pA if your features, or separation

between features, are 50 nm or less. For bigger features (≥1 µm) I use 2 nA.

For the low current, use 40 µm aperture, 150 µm write field, 60 k dots, dose 2400 µC/cm2.

For the high current use, 60 µm aperture, 300 µm write field, 60 k dots, dose 1800 µC/cm2.

The doses are roughly correct if the PMMA are developed in 0 ◦C MIBK/IPA. Cold

development gives sharper definition, which is crucial if the design involves small

separations.

1. Three solvent clean. Sonicate for 4min in TCE (trichloroethylene), acetone

and IPA (isopropanol). Below dry with nitrogen.

2. Bake at 185 ◦C for 5min, in order to thoroughly dry the chip.

3. Spin a layer of PMMA 950 A2, at 4000 rpm for 45 s.

4. Bake at 185 ◦C for 15min.

5. Pattern using the Elionix ELS-F100, acceleration voltage 100 kV.

6. Develop in 0 ◦C MIBK/IPA 1:3 for 90 s.

7. Rinse in room temperature IPA for SI15s and blow dry with nitrogen.

8. Evaporate 5 nm Ti and 15 nm Au.

9. Lift off in Acetone over night.

10. If necessary use nitrogen bobbles to remove all the metal. DO NOT Sonicate.
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A.5.2 Bond pads

It is in general easiest to evaporate enough metal on the bond pads and arms so

the total metal stack is taller than the mesa, this insures contact to the small gates

on top of the mesa. If the mesa is very tall, this approach will quickly involve

evaporating a lot of gold, which is expensive. Instead I have sputtered a layer of

titanium, which insures that the metal climbs the mesa wall nicely, see figure A.1.

Figure A.1: A picture of a tall mesa with Ti/Au climbing the side wall. 100 nm of
Ti is first sputtered at an 30◦ angle, followed by evaporation of 200 nm of Au.

1. Three solvent clean. Soak for 4min in TCE (trichloroethylene), acetone and

IPA (isopropanol). Below dry with nitrogen. NO sonication.

2. Bake at 185 ◦C for 5min, in order to thoroughly dry the chip.

3. Spin a layer of PMMA 495 A8, at 4000 rpm for 45 s.

4. Bake at 185 ◦C for 4min.

5. Spin a layer of PMMA 495 A8, at 4000 rpm for 45 s.

6. Bake at 185 ◦C for 6min.

7. Spin a layer of PMMA 950 A4, at 4000 rpm for 45 s.

8. Bake at 185 ◦C for 8min.
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9. Pattern using the Elionix ELS-F100, acceleration voltage 100 kV, beam current

40 nA, 250 µm aperture, 600 µm write field, 20 k dots, dose 1200 µC/cm2.

10. Develop in 1:3 MIBK/IPA for 90 s.

11. Rinse in IPA for 15 s and blow dry with nitrogen.

12. Plasma clean for 60 s.

13a. Use for short mesas. Evaporate 100nm Ti and enough Au so it the metal

stack is 5%-10% taller than the mesa.

13b. Use for tall mesas. Sputter 100nm Ti at a 30° angle and rotating at 40 rpm,

followed by evaporating 200nm Au.

14. Lift off in 80 ◦C NMP (n-methyl-2-pyrrolidone) for 60min.

15. Using a small pipette, gently blow warm NMP over the chip (still in the beaker)

to remove most or all the unwanted metal. If some does not come of, transfer

the chip to room temperature acetone for a few hours.

16. Finish lift off by rinsing in IPA. Blow dry with nitrogen.
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