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Abstract

This thesis investigates how machine learning techniques can be applied in the study of physics.
The first topic is about improving the readout speed of semiconductor qubits by employing principal
component analysis. This results in a one microsecond measurement time compared to the currently
used method of homodyne detection that requires several microseconds. The time can be lowered
even more by systematically discarding signals that yield unclear results. The second topic is about
dynamical quantum phase transitions, stemming from non-equilibrium phase transitions that occur
when a quantum state is evolved through time. They are studied through Loschmidt rate functions
by finding their non-analytic points. By making recurrent neural networks evaluate these functions,
it is possible to tell if they contain dynamical quantum phase transitions or not. More complex
variations can even specify where they occur.
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1 Introduction and Motivation
A lot physical systems are highly complex and it can therefore be hard to build them into a model. The
usual workaround is to make assumptions about the system and and introduce approximations where
an analytical solution is unfeasible. While this is good enough for many purposes, it can lead to a model
that is missing important characteristics of the system. In light of this, we want to take a look at how
machine learning could help us make deductions about these systems that we do not have a full overview
of.

Machine learning is a set of algorithms that train a variable model from data towards a desired goal.
It is a practice that has given rise to a lot progress many diverse areas, such as images (classification and
generation [1]) and sentences (translation and emotion recognition [2]). Because machine learning has
shown such promise in other areas, it is no surprise that it has begun to be used in physics as well. The
goal of this thesis is to explore some of the potential use cases of machine learning can have in physics.

It starts off in Chapter 2 by introducing the concept of machine learning and how data can be used
to train a model that produces something useful. The first type of machine learning we will be looking
at is principal component analysis, which uses the variation in the provided data to produce an affine
transformation that helps expose the features lying within the data. After that we talk about artificial
neural networks which is a lot broader topic as they can take almost any form. The form we will be using
is called recurrent neural networks, which are great at handling sequences of data with arbitrary length.
However before we introduce those, we go through a one of the basic neural networks to understand how
they work and how they are trained.

In Chapter 3 we look at what machine learning can do for quantum computers, specifically the
classification of qubits when they are being measured. A qubit is a two-level quantum system that
differs from a classical bit in that it can be in a superposition of its two states. When combined with
more qubits, we get a new type of memory that allows one to perform algorithms that are impossible to do
on classical computers. This has lead to algorithms designed specifically for quantum computers whose
computational time scale better than their classical counterparts. As the qubits are genuine quantum
states, they also serve as good candidates for performing quantum simulations [3]. We will be looking
at a type of semiconductor qubit, which is measured using radiofrequency (RF) reflectometry. Normally
the classification of a qubit is done through homodyne detection, but that can take several microseconds
to do, which is far longer than the qubit coherence time. Our goal is to use principal component analysis
to improve the qubit readout times while keeping a high fidelity.

In addition to this, we will also explore how recurrent neural networks can be applied to dynamical
quantum phase transitions in Chapter 4. These are a type of non-equilibrium phase transitions that
can occur by evolving a system in time. They are defined as points where the so-called Loschmidt
rate function becomes non-analytic for an instant, which signify a drastic change in the time evolution
operator [4]. We are going to train networks that can figure out if such a non-analytic point exists in
the rate function, in which case a dynamical quantum phase transition occurred at some point.

At the end, in Chapter 5, we summarize the results of our findings and consider how our methods
could be extended.
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2 Machine Learning Methods
Before we begin using machine learning, we first need to understand what it is and how it works. Machine
learning consists of two parts: a model and a learning algorithm. The model is simply something that
produces an output in a desired format, which can for example be done by transforming a given input.
While most algorithms have very fixed behaviour designed for a specific purpose by humans, a machine
learning model consists of multiple numerical parameters that can be adjusted to entirely change its
behaviour. This means it can be adapted to many different use cases with proper configuration. However
in most cases it is be infeasible for a human to get any kind of interesting functionality as the set of
parameters is either too vast or too sensitive to changes. That is why we need to train the model with
another algorithm specifically designed for tuning the parameters according to some overall goal. This
is the learning part of machine learning and is the reason why machine learning models are so flexible.

There are several ways to train a model, such as supervised learning and unsupervised learning, which
are the ones we will be using. The goal of supervised learning is to generalize, so the model is given a
set of training inputs accompanied by the desired outputs which it should be taught with. The learning
algorithm will then try to minimize the difference between the target and model outputs until additional
training yields negligible results. The model should then hopefully have been taught the important
relations between the training inputs and outputs such that it can now predict outputs from entirely
new inputs that are not part of the training data. On the other hand, unsupervised learning does away
with any target outputs and only uses a set of inputs to teach with. The goal is to find the overall
structure, which can be used to split inputs into different groups for classification or to generate data
that is similar in nature to the training data.

Machine learning consists of many types of models, all with varying goals and design choices. In
our case we are mostly interested in using some of these for classification, but that is just one of the
many possible use cases of machine learning. The goal of a classification algorithm is to find how likely
it is an input falls into one of several groups. Some classification models even produce the supposed
probabilities of being in each group and therefore give very clear indication to how confident the model
is in its answer.

2.1 Principal Component Analysis
Principal Component Analysis (PCA) is an unsupervised algorithm that can be understood in multiple
ways [5]. In our case it will be used for classification, so we will view it as an algorithm that picks out
the most prominent features of the dataset, the so-called principal components. It is then possible to
compare the features of two samples in the dataset to conclude if they are different or not. To understand
what exactly is meant by features, we need to discuss how PCA works, which is best done by introducing
our dataset.

The dataset is a collection of n samples xi with i = 1, . . . , n. Each sample is composed of l variables
vi with i = 1, . . . , l, such that they can be thought of as vectors living in the variable space U = Rl.
With this convention we can set vi = ei, such that the variables form a basis for U through the standard
basis {ei | i = 1, . . . , l}. To shorten some expressions involving sample variance, we also want to center
the dataset, which is easily achieved by translating each sample xi → xi − x̄, where x̄ = 1

n

∑n
j=1 xj is

the sample mean.
A very important concept of PCA is the sample variance of a variable. The variance of our current

variables can be computed with

Var(vi) =
1

n− 1

n∑
j=1

((xj)i − x̄)2 =
1

n− 1

n∑
j=1

(xj)
2
i =

1

n− 1

n∑
j=1

(xj · vi)2, (1)

which together gives the total variance of the dataset Var(U) =
∑l

i=1 Var(vi). From the dot product
xj · vi we see that it is actually possible to find the variance for any variable of U , meaning we do not
have to restrict ourselves to the variables defined by our dataset. For example we could use another
orthonormal basis {ui | i = 1, . . . , l} for U and compute their variances. The total variance Var(U) will
stay the same as a basis change can be thought of as a sequence of rotations. To express this point more
rigorously, we will represent the dataset as an n× l matrix X where the i’th row corresponds to xi and
its l variables. This lets us rewrite the variance for a variable v as

Var(v) = 1

n− 1

n∑
i=1

(xi · v)2 =
1

n− 1

n∑
i=1

(Xv)i(Xv)i =
1

n− 1
(Xv)T(Xv) = vTCov(X)v, (2)
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where Cov(X) = 1
n−1X

TX is the sample covariance matrix of X (need our earlier assumption x̄ = 0 to
express Cov(X) this way). This shows us the total variance is actually the trace of Cov(X), which is
known to be invariant under a change of basis.

Classifiable datasets usually form clusters of samples, but with more variables it can become hard to
find these clusters. It would therefore be useful to know along which directions the clusters are spread
apart in this high-dimensional variable space. One way to do this is to find a small set of new variables
with high variances that can represent the directions the samples are spread out along. This is essentially
what PCA is about. Specifically, the algorithm finds the subspace V ⊂ U with the specified dimension
p < l that maximizes Var(V ). We can then compute a basis for V , which forms a set of variables
{wi | i = 1, . . . , p} with high variances and gives us the relation Var(V ) =

∑p
i=1 Var(wi) to work with.

As an example, we can look at Figure 1 where the dataset uses three variables, but we want reduce that
to two to get a better overview of the clusters. To do this, PCA forms the plane V that the dataset gets
projected onto, together with the variables w1 and w2 that form a two-dimensional coordinate system.
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Figure 1: (a) Three clusters with Gaussian distributions and a plane representing the two-dimensional
subspace V with the principal components w1 and w2. (b) The clusters projected onto V with the
principal components as the axes.

It turns out the best way to go about finding V is to diagonalize Cov(X) and get its eigenvectors
{ui | i = 1, . . . , l} and their respective eigenvalues λi. Then in Apx. A we show if the eigenvectors are
ordered by highest eigenvalue (λ1 ≥ λ2 ≥ . . .), then V = span{ui | i = 1, . . . , p} and we get a new set of
variables by setting wi = ui. These variables are called the principal components and are used to project
the samples onto V (by using inner products for example). Because Var(wi) = λi, we find w1 is the
variable with the highest variance in U , and if it was removed, w2 would become the variable with the
highest variance. Repeating this argument for i > 2, the new set of variables can be said to be ordered
by the highest possible variance they can have, making them an ideal choice without doing any extra
case-by-case analysis.

The last question is if there is some systematic way to choose how many dimensions V should have,
as unlike Figure 1, we have no good way to visualize the projection onto V for l > p > 3. This is where
the concept of explained variance comes in [6], which is simply the fraction of variance each principal
component conserves

fi =
Var(wi)

Var(U)
=

λi∑l
j=1 λj

. (3)

The strategy is to choose the fractions fi that dominate over the rest in value, such that only variables
with a high variance (relative to the rest) will be used. This approach works because at some point we
expect to run out of variables that span the clusters in the dataset, meaning the variance of the remaining
variables would come from noise. This of course assumes the noise in the dataset is lower than the spread
of the clusters, as it would otherwise be difficult to know if a variable represents a useful feature instead
of noise. As an example, in Figure 1 the fractions are f1 = 0.578, f2 = 0.400, and f3 = 0.022, so using
this method we would choose p = 2, as the value of f3 is much lower than the other two fractions and it
could be considered noise.
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2.2 Neural Networks
A neural network is a model that gains inspiration from how neurons in a biological brain are wired
together. One of the simplest versions is the feedforward neural network (FNN), which we will use to
introduce neural networks. Its general structure has been sketched in Figure 2 and can be seen to consist
of nodes and directed edges. The nodes are meant to mimic the neurons of our brain and the edges
are their numerous connections. An important observation is that a FNN actually consists of layers of
nodes and the edges only go from one layer to the next. For example Figure 2 contains three layers, each
respectively consisting of three, five, and two nodes going from left to right.

The layered structure means the model is executed sequentially by treating the output of a layer as
the input for the next layer. In practice this is done by treating the output of a single layer as a vector
with a dimension matching the number of nodes. We can therefore write the output of the i’th layer as
the vector xi. From here, we can express the output of the next layer i+1 using an affine transformation
together with a non-linear function fi+1

xi+1 = fi+1(Wi+1xi + bi+1). (4)

The affine transformation contains the so-called weights Wi+1 and bias bi+1 for layer i + 1. In a FNN,
it is these two terms that can be varied to modify the behaviour of the network. The matrix Wi+1 can
control how the layer interacts with the previous layer, but because fi+1 is a fixed function, we may also
need to use the vector bi+1 to increase the flexibility of the network. The non-linear function usually
returns a vector with the same dimensions as its input, so it is possible to specify the dimension of every
object beforehand. Given di is the dimension of xi, we therefore have the following definitions

xi ∈ Rdi , fi : Rdi 7→ Rdi , Wi ∈ M(di, di−1), bi ∈ Rdi , (5)

where M(m,n) is the set of m× n real matrices.
The final part of a FNN is the starting input and the final output. In Figure 2 we have three layers,

the input layer, a middle layer, and the output layer. The output of the input layer is simply the input
given to the FNN, so x1 equals the input in a vectorized form. The middle layer is a so-called hidden
layer, which just means it is neither an input nor an output. In this example there is only one hidden
layer, but the number increases by one with each additional layer that is added. Finally we get the actual
output of the FNN from the final layer, which in this example would be x3. It is of course possible to
manipulate this output further, but that would not be part of the FNN.

input

layer 1

1

2

3

layer 2

1

2

3

4

a node

layer 3

1

2
output

Figure 2: A small FNN with three layers. Each layer contain nodes, which are meant to look like
biological neurons when connected. The first layer contains all the input information that the FNN will
use. The second layer is only used to give the FNN flexibility. The result of last layer becomes the
output of the FNN.

2.2.1 Training

We can now give a neural network an input and make it produce an output, but it is currently not the
output we desire. This is because the weights and biases need to be configured properly to give something
sensible, and for that we need to train the neural network. As mentioned earlier, there are more than one
way to train a neural network, but we will only focus on supervised learning as it is straightforward to

4



use in our case. The distinctive part of supervised learning compared to other methods is that for every
input x in the training data, there is an accompanying target output y. The goal of the neural network
during its training is to reproduce these target outputs when given the respective training inputs.

Now that we understand the idea behind supervised learning, we can begin to explain how it is done
in practice. To start with, we need to know how well the neural network matches the target outputs.
This leads us directly to loss functions, which are real functions with the main property of reaching
their global minima when two quantities become equal. In our case these quantities would be the neural
network output NN(x) and the target output y. As an example, given the single input x, if the output
vector FNN(x) of a FNN should match the target vector y, then we could apply the mean squared error
loss function L(x) =

∑
j(FNN(x)j − yj)

2 and begin minimizing it by changing the weights and biases.
This brings up the question of how we are going to minimize loss functions. The answer is gradient

descent, an algorithm for finding local minima of a multivariable function. Because we are going to
manipulate the weights and biases, we will expose them in the notation for the loss function Lθ(x) where
θ = {Wi, bi}. With this we can write down the gradient ∇θLθ(x) of the loss function evaluated at the
current θ of the neural network. The gradient can be calculated individually for each weight and bias
by viewing the neural network as a big concatenation of functions and applying the chain rule. This
method of calculating the gradient is called backpropagation and an in-depth derivation for the FNN
can be found in [7].

We are now able to do gradient descent by updating the weights and biases into θ → θ − η∇θLθ(x)
as illustrated in Figure 3. Basic gradient descent comes with the learning rate η > 0 which controls how
much the weights and biases should change with each iteration of gradient descent. With a small enough
η it can be shown this change to θ does actually lower the value of the loss function, which is the reason
gradient descent works and can find local minima through iteration. Right now η is just a constant,
but with a more sophisticated learning algorithm, such as the Adam optimization algorithm [8] that we
will be using, it can be automatically adjusted for each iteration. This can be important as η should be
lower around local minima to avoid overshooting them with a big change to the weights and biases. On
the other hand, a low η when the loss function is not near a local minima can slow the learning process
down as less progress is made with small step sizes.

This is all for a single input in the training dataset, but to properly teach the neural network we have
to include the whole training dataset in some form. The most straightforward way would be to calculate
the average loss of all inputs

L̄θ =
1

n

n∑
i=1

Lθ(xi) (6)

and perform gradient descent on that. While this works, it is not very efficient as the neural network has
to evaluate all inputs every iteration. To get around this we can split the training dataset into multiple
smaller datasets called batches. We can then choose a single batch that will be used for gradient descent,
which will be much faster now that the number of inputs has been lowered. Then by performing gradient
descent on each batch in succession, we go through multiple iterations, while still taking all available
training data into account. In most cases one run-through of the training dataset does not yield enough
iterations to properly teach the neural network. We therefore need to go though the training dataset
multiple times, with one full run-though being called an epoch. The training dataset should also be
shuffled after each epoch when creating the batches to avoid possible learnable patterns.
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Figure 3: A loss function Lθ with the two variables θ1 and θ2 is given the input x. Two different initial
values of (θ1, θ2) were used, where each converges towards a different minima with the learning rate
η = 0.85.

2.2.2 Classifiers

The FNN is just one of many possible neural networks, so it is a given to choose one that better fit
the requirements for the task at hand. In our case, we are interested in using neural networks for
classification, which does not have a neural network type that generally outperforms other types. We
can, however, make a small modification to existing neural networks and make them more suitable for
divide a dataset into classes. Classification is all about making the best choice, but we can also think
of this as selecting the most probable class out of many. Extending this idea further, if we can make
the model assign a probability to each class, which together forms a probability distribution, we get an
insight into how confident the model is about each class.

Doing this in practice is actually very simple as long as the output dimension of the neural network
matches the number of classes. If it does, we are able to add the softmax function

softmax(x)i =
exi∑
j e

xj
(7)

at the end of the neural network. We see the softmax gives us a probability distribution since 0 <
softmax(x)i < 1 and

∑
i softmax(x)i = 1, so it is a perfect candidate for classifying using probabilities.

Behind the scenes, the neural network has no idea what a probability distribution is and just tries
scale the entries of vector given to the softmax function such that it would match the target output during
training. It is therefore not a given that the neural network returns a sane probability distribution as it
is only us that actually know what probabilities are.

2.3 Recurrent Neural Networks
While a FNN is one of the simplest models that can be used, the number of columns of the first weight
matrix W1 scales linearly with the number of input parameters. This might hurt the interpretability
of the neural network if the entries in W1 act very differently on every input, making it impossible to
understand how everything plays together. This would especially be true for inputs that can be viewed
as a sequence of samples. Here we would intuitively expect the neural network to treat every element of
the sequence the same way, as they do not contain any distinguishing features by themselves. It is only
when they are put together into a sequence that we would see any interesting characteristics.

We can try to solve these problems with another type of neural network. We are going to look at
recurrent neural networks (RNN), which is specifically designed to handle sequences of data. An RNN
functions by going through each point in a sequence one by one in order. It treats every point the same,
meaning only one set of weights and biases are used across the whole sequence. However, it still needs to
somehow take multiple points into consideration, as no single point would hold any useful information
as we discussed. An RNN therefore also has a built-in memory that gets passed along from one point to
the next as the RNN goes through the sequence.
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Figure 4: (a) A sketch of an RNN that uses the input xt and the previous hidden state ht−1 to produce
a new hidden state ht. This hidden state then loops back into the RNN to join up with the next input,
while also being the output (ot−1) of the RNN at this timestep. This procedure is repeated for every
element in the input sequence. (b) The unravelled version of an RNN, where the whole sequence is laid
out. Just like the input is a sequence, the hidden states also form an sequence that is used as the RNN
output.

There are even multiple types of RNNs, so we will start by discussing the simplest one. We will mark
the position of a point in the sequence with a time t, such that the t’th input would be the vector xt. At
each time t the RNN will also modify its memory by generating the vector ht, which is formally called
the hidden state. The way the hidden state is computed at each timestep is very similar to a FNN with
its weights and biases

ht = f(Wixt +Whht−1 + b). (8)
We see that an RNN uses the two weights Wi and Wh, together with the bias b and a non-linear function
f . The weight that interacts with the inputs is Wi, and works just like it would in a FNN. On the other
hand, Wh uses the previous hidden state ht−1 to alter the behaviour of the RNN at time t, which is why
the hidden states can be seen as the memory of the RNN. Just like for the FNN, we specify

xt ∈ Rdi , ht ∈ Rdh , f : Rdh 7→ Rdh , Wi ∈ M(dh, di), Wh ∈ M(dh, dh), b ∈ Rdh . (9)

The hidden states also serve as the output of the RNN. As they are generated at each timestep, the
hidden states form a new sequence from the input sequence. This could be useful for simple machine
translations, where the input sequence is a sentence and the hidden states would form a sequence of
words in a different language that should hopefully be a legible sentence. For classification there is not
a need for a sequence as an output, so it would be a better idea to just choose the last hidden state of
the RNN, which could be thought of as its final answer. However this does not mean the sequence of
hidden states has no use in classification. Because it can be seen as a sequence, it means another RNN
can use it as its input, thus allowing us to layer RNNs, just like how a FNN consists of multiple layers
of neurons. As the new RNN also generates hidden states, we still get the same type of output. This
layering approach allows for more complex models while still keeping the core aspects of an RNN.

This RNN model is one of the most basic RNNs, so it does not perform as well at some tasks as other
variants do. One of its downsides is its inability to retain its memory through the hidden state because
it only uses a single variable affine transformation to control how it remembers. Another flaw is not so
much in the model itself, but rather how gradients are computed using the chain rule. Because an RNN
goes through multiple timesteps, we find that these timesteps will appear in the chain rule. As every
timestep includes multiplications with its weights, it means the gradient acquires terms proportional to
wT , where w is an entry of either Wi or Wh and T is the sequence length. This exponential can either
become minuscule or grow very large, depending on if |w| < 1 or not. This is called the vanishing or the
exploding gradient problem and there is no good way to fix it for a basic RNN other than attempting to
clamp the gradient value.

Luckily there is the popular long short-term memory (LSTM) RNN, which partially solves both of
these problems. This also means it is a lot more complicated and uses more weights and biases compared
to the basic RNN that we just discussed. The LSTM uses the following model

it = fi(Wiixt +Wihht−1 + bi), (10a)
ft = ff (Wfixt +Wfhht−1 + bf ), (10b)
gt = fg(Wgixt +Wghht−1 + bg), (10c)
ot = fo(Woixt +Wohht−1 + bo), (10d)
ct = ft ◦ ct−1 + it ◦ gt, (10e)
ht = ot ◦ fh(ct), (10f)
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where ◦ is the Hadamard product that takes the element-wise product of two vectors. Everything in the
equations follows the same types of definitions as Eq. 9. The first four vectors it, ft, gt, and ot are called
gates, while ct is the cell state and ht is the hidden state. In an LSTM both ct and ht are used as its
memory, while the gates are used to control it, which we can intuitively explain through the equations.
The gate ft is called the forget gate and it controls how much the LSTM should forget about previous
timesteps. This behaviour can be seen in Eq. 10e, where a small ft would result in almost nothing of
ct−1 carrying over into ct. On the other hand, we have the input gate it and the store gate gt, where gt
is what the current memory should be replaced with and it adjusts how much it should be replaced by.
Last is the output gate ot seen in Eq. 10f, which simply allows for a greater degree of control over the
hidden state that is used as the LSTM output.

The more complex memory model of an LSTM solves the memory problem of the simple RNN by
giving the model direct control over what should be remembered and forgotten. An LSTM also improves
upon the vanishing and the exploding gradient problem, by having ft included at every timestep in the
gradient. Because ft can vary along the sequence, it avoids giving an exponential term in the gradient
and thus partially solves the problem.
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3 Classifying Qubits
In this chapter we will be looking at the possibility of improving the readout time of semiconductor
spin-qubits. The qubits we will be looking at currently use homodyne detection for classification, which
is a technique used in radio technologies. However, demodulating the qubit readout signal using this
method is not ideal as it can take several microseconds for the readout to complete. These timescales are
far higher than those used for manipulating the qubits and can lead to qubits losing information through
decoherence. We therefore want to replace homodyne detection with a machine learning technique that
uses the raw output signal to try improve readout times and, in effect, reduce decoherence. The algorithm
we are going to use is principal component analysis (Section 2.1), which allows us to cluster a batch of
output signals without needing complete prior knowledge of what kind outputs the experimental setup
produces. PCA is also very fast to execute as it only uses an affine transformation. We are hoping
PCA can be put on a field-programmable gate array (FPGA), so it can be implemented as part of
the hardware of the experimental setup. This would improve the scalability of the readout setup when
measuring multiple qubits as the number of components needed for homodyne detection increases with
the number of qubits.

3.1 Double Quantum Dot Qubit
The experimental setup we are going to be working with uses a double quantum dot (DQD) to create
a qubit. A quantum dot can be thought of as an artificial atom, which allows one to trap one or more
electrons in place by adjusting a voltage gate. So with a DQD we get a two-dimensional voltage space
that can be separated into sections by the amount of electrons residing in each quantum dot, leading
to the charge stability diagram (see Figure 5a). By operating the DQD with electron occupations (1, 1)
and (2, 0) we are able to create a singlet-triplet qubit by manipulating the singlet-triplet spin states
{|S〉 , |T0〉} = {(|↑↓〉 − |↓↑〉)/

√
2, (|↑↓〉 + |↓↑〉)/

√
2}. If we first consider the DQD to be in the (2, 0)

configuration, we find the exchange interaction J between the electrons is the dominant factor because
of the Pauli exclusion principle, making |S〉 and |T0〉 the eigenstates of the DQD. On the other hand,
in the (1, 1) configuration, the exchange interaction will disappear because of the distance between the
quantum dots. As a consequence, we get the degenerate ground states |↑↓〉 and |↓↑〉. This degeneracy
can be mitigated by giving the quantum dots parallel magnetic fields with a difference in strength of
∆B‖ to vary the Zeeman splittings. This leads us to the Hamiltonian [9]

H =
J

2
σz +

∆B‖

2
σx, (11)

where control over J and ∆B‖ lets us reach any state on the Bloch sphere, thus achieving an operable
qubit.

To detect what state the qubit is in, we use the fact that only the singlet state can exist while
the system is in the (2, 0) configuration because it upholds the Pauli exclusion principle with its anti-
symmetry. Using this, the method of distinguishing the singlet and triplet states starts by already having
the DQD in the (1, 1) configuration, whereafter we will change J such that the DQD favors (2, 0). If
the qubit is in the (1, 1) singlet state, one of the electrons can jump to the other quantum dot and form
the (2, 0) singlet state instead. On the other hand, if it is in the (1, 1) triplet state, it will be unable to
change to the (2, 0) singlet state as that would violate spin conservation [10]. Together this means there
will be a measurable difference in charge on both quantum dots depending on what state the qubit was
in. To convert this to a signal we use a sensor quantum dot (SQD) which changes its resistance based on
the surrounding charge. We can then send an radiofrequency signal into the device containing the SQD,
which produces a reflected signal that constitutes the raw output signal that we will be using.
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Figure 5: (a) The charge stability diagram that is used to determine the electron occupation in each
quantum dot with respect to the gate voltages V1 and V2. The visible regions have clear lines of separation
and are labeled with the number of electrons in each quantum dot. The two dots are measurement points
with a distance of 14 mV. (b) Image of the four qubits contained in the FF1A device from the Center
for Quantum Devices at the Niels Bohr Institute. On the top left a pair of quantum dots (orange) is
highlighted together with their connections (green) to the voltage gates. The SQD (blue) is located
right next to the DQD in the electron electron reservoir (dark grey). The RF signal is sent from the
white square, which continues through the SQD to the black square where the signal gets grounded. The
reflected signal exits through the white square again, which is then sampled and used for classification.

3.2 Classifying Experimental Signals
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Figure 6: An example of a signal that will be classified.

Now that we know a bit about the experimental setup, we can begin analysing its raw output signals.
While the idea is to classify the output of a singlet-triplet qubit, we did not get hold of such data. Instead
we have outputs from a couple of states at different points in the (1, 1) section of the charge stability
diagram. This should still give us a good idea of what machine learning techniques are capable of, so we
can extend its use to actual singlet-triplet qubits without worry.

The digitized signals we will be analysing are sampled for three microseconds with a sampling rate
of 1.8 GHz. An example of such a signal can be seen in Figure 6. To follow the plan of using PCA, we
need to have a vector space. This is done by viewing the signals as a vector of voltages, where each entry
corresponds to one of the samples, which are preferably ordered by ascending time. As we are interested
in classifying a single qubit for now, we should only need one principal component. Assuming each signal
contains T samples, we get a principal component vector w with the same dimension after using PCA
on the selected dataset.

Beginning our analysis, we choose two states with a 14 mV separation in the charge stability diagram
(see Figure 5a). Each state is recorded 1000 times and to make sure the model is able to generalize,
we only use 20% of the recorded signals for the PCA. As an initial test, we use all three microseconds,

10



which yields a perfect splitting of the dataset with the single principal component, as seen in Figure 7.
So PCA can achieve 100% accuracy for signals that run for microseconds, however when we begin to
use less and less of the signal we see a noticeable decrease in accuracy which Figure 8a illustrates. Only
using up to 300 ns gives no separation in the dataset, but right after that the accuracy begins to shoot
up until it straightens out around 1000 ns with an accuracy approaching 100%.

In the case we want to push for sub-microsecond readout times, it is possible to discard signals that
we are unsure about. As the classification errors stem from the two clusters overlapping around zero,
we can select only those with a high enough absolute PCA transformation value to ensure we do not
use any signals in the overlapping area. Figure 8b shows an example of this approach for 500 ns signals.
As expected, the accuracy rises when we impose a higher minimum absolute value for the transformed
signals, but in return the number of surviving signals also decrease. It therefore becomes a balancing act
that depends on the desired readout time, accuracy, and fraction that is left of the recorded data.
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Figure 7: The signals after having gone through the PCA transformation. The dots on the horizontal
axis show the projected values of the output signals. All signals lie comfortably on one of the sides of
the horizontal axis, conveying all signals have been classified correctly. The two histograms formed by
the projected values show the density of the clusters that lie underneath.
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Figure 8: (a) The classification accuracy as a function of the amount of time used. The accuracy starts
at 50%, meaning the classification did not work. It then quickly begins to rise and later flattens out
at around 1000 ns towards a perfect classification. (b) The accuracy of 500 ns signals when discarding
ambiguous signals whose transformed values are too close to zero. The horizontal axis is signifies the
minimum absolute value the transformed signals should have to be kept during classification. The solid
line, together with the left vertical axis, shows the accuracy rising as more and more signals are excluded.
The dashed line and the right vertical axis show the fraction of signals left for classification dropping as
the requirements to remain become stricter.

3.2.1 PCA and Homodyne Detection

The PCA approach for classifying qubits looks promising, but we still do not know how the splitting
works. However before we get to that, it is constructive to first discuss how homodyne detection is
done. The input RF signal that is sent into the device has a single frequency near one of the resonant
frequencies of the device, e.g. s(t) = As cos(ωt). This gives rise to a reflected signal (the output), which
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shares the same frequency, but with an amplitude and phase that changes depending on the resistance of
the sensor dot, e.g. r(t) ∼ Ar cos(ωt+ θr). This means it is possible to distinguish the states by figuring
out the amplitude Ar and the phase θr of the reflected signal as those are different for each state. This
is especially apparent if we try averaging over the measurements from each state, which has been done
in Figure 9 and shows us a clear gap between the two amplitudes.
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Figure 9: The output signal averages of both states colored red or blue. The averaged signals share the
same amplitude at the start, but after that the blue colored average stays above and below the red one
until the end.

Homodyne detection retrieves the amplitude and phase by first splitting r(t) into two and applying
a π/2 phase shift to one of them [11], giving us

rI(t) ∼
Ar

2
cos(ωt+ θr) and rQ =

Ar

2
sin(ωt+ θr). (12)

From here we can average over the products I(t) = 1
2s(t)rI(t) and Q(t) = 1

2s(t)rQ(t) to get

I =
1

T

∫ T

0

I(t) dt =
AsAr

8
cos(θr) and Q =

1

T

∫ T

0

Q(t) dt =
AsAr

8
sin(θr), (13)

where we assume ω � 0 to do away with ω−1 terms. With this we are able to estimate

AsAr

8
=
√
I2 +Q2 and tan(θr) = Q/I, (14)

which gives us the necessary values to make a distinction between states. It can also be viewed as a
point in the complex plane I + iQ = AsAr

8 eiθr that the experimental results would cluster around.
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Figure 10: The Fourier transform of the principal component w where the absolute value was taken at
each frequency. The plot has a distinctive peak at 130 MHz, which matches the frequency of the output
signals. The principal component can be understood as a single-frequency oscillation from how its peak
dominates over all other frequencies.

If we now turn to PCA, it will become evident that the transformation it does is comparable to
homodyne detection. Writing it out, the transformation is (x − x̄) · w =

∑T
i=1 wixi − x̄ · w, where x is

the output signal we want to transform and x̄ is the mean of all output signals. The sum term bears a
clear resemblance to (I,Q) = T−1

∫ T

0
1
2s(t)r(I,Q)(t) dt where s(t) could easily be replaced by w, yielding
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a result similar to the PCA transformation without the fixed offset created by x̄. By taking the Fourier
transform of w, plotted in Figure 10, we even see it is a single frequency wave that matches the frequency
of the reflected signal of around 130 MHz. So PCA essentially recreates homodyne detection, but where
s(t) can have a phase that maximizes the separation such that we do not need to extract the phase to
classify the output signals. This behaviour is even more useful in scenarios where homodyne detection
has only been partially implemented in a way where the phase is not found. As a consequence, the
reflected signal has to go through a manually calibrated phase shift to get the most information from the
amplitude alone. PCA more or less automates this phase shift calibration, removing all trial and error
needed from the process.

3.3 Simulating Multi-Qubit Signals
Using PCA allows us to classify a single qubit, but what about multi-qubit outputs? We already know
PCA can handle multiple features through its principal components, so all we require is a dataset
containing multi-qubit outputs. The problem is that we do not have any such dataset, so we will
somehow have to make our own. In practice, each of the four sections of the device in Figure 5b have
their own resonant frequency. The method is to then prepare an input signal containing all the desired
resonant frequencies and send it into the device. Each section will then return a reflected signal that gets
mixed together with the others, meaning all information is stored in a single output signal. With this
in mind, we will be able to mimic multi-qubit readouts by taking existing single-qubit readouts carrying
different frequencies and combining them together. However we still only have readouts from one of the
DQDs with its single resonant frequency responses.

A possible solution is to not use experiment readouts and instead turn to simulations. This is done
by composing a transmission line of impedance Z0 in series with an impedance matching RLC circuit
consisting of an inductor L in series with a capacitor C and a resistor R placed in parallel. Here R would
be the SQD, while L is used to give the RLC circuit an impedance near Z0 when driven at the resonant
frequency. We can then simulate the signal reflected off the RLC circuit and use that as a qubit readout.

While the simulation we have only generates single-qubit reflected signals, we do have full control of
the resonant frequencies, meaning we can use the previous idea of mixing them together to get a multi-
qubit readout. We have created three-qubit signals with the resonant frequencies used in the device
from Figure 5b, which are 130 MHz, 176 MHz, and 158 MHz for the top left, bottom left, and bottom
right qubits respectively. The signals run for one microsecond using a sampling rate of 1.8 GHz with an
adequate SNR to properly showcase PCA on multiple qubits.

The dataset variable space is the same as before, but now PCA should project onto a three-dimensional
space to attain three features. We therefore get three principal components w1, w2, w3 used to classify
each qubit in the signal individually, i.e. w1 would create a splitting for the first qubit, but say nothing
about the other qubits. Because of this, we see a splitting around zero along each axis in the PCA
subspace, creating a cluster in every octant as seen in Figure 11. The individual classification accuracies
for the 130 MHz, 176 MHz, and 158 MHz qubits are 99.9%, 97.6%, 90.5% respectively, while the overall
accuracy where all three qubits are determined correctly at the same time is 88.3%.

From these results it is clear PCA can be used for classifying multiple qubits from the same signal.
We could also have included the last qubit from the device with a resonant frequency of 139 MHz, but
that would have made it difficult to visualize with a plot. The major downside of using PCA is that it
is unsupervised, so it will not be obvious what principal component corresponds to what qubit or which
sign the |0〉 and |1〉 qubit states should get assigned to for each qubit. The first problem can be solved by
finding the frequency of the principal components through a Fourier transform as we have done before.
The second problem would be difficult to get around without having the states already labeled as we
would otherwise need to know the amplitude and phase returned by the states beforehand to make a
proper judgement. Luckily we will only need to use labels once to figure this out, meaning the results of
all subsequent experiments can easily be determined.
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Figure 11: The PCA transformation of simulated signals carrying information from three different qubits.
The labels qubit 1, qubit 2, and qubit 3 refer to the qubits with 130 MHz 176 MHz, and 158 MHz resonant
frequencies respectively. The signals are clustered into separate octants, where each octant represents a
three-qubit state, e.g. |011〉. The transformed signals are colored according to the labels they were given
during simulation.
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4 Dynamical Quantum Phase Transitions
Phase transitions are usually studied using some controllable parameter like temperature while the system
is at equilibrium. We will instead look at phase transitions that occur from time elapsing. This means
the parameter is not under our control and the system is not in equilibrium. To be specific, we will study
so-called Dynamical Quantum Phase Transitions (DQPTs) under a sudden quench, which is the topic
of [4, 12] and this introduction will be largely based off of these. Our system will start in the ground
state |ψ0〉 of H0, and then we will instantly change the Hamiltonian to H to perform a quench. As a
consequence, the system will become dynamic, assuming |ψ0〉 is not an eigenstate of H. It is possible
that the ground state is degenerate, but we will assume this is not the case to keep things simple. The
system evolves in accordance with the time evolution operator U , meaning the quenched state can be
written as |ψ0(t)〉 = U |ψ0〉 = e−iHt |ψ0〉.

To understand what a DQPT is, we first need to get some definitions out of the way. The first one
is the Loschmidt amplitude

G(t) = 〈ψ0|ψ0(t)〉 = 〈ψ0|U |ψ0〉 = 〈ψ0|e−iHt|ψ0〉 ,

which tells us how much |ψ0(t)〉 overlaps with |ψ0〉 at any point in time. Because of the similarity to the
partition function Z = tr e−βH , we can try and define something similar to the free energy density f by
taking inspiration from its definition Z = e−βNf , where N is the number of degrees of freedom. This
results in the relation G(t) = e−Ng(t), giving rise to the function g(t). As the free energy (density) can
be used to find phase transitions by looking for nonanalyticies, we will in the same spirit define a DQPT
as a point in time t∗ where g(t) becomes nonanalytic. A DQPT is not necessarily a sign of a change in a
physical observable like the free energy, but instead an indication of a sudden drastic change in the time
evolution operator U . However, the reason for this change cannot pinned down by simply looking at g(t)
and will therefore require a deeper analysis to get an answer. A natural modification of the Loschmidt
amplitude would be the probability L(t) = |G(t)|2 named the Loschmidt echo with the associated rate
function λ(t) from L(t) = e−Nλ(t). The rate function can also be expressed by λ(t) = 2Re g(t) and
therefore be used to find DQPTs too.

4.1 Transverse Field Ising Model
Currently all we have is the definition of a DQPT, but we will also need some data to implement machine
learning. For this we choose to look the Transverse Field Ising Model (TFIM)

H = −J
L∑

l=1

σx
l σ

x
l+1 − Γ

L∑
l=1

σz
l , (15)

as it is possible to find an analytic solution to its rate function λ(t). The derivation of the rate function
is found in Apx. B, but we give a quick overview of the steps and results. First a Jordan–Wigner
transformation is performed to fermionize the Hamiltonian by writing the Pauli matrices in terms of
fermionic operators c†l and cl. The problem is then brought into momentum space with a Fourier
transform followed by a Bogoliubov rotation that gives us the fermionic operators η†k and ηk which
diagonalize the Hamiltonian∑

k

ωkη
†
kηk + const. with ωk = 2

√
J2 − 2JΓ cos(k) + Γ2. (16)

Assuming we quench from (J,Γ) to (J ′,Γ′), the rate function in the thermodynamic limit is

λ(t) = − 1

2π

∫ π

0

log
(
1− sin2(2φk) sin

2(ω′
kt)
)
dk where sin(2φk) =

4(JΓ′ − J ′Γ) sin(k)

ωkω′
k

, (17)

with the additional result that DQPTs will occur if and only if |Γ/J | < 1 < |Γ′/J ′| or visa versa and
they do so at times

tn =
π(n+ 1/2)

ω′
k∗

where ω′
k∗ = 2

√
(J ′ + Γ′)(J ′ − Γ′)

(Γ/J)− (Γ′/J ′)

(Γ/J) + (Γ′/J ′)
. (18)

In the subsequent sections we will train neural networks on the rate function and that requires us to
compute it. The integral in Eq. 17 is not easily solvable, so we instead discretize it by letting the system
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size L stay finite. This lets us compute an approximation of the rate function using any parameters
we wish to use. In our case we choose a system size of L = 512 which shows very clear DQPTs. For
most of the neural networks, we will only sample N = 512 points from the rate function where each
sample is spaced ∆T = 0.008 apart for a total time of T = ∆TN = 4.096. As for the parameters of the
Hamiltonian, we set J = J ′ = 1 as only their ratios with Γ and Γ′ matter for the general shape of the
rate function. To get enough variety, we let the system start within the uniform distributions Γ ∼ U(0, 1)
whereafter we quench to either Γ′ ∼ U(0, 1) or Γ′ ∼ U(1 + π/T, 4) to get traces with both no DQPTs
and those with DQPTs. The extra term π/T is used to ensure at least one DQPT will appear within a
time T to avoid confusing the models under training. It is also necessary to normalize all of the traces
for our purposes. This is because if the rate function has a DQPT, then its maximum value is generally
greater than those without DQPTs. This would go against the idea of trying to get a neural network
to learn the various characteristics of the rate function when a single sample in the trace could be used
produce a classification.

4.2 Classification of Loschmidt Echos
While PCA can work well for signals when classifying qubits, it does not actually compare the samples
in a signal in any meaningful way as it is simply an affine transformation. A multi-layered FNN would
be a good substitute to PCA in that regard, but for inputs that are more complex, it could severely hurt
the interpretability of the neural network. We therefore choose to work with an RNN instead as it only
has a few variables and has an output at every timestep, creating its own curve as it goes along the input
trace. This makes it possible to visually see what the RNN is doing, allowing for easier interpretation.
We will be using a two-layered RNN, where the first layer takes the one-dimensional input value at each
timestep and has a five-dimensional hidden state. The second layer takes the hidden state from the
previous layer and returns a two-dimensional hidden state. We then apply the softmax function on the
last hidden state of the RNN to get a probability distribution. These two probabilities will be the output
of the RNN and signify whether a trace either did or did not contain a DQPT.

To train the model we use the cross-entropy loss function which is designed for training these kind
of probability outputs. The function expects the output to not have been softmaxed yet, so that part
of the model will be removed during training. From testing, this loss function has a hard time getting
anywhere without prior training, so to kickstart it we add a term to encourage the model to refrain from
giving a fifty-fifty output. This is done by computing the standard deviation across the output of the
current training batch holding N entries (with softmax applied):

si =

√√√√ 1

N − 1

N∑
n=1

(
softmax(hT )ni − softmax(hT )ni

)2
. (19)

In our case s = (s1, s2), but both entries will be around the same value because the model output
essentially gets mirrored around 0.5 by the softmax function. Therefore we choose to only consider s1.
We want to maximize s1 as the max standard deviation of 0.5 would mean an even distribution of zero
and one probabilities for the first entry of the output. To translate this idea into the loss function we
subtract 160s1 from the current loss function, but only when s1 < 0.45 as the factor 160 dominates over
the cross-entropy loss function. That way the model quickly moves away from a fifty-fifty output at the
start before training with the cross-entropy loss function, which is what really makes the model learn to
classify DQPTs. To apply the model we trained it on 5000 different traces of both types and it yielded
a 100% classification accuracy on the validation traces.
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Figure 12: Two rate functions, one lacking DQPTs with (Γ0,Γ) = (0.153, 0.274) and one displaying three
DQPTs with (Γ0,Γ) = (0.533, 1.935), shown left and right respectively. (a,b) The outputs of the RNN
displayed together with the input rate function. The outputs switch places if the RNN encounters a peak
without a kink. (c,d) The hidden states of the first layer also displaying a change in overall position
when a peak without a kink is reached and whereafter they stay there until the end.

Two different looking traces can be seen in Figure 12a and 12b with both the input trace and the
two softmax outputs plotted as a function of time. The outputs never achieve values anywhere close zero
or one as one would expect for a model that is confident in its answer. However, this is not because of
any uncertainty, but rather a result of the RNN using tanh as its non-linear function which only returns
values between −1 and 1, resulting in the softmax function never reaching its extremes. The model
outputs always start out by going towards the bottom and the top. After that both curves stay flat
until the input function peaks and the model decides if there is a DQPT or not. Hereafter the outputs
stay constant again until the last timestep where the output component with the highest probability is
chosen as the model classification. This is all pretty vague and it does not help us understand much
about how the model is able to classify the traces so well. Luckily, the first hidden layer of the RNN
can be of help. The five hidden curves are plotted in Figure 12c and 12d. Here it is still hard to find
anything noteworthy that helps us figuring out how the model works. However there is one feature that
jumps out, namely the small increase in value of the hidden curves around the kinks in Figure 12d. For
the time being it is not clear why it is important, so we instead try to pass some simpler inputs to the
model that will make it possible to understand how the model classifies the rate functions.
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Figure 13: Various square pulse inputs to probe the behaviour of the RNN and its hidden states. (a,b)
The inputs use a fixed width of 1.65 s/~ and heights of 0.87 and 0.88 in the order they are shown. The
hidden states travels through the lowest pulse, but stays near the bottom throughout the test. On the
other hand, using the higher pulse, the hidden states travel to the top and stay these even after the pulse
has ended. (c,d) For the second pair a height of 0.99 is used, while the lengths are 0.19 s/~ and 0.21
s/~. A similar scenario takes place where the hidden states stay at the bottom for one, while they go to
the top for the other.

There are two types of handmade curves that we give the model. The first ones are shown in Figure
13a and 13b and give an insight into how the first hidden layer depends on the immediate value of the
input. The inputs consists of a single square pulse of varying height, but fixed duration. When the
square pulse occurs, the hidden curves begin to rise together until they either flatten out or suddenly
jump up. After the square pulse ends, the hidden curves will either go back down to where they initially
were or stay fixed at the top if they decided to perform the jump. It is the placement of the hidden
curves that controls whether the model thinks there is a DQPT or not. If their end value is low, then the
curve has DQPTs, while a high value means there were no DQPTs at any point in the input. The sudden
jump in Figure 13b occurs after changing the square pulse height from 0.87 (Figure 13a) to 0.88, which
shows there is some kind of build-in threshold value. This means the model only looks at the peaks of
the input, as no points that are lower than 0.88 would be able to change the output of the model.

We now turn to look at Figure 13c and 13d, where instead of raising the height of the square pulse,
it is instead the width that gets changed. In this case the height is fixed to 0.99 and it is a small change
in the width that allows the hidden curves to suddenly jump. The cause of this can be viewed as the
hidden layer needing to “charge” up to a specific value under the influence of the input. If it is allowed
to charge for long enough, it will be able to jump and stay there, but if the input dips prematurely, it
will sink down again to its previous height.

We can now put the ideas behind the two sets of figures together and deduce how the model functions.
The two main points are that the hidden layer only “charges” whenever the input is high enough, but
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for the output to change the input also needs to stay high for long enough. The characteristics of DQPT
kinks are that they rise very fast, top, and then fall just as fast again. From our current understanding,
a DQPT will therefore not change the model output because the hidden layer does not have enough time
to reach a sufficiently high value that allows for it to jump. On the other hand, rate functions without
DQPTs will not have these kinks, and by extension will have peaks that top for a longer time. This will
cause the hidden layer to jump and stay up there for the rest of the input, signaling to the model that
there will not be any DQPTs.

The mechanism behind the jump can be understood using attractive fixed points. These are a type
of point that an iterated function sequence will converge towards if the first point in the sequence is in
a neighboring region of it. In our case, the first layer of the RNN has two 5-dimensional attractive fixed
points, namely

p− =


−0.9149
−0.8401
−0.8140
−0.8000
−0.6961

 and p+ =


0.8820
0.5960
0.7638
0.8079
0.7033

. (20)

These were estimated using inputs similar to Figure 13 where input rests at zero at the end of a pulse.
Other resting values close to zero would simply skew the attractive fixed points a bit. From this, if the
first layer has a value close to p− at the end, then the trace contains DQPTs, while a final value close to
p+ would mean it is devoid of DQPTs. In Figure 13 we only looked at positive square pulses that sent
the hidden layer from p− to p+, but with a negative pulse it is also possible to go from p+ to p−.

Another more obvious way to detect DQPTs would be to calculate the second derivative at each
point of the input and then see if it goes below some threshold. This should work well as inputs with a
DQPT have very apparent kinks compared to those that lack DQPTs. It is even possible to make this
into an RNN by creating one by hand. Using that the second derivative can be computed discretely with
D2

t = xt+1 − 2xt + xt−1, we can write out the RNN components

Wi =


1
0

−(1)
0

, Wh =


0 0 0 0
1 0 0 0

−(−2) −(1) 0 0
0 0 1 1

, b =


M
0

−M − T
0

. (21)

Here T is the threshold (taken to be positive), M = −min{xt}, and we choose ReLu as the non-linearly
of the model as it works well with the thresholding method. To start, assume we are already in the
middle of the input at t+ 1. Ignoring the ReLu function at the moment, the calculation for the hidden
state at t+ 1 will be

Wixt+1 +Whht + b =


1
0

−(1)
0

xt+1 +


0 0 0 0
1 0 0 0

−(−2) −(1) 0 0
0 0 1 1




xt +M
xt−1 +M

Vt
Ot

+


M
0

−M − T
0

 (22a)

=


xt+1 +M
xt +M

−(xt+1 − 2xt + xt−1)− T
Vt +Ot

 (22b)

=


xt+1 +M
xt +M
−D2

t − T
Vt +Ot

. (22c)

It is seen that ht is set to something very specific because we are already in the middle of the trace. To
get a proper understanding of it, we go through its terms one by one. First is xt +M , whose entry is
used to store the input from time t directly in the hidden state. There is the additional term M in there,
which is used to ensure the value is non-negative. This prevents the value from being changed after ReLu
is applied and therefore ensures the calculation of the second derivative is correct. The second term is
the same as the first term, except it is used to store xt−1. Next is the third entry Vt. Its value is simply
ReLu(−D2

t−1 − T ), but it is here the chosen non-linearly ReLu is crucial. If the second derivative is not
low enough then Vt is simply zero, so it is only when D2

t−1 < −T that Vt becomes positive. This way Vt
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actually stores whether the input has a kink that reaches our threshold T . The fourth entry Ot is used
to remember if Vt was positive at any point by adding Vt to itself at each timestep. After the RNN has
processed the whole input we then read out Ot at the last timestep and check if it is positive. In the
case it is, we know there was a kink sharp enough to reach our threshold.

Right now we are only looking at a point in the middle of the input, but to actually run the RNN
we also need to ensure it starts out properly. This is done by initializing the hidden state at

h0 =


M
M
0
0

, (23)

as both D2
0 and D2

1 will then be non-negative, ensuring the threshold will never be reached right at
the start of the input. By using a threshold of T = 0.015 it is possible to get an accuracy as high as
99.8% on the same validation traces that were used to test the trained RNN. Just from this, it seems
thresholding the second derivative is slightly worse at classifying the generated traces, but this is a bit
misleading. Instead it is a result of the traces being generated using single precision floats, which causes
the generator program to once in a while produce very jarring outputs with multitudes of kinks. Redoing
the traces with double precision floats smooths out the erroneous traces and raises the accuracy up to
100%. Even though this was the fault of the generator and not the model, it still shows this is not the
most robust method of classifying as any sudden kink in the trace could lead to a wrong classification.
On the other hand, the trained RNN does not suffer from this problem as it instead uses the general
shape of the trace for classification. That way there will not be any misclassification, even if it has some
discrepancies compared to the genuine trace.

4.3 Long Short-Term Memory
In the previous section we only used one of the most basic RNNs, but this raises the question of what
more complex RNNs can accomplish. We will therefore be implementing an LSTM in this section to
use its increased memory capabilities. To make proper use of the increased complexity of an LSTM, we
will refrain from simply classifying traces and instead train an LSTM to point out where each DQPT
happens. The actual output of the model should produce a spike whenever a DQPT happens, but stay
at zero otherwise. To make it do this we produce a target output that the model should try to match
for each trace. Explicitly the whole target output is zero, except at the exact points where a DQPT
occurs, where it takes the value 0.4 instead. This spike value was chosen to be 0.4 because the LSTMs
had problems with outputting higher values than this when trained. The loss function also needs to be
very different as it is no longer only the last timestep that is used, but instead the whole output of the
RNN. We will use a loss function that was found through trail and error:

1

T

T∑
t=1

exp(7Tt + 10|Ot − Tt|). (24)

Here O is the model output and T is the target output with the subscripts denoting the time. The
general idea behind this loss function is to harshly punish the model for being very far away from the
target output at any point. Because there are so few spikes in each trace with a DQPT it is also necessary
to include the extra 7Tt term in the exponential, otherwise the model would more or less just ignore the
spikes in favour of producing a flattened output.
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Figure 14: Plots of the LSTM marking DQPTs with spikes in its output. (a,b) The LSTM is able to
produce sharp spikes, but stays at zero otherwise. (c,d) The spikes are wider than wanted and the
trace without any DQPTs makes the LSTM produce a small lump in its output where nothing should
be happening.

To test how well LSTMs can do, we will employ a two-layered LSTM where the first layer is two-
dimensional and the second layer is one-dimensional to match output we want. The results can be seen
in Figure 14. The model is able to pick up on all of the kinks in a trace with DQPTs, while those without
generally stay flat around zero. Prime examples are seen in Figure 14a and 14b. It does fail slightly in
some cases though. In Figure 14a there is a small bump around the first peak of the input, but that can
be considered negligible as the output never reaches a sizeable fraction of 0.4. Contrarily, Figure 14c
shows a large bump whose peak is comparable to those in Figure 14b. The model can also have problems
producing a proper peak at a DQPT, which should in idea be represented by a sharp incline just before
it happens and then a sharp decline right after. This does not happen for all DQPTs in Figure 14d where
the last two peaks start their incline and peak before the DQPTs happen. Luckily, the peaks do decline
sharply right after the DQPTs as expected.

An explanation for the behaviour of the model in Figure 14c and 14d is that it cannot predict the rest
of the trace ahead of time. For this reason, it has to produce a sharp incline whenever it thinks a DQPT
might occur. From here it stays elevated until it is sure a possible DQPT has passed. In the case there
was no DQPT, it slowly falls back down to zero as the model has no proper indicator whether its guess
was incorrect or not. It can however spot DQPTs very easily and will immediately descend towards zero
when they occur, albeit its initial guess for the start of the peak can be slightly off.

The model can also be used as a classifier despite it not being the intention. It is turned into a
classifier by simply checking if the model output breaks a threshold at any point. If that happens the
trace is considered to be containing DQPTs as those that actually do should have peaks that go above
the threshold. Traces without DQPTs should of course stay near zero and therefore never go reach the
threshold, but it was seen in Figure 14c that some traces break this notion. Despite this, it is possible
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to work out a threshold of 0.26, which barely yields us the classification accuracy of 100%. Thresholds
below 0.26 or above 0.27 do not give us this accuracy.
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5 Conclusion
We started off in Chapter 2 by introducing the machine learning methods we were going to use. This
included principal component analysis that tried to separate a dataset by finding the axes with most
variance. By projecting the data onto these axes with an affine transformation we could get a much
better view of the data clustering that would otherwise be shrouded by the amount of dimensions used
to represent a sample in the dataset. Then we delved into neural networks whose variability allow for the
classification of data that cannot be handled through a simple projection. We established the feedforward
neural network as a starting point because of its relative simplicity and how it could be trained for use in
classification problems. We then expanded upon the FNN with recurrent neural networks, going through
both the standard RNN and the more complex long short-term memory variant.

Our first usage of machine learning was in Chapter 3 where we used PCA to classify qubits. Our
aim was to try and beat the usual readout time of several microseconds accomplished with homodyne
detection. From the experimental data we had at hand, PCA was able to get readout times down to one
microsecond while nearly achieving full accuracy in its classification. It was also possible to go below this
time by systematically discarding signals we were unsure about. By analysing the principal component
we found that the projection we were applying worked much like homodyne detection, but PCA was
able to artificially produce a signal that yielded better results. The last part of the chapter showed
the capability of PCA for classifying readout signals containing information about multiple qubits. The
signals we used for this consisted of multiple simulated single qubit readout signals added together, but
there is no guarantee that the qubits would not be coupled to each other in some way. Therefore our
use of PCA on multiple qubits was more of a showcase of how it would be done in practice and a full
multi-qubit simulation would be needed to properly test PCA.

Then we set our sights towards dynamical quantum phase transitions in Chapter 4 by training RNNs
on Loschmidt rate functions. By letting a basic RNN observe enough traces with and without DQPTs,
we were able to classify whether or not a DQPT occurred in a trace. We then went through some
handmade traces to try and understand what the RNN was doing. It turned out that the network looked
for intervals with a high value that stayed long enough, meaning those intervals could not contain a kink
that only peaks for an instant. This behaviour could be understood through attractive fixed points that
the hidden states would go towards if close enough. We also sculpted an RNN that used the second
derivative to find kinks, which had problems with traces that contained some jarring features. After that
we tried to make a long short-term memory RNN into a DQPT locator by showing a spike in its output
whenever it detects the associated kink. There were a few traces that gave it trouble, for example it
produced lump in its output for a trace that did not contain any DQPTs. Getting a LSTM to properly
detect DQPTs therefore requires further work.
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A Principal Component Analysis Solution
Let U be a real l-dimensional vector space which the n samples {xi}i∈[n] live in. By assuming x̄ = 0, we
can construct the n× l sample matrix X and define the variance for a variable v

Var(v) = vTCov(X)v = (OTv)TΛ(OTv), (25)

where Cov(X) = 1
n−1X

TX is the sample covariance matrix of X. Here we have diagonalized Cov(X) with
the orthogonal matrix O where λi = Λii are the eigenvalues and the columns of O are the eigenvectors
{ui | i = 1, . . . , l}. We will assume the eigenvalues and eigenvectors are ordered by highest eigenvalue
such that λi ≥ λj if i ≤ j.

Let V be a p-dimensional subspace of U with eigenvectors {vi | i = 1, . . . , p} with the restriction
p ≤ l. We define the variance of this space by

Var(V ) =

p∑
i=1

Var(vi), (26)

which is invariant under basis change. The goal is to show Var(V ) is maximized by choosing V =
span{ui | i = 1, . . . , p}, proving the PCA algorithm maximises the explained variance.

With PV being the operator for projecting vectors onto V , we can define wj = ‖PV uj‖2 that possess
the inequality wj ≤ 1 since ‖PV uj‖2 ≤ ‖uj‖2. It can also be written in terms of the basis for V through
some manipulations

wj = ‖PV uj‖2 =

∥∥∥∥∥
p∑

i=1

〈uj , vi〉vi

∥∥∥∥∥
2

=

p∑
i=1

〈uj , vi〉2 =

p∑
i=1

(uj · vi)2 =

p∑
i=1

(
l∑

k=1

(OT)jk(vi)k

)2

=

p∑
i=1

(OTvi)
2
j ,

(27)
which lets us express the subspace variance in a different manner

Var(V ) =

p∑
i=1

Var(vi) = (OTvi)
TΛ(OTvi) =

p∑
i=1

l∑
j=1

λj(O
Tvi)

2
j =

l∑
j=1

wjλj =

p∑
j=1

wjλj +

l∑
p+1=1

wjλj .

(28)
From here we further define W =

∑p
j=1 wj and W⊥ =

∑l
j=p+1 wj with their total

W +W⊥ =

l∑
j=1

wj =

p∑
i=1

 l∑
j=1

(OTvi)
2
j

 =

p∑
i=1

∥∥OTvi
∥∥2 = p, (29)

where we used that O is orthogonal. By using wj ≤ 1 to ensure 1 − wj ≥ 0 and that λi ≥ λj when
1 ≤ i ≤ p < j ≤ l, we arrive at the important inequality

l∑
p+1=1

wjλj =

(
1

p−W

p∑
k=1

(1− wk)

)
l∑

j=p+1

wjλj (30)

≤ 1

W⊥

p∑
k=1

(1− wk)

l∑
j=p+1

wjλk =

 1

W⊥

l∑
j=p+1

wj

 p∑
k=1

(1− wk)λk =

p∑
k=1

(1− wk)λk. (31)

This leads us directly to our goal

Var(V ) ≤
p∑

j=1

wjλj +

p∑
j=1

(1− wj)λj =

p∑
j=1

1 · λj =
p∑

j=1

Var(uj) (32)

that shows us V = span{ui | i = 1, . . . , p} has the maximum variance for a p-dimensional subspace of U .
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B Transverse-Field Ising Model Quench Solution
The goal of this section is to derive the rate function λ(t) of the Loschmidt echo for the Transverse-Field
Ising model. This is done by first diagonalizing the model and then quenching it to get the Loschmidt
echo L(t). The Hamiltonian for the Transverse-Field Ising model is

H = −J
L∑

l=1

σx
l σ

x
l+1 − Γ

L∑
l=1

σz
l . (33)

B.1 Jordan-Wigner Transformation
We start the diagonalization by using the Jordan-Wigner transformation which lets us replace the Pauli
operators σz

l , σ
−
l , σ

+
l with fermion operators c†l , cl:

σz
l = 1− 2c†l cl, σ−

l = exp

(
iπ
∑
j<l

c†jcj

)
c†l , σ+

l = exp

(
iπ
∑
j<l

c†jcj

)
cl. (34)

Before we apply this transformation to Eq. 33, we first note

eiπc
†
l cl =

∞∑
n=0

(iπc†l cl)
n

n!
= 1 +

∞∑
n=1

(iπ)n

n!
c†l cl = 1 + (eiπ − 1)c†l cl = 1− 2c†l cl = −1 + 2clc

†
l , (35)

from which we get the useful relations c†l = c†l e
iπc†l cl = −eiπc

†
l clc†l and cl = −cleiπc

†
l cl = eiπc

†
l clcl.

Replacing σz
l is straight forward for any l, so we immediately shift our focus to σx

l σ
x
l+1 which requires

some extra care. This is because we want to use a Fourier transformation later and that necessitates
approximating the model using boundary conditions. Before we go into exactly what boundary condition
to use, we first do the substitutions for l < L as those can be done without additional considerations

σx
l σ

x
l+1 = (σ−

l + σ+
l )(σ

−
l+1 + σ+

l+1) (36a)

=

(
e
iπ

∑
j<l

c†jcj
c†l + e

iπ
∑
j<l

c†jcj
cl

)(
e
iπ

∑
j<l+1

c†jcj
c†l+1 + e

iπ
∑

j<l+1

c†jcj
cl+1

)
(36b)

= c†l e
iπc†l clc†l+1 + c†l e

iπc†l clcl+1 + cle
iπc†l clc†l+1 + cle

iπc†l clcl+1 (36c)

= c†l c
†
l+1 + c†l cl+1 − clc

†
l+1 − clcl+1 (36d)

= (c†l − cl)(c
†
l+1 + cl+1). (36e)

Now, it is for l = L we need to take boundary conditions into account which depends on the fermionic
parity P = eiπ

∑L
j=1 Nj where Nj = c†jcj is the number operator at site j. For even fermionic parity we

will choose an anti-periodic boundary condition cL+1 = −c1, while for uneven parity we opt for cL+1 = c1
which is periodic. If the fermionic parity is p we can express these boundary conditions compactly as
cL+1 = −pc1. This is valid to do because all the fermion operators comes in pairs, which preserves the
fermionic parity. The reason for a choosing boundary condition that depends on the fermionic parity
becomes clear when doing the substitution for l = L

σx
Lσ

x
L+1 = (σ−

L + σ+
L )(σ

−
L+1 + σ+

L+1) (37a)

=
(
eiπ

∑L−1
j=1 c†jcjc†l + eiπ

∑L−1
j=1 c†jcjcl

)
((−pc1)† + (−pc1)) (37b)

= −p
(
−eiπ

∑L
j=1 c†jcjc†l + eiπ

∑L
j=1 c†jcjcl

)
(c†1 + c1) (37c)

= −peiπ
∑L

j=1 c†jcj (−c†l + cl)(c
†
1 + c1) (37d)

= −pp(−c†l + cl)(c
†
1 + c1) (37e)

= (c†l − cl)(c
†
1 + c1). (37f)

We now find the Hamiltonian has become

H = −J
L∑

l=1

(c†l − cl)(c
†
l+1 + cl+1)− Γ

L∑
l=1

(1− 2c†l cl) (38)
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B.2 Fourier Transform
It is clear the next step is the Fourier transform cl = L−1/2

∑
k e

ilkck, but before this it is important to
consider which set of momenta k we are working with. This set depends on the boundary condition we
have and it turns out using the anti-periodic boundary condition makes the intermediate calculations
and result simpler [13, 14]. We therefore choose to only focus on the system with an even fermionic
parity as that is enough for our purposes. The reason this choice is the easiest to work with ends up
being because its set of momenta {±(2n − 1)π/L | n = 1, . . . , L/2} all come in negative-positive pairs,
contrary to uneven fermionic parity that has k = 0, π as outliers. The set itself is derived by looking at
the Fourier transform and noting cL+1 = −c1 implies eiLk = −1.

To make the Fourier transform easier to manage we split the Hamiltonian into two parts by assigning
HJ =

∑L
l=1(c

†
l − cl)(c

†
l+1 + cl+1) and HΓ =

∑L
l=1(1− 2c†l cl). From here we begin transforming HJ

HJ =
∑
k1,k2

1

L

L∑
l=1

(
e−ilk1c†k1

e−i(l+1)k2c†k2
+ e−ilk1c†k1

ei(l+1)k2ck2
+ H.c

)
(39a)

=
∑
k1,k2

1

L

L∑
l=1

(
e−il(k1+k2)e−ik2c†k1

c†k2
+ e−il(k1−k2)eik2c†k1

ck2
+ H.c

)
(39b)

=
∑
k

(
eikc†kc

†
−k + eikc†kck + H.c

)
(39c)

=
∑
k

HJ
k (39d)

=
1

2

∑
k

(HJ
k +HJ

−k) (39e)

=
1

2

∑
k

(
(eikc†kc

†
−k + e−ikc†−kc

†
k) + (e−ikc−kck + eikckc−k) (39f)

+ (eikc†kck + e−ikc†kck) + (e−ikc†−kc−k + eikc†−kc−k)
)

(39g)

=
∑
k

(
(i sin(k)c†kc

†
−k) + (−i sin(k)ckc−k) + (cos(k)c†kck) + (1− cos(k)c−kc

†
−k)
)

(39h)

= L+
∑
k

(
c†k c−k

)(− cos(k) i sin(k)
−i sin(k) cos(k)

)(
ck
c†−k

)
(39i)

We then apply the same techniques to HΓ

HΓ = L− 2
∑
k

c†kck = L−
∑
k

(
c†kck + c†−kc−k

)
= L+

∑
k

(
c†k c−k

)(−1 0
0 1

)(
ck
c†−k

)
, (40)

and get the fully Fourier transformed Hamiltonian

H = −JHJ − ΓHΓ (41a)

=
∑
k

(
c†k c−k

)
︸ ︷︷ ︸

Ψ†
k

(
+(Γ− J cos(k)) −iJ sin(k)

+iJ sin(k) −(Γ− J cos(k))

)(
ck
c†−k

)
︸ ︷︷ ︸

Ψk

+const. (41b)

=
∑
k

Ψ†
k

(
+zk −iyk
+iyk −zk

)
︸ ︷︷ ︸

Mk

Ψk + const. (41c)

Here we defined yk = J sin(k) and zk = Γ− J cos(k) as shorthands to make Mk easier to manage.

B.3 Bogoliubov Transformation
The final step is to perform a Bogoliubov transformation, which is a linear transformation that preserves
the anticommutation relations of c†k, ck. In our case this transformation actually ends up being a rotation
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and it is therefore useful to first express Mk as something that is more geometrical in its nature

Mk = εk

(
cos(2θk) −i sin(2θk)
i sin(2θk) − cos(2θk)

)
=

(
εk 0
0 εk

)(
cos(2θk) i sin(2θk)
i sin(2θk) cos(2θk)

)(
1 0
0 −1

)
, (42)

where
εk =

√
y2k + z2k =

√
Γ2 − 2ΓJ cos(k) + J2, sin(2θk) = yk/εk, cos(2θk) = zk/εk. (43)

Now Mk can be viewed as a flip along the second axis, followed by a rotation of 2θk and finally a scaling
of εk. The unitary transformation Uk that we will use to diagonalize Mk is

Uk =

(
cos(θk) i sin(θk)
i sin(θk) cos(θk)

)
with the property Uk

(
cos(φk)
i sin(φk)

)
=

(
cos(θk + φk)
i sin(θk + φk)

)
(44)

for any φk. We can now diagonalize Mk and it is even possible to visualize it by viewing the matrices as
manipulations in the complex plane

U†
kMkUk =

(
cos(θk) i sin(θk)
i sin(θk) cos(θk)

)−1(
εk 0
0 εk

)(
cos(2θk) i sin(2θk)
i sin(2θk) cos(2θk)

)(
1 0
0 −1

)(
cos(θk) i sin(θk)
i sin(θk) cos(θk)

)
(45a)

= εk

(
cos(θk) i sin(θk)
i sin(θk) cos(θk)

)(
1 0
0 −1

)(
cos(θk) i sin(θk)
i sin(θk) cos(θk)

)
(45b)

=

(
εk 0
0 −εk

)
. (45c)

The Bogoliubov fermion operators for this transformation are

U†
kΨk =

(
cos(θk)ck − i sin(θk)c

†
−k

i sin(θk)c−k + cos(θk)c
†
k

)
=

(
ηk
η†−k

)
, (46)

which follow the anticommutation relations of normal fermion operators. The Hamiltonian now assumes
its final form

H =
∑
k

(U†
kΨk)

†(U†
KMkUk)(U

†
kΨk) + const. (47a)

=
∑
k

(
η†k η−k

)(εk 0
0 −εk

)(
ηk
η†−k

)
+ const. (47b)

=
∑
k

(εkη
†
kηk − εkη−kη

†
−k) + const. (47c)

=
∑
k>0

ωk(η
†
kηk + η†−kη−k) + const. with ωk = 2εk (47d)

=
∑
k>0

Hk + const. (47e)

Every Hk has its own three-level system with four states: the ground state |gk〉 ∝ ηkη−k |0〉, the two
excited equal-energy states |e±k〉 ∝ η†±kη∓k |0〉, and the highest energy state |sk〉 ∝ η†kη

†
−k |0〉. Writing

out the full forms of η†±k and η±k and normalizing we find the ground state and the most excited state
in full are

|gk〉 = (cos(θk) + i sin(θk)c
†
kc

†
−k) |0〉 and |sk〉 = (i sin(θk) + cos(θk)c

†
kc

†
−k) |0〉 . (48)

Unsurprisingly, they can also be expressed via each other through |gk〉 = ηkη−k |sk〉 and |sk〉 = η†kη
†
−k |ek〉.

The other excited states |e±k〉 can be calculated similarly, but they will not be used by us and are therefore
left out.

B.4 Quantum Quench
Now we are ready to quench the system. This is done by starting out with the Hamiltonian H ′ that has
the parameters J ′ and Γ′. At this point the system will be in its ground state |g′〉 =

∏
k>0(cos(θ

′
k) +
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i sin(θ′k)c
†
kc

†
−k) |0〉. We then suddenly quench the system such that the Hamiltonian instantly changes

to H with parameters J and Γ (we do H ′ → H instead of H → H ′ to ease some of the later notation).
Because the system was still in the state |g′〉, the system will now become dynamic and we can therefore
begin calculating the Loschmidt amplitude

G(t) = 〈g′|e−iHt|g′〉 =
∏
k>0

〈g′k|e−iHkt|g′k〉 =
∏
k>0

Gk(t). (49)

As |g′k〉 is not an eigenstate of Hk we have to translate it into a superposition of |gk〉 and |sk〉. This
is possible because |g′k〉 and |s′k〉 have zero total momentum, so they both live in the subspace spanned
by |0〉 and c†kc

†
−k |0〉. We can therefore work in the basis (|0〉 , c†kc

†
−k |0〉) and perform the following

manipulations

(
|g′k〉 |s′k〉

)
=

(
cos(θ′k) i sin(θ′k)
i sin(θ′k) cos(θ′k)

)
(50a)

=

(
cos(φk) i sin(φk)
i sin(φk) cos(φk)

)(
cos(θk) i sin(θk)
i sin(θk) cos(θk)

)
with φk = θ′k − θk (50b)

=

(
cos(φk)
cos(φk)

cos(θk)
i sin(θk)

+
+
i sin(φk)
i sin(φk)

i sin(θk)
cos(θk)

i sin(φk)
i sin(φk)

cos(θk)
i sin(θk)

+
+

cos(φk)
cos(φk)

i sin(θk)
cos(θk)

)
(50c)

=
(
cos(φk) |gk〉+ i sin(φk) |sk〉 i sin(φk) |gk〉+ cos(φk) |sk〉

)
. (50d)

We see |g′k〉 = cos(φk) |gk〉 + i sin(φk) |sk〉 with φk = θ′k − θk and it is now a simple matter to compute
Gk(t) by exploiting η†±kη±k |gk〉 = 0 |gk〉 and η†±kη±k |sk〉 = 1 |sk〉:

Gk(t) = 〈g′k|e−iHkt|g′k〉 (51a)

= cos2(φk) 〈gk|e−iωkt(η
†
kηk+η†

−kη−k)|gk〉+ i sin2(φk) 〈sk|e−iωkt(η
†
kηk+η†

−kη−k)|sk〉 (51b)
= cos2(φk) + i sin2(φk)e

−i2ωkt. (51c)

Continuing, we use this result to additionally calculate the Loschmidt echo for all momentum k

Lk(t) = |Gk(t)|2 (52a)
= (cos2(φk) + i sin2(φk)e

−i2ωkt)(cos2(φk)− i sin2(φk)e
i2ωkt) (52b)

= cos4(φk) + 2 cos2(φk) sin
2(φk) sin(2ωkt) + sin4(φk) (52c)

= cos4(φk) + 2 cos2(φk) sin
2(φk)(1− 2 sin2(ωkt)) + sin4(φk) (52d)

= 1− sin2(2φk) sin
2(ωkt), (52e)

from which we get the rate function

λ(t) = − 1

L
log

(∏
k>0

Lk(t)

)
(53)

= − 1

L

∑
k>0

log
(
1− sin2(2φk) sin

2(ωkt)
)

(54)

≈ − 1

2π

∫ π

0

log
(
1− sin2(2φk) sin

2(ωkt)
)
dk . (55)

For explicit computation we can also write

sin(2φk) = sin(2θ′k) cos(2θk)− cos(2θ′k) sin(2θk) =
(J ′Γ− JΓ′) sin(k)

ε′kεk
. (56)

B.5 Dynamical Quantum Phase Transitions
We see that a DQPT will only happen at time t if sin2(2φk) sin

2(ωkt) = 1 for some k. This can only
happen if sin2(2φk) = 1, which is independent of t, so it is best to find k and thereafter get t from
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sin2(ωkt) = 1. Because sin(k) is not bijective on k ∈ (0, π) it is not possible to use Eq. 56, so instead we
look at the equivalent condition cos(2φk) = 0 which yields

0 = cos(2φk) = cos(2θ′k) cos(2θk) + sin(2θ′k) sin(2θk) =
(J ′Γ + JΓ′) cos(k)− (J ′J + Γ′Γ)

ε′kεk
, (57)

so
cos(k∗) =

J ′J + Γ′Γ

J ′Γ + JΓ′ =
1 + (Γ′/J ′)(Γ/J)

(Γ′/J ′) + (Γ/J)
. (58)

This expression also serves as a condition for whether a DQPT will occur in the rate function for any
given J ′, J,Γ′,Γ as we require |cos(k∗)| < 1. It is possible to find that this is equivalent to DQPTs
happening if and only if |Γ′/J ′| < 1 < |Γ/J | or visa versa. The last part is to find all times tn where a
DQPT appears, which is easily done

tn =
π(n+ 1/2)

ωk∗
where ωk∗ = 2

√
(J + Γ)(J − Γ)

(Γ′/J ′)− (Γ/J)

(Γ′/J ′) + (Γ/J)
. (59)
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