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A B S T R A C T

Fullerenes are a class of polyhedral carbon molecules with surfaces con-
sisting only of pentagonal and hexagonal carbon rings. Theoretically there
exists infinitely many stable fullerenes, of which only a handful have been
created and analysed. The chemical and electronic properties of fullerenes
are of major interest to the scientific community and their applications have
played essential roles in revolutionary materials, medical drug delivery sys-
tems, and electron acceptors in solar cells. Fullerenes comes in many shapes
and sizes with the number of isomers growing as O(N9) with N being the
number of carbon atoms. It is desirable to search through these enormous
fullerene isomer spaces for fullerenes with specific physical properties and
shapes. However this computational task proves impractical for ab inito
quantum methods due to long computational time and thus, faster methods
are needed.
This thesis offers an improvement to an already existing software which uses
geometry force field methods in order to effeciently determine optimal molec-
ular shapes for fullerenes. Furthermore a vectorized mathematical notation
is derived, making the calculations and computations easily interpretable, in
terms of geometry operations, and verifiability, as the mathematical calcula-
tions are directly translated into simple vectorized code. The code is easy to
extend with additional physics and offers an good foundation for optimal
paralellization. Harmonic force constants are obtained for the C60-Ih Bucky
ball through sub-Hessian matrix projection of multiple DFT calculations,
namely b3lyp, b3lyp+gd3, cam-b3lyp and m062x.
With this new corrected fullerene geometry force field, implemented and
used in this thesis, an assortment of fullerene structures have been computed
and compared to ab inito quantum optimized geometries, of which all have
been in good agreement.

i



Contents

1 introduction 1

1.1 Building an Fullerene Intuition . . . . . . . . . . . . . . 3

1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 fullerenes , topology and a bit of graph theory 5

2.1 Fullerenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Geometry of Fullerenes . . . . . . . . . . . . . . . . . . . . 7

2.4 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Planar graphs and Initial Geometries . . . . . . . . . . 11

2.5.1 Tutte-embedding . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Generating Initial 3d Geometries . . . . . . . . . 13

3 fullerene force fields 15

3.1 Fullerene Force Field . . . . . . . . . . . . . . . . . . . . . 16

3.2 Calculating and Simplifying derivatives . . . . . . . . 18

3.2.1 Bond stretching . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Angular bending . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Dihedral angle . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Outer contributions . . . . . . . . . . . . . . . . . . 23

3.2.5 Outer angle . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.6 Outer dihedral angle . . . . . . . . . . . . . . . . . 24

3.3 Physical properties and second derivatives . . . . . . 27

3.4 CPU and GPU parallelization . . . . . . . . . . . . . . . 28

3.5 Harmonic Force Constants . . . . . . . . . . . . . . . . . 30

3.6 Gaussian Program and functionals . . . . . . . . . . . . 34

4 conjugated gradient method 35

4.1 Conjugate Gradient Method . . . . . . . . . . . . . . . . 35

4.2 Line Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Faster methods . . . . . . . . . . . . . . . . . . . . . 39

5 results and discussion 41

5.1 Gradient correction . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Geometry Force Field Optimization . . . . . . . . . . . 42

5.2.1 Optimized Geometry of C60-Ih . . . . . . . . . . 42

5.2.2 Geometry Force Field Optimization of C72nt 44

5.3 When the Wirz method fails . . . . . . . . . . . . . . . . 46

5.4 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Seminario Force constants for C60-Ih fullerene . . . . 48

ii



5.6 Optimization using Seminario Force Constants . . . 50

5.7 Augmenting the force field . . . . . . . . . . . . . . . . . 51

5.8 Validity of a Molecular Force Field . . . . . . . . . . . . 52

5.8.1 Cross-terms . . . . . . . . . . . . . . . . . . . . . . . . 53

6 conclussion and outlook 55

Appendices i

a extended calculations of derivatives i
a.1 Length Calculations . . . . . . . . . . . . . . . . . . . . . . . . . ii
a.2 Corner angle Calculations . . . . . . . . . . . . . . . . . . . . . iii
a.3 Dihedral Calculations . . . . . . . . . . . . . . . . . . . . . . . iv

b wirz inaccuracies xii
b.1 Failed C60 fullerenes . . . . . . . . . . . . . . . . . . . . . . . . xii
b.2 Failed C80 fullerenes . . . . . . . . . . . . . . . . . . . . . . . . xiv

c gaussian results of C60Ih xviii
c.1 ph bond streching force constants . . . . . . . . . . . . . . . . xviii
c.2 hh bond streching force constants . . . . . . . . . . . . . . . . xix
c.3 p angle bending force constants . . . . . . . . . . . . . . . . . . xix
c.4 h angle bending force constants . . . . . . . . . . . . . . . . . . xx
c.5 phh dihedral bending force constants . . . . . . . . . . . . . . xx

List of Figures

Figure 1 Gauss curvature around a point on a surface. . . . . . 6

Figure 2 Illustration of induced Gauss curvature of pentagons. 8

Figure 3 Simple connectivity graph. . . . . . . . . . . . . . . . . 10

Figure 4 Schlegel and Cone projection of C60-Ih . . . . . . . . 12

Figure 5 Tutte embedding of C60-Ih and C960Ih. . . . . . . . . 13

Figure 6 Illustration of how the planar Tutte embedding is
embedded onto a sphere. . . . . . . . . . . . . . . . . 13

Figure 7 Figure of different dihedral settings. . . . . . . . . . . 18

Figure 8 Illustration of bond length Rab . . . . . . . . . . . . . 19

Figure 9 Illustration of angle θ. . . . . . . . . . . . . . . . . . . 20

Figure 10 Illustration of dihedral angle β. . . . . . . . . . . . . . 21

Figure 11 Inner and outer connectivity around a center carbon
atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 12 Illustration of outer angles (θm, θp). . . . . . . . . . . 24

Figure 13 Illustration of the three different outer dihedral planes. 25

Figure 14 Visualisation of the fullerene problem and the paral-
lelization approach. . . . . . . . . . . . . . . . . . . . . 28

iii



List of Figures iv

Figure 15 Illustration of Seminario method for angular force
constant calculation. . . . . . . . . . . . . . . . . . . . 32

Figure 16 Illustration of Seminario method for dihedral force
constant calculation. . . . . . . . . . . . . . . . . . . . 32

Figure 17 Example of Line search in a solution space. . . . . . . 37

Figure 18 Bisection method in the direction of the gradient. . . 37

Figure 19 Calculated gradient versus numerical gradient for the
Wu, Wirz, and Wirz2 method. . . . . . . . . . . . . . . 41

Figure 20 Force field performance of Wu, Wirz, and Wirz2 on
the C60-Ih fullerene. . . . . . . . . . . . . . . . . . . . 43

Figure 21 Wu, Wirz and Wirz2 force field optimized geometries
of C60-Ih. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 22 Force field performance of Wu, Wirz, Wirz2 of the
C72nt fullerene. . . . . . . . . . . . . . . . . . . . . . . 45

Figure 23 Wu, Wirz and Wirz2 force field optimized geometries
of C72nt. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 24 Comparisson of failed Wirz optimized fullerene ge-
ometries (first row) and Wirz2 optimized fullerene
geometries. (a) C60-[1,2,3,4,7,19,23,26,27,30,31,32] , (b)
C80-[1,2,3,5,10,18,29,30,38,39,41,42], (c) C540Ih. . . . . 46

Figure 25 Force field benchmark of time needed for convergence
of isocahedral symmetric fullerenes sized C20-Ih -
C1040-Ih. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 26 Force field benchmark of iterations needed for con-
vergence of isocahedral symmetric fullerenes sized
C20Ih−C1040Ih. . . . . . . . . . . . . . . . . . . . . . 47

Figure 27 m062x distribution of Seminario calculated force pa-
rameters of the C60-Ih fullerene. With Geometry dis-
playing the bond force constants. . . . . . . . . . . . . 49

Figure 28 Force field optimized geometry of C60-Ih with Semi-
nario calculated force constants. . . . . . . . . . . . . 50

Figure 29 Illustration of Aromatic molecule benzen. . . . . . . . 51

Figure 31 Illustration of parameters affected by the perturbation
of a center atom. . . . . . . . . . . . . . . . . . . . . . . 53

Figure 32 Illustration of cross terms . . . . . . . . . . . . . . . . 54

Figure 33 Comparisson of failed C60 Wirz optimized fullerene
geometries together with the Wirz2 optimized geome-
tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Figure 34 Comparisson of failed C80 Wirz optimized fullerene
geometries together with the Wirz2 optimized geome-
tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii



Figure 35 Histograms of kph force constants from various DFT
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Figure 36 Histograms of khh force constants from various DFT
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Figure 37 Histograms of kp force constants from various DFT
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Figure 38 Histograms of kp force constants from various DFT
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Figure 39 Histograms of kp force constants from various DFT
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . xx

List of Tables

Table 1 Table of force field parameters from the Fullerene pro-
gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 2 Table of force constants used in the Fullerene program. 18

Table 3 The RMS-error of inter-nuclear parameters from the
optimized geometries compared to the m062x method. 42

Table 4 The RMS-error of inter-nuclear parameter of C72nt
from the optimized geometries compared to the b3lyp
gemetry. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 5 Table of C60-Ih Seminario force constants. A com-
bined mean of the results of (b3lyp,b3lyp+gd3, cam−

b3lyp,m062x). . . . . . . . . . . . . . . . . . . . . . . . 48

Table 6 The RMS-error of C60-Ih inter-nuclear parameters
from the Seminario parameter force field optimized
geometries compared to the m062x geometry. . . . . 50

v



B I B L I O G R A P H Y

[1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley,
“C 60 : Buckminsterfullerene,” Nature, vol. 318, pp. 162–163, Nov. 1985.
Number: 6042 Publisher: Nature Publishing Group. (Cited on pages 1,
2, and 5.)

[2] J. E. Avery, “Wave equations without coordinates I: fullerenes,” Rendi-
conti Lincei. Scienze Fisiche e Naturali, vol. 29, pp. 609–621, Sept. 2018.
(Cited on page 9.)

[3] P. Schwerdtfeger, L. N. Wirz, and J. Avery, “The topology of fullerenes,”
WIREs Computational Molecular Science, vol. 5, no. 1, pp. 96–145, 2015.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1207.
(Cited on pages 1, 5, 9, 11, and 12.)

[4] L. T. Scott, M. M. Boorum, B. J. McMahon, S. Hagen, J. Mack, J. Blank,
H. Wegner, and A. d. Meijere, “A Rational Chemical Synthesis of C60,”
Science, vol. 295, pp. 1500–1503, Feb. 2002. Publisher: American As-
sociation for the Advancement of Science Section: Report. (Cited on
page 1.)

[5] “House of Graphs - Fullerenes.” (Cited on page 2.)

[6] Z. Wu, D. A. Jelski, and T. F. George, “Vibrational motions of buckmin-
sterfullerene,” Chemical Physics Letters, vol. 137, pp. 291–294, June 1987.
(Cited on pages 2 and 16.)

[7] L. N. Wirz, Graph theoretic and electronic properties of fullerenes, &, Biasing
molecular modelling simulations with experimental residual dipolar couplings
: a thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy at Massey University, Albany, New Zealand. Thesis,
Massey University, 2015. Accepted: 2016-06-13T22:53:51Z Journal Ab-
breviation: Biasing molecular modelling simulations with experimental
residual dipolar couplings. (Cited on pages 2, 14, and 23.)

vi



bibliography vii

[8] P. Schwerdtfeger, L. Wirz, and J. Avery, “Program Fullerene: A software
package for constructing and analyzing structures of regular fullerenes,”
Journal of Computational Chemistry, vol. 34, no. 17, pp. 1508–1526, 2013.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23278.
(Cited on pages 2, 14, and 23.)
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1
I N T R O D U C T I O N

"Human beings always do the most intelligent thing. . .
after they have tried every stupid alternative and none of them have worked"
- Richard Buckminster Fuller

Fullerenes are hollow, three-dimensional molecules formed entirely by car-
bon atoms. The first fullerene discovered was the football shaped C60-Ih
isocahedral symmetric fullerene by Kroto et al. in 1985[1] and it consists of
60 carbon atoms in 20 hexagonal and 12 pentagonal faces. At the point of
their discovery the geometrical structures of fullerenes were already well
admired by Richard Buckminister Fuller a famous arcitect, who ended up being
the name giver to the family of molecular structures, as his geodesic dome
building are graph duals to fullerenes. Fullerenes come in many shapes
and with an array of possible applications e.g. biomedical research through
hydrogen storage to solar cell development. The geometric properties of
fullerenes, with only pentagonal and hexagonal faces, as well as their distinc-
tive chemical bond structure makes them well suited for systematic analysis
based on computational methods and graph theory.

Theoretically there exists infinitely many fullerenes with the number of
isomers growing as O(N9)[3] however only a few have been produced,
like the most spherical isomers of C70 and C78 which have been realized
and studied. However, present techniques of fullerene productions are
exceptionally limited and rely upon procedures like laser ablation, resistive
heating of graphite, and a bit of luck. Since these methods can produce large
quantities of small fullerenes but are incapable of producing new specific
fullerenes advancement is limited. In 2002 Scott et al.[4] proposed a solution
to the problem and introduced a new method of fullerene production. A
rational chemical synthesis path for the C60-Ih fullerene from an auto-
assembling planar precursor molecule. The precursor molecule consisted
of all 60 carbon atoms and 75 of the 90 carbon bonds present in the C60-Ih.
Furthermore chlorine was placed at specific positions and when exposed to
at flash vacuum pyrolysis, the precursor molecule would auto assemple. The
method has proven groundbreaking and has lead to selective production of
other small fullerenes, such as the C78 and C84 fullerene.

1



introduction 2

However calculating the positions of the chlorine atoms is still a trial and
error process and further work needs to be done.

Another challenge presented by the fullerenes is the enormous isomer space.
With isomers growing as O(N9) one could spend an eternity listing everyone.
There exist 1.812 C60 fullerene molecules, 1.674.171 C120 fullerenes and
132.247.999.328 C400 fullerene isomers and of all those fullerene isomers (1,
10.774 and 42.432.922.921, respectively)[5] exists which uphold the Isolated
pentagon rule (IPR)[1] and thus are thermodynamically stable. The hand-
ful of fullerenes that have already been synthesized have a huge impact in
general science and are used in many fields. Knowing this, it is desirable to
navigate these huge isomer spaces in search of new possible fullerenes with
desired properties. Unfortunatly, accurate quantum chemical calculations
are not feasible for thousand upon thousands of possible fullerene molecules,
since the cumbersome quantum calculations take too long. A faster method
for assessing fullerenes is therefore needed.
The Born-Oppenheimer approximation (BO) is based on the large difference
in nucleus and electron masses. The mass of the nucleus surpass the mass
of the electron by several orders of magnitudes and given the same kinetic
energy, the movement of a single electron is much more rapid than of a
nucleus. For carbon, the size of the nucleus is roughly ∼ 1/33.000 the size of
the atom radius, so we can treat the nucleus being treated as a point particle
in the electron potential, which is assumed to instantaneously readjust itself
as we moce the nuclei. The BO approximation thus lets us treat the nuclei as
classical particles moving around each other in an ever changing potential
created by the electrons and nuclei. In molecular geometry force field opti-
mization we also start with the BO approximation, however the complicated
nucelus-electron potential is replaced with a much simpler potential. This
serves the purpose of avoiding complicated ab inito quantum chemistry
calculations at each iteration and speeding the computational process up by
several orders of magnitude. However some accuracy is lost in the process,
but the physical energy and geometry close to the optimum can often be
captured by the second order Taylor expansion, if we can calculate a good
approximation to the Hessian matrix.
Through the neat graph properties of fullerenes, the Alexandrov’s uniqueness
theorem implies that it is possible to find good fullerene geometries. Previous
work done by Wu et al.[6] and the work from Wirz et al.[7, 8] demonstrates
that fullerene geometries, which are in good agreement with ab inito quan-
tum mechanical calculations. can be obtained through geometry force field
methods.

This thesis investigate the possibilities of improving an already exisisting
force field from Wirz et al. The force field implemented by Wirz et al. works
well for small fullerenes, when it works. However errors will occur, which
results in fullerenes not optimizing correctly, with the cases growing propor-
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tional to Natoms. Furthermore the code is written in Fortran with thousands
of lines of code, with no existing basic documentation of the implemented
derivatives or calculations, which makes the force field hard to debug, extend,
and understand. Also, the original author of the force field has left academia.
Thus, in order to create a force field which is, more robust, easier to extend
with new physics, and more straightforward to understand, this thesis have
had to start from the ground up. New force field gradients have been derived
in a simple and vectorized notation, with accessible documentation. The
vectorized notation allows for easy verification of derivatives and makes
parallelization possible.
Furthermore, force field parameters have been calculated through Hessian
matrix projections of multiple density functional theory (DFT) calculations
of the C60-Ih molecule. The results of the expanded force field method
were compared to ab inito quantum mechanical DFT calculations with and
without the new force field parameters and the possibilities of adding new
geometric terms to the force field are discussed.

1.1 building an fullerene intuition

This thesis is part of a larger collaboration exploring the mathematics, physics,
and chemistry of polyhedral molecules in order to obtain as much infor-
mation about fullerenes as possible. The project is led by James E. Avery
at the University of Copenhagen, (UofC) (web-page) in collaboration with
Peter Schwerdtfeger at Massey University, New Zealand (web-page). It is
currently funded through Avery’s VILLUM Experiment project 00023321

"Folding Carbon: A Calculus for Molecular Origami".

The overall aim is to search through the vast fullerene isomer spaces and
procure fullerenes that have desired physical properties, however we face the
problem of ab inito quantum methods being too slow for the task. Therefore
it is desirable to create fast methods that can search for fullerenes with
specific physical properties.
What the collaboration aims to do is to obtain a broad spectrum of physical,
chemical, graph-theoretical, geometrical and mathematical properties for
fullerenes and polyhedral-molecules. Many properties require good geome-
tries to obtain, and so it is essential to have rapid, robust methods that
produce fullerene geometries that are as physically correct as possible, which
is what the work of this thesis aims to accomplish.

https://www.nbi.dk/~avery/folding-carbon/
http://ctcp.massey.ac.nz/index.php?group=&page=fullerenes&menu=fullerenes
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1.2 software

The software developed in this thesis can be found on
https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes.
The project contains:

• Methods to calculate molecular energies and gradients

• Methods to optimize and find optimal fullerene geometries

• Methods to automatically extract information from Gaussian16 ".log"
files

• Scripts to analyse and visualize results

• Scripts to calculate fullerene force constanst from the Seminario method

Wherever appropriate, the methods will be incorporated into a central code
base for the "Folding Carbon project" (web-page). As this project is a work
in progress, the content is most likely to be changed in the future.

https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes
https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes/blob/master/Fullerene_GeometryFunctions.py
https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes/blob/master/Fullerene_GeometryFunctions.py
https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes/blob/master/Fullerene_GeometryFunctions.py
https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes/blob/master/CGM_ForceField.ipynb
https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes/blob/master/ForceConstants_Seminario.ipynb
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2
F U L L E R E N E S , T O P O L O G Y A N D A B I T O F G R A P H
T H E O RY

2.1 fullerenes

Carbon is the fourth most abundant element in the universe making it among
the most alluring atoms to work with. Solid carbon comes in several naturally
occurring allotropes depending on the type of chemical bond. Two common
allotropes are diamond and graphene. In diamond the carbon atoms form
sp3 orbital hybrids, which means that each carbon atom forms bonds to the
four nearest neighbours in a tetrahedral shape. In graphene the bonds are
sp2 hybridised, resulting in the atoms only forming bonds to the nearest
three. Another sp2 allotrope are the fullerenes.

Carbon C60-Ih was theoretically proposed by Õsawa in 1970 [9] but it was
not until 1985 that Kroto et al. experimentally discovered the football shaped
fullerene through laser vaporisation of graphene in a helium environment[1].
The name Buckministerfullerene was chosen for C60-Ih after the American
architect Richard Buckminister Fuller, as his geodesic dome building are graph
duals to fullerenes. Today the C60-Ih is commonly referred to as the Bucky
ball. Eventually the name fullerenes was chosen for the whole familly of
shapes.

Fullerenes are cage-like, hollow molecules consisting only of 3-connected
sp2-hybridised carbon atoms. There are infinitely many posible fullerenes
with the number of isomers growing as O(N9)[3] for N carbon atoms. There
exist 1812 C60 isomers and 132.247.999.328 C400 isomers, all of which have
distinct chemical and physical properties. Fullerenes consists of exactly 12

pentagons and F6 hexagons giving the fullerenes a pseudo-spherical symme-
try. The formula for the number of atoms is C20+2F6 for (F6 > 0∧ F6 6= 1)
making C20 (Dodecahedron) the smallest fullerene, only consisting of pen-
tagons. C60-Ih is the minimal arrangement such that no two pentagons

5
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share an edge which gives thermodynamic stability to the fullerene thereby
fulfilling the Isolated Pentagon Rule[10]. Furthermore the positions of the
pentagons determine the shape of the fullerene, which the following sections
will shed some light upon.

2.2 topology

Every day we encounter different objects which all have boundaries described
by different surfaces. One can think of a surface as the outer shell of a shape,
e.g. the crust of the earth describes a spherical shape or the frosting covering
a donut make a torus. Ideally the outer shells would have zero thickness,
which would make for a sad amount of frosting on our donut.
Gauss curvature (K) is an intrinsic property defined on all points of a surface.
It describes how the surface bends and curves and whether or not it is a
closed surface. The local curvature can mathematically be described as a
product of the maximal and minimal curvatures in any direction through a
point, See Figure 1.

K = k1k2 (1)

k1

k2

(a)

k1
k2

(b)

k1

k2

(c)

Figure 1: Examples of Gauss curvature around a point on a surface, (a) zero, (b)
positive and (c) negative. k1 and k2 are the directions of most curvature.

Another way to think of Gauss curvature is through the Bertrand-Diquet-
Puiseux theorem. It states that the Gauss curvature at a point can be ge-
ometrically interpreted as the difference between 2π and the angle of an
infinitesimal circle drawn around the point. A surface such as Figure 1 (a)
is flat everywhere and has zero Gauss curvature, since the surface lies in
the same plane as the circle. If you placed the same infinitesmal circle on
a point on the sphere in Figure 1 (b) only the point would lie in the plane
of the circle, and the rest would go out of the plane, thus giving it positive
curvature. In the case of the saddlepoint in Figure 1 (c) it would both go in
and out of the plane which consequently gives negative curvature.
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The total Gauss curvature dictate the topology of a surface through the Gauss-
Bonnet theorem:

∫
S
dsK(s) = 4π(1− g) (2)

Where s parameterizes the oriented surface S, K is the Gauss curvature and
g is the genus of the surface (the number of holes). Again think back to the
donut which has genus g = 1 or a salt pretzel which, in most cases, has
genus g = 3. A surface can only be closed when the total Gauss curvature is
a multiple of 4π, like the sphere in Figure 1 (b).

2.3 geometry of fullerenes

Fullerenes are closed hollow surfaces with non-negative Gauss curvature
everywhere. This is due to the fact that it only consists of exactly 12 pentagons
and F6 hexagons. To better understand this we start by considering graphenes
honeycomb structure and its dual graph representation in Figure 2 (a). Here
the green dots outline the hexagons in graphene and the orange dots are
the dual graph representation where each orange dot represent a hexagon
face. A gray circle is placed around the center of the dual graph, illustrating
the plane of an infinitesmal small circle in analogy to the Bertrand-Diquet-
Puiseux theorem, showing that the hexagon planes have Gauss curvature
zero everywhere. In Figure 2 (b) a triangular wedge of angle 2π6 is removed
between atom {i, j} and merged together in Figure 2 (c). The two points {i, j}
are merged together at i ′ forming a cone with 2π

6 Gauss curvature at the
apex of the cone or the center point which still lies in the plane of the circle.
In Figure 2 (d) the dual graph is shown with the matching faces illustrating
the induced curvature around the pentagon.
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(a)

i

j

(b)

i’

(c) (d)

Figure 2: Illustration of induced Gauss curvature of pentagons. (a) graphene honey-
comb lattice (green) with dual graph representation (orange). (b) a wedge of 2π6 is
removed between {i, j}, (c) the two points {i, j} are merged together into a new point
i ′ inducing the curvature around the pentagon, (d) illustration of the faces on top of
the dual graph to better understand the induced curvature.

A pentagon induces a Gauss curvature of 2π6 so in order to reach the 4π
Gauss curvature of a sphere, 12 pentagons are needed. This can also be
understood through the discrete form of the Gauss-Bonnet:

N∑
v=1

Kv = 4π(1− g) (3)

In this setting, all curvature Kv is concentrated at the vertices which are
the blue and orange dots of the dual graph in Figure 2 (c). The curvature
around a point can easily be understood in the triangulated dual graph
representation, why the curvature is the difference between 2π and the angle
of a circle around the point:

v
θ2

θ3

θ4

θ5

θ6
θ1

Kv = 2π−
∑
i=1

θi (4)

To find the number of pentagon faces F5 needed to close to a fullerene,
we then use eq. 4 in eq. 3:

N∑
v=1

(2π−
∑
i=1

θi) = 4π(1− g) (5)
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We then further divide the left hand side into two sums of each face type
and remember that fullerenes have g = 0:

F5∑
n=1

(2π−

5∑
i=1

θi) +

F6∑
m=1

(2π−

6∑
j=1

θj) = 4π (6)

We set θi = θj = 2π
6 , and write the sums over {F5, F6} out as a multiplicity of

F5 and F6:

F5(2π−

5∑
i=1

2π

6
) + F6 (2π−

6∑
j=1

2π

6
)

︸ ︷︷ ︸
=0

= 4π

2πF5(1−
5

6
) = 4π

F5
6

= 2

F5 = 12

(7)

Had we instead removed two triangular wedges from the hexagon, we
would end up with a square having Gauss curvature 2π

3 , requiring only
6 to close the surface. Alternatively had we introduced another wedge
it would result in a heptagon with negative 2π

6 curvature, which would
mean that another pentagon, 13 in all, would be needed to close the surface.
Because fullerenes always have exactly 12 pentagons of curvature 2π6 , with
the remaining surface of Gauss curvature zero, they are not spherical but can
at most achieve icosahedral symmetry1. For more information on fullerene
topology see [2, 3].

2.4 graph theory

Carbon has four valence electrons and therefore prefers to be part of a four
covalent chemical bond system in order to fulfill the octet rule. In Fullerens,
due to the sp2 orbital hybritisation, the carbon atoms form bonds with
the three closest neighbours, with two single bonds and one double bond,
however we will not distinguish between single and double bonds.
Mathematically this can be characterized by a graph G = (V,E) with vertices
V being a set of carbon atoms connected by pairwise unordered edges
E ⊆ {(x,y) | (x,y) ∈ V2 ∧ x 6= y}. We can think of the vertices V being the
atoms and the chemical bonds would then be the edges E.
A favorable way to represent the graph connectivity or the bonds between
atoms and their neighbours is through an Adjacency matrix Aij. The Ad-
jacency matrix is a symmetric matrix where Aij = 1 if vertex i and j are
connected and Aij = 0 if they are not. Since every vertex only has three

1 Actually both the C20 (Dodecahedron) and C60-Ih (Buckyball) are spherical, in the sense that
all their carbon atoms lie on the surface of a sphere.
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edges it is often easier to have this information represented in a sparse matrix
representation of size N× 3 instead of an N×N matrix.



0 1 0 0 0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0


︸ ︷︷ ︸

Adjacency matrix



2 6 7

3 1 8

4 2 9

5 3 10

6 4 11

1 5 12

1 .. ..
2 .. ..
3 .. ..
4 .. ..
5 .. ..
6 .. ..


︸ ︷︷ ︸

Sparse Adjacency matrix

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3: Simple connectivity graph. With Adjacency matrix and Sparse Adjacency
matrix.

Both matrices represent the same connectivity information of the simple
graph shown in Figure 3, it is therefore often preferable to work with the
sparse matrix notation.
Knowing that each carbon atom have three neighbours, or each vertex is
connected to three other vertices we call it a cubic graph, because a minimum
of three edges have to be removed to form two sub graphs, it is also three-
connected. If a graph can be mapped to a two dimensional space V → R2

such that vertices are assigned [x,y] coordinates and can be connected by
non-crossing straight lines (the edges), the graph is said to be planar. Fáry’s
theorm then affirms that the graph can be mapped onto a sphere also with
non-crossing straight lines forming a polyhedral shape. However a planar
graph in itself does not have a unique set of coordinates and the vertices can
in a sense just be moved around.
For three-connected planar graphs there exists a set well defined faces F, which
allows us to represent the graph by the face information also G = (V,E,F).
Additionally through Steinitz’s theorem the planar graph can be mapped to
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the sphere as a convex polyhedra invoking adherent toplogical properties
within our graph, thus making it a Polyhedral graph.

From the face information a dual graph G∗ can be constructed and each
vertex in G∗ then corresponds to a face of the graph G and an edge in G∗ is
then joining two neighboring faces from G. In Figure 2 (a) a dual graph of
equilateral triangles are shown.

Knowing that fullerenes are three-connected planar graphs with well defined
faces consisting of pentagons and hexagons that can be represented as
equilateral triangles through the dual graph representation, we can obtain
a rigid metric describing its surface. This essentially means that the edges
of our dual graph have a well defined length or that the pentagons and
hexagons are regular and also have well defined sizes. Thus by having a
rigid convex polyhedra metric we can apply Alexandrov’s uniqueness Theorem:

Alexandrov’s Uniqueness Theorem 1 Let M be a convex polyhedral metric on
the sphere. Then there exists a convex polyhedron P ⊂R3 such that the boundary of
P is isometric to M. Moreover, P is unique up to rigid motions.

Which signifies that there exists one and only one embedding in 3D space,
where all of our well defined properties of the graph, e.g. the edges and
faces are preserved without the surface tearing or crossing and all lengths
are preserved. For a more broad description of graph theory in regards to
fullerenes, the reader is refered to[3].

In context to the work of this thesis it means that for each fullerene graph, of
which there are infinitely many, there exists a unique geometry that preserves
all of our molecular graph properties. The next section will describe how a
planar graph can be obtained from the graph information, and how the 2D
planar graph is embedded onto a sphere giving us an initial geometry.

2.5 planar graphs and initial geometries

Planar embeddings can be drawn on a paper and give us a way to visualize
the framework of the graph. Ideally we want the drawing to be simple with
no crossing edges and informative.
There exists a variety of different methods for generating the planar embed-
ding e.g. Schlegel projection and Cone-projection[3] where the 3d geometry
prior is needed. A point p is placed slightly above the 3d geometry and a
plane is situated below. Lines are then drawn from p through each vertex on
the geometry intersecting the plane, which then yield the planar embedding
as show in Figure 4 (a). However the Schlegel projection does not always
yield correct results and will sometimes get crossing edges for non-spherical
polyhedra. In the case of the Cone-projection the points are first projected
upon an enveloping cone of the fullerene and later down onto the plane, the
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metod is depicted in Figure 4 (b), the Cone-projection is often more robust
with non-spherical polyhedra. Nevertheless both methods need the fullerene
3D geometry prior and even then they will not always yield correct answers.
A third method Tutte-embedding[3], is guaranteed to always produce a pla-
nar graph for 3-connected planar graphs and no 3D geomtry is needed prior
to the projection.

Figure 4: Figure of planar embedding of C60-Ih. (a) Schlegel projection, (b) Cone
projection. This Figure is borrowed from the article[3] with permission.

2.5.1 Tutte-embedding

In graph drawing, the Tutte-embedding of a simple 3-connected planar graph
is a crossing-free straight-line embedding, where the outer face is a convex
polygon and each interior vertex is the solution of a sparse linear system:∑

j

T ijxj = yj (8)

The interior vertices are then the barycenter solutions of the respective three
neigbouring points of a vertex, which in the case of fullerenes the solution
to T ij = δij −Aij/3, where Aij is adjacency matrix and yij = 0 for every
non-fixed vertex, so every vertex but the outer convex polygon which is
fixed. However even though Tutte embedding always yields a planar graph
of non-crossing edges, the solution to the sparse linear system will result
in exponentially crowding of the vertices for larger system, as depicted in
Figure 5 (b), making the planar graph hard to interpret.
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(a) (b)

Figure 5: Tutte embedding of (a) C60-Ih and (b) C960Ih, with exponential crowding
of the faces around the center.

2.5.2 Generating Initial 3d Geometries

Having obtained a planar graph through the Tutte-embedding it is now
possible to further embed it onto a sphere and acuire an initial geometry for
a force field optimization.
From Alexandrov’s theorem we know that an ideal convex geometry exists
where the faces are preserved or the dual graph is made purely from equi-
lateral triangles and can theoretically be derived from the graph. However
it is not yet known how to determine the ideal 3d structure as a conformal,
isometric embedding of the surface into the space. Nevertheless it is possible
to use force field optimization from a crude initial geometry to obtain good
results, close to the ideal molecular structure.

θ

(a)

θ

φ

(b)

Figure 6: Illustration of how the Tutte embedding is embedded onto the sphere. (a)
The planar Tutte embedding with the point (red) on the enclosing pentagon and a
point (blue) being a vertex in the graph. The line (green) shows the shortest path
between the two points, where all edges have a fixed length and θ (grey area) shows
the angle between a direction of reference and the edge (blue). (b) The enclosing
pentagon is placed at the top of the sphere and the information from (a) is translated
into the position of the (blue) vertex on the sphere.
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The method used in the Fullerene program[7, 8] for obtaining initial geome-
tries is a sort of gift wrapping of the Tutte-embedding down over the sphere.
For each vertex v, we let the topological distance (minimum number of edges)
from the outer face be dv, and its coordinates in the Tutte embedding be xv.
We define the maximum depth as D, which in the case of the Tutte embed-
ding of C60-Ih in Figure 5 (a) is D = 7. The barycenter of the embedding is
then xc, which we will place at the pole of the sphere. We can then assign
an angle φ(v) = (dv+1/2)π

D+1 , which will place the vertex layers equidistantly
along the φ-angle accordingly to the distance dv from the outer face. The
second angle θ(v) is the angle of xv around xc. In Figure 6 an illustration of
how the vertices are assigned v 7→ (θ(v),φ(v)) is shown.
The Tutte-embedding on the sphere yields an initial geometry with non-
crossing edges. Through force field optimization of the initial geometry it is
then possible to obtain good 3d structures close to the physical molecules,
which the next section will explain.



3
F U L L E R E N E F O R C E F I E L D S

The forces acting on a physical system is the negative gradient to the systems
potential energy. Because of this the force fields are defined as the potential
energy of a system, where the forces are the negative gradient of the potential
energy of the system. The force field optimization then aims to minimize
this potential energy.
In the case of geometry optimization, it is favourable to express the potential
energy as a harmonic approximation around the optimal geometry. This
servers the purpose of obtaining a convex energy expression with a singular
well defined minimum, which can be found deterministically contrary to
more complicated physical expressions such as Lennard-Jones and Morse
potentials, which can have messy singularities. Also, in the optimal energy
the harmonic potential is correct up to second order of the Taylor expanssion.
The potential energy at a minimum X0 can be approximated through the
Taylor expansion:

E(X0 +∆X) = E(X0) +∆X
T∇E(X0) +

1

2
∆XTH∆X+O(||∆X||3) (9)

With H being the Hessian containing the second derivatives. We can ignore
∆XT∇E(X0) = 0 since it will be zero at the minimum.
This leaves the energy at the minimum E(X0), the distortive term 1

2∆X
TH∆X

and higher Taylor orders. The expression for the energy at the minimum
then takes the form:

E(X0 +∆X) = E(X0) +
1

2
∆XTH∆X+O(||∆X||3) (10)

This approximation is correct close to the minimum. However working
with molecules, the cartesian coordinates X = {x,y, z} of atoms are not
intuitive. In order to better understand the geometry the spatial coordiantes
of X is expressed through intrinsic properties of inter-nuclear relations
between atoms e.g. bond distance between atoms, bond-bond angles, and

15
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dihedral angles between neighbouring faces. In the case of bond distance
between carbon atoms, the potential is described by the distance R and
is then optimized towards an equlibrium length instead of some specific
cartesian coordinates [xa,ya, za, xb,yb, zb]. The change of parameterization
also servers the purpose of creating a general expression for all sorts of
fullerene geometries. A Taylor expanssion in the cartesian coordiantes at
the minimum would give an expression for a specific fullerene with N× 3
different force constants restricted to the specific coordinates, and it would
not be interchangeable with other fullerenes. Therefore an intuitive regular
parameterization which can be described by few intutive parameters e.g.
carbon atom bond lengths or the molecule bond angles, which we have a
good chemical understanding of, are needed.
If we were to perturb our coordinates X in a single direction xi, the right
handside of Eq. 10 would take the form:

E(X0 + xi) = E(X0) +
1

2

∂2E(X0)

∂x2i
(xi − x

0
i )
2 (11)

This expression, which only consists of a single variable (xi) is frequently
refered to as Hooke’s law or Hooke’s potential, typically with ∂2E(X0)

∂x2i
= k

describing a vibrational frequency constant.
The intrinsic properties can be formulated in the same manner, since bond
distance between two atoms also is a single variable. It is then possible
to construct a potential for our force field, consisting of multiple Hooke’s
potential terms of each intrinsic property. The next section will describe the
inter-nuclear properties, and how previous force fields have been constructed
to describe the geometry of fullerenes.

3.1 fullerene force field

The first force field constructed for fullerenes was by Wu et al.[6] in 1987. It
was made specifically for the C60-Ih and used harmonic force terms in the
form:

EWu =
kp

2

p−e∑
ip

(Rip − Rp)
2 +

kh
2

h−e∑
ih

(Rih − Rh)
2+

fp

2

60∑
jp

(θip − θp)
2 +

fh
2

3N−60∑
jh

(θih − θh)
2

(12)

Where p − e and p − h describes the pentagon and hexagon edges. In
this simple force field only the bond distances and internal face angles of
pentagons and hexagons were used. The C-C bond force constants kp = 11

and kh = 10 are given in (105 dyn cm ) and Rp = 1.54Å and Rh = 1.41Å
are the corresponding pentagon and hexagon bond distances. kp and kh
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are the force constants for the two different internal modes in a pentagon
and hexagon, both in units of (105 dyncm ) with the corresponding bond angles
θp = 108◦ and θh = 120◦. Since the first fullerene force field by Wu et.
al. was made, a variety of changes and updates have been made, namely
introducing dihedral angles and new harmonic force constants. The potential
energy expression, which this thesis will focus on, is the one described in
Wirz et al., the force field includes four dihedral angles with the center atom
being connected to (0, 1, 2 or 3 pentagons) as shown in Figure 7, three types
of bond distances e.g. bonds between (0, 1, or 2 pentagons) and two angle
bending terms. The Energy expression is given by:

EWirz =
fpp

2

pp−e∑
ipp

(Ripp − Rpp)
2 fph

2

ph−e∑
iph

(Riph − Rph)
2

+
fhh
2

hh−e∑
ihh

(Rihh − Rhh)
2 +

fp

2

60∑
ip

(θip − θp)
2

+
fh
2

3N−60∑
ih

(θih − θh)
2 +

fppp

2

ppp−v∑
ippp

(βippp −βppp)
2

+
fpph

2

pph−v∑
ipph

(βipph −βpph)
2 +

fphh

2

phh−v∑
iphh

(βiphh −βphh)
2

+
fhhh
2

hhh−v∑
ihhh

(βihhh −βhhh)
2

(13)

Where pp-e, hp-e and hh-e denote the number of edges adjacent to (2, 1 or 0

pentagons respectively). ppp-v, hpp-v, hhp-v and hhh-v are the number of
vertices centered in (3, 2, 1 or 0 pentagon arrangements respectively). The
force field parameters are set as follows in Table 1:

Rpp Rph Rhh θp θh βppp βpph βphh βhhh
1.479 Å 1.458 Å 1.401 Å 108◦ 120◦ 37.377◦ (29.202◦, 35.285◦) (18.774◦, 23.943◦) 0◦

Table 1: Table of force field parameters in EWirz. In the dihedral angle βpph, βphh
the first value (29.202◦, 19.774◦) refer to the angle of the pentagon faces onto the base
plane of atom b-c-d illustrated in Figure 7. The second values (35.285◦, 23.943◦) is
that of the hexagons faces onto the base plane.
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a

b

c

d

F5 F5

F5

(a)

a

b

c

d

F5 F5

F6

(b)

a

b

c

d

F5 F6

F6

(c)

a

b

c

d

F6 F6

F6

(d)

Figure 7: Figure of different dihedral settings. The force-field parameters
are, starting from b, in clockwise order: (a) (37.377◦, 37.377◦, 37.377◦), (b)
(29.202◦, 29.202◦, 35.285◦), (c) (19.774◦, 19.774◦, 23.943◦), (d) (0◦, 0◦, 0◦)

The force constants in the Fullerene program have been obtained through
a least squares fit to B3LYP frequencies of the vibrational spectra of C50 −
C1(193), C60-Ih and C70 −D5h(8149) (numbering of the isomers stems
from lexicographically ordered face-spiral pentagon indices, see [10]). The
harmonic force constants are shown in Table 2.

Force constants [N/m]
fpp fph fhh fp fh fppp fpph fphh fhhh
260 390 450 100 100 35 65 85 270

Table 2: Table of force constants in EEHFF, obtained through least squares fit to B3LYP
frequencies of the vibrational spectra of C50 −C1, C60-Ih and C70 −D5h.

It is possible to divide Equation 13 into three general harmonic force terms:

EWirz = Estr + Eang + Edih (14)

Estr is the bond stretching energy, Eang is the bond-bond angular bending
energy, and Edih is the neighbouring face dihedral energy.
In order to use a geometry force field method we need to find the gradient
of each term in Eq. 14.

3.2 calculating and simplifying derivatives

The main focus governing this thesis have been simplifying and making an
already exsisting code more user-friendly, transparent, correct, and to create
a foundation from which parallization could easily be implemented.

The force field implementation in the Fullerene program is written in Fortran
with thousands upon thousands lines of code which are hard to navigate
and maintain. Therefore it has been preferable to start over and redo a lot of
the exsisting work. The calculations and derivatives of this thesis have been
done using vector notation instead of single coordinates (x,y, z) representa-
tion, which makes the code easier to maintain, expand, trouble shoot, and
implement parallisation, which will be discussed further in section 3.4.
Furthermore features like distance and angles is easily understood through
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vector norms and dot products of vectors. Additionally a correction to the
calculated dihedral gradient has been implemented, which gives an correct
description of the energy gradient of Eq.13.

In the following sections the gradient derivation of each force term in Eq. 14

are presented, for a more meticulous derivation of each gradient term the
reader is refered to Appendix A.
Since the backbone of this thesis has been to implement and write force field
derivatives, into readable and intuitive Python code, code snippets from the
software will be presented together with the respective calculated derivatives.

3.2.1 Bond stretching

b

a

Rab

Figure 8: Illustration of two
bonded carbon atoms (a,b).

The bond stretching energy Estr is the energy
required to compress and stretch two bonded
atoms a and b away from their chemical equilib-
rium in the direction of ab. We can describe the
system using Hooke’s potential as an approxima-
tion around equilibrium.

Estr =
kstr

2
(Rab − R0)

2 (15)

where kstr is the bond constant, Rab the distance between a and b and R0
is the distance between a and b at chemical equilibrium. In order to find
the optimal distance, we calculate the gradient ∇aEstr with respect to the
movement of a

∇aEstr =
kstr

2
∇a(||ab||− R0)

2

Here we have written Rab as ||ab|| =
√

(bx − ax)2 + (by − ay)2 + (bz − az)2.
We then take the derivative of the function and get:

∇aEstr = kstr(||ab||− R0)∇a||ab|| (16)

The gradient of the vector norm ||ab|| is the negative unitvector âb of the
direction of ab which leaves us with the following expression as the gradient
contribution from the stretching energy

∇aEstr = −kstr
(
||ab||− R0

)
âb (17)

With code implementation in the form

Where the shapes of each object is
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fc (N×neighbours) (Natoms × 3)
R_ab (Natoms ×neighbours) (Natoms × 3)
R0 (Natoms ×neighbours) (Natoms × 3)
ab_hat (Natoms ×neighbours× (x,y, z)) (Natoms × 3× 3)

Here fc is the force constants, R0 are the lengths at chemical equilibrium,
both calculated respectively to the atom-neighbour adjacent faces. R_ab
consists of the calculated bond distances, and ab_hat contains the the unit
vectors pointing from the center atoms to the neighbours. Because d_R
is a general bond stretching gradient description, it can be performed on
all bonds. Thus, the bond strethcing gradient is computed simultaneously
for all bonds, where the [...,NA], is creating a newaxis which can properly
scale the each neighbouring gradient contribution. Lastly the neighbouring
contributions are summed over the neighbour axis, giving a bond gradient
expression at each atom with the (Natoms × (x,y, z)).

3.2.2 Angular bending

θa

b

a

c

Figure 9: Illustration of an-
gle θ between three cabon
atoms (a,b,c).

The angular energy Eang is the energy required
to bend a three atom system b-a-c away from
its equilibrium angle, see Figure 9. Again the
harmonic approximation is used around the equi-
librium and yields the following expression for
the angular contribution:

Ebend(θ) =
kang

2
(cos(θa) − cos(θ0))

2 (18)

where kang is the spring constant, cos(θa) is the
dot product1 between the vectors âb and âc and cos(θ0) is the cosine of the
equilibrium angle. We calculate the gradient ∇aEang with respect to the
movement of a:

∇acos(θa) =
kang

2
∇a(âb · âc︸ ︷︷ ︸

cos(θa)

−cos(θ0))
2 (19)

We then use the Product rule:

∇acos(θa) = kang(cos(θa) − cos(θ0))(∇aâb) · âc+ âb · (∇aâc)

(20)

1 This calculation is only precise up to the sign, meaning we will not know whether or not we are
above or bellow π, but since our pentagon and hexagon faces have optimal energy in the convex
case we can assume, given small enough iteration steps, that our cosine should be between
[0,π].
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We now have two gradient terms ∇aâb and ∇aâc. Here we use the vector
Quotient rule (QR) and get the following expression.

∇acos(θa) =kang(cos(θa) − cos(θ0))(
1

||ab||
(âb cos(θa) − âc) +

1

||ac||
(âc cos(θa) − âb)

) (21)

With the corresponding code

In order to get ac_hat the ab_hat array is rolled roll([Natoms× (âb, âc, âd)])→
[Natoms × (âc, âd, âb)]. Which makes it possible to use simple vector oper-
ations.

3.2.3 Dihedral angle

a

b c

d

β

Figure 10: Illustration of di-
hedral angle β of a four car-
bon atom system (a,b,c,d).

The dihedral energy Edih is the energy required
to distort a center atom a of a 4 atom system
a-b-c-d, away from the optimal distance from the
b-c-d plane, see Figure 10. The dihedral energy
is as follows:

Edih =
kdih
2

(cos(β) − cos(β0))
2 (22)

where kdih is the spring constant, cos(β) is the
angle of the (a, b, and c) plane down onto a base
plane formed by (b, c, and d) and β0 is the angle at equilibrium. In order to
find the optimal distance, we calculate the gradient ∇aEdih with respect to
the movement of a:

∇aEdih =
kdih
2
∇a(n̂abc · n̂bcd︸ ︷︷ ︸

cos(β)

−cos(β0))
2 (23)

Once again we use the Product rule (PR)

∇aEdih = kdih(cos(β) − cos(β0))(∇an̂abc) · n̂bcd + n̂abc · (∇an̂bcd)

(24)

From this equation we see that the n̂bcd = ĉb×ĉd√
1−(ĉb·ĉd)2

vector is indepen-

dent of a, which mean that the second term n̂abc · (∇an̂bcd) = 0. We then
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write out n̂abc = b̂a×b̂c√
1−(b̂a·b̂c)2

and use a combination of the quotient rule

and the product rule with respect to cross products.

∇aEdih = kdih(cos(β) − cos(β0))(
(∇a(b̂a× b̂c))

√
1− (b̂a · b̂c)2 + (∇a

√
1− (b̂a · b̂c)2)(b̂a× b̂c)

(

√
1− (b̂a · b̂c)2)2

)
· n̂bcd

= kdih(cos(β) − cos(β0))

( F︷ ︸︸ ︷
(∇a(b̂a× b̂c)) sin(θabc) +

G︷ ︸︸ ︷
(∇a

√
1− (b̂a · b̂c)2)(n̂abcsin(θabc))

sin(θabc)2

)
· n̂bcd

(25)

In order to calculate the derivative we find the gradient of F and G and add
them back into Equation 25.

F = ∇a(b̂a× b̂c) (product rule (PR))

= (∇ab̂a)× b̂c+ b̂a× (∇ab̂c)︸ ︷︷ ︸
=0

(b̂c independent of a)

= (
1

||ba||
(I× b̂c− b̂a⊗ ( b̂a× b̂c︸ ︷︷ ︸

n̂abcsin(θabc)

)

G =

√
1− (b̂a · b̂c)2

=
1

2sin(θabc)
(∇a)(1− (b̂a · b̂c)2)

= −cot(θabc)∇a(b̂a · b̂c) (product rule (PR))

= −cot(θabc)

(
(∇ab̂a) · b̂c+ b̂a · (∇ab̂c)︸ ︷︷ ︸

=0

)
(b̂c independent of a)

=
−cot(θabc)

||ba||

(
b̂c− b̂a cos(θabc)

)
We insert F and G back into Equation 25 and dot with n̂bcd:

∇aEdih = kdih(cos(β) − cos(β0))(
b̂c× n̂bcd

||ba||sin(θabc)
−
b̂a cos(β)

||ba||︸ ︷︷ ︸
F

+
cot(θabc) cos(β)

||ba||sin(θabc)

(
b̂c− b̂a cos(θabc)

)
︸ ︷︷ ︸

G

)

(26)

With code implementation in the form
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These are the gradient contributions of the inner parts, as shown in Figure
11, which are already implemented in the Fullerene program. Furthermore
the Fullerene force field by Wirz et al.[7, 8] also have outer angles, which will
be described in the next section. However a thing which the Wirz et al. force
field fail to include are the outer dihedral terms.
By expanding the gradient to also take outer dihedral contributions into
consideration we obtain a gradient which correctly describe the energy
function. So far Wirz et al. force field have still gotten results close to ab inito
methods, but hopefully by introducing outer dihedral gradient terms in our
force field optimization we can obtain even better results. The derivatives of
the outer parts are introduced in the next section.

3.2.4 Outer contributions

What the outer parts have in common is that the movement of a now happens
at the edge of the connections. As a result we cannot necessarily use the
same force field parameters for the outer dihedrals. The outer angles are still
within the same planes as those circumscribing a, however for the dihedrals a
new face is introduced. The arrangement of faces governing the equilibrium
parameters are then computed with respect to the faces around b, c and d.

a

b

cd

bpbm

cp

cm

dp

dm

Figure 11: Figure of the connectivity around the atom a. The yellow circle is the

inner connectivity. The gray circle is the outer connectivity.
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3.2.5 Outer angle

a

b

bpbm

θbabm θbabp

Figure 12: Illustration of
outer angles of a 4 atoms
system (a,b,bp,bc).

One of the outer contributions is the outer angle,
which are shown in Figure 12. When moving a
the angles (θbabp , θbabm) changes. In order to
get a more correct gradient describing the move-
ment of a we need to include ∇acos(θbabp) and
∇acos(θbabp).

∇acos(θbabp) = ∇a(b̂a · b̂bp) (27)

We start by using the product rule

∇acos(θbabp) =(∇ab̂a) · b̂bp + b̂a · (∇ab̂bp)︸ ︷︷ ︸
=0

=
1

||ba||
(b̂bp − b̂a cos(θbabp))

(28)

The same approach is used on ∇acos(θbabp):

∇acos(θbabm) = ∇a(b̂a · b̂bm) (29)

Using the product rule we get

∇acos(θbabm) =(∇ab̂a) · b̂bm + b̂a · (∇ab̂bm)︸ ︷︷ ︸
=0

=
1

||ba||
(b̂bm − b̂a cos(θbabm))

(30)

Both Equation 28 and 30 are multiplied with their respective energy term
kbpang

(
cos(θbabp) − cos(θbp0

)
) or kbmang

(
cos(θbabm) − cos(θbm0

)
).

Here b_out_hat can both take the value of b̂bp or b̂bm. The reader is
referred to Appendix A for a thorough calculation of the outer angles.

3.2.6 Outer dihedral angle

When perturbing a in the outer dihedrals it will change three of the dihedral
angles at each neighbour. Therefore it is necessary to include the gradient
contribution from each neighbouring outer dihedral into the general dihedral
gradient. In Figure 13 the outer dihedrals are shown around the neighbours
b. Since a occurs differently in dihedral face (bam,bmp and bpa) it also
changes each dihedral angle differently. It is necessary to calculate each
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gradient separately. In order to get a more correct gradient, we need to
include the terms:(

∇a(n̂bam · n̂amp) , ∇a(n̂bmp · n̂mpa) , ∇a(n̂bpa · n̂pam)

)

a

b

pm

(a)

a

b

pm

(b)

a

b

pm

(c)

Figure 13: The three different outer dihedral planes. (a) the bam, (b) the bmp, and
(c) the bpa.

The mathematical approach is similar to that of the inner dihedrals. detailed
calculations can be found in Appendix A, the results are as follows:

∇a(n̂babm · n̂abmbp) =
âbcos(β)

||ab||
−
âm× n̂amp
||ab||sinθa

+
âmcos(β)

||am||
−
n̂amp × âb
||am||sin(θa)︸ ︷︷ ︸

F

+
cot(θa)cos(β)

sin(θa)

(
âbcos(θa)

||ab||
−
âm

||ab||
+
âmcos(θa)

||am||
−

âb

||am||

)
︸ ︷︷ ︸

G

+
m̂p× n̂bam
||ma||sin(θm)

−
m̂acos(β)

||ma||
+
cot(θm)cos(β)

||ma||sin(θm)
(m̂p− m̂acos(θm))︸ ︷︷ ︸

P

(31)
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∇a(n̂bbmbp · n̂abmbp) =
n̂bmp × p̂m
||pa||sin(θp)

−
p̂acos(β)

||pa||
+

cot(θp)cos(β)

||pa||sin(sin(θp))
(p̂m− p̂acos(θp))

(32)

∇a(n̂bbpa · n̂abmbp) =
n̂pam × p̂b
||pa||sin(θp)

−
p̂acos(β)

||pa||
+
cot(θp)cos(β)

||pa||sin(θp)
(p̂b− p̂acos(θp))︸ ︷︷ ︸

F

+
âpcos(β)

||ap||
−
âm× n̂bpa
||ap||sin(θa)

+
âmcos(β)

||am||
−
n̂bpa × âp

||am||sin(θa)︸ ︷︷ ︸
G

+
cot(θa)cos(β)

sin(θa)
(
âpcos(θa)

||ap||
−
âm

||ap||
+
âmcos(θa)

||am||
−

âp

||am||
)︸ ︷︷ ︸

P

(33)

Again each part is multiplied with k(cos(β) − cos(βout)) with the parame-
ters defined accordingly to the surrounding faces.
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3.3 physical properties and second derivatives

With the long-term desire to navigate the huge fullerene isomer space on the
hunt for fullerenes with specific energy properties, higher order derivatives
of the geometry needs to be calculated.
This section is an display of what might be possible given a fully calculated
second derivative of the fullerene geometry. From the book [11] a compre-
hensive list is displayed of energy properties which can be derived from
intrinsic molecule properties such as

• External electric field (E)

• External magnetic field (B)

• Electric field (F)

• Change in the nuclear geometry (R)

From surface density functional theory calculations it would be possible to
obtain molecular properties such as (E,B and F).
Through the relation:

Property ∝ ∂nF+nB+nRE
∂FnF∂BnB∂RnR

(34)

Different properties with can be calculated from derivatives of a certain order
of the intrinsic molecular properties.

To name a few geometry dependent:

nF nB nR Properties
0 0 1 Molecular (nuclear) gradient
0 0 2 Harmonic vibrational frequencies
1 0 1 Infrared absorbtion
2 0 1 Raman intensity
1 1 1 Vibrational circular dichroism
1 0 2 Infrared intensities for overtone and combination bands

These are but a few energy properties which can be derived from the fullerene
given a good understanding and a accurate description of the intrinsic
molecular properties.
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3.4 cpu and gpu parallelization

Since all calculations within the force field implemented in this thesis are
entirely vectorized and data-parallel, they can be done in parallel. In Figure
14, the fullerene isomer space with a single fullerene isomer and a single car-
bon atom with the respective neighbours and next neighbours, is visulaized.
The Figure attempts to visualize the advantageous data-parallel structure,
where each colored outline square shows an independent data structure.
Each fullerene isomer in the isomer space have exactly the same regular
basis (Natoms × 3), with 3 being the number of neighbours. The gradient
opperations presented in thesis produces results in the same regular basis,
and thus all gradient array-opperations mentioned in the previous section3.2
can be done simultaneously on each fullerene isomer (orange square) in
the Fullerene isomers (see Figure 14), but also on each carbon atom (blue
square) in the fullerene at each time-step. Having these conditions for our
computations present an ideal foundation for optimal parallisation for CPUs
but also GPUs. This section serves the purpose of explaining the advanta-
geous structure of fullerenes and how parallelization can be implemented.
Unfortunatly no parallelization have been implemented in the force field of
this thesis and it remains a project for future work.

a

b

c

d

m

p

Fullerene Isomers

Fullerne

Atom

Neighbours

Next Neighbours

Figure 14: Visualisation of the fullerene problem. From left to right: Each square in
the (orange) column represent a specific fullerene in the isomer space. The (blue)
column represent a specific fullerene and within the column, each square represent a
carbon atom (green). Three neighbours (red) are assigned to each carbon atom and
two outer neighbours (teal) to each of the neighbours.

Before we get into detail about why the force field implemented in this thesis
offers an optimal foundation for parallel computing, a small introduction to
CPUs, GPUs and general parallelization should be mentioned.
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Commonly three different classes of hardware are referred to when working
with parallelization:

• Single Instruction Single Data (SISD)

• Multiple Instructions Multiple Data (MIMD)

• Single Instructions Multiple Data (SIMD)

CPUs have effecient computer cores, which in general administer the calcula-
tions done on a computer. A CPU core constists of many SISD processors,
which when working together are good at dealing with MIMD problems,
where multiple different operations are performed on multiple data points,
and SIMD problems, where the same operation on multiple data points.
CPUs are really good at MIMD problems where a number of independent
programs which performs different calculations are present. A CPU core
then administers a program and works independently of the other CPU cores.
This is not feasible for GPUs which only work with SIMD problems2. This is
due to GPU cores having to perform the same operation in each cores at the
same time-step, which is commonly refered to as running in lock-step.
Also, due to something called cache-prediction, which guesses what operation
should be performed next, CPUs use ∼ 90% of the power on guessing the next
task, in order to perform optimally. However it may not always guess cor-
rectly, in which cases can result in the program slowing down substantially
and the cache needs to be refilled with new information. Cache prediction is
also something that is impossible to avoid in CPUs, as it is part of the CPU
core architecture. For GPUs only a fraction is spent on cache prediction and
it is easier to exploit. Another notable difference between CPUs and GPUs
are the number of cores available and the number of instructions performed
each second (commonly refered to as clock cycles). In modern laptops there
are usually a single CPU with 2-4 cores and a single GPU with 4000 cores.
A standard CPU runs on ∼ 4GHz whereas a GPU runs at ∼ 1.5GHz which
results in the CPU being able to do 16 Giga instructions and a GPU would
do 6 Tera instructions. Again this is but a light introduction to parallelization
for more information the reader is refered to [12–14].

Because all fullerene structures in the isomer space have exactly the same
shape (Natoms × 3) and are independent of each other, not much cache-
prediction is needed. Furthermore, all the fullerene structures are identical
rectangular arrays, and each gradient-opperation e.g. (d_R, d_ang, d_dih,
etc.) produces result in the same regular (Natoms × 3) basis and can be
performed as data-parallel flat arithmetic array opperations on the whole
isomer space (Nisomers ×Natoms × 3). Thus, the force field implemented
in this thesis offers a structure which is ideal for GPU parallelization. The
force field calculations (namely the gradients) allows each GPU core to

2 MIMD problems can be "faked" in GPUs if branching is implemented. Since GPUs work in
lock-step a big portion of the GPU might be inactive if working on SIMD problems.
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perform independent arithmethic data opperations on each fullerene in the
isomer space (or each atom in a fullerene) in lock-step, it has the possibility
to be parallelized and scaled up to millions upon millions of GPU cores,
which each perform independent operations on different isomers in the huge
fullerene isomer space. The force field of this thesis has the possibility to
offer maximum GPU performance which makes parallelization essential for
tackling the enormous possible fullerene isomer spaces.

3.5 harmonic force constants

As previously explained, the force field parameterisation is essentially a
Taylor expansion of the energy in an internal coordinate system. These
coordinates are the bond lengths, angles and the dihedral angles. The
Taylor expansion is performed at the optimal geometry, which represents a
minimum in our potential energy. Therefore, the first order terms disappear
and the second order term yield an accurate description of the energy at
minimum. If the system is perturbed too far away from the minimum, the
Taylor expansion to second order will no longer be adequate to describe the
energy anymore.

E(X0 +∆X) = E(X0) +
1

2
∆XTH∆X+O(||∆X||3)

Keeping in mind that the geometry and energy is only valid near the mini-
mum it is therefore essential to get as accurate an description of the second
order as possible, in order to appropriately resemble real physical energies
in our force field optimization at the minimum.
Since the energy function is constructed of multiple indivual distortion terms,
it is important to properly describe each second derivative or force constant
in analogue to Hooke’s potential effeciently. In order to obtain the force con-
stants for the individual internal harmonic contributions, the Hessian matrix
of the molecule has to be calculated with an acceptable method. The Hessian
matrix consists of all second order derivative combinations of the 3Natoms
nuclear cartesian coordinates.

H =


∂2E
∂2x1

∂2E
∂x1∂x2

· · · ∂2E
∂x1∂xn

∂2E
∂x2∂x1

∂2E
∂2x2

· · · ∂2E
∂x2∂xn

...
...

. . .
...

∂2E
∂xn∂x1

∂2E
∂xn∂x2

· · · ∂2E
∂2xn


The contribution ∂2E

∂x1∂x2
is then the change of energy of x2 when x1 is pertur-

bated. The change of energy at the minimum as a function of x1 corresponds
to the force acting on the system. Hence, in the case of a perturbation in x1,
this gradient describes how the molecule would react in order to minimize
the energy after the change. However, physically this is only true close to
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the optimal geometry and the optimization from an initial geometry to the
optimal geometry is not physically correct, nevertheless we do only care
about the physics at the minimum.

Through the Seminario method[15] it is possible to translate the sub-Hessian
of a system into accurate forces constants of the inter-nuclei properties (bonds,
angles, dihedral) by using sub-Hessian Matrix Projection.

The Seminario method uses the sub-Hessian of two atoms a and b in a
chemical bond:

Hab =


∂2

∂xa∂xb
∂2

∂xa∂yb
∂2

∂xa∂zb
∂2

∂ya∂xb
∂2

∂ya∂yb
∂2

∂ya∂zb
∂2

∂za∂xb
∂2

∂za∂yb
∂2

∂za∂zb

V (35)

Vab =
1

2
Hab(||ab||− Rab)

2 (36)

ktotab = −
∂2

∂a∂b
Vab (37)

The eigenvalues (λab) and eigenvectors (νab) of Hab are the magnitude
and direction of the forces acting on the ab system when displacing atom a.
In order to obtain the sub-Hessian Hab numerous energy calculations are
made, which contain all forces acting on the ab system when a is perturbed,
see Equation 37. Thus, the Hab cannot merely be interpreted as the bond
stretching force constants, because a displacement of atom a will also change
all angles, dihedral angles and many more inter-nuclei properties in which a
and b are involved. In order to obtain the force contribution in the direction
of the ab-bond a Hessian matrix projection onto the ab-unit vector âb is
then applied:

kab =

3∑
i=1

λabi
∣∣âb · ν̂abi ∣∣ (38)

By projecting all eigenvectors of the sub-hessian Hab onto the ab-bond direc-
tion with the corresponding eigenvalue it is possible to obtain the restoring
force constant between a and b.

In order to obtain the angular forces between a,b and c a similar proce-
dure is used. Instead of projecting the eigenvectors onto the bond directions
we project it onto the perpendicular direction of the bond directions within
the plane, see Figure 15, since the angular force will act in these directions.



3.5 harmonic force constants 32

a

b

c

θ

p̂ab

p̂ac

Figure 15: Illustration of Seminario method for angular force constant calculation.

The perpendicular vectors (p̂ab, p̂ac) are projected onto the two sub-Hessian
matricesHab andHac. The combined angular force constant is then obtained
through a two springs connected in series calculation:

1

kθ
=

1

||ab||2
∑3
i=1 λ

ab
i

∣∣âb · ν̂abi ∣∣ + 1

||ac||2
∑3
j=1 λ

ac
j

∣∣âc · ν̂acj ∣∣ (39)

Here each contribution is scaled with the squared length of the bonds
(||ab||, ||ac||).

The dihedral force constants are treated similar to the angles but the sub-
Hessian is projected onto the normals of the plane (n̂abc,n̂bcd) as shown in
Figure 16.

a

b

c

d

β

n̂bcd
n̂abc

Figure 16: Illustration of Seminario method for dihedral force constant calculation.

The atoms (b,c,d) are then connected to a central atom a and the dihedral
out of plane angle β is then the angle between plane abc and bcd. The
movement of a then feels a restoring force from the ab bond, and cd bond3.

3 In reality there is no bond, however internally all atoms in a molecule exert force on eachother
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The dihedral force is then the sub-Hessians (Hab,Hcd) matrix projection
onto plane normals.

1

kβ
=

1

||ab||2||ĉb× âb||2
∑3
i=1 λ

ab
i

∣∣n̂abc · νabi ∣∣+
1

||cd||2||b̂c× ĉd||2
∑3
i=1 λ

dc
i

∣∣n̂bcd · νdci ∣∣
(40)

Due to fullerens only being made from pentagons and hexagons, it is possible
to categorizes the different force constants into classes dependent on the
type of faces that are present. The Seminario method provides a systematic
approach to calculating the force constants directly from the cartesian Hessian
matrix and the connectivity information. The harmonic force constats can
then be calculated and compared by obtaining the Hessians through different
ab inito quantum chemistry methods, in this thesis density functional theory
(DFT) have been used to obtain the Hessians describing C60-Ih.
A mathematical definition of DFT is beyond the scope of this thesis and the
reader is refered to Gaussian16[16]. The program Gaussian16 has been used
to compute the carteesian Hessian matrices and a variety of different DFT
functionals has been used in the process.
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3.6 gaussian program and functionals

In order to examine the performace of our force field method and compute
cartesian Hessian matrices a computational chemistry software package has
been used. In 1970 John Pope and his research group at Carnegie Mellon
University published the computational chemistry software package Gaussian
70, which since then has been continiously updated, with the lastest version
being Gaussian16[16]. The program offers an assortment of different density
functional theory methods.

In this thesis two different DFT methods b3lyp and m062x have been used
to compute quantum optimized Hessians and geometries. b3lyp which
stands for "Becke, 3-parameter, Lee–Yang–Parr" is one of the most used
functional in computational chemistry. The functional is relatively cheap
to compute and it is possible to do multiple calculations in a short time.
b3lyp is also relatively simple compared to other functional models as it only
incoorporate Local Density Approximation (LDA) which only uses close
nuclei interaction, therefore two augmented b3lyp methods have also been
applied. The Grimme’s dispersion gd3 which applies nuclei dispersion to
the functional and the cam-b3lyp functional have been used, which is a more
precise scheme handling the non-Coulomb part of the exchange functionals.
The exchange functionals typically dies off too rapidly and becomes very
inaccurate at large distances, making them unsuitable for modeling processes
such as electron excitations to high orbitals. The m062x functional developed
by Truhlar’s research group at the University of Minnesota. The m062x
functional has a strong focus on non-local exchange with parameters that are
optimised for non-metal elements of the periodic table. Although the m062x
functional does not include any dispersion terms, it was optimised for results
including dispersion, which means that its parameters can be assumed to
have a small contribution towards the dispersion corrections.

A lot can be said about DFT and each functional within the program, but it is
beyond the scope of the thesis and the reader is refered to [https://gaussian.com/dft/]
for a more thorough description of the Gaussian16 functionals.

https://gaussian.com/dft/
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C O N J U G AT E D G R A D I E N T M E T H O D

In order to obtain good fullerene molecular structures an acceptable opti-
mization method is needed. There exists a large assortment of optimization
tools of which two methods, Steepest Descend and Conjugated Gradients
have been choosen[17–19]. What is general for these methods (and other
methods) is that they aim to solve a linear or non-linear problem. In the
linear case the problem takes the form

Ax = b (41)

Where A is a known, square, symmetric, positive-definite/indefinite matrix,
b is a known vector, and x is an unknown vector. Problems in the form of Eq.
41 emerge in many important settings, such as solving partial differential
equations, circuit analysis, and structual analysis.
Steepest Descend is a simpler version of Conjugated Gradients and will in
the following section be explained through Conjugated Gradients Method.

4.1 conjugate gradient method

Conjugate Gradients Methods is among the most popular iterative tools for
solving huge systems of linear or non-linear equations. Conjugate Gradients
Methods (hencefort CGM) uses gradients and Gram-Schmidt conjugated
residuals to find new search directions[19]. The gradient residuals have the
neat property of being orthogonal to the previous search direction, so it is
guaranteed to generate new linear independent search directions, unless the
residual is 0 in which case the problem is solved. In Algorithm 1 a pseudo
code of a linear CGM has been outlined.

35
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Algorithm 1 Conjugate Gradient Method

1: d0 = r0 = −f ′(x0)
2: while |ri| > ε do

3: αi =
rTi ri

dTiAdi
{Find step size}

4: x(i+1) = xi +αidi {Update solution}
5: r(i+1) = −f ′(x(i+1)) {Compute new gradient}

6: β(i+1) =
rT(i+1)r(i+1)

rTi ri

7: d(i+1) = r(i+1) +β(i+1)di {Modify gradient}
8: end while

The CGM method can be used to find the minimum of any function f(x),
provided that it is continious and a gradient f ′(x) can be computed. In
order to make Algorithm 1 work for non-linear systems a few changes
are needed. First, the step-size α cannot be computed analytically and
must be approximated through a line search. Second, there exsists various
expressions for calcualting β in the Gram-Schmidt conjugated residuals, and
it is uncertain which is the best. Two examples are Fleetcher-Reeves formula,
which is the default method in the linear CGM case, and Polak-Ribiére
formula:

βFR(i+1) =
rT(i+1)r(i+1)

rTi ri
(42)

βPR(i+1) =
rT(i+1)(r(i+1)−ri)

rTi ri
(43)

The Fletcher-Reeves method in Eq. 42 converges, if started sufficiently close
to the solution. Polak-Ribiére in Eq. 43 can in some cases converge faster for
nonlinear systems but may in rare cases cycle infinitely and not converge, this
can be avoided and convergens can be ensured by choosing β = max(βPR, 0).
In the case of β = 0 previous search directions are ignored, and CGM is
started over. In the case of Steepest Descend, β is always zero and the
search direction will then consistently be orthogonal to the previous search
direction.
The more our nonlinear problem differ from a quadratic function, the more
quickly the search directions lose conjugacy. Another problem is that a
nonlinear functions may have many local minima. CGM is not guaranteed
to converge to the global minimum, and may not even find a local minimum
if the problem has no lower bound. However luckily for us, the potential
described by the force field is a convex harmonic potential, thus only a global
minimum exsists.

In order to navigating huge solution spaces in search of the lowest energy,
it is desirable to take appropriate step sizes. Big steps might overshoot the
minimum and we might end up in some other local extrema and too small
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steps are time expensive. Hence it is preferable to find the perfect step size
every time, which can be ensured with a good line search method.

4.2 line search

There exists numerous methods for finding steps sizes (or the minimum of a
function), but what is general is that in order to find the correct step size α in
a given direction d = f ′(X) we start out by defining a bracket [a,b] enclosing
a minimum. The optimal step size is then the minimum in the direction of
the gradient within the bracket, see Figure 17 and Figure 18.

Figure 17: Line search in a solution space, d is the gradient and [a,b] brackets an
interval of an minimum in the direction of d in the solution space.

4.2.1 Bisection

Bisection is a robust method for finding roots to continuously differentiable
functions in a given interval [a,b]. The points [a,b] must bracket the mini-
mum, meaning they must be on opposite sites of a unimodal extremum, see
Figure 18.

Figure 18: Bisection method in the direction of the gradient of the solution space in
Figure 17. [a,b] are the intial brackets and c1−5 are the different step sizes with c5
being the root.
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At each iteration the interval is bisected by calculating the midpoint c = a+b
2

and the gradient f ′(c) is computed. From here there are 3 outcomes: f ′(c) = 0
which means c is the root, sign

(
f ′(a)

)
6= sign

(
f ′(c)

)
which means [a, c] now

brackets the root, or sign
(
f ′(b)

)
6= sign

(
f ′(c)

)
which means [c,b] brackets

the root. This continues until the minimum is found where the gradient at
the minimum is orthogonal, or bellow some threshold, to the search direction
or we reach a maximum number iterations. In any case the step size c is
returned. The method is guaranteed to converge if the previous criterias
are met. The absolute error is halved at each step, producing one bit of the
solution per iterration, thus the bisection method converges in linear time,
and will converge after d−log2

(
b−a
TOL

)
e steps.

The Bisection method is outlined in Algorithm 2.

Algorithm 2 Bisection Method
Input: X0, f ′,a,b,Nmax, TOL
d = −f ′(X0)

2: while i <= Nmax; i++ do
c = (a+ b)/2

4: if |f ′(X0 + c ∗ d)| <= TOL then
return c

6: else if f ′(X0 + c ∗ d) < 0 then
a = c

8: else
b = c

10: end if
end while

12: return c

Bisection is a reliable method which ensures convergence if previously men-
tioned criterias are met. Nevertheless it is perhaps the slowest available
method.

Another simple line search, very similar to bisection, would be golden sec-
tion search. Where [a,b] brackets a unimodal minimum and x1, x2 ∈ [a,b]
with x1 < x2. Comparing the function values f(x1) and f(x2) allows us to
discard a subinterval ((x2,b]or[a, x1)), knowing that the minimum lies in
the remaining subinterval. In order to pick relative positions for x1 and x2
within a current interval to τ and 1− τ, where τ = 0.618. With this choice,
no matter which subinterval is retained, its length will be τ relative to the
previous interval, and the new points (x1, x2) will be positioned τ and 1− τ
relative to the new interval. The algorithm is outlined in Algorithm 3. It
also converges in linear time similar to bisection, but it will converge in
d−logτ(b−atol )e. Furthermore since Bisection is a method for finding f = 0,
we have to use the gradient function but golden section search does not have
to find a zero, as it only looks for a minimum. Thus, the energy function
can be evaluated instead of the gradient, which is computationally easier to
calculate. However for this thesis the Bisection method have been chosen, as
it was easy to implement and conceptionally straightforward.
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Algorithm 3 Golden section search

τ = 0.618
2: x1 = a+ (1− τ)(b− a)
f1 = f(x1)

4: x2 = a+ τ(b− a)
f2 = f(x2)

6: while (b− a) > tol; do
if (f1 > f2); then

8: a = x1
x1 = x2

10: f1 = f2
x2 = a+ τ(b− a)

12: f2 = f(x2)
else

14: b = x2
x2 = x1

16: f2 = f1
x1 = a+ (1− τ)(b− a)

18: f1 = f(x1)
end if

20: end while

4.2.2 Faster methods

There exists an abundant selection of line search algorithms which performs
much faster than bisection or golden section seearch. Algorithms such as
Inverse quadratic interpolation or Secant method both add a higher level of
complexity in the calculation of the step size α and will often converge much
faster than bisection.

In inverse quadratic interpolation three points (u, v and w) and matching
function values (fu, fv and fw) are needed. Here v is an initial guess of the
minimum within the backet [u,w] and often the bisection method is used for
the first step. The minimum of the inverse quadratic interpolation is given
by

q =
fvfw

(fu − fv)(fu − fw)
u+

fufw

(fv − fu)(fv − fw)
v+

fufv

(fw − fu)(fw − fv)
w

(44)

The method only requires one new function calculation at each iteration and
if started close enough to a minimum the method will converge with a rate
r ' 1.839, making it much faster than bisection.

In secant method the finite difference approximation is used:

f ′(xk) '
f(xk) − f(xk−1)

xk − xk−1
(45)
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The secant method then approaches the function f by the secant line through
the two previous iterations, taking the f = 0 of the resulting linear function
to be the next step. The algorithm is outlined bellow

Algorithm 4 Secant Method
Input: X0,X1f, f ′, TOL
X0,X1 = initial guesses

2: while f ′(X) > TOL; k = 0, 1, 2, ... do
Xk+1 = Xk − f(Xk)(Xk −Xk−1)/(f(Xk − f(Xk−1)))

4: end while
return X

Similar to Inverse quadratic interpolation, secant method only requires one
new function evaluation at each iteration and converges with a superlinear
rate of r ' 1.618 given that it is started close enough to the solution.

A fourth method is brent’s method, which is the method used in the Fullerene
program. It combines secant, inverse quadratic interpolation, and bisection
in order to ensure a fast method with guarenteed convergence.
In practise this is one of the default methods when working with numerical
optimization as it will converge in superlinear time. It would have been
preferable to use as the line search method. However bisection was choosen,
as it ensures convergence and is much simple than brent’s method. The
algorithms time performance will be discussed in section 5.4.



5
R E S U LT S A N D D I S C U S S I O N

5.1 gradient correction

As previously mentioned the force field optimizer implented in the Fullerene
program by Wirz et al. (refered to as Wirz in the results) required a dihedral
gradient term which took outer dihedrals into account. In Figure 19 three
force field optimzers are presented. The first one used by Wu et al. (refered to
as Wu in the results), the Wirz method, and the augmented Wirz et al. force
field implemented in this thesis, which takes outer dihedrals into account
(refered to as Wirz2 in the results). In order to decide which gradient best
locates the minimum energy, a line search in the direction of each methods
gradient is performed. The Fullerene program’s optimized geometry for
C60-Ih is used as an intial geometry in order to compare the performance
of each method. The gradients are compared to the numerical calculated
gradient.

Figure 19: Calculated gradient versus numerical gradient for the Wu, Wirz, and Wirz2

method. The line search has been performed from an geometry provided by the
Fullerene program and a minimum α is bracket between [0, 0.01].

41
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In the first plot a noticeable difference between the Wu gradient and the
numerical gradient can be seen. In the second plot with the introduction of
dihedral angles, Wirz manages to come much closer to the minimum but still
is not within one nummerical step ∆ of the numerical gradient. However by
adding the expanded correct dihedral gradient we mange to perform just as
well as the nummerical gradient, leaving the gradient residual as nummerical
errors. In the next section the force field optimization methods on C60-Ih
are compared to a DFT optimized geometry of C60-Ih.

5.2 geometry force field optimization

For the Conjugated gradient in the geometry force field a tolerance ε =

10−7N has been used. For C60-Ih a Nmax = 600 have been chosen and
for C72nt a Nmax = 720 have been chosen. The Polak-Ribiére formula in
Eq. 43 has been choosen for obtaining β. For the bisection method, when
calculating steps size α, a convergence tolerance of TOL = 10−10N has
been used. For performance comparison DFT optimized geometries from
the Gaussian16 program have been calculated. The optimal geometry of the
fullerene program have been used as initial inputs for the DFT calculations.
The m062x functional has been calculated for C60-Ih. For the C72nt only the
b3lyp was able to compile without crashing, which is not exellent, however
the b3lyp is still more accurate compared to an energy force field, thus it
will suffice.

5.2.1 Optimized Geometry of C60-Ih

For the geometry optimization of the C60-Ih fullerene the force constants
of Table 2 has been used. Furthermore the energy function in Eq. 13 have
been used to evaluate the calculated geometry energy at each iteration, this
does not affect the optimization in any way and only serves the purpose of
getting an intuition of the performance of the Wu, Wirz, and Wirz2 force
fields. The Wu method converges at a higher energy than the Wirz and Wirz2

methods, which both, due to them having dihedral contributions, converges
closer to a optimal minimum. In Figure 21 the different optimal C60-Ih
geometries are shown together with the starting geometry and the m062x
optimized geometry. The different force fields performance are compared to
the m062x optimized geometry of C60-Ih and the root mean squared error
of each parameter (R, angle, and dihedral) is shown in Table 3.

Method Bond distance R [Å] Internal Angle [◦] Dihedral Angle [◦]
Wu 0.0017939 0.0016744 0.000137

Wirz 0.00036372 2.7984979 10−10 1.169802 10−7

Wirz2 0.00036371 2.7984977 10−10 1.169802 10−7

Table 3: The root mean square error of inter-nuclear parameter from the optimized
geometries compared to the m062x method.
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Figure 20: Force field performance of Wu, Wirz, Wirz2 of the geometry of C60-Ih.
The maximum number of iterations Nmax = 600 and the ε = 10−7N.

All the methods are in good agreement with the m062x optimized geometry
and varies very little. Both Wirz and Wirz2 perform better than the Wu
method which is an indication that the dihedral angles are an important
feature when characterizing the geometry of fullerenes. In the next section
the methods will be compared to a more complex structure, which is the
thin nanotube of C72nt where all the curvature (the pentagons) are situated
in each end.
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Initial geometry Optimized geometry m062x geometry

Figure 21: C60-Ih geometries. (a) Tutte embedding C60-Ih used as initial geometry (b)
Wu optimized geometry (c) Wirz optimized geometry (d) Wirz2 optimized geometry
(e) Gaussian 16 m062x optimized geometry. The pentagons are colored blue and the
hexagons are colored orange.

5.2.2 Geometry Force Field Optimization of C72nt

In this section we compare the force field methods optimized geometries
of the C72nt, which is a more complex fullerene. The RMS-error of the
inter-nuclear parameters compared to the b3lyp optimized geometry1 is
shown in Table 4. The energy at each iteration is shown in Figure 22 and the
initial geometry and b3lyp geometry is shown together with the different
force field optimized geometries in Figure 23.

Method Bond distance R [Å] Internal Angle [◦] Dihedral Angle [◦]
Wu 0.31006 0.44618 0.01188

Wirz 0.01135 0.00330 0.00123

Wirz2 0.00525 0.00253 0.00114

Table 4: The RMS-error of inter-nuclear parameter of C72nt from the optimized
geometries compared to the b3lyp geometry.

1 Ideally we would have wanted the m062x optimized geomtry of C72nt. However time did not
permit this as each Gaussian16 DFT calculation could take weeks and in some cases would crash,
leaving us with only the b3lyp results.
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Given that the Wu method was initially developed for the C60-Ih fullerene
it comes as no surprise when it does not perform adequately for the nano
tube, as shown in Figure 22 and Figure 23 (b). Focusing on the Wirz and
Wirz2 methods we see in Figure 22 that both performs better than the Wu
method, but Wirz2 finds a lower minimum which is further emphasized
from the results in Table 4. This is due to the correct dihedral gradient in the
optimization.

Figure 22: Force field performance of Wu, Wirz, Wirz2 of the geometry of C72nt. The
maximum number of iterations Nmax = 720 and the ε = 10−7N.

Initial geometry Optimized geometry b3lyp geometry

Figure 23: Force field optimized geometries of C72nt. (a) Tutte embedding C72nt
used as initial geometry (b) Wu optimized geometry (c) Wirz optimized Geometry
(d) Wirz2 optimized Geometry (e) Gaussian 16 b3lyp optimized geometry.
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5.3 when the wirz method fails

In this section three fullerene structures where the Wirz method fails to accu-
rately optimize the geometry will be presented together with the corrected
Wirz2 optimization. A difficult problem of automated geometry optimization
is to detect when something goes only slightly wrong. In the upper row of
Figure 24 three fullerenes which have not been optimized correctly by the
Wirz et al. force field are shown. Here conected faces are inverted, twisted,
and pointing out of the fullerens, which is not physically feasible at a chemi-
cal equilibrium. In the bottom row the same fullerenes have been optimized
using the Wirz2 force field implemented in this thesis. Here the optimal
geometries are correcly calculated which is due to the outer dihedral parts.
In Appendix B more examples of known C60 and C80 fullerenes can be seen
where the Wirz et al. force field fails to correctly optimze the geometries,
together with the correctly Wirz2 optimized geometries.

(a) (b) (c)

Figure 24: Comparisson of failed Wirz optimized fullerene geometries (first row)
and Wirz2 optimized fullerene geometries. (a) C60-[1,2,3,4,7,19,23,26,27,30,31,32] , (b)
C80-[1,2,3,5,10,18,29,30,38,39,41,42], (c) C540Ih.

The force field implemented in this thesis does not solve the problem of
detecting when fullerenes optimize to something wrong but in the known
cases it seems to perform better on the fullerenes where the Wirz et al. force
field fails. However, this is no guarantee that the force field implemented in
this thesis is incapable of making mistakes. More samples should therefore
be obtained and tested. Furthermore a carefull outlier detection scheme
should be implemented.
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5.4 benchmarking

Since all the code of this thesis is written in Python, the time performance
comes nowhere near that of the Fullerene program’s Fortran implementation.
The performance of the force field implemented implemented in this thesis
can be seen in Figure 25 and 26. The benchmarking has been done on
fullerenes with isocahedral symmetry ranging from the smallest fullerene
C20-Ih dodecahedron to a C1040-Ih fullerene.

Figure 25: Time benchmark plot of gradient convergence time of isocahedral symmet-
ric fullerenes sized C20-Ih - C1040-Ih.

Figure 26: Benchmark plot of iterations needed for convergence with respect to
isocahral symmetric fullerene size. A straight line with slope a = 2.5989 has been
fitted with the data, illustrating the linear progression. The fullerene force field
seems to need approximately N = 2.6Natoms iterations in order for the gradient to
converge bellow the tolerance ε = 10−7N.

The number of arithmetic operations needed when calculating either the
energy or the gradient is O(N) operations, where N = Natoms. In the
linesearch d−log2(b−atol )e iterations are needed, which is independent of N,
and thus O(1) operations are needed. The number of iterations for the CGM
follows a linear slope, as shown in Figure 26, making it O(N). This results in
the overall time complexity being O(N) +O(1) +O(N) = O(N2).
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A downfall and a strength of the force field performance also lies in the
choice of line search method. If we wanted to optimize the fullerene isomers
sequentially, which has been the case of this thesis, it would be optimal to
choose a faster line search method, such as brent’s method. However in the
case of writing optimal code for GPUs a bottleneck is often the test-statements
evaluated during the optimization (namely if and while statements). Since
all the GPU cores execute the same arithmetic operations at each time-step,
but on different data, the test-statements possesses a challenge, if the isomers
converge at different time-steps, which is not optimal for lock-step operations.
Using the bisection method we know that convergence is guaranteed after
dlog2

(
b−a
TOL

)
e steps, which can be calculated prior to running the line search.

Furthermore from Figure 26 we see that approximately N = 2.6Natoms
iterations are needed in the CGM in order to converge2. Thus, two test-
statements, which checks for convergence, can be removed and the GPU
cores can run a fixed number of steps for the line search and CGM and avoid
any communication or thread synchronization, which often are problems
that makes parallel code run slow.
A speed up of Nisomers should be achievable on independent MIMD CPUs,
where the calculations are independent, such that one instruction is per-
formed for each calculation. However due to the code and problem being
optimal for GPUs, the whole problem can be treated as one huge SIMD calcu-
lation, and a speed up of NisomersNatoms could be possible, but ultimately
it could scale with the number of GPU cores available.

5.5 seminario force constants for C60 -ih fullerene

In this section multiple DFT functionals from the Gaussian16 program have
been used in order to obtain Cartessian Hessians needed for the Seminario
sub-Hessian projection for getting the C60-Ih fullerene force field constants.
A combined mean for each force constant can be seen in Table 5. The methods
used for calculating the Hessians are:

• b3lyp

• b3lyp + gd3

• cam-b3lyp

• m062x

Force Parameters (N/m)
kph khh kp kh kphh

353.377 518.992 207.924 216.787 3.772

Table 5: Table of C60-Ih Seminario force constants. A combined mean of the results
of (b3lyp,b3lyp+ gd3, cam− b3lyp,m062x).

2 This is also the case in the optimization of C72nt in Figure 22.
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For comparison the results of the m062x have been used, as they have shown
prominent results in previous related work performed within the fullerene
project group. The results of the force constants are shown in Figure 27

together with the geometry with bonds colored correspondingly to their
bond stretching force constant. The results of the other DFT functionals can
be seen in Appendix C.

Figure 27: Distribution of force parameters of the m062x method. The upper most
right figure is the m062x geometry with the two kph results (orange, teal) respectively
and khh (gray).

What is immediatly notable, and present in the results of each DFT function-
als, are the two peaks present in the results which are pentagon dependent
(kph, kp and kphh). Since the carbon atoms in fullerenes are sp-2 hybridized,
the two distinct peaks could be the result of the Gaussian16 program intro-
ducing double bonds between neighbouring atoms. However we would then
expect a single double bond (teal) to be present at each carbon atom, which
as shown on the geometry in Figure 27 is not the case. A more thorough
investigation of this is needed in order to say anything concrete. Since double
bonds have not been implemented in the force field, a mean of the values
will be used.
The force parameters have been used in the geometry optimization in Fig-
ure 28. However due to high symmetry only some force constants can be
obtained, which results in C60-Ih being the only fullerene we can optimize
using only these parameters. In order to calculate the remaining fullerene
force constants a number of DFT calculations of different shaped fullerenes
are therefore needed.
In section 5.8 a discussion of the legitimacy of the Seminario method and
wether or not an improvement for calculating fullerene force parameters
should be implemented.
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5.6 optimization using seminario force constants

In this section the force constants from Table 5 have been used in the geometry
force field optimization of the C60-Ih molecule. A max number of iterations
Nmax = 600 have been used with a gradient tolerance ε = 10−7N.

(a) (b)

Figure 28: (a) Force field performance of Wu, Wirz, and Wirz2 on the geometry of C60-
Ih with Seminario force constants. The maximum number of iterations Nmax = 600
and the ε = 10−7N. (b) Wirz2 optimized geometry.

Method Bond distance R [Å] Internal Angle [◦] Dihedral Angle [◦]
Wu 0.000310 1.356638 10−5 3.376614 10−6

Wirz 0.000150 9.089976 10−9 1.275802 10−8

Wirz2 0.000150 9.089974 10−9 1.275799 10−8

Table 6: The RMS-error of C60-Ih inter-nuclear parameters from the Seminario pa-
rameter force field optimized geometries compared to the m062x geometry.

It is no surprise that the RMS-errors in Table 6 are better than the ones in
Table 3 as the force constants have been tailored to specifically describe the
C60-Ih fullerene. Furthermore the Wirz method manages to perform almost
as well as the Wirz2 method with the new force constants.
Due to the high symmetry of the isocahedral fullerene C60-Ih we could only
obtain a few force constants. In order to get the remaining force constants,
which then can describe all fullerenes, more DFT calculations of different
shaped fullerenes are needed. Furthermore DFT calculations of different
sized fullerenes would also be interesting to see if that have an influence on
the harmonic force constants.
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5.7 augmenting the force field

When optimizing the geometry of fullerenes the approach of this thesis has
been to describe the geometry from three intrinsic properties namely the
bond distance, the bond-bond angular bending, and the three connected face
dihedral angles. Still is it possible to describe the fullerene geometry more
accuratly if the force field is augmented and additional intrinsic geometry
properties are added. Another geometric feature of fullerenes could be the
pentagon and hexagon face flatness.

From chemistry we know that molecules that are aromatic tends to be very
stable. An aromatic molecule (or conjugated molecule) is a molecule where
the electrons from the π-orbitals are shared between all the atoms. Benzene
is one of these stable aromatic molecules which shares the π-orbital electrons.
In Figure 29 we see the classical representation of the benzene ring, with
carbon atoms (gray) where the black connections represent the σ-orbital
bonds (the strong bonds) and the red bonds represent the π-orbital bonds
(weaker bonds). Since the electrons from the π-orbitals move freely in the
benzen ring we essentially have a superposition of double bonds which
makes a very rigid molecule that prefer to be planar. One can vizualise
the π-orbital electrons moving around both above and bellow the benzen
ring and sort of pushing it from both sides, consequently creating this face
flatness.

+ ⇒

Figure 29: Aromatic molecule benzen. Carbon atoms (gray) with σ-bonds (black) and
free π-orbital bonds (red).

While some fullerenes are spherical aromatic (or close), we can assume that
the pentagons and hexagons too are aromatic (or close), thus face flatness
could present a great addition to the force field. This is further backed up
from the mean distance to the plane of each atom compared to the least
squared plane of the respective faces of the m062x optimized geometry of
C60-Ih in Figure 30. Here we see that the pentagons are perfectly planar and
that the hexagons vary only with approximately 10−6Å.
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Figure 30: Plot of mean distance to the least squared face plane of the m062x optimized
geometry for C60-Ih.

5.8 validity of a molecular force field

From the results in Figure 28 and Table 6, where the calculated Seminario
force constants was used, we can conclude that we must be reasonably close
to the minimum given the parameter RMS-error. However considering that
the Seminario method is for obtaining force constants for general chemical
structures, the question can be raised whether there exist methods more
suitable for fullerene structures. For the angular force constants Allen et
al.[21] offers a slightly different approach, which takes into account the
coupling of multiple angles applied to the same atoms. This has been shown
to improve vibrational frecuenzy results in the cases, where a single atom is
bonded to a carbon ring. However in the case of fullerenes no single atom is
connected to a ring. The atom is fully surrounded and therefore part of a
much larger spring system. Meaning that in order to properly capture the
effects of pertubating a in a fullerene, as shown in Figure 31, a much larger
coupled force constant should be computed. The same goes for stretching
forces and dihedral forces.
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cd
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cp
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Figure 31: Illustration of parameters affected by the perturbation of a center atom a.

Since Allen et al. does not offer any correction to bond or dihedral forces, the
classisc Seminario method has been used which still produces force constants
that help opbtain fullerene geometries that are in good agreement with ab
inito quantum mechanical geometries.

5.8.1 Cross-terms

Suppose we wanted to calculate the contribution of bond stretching energy of
a specific bond in the fullerene. Because one bond length cannot be changed
without changing other inter-nuclear properties e.g. opposite dihedral angle
and dihedrals, dependent on that specific bond, the energy would not be
an accurate description. The question, "how are we to isolate one contribution
to the energy from the other" is a problem that is common in many force
field methods and is commonly ignored. Force field methods does not
claim to be exact and are merely a tool for fast calculations given simple
assumptions from chemical intuition. However, one cannot escape the fact
that, unfortunately, in most cases the individual contributions to the energy
expression are linearly related, and thus the magnitudes of the force field
parameters are not necessarily meaningful. The article by Dinur et al.[22]
argues that in order to get a more descriptive energy function close to the
equilibrium, cross terms should be implemented e.g. bond-bond cross term,
bond-angle cross term, or angle-angle cross term. In Figure 32 a visualization
of the dependent cross terms of bond-angle and angle-angle is shown.
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a
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a

b

cd
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Figure 32: Illustration of Cross terms. (a) bond-angle cross term, (b) angle-angle cross
term.

Furthermore nonbonded interactions could be applied as well, such as
Coulomb’s law, electrostatic terms reflecting charge-charge interactions or, a
Lennard-Jones term describing nonbonded exchange repulsion within the
fullerene. However the approach of the force field for both Wirz et al. and
the optimized version Wirz2 have neglected these terms, as the simplified
energy expression in Eq. 14 encapsulates the essential geometric entities of
fullerenes. Also the implementation of nonbond terms such as Coulomb’s
law would be time costly and would add an factor of N2 calculations at
each iteration. Thus the cross terms and nonbond calculations have been
neglected.



6
C O N C L U S S I O N A N D O U T L O O K

In this thesis, a force field method for optimizing fullerene geometries was
developed, with documentation of the implemented energy and gradient
expressions and optimization tools.
The method provides fullerene geometries, which are in good agreement
with ab inito quantum optimized geometries. A software package[Molecular-
Shapes-of-Fullerenes] is provided, which generates optimized geometries
given an intial geometry with relevant graph information e.g. connectivity
and face orientation. Furthermore the software can visualize the results in an
intuitve and interactive way. The software can compute stretching, angular
bending, and dihedral harmonic force constants given a Gaussian16 ".log" file
containing a cartesian Hessian matrix.
This software should be considered in the larger context of the Folding
Carbon Project.

The calculated force field energies and gradients have been written in a sim-
ple vectorized notation, making it more interpretable, in terms of geometry
operations, and verifiability, as the mathematical calculations are directly
translated into simple vectorized code. The code is easy to extend with
additional physics. Additionally the vectorized gradient-operation produces
results in the same regular (Natoms × 3) basis as the fullerene isomers, and
can be performed as data-parallel flat arithmetic array opperations on the
whole isomer space (Nisomers ×Natoms × 3) making it ideal for indepen-
dent lock-step operations and optimal GPU parallelization, and possibly
scalable with the number of GPU cores available.

The dihedral gradient correction to the Wirz et al. force field, has given a
correct physical description of the gradient of Eq. 14 and has in the case of
C60-Ih and C72nt proven to give results that are closer to ab intio quantum
optimized geometries than that of Wirz et al.
A correction of the dihedral gradient have also further made it possible to
obtain fullerene geometries, where the Wirz et al. force field would otherwise
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https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes
https://github.com/Buster220992/Thesis-Molecular-Shapes-of-Fullerenes
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fail. However a carefull outlier detection scheme should be implemented in
order to detect such problems within the force field of this thesis.
A possible solution to detecting geometry outliers could be, to check how
much the inter-nuclei parameters e.g. bond distance, bond-bond bending
and dihedral angles varied from the optimal defined values. Furthermore
the optimized geometry should be checked if it has converged to a mini-
mum (gradient equal zero, or the Hessian being positive definit, if second
derivatives was implemented into the force field). Checking if the optimized
geometry is convex or if the face plane normals formes an ordered, smooth
vector field pointing away from the fullerene center. These are all possible
candidates, which could be implemented in order to detect if the geometries
optimize correctly.

From the various Gaussian16 DFT optimized geometries of C60-Ih, harmonic
force constants have been calculated, which applied in the force field op-
timization produced results that are in good agreement with the ab inito
optimized geometries. However more work on this matter needs to be done,
since all harmonic force constants, which describes fullerenes, could not
be obtained from the C60-Ih fullerene. Furthermore calculations of differ-
ent fullerenes shapes and sizes should be performed in order to give more
general harmonic force constants which can be applied for all fullerenes, or
perhaps applied to specific shapes.

A discussion of fullerene face flatness in section 5.7 has opened the possibily
of augmenting the Wirz et al. force field model by adding an energy term
with respect to the face flatness. The m062x results of the C60-Ih shows
that the fullerene faces are notably flat but a more extensive investigation is
needed.

As this work have created optimal conditions for parallelization it would be
of interest to take this study further and actually implement it. This would
truely advance the possibilities of searching through the enormous fullerene
isomer spaces in search of desired geometries and physical properties. A fast
automated fullerene geometry optimization tool together with the additional
work being done in the Folding Carbon Project could enable researchers
and engineers to automatically find fullerenes that match their demand
and systematically produce them from scratch. Given the predicted applica-
tions of fullerene molecules, this could mean an huge step in nanotechnology.

Lastly a topic which is not mentioned in the thesis, but which in honesty tru-
ely inspired the choice of direction regarding this thesis, namely differential
geometry and geometry optimization for fullerenes, was the application to
medical science.
In 1999, Ganser et al.[23] discovered the HIV-1 virus capsid to have fullerene
structure. A later study by Mattei et al.[24] performed high-resolution cryo-

https://www.nbi.dk/~avery/folding-carbon/
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tomography on 539 live HIV vira, showing that HIV capsids form a variety of
fullerene nanocones. In particular, they propose specific C384 and C438 struc-
tures to match two of the tomograms. The project (CARMA/HIV-search/)
seek to examine if other fullerenes might be better suited to describe the
geometry of HIV vira. There are ∼ 2.3× 1013 fullerene structures between
C200 and C500 which is the size range within which HIV capsids lie. The
first step would be to go through this enormous isomer space and extract all
the nanocones, which can be potential HIV structures.
Hopefully the work done in this thesis can help future projects scratch the
surface of this enormous and interesting problem.

https://www.nbi.dk/~avery/CARMA/HIV-search/
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A
E X T E N D E D C A L C U L AT I O N S O F D E R I VAT I V E S

cheat sheet

Quotion Rule (QR) Vec/Scal

∇a

(g(a)
h(a)

)
=

(∇a ⊗ g(a))h(a) − (∇ah(a))⊗ g(a)
h(a)2

(QR)

Product Rule (PR)

∇a(ab · ac) = (∇aab) · ac + ab · (∇aac) (PR1)

∇a(ab× ac) = (∇aab)× ac + ab× (∇aac) (PR2)

Vector properties:

a · (b× c) = b · (c× a) = c · (a× b) = −a · (c× b) = −b · (a× c) = −c · (b× a)
(VP)

Commutative dot product:

a · (b× c) = (a× b) · c (Cdp)

Combined Rules (CR)

∇aâb =
1

||ab||
(âb⊗ âb − I) (CR1)

∇bâb =
1

||ab||
(I − âb⊗ âb) (CR2)

(∇aâb) · âc =
1

||ab||
(âb⊗ (âb · âc) − âc) =

1

||ab||
(âb cos(θ) − âc) (CR3)

i



A.1 length calculations ii

a.1 length calculations

a
b

c

d

Vector ab = {xb − xa , yb − ya , zb − za}

||ab|| =
√
(xb − xa)2 + (yb − ya)2 + (zb − za)2

∂

∂xa
(||ab||− R0)

2 =

2(||ab||− R0)
∂

∂xa
||ab|| =

2(||ab||− R0)
∂

∂xa

√
(xb − xa)2 + (yb − ya)2 + (zb − za)2 =

−2(||ab||− R0)
xb − xa√

(xb − xa)2 + (yb − ya)2 + (zb − za)2

This expression can be generalized to:

∂

∂a
(||ab||− R0)

2 = −2(||ab||− R0)
ab

||ab||
= −2(||ab||− R0)âb



A.2 corner angle calculations iii

a.2 corner angle calculations

θ0θ1

θ2

θ
p
0

θ
p
1

θ
p
2

θm1

θm2

θm0

F0F1

F2

a

b

c

d

bm

cm

dm bp

cp

dp

Vectors {ab, ac} and their unit vectors {âb = ab
||ab||

, âc = ac
||ac||

}

Find the gradient of Inner angles θ

∇a(âb · âc) PR1= (∇aâb) · âc + âb · (∇aâc)

CR1
=

1

||ab||
(âb)⊗ âb− I) · âc− 1

||ac||
(âc)⊗ âc− I) · âb

=
1

||ab||
(âb cos(θ) − âc) +

1

||ac||
(âc cos(θ) − âb)

Find the gradient of Outer angles θm and θp

∇a(âb · b̂p) PR1= (∇aâb) · b̂p + âb ·���
��:0

(∇ab̂p)

CR1
=

1

||ab||
(âb)⊗ âb− I) · b̂p

=
1

||ab||
(âb cos(θp0 ) − b̂p)

∇a(âb · b̂m)
PR1
= (∇aâb) · b̂m + âb ·���

��:0
(∇ab̂m)

CR1
=

1

||ab||
(âb)⊗ âb− I) · b̂m

=
1

||ab||
(âb cos(θm0 ) − b̂m)
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a.3 dihedral calculations

n̂abc

n̂bcd

a

b

c

d

θ1

θ2

β

a
b

d

c

cos(β) = n̂abc · n̂bcd = (
âb× ĉb
sin(θ1)

) · ( d̂b× ĉb
sin(θ2)

) (46)

Find the gradient: ∇acos(β)

∇acos(β) = ∇a

(
n̂abc · n̂bcd

)
PR1

= (∇an̂abc) · n̂bcd +
���

���
��:0

n̂abc · (∇an̂bcd)

= (∇a

( âb× ĉb
sin(θ1)

)
) · n̂bcd QR

g(a) = âb× ĉb , h(a) = sin(θ1) =
√
1− cos2(θ1)

∇a ⊗ g(a) = ∇a(âb× ĉb) (PR2)

= (∇aâb)× ĉb +��
���

�:0
âb× (∇aĉb)

=
1

||ab||
(I − âb⊗ âb)× ĉb



A.3 dihedral calculations v

∇ah(a) = ∇a

√
1− (âb · ĉb)

=
cos(θ1)

sin(θ1)
∇a(âb · ĉb) (PR1) + (CR1)

=
cos(θ1)

||ab||sin(θ1)
(I − âb⊗ âb) · ĉb

Combine and dot with n̂bcd

∇acos(β) =
−1

||ab||

(
âb cos(β) +

ĉb× n̂bcd
sin(θ1)

−
cot(θ1) cos(β)

sin(θ1)
(âb cos(θ1) − ĉb)

)

Find the gradient of Outer dihedral a

a

b

c

d

m

p

n̂bam =
âb× âm√
1− (âb · âm)2

n̂amp =
m̂a× m̂p√
1− (m̂a · m̂p)2

cos(β) = n̂bam · n̂amp
∇acos(β) = (∇an̂bam) · n̂amp︸ ︷︷ ︸

part1

+ n̂bam · (∇an̂amp)︸ ︷︷ ︸
part2

part1:

(∇a

(
âb× âm√
1− (âb · âm)2

)
) · n̂amp

Using the Quotient Rule we set:

g(a) = âb× âm

h(a) =

√
1− (âb · âm)2

∇ag(a) = (∇aâb)× âm+ âb× (∇aâm)

=
1

||ab||

(
âb⊗ (âb× âm) − I× âm

)
+

1

||am||

(
âm⊗ (âb× âm) − âb× I

)
=

1

||ab||

(
âb⊗ n̂bamsin(θa) − I× âm

)
+

1

||am||

(
âm⊗ n̂bamsin(θa) − âb× I

)
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∇ah(a) = ∇a

√
1− (âb · âm)2

=
1

2sin(θa)
∇a(1− (âb · âm)2)

= −cot(θa)∇a(âb · âm)

= −cot(θa)

(
1

||ab||
(âbcos(θa) − âm) +

1

||am||
(âmcos(θa) − âb)

)

(∇a

(
âb× âm√
1− (âb · âm)2

)
) · n̂amp =

âbcos(β)

||ab||
−
âm× n̂amp
||am||sinθa

+
âmcos(β)

||am||
−
n̂amp × âb
||am||sin(θa)

+

cot(θacos(β))

sin(θa)

(
âbcos(θa)

||ab||
−
âm

||ab||
+
âmcos(θa)

||am||
−

âb

||am||

)

part2:

n̂amp · (∇a

(
m̂a× m̂p√
1− (m̂a · m̂p)2

)
)

Using the Quotient Rule we set:

g(a) = m̂a× m̂p

h(a) =
√
1− (m̂a · m̂p)2

∇ag(a) = (∇am̂a)× m̂p+
���

���
��:0

m̂a× (∇am̂p)

=
1

||ma||
(I× m̂p− m̂a⊗ n̂ampsin(θm))

∇ah(a) = ∇a

√
1− (m̂a · m̂p)2

= −cot(θm)∇a(m̂a · m̂p)

= −
cot(θm)

||ma||
(m̂p− m̂acos(θm))

n̂amp · (∇a

(
m̂a× m̂p√
1− (m̂a · m̂p)2

)
) =

m̂p× n̂amp
||ma||sin(θm)

−
m̂acos(β)

||ma||
+

cot(θm)cos(β)

||ma||sin(θm)
(m̂p− m̂acos(θm))



A.3 dihedral calculations vii

part1 + part2

∇acos(β) =
âbcos(β)

||ab||
−
âm× n̂amp
||am||sinθa

+
âmcos(β)

||am||
−
n̂amp × âb
||am||sin(θa)

+

cot(θacos(β))

sin(θa)

(
âbcos(θa)

||ab||
−
âm

||ab||
+
âmcos(θa)

||am||
−

âb

||am||

)
+

m̂p× n̂amp
||ma||sin(θm)

−
m̂acos(β)

||ma||
+

cot(θm)cos(β)

||ma||sin(θm)
(m̂p− m̂acos(θm))

(47)



A.3 dihedral calculations viii

Find the gradient of Outer dihedral m

a

b

c

d

m

p

n̂bmp =
m̂b× m̂p√
1− (m̂b · m̂p)2

n̂mpa =
p̂m× p̂a√
1− (p̂m · p̂a)2

cos(β) = n̂bmp · n̂mpa

∇acos(β) =
���

���
���:

0

(∇an̂bmp) · n̂mpa︸ ︷︷ ︸
part1

+ n̂bmp · (∇an̂mpa)︸ ︷︷ ︸
part2

part2

n̂bmp · (∇a
p̂m× p̂a√
1− (p̂m · p̂a)2

)

Using the Quotient Rule we set:

g(a) = p̂m× p̂a

h(a) =
√
1− (p̂m · p̂a)2

∇ag(a) =���
���

��:0
(∇ap̂m)× p̂a+ p̂m× (∇ap̂a)

=
1

||pa||
(p̂m× I − p̂a⊗ n̂mpasin(θp))

∇ah(a) = ∇a

√
1− (p̂m · p̂a)2

= −cot(θp)∇a(p̂m · p̂a)

= −
−cot(θp)

||pa||
(p̂m− p̂acos(θp))

∇acos(β) =
n̂bmp × p̂m
||pa||sin(θp)

−
p̂acos(β)

||pa||
+

cot(θp)cos(β)

||pa||sin(sin(θp))
(p̂m− p̂acos(θp))

(48)



A.3 dihedral calculations ix

Find the gradient of Outer dihedral p

a

b

c

d

m

p

n̂bpa =
p̂b× p̂a√
1− (p̂b · p̂a)2

n̂pam =
âp× âm√
1− (âp · âm)2

cos(β) = n̂bpa · n̂pam
∇acos(β) = (∇an̂bpa) · n̂pam︸ ︷︷ ︸

part1

+ n̂bpa · (∇an̂pam)︸ ︷︷ ︸
part2

part1

∇a(
p̂b× p̂a√
1− (p̂b · p̂a)2

) · n̂pam

Using the Quotient Rule we set:

g(a) = p̂b× p̂a

h(a) =

√
1− (p̂b · p̂a)2

∇ag(a) =���
���

�:0
(∇ap̂b)× p̂a+ p̂b× (∇ap̂a)

=
1

||pa||
(p̂b× I − p̂a⊗ n̂bpasin(θp))

∇ah(a) = ∇a

√
1− (p̂b · p̂a)2

= −cot(θp)∇a(p̂b · p̂a)

=
−cot(θp)

||pa||
(p̂b− p̂acos(θp))

∇a(
p̂b× p̂a√
1− (p̂b · p̂a)2

) · n̂pam =
n̂pam × p̂b
||pa||sin(θp)

−
p̂acos(β)

||pa||

+
cot(θp)cos(β)

||pa||sin(θp)
(p̂b− p̂acos(θp))



A.3 dihedral calculations x

part2

∇an̂bpa · (∇a
âp× âm√
1− (âp · âm)2

)

Using the Quotient Rule we set:

g(a) = âp× âm

h(a) =
√
1− (âp · âm)2

∇ag(a) = ∇a(âp× âm)

= (∇aâp)× âm+ âp× (∇aâm)

=
1

||ap||
(âp⊗ n̂pamsin(θa) − I× âm) +

1

||am||
(âm⊗ n̂pamsin(θa) − âp× I)

∇ah(a) = ∇a

√
1− (âp · âm)2

= −cot(θa)∇a(âp · âm)

= −cot(θa)

(
1

||ap||
(âpcos(θa) − âm) +

1

||am||
(âmcos(θa) − âp)

)

∇an̂bpa · (∇a
âp× âm√
1− (âp · âm)2

) =
âpcos(β)

||ap||
−
âm× n̂bpa
||ap||sin(θa)

+

âmcos(β)

||am||
−
n̂bpa × âp

||am||sin(θa)
+

cot(θa)cos(β)

sin(θa)
(
âpcos(θa)

||ap||
−
âm

||ap||
+
âmcos(θa)

||am||
−

âp

||am||
)

∇acos(β) =
n̂pam × p̂b
||pa||sin(θp)

−
p̂acos(β)

||pa||
+
cot(θp)cos(β)

||pa||sin(θp)
(p̂b− p̂acos(θp))

âpcos(β)

||ap||
−
âm× n̂bpa
||ap||sin(θa)

+
âmcos(β)

||am||
−
n̂bpa × âp

||am||sin(θa)
+

cot(θa)cos(β)

sin(θa)
(
âpcos(θa)

||ap||
−
âm

||ap||
+
âmcos(θa)

||am||
−

âp

||am||
)

(49)
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B
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b.1 failed c60 fullerenes

Wirz Wirz2

(a)

(b)

(c)



B.1 failed c60 fullerenes xiii

(d)

(e)

(f)

Figure 33: Comparisson of failed C60 Wirz optimized fullerene geometries
(column 1) together with the Wirz2 optimized geometries(column 2). (a)
C60-[1,2,3,4,7,20,22,25,26,27,30,31], (b) C60-[1,2,3,4,11,15,20,24,28,29,31,32], (c) C60-
[1,2,3,4,11,15,21,25,28,29,31,32], (d) C60-[1,2,3,5,7,10,23,26,28,30,31,32], (e) C60-
[1,2,3,5,10,18,22,23,27,28,30,31], (f) C60-[1,2,3,5,18,19,21,24,25,29,31,32].
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b.2 failed c80 fullerenes

Wirz Wirz2

(a)

(b)
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(d)

(e)
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(h)

(i)

(j)

(k)
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(l)

(m)

Figure 34: Comparisson of failed C80 Wirz optimized fullerene geometries
(column 1) together with the Wirz2 optimized geometries(column 2). (a)
C80-[1,2,3,4,5,27,28,35,38,39,40,42], (b) C80-[1,2,3,4,5,27,29,34,36,38,39,40], (c) C80-
[1,2,3,4,7,19,29,34,38,39,40,42], (d) C80-[1,2,3,4,11,18,29,36,38,39,40,42], (e) C80-
[1,2,3,4,11,19,30,33,37,38,40,42], (f) C80-[1,2,3,4,11,20,29,31,39,40,41,42], (g) C80-
[1,2,3,4,12,20,31,36,38,40,41,42], (h) C80-[1,2,3,4,12,22,27,33,36,38,39,41], (i) C80-
[1,2,3,4,14,18,28,30,39,40,41,42], (j) C80-[1,2,3,5,10,15,29,34,37,39,41,42], (k) C80-
[1,2,3,5,10,15,30,33,36,40,41,42], (l) C80-[1,2,3,5,10,19,29,31,37,39,40,42], (m) C80-
[1,2,3,5,10,21,29,33,38,40,41,42].
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c.1 ph bond streching force constants

Figure 35: Histograms of kph force constants from various DFT methods.
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c.2 hh bond streching force constants

Figure 36: Histograms of khh force constants from various DFT methods.

c.3 p angle bending force constants

Figure 37: Histograms of kp force constants from various DFT methods.
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c.4 h angle bending force constants

Figure 38: Histograms of kp force constants from various DFT methods.

c.5 phh dihedral bending force constants

Figure 39: Histograms of kp force constants from various DFT methods.
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