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Abstract

The Carroll group, which emerges as the ultra-relativistic limit of the Poincaré group, and its
local realization in terms of Carroll geometry have recently received renewed interest due to
their connection to flat space holography. The study of Carroll geometry, Carroll gravity and
Carrollian field theories is thus currently emerging as a new direction of research. It is the
intention of this thesis to further develop the subject of Carroll geometry and its application
to the study of gravity. The main goal of this thesis is to derive and analyze a theory of
Carrollian gravity through a novel small c expansion of the Einstein-Hilbert action. To attain
this objective we review and further develop basic notions of Carroll geometry. In particular, we
will review the construction of Carroll geometry through a gauging procedure and its appearance
as the natural geometry on null hypersurfaces in Lorentzian geometry. We shall develop basic
aspects of Carrollian field theories by considering the construction of energy-momentum tensors.
Furthermore, the degenerate metric structure of Carroll geometry does not naturally single out
a distinguished connection like the Levi-Civita connection of Lorentzian geometry. Thus, we will
explore what obstructions to such a natural connection exist and what choices need to be made
to single out a Carrollian analog of the Levi-Civita connection. These preliminary considerations
allow us to perform an expansion of the Einstein-Hilbert action in powers of c2. We will consider
this expansion up to next-to-leading order. As the leading-order theory resembles the 3+1
decomposition of general relativity, we review this framework in order to adapt the methods
thereof to the Carrollian theory. We then examine the leading-order theory in detail and develop
new methods for obtaining solutions and computing boundary charges. Finally, we present
several examples of solutions to the leading-order theory using the methods developed in this
thesis.
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Chapter 1

Introduction

The most successful theories of nature all realize relativistic spacetime symmetries, whether it be
the global Poincaré symmetry of Quantum Field Theory (QFT) or the local Lorentz symmetry
of General Relativity (GR). Still, during the past few years there has been a renewed interest in
so-called non-Lorentzian geometries building on the Galilei and Carroll groups. These alternate
spacetime symmetry groups can respectively be obtained as either the infinite or vanishing
speed of light limit (c) of the Poincaré group. Exploring these limits may seem like an academic
exercise, but there is good reason to consider both.

The Galilei group has historically gained the most attention because it naturally occurs as
the spacetime symmetry group of effective descriptions of systems moving much slower than the
speed of light. The geometric study of non-relativistic (NR) spacetimes goes back to the work
of Cartan [1, 2] who geometrized Newtonian gravity in what is today known as Newton-Cartan
(NC) geometry. One natural application of this NC geometric framework is to approximate
GR at small speeds and weak fields in a post-Newtonian approximation [3]. More recently, NR
theories have been applied to address problems of modern physics either as predictive physical
models or as toy models to gain insights that could help understand their relativistic coun-
terparts. The NC framework presents itself as the natural covariant formulation of many NR
phenomena: the NC setup has for example found use in biophysics. The authors of [4] study
NC submanifolds and find it to be a natural framework for describing fluids moving on curved
membranes. Another example is the application of a relaxed variation of NC, known as Aris-
totelian geometry, to generalizing hydrodynamics to non-boost invariant fluids [5]. Finally, NC
geometry has also been applied to condensed matter systems where maybe most notably Son
[6], guided in part by NR covariance, constructed an effective field theory modeling quantum
Hall states. Another research direction is attempting to develop a theory of quantum gravity
in the NR realm and to use that as a guide to construct a relativistic theory. A proposal for
a theory of quantum gravity is Hořava–Lifshitz gravity [7], which has been shown to be realiz-
able in terms of dynamical NC geometry [8]. Related to these efforts, work has also been done
to understand non-relativistic string theory and holography [9–11] to obtain a more tractable
NR limit of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. Many of
the recent developments within NR holography were spurred by the discovery that NC geome-
try emerges naturally when trying to extend the AdS/CFT correspondence to a non-relativistic
setting. Specifically, it was shown that the relevant boundary geometry for holography on space-
times exhibiting asymptotic Lifshitz scaling symmetry is the so-called torsional Newton-Cartan
geometry [12–15].

The converse limit c → 0 of the Poincaré group results in the Carroll group, which despite
it being less well-known, also has relevance for profound problems in theoretical physics. In
particular, Carroll geometry turns out to be intimately related to some of the building blocks
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of flat space holography. To appreciate the importance of this, it is instructive to consider the
more developed cousin of flat space holography: Anti-de Sitter space holography. The ideas of
the AdS/CFT correspondence [16] and the holographic principle have been some of the most
influential paradigms in 21st century theoretical physics and have provided a new angle to study
quantum gravity and strongly coupled field theories. However, applying the holographic principle
only to asymptotically AdS spacetimes is unsatisfactory for multiple reasons: Firstly, the area
law of black hole entropy [17] dictates that the gravitational degrees of freedom grow as the
area rather than the volume. This suggests that the gravity theory should have a holographic
description living in a lower dimensional space. As black holes are a generic feature of GR and
not only asymptotically AdS spacetmes, one would expect a holographic principle to extend to
asymptotically flat spacetimes as well. Secondly, from a practical point of view, physical systems
are often well-approximated by asymptotically flat spacetimes rather than asymptotically AdS
spacetimes. Consequently, holography would be a more useful tool if it could be extended to
flat space.

Hence, an important research direction is to understand flat space holography. A first indi-
cation that Carroll geometry is related to this program is the fact that part of the conformal
boundary of asymptotically flat spacetimes, i.e. light-like infinity, is a null hypersurface. In chap-
ter 2 we will show that Carroll geometry is naturally induced on null hypersurfaces in Lorentzian
theories [18]. Thus, boundary field theories in flat space holography would presumably couple to
a Carrollian geometry. In addition to this preliminary observation, one can also take inspiration
from one of the first clues of the AdS/CFT correspondence: the asymptotic symmetry group
of AdS. Specifically, Brown and Henneaux [19] found that the asymptotic symmetry algebra of
AdS3 is two commuting copies of the Virasoro algebra. This algebra corresponds to the symme-
try algebra realized by the dual 2D conformal field theory. Following this idea, one can consider
the asymptotic symmetry group of asymptotically flat spacetimes known as the BMS group [20,
21]. The structure of Carroll geometry also arises naturally in considering BMS symmetry be-
cause the BMS group has been shown to be isomorphic to the conformal Carroll group [22–24].
Some work has been done exploring candidate boundary field theories for flat space holography
e.g. from both the BMS [25] and conformal Carroll [26] perspectives. Hence a major motivation
for understanding how Carrollian field theories can be constructed and how they behave is that
Carroll geometry may present itself as the natural framework for understanding flat space holog-
raphy. Other approaches to flat space holography also exist such as celestial CFTs [27], where
one maps the scattering amplitudes of a QFT in an asymptotically flat spacetime to correlators
of a CFT living on a so-called celestial sphere at null infinity.

Another null hypersurface where Carroll geometry has found use is the event horizon of a
black hole. In [28] the authors consider the membrane paradigm, which is an effective description
of black hole dynamics as a fluid living on the event horizon. Specifically, they show that the
equations governing the black hole dynamics can be understood as Carrollian conservation laws
akin to those we will derive in chapter 2.

In a recent paper [29], the authors extended the methods of [30] and performed a fully
covariant large c expansion of the Einstein-Hilbert (EH) action to obtain an action principle for
Newtonian gravity in the NC framework. The methods developed in this paper can be equally
applied in an ultra-relativistic limit of the EH action to derive a Carrollian theory of gravity.
Some efforts have already been made to study Carroll gravity from an ultra-relativistic limit
[31–33] as well as from an effective field theory approach [18]. However, no prior works have
considered a systematic ultra-relativistic expansion of the EH action, and hence it presents a
natural opportunity to study a Carrollian theory of gravity.

The goal of this thesis is to develop the understanding of Carroll geometry including Car-
rollian gravity as well as field theories coupling to a Carrollian background. We will focus on
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1.1. STRUCTURE OF THE THESIS

classical aspects of Carroll geometry and in particular explore how it emerges from both the
Carroll symmetry algebra and as an induced geometry in Lorentzian theories. We further aim to
address some of the natural questions of classical field theory such as gauge and diffeomorphism
covariance, the construction of energy-momentum tensors and the existence of conserved sym-
metry charges. To answer these questions in a covariant manner the formulae call for a choice
of connection. However, Carroll geometry does not have an established connection like the
Levi-Civita connection in Riemannian geometry. Hence, we will also investigate to what extent
Carroll structures can be endowed with a natural connection. These tools all become valuable in
an ultra-relativistic expansion of the Einstein-Hilbert action, where we repurpose the methods
of [29] to obtain an action principle for Carroll gravity order by order in c2. Furthermore, we
review the 3+1 formalism in order to pursue a new connection between the ultra-relativistic
expansion and the 3+1 decomposition. Finally, having a Carrollian theory of gravity at hand
we investigate what kind of dynamics is possible in the ultra-relativistic limit.

1.1 Structure of the thesis

The thesis is roughly organized in two parts: Chapters 2 and 3 review and develop Carroll
geometry, while chapters 4, 5 and 6 are concerned with the expansion of the EH action and
subsequent analysis of the theory.

We start in chapter 2 by considering the emergence of the Carroll algebra from an ultra-
relativistic limit and the construction of the Carroll geometry through a gauging procedure.
The second half of chapter 2 presents the connection to null hypersurfaces and explores different
aspects of general field theories coupled to a Carroll background. In chapter 3 we address the
question of natural connections for Carroll geometries. In particular, we review the notion of
intrinsic torsion and its consequences. Furthermore, we develop a procedure that singles out an
analog of the Levi-Civita connection for Carroll geometry.

Chapter 4 follows the methods of [29] and primes the EH action for an ultra-relativistic
expansion. Further, the leading-order (LO) and next-to-leading-order (NLO) action as well
as equations of motion (EOM) are derived (only partially for NLO). In chapter 5 we take an
intermezzo and review the basics of the 3+1 decomposition of general relativity in anticipation
of its use in the LO theory. Furthermore, the 3+1 formalism provides us with an alternate
approach to expanding the EH action. Chapter 6 is devoted to exploring the LO theory in
vacuum and possible solutions along with a characterization through boundary charges. Finally
in chapter 7, we summarize the results of the thesis and discuss ideas for future work.
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Chapter 2

Carroll Group and Geometry

The Carroll group is best understood as an ultra-relativistic limit i.e. c → 0 of the Poincaré
group as it was first done by Lévy-Leblond [34]. Taking the limit of vanishing speed of light
corresponds to the light cone collapsing to a line, rendering all spatially separated points causally
disconnected. This is in contrast to the more well-known Galilean limit c → ∞ which flattens
the light-cone and consequently, information propagates instantaneously. The name Carroll is
due to the rather peculiar causal structure and hence is a reference to Lewis Carroll’s stories
about Alice in Wonderland. The Carrollian causal structure also implies that particles do not
move and cannot be boosted to do so [35].

To contrast these converse limits in c and appreciate the duality between them [18], we can
schematically consider the scaling of the components of a Lorentz transformation in c

Λµν =

 O(1) O(c−1)

O(c) O(1)

, (2.1)

where we used the coordinates xµ = (t, x1, . . . , xd) on Minkowski space. From (2.1) it is clear
that in the limit c→ 0 the row dominates, while for c→∞ the column survives. Hence we see
the two opposite limits of c give rise to similar structures as they are related by a transpose.
Their embedding in the larger group GL(d+ 1, V ) is however different and sets the two limiting
groups apart. One way to see this duality is that the Galilean limit singles out a co-dimension
1 spatial subspace of the vector space V it is acting on, while the Carrollian limit distinguishes
a co-dimension 1 subspace of V ∗, the dual vector space.

In this chapter, we will review in section 2.1 how the Carroll algebra emerges as the limit
of Poincaré and in section 2.2 how to gauge the algebra to obtain the corresponding geometry.
In section 2.3 we will present the connection between null hypersurfaces and Carroll geometry,
and finally in section 2.4 we explore field theories coupled to a Carrollian background.

2.1 The Carroll algebra

As stated, we can derive the Carroll algebra as an Inönü-Wigner contraction [36] of the Poincaré
algebra. If we consider a d+ 1 dimensional spacetime then the Poincaré algebra takes the form

[JAB, PC ] = 2ηC[APB], (2.2a)

[JAB, JCD] = 4η[A[DJC]B], , (2.2b)

with ηAB = diag(−1, 1, . . . , 1) being the Minkowski metric, JAB anti-symmetric and upper case
indices A,B,C, . . . = 0, 1, . . . , d. To obtain the Carroll limit, we explicitly split space and time
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2.2. GAUGING KINEMATICAL ALGEBRAS

by redefining generators and reintroducing factors of the speed of light through the contraction
parameter ε ∼ c

P0 = ε−1H, J0a = ε−1Ca, (2.3)

where for lower case indices a, b, c, . . . = 1, 2, . . . , d. Due to the signature of the flat metric
ηAB we simply raise and lower the indices a, b, . . . with the Kronecker-δ. To obtain the Carroll
algebra as the contraction of (2.2a)-(2.2b), we need to consider the implications of (2.3) when
taking the limit ε→ 0. We can consider a few examples of this contraction

[Pa, J0b] = δabP0 ⇒ ε−1[Pa, Cb] = ε−1δabH
ε→0−→ [Pa, Cb] = δabH, (2.4a)

[P0, J0a] = Pa ⇒ ε−2[H,Ca] = Pa
ε→0−→ [H,Ca] = 0. (2.4b)

Repeating this process for all possible combinations of generators yields the following non-zero
Lie brackets for the Carroll algebra

[Jab, Pc] = 2δc[aPb], (2.5a)

[Jab, Cc] = 2δc[aCb], (2.5b)

[Jab, Jcd] = 4δ[a[dJc]b], (2.5c)

[Pa, Cb] = δabH. (2.5d)

On a group-theoretic level, one can also show that the Carroll algebra can be obtained as the
semi-direct sum of so(d) (realized by Jab) acting on the Heisenberg algebra (for Pa and Ca) with
H as its central element. Another way of splitting the algebra, that will have relevance for the
gauging procedure, is to consider the Carroll algebra as the semi-direct sum of rotations and
boosts g = 〈Jab, Ca〉 with the abelian ideal of translations t = 〈H,Pa〉.

2.2 Gauging kinematical algebras

There exists several equivalent ways of approaching the gauging of the Carroll algebra (2.5a)-
(2.5d), which ultimately boils down to how the vielbein and spin connection transform under and
act according to the underlying Lie algebra. One approach [8] uses so-called δ̄-transformations
constructed such that they suggest the generator (H,Pa) as the vielbeine, and one uses these to
obtain the geometric data from the Lie algebra structure. We will follow a slightly different path
using the theory of affine connections on a principal bundle [37], from which one reduces down
to the usual frame bundle objects. We will outline the mathematical background in section
2.2.1 and subsequently work through the example of the Poincaré algebra in section 2.2.2 before
repeating the procedure for Carroll algebra in section 2.2.3.

2.2.1 Principal bundles and affine connections

We start by noting that both the Poincaré group and the Carroll group (and other kinematical
groups) have a semi-direct product structure i.e. they can be written as

A = Gn T, (2.6)

where A is the affine group (e.g. Poincaré or Carroll), T = Rd+1 and G ≤ GL(d+1) (the Lorentz
group in the example of Poincaré). This structure also appears at the level of the algebra

a = g⊕ t, (2.7)
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2.2. GAUGING KINEMATICAL ALGEBRAS

with a, g and t being the corresponding Lie algebras.

We can then consider a principal A-bundle P̂
π̂−→ M with the spacetime (d + 1)-manifold

M as the base space. We can further equip P̂ with an Ehresmann connection ω̂ ∈ Ω1(P̂ , a) i.e.
a 1-form taking values in the Lie algebra of A and transforming in the adjoint representation.
The Ehresmann connection encodes how nearby affine frames relate and will thus, with the Lie
algebra split (2.7) in mind, give rise to both the vielbeine valued in t and the spin connection
valued in g. Specifically, it satisfies two important features: It annihilates horizontal vectors
and, when acting on a fundamental vector field, it returns the Lie algebra element generating
the vector field. The next step is to reduce the affine bundle to a frame bundle which amounts
to reducing the structure group A down to G and reinterpreting the pullback connection. Tech-
nically, the reduction of structure group is possible if we can supply a section σ̂ of the associated
bundle P̂ ×A (A/G) [37]. Choosing a section of this associated bundle intuitively corresponds
to choosing an origin in each of the affine frames. Thus, we reduce our principal A-bundle P̂ to
a principle G-bundle P . Let γ : P → P̂ be the inclusion map of this G-restriction. We can then
consider the pullback of the connection ω̂ to the G-bundle P

γ∗ω̂ = ω + θ, (2.8)

where we utilized the natural split of the Lie algebra i.e. ω ∈ Ω1(P, g) and θ ∈ Ω1(P, t). As the
structure group of P is G, an Ehresmann connection on P should be valued in g. Further, the
pullback turns the components of ω̂ that give rise to the projective property on t into horizontal
components making up θ. Thus, we interpret ω to be an Ehresmann connection on P and θ as
the solder form i.e. the 1-form that relates vectors in the tangent bundle TM with vectors in
the frame bundle. With these identifications, we have reduced the affine bundle P̂ into a frame
bundle P with solder form θ and connection ω.

In the following sections 2.2.2 and 2.2.3 we will not be dealing with the full objects ω and θ,
but rather their pullbacks to the base manifold M through a section σ of the frame bundle P .
The section σ then has the interpretation as a choice of moving frames and the pullback of the
connection and solder form realize the spin connection and vielbeine with respect to that choice
of frame. We will abuse notation and still denote σ∗ω and σ∗θ as ω and θ, respectively. The
construction can be visualized by the following diagram

P̂ P Mπ̂ π

γ σ

Affine-bundle

Choice of origin Choice of frame

Frame-bundle (d+ 1)-manifold

(2.9)

What one in physics usually thinks of as gauge transformations of the pulled-back forms or local
representatives ω and θ, corresponds in this language to changing the section σ i.e. the choice
of frame. It can be shown [38] that if two choices of moving frames are related by a gauge
transformation1 g : M → G, then the local representatives transform as

θ′ = g−1θg, (2.10a)

ω′ = g−1ωg + g−1dg. (2.10b)

1Here and in the rest of the thesis we are glossing over the fact that for non-trivial frame bundles the local
representatives and transformation rules only exist on local trivializations.
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The transformations (2.10a)-(2.10b) are familiar from gauge theories. The co-frame (2.10a)
transforms covariantly in the adjoint representation like e.g. the field strength of Yang-Mills
theory, while the connection transforms non-covariantly (2.10b) with respect to the gauge group.

Importantly, the connection ω gives rise to a notion of parallel transport and thus a covariant
derivative. Technically, this can be implemented by considering the induced connection on
associated bundles with typical fiber being tensor powers of t and t∗ which both have a natural
g-action in terms of the adjoint and co-adjoint action, respectively. This covariant derivative is
sometimes called an adapted connection as tensors that are left invariant at the level of group
action induce tensor fields in the tangent bundle which are automatically parallel.

2.2.2 Gauging the Poincaré algebra

As a perhaps more familiar example, we will warm up by going through the gauging procedure for
the Poincaré algebra (2.2a)-(2.2b). The Poincaré algebra splits according to (2.7) as g = 〈JAB〉
and t = 〈Pa〉. The starting point for the gauging procedure is defining the connection ω and the
co-frame θ valued in g and t, respectively, as

θ = eA ⊗ PA, (2.11a)

ω =
1

2
ΩAB ⊗ JAB, (2.11b)

with eA,ΩAB ∈ Ω1(M) and Ω(AB) = 0. We can then consider how θ and ω transform under a
infinitesimal g-valued gauge transformation

Σ =
1

2
ΛAB ⊗ JAB, (2.12)

with ΛAB being some anti-symmetric parameter and Σ ∈ Ω0(M, g). Under Σ, the co-frame θ
transforms according to the infinitesimal adjoint action corresponding to (2.10a)

δθ = [θ,Σ] =
1

2
ΛABeC ⊗ [PC , JAB] = ΛABe

B ⊗ PA, (2.13)

where we used the bracket (2.2a) and lowered the index with ηAB. For the connection, the
infinitesimal transformation rule follows from the finite transformation (2.10b) as

δω = dΣ + [ω,Σ] =
1

2
dΛAB ⊗ JAB +

1

4
ΛABΩCD ⊗ [JCD, JAB] (2.14)

=
1

2

[
dΛAB + 2ΛC

[AΩB]C
]
⊗ JAB, (2.15)

where we used (2.2b). These results can be written out in component form

δeAµ = ΛABe
B
µ , (2.16a)

δΩµ
AB = ∂µΛAB + 2ΛC

[AΩµ
B]C , (2.16b)

which we recognize as the usual laws for local Lorentz transformations. The next natural thing to
compute is the associated torsion and curvature 2-forms, which follow from the Cartan structure
equations. In particular, we can compute the torsion T as

T = Dθ = dθ + [ω ∧ θ] = deA ⊗ PA +
1

2
ΩAB ∧ eC ⊗ [JAB, PC ]

=
[
deA − ΩA

B ∧ eB
]
⊗ PA, (2.17)
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where D denotes the covariant exterior derivative and [· ∧ ·] is the wedge product of Lie algebra
valued differential forms defined by [(ω ⊗A) ∧ (η ⊗B)] = ω ∧ η ⊗ [A,B]. The curvature 2-form
R follows in a similar fashion

R = Dω = dω +
1

2
[ω ∧ ω] =

1

2
dΩAB ⊗ JAB +

1

8
ΩAB ∧ ΩCD[JAB, JCD]

=
1

2

[
dΩAB + ΩA

C ∧ ΩBC
]
⊗ JAB. (2.18)

The factor of 1
2 in the curvature structure equations is due to the fact that ω does not transform

covariantly. If we further define

T =
1

2
Tµν

Adxµ ∧ dxν ⊗ PA, (2.19a)

R =
1

4
Rµν

ABdxµ ∧ dxν ⊗ JAB, (2.19b)

then we can write out the torsion and curvature 2-forms in components to obtain the familiar
expressions [39]

Tµν
A = 2∂[µe

A
ν] − 2Ω[µ

ABeν]B (2.20a)

Rµν
AB = 2∂[µΩν]

AB + 2Ω[µ
ACΩν]

B
C . (2.20b)

As an example of how this connection is adapted to the Lorentzian structure of the frame bundle,
we can compute the covariant derivative of the metric. As the metric is a co-variant tensor, we
need to introduce a basis of t∗ which we define by

γA(PB) = δAB. (2.21)

The metric can then be written as η = ηAB γ
A⊗γB, which has a naturally induced transformation

in terms of the co-adjoint action. We can then directly compute the covariant derivative of the
metric

Dη = D(ηAB) γA ⊗ γB + ηABDγ
A ⊗ γB + ηAB γ

A ⊗DγB

= d(ηAB) γA ⊗ γB + ηAB (ad∗ω γ
A)⊗ γB + ηAB γ

A ⊗ (ad∗ω γ
B)

= −ηABΩC
A γC ⊗ γB − ηABΩC

B γA ⊗ γC = −(ΩAB + ΩBA) γA ⊗ γB = 0, (2.22)

where ad∗ω is the co-adjoint action of ω and the last expression vanishes by the anti-symmetry
of ΩAB. From the calculation (2.22) it is clear that the metric is conserved by the covariant
derivative due to it being annihilated by the action of the Lorentz algebra ad∗JAB (ηAB γ

A⊗γB) =
0. This property of the covariant derivative is often contributed to the fact that ΩAB is anti-
symmetric, which is correct from an operational point of view, but in our language follows as a
direct consequence of the algebra (2.2a)-(2.2b).

Finally, we can relate the connection ω on the frame bundle to an affine connection with
coefficients Γρµν . To do this we consider the co-frame θ as an identity map between sections
of the tangent bundle and the frame bundle. We then impose the so-called vielbein postulate,
which is the assertion that θ is parallel in the connection ω. Thus for any vector field Xµ we
can compute

0
!

= DXθ
= DX(eAµ dx

µ ⊗ PA) = DX(eAµ )dxµ ⊗ PA + eAµDX(dxµ)⊗ PA + eAµ dx
µ ⊗DX(PA)

= Xρ
[
∂ρe

A
µ − Γσρµe

A
σ − Ωρ

A
Be

B
µ

]
dxµ ⊗ PA, (2.23)
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which in component form reads

∂µe
A
ν − Γρµνe

A
ρ − Ωµ

A
Be

B
ν = 0. (2.24)

Analogously to how co-bases (2.21) are canonically defined, we can also define a frame related
to the co-frame θ i.e. a map that relates co-vectors in the tangent bundle to co-vectors in the
frame bundle. In components, the frame eµA corresponding the co-frame eAµ can be defined by

eAµ e
ν
A = δνµ, eAµ e

µ
B = δAB. (2.25)

The eµA provides the necessary inverses for us to solve (2.24) for the affine connection coefficients

Γρµν = eρA∂µe
A
ν − e

ρ
AΩµ

A
Be

B
ν . (2.26)

Hence, we see that we can obtain all the geometrical objects of pseudo-Riemannian geometry by
gauging the Poincaré algebra (2.2a)-(2.2b). A further step one can take is to impose vanishing
torsion on the connection, which allows us to solve (2.17) for the Levi-Civita connection and
thereby specialize to the usual setting of GR.

2.2.3 Gauging the Carroll algebra

The results of this and the next two subsections reproduce those of [18], but we use the slightly
different gauging approach as described in sections 2.2.1 and 2.2.2. We now repeat and slightly
expand the gauging procedure carried out for the Poincaré algebra in section 2.2.2 for the Carroll
algebra. The split of the generators into a semi-direct sum is, in the case of Carroll, g = 〈Jab, Ca〉
and t = 〈H,Pa〉. We again only need the pullback of the solder form and Ehresmann connection,
which we now define using the Lie algebra generators of t and g, respectively

θ = τ ⊗H + ea ⊗ Pa, (2.27a)

ω = Ωa ⊗ Ca +
1

2
Ωab ⊗ Jab, (2.27b)

where τ, ea,Ωa,Ωab ∈ Ω1(M) and Ω(ab) = 0. Having established a co-frame and a connection,
we can consider their response to a gauge transformation of the form

Σ = λaCa +
1

2
λabJab, (2.28)

with λa, λab being real coefficients and λab anti-symmetric. The co-frame transforms covariantly

δθ = [θ,Σ] = λaτ ⊗ [H,Ca] + λaeb ⊗ [Pa, Ca] + λabτ ⊗ [H,Jab] +
1

2
λabec ⊗ [Pc, Jab]

= λae
a ⊗H + λabe

b ⊗ Pa, (2.29)

while the gauge connection transforms according to the infinitesimal form of (2.10b)

δω = dΣ + [ω,Σ]

= dλa ⊗ Ca +
1

2
dλab ⊗ Jab +

1

2
λaΩbc ⊗ [Jbc, Ca] +

1

2
λabΩc ⊗ [Cc, Jab] +

1

4
λabΩcd ⊗ [Jcd, Jab]

= (dλa + λabΩ
b − λbΩab)⊗ Ca +

1

2
(dλab + λacΩ

cb − λbcΩca)⊗ Jab, (2.30)

– 9 –



2.2. GAUGING KINEMATICAL ALGEBRAS

where we left out zero brackets in the second line. Alternatively, we can write out the same
transformation rules in component form

δτµ = λae
a
µ, (2.31a)

δeaµ = λabe
b
µ, (2.31b)

δΩµ
a = ∂µλ

a + λabΩµ
b − λbΩµ

ab, (2.31c)

δΩµ
ab = ∂µλ

ab + λacΩµ
cb − λbcΩµ

ca. (2.31d)

The choice of connection can be further characterized by its torsion and curvature as computed
through Cartan structure equations. The torsion 2-form T is given by

T = Dθ = dθ + [ω ∧ θ] = (dτ + ea ∧ Ωa)⊗H + (dea − eb ∧ Ωba)⊗ Pa. (2.32)

Similarly we can calculate the curvature 2-form as

R = Dω = dω +
1

2
[ω ∧ ω]

= dΩa ⊗ Ca +
1

2
dΩab ⊗ Jab +

1

4
2Ωa ∧ Ωbc ⊗ [Ca, Jbc] +

1

8
Ωab ∧ Ωcd ⊗ [Jab, Jcd]

= (dΩa − Ωab ∧ Ωb)⊗ Ca +
1

2
(dΩab − Ωca ∧ Ωb

c)⊗ Jab, (2.33)

where the indices a, b, c, . . . are raised and lowered using δab. We can equivalently represent this
in component form by defining

T =
1

2
Tµν(H)dxµ ∧ dxν ⊗H +

1

2
Tµν

a(P )dxµ ∧ dxν ⊗ Pa, (2.34a)

R =
1

2
Rµν

a(C)dxµ ∧ dxν ⊗ Ca +
1

4
Rµν

ab(J)dxµ ∧ dxν ⊗ Jab, (2.34b)

with respect to which we find

Tµν(H) = 2∂[µτν] + 2ea[µΩν]a, (2.35a)

Tµν
a(P ) = 2∂[µe

a
ν] − 2eb[µΩν]b

a, (2.35b)

Rµν
a(C) = 2∂[µΩν]

a − 2Ωab
[µΩν]b, (2.35c)

Rµν
ab(J) = 2∂[µΩab

ν] − 2Ω[µ
caΩν]

b
c. (2.35d)

The connection ω of course corresponds to an affine connection through the vielbein postulate.
We will, however, postpone this to section 2.2.5.

It will also prove useful to introduce a frame (vµ, eµa) corresponding to the co-frame (τµ, e
a
µ),

which we do by the defining relations

vµτν = −1, vµeaµ = 0, τµe
µ
a = 0, eaµe

µ
b = δba. (2.36)

We will also occasionally use ϑa ≡ eµa∂µ when dealing with abstract tensors. From (2.36) the
last of the possible contractions of the vielbeine follows

eaµe
ν
a = δνµ + τµv

ν . (2.37)

The transformation law (2.31a) and (2.31b) together with the relations (2.36) further imply the
transformations of the frame

δvµ = 0, (2.38a)

δeµa = vµλa + λa
beµb . (2.38b)
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Finally, we also have a covariant derivative associated with the connection ω that acts in the
adjoint representation on a vector field X = X0H +XaPb as

DX = dX + [ω,X] = (dX0 −XaΩa)⊗H + (dXa +XbΩb
a)⊗ Pa. (2.39)

There is likewise a natural covariant derivative on co-vectors in the frame bundle for which we
need to introduce a co-basis (η, γa) defined by

η(H) = −1, η(Pa) = 0, γa(H) = 0, γa(Pb) = δab . (2.40)

Co-vectors in t∗ naturally transform in the co-adjoint representation. Thus, the covariant deriva-
tive for a co-vector Θ = Θ0η + Θaγ

a is

DΘ = dΘ + ad∗ω Θ = dΘ0 ⊗ η + (dΘa − ΩaΘ0 − Ωa
bΘb)⊗ γa. (2.41)

These associated derivatives are, as mentioned, adapted to the Carroll structure and one example
of this can be observed by considering the covariant derivative of H which follows from (2.39)

DH = 0. (2.42)

The vanishing of this derivative can be traced back to the fact that H is central, or in other
words, H is annihilated by all elements of g (in fact also a). One can also, by a computation
analogous to (2.22), show that δab γ

a ⊗ γb is conserved by the covariant derivative. We will
return to these adapted properties of the covariant derivative in section 2.2.5.

2.2.4 Carroll invariants

It is clear that only the vector field vµ of the vielbeine is a tensorial quantity as it is invariant
under local tangent space transformations (2.38a). However, the co-frame only transforms under
rotations (2.31b) and hence we can define an invariant degenerate metric

hµν ≡ δabeaµebν , (2.43)

whose invariance is easily seen by

δhµν
(2.38a)

= δab(λ
a
ce
c
µe
b
ν + eaµλ

b
ce
c
ν) = 2eaµe

b
νλ(ab) = 0. (2.44)

From the definitions (2.43) and (2.36), we also see that the kernel of hµν is spanned by vµ, that
is

vµhµν = 0. (2.45)

Carroll structures are often defined as a spacetime manifold equipped with a nowhere-vanishing
vector field vµ and a spatial metric hµν whose kernel is spanned by vµ [22]. As vµ is gauge
invariant, it is natural to consider its integral curves which fiber the manifold. These consid-
erations give rise to another construction of Carroll structures as a fiber bundle M

π→ S with
typical fiber R over a spatial base manifold S [24, 40]. The fiber bundle construction naturally
possesses the subspace spanned by vµ as the kernel of the projection push-forward π∗. Further, a
choice of spatial subspace in T ∗M can be seen as equipping the fiber bundle with an Ehresmann
connection.

The degeneracy of hµν entails that it is non-invertible, but we can still define a projective
inverse

hµν ≡ δabeµaeνb , (2.46)
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which by the defining relations (2.36) satisfies

vµτµ = −1, vµhµν = 0, τµh
µν = 0, hµρh

ρν − τµvν = δνµ. (2.47)

Carrying out a calculation similar to (2.44), one can determine the transformation of hµν and
we state the full set of transformations

δvµ = 0, (2.48a)

δhµν = 0, (2.48b)

δτµ = λµ, (2.48c)

δhµν = 2v(µλν), (2.48d)

with λµ = λae
a
µ and λµ = λaδ

abeµb .
The relations (2.47) give rise to a set of projection operators

−vµτν , and hµν ≡ hµρhρν , (2.49)

called temporal and spatial, respectively. The two projectors span the entire tangent space due
to the completeness relations (2.47). It is important to note that these projectors are not boost
invariant due to (2.48a)-(2.48d) and consequently the induced split of the tangent space is not
a true Carrollian notion. However, we can always complete the basis by choosing a spatial
subspace and construct these boost non-invariant projectors. This split suggests defining spatial
and temporal indices as being annihilated by −vµτν and hµν , respectively. The fact that we can
raise and lower the flat indices with the Kronecker-δ then carries over to the curved indices in
the sense that spatial indices can be raised and lowered with hµν and hµν , respectively.

A third and perhaps less obvious Carroll invariant is the tensor density e of weight −1 given
by

e =
√

det(τµτν + hµν). (2.50)

The density e is not manifestly boost invariant as it depends on τµ which transforms according
to (2.48c) under boosts. However, a short calculation shows

δe =
1

2
e(vµvν + hµν)δ(τµτν + hµν) =

1

2
e(vµvν + hµν)2τ(µλν) = 0, (2.51)

that e is indeed invariant. Having determined a density associated with the geometry, we can
define a covariant measure e dd+1x necessary to write down Carrollian field theory actions. These
three invariant quantities could all have been anticipated from the group action as vµ, hµν and
e in the frame bundle correspond to tensors left invariant by the action of the Carroll group.
This is analogous to how one can show that the metric and the Levi-Civita symbol are the only
invariants of SO(d).

A one-derivative object of interest is the so-called extrinsic curvature

Kµν = −1

2
Lvhµν , (2.52)

whose invariance under the group action is manifest. A short computation further shows that
Kµν is spatial

vµKµν = −1

2
vµLvhµν =

1

2
hµνLvvµ =

1

2
hµν [v, v]µ = 0, (2.53)
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and thus we can raise and lower its indices

Kµ
ν ≡ hµρKρν , Kµν ≡ hµρhνσKρσ. (2.54)

Utilizing this property of the extrinsic curvature, we can construct scalars by repeated contrac-
tions

K ≡ hµνKµν , KµνK
µν , . . . , (2.55)

which despite the gauge non-invariant hµν are all boost invariant because all potential transfor-
mations are projected out as in (2.51).

2.2.5 The affine connection

As with gauging of the Poincaré algebra in section (2.2.2), the frame bundle connection (2.27b)
also corresponds to an affine connection Γρµν and the relation between them can be derived with
the vielbein postulate. In particular, if we let Xµ be any vector field, we find

0
!

= DXθ = DX(τµdx
µ ⊗H + eaµdx

µ ⊗ Pa) (2.56)

= Xµ(∂µτν − Γρµντρ − Ωµae
a
ν)dxν ⊗H +Xµ(∂µe

a
ν − Γρµνe

a
ρ − Ωµ

a
be
b
ν)dxν ⊗ Pa.

Equivalently, one can write this in component form

∂µτν − Γρµντρ − Ωµae
a
ν = 0, (2.57a)

∂µe
a
ν − Γρµνe

a
ρ − Ωµ

a
be
b
ν = 0. (2.57b)

With (2.57a) and (2.57b) we can solve for the affine connection coefficients Γρµν using (2.47) and
establish the following relation

Γρµν = −vρ∂µτν + vρΩµae
a
ν + eρa∂µe

a
ν − Ωµ

a
be
ρ
ae
b
ν . (2.58)

It is then easy to check that the invariant tensors vµ, hµν and e are covariantly conserved as
they should be by construction i.e.

∇ρvµ = 0, ∇ρhµν = 0, ∇ρe = 0, (2.59)

where ∇ is the covariant derivative associated with Γρµν2. As an example of the compatibility,
we work out the details for the case of ∇µvν

∇µvν = ∂µv
ν + Γνµρv

ρ = ∂µv
ν − vνvρ∂µτρ + eνav

ρ∂µe
a
ν

= ∂µv
ν − (−vντρ + eνae

a
ν)∂µv

ρ = 0, (2.60)

where we used the identity (2.37).
The vielbein postulate can also be used to solve for the usual torsion T ρµν and Riemann

curvature Rµνσ
ρ tensor in terms of the frame bundle counterparts (2.32) and (2.33)

T ρµν = −vρTµν(H) + eρaTµν
a(P ), (2.61a)

Rµνσ
ρ = −vρeσaRµνa(C)− eσaeρbRµν

ab(J), (2.61b)

where the torsion and curvature of an affine connection is defined as (3.31) and (3.32), respec-
tively.

2Note that e is a density and the covariant derivative of a scalar density σ of weight w takes the form
∇µσ = ∂µσ + wσΓρµρ.
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2.3 Carroll geometry on null hypersurfaces

This section is based on the construction presented in [18]. An alternate and perhaps better
motivated way of obtaining Carroll geometry is as the induced geometry on a null hypersurface
embedded in a Lorentzian structure in 1 dimension higher. The degenerate Carroll structure
emerges due to the fact that the normal vector of a null hypersurface is also tangent, which
renders the pullback metric degenerate.

To make this construction, we consider a d+ 2 dimensional Lorentzian spacetime equipped
with a non-degenerate metric of signature (−1,+1, . . . ,+1). Further, we assume that there
exists adapted coordinates (u, xµ) such that hypersurfaces of constant u are null, that is

gAB∂Au∂Bu = 0 ⇒ guu = 0, (2.62)

where we in this section let A,B, . . . = u, 0, 1, . . . d. The condition that all hypersurfaces with
constant u are null is here chosen for simplicity and can be weakened such that a null hypersurface
only occurs at a specific value e.g. u = 0. One can then consider a family of hypersurfaces Σu

and characterize the induced geometry for each u. Taking the limit u→ 0 then corresponds to
an effective ultra-relativistic limit of the geometry on Σu. An example of this is to consider the
limiting procedure of bringing a stretched black hole horizon into coincidence with the event
horizon [28].

Returning to the strong assumption of a null foliation on the entire embedding spacetime,
we can write down a parameterization of the most general metric with guu = 0

ds2 = gABdx
AdxB = du(2Φ̄du− 2τ̂µdx

µ) + hµνdx
µdxν , (2.63)

and its inverse

guu = 0, gµu = vµ, gµν = h̄µν . (2.64)

In (2.63) and (2.64) we have defined the following tensors

τ̂µ = τµ − hµνMν , (2.65)

h̄µν = hµν −Mµvν −Mνvµ, (2.66)

Φ̄ = −Mµτµ +
1

2
hµνM

µMν , (2.67)

where vµ, τµ, hµν and hµν satisfy the completeness relations (2.47) and Mµ is some vector field.
If we let vµ, τµ, hµν and hµν transform under local Carroll boosts, then the vector field Mµ

must transform as δMµ = λµ for the metric gµν to remain inert. A vector field transforming
as Mµ occurs naturally when considering sub-leading Carroll structures cf. (4.10a) and (4.14a),
but here it can just be seen as a further freedom of a metric satisfying (2.62).

Unlike the case of timelike and spacelike hypersurfaces, we are not given a natural projector
onto a null hypersurface as the normal vector is tangent rather than transverse. Thus, we can
pull back the metric gAB, but we cannot project the null normal vector UA = gAB∂Bu = (0, vµ)
without more structure. The additional information that needs to be supplied is an extra
transverse null vector field V A [41] satisfying

V AVA = 0, V AUA = −1. (2.68)

Notice that we only have 2 constraints in (2.68), but d+ 2 degrees of freedom in V A. Thus, we
have d components unaccounted for, which can be interpreted as the boost gauge symmetry of
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Carroll geometry. The full metric gAB can then be decomposed in terms of the nullbeine UA

and V A as

gAB = −UAVB − UBVA + ΠAB, (2.69)

where (2.69) also serves as the definition of ΠAB. It is easily seen from (2.69) that ΠAB satisfies

UAΠAB = 0, V AΠAB = 0. (2.70)

With this extra structure, we can define a projector PAB on the tangent space as

PAB ≡ δAB + V AUB, (2.71)

which clearly has the properties

PABP
B
C = PAC , PABV

B = 0 PABU
B = UA, UAP

A
B = 0. (2.72)

The last property shows that the output of the projection is always tangent to the null hyper-
surface and hence we can restrict the indices as PµA. By introducing the transverse vector V A,
we can now map vectors to the hypersurface using the projector PAB and co-vectors by the
pull-back associated with the embedding map [42]. In the adapted coordinates, we can write
the pull-back as

Φµ
A ≡ δAµ . (2.73)

Having the above construction and the previous sections in mind, a natural of choice of
transverse vector is V A = (−1,Mµ) implying

V u = −1, V µ = Mµ, Uu = 0, Uµ = vµ ΠuA = 0, Πµν = hµν . (2.74)

Lowering the indices using (2.63) yields

Vu = τµM
µ, Vµ = τµ, Uu = 1, Uµ = 0, (2.75a)

Πuu = hµνM
µMν , Πuµ = hµνM

ν , Πµν = hµν . (2.75b)

Finally, we can apply the projection operator PAB on contra-variant tensors and the pull-back
ΦB

A on co-variant tensors in ambient space, which results in the following non-zero quantities
on the hypersurface

PµAU
A = vµ, PµAP

ν
Bg

AB = hµν , Φµ
AVA = τµ, ΦA

µΦB
νgAB = hµν . (2.76)

Hence, we see that we get the defining objects of Carroll geometry vµ and hµν , but also τµ and
hµν which transform under boosts corresponding to the non-uniqueness of V A. Importantly, the
induced Carroll geometry vµ and hµν are independent of any choice of V A.

2.4 Metric responses and Energy-Momentum tensors

Any action governing a field theory coupling to a general Carrollian geometry can be written in
the form

S =

∫
dd+1x eL[ϕI , vµ, hµν ], (2.77)
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2.4. METRIC RESPONSES AND ENERGY-MOMENTUM TENSORS

where ϕI represents possible matter fields, dd+1x e is the Carrollian invariant measure and L is a
Lagrangian scalar. Additionally, it must be invariant under the action of the Carroll group which
amounts to invariance under boosts (2.48a) and (2.48d). We can then consider the response to
variation of the metric data

δS =

∫
dd+1x e

[
−T vµδvµ −

1

2
T hµνδh

µν

]
, (2.78)

where we defined the metric responses or “Carrollian momenta”

T vµ ≡ −e−1 δS

δvµ
, (2.79a)

T hµν ≡ −2e−1 δS

δhµν
. (2.79b)

One could have defined other Carrollian momenta by considering the response to varying with
respect to different parameterizations of the metric data. We could equivalently have used the
parameterization (τµ, hµν) or as in e.g. [43] used adapted coordinates (x0, . . . , xd) such that

τ = Ω(−dx0 + badx
a), h = habdx

a ⊗ dxb, (2.80)

with a, b = 1, . . . d and the metric data being the triple (Ω, bi, hij). The responses to varying
with respect to each parameterization give different descriptions of the same information.

T vµ and T hµν cannot both be boost invariant because hµν transforms under boosts. Thus, we
cannot directly interpret them as energy-momentum tensors. To find the transformation laws
for (2.79a) and (2.79b), we consider an infinitesimal boost

v′µ = vµ, (2.81a)

h′µν = hµν + 2v(µλµ), (2.81b)

where λµ again is spatial i.e. λµτµ = 0. Consequently, general variations δ of the primed and
un-primed variables are related by

δvµ = δv′µ, (2.82a)

δhµν = δh′µν − 2δv′(µλµ). (2.82b)

Inserting this into (2.78) we find

δS =

∫
dd+1x e

[
−T vµδvµ −

1

2
T hµνδh

µν

]
=

∫
dd+1x e

[
−(T vµ − λνT hνµ)δv′µ − 1

2
T hµνδh

′µν
]
, (2.83)

from which we can read off the infinitesimal Carroll boosts

δCT
v
µ = −λνT hνµ, (2.84a)

δCT
h
µν = 0. (2.84b)

These transformation laws imply that we can make the following boost-invariant combination

Tµν ≡ −vµT vν − hµρT hρν . (2.85)
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We will interpret Tµν as an energy-momentum tensor (EMT), which we will further argue for
in section 2.4.2. The boost invariance can be confirmed by the following computation

T ′µν = −vµ(T vν − λρT hρν)− (hµρ + vµλρ + vρλµ)T hρν = Tµν − λµvρT hρν , (2.86)

which shows boost-invariance given that vρT hρν vanishes. This is indeed the case by virtue of the
boost Ward identity (2.89), which we will prove in the next subsection. Note that this also shows
that we can recover T vµ and T hµν from Tµν , such that no information is lost in constructing the

EMT (2.85). The boost Ward identity vρT hρν = 0 further implies that the following projection
vanishes

hµνv
ρT νρ = 0, (2.87)

which we can interpret as the vanishing of the energy current for any Carrollian field theory.

2.4.1 Ward identities

The action (2.77) is in addition to being boost invariant also invariant under spatial rotations
and diffeomorphisms. By inserting the boost transformations (2.48a) and (2.48d) into (2.78) and
demanding invariance for any boost λµ, we immediately find the corresponding Ward identity

T hµνv
µhνρ = 0. (2.88)

The statement of (2.88) can be made stronger by noticing that τµτνδh
µν = 0 and thus the spatial

metric response T hµν contains no component ∼ τµτν . This results in the boost Ward identity

T hµνv
µ = 0, (2.89)

which can be interpreted as T hµν being purely spatial.
The Ward identity related to the remaining internal gauge transformations i.e. spatial rota-

tions can be understood as the symmetry in the indices of T hµν . This follows by considering the
response to varying the vielbein eµa and then constructing a rotationally invariant momentum
from these.

Finally, we can consider the diffeomorphism Ward identity by demanding invariance of the
Lagrangian density under diffeomorphism up to a total derivative

e

[
−T vµLξvµ −

1

2
T hµνLξhµν

]
= e

[
−T vµ (ξρ∂ρv

µ − ∂ρξµvρ)−
1

2
T hµν(ξρ∂ρh

µν − 2∂ρξ
µhρν)

]
≈ −ξρ

[
eT vµ∂ρv

µ + ∂µ(evµT vρ ) +
e

2
T hµν∂ρh

µν + ∂µ(eT hρνh
µν)
]

!
= 0, (2.90)

where ≈ denotes equality up to a total derivative. For (2.90) to hold for all choices of ξµ we
need to have

∂µ(eTµν)− eT vµ∂νvµ −
e

2
T hρσ∂νh

ρσ = 0. (2.91)

The relation (2.91) is not manifestly covariant and cannot be made so without the introduction
of a connection. We will address the choice of connection in chapter 3.
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2.4.2 Comparison to the canonical energy-momentum tensor

We can consider the so-called flat Carroll manifold [22] with M = Rd+1 where

v = ∂0, hµν = δab dx
a ⊗ dxb, (2.92)

which also implies that e = 1. The flat Carroll structure is analogous to Minkowski space and
can indeed be seen as the c → 0 limit of it. Due to the structure being flat, translations are
global symmetries and hence have associated Noether currents. These can be combined into
the canonical energy-momentum tensor following the usual procedure from field theory [44]. In
particular, the canonical EMT for a single scalar field φ with Lagrangian L[φ, ∂µφ] takes the
form

τµν =
∂L

∂(∂µφ)
∂νφ− δµνL. (2.93)

This EMT is conserved in the sense ∂µτ
µ
ν = 0 as a direct consequence of the Euler-Lagrange

equations

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0. (2.94)

We can then investigate whether τµν corresponds to the EMT (2.85) when evaluated in the flat
limit i.e. (2.92). In order to do this, we must consider the metric data as general to perform the
derivatives (2.79a)-(2.79b) and then at the end of the calculation evaluate at the flat structure.
For simplicity, we assume that φ only couples to the vµ and hµν and not their derivatives.
Note that couplings to derivatives of the metric data also exist and occur naturally in covariant
derivatives, curvatures, etc. The assumption of no derivatives implies that

δS

δvµ
=
∂(eL)

∂vµ
,

δS

δhµν
=
∂(eL)

∂hµν
, (2.95)

where the factors of e are due to the general background. Having this in mind, we can compute
the total spacetime derivative of the Lagrangian

∂µ(eL[φ, ∂µφ, v
µ, hµν ]) =

∂(eL)

∂φ
∂µφ+

∂(eL)

∂(∂νφ)
∂µ∂νφ+

∂(eL)

∂vρ
∂µv

ρ +
∂(eL)

∂hρσ
∂µh

ρσ (2.96)

= ∂ν

(
∂(eL)

∂(∂νφ)
∂µφ

)
− eT vρ ∂µvρ −

e

2
T hρσ∂µh

ρσ,

where we for the second line used (2.94) (taking into account the non-trivial measure) before
invoking the product rule and for the last two terms the definitions (2.79a)-(2.79b). We can
then rearrange the terms and apply the diffeomorphism Ward identity (2.91) to find

∂ν

(
∂(eL)

∂(∂νφ)
∂µφ− δνµeL − eT νµ

)
= 0. (2.97)

Setting the Carroll data to be flat, we see that the canonical EMT τµν differs from the EMT
Tµν only by total derivative terms. Thus, we conclude that the definition (2.85) can indeed be
interpreted as a Carrollian EMT. Had we included couplings to derivatives of the metric data,
it would have resulted in correction to (2.97), but they would vanish in the flat limit (2.92).
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2.4.3 Carrollian Killing vector and conserved currents

In a curved Lorentzian background gµν , one can find isometry generating vector fields by the
Killing equation

Lξgµν = 0. (2.98)

This, together with the relativistic energy-momentum tensor T rel
µν = −2√

−g
δSM
δgµν , allows one to

construct currents Jµrel = Tµνrel ξν that are covariantly conserved ∇µJµrel = 0. This conservation is
exactly due to the diffeomorphism Ward identity of the relativistic matter Lagrangian.

Some work has already been done in the direction of conserved currents related to Carrollian
Killing vectors [43]. However, the authors of [43] work in the adapted coordinates (2.80) and
prove the conservation by a limit of the relativistic formulae. We will take an intrinsic and
fully covariant approach and mirror the relativistic derivation for a theory coupled to Carroll
background. That is, we define a current

Jµ = Tµνξ
ν , (2.99)

where Tµν is the energy-momentum tensor (2.85) and ξµ is some vector field to be determined.
As we do not have a connection, we have to formulate the conservation criteria as3 ∂µ(eJµ) = 0.
We can then straightforwardly calculate

∂µ(eJµ) = ∂µ(eTµν)ξν − e(vµT vν + hµρT hρν)∂µξ
ν

= eT vν (ξµ∂µv
ν − vµ∂µξν) +

e

2
T hµν(ξρ∂ρh

µν − 2hµρ∂ρξ
ν)

= eT vµLξvµ +
e

2
T hµνLξhµν , (2.100)

where we in the second equality used the diffeomorphism Ward identity (2.91). A sufficient
condition for the conservation of Jµ is that the two terms of (2.100) vanish individually. For
the second term of (2.100) to be zero it is sufficient that the spatial-spatial projection of Lξhµν
vanish due to T hµν being purely spatial

hµσhνρLξhσρ = −hµσhσρLξhνρ = −Lξhµν + τµv
ρLξhρν = −Lξhµν − τµhνρLξvρ

!
= 0, (2.101)

where we used the completeness relations (2.47). From (2.100) and (2.101) we see that a sufficient
condition for conservation of Jµ is the “Carrollian Killing equations”

Lξvµ = 0 (2.102a)

Lξhµν = 0. (2.102b)

This is a natural definition of the infinitesimal isometries as the Carroll geometry is defined by
vµ and hµν . The “inverse vielbeine” τµ and hµν do not contribute more information, only gauge,
and consequently do not have to be preserved under Carroll isometries.

One can take the idea of Carrollian Killing vectors further and relax the conditions (2.102a)-
(2.102b) to include conformal rescalings. This idea is pursued in e.g. [24] where the authors
show that under certain conditions the algebra of the conformal Carrollian Killing vectors is
isomorphic to the BMS algebra. This supplies further evidence of the connection between
Carroll geometry and lightlike infinity of asymptotically flat spacetimes [22, 23].

3This form comes from considering the tensor density dual to a d-form, as described in appendix A. In this
light, ∂µ(eJµ) is an exterior derivative and the conservation criteria is simply demanding the current d-form to be
closed. This is equivalent to being covariantly conserved in the relativistic theory due to

√
−g∇µJµ = ∂µ(

√
−gJµ).
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2.4.4 Example of a Carrollian field theory

As an example of the above machinery, let us consider a Carrollian field theory governed by the
action

Sφ =

∫
dd+1x eLφ =

1

2

∫
dd+1x e(vµ∂µφ)2. (2.103)

The action (2.103) is trivially boost invariant as it only couples to e and vµ. We can compute
the EOM using the Euler-Lagrange equation (2.94)

∂µ(evµvν∂νφ) = 0, (2.104)

which for a curved background is not manifestly covariant. As for the diffeomorphism Ward
identity (2.91), it is also possible to write this covariantly upon the introduction of a connection
using (3.28). The metric responses can be computed as

δLφ = eLφ
(
τµδv

µ − 1

2
hµνδh

µν

)
+ evµ∂µφ∂νφδv

ν , (2.105)

from which we can read off the momenta according to (2.79a) and (2.79b)

T vµ = −τµLφ − vν∂νφ∂µφ, T hµν = Lφhµν . (2.106)

Using these, we can form the EMT (2.85)

Tµν = −vµ(−τνLφ − vρ∂ρφ∂νφ)− hµνLφhρν = vµvρ∂ρφ∂νφ− δµνLφ, (2.107)

where we used the completeness relation (2.47). Further, if we go to the flat Carroll structure
(2.92), then we see that the first term of (2.107) becomes the derivative appearing in the canon-
ical EMT (2.93). Hence we have Tµν = τµν for the action (2.103) in the flat limit and the
statement (2.97) holds.

Returning to a general Carroll structure, we can also check the Ward identities. The boost
Ward identity (2.89) is readily seen to hold because T hµν ∼ Lφhµν and is thus annihilated by vµ.
For the diffeomorphism Ward identity (2.91), we need to perform the following computation

∂µ(eTµν) = ∂µ(evµvρ∂ρφ)∂νφ+ evµvρ∂ρφ∂µ∂νφ− ∂ν(eLφ) (2.108)

= evµvρ∂ρφ∂µ∂νv
ρ + eT vρ ∂νφ+

e

2
T hρσ∂νh

ρσ −
∂(eLφ)

∂(∂ρφ)
∂ν∂ρφ

= eT vρ ∂νv
ρ +

e

2
T hρσ∂νh

ρσ.

In the second equality we used the EOM (2.104), and the fact that there are no couplings to the
derivatives of the metric data, so we can write out the spacetime derivative as in (2.96) using
(2.95). The calculation (2.108) shows that the Ward identity (2.91) holds for the field theory
(2.103).
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Chapter 3

Connections on Carroll Structures

In GR one studies Lorentzian structures where the geometry is encoded in a non-degenerate
metric gµν . Hence, it is natural to consider connections that are compatible with this structure
i.e. connections where the metric is parallel

∇ρgµν = 0. (3.1)

The connection resulting from the condition (3.1) is equivalent to that of the gauging procedure of
section 2.2.2 in the sense that the two approaches fix the same components of a general connection
Γρµν . However, (3.1) does not entirely fix the connection and this ambiguity is described by the
torsion T ρµν = 2Γρ[µν], which one is free to specify. In particular, one can choose a unique
metric-compatible and torsionless connection, the Levi-Civita connection, which is the content
of the fundamental theorem of Riemannian geometry.

A Carrollian geometry is described by the pair of tensors (vµ, hµν) and the metricity-condition
is then accordingly

∇ρvµ = 0, (3.2a)

∇ρhµν = 0. (3.2b)

One can then proceed along the lines of Riemannian geometry and try to characterize compatible
connections by their torsion. However, it turns out that the compatibility with the degenerate
Carroll structure implies some “intrinsic torsion” [45] which can not be chosen to vanish. This
also implies that fixing the free or non-intrinsic part of the torsion is not sufficient to fix the
remaining freedom. Finally, the intrinsic torsion can also be used to classify Carroll structures
as it is inherent to the geometry i.e. (vµ, hµν) and does not depend on the choice of connection.

In this chapter, we will in section 3.1 review the characterization of connections by intrinsic
torsion and show how this leads to a classification of Carroll structures. Then we will in section
3.2 introduce a new procedure to fix the free torsion and the ambiguity in the connection which
is left by this choice of torsion. We will thereby single out a Carroll connection analogous to
the Levi-Civita connection. Finally, in section 3.3, we will derive important properties of this
natural Carroll connection.

3.1 Intrinsic torsion of adapted connections

This section is based on [45], though we use a slightly different formalism in order to match the
notation of chapter 2. In section 2.2, we saw how different kinematical or structure groups give
rise to different notions of geometry through a gauging procedure. In particular, connections
associated with a structure group G are adapted in the sense that any tensor left invariant at

– 21 –



3.1. INTRINSIC TORSION OF ADAPTED CONNECTIONS

the level of the group induces a tensor field that is parallel in those connections. One way to
think about intrinsic torsion is exactly as a consequence of these compatibility conditions. In
the following, we are going to review a method of systematically investigating these structures.

In the frame bundle, we saw in section 2.2, that we can compute the torsion 1-form with
Cartan’s first structure equation

T = dθ + [ω ∧ θ], (3.3)

where θ is the co-frame (2.27a). In particular, one can observe that the change in torsion due
to a shift in connection κ = ω′ − ω (κ is sometimes called the contorsion) is

T ′ − T = [κ ∧ θ]. (3.4)

In (3.4) the exterior derivative dropped out and the relation is purely algebraic. Hence, we can
analyze the change in torsion as a map between vector spaces without worrying about the value
of fields at more than one point at a time. More properly, we will deal with g-modules, which
can be thought of as a generalization of a vector space with the scalar multiplication replaced
by an action of the Lie algebra g. In doing this, the structures we identify are automatically
compatible with the group structure and consequently invariant under gauge transformations.

3.1.1 The Spencer differential

To analyze the change in torsions, we define the mapping (3.4) as the so-called Spencer differ-
ential

∂ : Ω(M, g) −→ Ω2(M, g), (3.5)

κ 7−→ [κ ∧ θ],

where we remind ourselves that Ωp(M, g) = Ωp(M)⊗ g are p-forms valued in g. Having defined
the Spencer differential, we can write down the following exact sequence

0 −→ ker ∂ −→ Ω(M, g)
∂−→ Ω2(M, g) −→ coker ∂ −→ 0, (3.6)

with the co-kernel defined as coker ∂ = Ω2(M, g)/ im ∂. These spaces can be interpreted as
follows:

• ker ∂: The kernel of the Spencer differential represents the components of the contorsion κ
that do not affect the torsion. In particular, it can be seen as the obstruction to defining
a unique connection from torsion constraints.

• Ω(M, g): The space of contorsions i.e. the difference between two adapted connections.

• Ω2(M, g): The torsion or the change in torsion lives in this space.

• coker ∂: The co-kernel measures the part of the domain (i.e. the torsion) that is not
altered under a change of connection. Hence, this can be interpreted as an “intrinsic
torsion” that follows from the G-structure regardless of the choice of connection. Further,
one can consider what subspace of the co-kernel the torsion of a specific realization falls
in and thereby classify the G-structure by its intrinsic torsion.

One may wonder why the above considerations play no role in GR and Riemannian geometry.
The reason is that for the structure group of pseudo-Riemannian geometry G = SO(d, 1) the
Spencer differential turns out to be an isomorphism, and consequently ker ∂ ∼= coker ∂ ∼= 0.
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Using the language from above, there is no intrinsic torsion (coker ∂ ∼= 0) nor any obstruction to
defining the connection by fixing the torsion (ker ∂ ∼= 0). Concretely, this can be interpreted as
the explanation of why a Riemann-Cartan connection, i.e any connection satisfying (3.1), can
be written as

Γρµν =
1

2
gρλ(∂µgλν + ∂νgµλ − ∂λgµν) +

1

2
gρλ(gµσT

σ
λν + gνσT

σ
λµ + gλσT

σ
µν), (3.7)

with the torsion given by T ρµν = Γρ[µν]. It is clear that the connection (3.7) is fixed by the
torsion and vice versa, which is the practical consequence of the Spencer differential being an
isomorphism. As any connection can be modified by an appropriate choice of contorsion κ to
have vanishing torsion, we can define a unique torsionless connection, the Levi-Civita connection.
Hence, the above analysis is equivalent to the fundamental theorem of Riemannian geometry.

3.1.2 Intrinsic torsion of Carroll structures

In order to carry out the procedure described in section 3.1.1, we first need to compute the action
of the Spencer differential ∂ in the case of the Carroll structure. This is simply done using its
definition (3.5) and the Carroll algebra’s (2.5a)-(2.5d) action on a local basis of Ω(M, g)

∂(τ ⊗ Ca) = [τ ⊗ Ca ∧ θ] = τ ∧ eb[Ca, Pb] = δabe
b ∧ τ ⊗H, (3.8a)

∂(ea ⊗ Cb) = δbce
c ∧ ea ⊗H, (3.8b)

∂(τ ⊗ Jab) = 2δc[be
c ∧ τ ⊗ Pa], (3.8c)

∂(ea ⊗ Jbc) = 2δd[ce
d ∧ ea ⊗ Pb]. (3.8d)

By inspection of (3.8a)-(3.8d), one can conclude that the kernel is given by

ker ∂ = 〈δc(aec ⊗ Cb)〉 , (3.9)

where 〈. . .〉 denotes the span. Further, we can also check that (3.9) is a g-submodule that is
stable under gauge transformations. The action of a gauge transformation Σ, as defined in
(2.28), on ea is given by (2.31b). For the transformation of Ca, we need to be careful because
under the gauge transform we here want to interpret ea and Ca as a vector and a co-vector,
respectively. However, the action on ea was defined in (2.29) as the adjoint to the action on Pa
rather than the inverse. Thus, to get the correct transformation we need to use δCa = [Ca,−Σ],
which then yields the following change in (3.9)

δ(e(a ⊗ Cb)) = −λc(aec ⊗ Cb) − λc(aeb) ⊗ Cc = −(λ(c
aδ
d)
b + λ(c

bδ
d)
a )ec ⊗ Cd ∈ ker ∂. (3.10)

From the computation (3.10), we see that a gauge transformation stays in the kernel. Likewise,
we can consider the RHS of (3.8a)-(3.8d) the image of the Spencer differential and deduce that
the co-kernel is spanned by

coker ∂ = 〈[(δc(aτ ∧ ec ⊗ Pb)]〉 , (3.11)

where [. . .] is the equivalence class modulo the image im ∂. Strictly speaking, the symmetrization
in (3.11) is not necessary to write explicitly, as the anti-symmetric part is what we quotient by. It
may seem that the co-kernel is missing the symmetric complement of (3.8d), but that would be a
rank 3 tensor symmetric in the two first indices and anti-symmetric in the first and third indices,
and such a tensor must vanish. The co-kernel can also be shown to be invariant under gauge
transformations. The above analysis shows that Carroll structures unlike Lorentzian structures
can contain intrinsic torsion.
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To further characterize the space coker ∂, we can consider the map Φ defined by

Φ : coker ∂ −→ 〈e(a ⊗ eb)〉 , (3.12)

[τ ∧ ea ⊗ Pb] 7−→ e(a ⊗ ec)δcb,

and extend it by linearity. The map Φ can be shown to be a G-equivariant isomorphism i.e.
coker ∂ ∼= 〈e(a ⊗ eb)〉. In particular, 〈e(a ⊗ eb)〉 is the space of spatial, symmetric (0,2) tensors
which transform only under the subgroup SO(d). Thus, it breaks into the usual traceless and
trace irreducible submodules

coker ∂ ∼= C1 ⊕ C2, with
C1 = 〈e(a ⊗ eb) − 1

dδcde
c ⊗ ed〉 ,

C2 = 〈δabea ⊗ eb〉 .
(3.13)

As we have a split into two irreducible submodules, we get a total of 22 = 4 classes of intrinsic
torsion.

To figure out which class a specific Carrollian geometry falls in, we simply apply the map Φ
to the equivalence class of the torsion (2.32) [T ]

Φ([T ]) = Φ([(dea − eb ∧ Ωba)⊗ Pa]) = Φ([dea ⊗ Pa])
= Φ([1

2de
a(ϑb, ϑc)e

b ∧ ec ⊗ Pa − dea(v, ϑb)τ ∧ eb ⊗ Pa])
= −de(a(v, ϑb))e

a ⊗ eb. (3.14)

For the first equality, we used that the (. . .) ⊗ H is modded out, because all 2-forms tensored
with H are in the image (3.8a)-(3.8b). In the second equality, we utilized that the anti-symmetry
in the flat indices of Ωab puts in the kernel of Φ, and finally we expand the 2-form in the basis
(τµ, e

a
µ). The object (3.14) does not seem to have a direct relation to any of the invariant Carroll

tensors presented in section 2.2.4. However, recalling that the extrinsic curvature Kµν is spatial,
we can compute its components in the frame bundle as

ϑµaϑ
ν
bKµν = −ϑµ(aLveb)µ = −ϑµ(av

ν(deb))νµ = −de(a(v, ϑb)), (3.15)

where we used Cartan’s magic formula. Hence, we have shown that the extrinsic curvature
exactly captures the intrinsic torsion of the Carroll structure. In this light, we can state the four
classes of intrinsic torsion in terms of Kµν :

(C0) Kµν = 0 (the trivial submodule),

(C1) K = hµνKµν = 0 (traceless submodule),

(C2) Kµν = fhµν (f 6= 0, trace submodule),

(C3) None of the above, (full co-kernel).

In the original paper [45], a similar analysis is performed of Newton-Cartan or Galilean struc-
tures, which are defined in terms of the gauge invariant tensors (τµ, h

µν) (note the duality to
Carroll (vµ, hµν)). This analysis shows that the intrinsic torsion is captured by dτ and a classi-
fication by the intrinsic torsion works out as the well-known classes:

(G0) dτ = 0, torsionless Newton–Cartan geometry (NC),

(G1) dτ 6= 0 and dτ ∧ τ = 0, twistless torsional Newton–Cartan geometry (TTNC),

(G2) None of the above, torsional Newton–Cartan geometry (TNC).
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3.2 Resolving the ambiguity

The goal of this chapter is to find a suitable Carrollian connection whose properties resemble
those of the Levi-Civita connection. The analysis of 3.1 shows that we cannot uniquely single
out a Carroll-compatible connection by considering only the torsion. Also, we can in general not
choose a torsionless connection, as part of the torsion is intrinsic. Thus, we can only hope to set
the “non-intrinsic” torsion to zero. However, there is no way of doing this in a Carroll-invariant
manner, as one cannot define a g-stable complement to the image im ∂ in Ω2(M, g). The space
of torsions does split as a vector space for any choice of basis (vµ, eµa), but the complement will
not be invariant under boosts. On the other hand, it turns out one cannot construct a boost
invariant connection using only the metric data (vµ, τµ, h

µν , hµν) [18], and thus we are anyway
forced to consider connections that transform under boosts.

The first condition for the Carroll analog of the Levi-Civita connection is thus to set the
non-intrinsic torsion to zero. This is implemented by setting the projection onto the vector
space complement of im ∂ to zero. This connection can hence be regarded as a “minimal torsion
connection”. The remaining degrees of freedom in the connection i.e. (3.9) is still undetermined
after the choice of torsion. This can be fixed by mimicking the property that the Levi-Civita
connection is also compatible with the inverse Lorentzian metric, i.e. ∇ρgµν = 0. In the Carroll
case, the remaining freedom is not enough to ensure full compatibility, but we can improve the
compatibility with the inverse vielbein τµ. That is, we can decompose ∇µτν into the subspaces
defined by the spatial and temporal projectors (2.49) and index symmetries and then exhaust
the remaining freedom by setting projections to zero. It may seem like an arbitrary choice that
we choose to improve the derivative of τµ rather than the derivative of hµν , but either choice is
equivalent. To see this, we note the identities

∇ρhµν = 2v(µhν)σ∇ρτσ, ∇ρτµ = −hµστλ∇ρhσλ, (3.16)

which hold for any Carroll-compatible connection. This shows that knowing the derivative of
τµ is the same as knowing the derivative of hµν . Consequently, improving the one derivative
improves the other equally.

3.2.1 Solving for the connection

To better understand where each part of the torsion falls, we can write out all projections of the
torsion (2.32)

T (H)(v, ϑa) = dτ(v, ϑa)− Ωa(v), (3.17a)

T (H)(ϑa, ϑb) = dτ(ϑa, ϑb) + 2Ω[a(ϑb]), (3.17b)

Ta(P )(v, ϑb) = dea(v, ϑb)− Ωab(v), (3.17c)

Ta(P )(ϑb, ϑc) = dea(ϑb, ϑc) + 2Ωa[b(ϑc]), (3.17d)

where T (H) and Ta(P ) are defined in (2.34a) and ϑa = eµa∂µ. Note that the symmetric part of
(3.17c) is exactly the intrinsic torsion as computed in (3.14). Setting the non-intrinsic torsion to
zero then amounts to demanding that (3.17a), (3.17b), (3.17d) along with the anti-symmetric
part of (3.17c) vanish

T (H)(v, ϑa) = 0, T (H)(ϑa, ϑb) = 0, T[a(P )(v, ϑb]) = 0, Ta(P )(ϑb, ϑc) = 0. (3.18)
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These equations allow us to solve for the connection in terms of derivatives of the co-frame and
Ω(a(ϑb))

Ωab(ϑc) = −1

2
(dea(ϑb, ϑc) + deb(ϑc, ϑa)− dec(ϑa, ϑb)), (3.19a)

Ωab(v) = −de[a(ϑb], v), (3.19b)

Ωa(ϑb) = −1

2
dτ(ϑa, ϑb) + Ω(a(ϑb)), (3.19c)

Ωa(v) = dτ(v, ϑa). (3.19d)

We note here that the remaining ambiguity Ω(a(ϑb)) is precisely the part of the connection that
lies in the kernel of the Spencer differential (3.9).

As discussed, we want to fix this residual freedom by considering the derivative of τµ which
can be computed using the connection coefficients (2.58)

∇µτν = ∂µτν − Γρµντρ = Ωµae
a
ν . (3.20)

For completeness, we also compute the derivative in the frame bundle where τµ is simply rep-
resented by −η cf. (2.40). The covariant derivative can then be computed in the frame bundle
using (2.41)

D(−η) = Ωa ⊗ γa, (3.21)

which agrees with (3.20). From both (3.20) and (3.21) it is clear that setting the symmetric part
of (3.19c) to zero improves compatibility as it only leaves the anti-symmetric part of (3.21).
With this choice, we can solve for the remaining part of the connection

Ω(a(ϑb)) = 0 ⇒ Ωa(ϑb) = −1

2
dτ(ϑa, ϑb). (3.22)

The projection (3.22) together with (3.19a)-(3.19d) fixes all the components of the connection.
As we will primarily work in the second-order formalism, we further derive the corresponding
affine connection using (2.58)

Γ̃ρµν ≡ −vρ∂(µτν) + hρλ(∂(µhν)λ −
1

2
∂λhµν)−Kρ

µτν + vρτ(µτν)λv
λ, (3.23)

where we defined τµν = 2∂[µτν]. We denote this special minimal torsion connection by Γ̃ and

the corresponding covariant derivative as ∇̃.
Alternatively, the derivation of (3.23) can be done entirely in the second-order formalism,

which consists of the above steps but without reference to the natural Carrollian structure. In
particular, one can write down the most general Carroll compatible connection i.e. satisfying
(3.2a) and (3.2b), see [18]. Then one can set as many projections of the torsion to zero as possible
which will leave only the intrinsic torsion. Finally, one can compute the derivative ∇µτν and
use the remaining freedom to improve the compatibility as above. This procedure will yield the
same connection as derived through the first-order formalism (3.23). The Γ̃-connection is also
considered as a natural analog of the Levi-Civita connection in Carrollian geometry in [40] (see
footnote 76).

A final note on this procedure of minimizing the torsion and subsequently improving com-
patibility with the inverse metric data: If one applies it to a Galilean structure then the resulting
connection coincides with the one found to be convenient in [29]. This connection is also de-
scribed in [46] as a natural Levi-Civita analog for Galilean structures.
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3.3 Properties of the Γ̃-connection

The connection (3.23) by definition satisfies the Carrollian compatibility conditions (3.2a) and
(3.2b) and to ease future computations we will in this section derive a number of relations for
the Γ̃-connection. As mentioned, one cannot write down a boost-invariant connection using
only the vielbeine and hence the choice of connection (3.23) must transform. Specifically, the
Γ̃-connection changes under a boost transformation λµ according to

δΓ̃ρµν = vρτµλ
σKσν + λρKµν −Kρ

µλν − vρ(∇̃(µλν) − λ(µτν)σv
σ + vστ(µ∇̃|σ|λν)). (3.24)

3.3.1 Covariant derivatives of extended metric data

A commonly occurring object is the inverse vielbein τµ, for which we can compute the covariant
derivative by direct computation

∇̃µτν = ∂µτν − Γ̃λµντρ = ∂µτν − ∂(µτν) + τ(µτν)λv
λ

=
1

2
τµν − vρτρ(µτν). (3.25)

Alternatively, we could have found the expression from its first-order form (3.21). To see that
these approaches are equivalent we can compute the projections of (3.25)

vµeνa∇̃µτν = vµeνaτµν , (3.26a)

eµae
ν
b ∇̃µτν =

1

2
eµae

ν
b τµν , (3.26b)

which can be seen to be in agreement with (3.19d) and (3.22). Using either approach we can
further compute the covariant derivative of hµν and its contraction

∇̃ρhµν = v(µhν)σ(δγρ − τρvγ)τγσ, (3.27a)

∇̃µhµν = hνσvρτρσ. (3.27b)

Finally, in deriving equations of motion (see sections 4.4-4.5), we need to integrate by parts which
relies on Stokes’ theorem, and so we need to relate the Γ̃-derivative to the exterior derivative in
the sense of appendix A, in particular (A.7). For a vector field Xµ the relevant identity is

∂µ(eXµ) = e(∇̃µXµ + τµX
µK), (3.28)

where, in the language of appendix A, eXµ is dual to a d-form. We can also compute the identity
for a tensor Q[µν] related to a (d− 1)-form

∂ν(eQ[µν]) = e(∇̃νQ[µν] + τσK
µ
ρQ

[σρ] +KτνQ
[µν]). (3.29)

3.3.2 Torsion and curvature

The torsion T ρµν and Riemann curvature tensor Rµνσ
ρ is as usual defined through the relation

[∇̃µ, ∇̃ν ]Xρ = −R̃µνσρXσ − T̃ σµν∇̃σXρ (3.30)

for any vector field Xµ. These can be solved to obtain the explicit formulas

T̃ ρµν = 2Γ̃ρ[µν], (3.31)

R̃µνσ
ρ = −∂µΓ̃ρνσ + ∂νΓ̃ρµσ − Γ̃ρµλΓ̃λνσ + Γ̃ρνλΓ̃λµσ. (3.32)
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The definitions (3.31) and (3.32) are equivalent to calculating the torsion and curvature in the
frame bundle and then using the relations (2.61a) and (2.61b) to translate the algebra valued 2-
forms to tensors in the tangent bundle. From the connection coefficients (3.23) we can compute
the torsion

T̃ ρµν = 2Γ̃ρ[µν] = 2τ[µKν]
ρ. (3.33)

The second-order form of the torsion (3.33) highlights the minimal torsion feature of the con-
nection, as the torsion is exactly given by the intrinsic torsion as encoded by Kµν .

One cannot write out the full curvature tensor in a manifestly covariant manner in terms of
vielbeine, but it is worth noting a few consequences of the compatibility conditions (3.2a) and
(3.2b). In particular, we find the following relations using the compatibility conditions and the
definition (3.30)

R̃µνσ
ρvσ = 0, (3.34a)

R̃µνσ
λhλρ + R̃µνρ

λhλσ = 0. (3.34b)

Alternatively, these properties can be read off directly from the frame bundle formulation (2.61b).
If we further define the Ricci tensor as the contraction

R̃µν ≡ R̃µσνσ, (3.35)

we immediately see that

R̃µνv
ν = 0. (3.36)

It is important to note that the Ricci tensor is not a symmetric tensor as it is in the case for
the Levi-Civita connection. Also for the Ricci tensor we cannot covariantly write down the full
tensor in terms of vielbeine, but we can explicitly compute the anti-symmetric part using the
first Bianchi identity

R̃[µνσ]
ρ = T̃ λ[µν T̃

ρ
σ]λ − ∇̃[µT̃

ρ
νσ]. (3.37)

Contracting ν and ρ of (3.37) yields

R̃[µν] =
1

2
(R̃µνσ

σ + T̃ λµν T̃
σ
λσ +∇µT̃ λνλ −∇ν T̃ λµλ +∇λT̃ λµν). (3.38)

Combining (3.34a) and (3.34b) shows that the contraction R̃µνσ
σ vanishes, and we obtain the

following expression for the anti-symmetric part of the Ricci tensor

R̃[µν] = ∇̃[µ(τν]K) + ∇̃ρ(τ[µK
ρ
ν]), (3.39)

where we used that T̃ ρµρ = Kτµ.
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Chapter 4

Ultra-Relativistic Expansion of the
Einstein-Hilbert Action

One of the greatest accomplishments of modern physics is understanding how matter sources
curvature in the geometry of spacetime through Einstein’s theory of General Relativity. The
content of Einstein’s theory is elegantly captured by the Einstein-Hilbert (EH) action

SEH =
c3

16πGN

∫
dd+1x

√
−gR. (4.1)

A natural question to ask is how Newtonian gravity emerges as a non-relativistic limit of GR and
in particular if it can be extracted directly from (4.1). Much work has been done on geometrizing
Newtonian gravity since Cartan originally formulated the framework of Newton-Cartan geometry
in 1923 [1, 2]. Recently, in the work [29], the authors derived an action principle for Newtonian
gravity directly from a careful large c expansion of the EH action (4.1).

In this chapter, we will investigate the converse ultra-relativistic (UR) small c expansion
to obtain an action for a Carrollian theory of gravity order by order in c2. The direction of
ultra-relativistic gravity as a strict limit of GR has already been pursued at both the level of
the EOM [32] and using a Hamiltonian approach [33]. The action derived from the latter will
turn out to agree with the leading-order action derived in this thesis. A Carrollian limit of the
Palatini action has also been considered in [31], which is distinct from the limit that we will
consider. This is due to the authors of [31] choosing a scaling in c of the spin connection that
appears natural in the first-order formalism. We will instead work in the second-order formalism
and derive the scaling in c of the connection from the vielbeine and metric.

The chapter is structured as follows: In section 4.1 we set up the framework for the expansion
and demonstrate how Carroll metric data can be obtained as a limit of the relativistic metric
data. We shall in section 4.2 rewrite the action (4.1) in terms of more convenient variables,
before computing the action and EOM at leading order (LO) and next-to-leading order (NLO)
in section 4.4 and 4.5, respectively.

4.1 Ultra-relativistic expansion of the vielbeine

We want to mimic the methods of [29], where the authors expand the EH action in a Galilean
limit, i.e. c → ∞. In particular, they do this by reinstating factors of c and carefully choosing
the scaling in c of every object occurring in the EH action (4.1). Having primed the EH action
in this way, the authors can compute the Galilean action order by order in c−2, which is a
self-consistent sub-sector of theory [29].
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We will, instead of taking c−1 → 0, which corresponds to a non-relativistic limit, consider
c → 0. Specifically, we will be expanding in powers of c2 rather than powers of c. This can be
done consistently as it turns out only even powers appear in the EH action when fully written
out. To clarify what is meant by expanding in a dimensionful constant c, we can redefine
c ≡

√
σĉ, where ĉ = 299 792 458 m s−1 is the physical speed of light and σ is a dimensionless

expansion parameter. We can then for simplicity choose to work in units with ĉ = 1, such that
we effectively expand in σ = c2 but in a mathematically meaningful way.

For this ultra-relativistic expansion to be possible, we need to assume that up to an overall
power of c, which we will factor out, the relativistic fields are analytic in σ = c2

φI = φI(0) + σφI(2) + σ2φI(4) +O(σ3), (4.2)

where φI represent all the dynamical fields in our theory and φI(n) are their expansion coefficients.
This analyticity assumption also implies that equivalent relativistic spacetimes can become in-
equivalent in the c → 0 limit, if they are related by coordinate-transformations not analytic in
c2. For a detailed discussion of the analogous phenomena in the setting of the c→∞ limit, see
[29].

4.1.1 Vielbeine and tangent space transformation

We consider a Lorentzian spacetime modeled by a (d + 1)-manifold equipped with a pseudo-
Riemannian metric, which can be described in terms of the relativistic vielbeine EAµ . As in
chapter 2, the curved indices take values µ = 0, . . . , d and the upper case flat indices A = 0, . . . , d.
If we restrict to only the spatial indices, then we write lower case a = 1, . . . d.

By considering the light-cone structure of the tangent space, one can conclude that the
timelike vielbein must scale differently in c as compared to the spacelike. Thus, we may also
assume that the vielbeine and their inverses can be written as

EAµ = cTµδ
A
0 + EaµδAa , (4.3a)

EµA = −c−1Tµδ0
A + Eµa δaA, (4.3b)

to reflect this inhomogeneous scaling in c. We will dub the variables Tµ, Eaµ, Tµ and Eµa “Pre-
Ultra-Relativistic” (PUR) variables in direct analogy to the Pre-Non-Relativistic vielbeine of
[29]. The PUR variables are a convenient starting point for our c → 0 expansion, as we have
already singled out the time and space components in anticipation that they will decouple in the
limit. As a consequence of the relativistic completeness relations EAµE

µ
B = δAB and EAµE

ν
A = δνµ,

the PUR vielbeine satisfy completeness relations analogous to (2.36)

TµTµ = −1, TµEaµ = 0, TµEµa = 0, EaµE
µ
b = δab . (4.4)

Under local Lorentz transformations, the relativistic vielbeine transform as δEAµ = ΛABE
B
µ .

We can decompose ΛAB into temporal and spatial projections and choose the scaling of each
component to be

ΛAB = cΛbδ
A
0 δ

b
B + cΛaδAa δ

0
B + Λabδ

A
a δ

b
B, (4.5)

with Λab = −Λba. In the parameterization (4.5), both the boost- (Λa) and rotation-parameters
(Λab) are taken to be order c0. Considering (2.1), the factors of c in the transformation (4.5) may
seem strange. However, they are chosen such that new factors, appearing due to transformation,
in (4.3a)-(4.3b) are sub-leading in a c→ 0 expansion. Alternately, this can be seen as a kind of
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renormalization, because the scaling (2.1) diverges in the c → 0 limit. Written out for each of
the decomposed vielbeine, we find the transformations

δTµ = ΛbEbµ, (4.6a)

δTµ = c2ΛaEµa , (4.6b)

δEaµ = ΛabEbµ + c2ΛaTµ, , (4.6c)

δEµa = −ΛbaEµb + ΛaT
µ. (4.6d)

From the PUR variables, we can construct a degenerate spatial metric Πµν and its projective
inverse as

Πµν = δabEaµEbν , (4.7a)

Πµν = δabEµa Eνb , (4.7b)

which in the c → 0 limit will become hµν and hµν , respectively. From (4.4) we can deduce
completeness relations for the spatial metrics that mirror the relations (2.47)

TµTν = −1, TµΠµν = 0, TµΠµν = 0, ΠµρΠ
ρν − TµT ν = δνµ. (4.8)

Further, the transformation laws (4.6c) and (4.6d) imply the following transformations for the
spatial metric

δΠµν = 2c2ΛaT(µEaν), (4.9a)

δΠµν = 2ΛaT (µEν)
a . (4.9b)

4.1.2 Expanding the PUR variables

Having established the relativistic PUR variables, we can use the analyticity assumption (4.2)
to write the expansion of each vielbein. We choose the contra-variant vielbeine (Tµ, Eµa ) to
be defining in the sense that the sub-leading orders of the co-variant vielbeine (Tµ, Eaµ) can be
expressed in terms of the sub-leading contra-variant vielbeine. With this setup, the expansions
of the vielbeine become

Tµ = vµ + c2Mµ +O(c4), (4.10a)

Tµ = τµ + c2(τµτνM
ν − eaµτνπνa) +O(c4), (4.10b)

Eµa = eµa + c2πµa +O(c4), (4.10c)

Eaµ = eaµ + c2(τµM
νeaν − ebµeaνπνb ) +O(c4), (4.10d)

where we used the completeness relation (4.4) to solve for the sub-leading part of the covariant
vielbeine. We can likewise expand the parameters of the Lorentz transform (4.5) in orders of c2

Λa = λa + c2ηa +O(c4), (4.11a)

Λab = λab + c2σab +O(c4). (4.11b)

Using this expansion, we can derive the transformation rules for each of the expanded vielbeine.
As an example, we consider the transformation of Tµ

δTµ = c2ΛaEµa = c2λaeµa +O(c4), (4.12)
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which can be interpreted as δvµ = 0 and δMµ = λaeµa . Repeating this for the other leading
order (LO) vielbeine yields

δvµ = 0, (4.13a)

δτµ = λae
a
µ (4.13b)

δeµa = −λbaeµb + λav
µ, (4.13c)

δeaµ = λabe
b
µ, (4.13d)

which coincides with the transformation rules derived in the gauging procedure (2.31a)-(2.31b)
and (2.38a)-(2.38b). Similarly, we also calculate the transformations for the NLO fields

δMµ = λaeµa , (4.14a)

δπµa = −λbaπµb − σ
b
ae
µ
b + λaM

µ + ηav
ν , (4.14b)

which do not have counter-parts in chapter 2, because there we only considered a strict c → 0
limit.

We can further compute the corresponding c2-expansion for the composite objects Πµν and
Πµν . Specifically, we find

Πµν = hµν + c2Φµν +O(c4), (4.15a)

Πµν = hµν + 2c2δabe
a
(µ(τν)M

ρeaρ − ecν)e
b
ρπ

ρ
c ) +O(c4), (4.15b)

where we defined the sub-leading part of the inverse spatial metric

Φµν ≡ δab(eµaπνa + eνaπ
µ
b ). (4.16)

The spatial metric also transforms under Lorentz transformation (4.11a)-(4.11b) and the rules
are given by

δhµν = 2v(µeν)
a λ

a, (4.17a)

δhµν = 0. (4.17b)

Similarly, one can also compute the sub-leading part of the spatial metrics (4.15a)-(4.15b).
The above procedure gives an alternate way, compared to section 2.2, of deriving geometric

objects associated with the Carroll limit. Further, it enables one to consider the sub-leading
structure of the limit. As a final note, one could also have included diffeomorphisms in the
discussion i.e. the PUR vielbeine would transform as δEAµ = LΞE

B
µ + ΛABE

B
µ with Ξµ being

a diffeomorphism generating vector field. The vector field Ξµ is also expanded as Ξµ = ξµ +
c2ζµ + O(c4), and Lξ-derivative should then be understood as usual Lie derivatives, while the
Lζ-derivatives appearing at sub-leading order can be interpreted as a gauge transformation [29].

4.2 Pre-Ultra-Relativistic parameterization

In this section, we will recast the usual geometric objects of GR into a form that reflects the
decoupling of space and time using the PUR parameterization. Specifically, we aim to reexpress
the EH action in PUR variables, and thus we need to work through all the geometric objects
that go into (4.1). In doing this, we retain the full content of the relativistic theory, but by re-
expressing the theory using explicit factors of c, we set up the action for the subsequent c→ 0
expansion. This follows the same approach as the Pre-Non-Relativistic parameterization of [29],
and in many cases the below results are equivalent up to the fact that the counting is reversed
in going between c2 ↔ c−2.
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4.2.1 Metric

As we will be working in the second-order formalism, the onset of this PUR parameterization is
the metric and inverse metric, which are constructed from (4.3a)-(4.3b)

gµν ≡ ηABEAµEBν = −c2TµTν + Πµν , (4.18a)

gµν ≡ ηABEµAE
ν
B = −c−2TµT ν + Πµν . (4.18b)

The metric satisfies the usual completeness relations gµρgρν = δµν due to (4.4). Another object,
one can construct directly from the metric is its determinant g, which we can write out in PUR
variables as

g = det(gµν) = det(−c2TµTν + Πµν) = −c2 det(TµTν + Πµν), (4.19)

where we were able to pull out the −c2 using the matrix determinant lemma, relying on the fact
that det(Πµν) = 0. This leads us to define the density

E ≡
√

det(TµTν + Πµν), (4.20)

whose c→ 0 limit coincides with e, as defined in (2.50). The definition (4.20) allows us to write
the usual square root metric determinant as

√
−g = cE, (4.21)

thereby transitioning to PUR variables and explicitly getting the scaling in c.

4.2.2 Levi-Civita connection

The conventional connection of GR is the Levi-Civita connection. However, its scaling in c is
not clear, and we will indeed see that it contains many different orders of c. Furthermore, once
we start expanding, the natural structure will be Carrollian rather than the original Lorentzian
structure. Hence, it is advantageous to choose a Carroll-compatible connection (realized on the
PUR variables) that satisfies (3.2a) and (3.2b). This is accomplished by splitting the original
connection coefficient into a new Carrollian connection coefficient and a tensorial shift. In the
following, we will write out the Levi-Civita connection in explicit orders of c and shift it such
that we can write covariant derivatives and curvatures in terms of a connection of the type
(3.23).

The Levi-Civita connection associated with the metric gµν is given by the usual connection
coefficients

Γρµν =
1

2
gρλ(∂µgλν + ∂νgµλ − ∂λgµν). (4.22)

Writing out (4.22) in terms of the PUR variables and keeping track of the factors of c, one finds
an expansion of the kind

Γρµν = c−2
(−2)

Cρµν +
(0)

Cρµν + c2
(2)

Cρµν (4.23)

with the various orders given by

(−2)

Cρµν =
1

2
T ρLTΠµν , (4.24a)

(0)

Cρµν = −T ρ∂(µTν) − T ρT(µLTTν) + Πρλ(∂(µΠν)λ − 1
2∂λΠµν), (4.24b)

(2)

Cρµν = Πρλ(Tµ∂[λTν] + Tν∂[λTµ]). (4.24c)
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Note that only the order c0 part
(0)

Cρµν transforms as connection coefficients under a diffeomor-
phism ξµ i.e.

δξ
(0)

Cρµν = ∂µ∂νξ
ρ + ξσ∂σ

(0)

Cρµν +
(0)

Cρσν∂µξ
σ +

(0)

Cρµσ∂νξ
σ −

(0)

Cσµν∂σξ
ρ, (4.25)

while the remaining terms transform tensorially. To make the connection to the minimal torsion
connection Γ̃ of chapter 3, we split the order c0 part of the Levi-Civita connection as

(0)

Cρµν = C̃ρµν +
(0)

Sρµν , (4.26)

where the tensorial shift
(0)

Sρµν is given by

(0)

Sρµν ≡ −
1

2
ΠρλTνLTΠµλ. (4.27)

The shift
(0)

Sρµν is chosen such that the connection coefficients C̃ρµν are the Γ̃-connection (3.23) real-
ized on the PUR variables (Tµ, Tµ,Πµν ,Π

µν) rather than the LO Carrolian variables (vµ, τµ, hµν , h
µν),

as in chapter 3. Concretely, the connection takes the form

C̃ρµν = −T ρ∂(µTν) + Πρλ(∂(µΠν)λ −
1

2
∂λΠµν) +

1

2
ΠρλTνLTΠµλ − T ρT(µLTTν), (4.28)

and importantly the limit works out to be the Carrollian connection i.e.

C̃ρµν

∣∣∣
σ=0

= Γ̃ρµν . (4.29)

Also, we note that all the properties presented in section 3.3 for the Γ̃-connection hold for the
C̃-connection when the LO variables are swapped for the PUR variables.

4.2.3 Ricci tensor

The Ricci tensor is given by the contraction of the Riemann tensor Rµν ≡ Rµσνσ, which in terms
of the connection coefficients take the form

Rµν = −∂µΓρρν + ∂ρΓ
ρ
µν − ΓρµλΓλρν + ΓρρλΓλµν . (4.30)

We then follow the same procedure as for the Levi-Civita connection and write out the explicit
orders of c as

Rµν = c−4
(−4)

Rµν + c−2
(−2)

Rµν +
(0)

Rµν + c2
(2)

Rµν + c4
(4)

Rµν . (4.31)

The expansion naively starts at c−4, but the leading term turns out to vanish, and hence the
expansion starts at c−2. Expanding one finds

(−4)

Rµν = 0, (4.32a)
(−2)

Rµν =
(C̃)

∇ρ
(−2)

Cρµν +
1

4
ΠρσLTΠρσLTΠµν , (4.32b)

(0)

Rµν =
(C̃)

Rµν −
(C̃)

∇µ
(0)

Sρρν +
(C̃)

∇ρ
(0)

Sρµν + 2C̃λ[ρµ]

(0)

Sρλν −
(2)

Cρµλ
(−2)

Cλρν −
(−2)

Cρµλ
(2)

Cλρν , (4.32c)

(2)

Rµν =
(C̃)

∇ρ
(2)

Cρµν , (4.32d)
(4)

Rµν = −TµTνΠρσΠλγ∂[λTσ]∂[ρTγ], (4.32e)
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where
(C̃)

∇µ and
(C̃)

Rµν are the covariant derivative and the Ricci tensor associated with the C̃-
connection, respectively. The relevant projections of the Ricci tensor for the action expansion
are

TµT ν
(−2)

Rµν = 0, (4.33a)

Πµν
(−2)

Rµν = −T ρ∂ρ
(0)

K +
(0)

K2, (4.33b)

TµT ν
(0)

Rµν = TµT ν
(C̃)

Rµν + Tµ∂µ
(0)

K −
(0)

Kµν
(0)

Kµν , (4.33c)

Πµν
(0)

Rµν = Πµν
(C̃)

Rµν , (4.33d)

TµT ν
(2)

Rµν = 2∇̃ρ(TµΠρσ∂[µTσ]), (4.33e)

Πµν
(2)

Rµν = 2ΠµνΠρσ∂[µTρ]∂[νTσ], (4.33f)

TµT ν
(4)

Rµν = ΠµνΠρσ∂[µTρ]∂[νTσ], (4.33g)

Πµν
(4)

Rµν = 0, (4.33h)

where we defined
(0)

Kµν = −1
2LTΠµν such that the LO term in the expansion is the Carroll

extrinsic curvature (2.52) i.e.
(0)

Kµν |σ=0 = Kµν . Furthermore, we note that the term TµT ν
(C̃)

Rµν
in (4.33c) vanishes due to the Carroll compatibility of the C̃-connection, as shown in (3.36).

4.2.4 Ricci scalar

The Ricci scalar is given by the trace of the Ricci tensor with the full inverse metric gµν

R ≡ gµνRµν =

(
− 1

c2
TµT ν + Πµν

)
Rµν . (4.34)

Using the projections of the Ricci tensor (4.33a)-(4.33h), we find that the Ricci scalar can be
written as

R =
1

c2

[
(0)

Kµν
(0)

Kµν −
(0)

K2 − 2E−1∂ρ(ET
ρ

(0)

K)

]
(4.35)

+

[
Πµν

(C̃)

Rµν −
(C̃)

∇ρ(TµΠρσTµσ)

]
+
c2

4
ΠµνΠρσTµρTνσ,

where we defined Tµν = 2∂[µTν]. As we are not concerned in this thesis with boundary terms of
the action (4.1), we can simplify (4.35) by discarding total derivatives using (3.28). In particular,
if we denote equality up to a total derivative by ≈, then we find

ER ≈ E

c2
[

(0)

Kµν
(0)

Kµν −
(0)

K2] + EΠµν
(C̃)

Rµν +
Ec2

4
ΠµνΠρσTµρTνσ. (4.36)

Note that the form (4.36) highlights that the LO EH action in both the Carrollian and Galilean
limits, i.e. the leading term in c2 and c−2, can be written manifestly covariantly without the
added structure of a connection.

4.2.5 Einstein-Hilbert action

We are now in a position to write the full EH action (4.1) using the PUR variables with all
factors of c explicitly accounted for. Specifically, using the decomposition (4.36) of the Ricci
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scalar and remembering that the covariant measure (4.21) carries an extra factor of c, we find
that the Lagrangian density of the EH action can be written as

LEH =
c4

16πGN
ER

=
c2

16πGN
E[

(0)

Kµν
(0)

Kµν −
(0)

K2] +
c4

16πGN
EΠµν

(C̃)

Rµν +
c6

64πGN
EΠµνΠρσTµρTνσ. (4.37)

From (4.37) it is apparent that the LO Carroll action starts at order c2. This result is also
consistent with the LO Galilean expansion found in [29] starting at order c6.

4.3 Expanding the Einstein-Hilbert and matter action

Having determined the Lagrangian in terms of PUR variables, we can now turn to the actual
expansion of the theory, as described in appendix B. If we factor out the pre-leading factors of
c, we obtain the following expansion

LEH = c2(
(2)

LLO + σ
(4)

LNLO +O(σ2)). (4.38)

The next step is then to compute the corresponding EOM at each level of the expansion. We
can define the responses to the variations of vµ and hµν as

(2n+2)

Gvµ ≡ 8πGNe
−1 δ

(2n+2)

LNnLO

δvµ
, (4.39a)

(2n+2)

Ghµν ≡ 16πGNe
−1 δ

(2n+2)

LNnLO

δhµν
, (4.39b)

where δ
δvµ is the Euler-Lagrange derivative with respect to vµ and similarly for hµν . We could

of course analogously define the EOM for the sub-leading fields Mµ and Φµν , but this thesis
will only deal with the EH action to NLO and hence, as explained in appendix B, they will only
reproduce already known LO equations.

We can also extend the theory by including matter, which we implement by adding a corre-
sponding term to the Lagrangian

L = LEH + Lmat. (4.40)

We assume that the matter Lagrangian has M pre-leading orders of c

Lmat = cM (
(M)

Lmat,LO + σ
(M+2)

Lmat,NLO +O(σ2)). (4.41)

With this, we can define the metric responses order by order in analogy to the Carrollian
momenta (2.79a) and (2.79b)

(2n+M)

T vµ ≡ −e−1 δ
(2n+M)

Lmat,NnLO

δvµ
, (4.42a)

(2n+M)

T hµν ≡ −2e−1 δ
(2n+M)

Lmat,NnLO

δhµν
. (4.42b)

The UR analog of the Einstein equation at each order of the expansion then becomes
(2n)

Gvµ = 8πGN
(2n)

T vµ, (4.43a)
(2n)

Ghµν = 8πGN
(2n)

T hµν . (4.43b)

Again, there are similar matter momenta and Einstein equations for the sub-leading fields Mµ

and Φµν , but as they play no role in this thesis they are omitted.
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4.4 LO theory

The LO Lagrangian is simply obtained by setting σ = 0 in (4.37) and keeping in mind the
pre-leading factor of c2

(2)

LLO =
E

16πGN
[

(0)

Kµν
(0)

Kµν −
(0)

K2]

∣∣∣∣
σ=0

=
e

16πGN
[KµνKµν −K2]. (4.44)

Note that the Lagrangian (4.44) is invariant under boosts, as it consists only of Carroll invariants.
This was of course to be expected, as the EH action (4.1) is invariant under local Lorentz
transformations, and the expansion then inherits this invariance order by order. Another note
is that the action (4.44) has appeared in [33] as the strict c → 0 limit of the EH action, and it
is contained in the effective action derived in [18] by an effective field theory approach.

Using the definitions (4.39a) and (4.39b), we can write the variation of the LO Lagrangian
in terms of the metric responses as

δ
(2)

LLO ≈
e

8πGN

[
(2)

Gvµδv
µ +

1

2

(2)

Ghµνδh
µν

]
, (4.45)

which again only holds up to total derivatives.

4.4.1 Variational calculus

To derive the LO EOM
(2)

Gvµ and
(2)

Ghµν we need a number of variational identities. As an example,
we will explicitly compute δK

δK = δhµνKµν −
1

2
hµν(Lδvhµν + Lvδhµν). (4.46)

The δvµ in the first Lie derivative of (4.46) cannot be factored out in a covariant manner without
a connection and thus shows the necessity of introducing the Γ̃-connection even at LO. Hence,
we want to swap the Lie derivative for the Γ̃-covariant derivative using the following general
identity for any connection

LξXµ1...µk
ν1...ν` = ξλ∇λXµ1...µk

ν1...ν` (4.47)

−∇λξµ1Xλµ2...µk
ν1...ν` − . . .− ξ

σTµ1σλX
λµ2...µk

ν1...ν` − . . .
+∇ν1ξλXµ1...µk

λν2...ν` + . . .+ ξσT λσν1X
µ1...µk

λν2...ν` + . . . .

Applying this identity to (4.46), we obtain

δK = δhµνKµν − hµν(hρ(µ∇̃ν)δv
ρ −Kρ(µτν)δv

ρ +Kµντρδv
ρ) (4.48)

− 1

2
(vρ∇̃ρδhµν − 2K(µ

ρδhν)ρ).

We want the response to δvµ and δhµν , and thus to get rid of the δhµν we invoke the relation

δhµν = −hµσhνρδhσρ + 2hρ(µτν)δv
ρ, (4.49)

which follows from the completeness relations (2.47). Inserting the variation (4.49) into (4.48)
and using that all temporal components are projected out, we find

δK = δhµνKµν − hνρ∇̃νδvρ −Kτρδvρ −Kµνδh
µν − vρτρσδvρ +

1

2
vρhµν∇̃ρδhµν

= −(vντνµ +Kτµ)δvµ − hνµ∇̃νδvµ +
1

2
vρhµν∇̃ρhµν . (4.50)
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To determine the EOM (4.45), we further need the variations

δe = e(τµδv
µ − 1

2hµνδh
µν), (4.51a)

δ(KµνKµν) = −2(vντνρK
ρ
µ +KρσKρστµ)δvµ − 2Kν

µ∇̃νδvµ +Kµνv
ρ∇̃δhµν , (4.51b)

where (4.51a) follows from the variation of a determinant δ detA = detA trA−1δA, and (4.51b)
is derived analogously to (4.50).

4.4.2 LO equations of motion

Putting together the variations (4.50), (4.51a), (4.51b) and using the integration-by-parts iden-
tity (3.28), we arrive at the EOM of the LO theory

(2)

Gvµ = −1

2
τµ(KρσKρσ −K2) + hγλ∇̃λ(Kµγ −Khµγ), (4.52a)

(2)

Ghµν = −1

2
hµν(KρσKρσ −K2) +K(Kµν −Khµν)− vρ∇̃ρ(Kµν −Khµν). (4.52b)

These EOM are of a different nature as compared to the ones obtained at LO in the Galilean
expansion, which turns out to be a geometrical constraint (G1 (TTNC) in the classification of
section 3.1.2) guaranteeing the existence of a foliation of spacetime into time slices [29]. One
clear indication that the EOM (4.52a)-(4.52b) are not only constraints, is the “time”-derivative
vρ∇̃ρ in (4.52b). This will in turn lead to the LO theory being dynamical, which we will explore
further in chapter 6. However, we still expect the equations to be very different from those of
GR as the light-cone is completely collapsed at LO. Hence, spatially separated points should not
be in causal contact and evolve independently. We will confirm this interpretation in section 6.2.

4.4.3 LO Cosmological constant

To include a cosmological constant Λ in Einstein gravity, we simply add the following term to
the EH action (4.1)

SΛ =
c4

16πGN

∫
dd+1xE(−2Λ). (4.53)

As the analysis of section 4.2.5 shows that the EH action starts at order c2 (4.37), we see that
a cosmological constant with no scaling in c will not contribute at LO. Thus, we need to choose
the scaling Λ = c−2Λ̃ for the action (4.53) to enter at LO. The change in LO Lagrangian is then

L̃Λ(σ = 0) = − eΛ̃

8πGN
, (4.54)

where we in L̃Λ have stripped off the pre-leading factor of c2. The correction to the EOM (4.52a)
and (4.52b) are easily determined using (4.51a)

(2)

GvΛ
µ = −1

2
τµ(KρσKρσ −K2 + 2Λ̃) + hγλ∇̃λ(Kµγ −Khµγ), (4.55a)

(2)

GhΛ
µν = −1

2
hµν(KρσKρσ −K2 − 2Λ̃) +K(Kµν −Khµν)− vρ∇̃ρ(Kµν −Khµν). (4.55b)
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4.5 NLO theory

We can then go on to consider the EH action at NLO. According to (B.6b) of appendix B, we
only need the following partial derivative to compute the NLO action

∂L̃
∂σ

∣∣∣∣∣
σ=0

=
e

16πGN
hµνR̃µν . (4.56)

We can then write down the NLO action (B.6b), whose structure is defined by the nature of the
expansion

(4)

LNLO =
e

8πGN

[
1

2
hµνR̃µν +

(2)

GvµM
µ +

1

2

(2)

GhµνΦµν

]
. (4.57)

The NLO action (4.57) is a novel result of this thesis. At NLO we introduce the sub-leading
fields Mµ and Φµν . From the form (4.57), one readily sees that the EOM of the NLO fields
work out to be the LO EOM. As described in appendix B, this is a general feature of this kind
of expansion. In particular, all previous EOM are repeated at each level of the expansion.

From here it is in principle straightforward to compute the NLO EOM by varying the action
(4.57). However, as this is quite tedious, we here only present the EOM for an expansion that
truncates at LO i.e. Mµ = 0, Φµν = 0, such that the two last terms of (4.57) drop out.

4.5.1 Variational calculus

Varying the NLO action (4.57) poses some technical difficulties, as we now need the variations of
objects that depend on the Γ̃-connection. In particular, to obtain the full NLO EOM (including
sub-leading fields) we would need to vary both hµνR̃µν and the covariant derivative in the LO

EOM
(2)

Gvµ and
(2)

Ghµν .

We will now go through the calculation of the variation of the Ricci-like scalar hµνR̃µν . In
general, for any choice of connection, one can show directly from the definition (3.32) that the
variation of the Ricci tensor can be written as

δR̃µν = ∇̃ρδΓ̃ρµν − ∇̃µδΓ̃ρρν − 2Γ̃λ[µρ]δΓ
ρ
λν . (4.58)

We then contract with ehµν and integrate by parts

ehµνδR̃µν = e(hµν∇̃ρδΓ̃ρµν − hµν∇̃µδΓ̃ρρν − 2hµνΓ̃λ[µρ]δΓ̃
ρ
λν) (4.59)

≈ e(−δΓ̃ρµν∇̃ρhµν + δΓ̃ρρν∇̃µhµν − 2hµνΓ̃λ[µρ]δΓ̃
ρ
λν − τρKh

µνδΓ̃ρµν)

= e(−δΓ̃ρ(µν)v
µhνσ(δγρ − τρvγ)τγσ + δΓ̃ρρνh

νσvγτγσ +KνλτρδΓ̃
ρ
λν − τρKh

µνδΓ̃ρµν),

where we again used the identity (3.28) together with Carroll compatibility of ∇̃. By rewriting
the Ricci-like scalar as (4.59), we have reduced the problem of finding its variation to determining
projections of δΓ̃ρµν . The needed projections can be obtained either by direct computation or in
a more covariant manner by considering covariant derivatives of the metric data. As an example
of this, let’s consider how hµντρδΓ̃

ρ
µν can be determined from the relations (3.25). Upon tracing

(3.25) with hµν , the derivative ∇̃µτν becomes

hµν∇̃µτν = 0. (4.60)

We can then vary both sides of (4.60) to obtain

δhµν∇̃µτν + hµν(∇̃µδτν − δΓ̃ρµντρ) = 0, (4.61)
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which we can solve for the projection hµντρδΓ̃
ρ
µν yielding

hµντρδΓ̃
ρ
µν = −1

2
δhµντρµ(vρτν + hρν)− hµστλ∇̃µδhσλ. (4.62)

By similar considerations of covariant derivatives, one can compute the remaining projections
appearing in (4.59) and combine them to find the needed variation

ehµνδR̃µν ≈ δvµ
1

2
hνσhλµτνλv

κτκσ + δhµν [2hσµτνKv
κτκσ +Kµ

στσρ(v
ρτν − δρν)] (4.63)

+ ∇̃νδvλhνστλσ + ∇̃µδhσλ[Khµστλ −Kµ
στλ −

1

2
hµγhσλv

κτκγ ].

The variation (4.63) together with those of section 4.4.1 is sufficient to compute the EOM for
Mµ = 0 and Φµν = 0.

4.5.2 NLO equations of motion

With the results of the previous section, we can compute the NLO EOM under the aforemen-
tioned restrictions by combining (4.63) and (4.51a) and integrating by parts to find

(4)

Gvµ

∣∣∣
Mµ=Φµν=0

= τµh
ρσR̃ρσ +

1

2
hνσhλµτνλv

κτκσ − ∇̃ν(hνστµσ), (4.64a)

(4)

Ghµν

∣∣∣
Mµ=Φµν=0

= R̃(µν) −
1

2
hµνh

σρR̃σρ + 2Kvκτκ(µτν) + τσρK(µ
σ(vρτν) − δ

ρ
ν)) (4.64b)

− ∇̃λ(Khλ(µτν) −Kλ
(µτν) −

1

2
hµνh

λγvκτκγ).

The remaining part of the NLO EOM, stemming from the variation of the LO EOM, i.e. the
last two terms of (4.57), can also be computed. However, as this is technically challenging and
will not be used in this thesis, they are omitted.
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Chapter 5

3+1 Decomposition of GR

In this chapter, we take a detour into the fully relativistic realm and review some of the basic
concepts of the 3+1 or ADM decomposition1 of GR. Conventionally, there are two main reasons
for breaking the general covariance and singling out space and time to obtain a more conventional
initial-value problem: Firstly, to carry out a Hamiltonian analysis [41], where the framework
depends explicitly on a choice of time, which in relativity is inherently non-unique. Secondly,
if one wants to solve the equations of GR numerically [48], the natural approach is to prepare
some initial data and evolve that forward in time. Another advantage of the 3+1 decomposition
is that the gauge freedom stemming from diffeomorphism invariance becomes more transparent.

We have already seen that in Carroll geometry this split of space and time is naturally realized
in terms of the invariant objects hµν and vµ. As we will see in chapter 6, the EOM of the LO
theory (4.52a)-(4.52b) have many similar features to the equations of the 3+1 decomposition.
This is of course in some sense no surprise, as the Carroll equations are an expansion of GR.
Hence, we can apply adapted methods from the 3+1 decomposition to solve problems in the
LO theory. In particular, the alternative perspective of first constructing initial data and then
worrying about the time evolution will turn out to be particularly well-suited for the LO Carroll
theory.

In section 5.1, we will first review and then implement the necessary differential geometry on
hypersurfaces to realize the 3+1 split of Einstein’s equation. The resulting equations are in part
constraints, and hence section 5.2 deals with methods for constructing consistent initial data.
Finally, in section 5.3, we show that the EOM derived from the action expansion of chapter 4
can be obtained directly from the 3+1 decomposition.

5.1 Foliations and hypersurface geometry

The review of the 3+1 decomposition in this and the next section is based on the references [48,
49]. The ability to write GR as an initial-value problem of course depends on the existence of
some time function to keep track of the evolution of our dynamical fields i.e. the metric gµν .
More formally, this means that we assume the existence of a family of spacelike hypersurfaces
(Σt)t∈R such that the union of all slices or leaves Σt is the entire spacetime manifold M

M =
⋃
t∈R

Σt. (5.1)

1The name “3+1” is of course due to the most relevant case of spatial dimension d = 3. However, the methods
described in section 5.1 generalize readily to any spatial dimension d. The initials ADM are due to Arnowitt,
Deser and Misner who pioneered the canonical formalism of GR [47].
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Along with each slice, we have a hypersurface tangent space defined by ker dt. Each hypersurface
can be understood as a time slice, and the initial-value problem consists of propagating fields
living on Σt to Σt+δt.

5.1.1 Lapse function and the spatial metric

For each of the time slices Σt, we can compute a future-directed timelike normal vector nµ as

nµ ≡ −αgµν∂νt, nµ ≡ gµνnν , (5.2)

where we defined the lapse function α according to

α ≡ (−gµν∂µt∂νt)−1/2. (5.3)

The lapse function has the interpretation of the rate of proper time elapsed per coordinate time
t. The sign of (5.2) is chosen such that nµ∂µt = α−1 > 0 i.e. nµ is indeed future-directed.
Also note that nµnµ = −1, which corresponds to the fact that nµ is a timelike normal. The
(co-)normal allow us to define a projector onto the tangent space of the hypersurface Σt given
by

γµν ≡ nµnν + δµν . (5.4)

The tensor (5.4) satisfies the needed conditions to be a projection

γµρ γ
ρ
ν = γµν , γµν n

ν = 0, γνµnν = 0. (5.5)

We call indices annihilated by γµν temporal and indices annihilated by −nµnν spatial. The next
natural task is to compute the projection of the metric

γµν ≡ γρµγσν gρσ = nµnν + gµν , (5.6a)

γµν ≡ γµρ γνσgρσ = nµnν + gµν , (5.6b)

which is called the spatial metric or sometimes the induced metric, as it coincides with what
would have been obtained by pulling back gµν to Σt. The spatial metric γ can be used to raise
and lower indices of spatial tensors e.g

Xµ ≡ γµνXν , (5.7)

for Xµ spatial.
Associated with the metric gµν , we have a unique torsionless Levi-Civita connection ∇. We

also have a metric γµν living on the hypersurface Σt, and hence we can wonder if we can associate
a torsion-free, γ-compatible connection to that as well. It is indeed possible to define a Levi-
Civita connection ∇̂ associated with γ that acts on spatial tensors. In particular, for a general
spatial tensor Tµ1...µkν1...ν` we define

∇̂ρTµ1...µkν1...ν` ≡ γ
γ
ργ

µ1
α1
. . . γµkαkγ

β1
ν1 . . . γ

β`
ν`
∇γTα1...αk

β1...β` . (5.8)

A short computation shows that this connection is both torsion-free and γ-compatible i.e.

[∇̂µ, ∇̂ν ]f = 0, ∇̂ργµν = 0, (5.9)

and ∇̂ can thus rightfully be called the Levi-Civita connection associated with γµν . We can
further define the 3-Riemann tensor associated with ∇̂ using the usual implicit definition

[∇̂µ, ∇̂ν ]Xσ = −R̂µνρσXρ, R̂µνρ
σnσ = 0, (5.10)

where Xµ is any spatial vector. The relation between the 3-curvature and the full Riemann
tensor is the subject of section 5.1.3.
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5.1.2 Extrinsic curvature and acceleration

Another central object in the 3+1 decomposition is the extrinsic curvature, which we define as

Kµν ≡ −
1

2
Lnγµν . (5.11)

Note that we use the same symbol K for the extrinsic curvature in the 3+1 decomposition as in
Carroll geometry (2.52), hence unless stated otherwise Kµν in this chapter means (5.11). There
are many equivalent forms of the Kµν of which a notable one is

Kµν = −γρµγσν∇ρnσ. (5.12)

The expression (5.12) measures the change in the co-normal along the hypersurface. Thus, it
explains how Kµν is connected to curvature stemming from the embedding. On the other hand,
the form (5.11) highlights that Kµν can be thought of as a velocity of γµν . It will indeed turn
out that we need to specify exactly (γµν ,Kµν) as initial data to propagate from one time slice to
the next. This is analogous to how, for a second order differential equation, one would specify
(x, ẋ) at an initial time. The expression for the extrinsic curvature (5.11) also readily shows
that Kµν is a spatial, symmetric tensor.

If we consider the vector field nµ as the 4-velocity of some test particle, then we can compute
the acceleration

aµ ≡ nν∇νnµ, (5.13)

that measures how far nµ is from pointing along a geodesic. Equivalently, we can write the
acceleration as a Lie derivative

aµ = nν∇νnµ + nν∇µnν︸ ︷︷ ︸
=0

= Lnnµ = nν(dn)νµ, (5.14)

which again makes it apparent that aµ is a spatial co-vector. The acceleration is closely related
to the lapse function and in particular one can show from (5.2) and (5.14) that

aµ =
1

α
∇̂µα. (5.15)

It will also be convenient to consider the second covariant derivative of the lapse α, which works
out to be

1

α
∇̂µ∇̂να = ∇̂µaν + aµaν . (5.16)

5.1.3 Gauss, Codazzi and Ricci equations

To make the connection between γµν and Kµν living on hypersurface Σt and the Einstein equa-
tion, which relate the 4-Einstein tensor and some matter source, we need to find a relation
between the 3-curvature and the 4-curvature. This question is exactly answered by the equa-
tions of Gauss, Codazzi and Ricci, which relates the 3-curvature and extrinsic curvature to
different projections of the 4-Riemann tensor.

To derive the Gauss equation, one considers the commutator of ∇̂ with itself acting on a
spatial vector by on the one hand using the definition (5.10) and on the other hand swapping
the ∇̂-derivative for the ∇-derivative. This allows one to relate the Riemann tensors associated
with each of the derivatives in the so-called Gauss relation

R̂µνρ
σ = γαµγ

β
ν γ

γ
ργ

σ
δRαβγ

δ −KµρKν
σ +KνρKµ

σ, (5.17)
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The equation (5.17) shows that the induced intrinsic curvature on the hypersurface is partly
due to the embedding and partly the intrinsic curvature of the embedding space. From (5.17)
we contract twice using γµν , yielding a relation for the Ricci scalar

R̂ = 2nµnνGµν −K2 +KµνK
µν , (5.18)

where we used γµργνσRµνρ
σ = 2nµnνGµν with Gµν being the Einstein tensor defined by

Gµν ≡ Rµν −
1

2
Rgµν . (5.19)

The Codazzi equation is found by computing the ∇̂-derivative of Kµν using (5.12) and
subsequently anti-symmetrizing it to relate it to the 4-Riemann tensor. This calculation yields
the Codazzi equation

∇̂νKµρ − ∇̂µKνρ = γαµγ
β
ν γ

γ
ρn

σRαβγσ. (5.20)

However, we are again interested in the trace, which we compute by contracting with γνρ

∇̂νKν
µ − ∇̂µK = −γνµGνρnρ, (5.21)

noting the identity γαµγ
νρnσRανρσ = −γρµnνGρν .

The final theorem we need is the so-called Ricci equation, which relates the Lie derivative
along nµ of extrinsic curvature to the 4-curvature. The derivation again proceeds by direct
computation, where one uses that Lie derivatives can be written in terms of covariant deriva-
tives (4.47), which through (5.12) gives a double covariant derivative that can be related to the
4-Riemann tensor

LnKµν = nαnγγβµγ
δ
νRαβγδ − aµaν − ∇̂µaν −Kµ

ρKρν . (5.22)

The Ricci equation can also be directly related to the Einstein tensor by the identity

nαnγγβµγ
δ
νRαβγδ = γαγγβµγ

δ
νRαβγδ − γαµγβνRαβ, (5.23)

where the first term on the RHS can be substituted with the Gauss equation and the second by
Rµν = Gµν + 1

d−1Ggµν . Note that one application of (5.16) is to simplify the second term of the
RHS of the Ricci equation.

5.1.4 Decomposing the Einstein equation

In the previous sections, we have not yet said anything about physics, we have merely related
geometrical quantities. The physical input comes from the Einstein equation2

Gµν = 8πGNTµν , (5.24)

where Tµν is the energy-momentum tensor and Gµν the Einstein tensor. As the Einstein equation
(5.24) is symmetric and we have two projectors, we can make three distinct projections of
(5.24). To write out each of the three projections of the Einstein equation, we need to define
the projections of the energy-momentum tensor, which we will do in the following way

ρ = nµnνTµν , Sµ = −γρµnνTρν , Sµν = γαµγ
β
ν Tαβ. (5.25)

2In this section, we use units with c = 1.
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With these, it is a simple matter to combine the geometric equations of Gauss (5.18), Codazzi
(5.21) and Ricci (5.22) with the physical Einstein equation (5.24). After a some algebra, we
finally obtain the Einstein equation in its 3+1 decomposed form

R̂+K2 −KµνK
µν = 16πGNρ (5.26a)

∇̂νKν
µ − ∇̂µK = 8πGNSµ (5.26b)

LnKµν = R̂µν − 2Kµ
ρKρν +KKµν − ∇̂µaν − aµaν − 8πGN (Sµν − 1

2γµν(S − ρ)), (5.26c)

with S = γµνSµν . The equations are conventionally named the Hamiltonian constraint (5.26a),
the momentum constraint (5.26b) and the evolution equation (5.26c). As the names suggest,
equations (5.26a) and (5.26b) are different in nature as compared to (5.26c), in that they are
constraints. This is to be understood in the sense that the constraint equations consist of spatial
tensors, and the constraints can be checked on a single time slice. The evolution equation (5.26c)
can then be used to propagate the data to the next time slice. Further, one can show that the
constraint equations (5.26a) and (5.26b) are preserved under time evolution by (5.26c) due to
the diffeomorphism Ward identity of GR, the contracted Bianchi identity ∇µGµν = 0. Thus, to
solve the 3+1 EOM, we are first to find some initial data (γµν ,Kµν) satisfying the constraint
equations, and then we evolve the extrinsic curvature using (5.26c) and the spatial metric using
the definition (5.11).

Gauge choices and the shift vector

For completeness, we also consider gauge choices in the 3+1 decomposition which do not directly
relate to Carroll geometry. Integrating forwards in time in principle works as described above,
but the Lie derivative with respect to nµ is not natural for our choice of coordinate t due to the
fact nµ∂µt = α−1 6= 1. Also, we have not explicitly addressed the question of diffeomorphism
invariance. It turns out we can resolve both at once by considering the vector field

tµ = αnµ + βµ, (5.27)

where α is the lapse function, and βµ is the so-called shift vector, which is spatial nµβ
µ = 0.

Derivatives along tµ are natural in the sense that tµ∂µt = 1. This also tackles the problem of
diffeomorphism invariance as we can take tµ to connect the same spatial coordinate from one
time slice to the next. That is, α represents our ability to reparameterize the distribution of
time slices, while βµ specifies how the spatial coordinates “drift” along spatial directions. These
4 or d + 1 degrees of freedom are exactly the gauge freedom of diffeomorphism invariance and
are thus completely arbitrary. However, for practical purposes in numerical relativity, there
is a range of standard choices addressing problems arising in numerical computations such as
stability, dealing with singularities, etc. [48]. To implement this new time-derivative along tµ,
one uses the relations

Ltγµν = −2αKµν + Lβγµν , (5.28a)

LtKµν = αLnKµν + LβKµν , (5.28b)

which can be derived using nµγµν = nµKµν = 0.

5.2 Initial data for 3+1 GR

The 3+1 decomposition takes a different approach to solving the Einstein equation (5.24), in that
we first come up with some initial data and then worry about the time evolution afterwards.
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This is opposed to how one usually derives e.g. the Schwarzschild metric, where one solves
for both the space and the time direction simultaneously. However, as we have seen, not all
initial data are valid, in particular it needs to satisfy the Hamiltonian constraint (5.26a) and
the momentum constraint (5.26b). A further complication is that the constraint equations only
allow for the determination of 4 out of the 12 components of γµν and Kµν , and a priori there is
no natural split between free and constrained components.

There has been extensive work done, see [49], on methods to construct initial data and how to
overcome these problems. In this section, we will review some aspects of the so-called conformal
decomposition. The results presented in this section only hold for d = 3, while the results of
the previous sections hold for any d. Further, we go to adapted coordinates (x0, x1, . . . , xd) such
that t ≡ x0 parameterizes the time-slices and xa are spatial coordinates on the hypersurface
with a, b, . . . = 1, . . . , d. In particular, this means that spatial projections amount to restricting
indices to run only over 1, . . . , d.

5.2.1 Conformal and traceless-transverse decomposition

The idea of the conformal decomposition is to write the 3-metric γab as a product of a scale
factor ψ and a background metric γ̄ab as

γab = ψ4γ̄ab. (5.29)

The exponent of ψ is in principle arbitrary, but for d = 3 the exponent ψ4 turns out to be a
convenient choice. It follows that the inverse metric is also conformally related according to

γab = ψ−4γ̄ab. (5.30)

As described, there exists a Levi-Civita connection ∇̂ associated with γab, and equivalently there
exists a Levi-Civita connection ∇̄ that is compatible with γ̄ab. One can show that the connection
coefficients3 of the two connections are related by

Γ̂cab = Γ̄cab + 2(2δc(a∇̄b) logψ − γ̄abγ̄cd∇̄d logψ). (5.31)

We can further relate the Ricci tensors of the two connections by

R̂ab = R̄ab − 2(∇̄a∇̄b logψ + γ̄abγ̄
cd∇̄c∇̄d logψ) (5.32)

+ 4(∇̄a logψ∇̄b logψ − γ̄abγ̄cd∇̄c logψ∇̄d logψ),

which implies that for the Ricci scalar we have

R = ψ−4R̄− 8ψ−5∇̄2ψ, (5.33)

with ∇̄2ψ = γ̄ab∇̄a∇̄bψ. We can then turn to the extrinsic curvature, which we can decompose
into its traceless part Aab and trace K according to

Kab = Aab +
1

3
γabK. (5.34)

As the extrinsic curvature can be seen as a free variable, we can give each part of the decompo-
sition its own scaling in ψ

Aab = ψαĀab, K = ψβK̄. (5.35)

3Spatial connection coefficients work as usual in the adapted coordinates e.g. ∇̂aXb = ∂aX
b + Γ̂bacX

c.
The connection coefficients can also be used in general coordinates if we subsequently project e.g. ∇̂µXν =
γρµγ

ν
σ(∂ρX

σ + Γ̂σρλX
λ), for any spatial Xµ.
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Different choices of α and β give different simplifications of the equations, and for our purposes
it will turn out to be advantageous to choose

α = −2, β = 0. (5.36)

In particular, the choice (5.36) simplifies the momentum constraint. A final rewriting we are
going to make is breaking up the traceless part of the extrinsic curvature Āab by doing a so-called
traceless-transverse decomposition. Specifically, we write Āab as

Āab = (L̄X)ab + ĀTT
ab (5.37)

where ATT
ab is a tensor field satisfying

γ̄abĀTT
ab = 0, ∇̄aĀTT

ab = 0, (5.38)

hence justifying the name, as having vanishing divergence translates to the field being transverse
to the wave vector in Fourier space. The other component of (5.37) is a vector field Xµ acted
upon by the conformal Killing operator L̄

(L̄X)ab = 2∇̄(aXb) − 2

3
∇̄cXcγ̄ab. (5.39)

The kernel of L̄ is precisely the conformal Killing vectors of the 3-metric γ̄ab. The decomposi-
tion (5.37) is only guaranteed to be unique when dealing with asymptotically flat or compact,
boundaryless manifolds. However, when the decomposition is well-defined, we can write the
Hamiltonian (5.26a) and momentum (5.26b) constraints as

∇̄2ψ − 1

8
R̄ψ +

1

8
(L̄Xab + ĀTT

ab )(L̄Xab + ĀabTT)ψ−7 − 1

12
K2ψ5 = −2πρψ5, (5.40a)

∆̄LX
a − 2

3
ψ6∇̄aK = 8πψ10Sa. (5.40b)

The operator ∆̄L is the conformal vector Laplacian given by

∆̄LX
a ≡ ∇̄b(L̄X)ba = ∇̄b∇̄bXa +

1

3
∇̄a∇̄bXb + R̄abX

b. (5.41)

The decompositions (5.40a) and (5.40b) are under the stated assumptions completely equiva-
lent to the original Hamiltonian (5.26a) and momentum (5.26b) constraints. This formulation
however clarifies what is “free” and “constrained” data. In particular, we can choose

γ̄ab, Ā
TT
ab , K, ρ , Sa

solve for
=⇒ ψ, Xa. (5.42)

Furthermore, from a technical point of view both equations (5.40a) and (5.40b) can be shown
to be elliptic PDEs [49]. Thus, the problem of determining initial data through the conformal
traceless-transverse method is a well-defined problem.

5.2.2 Bowen-York solutions

With the equations (5.40a) and (5.40b), one can start looking for simple solutions. One such
example is the family of solutions known as Bowen-York, for which one chooses the free data

γ̄ab = δab, ĀTT
ab = 0, K = 0, ρ = 0, Sa = 0, (5.43)
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where δab is the flat metric in Cartesian coordinates. That is, we consider a conformally flat
metric with no matter sources. Further, we take the initial time slice to be

Σ0 = R3 \ {0}. (5.44)

The choice K = 0, which is known as the maximal slicing condition, decouples the equations
(5.40b) from (5.40a). This implies that (5.40b) takes the form

∂b∂bX
a +

1

3
∂a∂bX

b = 0. (5.45)

On the domain (5.44), one can derive the following 6-parameter family of solutions to (5.45)

Xa = − 1

4r

[
7δabPb +

Pbx
bxa

r2

]
− 1

r3
εabcJbx

c, (5.46)

where r =
√
δabxaxb and εabc is the totally anti-symmetric symbol defined by ε123 = 1. To get

the full initial data, one further has to compute L̄Xab and solve (5.40a) for ψ, where the latter
cannot be done analytically. Even though we are not able to find the full initial data analytically,
we can still characterize the parameters Pa and Ja using the ADM linear and angular momentum
[41]. Specifically, by imposing asymptotic flatness in the form ψ → 1 for r →∞, all dependence
on ψ drops out of the ADM integrals and one can show that [49]

PADM
a = Pa, JADM

a = Ja. (5.47)

That is, the Bowen-York initial data (5.43) and (5.46) describes some boosted and rotating black
hole. Consequently, one might expect it to be a slice of the Kerr spacetime. However, it turns
out that the Bowen-York data also contains gravitational radiation, and hence corresponds to a
solution of the Einstein equation distinct from the Kerr metric [50].

5.3 Carroll gravity from the 3+1 decomposition

As stated at the beginning of the chapter, Carroll geometry bears much resemblance to the 3+1
decomposition, as it also has a privileged direction of time. The Carrollian vector field vµ is
of course fundamentally different as it is physical as opposed to the nµ of the 3+1 formalism,
which depends on the choice of foliation. This resemblance is readily seen by comparing the
decomposition of the 4-metric (5.4) into a spatial metric and co-normal and the decomposition
of the relativistic metric (4.18a) into PUR variables. This similarity suggests that the 3+1
decomposition serves as a good starting point for a small c expansion. Thus, we will in this
section develop an alternative method of obtaining the EOM of chapter 4 through the 3+1
formalism.

The 3+1 and PUR decompositions can be made equivalent under the identification

γµν = Πµν , γµν = Πµν , nµ = cTµ, nµ = c−1Tµ. (5.48)

However, in addition to the identification (5.48), there is a more subtle assumption we need to
consider if we want to perform a small c expansion of GR using the equations of the 3+1 decom-
position. Specifically, the construction of the 3+1 formalism starts by assuming a foliation. This
condition can be expressed locally by the Frobenius condition for hypersurface integrability [39]

n ∧ dn = 0. (5.49)
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Thus, under the identification (5.48) this becomes

0 = T ∧ dT = τ ∧ dτ + c2(. . .) +O(c4). (5.50)

That is, we get an extra condition for each level of the expansion, as compared to the analysis
of chapter 4, when using the 3+1 decomposition as a starting point. Consequently, the Carroll
theory we obtain from the 3+1 approach is only a sub-sector of the theory we get by expanding
the action directly, as in chapter 4.

5.3.1 Changing parameterization

The EOM of chapter 4 are defined as the response to varying the timelike vielbein and the spatial
metric. Hence, we need to relate the results of section 5.1 to these responses. A convenient way
of doing this is by considering the variation of the full EH Lagrangian (4.37)

δLEH =
c4E

16πGN
Gµνδg

µν , (5.51)

where we used the well-known variation of the relativistic
√
−gR and reinstated factors of c.

We can then relate the variation of the inverse metric to the variations of the PUR variables

δgµν = −2c−2T (µδT ν) + δΠµν . (5.52)

Inserting this into (5.51) and applying (4.8) to write out projections, we find

δLEH =− c2E

8πGN
(GµνT

µΠν
ρ −GµνTµT νTρ)δT ρ (5.53)

+
c4E

16πGN
(GµνΠµ

ρΠν
σ − 2GµνT

µT(ρΠ
ν
σ))δΠ

ρσ.

Hence, we have reduced the problem to determining projections of Gµν , which is exactly accom-
plished by the Gauss, Codazzi and Ricci equations. To obtain the expanded EOM, we simply
need to expand (5.53) order by order in c2. To find the correct factor of c in the geometrical
equations of section 5.1, we further need to substitute the 3+1 variable for the PUR variables
according to (5.48) e.g. for the extrinsic curvature

−1

2
Lnγµν = −c

−1

2
LTΠµν = c−1

(0)

Kµν . (5.54)

In (5.54) we did not use Kµν for the LHS because we in this section reserve the symbol for the

Carrollian extrinsic curvature Kµν ≡ −1
2Lvhµν . Also, we recall the definition

(0)

Kµν ≡ −1
2LTΠµν ,

which implies
(0)

Kµν = Kµν +O(c2). We can repeat this substitution by PUR variables for each
term in Gauss, Codazzi and Ricci equations to establish the following relations

TµT νGµν =
1

2
(

(0)

K2 −
(0)

Kµν

(0)

Kµν + c2R̂), (5.55a)

Πµ
ρT

νGµν = ∇̂ρ
(0)

K − ∇̂σ
(0)

Kσ
ρ, (5.55b)

Πρ
µΠσ

νGρσ = R̂µν − ∇̂µaν − aµaν + c−2(
(0)

K
(0)

Kµν − 2
(0)

Kµρ

(0)

Kρ
ν − LT

(0)

Kµν) (5.55c)

− 1

2
Πµν(R̂− 2∇̂µaµ − 2aµa

µ + c−2[
(0)

K2 +
(0)

Kµν

(0)

Kµν − 2LT
(0)

K]),
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where the Ricci equation was combined with the Gauss equation to obtain (5.55c). Considering
both (5.53) and (5.55a)-(5.55c), we again see that the expansion starts at order c2. We then
compute the LO EOM by taking σ = 0 in the variation of L̃EH ≡ c−2LEH

δL̃EH|σ=0 =
e

8πGn
δvµ(GµνT

µT νTρ −GµνTµΠν
ρ)|σ=0

+
e

16πGN
δhµν(c2GµνΠµ

ρΠν
σ − 2c2GµνT

µT(ρΠ
ν
σ))|σ=0

=
e

8πGn
δvµ(1

2(K2 −KµνK
µν)τµ − (∇̂ρ

(0)

K − ∇̂σ
(0)

Kσ
ρ)|σ=0 (5.56)

+
e

16πGN
δhµν(KKµν − 2KµρK

ρ
ν − LvKµν − 1

2hµν(K2 +KρσK
ρσ − 2LvK)).

Comparing this to the definition of the EOM
(2)

Gvµ (4.39a) and
(2)

Ghµν (4.39b), we see that the
contents of the brackets on the first and second line of (5.56) should exactly be the LO EOM
(4.52a) and (4.52b), respectively. Though it looks very promising, it is not immediately clear
that these expressions agree. However, if we consider the full Levi-Civita connection written

out in terms of the PUR variables (4.24a)-(4.24c) and the shift
(0)

Sρµν , it is easy to see that for a
spatial vector Xµ

∇̂µXν ≡ Πρ
µΠν

σ∇ρXσ = Πρ
µΠν

σ

(C̃)

∇ρXσ, (5.57)

because the differences between Γρµν and C̃ρµν are projected out. From this, we conclude that

−(∇̂ρ
(0)

K − ∇̂σ
(0)

Kσ
ρ)|σ=0 = hγλ∇̃λ(Kµγ −Khµγ), (5.58)

and hence the expressions for the EOM
(2)

Gvµ do indeed agree. To match up
(2)

Ghµν we need the Lie
derivative identity

LvKµν = vρ∇̃ρKµν − 2Kµ
ρKρν , (5.59)

which can be derived using (4.47). Applying (5.59) to the second line of (5.56), we find agreement
with (4.52b). A priori, it is not given that the EOM one can read off from (5.56), should
immediately agree with the EOM of chapter 5, because we have not considered the integrability
condition (5.50). However, as the LO EOM from the action expansion do not explicitly depend
on the LO Frobenius condition τ∧dτ = 0, we find agreement without further considerations. The
equations obtained from the 3+1 approach should in general be supplemented by the Frobenius
condition expanded to the appropriate order. To obtain the NLO EOM one expands (5.53) to
order c0 and reads off the responses to the variation. This procedure can of course be repeated
ad infinitum to obtain further orders.

Thus, we see that the LO and sub-leading Carroll EOM can be derived using the 3+1
formalism. Furthermore, this approach automatically casts the equations in terms of variables

such as Πµν ,
(0)

Kµν etc. that in the c→ 0 limit correspond to natural Carroll tensors. This novel
approach of expanding the EOM of GR is equivalent to the action expansion up to the added
constraint of the integrability condition (5.50).

This procedure can of course also be applied to the Galilean limit where the caveat of
hypersurface integrability at the level of the PUR (or in that case pre-non-relativistic) variables
(5.50) plays a bigger role. Note that the Galilean expansion of T ∧ dT would be in orders of c−2

rather than c2, as it is done in (5.50). As mentioned in chapter 4, the LO (i.e. c6) EOM from
a Galilean action expansion is exactly the Frobenius condition on the clock-form τµ [29], i.e.
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τ ∧ dτ = 0. However, the 3+1 formalism assumes the integrability condition, and the LO EOM
from the 3+1 expansion is identically zero. That is, the LO EOM from the two approaches
only agree when we impose the LO Frobenius condition. Likewise, the NLO EOM from the
action expansion will also disagree with the 3+1 NLO EOM until we apply the NLO Frobenius
condition. This underlines that it is coincidental that the Carroll LO EOM come out the same
from both the action expansion and the 3+1 decomposition without imposing the Frobenius
condition (5.50), and one should not expect this to hold true at sub-leading orders.
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Chapter 6

Leading Order Theory Solutions and
Charges

The LO Carroll theory, as derived in chapter 4, is in itself a dynamical field theory governing
the Carroll metric data and is thus interesting in its own right. The gravity theory is of course
expected to be somewhat strange due to the Carrollian causal structure, which forces isolated
dynamics on each integral line of vµ. This property would limit the possible dynamics but
on the other hand allow for more problems to be exactly solvable. This chapter is dedicated
to exploring novel approaches to finding solutions to the LO theory and characterizing them
through e.g. boundary charges. We will show that the LO EOM can be cast in a form very
similar to that of the 3+1 decomposed Einstein equation, as presented in chapter 5. Hence, we
will also adapt some of the methods of the 3+1 decomposition to solve the LO Carroll theory.
The results on LO Carroll gravity and its solutions presented in this chapter are original.

Specifically, we will in section 6.1 derive Ward identities for the LO theory and in section
6.2 rewrite the LO EOM to make them comparable to the equations of chapter 5. Then, in
section 6.3 and 6.4, we will address the problems of time evolution and preparing initial data,
respectively. Next, in section 6.5, we will compare our results to earlier work of Dautcourt [32]
before we in section 6.6 derive boundary charges for the theory. Finally, we will in section 6.7
work through a number of examples of solutions to LO Carroll gravity.

6.1 Ward identities

As the diffeomorphism Ward identity appears in both the analysis of the EOM in section 6.2
and the derivation of the LO boundary charges in section 6.6, we will in this section derive the
LO Ward identities. To derive the Ward identities, we follow the same procedure as in section
2.4.1. That is, to consider a general variation (4.45) and deduce the consequences of invariance
when the variation is chosen to be a local symmetry. In particular, the Ward identities will work
out to have the same form as in section 2.4.1 up to constants due to their definitions, compare
(2.78) and (4.45). Hence, it is easily seen that the boost Ward identity (2.89) translates to

vµ
(2)

GhΛ
µν = 0, (6.1)

where
(2)

GhΛ
µν is the response of the LO action to varying with respect to hµν , as defined in (4.39b).

This is consistent with the explicit expression (4.52b) derived in chapter 4.
The diffeomorphism Ward identity also follows in the same way as it did for a Carroll field

theory. Carrying out the same steps now utilizing the Γ̃-connection, we find the following
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diffeomorphism Ward identity

1

2
vρ

(2)

GhΛ
ρσ h

σλτλγ(vγτµ − δγµ)− 2
(2)

GvΛ
(µKν)

ν −Kρσ
(2)

GhΛ
ρσ τµ + vν∇̃ν

(2)

GvΛ
µ + ∇̃ν(hνρ

(2)

GhΛ
ρµ ) = 0, (6.2)

where the LO EOM
(2)

GvΛ
µ is defined in (4.39a). This can be further simplified by noticing that the

first term drops out by imposing the boost Ward identity (6.1) yielding the combined relation

−2
(2)

GvΛ
(µKν)

ν −Kρσ
(2)

GhΛ
ρσ τµ + vν∇̃ν

(2)

GvΛ
µ + ∇̃ν(hνρ

(2)

GhΛ
ρµ ) = 0. (6.3)

We note, that the diffeomorphism Ward identity of GR is the contracted Bianchi identity∇µGµν ,
which in this sense can be considered analogous to (6.2).

6.2 Vacuum equations of motions

We have already derived the vacuum EOM both with and without a cosmological constant
(4.52a)-(4.52b) and (4.55a)-(4.55b), respectively. In particular, we found that the LO EOM
with a cosmological constant are

(2)

GvΛ
µ = −1

2
τµ(KρσKρσ −K2 + 2Λ̃) + hγλ∇̃λ(Kµγ −Khµγ), (6.4a)

(2)

GhΛ
µν = −1

2
hµν(KρσKρσ −K2 − 2Λ̃) +K(Kµν −Khµν)− vρ∇̃ρ(Kµν −Khµν). (6.4b)

To better understand the nature of these equations, it is instructive to rewrite them in a form that
resembles the 3+1 EOM (5.26a)-(5.26c). This will allow us to interpret the LO Carroll EOM
analogously to the 3+1 EOM. For generality, we consider the LO EOM with a cosmological
constant, which simply can be written as

(2)

GvΛ
µ = 0,

(2)

GhΛ
µν = 0. (6.5)

Taking the temporal projection of
(2)

GvΛ
µ = 0, i.e. contracting (6.4a) with vµ, we find the first

EOM

KµνKµν −K2 = −2Λ̃. (6.6)

The second term of (6.4a) does not contribute to (6.6) because it is annihilated by vµ. On the

other hand, the spatial projection of
(2)

GvΛ
µ = 0 yields the second equation

hρσ∇̃ρ(Kσµ −Khσµ) = 0. (6.7)

Finally, we turn to (6.4b) where the first term simplifies upon imposing (6.6), leaving only

2Λ̃hµν +K(Kµν −Khµν)− vρ∇̃ρ(Kµν −Khµν) = 0. (6.8)

Note that
(2)

GhΛ
µν only has a spatial part as consequence of the boost Ward identity (6.1). We then

compute the trace of (6.8) using hµν

2dΛ̃ + (1− d)K2 − (1− d)vρ∇̃ρK = 0, (6.9)
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where we used hµνvρ∇̃ρXµν = vρ∇̃ρ(hµνXµν) forXµν spatial, which follows directly from (3.27a).
If we consider d 6= 1 then (6.9) implies

vρ∇̃ρK −K2 = − 2d

d− 1
Λ̃, (6.10)

which we can insert into (6.7) together with (6.6) to find the third EOM

vρ∇̃ρKµν −KKµν = − 2

d− 1
Λ̃hµν . (6.11)

To summarize, we have rewritten the full content of the LO EOM in vacuum (6.4a)-(6.4b) as

KµνKµν −K2 = −2Λ̃, (6.12a)

hρσ∇̃ρ(Kσµ −Khσµ) = 0, (6.12b)

LvKµν = −2Kµ
ρKρν +KKµν −

2

d− 1
Λ̃hµν , (6.12c)

where, for the last EOM (6.11), we used the Lie derivative identity (5.59) to get the form (6.12c).
Before we move on, let us check that the EOM are boost invariant. The EOM (6.12a) and

(6.12c) are easily seen to be invariant under boosts, because they only consist of Carroll invari-
ants. The second constraint (6.12b) is not so straightforward and requires a little computation

δλ[hρσ∇̃ρ(Kσµ −Khσµ)] (6.13)

= vρλσ∇̃ρ(Kσµ −Khσµ)− hρσδΓ̃λρσ(Kλµ −Khλµ)− hρσδΓ̃λρµ(Kσλ −Khσλ)

= 2Λ̃λµ +Kλν(Kµν −Khµν)− (λλK − λσKσ
λ)(Kλµ −Khλµ)

− (λσKλ
µ −Kσλλµ)(Kσλ −Khσλ)

= 0.

In the above, we for the second equality used the EOM (6.8) along with the transformation (3.24),
and for the third equality we used (6.12a). Hence, we see that the vacuum EOM (6.12a), (6.12b)
and (6.12c) are all invariant under boosts, as they must, because they derive from the Carrollian
invariant Lagrangian (4.44).

The LO vacuum EOM (6.12a), (6.12b) and (6.12c) somewhat resemble (5.26a), (5.26b)
and (5.26c) of the 3+1 decomposition. The LO EOM are in particular susceptible to a similar
initial-value problem interpretation with dynamical variables (hµν ,Kµν) (position and velocity)
and vµ dictating how spatial points are embedded in the Carrollian spacetime. The equa-
tions (6.12a) and (6.12b) resemble the Hamiltonian and momentum constraints, respectively,
and can be understood as constraints that have to be satisfied for the initial data to be valid.
Because the constraint equations are similar in structure to those of the 3+1 decomposition, we
can employ some of the same methods to construct initial data. We will pursue this idea in
section 6.4

The evolution equations of the initial-value problem are (6.12c) along with the definition of
the extrinsic curvature i.e.

Lvhµν = −2Kµν , (6.14)

which gives the Lv-derivative or “time” derivative of the dynamical variables. Importantly,
neither evolution equation contains spatial derivatives, and thus we conclude that points on
different integral lines of vµ cannot affect each other and evolve separately. This confirms the
interpretation that at LO the light-cone has collapsed, and spatially separated points are causally
disconnected.
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Mathematically, this means that the evolution equations are ordinary differential equations
(ODEs) rather than partial differential equations (PDEs), which offers an enormous simplifica-
tion as compared to GR. In particular, this means that we can analytically solve the evolution
equation for a large class of Carrollian spacetimes, which we will investigate in section 6.3.

6.2.1 Consistency of the constraint equations

For (6.12a)-(6.12c) to be a complete self-consistent set of equations, we need to check that
the constraints are conserved under the time evolution of (6.12c). That is, we assume that
the evolution equation (6.12c) holds everywhere and then compute the Lie derivative of the
constraints along vµ. For the constraint (6.12a) the computation is straightforward

Lv(KµνKµν −K2 + 2Λ̃) = vρ∇̃ρ(KµνKµν −K2) = 2vρ(Kµν∇̃ρKµν −K∇̃ρK)

= 2Kµν

(
KKµν −

2

d− 1
Λ̃hµν

)
− 2K

(
K2 − 2d

d− 1
Λ̃

)
= 2K(KµνKµν −K2 + 2Λ̃), (6.15)

where we used ∇̃ρ(KµνKµν) = 2Kµν∇̃ρKµν for the first equality and the trace form of the
evolution equation (6.10) for the third. Hence, we see that the constraint (6.12a) is preserved
under time evolution i.e. if (6.12a) is satisfied at time t then it is also satisfied at time t+ δt.

In principle, the calculation for the second constraint (6.12b) follows in the same manner,
but it is more technically challenging due to the covariant derivative. Thus, we want to connect
to the Ward identity (6.3), which we can do by recalling that the constraint (6.12b) can be

written as hνµ
(2)

GvΛ
ν , where hµν ≡ hνρh

ρµ is the spatial projector, and noting the Lie derivative
identity

Lv(hνµ
(2)

GvΛ
ν ) = hνµv

ρ∇̃ρ
(2)

GvΛ
ν −Kµ

ν
(2)

GvΛ
ν + vρ

(2)

GvΛ
ρ vντνµ. (6.16)

Taking the spatial projection of the Ward identity (6.3) and substituting in (6.16), we obtain
the following expression for the Lv-derivative of the constraint (6.12b)

Lv(hνµ
(2)

GvΛ
ν ) = hνµ

(2)

GvΛ
ν K − ∇̃ν(hνρ

(2)

GhΛ
ρµ ) + vρ

(2)

GvΛ
ρ vντνµ. (6.17)

As we assume the constraints hold at a time t, the first and last term of the RHS of (6.17) clearly

drop out. However, the middle term also vanishes because
(2)

GhΛ
µν can be seen as a combination of

the evolution equation (6.12c), which vanishes by assumption, and the constraint (6.12a) that
we showed also vanishes everywhere (6.15).

6.2.2 LO Carroll gravity and classification by intrinsic torsion

In the light of the equation (6.12a), which is an algebraic constraint on Kµν , it is interesting to
revisit the classification of Carroll spacetimes by intrinsic torsion, as presented in section 3.1.2.
In particular, let us consider the LO EOM with Λ̃ = 0 and deduce the consequences of (6.12a).

(C0) Kµν = 0: This class trivially satisfies the LO EOM and is thus consistent with the leading
order theory.

(C1) K = 0: By the EOM (6.12a), we see that K = 0 implies Kµν = 0 because Kµν is purely
spatial, and hµν is positive definite on the spatial subspace. Thus, on-shell C1 implies C0.

– 55 –



6.3. SOLVING THE EVOLUTION EQUATION

(C2) Kµν = fhµν : That is, the extrinsic curvature is only trace Kµν = K
d hµν . However, this

contradicts (6.12a) for d > 1, as can be seen by contracting with Kµν . Consequently, we
cannot have C2 geometries in the LO vacuum theory.

(C3) Puts no restrictions on Kµν and is thus trivially consistent with the LO EOM.

Hence, we see that only the classes C0 and C3 are possible when considering the LO vacuum
theory. However, once one introduces matter (4.43a)-(4.43b), these considerations can become
invalid as matter, depending on the scaling in c, will appear as sources on the RHS of (6.12a)-
(6.12c). If we assume that the power counting for matter of the Galilean expansion [29] holds in
the Carroll limit, then many kinds of matter start at order c2 and spoil the above consideration
e.g. point particles and electromagnetism.

This is also unlike what one might expect from the results of the Galilean limit [29] where the
leading-order EOM directly corresponds to the G1 class of intrinsic torsion of Galilean structures
(see the classification in section 3.1.2). Further, as can be seen from (4.37) the Galilean LO EOM
is of order c6, and no reasonable Galilean expansion of matter starts at that order. Thus, the
geometric constraint of the LO EOM in the c → ∞ limit is a general property of all solutions
in non-relativistic gravity regardless of matter.

6.3 Solving the evolution equation

To explicitly solve the evolution equation (6.12c), we need to choose a partially adapted coor-
dinate system. In particular, we want to construct a coordinate system (t ≡ x0, . . . , xd+1) such
that the Carrollian vector field is parallel to the t-direction i.e. v ∼ ∂t. One can always choose
such coordinates, at least locally [51]. Hence, this construction can be made without loss of
generality. More precisely this means that the vector field v has the form

v = e−
H
2 ∂t, vµ = (e−

H
2 , 0, . . . , 0), (6.18)

where H can be interpreted as a sort of Carrollian lapse function. The precise form of (6.18)
is chosen to match the coordinates used by Dautcourt in [32], which also facilitates comparison
between the results of this thesis and Dautcourt, see section 6.5. Furthermore, the vector field
v defines a spatial subspace of T ∗M , and consequently spatial co-variant tensors e.g hµν and
Kµν cannot have non-zero dt-components. Thus, we will restrict the indices of these tensors to
run only over a, b, . . . = 1, . . . , d. In the following, we will also use the inverse spatial metric as
hab, even though this in principle presupposes more structure i.e. a choice of τµ. However, if
all indices of hab are always contracted with a spatial co-variant tensor, then any ambiguity is
projected out.

First, we determine the extrinsic curvature in these coordinates where we can immediately
restrict the indices to be spatial

Kab = −1

2
Lvhab = −e

−H
2

2
L∂0hab = −e

−H
2

2
ḣab. (6.19)

Here, the over-dot ḟ denotes differentiation with respect to t. The Lie derivative of the extrinsic
curvature works out in much the same way,

LvKab = −e
−H

2

(
ḧab −

Ḣ

2
ḣab

)
. (6.20)
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Using the rewritings (6.19) and (6.20), we obtain the following form of the evolution equation
(6.12c)

ḧab +
1

2
ḣab(h

cdḣcd − Ḣ)− ḣachcdḣdb =
4

d− 1
Λ̃eHhab. (6.21)

From the form (6.21) we clearly see that the evolution equation indeed is an ODE. Further, we
note that the function H represents gauge freedom i.e. in the adapted coordinates we are free
to reparameterize the time variable t, which corresponds to a new choice of H.

6.3.1 Zero cosmological constant

If we consider the case of Λ̃ = 0, we already get a simpler ODE. To solve the problem, we first
need to choose a gauge. Considering (6.21), a natural choice seems to be

Ḣ = habḣab, (6.22)

which indeed offers a great deal of simplification as it removes all reference to the lapse function
H. With these choices, the problem (6.21) becomes

ḧab − ḣachcdḣdb = 0. (6.23)

We then contract with hca to obtain

0 = hcaḧab − hcaḣaehedḣdb = hcaḧab + ḣcaḣab =
d

dt
(hcaḣab), (6.24)

where we used ḣab = −hacḣcdhdb. Integrating (6.24), we get a first order ODE for hab

ḣab = hacC
c
b, (6.25)

with Cab being an integration constant. The equation (6.25) is a linear system of ODEs and is
thus solved by a matrix exponential

hab = Dac exp[tCcb], (6.26)

where exp[Aab] denotes the matrix exponential of the map Aab, and Dac is an additional matrix
of integration constant. Having solved for the general solution (6.26), we can impose some initial
conditions

hab(t = 0) = h0,ab, ḣab(t = 0) = ḣ0,ab, (6.27)

corresponding to an initial choice of spatial metric and extrinsic curvature. Finally, we solve
for the integration constants of (6.26), using (6.27) to obtain the solution to the initial value
problem

hab(t) = h0,ac exp[t hcd0 ḣ0,db] = h0,ac exp[−2t hcd0 K0,db], (6.28)

where we expressed the solution in terms of the extrinsic curvature (6.19) at t = 0. Despite
appearances, the solution (6.28) is a symmetric tensor due to the following matrix calculation[

AeA
−1B
]T

= eBA
−1
A = eAA

−1BA−1
A = AeA

−1B, (6.29)

where A and B are symmetric matrices, and we used the identity AeBA = eABA. Under
boost transformations, the solution (6.28) is invariant because the only object that transforms is
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hcd0 , but it is fully projected with spatial co-variant tensors. Also, note that there is an implicit
dependence on the spatial coordinates in (6.28) i.e. every point in space evolves along an integral
line of vµ according to its own matrix exponential.

With the solution at hand, we can also deduce the consequences of our gauge choice (6.22)

Ḣ = hab(t)ḣab(t) = hab0 ḣ0,ab. (6.30)

Integrating this again yields an integration constant, which can be set to zero using the remaining
gauge freedom i.e. H(t = 0) = 0. This yields

H(t) = −2t hab0 K0,ab. (6.31)

Thus, we see that for any vacuum initial data of LO Carroll gravity, the evolution equation
(6.12c) can be solved in terms of a matrix exponential.

6.3.2 Non-zero cosmological constant

We will now extend the methods of the previous section to include the case of Λ̃ 6= 0. We again
consider the gauge choice (6.22) and the hab contraction of (6.21)

d

dt
(hacḣcb) = κeHδab , (6.32)

where we defined the constant κ ≡ 4Λ̃
d−1 . Initially, it seems that we are stuck, as we have not been

able to eliminate the unknown function H. However, if we trace (6.32), we obtain an equation
for H

Ḧ = dκeH . (6.33)

It is always possible to solve (6.33), but it does not depend in a simple way on the initial
conditions. Thus, the explicit solution is omitted here. With this, we can solve for H using
H(t = 0) = 0 (arbitrary gauge choice) and Ḣ(t = 0) = hab0 h0,ab (as follows from (6.22)) and
reinsert into (6.32). Because the expression on the RHS of (6.32) is now a known function of t,
we can solve it using basically the same steps as for (6.24). Specifically, to obtain the time
evolution of the spatial metric, we need to determine a function F (t) satisfying

F̈ = κeH , F (t = 0) = 0, Ḟ (t = 0) = 0, (6.34)

which is computed by direct integration, because eH is now a known function of t. With these
components, it easy to verify that the full solution to (6.21) for initial data (6.27) is

hab(t) = h0,ac exp[−2t hcd0 K0,db]e
F (t). (6.35)

We conclude that also for a non-zero cosmological constant we are able to solve the LO evolution
analytically.

6.3.3 On the existence of oscillatory solutions to the LO theory

In the previous two subsections, we have seen that the possible time evolution in the LO vacuum
theory is very limited. That is, we can always choose coordinates such that solutions can be
brought on the form (6.28) or (6.35) depending on the presence of a cosmological constant Λ̃.
An important class of physical solutions of GR is gravitational waves, and a natural question
is then if the vacuum LO theory allows for solutions that oscillate in the time coordinate t? A
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priori, the solutions (6.28) and (6.35) do have the potential to produce such oscillatory solutions
if the matrix in the exponent has any imaginary eigenvalues.

To determine whether hac0 ḣ0,cb has any imaginary eigenvalues, we temporally switch to matrix
notation according to

h0,ab → h0, hab0 → h−1
0 , ḣ0,ab → ḣ0. (6.36)

The matrices h0, h
−1
0 , ḣ0 are all symmetric and h0, h

−1
0 are positive definite. Due to h0 > 0,

we have a unique positive square root h
1/2
0 satisfying h0 = h

1/2
0 h

1/2
0 and likewise for h−1

0 . With
these properties in mind, we can rewrite the matrix of interest as

h−1
0 ḣ0 = h

−1/2
0 (h

−1/2
0 ḣ0h

−1/2
0 )h

1/2
0 . (6.37)

The rewriting (6.37) shows that h−1
0 ḣ0 is similar to the matrix h

−1/2
0 ḣ0h

−1/2
0 , and thus they have

the same eigenvalues. Furthermore, it is easily seen that h
−1/2
0 ḣ0h

−1/2
0 is symmetric and hence

by the spectral theorem has real eigenvalues.
The above linear algebra argument demonstrates that it is not possible to get an oscillatory

behavior from the matrix exponentials of (6.28) and (6.35). The solution for non-zero cosmo-
logical constant (6.28) also contains the function F (t). However, F (t) is readily seen to be a
monotone function from its definition (6.34). Hence, we must conclude that the solutions (6.28)
and (6.35) of the vacuum theory do not contain any oscillatory solutions.

6.4 Initial data for Carroll gravity

The Carroll constraint equations (6.12a) and (6.12b) are very similar to those of the 3+1 decom-
position. In particular, it turns out that (6.12b) takes the exact same form as the momentum
constraint (5.26b), while (6.12a) is a simplified version of the Hamiltonian constraint (5.26a), as
the 3-Ricci scalar is suppressed in the c→ 0 limit cf. (5.55a). Thus, it is interesting to ask if one
can adapt the methods for creating initial data in 3+1 decomposition outlined in section 5.2.
This is indeed the case, and we will see that the Bowen-York type solutions can be analytically
solved for the 3-metric in LO theory as opposed to the relativistic case (section 5.2.2) where one
still has to solve a non-linear PDE for ψ.

In this section, we will again be working in adapted coordinates (6.18). However, for the
3+1 formulation methods to make sense, we further need to assume a foliation such that we can
prepare the initial data on a specific time slice. That is, in these coordinates we can spatially
project both co-variant and contra-variant tensors by restricting the index to a, b, . . . = 1, . . . d.
In this section, the particular forms of the timelike vielbeine vµ, τµ are of no direct interest,
as they govern time evolution and define the spatial vector subspace, respectively. Also, the
methods described in this section build on section 5.2. Thus, the results stated hold only for
d = 3.

6.4.1 Conformal traceless-transverse decomposition

The conformal decomposition of the spatial Carroll objects proceeds completely analogously to
section 5.2.1. Specifically, we again define conformally related 3-metric and extrinsic curvature

hab = ψ4h̄ab, Kab = ψ−2Āab +
1

3
habK. (6.38)

Along with the 3-metric h̄ab, we again get an associated Levi-Civita connection ∇̄, which inherits
all the nice properties described in section 5.2.1. We want to identify the covariant derivative in
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equation (6.12b) with a spatial covariant derivative to match it with the momentum constraint
(5.26b). This identification holds because all differences between the Γ̃-connection and the Levi-
Civita connection vanish when fully spatially projected (cf. argument above (5.57)). Also, we
can observe that (6.12b) is spatial i.e. annihilated by vµ. Hence, the ∇̃-derivative in (6.12b) is
indeed fully spatially projected. With these facts, it is clear that we can equivalently use the
spatially projected ∇̃-derivative or the ∇̂-derivative in (6.12b).

Using the definitions and results of the 3+1 decomposition presented in section 5.2.1 (swap-
ping γab → hab), we are in a position where we can write down the LO Carroll vacuum constraint
equations (6.12a) and (6.12b) in a conformally decomposed form

(L̄Xab + ĀTT
ab )(L̄Xab + ĀabTT)− 2

3
K2ψ12 = 0, (6.39a)

∆̄LX
a − 2

3
ψ6∇̄aK = 0, (6.39b)

where we further used the traceless-transverse decomposition Āab = L̄Xab + ĀTT
ab . Compar-

ing (6.39a) and (6.39b) to the conformally decomposed 3+1 constraints (5.40a) and (5.40b) in
vacuum, it is again observed that the Hamiltonian constraint is simplified to (6.39a) by the van-
ishing of the curvature term, while the momentum constraint agrees with (6.39b). As discussed
in section 6.2, we can only have solutions with non-zero extrinsic curvature to the LO theory if
the mean curvature K is non-zero due to the constraint (6.12a). Thus, we assume K 6= 0, which
allows us to solve (6.39a) for ψ in terms of the traceless part Āab

ψ =

[
3

2K2
(L̄Xab + ĀTT

ab )(L̄Xab + ĀabTT)

]1/12

, (6.40)

where indices are raised and lowered using h̄ab. Note that it is not possible to explicitly solve
the relativistic counterpart of (6.40) as the equation only becomes algebraic in the UR limit.
The solution for ψ can then be reinserted into (6.39b) to get a single equation for Xa. This is
of course a simplification as compared to the relativistic equations, but the remaining equation
for Xa is still a highly non-linear elliptic PDE, which does not admit an analytical solution.

6.4.2 Bowen-York type solutions

The equation (6.39b) does, however, become tractable if we consider a solution with hab confor-
mally related to the flat metric and K = const. such that (6.39b) completely decouples from ψ.
This is of course very similar to the setup for the Bowen-York initial data (5.43), but there is
a conceptual difference in the interpretation of choosing the value of K. In the 3+1 formalism,
K = 0 is a gauge choice, that is we can always get K = 0 by choosing a maximally slicing
foliation [48]. On the other hand, K in the Carroll theory is gauge invariant and consequently
observable. Thus, fixing its value specializes our survey to a subset of solutions.

Having this in mind, we can mimic the free data of the Bowen-York relativistic solutions,
but with a non-zero constant K

h̄ab = δab, ĀTT
ab = 0, K = K0, (6.41)

With these choices, the equation (6.39b) becomes the same equation as in the relativistic case
(5.45) i.e.

∂b∂bX
a +

1

3
∂a∂bX

b = 0. (6.42)
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Because the equations are the same as in the 3+1 decomposition, we can reuse the Bowen-York
family of solutions (5.46). Furthermore, we can compute the traceless part of the conformally
related extrinsic curvature acting with the conformal Killing operator (5.39) on the Bowen-York
solution Xa (5.46)

L̄Xab =
3

2r3

[
xaP b + xbP a −

(
δab − xaxb

r2

)
Pcx

c

]
+

3

r5

[
εacdJcx

dxb + εbcdJcx
dxa
]
, (6.43)

with r =
√
δabxaxb. Unlike in the relativistic problem, this immediately gives the solution for

ψ through (6.40), which completes the initial data:

ψ =

[
3

2K2
L̄XabL̄X

ab

]1/12

, h0,ab = ψ4δab, K0,ab = ψ−2L̄Xab +
1

3
ψ4δab. (6.44)

As we have shown that the LO evolution equations (6.12c) can be solved in terms of matrix
exponentials (6.28), we can use this result to write down a family of full spacetime solutions
corresponding to the Bowen-York type initial data. In particular, the function H in (6.31) takes
the form

H(t) = −2t hab0 K0,ab = −2K0t, (6.45)

where Āab does not contribute because it is traceless. We can then write out the full time-
dependent solution using (6.28) and (6.18)

vµ = e−
H
2 ∂t = eK0t∂t, (6.46a)

hab(t) = h0,ac exp[−2t hcd0 K0,db] = ψ4δac exp
[
−2t ψ−6L̄Xc

b

]
e−

2t
3
K0 , (6.46b)

where the indices of L̄Xab are lowered using δab. Thus, for a given set of parameters (Pa, Ja),
one can construct a Bowen-York type solution to the LO vacuum theory using (6.46a) and
(6.46b). The above construction of Bowen-York type solutions exemplifies the simplification
that the LO equations present: In the relativistic problem, neither the Hamiltonian constraint
nor the evolution equation can be solved, while for the LO analog we can solve the entire set of
equations.

Finally, we can consider (6.44) to conclude that ψ−6 ∼ (L̄Aab)−1, which implies that the
exponent of (6.46b) is of order r0 for large r. Hence, the entire scaling for large r comes from the
ψ4 factor in (6.46b), which falls off as either r−4/3 or r−2 depending on the parameters, as can be
deduced from (6.43) and (6.44). In particular, this implies that the spatial metric hab vanishes
at spatial infinity, as opposed to being some sort of asymptotically flat Carroll geometry.

6.5 Comparison to Dautcourt

In the paper [32], Dautcourt performs an ultra-relativistic limit of GR from the EOM i.e. the
Einstein equation. In doing this, Dautcourt chooses adapted coordinates corresponding to (6.18)
along with a choice of spatial subspace, as in section 6.4. We have already derived the evolution
equation in these coordinates (6.21). To make the connection to Dautcourt’s notation, we also
rewrite the constraint equations (6.12a)-(6.12b) in adapted coordinates using the form (6.19)
of the extrinsic curvature and set Λ̃ = 0. In particular, we find the following set of equations
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corresponding to (6.12a), (6.12b) and (6.12c), respectively

ḣabḣ
ab + (habḣab)

2 = 0, (6.47a)

hbcḣbc|a − hbcḣba|c −
1

2
H,ah

bcḣbc +
1

2
H,bh

bcḣca = 0, (6.47b)

ḧab +
1

2
ḣab(h

cdḣcd − Ḣ)− ḣachcdḣdb = 0. (6.47c)

Note that here comma denotes partial derivative and stroke denotes the Levi-Civita covariant
derivative associated with hab. The equations (6.47a)-(6.47c) are to be compared with (25)-
(27) of [32]. The EOM (6.47a) and (6.47c) are in agreement with the findings of Dautcourt.
However, the equation (6.47b) differs by the term marked with a bracket as compared to the one
presented in [32]. This missing term leads Dautcourt to conclude that to obtain a consistent set
of equations one must impose an additional constraint. This is in contrast to the EOM (6.47a)-
(6.47c), as we have shown their consistency in section 6.2.1. In the paper [32], Dautcourt further
considers dust matter for which the analysis also needs to be altered to take into account the
extra term in (6.47b).

6.6 Boundary charges

A convenient way of characterizing solutions to gravitational theories are boundary charges that
e.g. in GR, allows one to ascribe a mass and angular momentum to a black hole as seen by a
distant observer. One can also use the existence of non-zero boundary charges to conclude that
solutions are not pure gauge. Thus, in this section we shall derive the boundary charges for the
LO Carroll theory.

As described in appendix C, the covariant phase space formalism supplies an elegant and
fully covariant way of deriving boundary charges for gravitational theories. From an operational
point of view, we need to compute a number of quantities to derive the diffeomorphism charge
integrand k[µν] corresponding to the LO action (4.44). Specifically, we have to calculate the
presymplectic potential Θµ (C.12), the current related to Noether’s second theorem Sµ (C.15),
the current Mµ (C.11) and the Noether-Wald charge Q[µν] (C.14).

6.6.1 The Noether-Wald charge

To determine the pre-symplectic potential, we use the defining relations (C.12). That is, we
need to recompute (4.45) and keep track of total derivatives

δ
(2)

LLO ≡
e

8πGN

[
(2)

Gvµδv
µ +

1

2

(2)

Ghµνδh
µν

]
+ ∂µΘµ (6.48)

= (. . .)µδv
µ + (. . .)µνδh

µν +
e

8πGN

[
(Khνµ −Kν

µ)∇̃νδvµ −
1

2
(Khµν −Kµν)vρ∇̃ρδhµν

]
,

where the ellipses (. . .) signify terms with no derivatives of δvµ or δhµν . We then use the
integration-by-parts identity (3.28) to write the last term as a total derivative and identify

Θµ =
e

8πGN

[
(Khµν −Kµ

ν)δvν − 1

2
(Khσρ −Kσρ)v

µδhσρ
]
. (6.49)
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We also compute the pre-potential evaluated on a diffeomorphism ξµ i.e. δvµ = Lξvµ and
δhµν = Lξhµν

Θµ
ξ =

e

8πGN

[
(Kµ

ρKρσ −KKµ
σ)ξσ + (K2 −KρσKρσ)vµτνξ

ν
]

(6.50)

+
e

8πGN

[
2Kv[µ∇̃νξν] + 2v[νKµ]

ρ∇̃νξρ
]
.

To derive the Sµξ current, we need to determine the total derivative (C.15) arising when com-
puting the diffeomorphism Ward/Noether identity. Hence, we repeat the steps that lead to
(6.2)

1

8πGN

[
(2)

GvµLξvµ +
1

2

(2)

GhµνLξhµν
]
≡ (. . .)µξ

µ + +∂µS
µ
ξ (6.51)

= (. . .)µξ
µ +

e

8πGN
∇̃µ
[

1

2
(K2 +KρσKρσ)ξµ + (KρσKρστνv

µ −KKµ
ν)ξν

]
+

e

8πGN
∇̃µ
[
2v[νhµ]σξρ∇̃νKσρ + 2v[µξν]∇̃νK

]
,

where the ellipses (. . .)µ denote the terms with no derivatives of ξµ i.e. the Ward identity (6.2).
Again using the identity (3.28), we can read off the current

Sµξ =
e

8πGN

[
1

2
(K2 +KρσKρσ)ξµ + (KρσKρστνv

µ −KKµ
ν)ξν

]
(6.52)

+
e

8πGN

[
2v[νhµ]σξρ∇̃νKσρ + 2v[µξν]∇̃νK

]
.

Finally, we calculate the remaining current Mξ = ξ L

Mµ
ξ = ξµ

(2)

LLO =
e

16πGN
[KµνKµν −K2]ξµ, (6.53)

where we used the rule (A.8). This puts us in a position to calculate the Noether-Wald charge
(C.14) as

∂νQ
[µν]
ξ ≡Mµ

ξ −Θµ
ξ − S

µ
ξ

=
e

8πGN

[
2KKµ

νξ
ν −Kµ

ρK
ρ
ν −K2hµνξ

ν
]

(6.54)

− e

4πGN

[
v[νhµ]σξρ∇̃νKσρ + v[µξν]∇̃νK +Kv[µ∇̃νξν] + v[νKµ]

ρ∇̃νξρ
]
.

Equation (6.54) does not look like an exterior derivative, but using the derivatives of ξµ as a
guide and the formula (3.29) we can identify

Q[µν] =
e

4πGN
(v[µKν]

σξ
σ − v[µξν]K), (6.55)

which completes the derivation of the Noether-Wald charge.

6.6.2 Charge integrand for the LO theory

We have now derived all the necessary components to write down the charge integrand, which
is given by (C.27)

k
[µν]
ξ = −δhQµν + 2ξ[µΘ

ν]
h , (6.56)
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where δhQ is an on-shell variation of (6.55) and Θµ
h is (6.49) evaluated with the same on-shell

variation. This allows us to define a charge

/δHξ =

∫
S
kµν(dd−1x)µν , (6.57)

where S is some co-dimension 2 surface and the differential (dd−1x)µν is defined in (A.5). We
will take S to be a sphere at infinity as that is typically the only natural surface in the problem.
The notation /δ serves to remind us that the charge is not necessarily integrable. The charge Hξ

is conserved by the fundamental theorem of covariant phase space formalism (C.22) if

δvµ = Lξvµ = 0, δhµν = Lξhµν = 0, (6.58)

such that the pre-symplectic form vanishes. Considering the results on Carrollian Killing vectors
of section 2.4.3, one would expect Lξhµν = 0 to be a sufficient condition for conservation. This
is indeed the case, which can be seen by the following computation

Lξhµν = hµσhσρLξhρν − vµτρLξhρν = −hµσhνρLξhσρ + 2v(µhν)ρLξτρ (6.59)

= −hµσhνρLξhσρ + 2v(µλν),

where we defined λµ = hµνLξτν . Equation (6.59) shows that if Lξhµν = 0 then Lξhµν is only
a gauge transformation (2.48d), which should be in the kernel of the pre-symplectic form. One
can show by direct computation that this is the case, and consequently Hξ is a conserved charge
when

Lξvµ = 0, Lξhµν = 0, (6.60)

which coincides with the definition of Carrollian Killing vectors (2.102a)-(2.102b). One can
also partially relax the criteria (6.60) to include so-called asymptotic symmetries such that the
Carrollian Killing equations only have to vanish in an asymptotic sense at spatial infinity. For
asymptotic symmetries it is important that the surface S, which we integrate over in (6.57), is
chosen to be at infinity.

As the Carroll geometry automatically supplies us with the vector field vµ, one may wonder
if we can have an associated charge Hv. For the charge to be conserved, we need to have (6.60)
satisfied: Lvvµ is identically zero, while the second condition translates to Kµν = 0. However,
all terms in the charge integrand kµνξ are proportional to Kµν , and we thus conclude that we can
not have a non-zero conserved charge associated with vµ. This can be interpreted as the absence
of a charge associated with time translation. In a relativistic theory, the time translation charge
would be contributed to mass or energy. Thus, we conclude that the LO theory does not contain
a notion of Carrollian mass or energy. As we will see in section 6.7.2, we can on the other hand
have Carrollian versions of both linear and angular momentum.

6.7 Examples of Carroll spacetimes

We will in this section consider several solutions to the LO vacuum theory using the methods
developed in the previous sections.

6.7.1 Ultra-relativistic Schwarzschild black hole

In this chapter, we have presented methods to directly solve the LO EOM. However, maybe the
simplest way to obtain solutions to the Carroll theory to any order is by expanding a solution of
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the full Einstein equations. If we can write a GR vacuum solution in the PUR decomposed form
(4.18a)-(4.18b), such that the PUR variables start at order c0 and are analytic in c2, then the
PUR variables can be expanded in c2 to obtain the Carrollian data according to the expansions
(4.10a) and (4.15b).

To obtain a simple example of a solution to LO theory, we can consider the relativistic
Schwarzschild metric with factors of c reinstated

ds2 = −c2

(
1− 2GNm

c2r

)
dt2 +

(
1− 2GNm

c2r

)−1

dr2 + r2dΩ2, (6.61)

where dΩ2 is the metric on the round 2-sphere. The metric (6.61) does not immediately admit
an expansion, because what is to be identified with Tµ and Πµν is not analytic in c2. The
expansion, in the sense of (4.18a), does however exist if we take the c→ 0 limit with M = mc−2

kept constant. This can be understood as keeping the position of the “event horizon” fixed
rather than sending it to infinity. Substituting the mass, we see that the expansion terminates
after LO, leaving only

vµ∂µ =

(
1− 2GNM

r

)−1/2

∂t, (6.62a)

hµνdx
µ ⊗ dxν =

(
1− 2GNM

r

)−1

dr2 + r2dΩ2. (6.62b)

From this, it is easily seen that Kµν = 0, and consequently all the LO EOM are trivially
satisfied. Furthermore, as the expansion terminates after LO, the partial NLO EOM (4.64a)-
(4.64b) should be satisfied. This is indeed the case and is easily observed once one calculates
that

R̃µν = 0, ∇̃ρ(hρντµν) = 0, hµρhνστρσ = 0, (6.63)

which follows by direct calculation from (6.62a) and (6.62b).
It is interesting to compare this with the non-relativistic limit c−1 → 0 as considered in

[29, 30]. In the NR limit, the original scaling, m kept constant in c, realizes a weak-field limit
because the singular structure is suppressed by factors of c−2 i.e. the event horizon is pulled in
to r = 0 rather than pushed to r = ∞. Using the same scaling as above, that is M = mc−2

constant, has the opposite effect in the NR limit and can be understood as a strong field limit.
One might then also call the Carrollian limit above a strong field limit, as it fixes the position

of the singular structure. Additionally, we can also get a Carrollian weak field limit by further
suppressing the mass by keeping M ′ = mc−4 constant which at LO would be the flat Carrollian
structure (2.92).

6.7.2 Bowen-York type solutions

As an example of the Bowen-York type solutions described in section 6.4.2, we here work out a
simple example. Specifically, we can consider the parameters Pa = (0, 0, 0) and Ja = (0, 0, s) for
which the matrix exponential of (6.46b) can be explicitly computed. As this choice of parameters
singles out the z-axis, it is convenient to go to standard spherical coordinate (t, r, θ, φ) in which
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the solution (6.46b) takes the form

vµ = eK0tδµt , (6.64a)

hµν = 3e−
2K0t

3

(
s sin θ

K0

)2/3


0 0 0 0

0
cosh

2K0t√
3

r2
0 −

sin θ sinh
2K0t√

3

r
0 0 1 0

0 −
sin θ sinh

2K0t√
3

r 0 sin2 θ cosh 2K0t√
3

 . (6.64b)

The metric data (6.64a)-(6.64b) can be checked to satisfy the LO EOM (6.12a), (6.12b) and
(6.11).

Based on the interpretation of the relativistic Bowen-York solutions, we expect (6.64a)-
(6.64b) to carry some kind of angular momentum about the z-axis. The solution does indeed
possess a Carrollian Killing vector generating the rotation around the z-axis, that is

L−∂φv
µ = 0, L−∂φhµν = 0, (6.65)

where the sign is a conventional choice. As this is the conservation criteria for (6.60), we can
go ahead and compute the charge integrand (6.56) associated with the Carrollian Killing vector
−∂φ

k−∂φ = δs
3 sin3 θ

8πGN
dθ ∧ dφ. (6.66)

Further, we can integrate over a 2-sphere at infinity to obtain the variation of the boundary
charge

/δH−∂φ =

∫
S2

k∂φ =
δs

GN
. (6.67)

The charge (6.67) is clearly integrable yielding

H−∂φ =
s

GN
, (6.68)

which is conserved in time. This computation shows that the parameter s can be interpreted
analogously to the relativistic case in that it corresponds to some notion of Carrollian angular
momentum.

One can equivalently consider a solution with Pa 6= 0 in which case one would expect to find
a linear momentum charge. To compute such a charge, one needs to consider the Cartesian basis
vectors (∂x, ∂y, ∂z) as the generators of translations. These are only Carrollian Killing vectors
in the asymptotic sense and their Lie derivatives (6.60) do not vanish in the bulk, but only at
the boundary. However, if one integrates the charge integrand over a sphere at infinity, one does
indeed recover the parameters Pa

GN
as the asymptotic symmetry charges associated with −∂a.

6.7.3 Positive cosmological constant

As a further example of the solvability of LO theory, we will now consider time evolution with a
positive cosmological constant of spatially isotropic and homogeneous initial data. Specifically,
we choose Cartesian coordinates and the initial metric and extrinsic curvature to be

h0,ab = δab, K0,ab = −hδab, (6.69)
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where δab is the flat metric. We can check that the initial data is consistent by calculating

Kab
0 K0,ab −K2

0 = −2
d(d− 1)

2
h2, (6.70)

which shows by comparison to (6.12a) that (6.69) corresponds to Λ̃ = d(d−1)
2 h2 > 0. The second

constraint (6.12b) is trivially satisfied, as the spatial covariant derivative coincides with the
partial derivative for (6.69) and hence annihilates the constant components. Note that we could
not have prepared initial data for a negative cosmological constant analogous to (6.69), because
the RHS of (6.12a) is always negative when h0,ab and K0,ab are proportional to δab.

As the initial data (6.69) is valid, we can go on and apply the methods of section 6.3.2 to
obtain the time evolution. First, we seek the solution to the ODE for H (6.33), which works
out to be

H(t) = −2 log [1− dht] . (6.71)

With the lapse function H(t), we can go on to compute the auxiliary function F (t) using (6.34)

F (t) = −2
dht+ log(1− dht)

d
. (6.72)

Having determined both H(t) and F (t), we can write down the time evolved solutions using
(6.18) and (6.35)

v = (1− dht)∂t, hab(t) =
1

(1− dht)2/d
δab. (6.73)

The solution (6.73) corresponds to a spatially isotropic and homogeneous space with a positive
cosmological constant. Thus, one may wonder if this is connected to a limit of de Sitter space.
The answer is affirmative, and this can be seen if we reparameterize time such that v = ∂t′ . In
particular, we need to find a new time coordinate t′ that satisfies

dt′

dt
= eH(t)/2, t′(t = 0) = 0, (6.74)

where the initial condition is an arbitrary choice. The ODE (6.74) can easily be solved to find

t =
1− e−dht′

dh
. (6.75)

Finally, we can transform the solution (6.73) into these coordinates where it takes the simple
form

v = ∂t, hab = e2htδab, (6.76)

and we dropped the primes on t′. This is exactly the Carrollian structure we would have found
if we considered the de Sitter metric in planar coordinates

ds2 = −c2dt2 + e2htdxidxi, (6.77)

where we have chosen the cosmological constant to scale as Λ = d(d−1)
2

h2

c2
. Having this connection

to a maximally symmetric pseudo-Riemannian space in mind, it is interesting to investigate the
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Carrollian Killing vectors of (6.76). That is, we seek solutions to (2.102a)-(2.102b), which result
in the following Carrollian Killing vectors

Pa = ∂a, (6.78a)

Jab = xb∂a − xa∂b, (6.78b)

H = ∂0 − hxa∂a, (6.78c)

Ca = xa∂0 − hxaxb∂b + h
2x

bxb∂a, (6.78d)

where indices are raised and lowered using δab. By direct computation, one can show that
the Killing vectors (6.78a)-(6.78d) satisfy the Carroll algebra (2.5a)-(2.5c) in addition to the
following non-zero Lie brackets

[Pa, H] = −hPa, (6.79a)

[Ca, H] = hCa, (6.79b)

[Pa, Cb] = δabH + hJab, (6.79c)

where (6.79c) replaces (2.5d). These non-zero commutators parameterized by the cosmological
constant h (up to a multiplicative constant) look familiar to the de Sitter algebra. One can
indeed make a Carrollian contraction of the relativistic de Sitter algebra [52] analogous to the
procedure in section 2.1. However, the resulting Carrollian de Sitter algebra is distinct from the
algebra (6.79a)-(6.79c). This may be related to the fact that equivalent Lorentzian spacetimes
can become inequivalent in the c→ 0 limit if the coordinate transform is not analytic in c2. In
particular, the planar embedding coordinates for relativistic de Sitter space are not analytic in
the cosmological constant Λ−1, which implies non-analyticity in c2 due to Λ−1 ∼ c2.

The algebra (6.79a)-(6.79c) does appear in the classification [53] of spatially isotropic ho-
mogeneous spacetimes, cf. LP# 17 in table 5. Hence we can rightfully call the data (6.76) a
spatially isotropic homogeneous Carrollian manifold.
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Chapter 7

Conclusion and Outlook

In this thesis, we have studied Carrollian geometry and field theories from a number of per-
spectives. First, we reviewed the intrinsic construction of Carroll geometry from a gauging
procedure along with its emergence on null hypersurfaces in Lorentzian theories. We then an-
alyzed general aspects of classical Carrollian field theories through a fully covariant treatment
of Carrollian energy-momentum tensors and their relation to the canonical energy-momentum
tensor and Carrollian Killing vectors. We further reviewed the notion of intrinsic torsion, which
allowed us to advocate for a, in some appropriate sense, natural minimal torsion connection on
Carroll structures. We then carried out a novel small c expansion of the Einstein-Hilbert action
in powers of c2 to obtain a LO and NLO action principle for Carrollian gravity. Upon reviewing
the relativistic 3+1 decomposition, we established a new link between ultra- and non-relativistic
expansions of GR and the 3+1 formalism. Furthermore, we performed an original analysis of
the LO theory and demonstrated that the LO EOM realizes an ultra-local causal structure by
rendering the evolution equation of the theory an ODE. The simplifying causal structure ad-
ditionally allowed us to explore methods for analytically solving the LO theory. In particular,
we showed that the time evolution of the vacuum LO EOM is completely solvable in terms of
matrix exponentials. We then derived the boundary charges associated with diffeomorphism
symmetries for the LO action, which showed the absence of a notion of mass in terms of a time
translation charge. Finally, we presented a few solutions showcasing the solvability of the LO
theory and demonstrating the existence of linear and angular momentum in Carrollian gravity.

7.1 Outlook

One apparent direction to pursue is completing the NLO EOM (4.64b)-(4.64a) to include the
sub-leading fields Mµ and Φµν in some tractable form. This can be done either in general by
varying the NLO action (4.57) or through the 3+1 decomposition, as described in section 5.3.
However, one needs to be aware that in the 3+1 approach the NLO Frobenius condition (5.50)
has to be taken into account.

The Galilean expansion performed in [29] uses the same action expansion methods employed
in chapter 4, hence it would be interesting to apply 3+1 methods in the large c limit. In
particular, the authors of [29] already impose the LO Frobenius condition τ ∧ dτ = 0 as it is the
LO EOM in the Galilean expansion, but it may be worthwhile to examine what simplification the
sub-leading Frobenius condition gives rise to. Finally, the methods for constructing solutions in
the LO Carroll theory may also have utility in the next-to-next-to-leading-order (NNLO) action
of the Galilean expansion as they are both order c2. This means that the LO Carroll action
studied in this thesis appears as part of the NNLO Galilean action.

Another interesting question is the role of mass and energy in the Carrollian expansion of
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the EH action. The analysis of section 6.6 shows that to leading order in c2, it is not possible
to attribute a non-zero charge to time translation. Thus, a concept of mass presumably enters
at sub-leading order in the action expansion. In particular, it would be interesting to carry out
the analysis of boundary charges for the NLO action (4.57) to determine whether concepts of
mass and energy arise at NLO.

It would also be helpful to fully understand the connection to the first-order formalism
approach in the previous work of Bergshoeff et al. [31]. In the Carrollian theory of gravity
presented in the paper by Bergshoeff et al., the EOM imply that Kµν = 0, and hence it is
clearly a distinct theory from the one presented in this thesis. This is presumably due to another
choice of scaling of the spin connection, which appears natural in the first-order formulation.
Nevertheless, it would be interesting to understand under which conditions the two expansions
can be identified. For a Galilean first-order expansion approach equivalent to the methods of
[29], which the methods in this thesis is built on, see [54].

The LO vacuum theory allows for the time evolution to be solved analytically and non-trivial
initial data to be constructed in closed form in terms of the Bowen-York type solutions. This
suggests that the LO Carrollian theory might be an interesting point to perturb around in GR.
The utility of such a “post-ultra-relativistic” expansion crucially depends on the complexity of
the lowest-order perturbation theory, i.e. the NLO theory. This would of course require that
we have the full NLO EOM, and hence we can only speculate on their complexity. Under the
assumption that a tractable perturbation theory can be developed, Bowen-York type solutions
would be interesting to perturb around because their relativistic counterpart in numerical rel-
ativity is a common method for constructing binary black hole initial data. Specifically, the
linearity of the constraint equation (6.42) allows for superposition. Thus, one can readily con-
struct LO Carroll solutions with multiple “Carrollian black holes” (recall that there is no concept
of mass at LO). One major conceptual issue is that the Carrollian causality of the LO theory
forces everything to be stationary, which does not seem easily reconcilable with the dynamics
expected from e.g. the scattering of black holes. Nevertheless, a post-ultra-relativistic expansion
would be an interesting direction to further explore the ultra-relativistic limit of GR.
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Appendix A

Differential Forms and Duality

From the variation of actions on a n-manifold, we often encounter expressions like

ω = ∂µX
µ dnx =

1

n!
∂µX

µεµ1...µndx
µ1 ∧ . . . ∧ dxµn , (A.1)

where ε is the Levi-Civita tensor density taking values −1, 0, 1. The object ω is a n-form, but
it is more efficiently represented by ∂µX

µ. Further, we can conclude that ∂µX
µ is scalar density

of weight −1 in order for ω to be a differential form. This suggests a construction much like
Hodge duality, but rather than relating p-forms to (n− p)-forms, we want to dualize p-forms to
totally anti-symmetric (n − p)-fold contravariant tensor densities. This construction does not
rely on a metric, only a top form. Hence this duality also applies to non-Lorentzian structures
unlike the Hodge duality.

To set up the formulae, we first remind ourselves of the identity

εµ1...µpνp+1...νnε
µ1...µpµp+1...µn = p!(n− p)!δ[µp+1

νp+1 . . . δµn]
νn . (A.2)

Using (A.2), we can easily see that any (n− p)-form can be written as

ωµp+1...µn =
1

p!
X [µ1...µp]εµ1...µpµp+1...µn , (A.3a)

X [µ1...µp] =
1

(n− p)!
ωµp+1...µnε

µ1...µpµp+1...µn . (A.3b)

We can also write out in an abstract form

ω = Xµ1...µp(dn−px)µ1...µp , (A.4)

where we defined

(dn−px)µ1...µp =
1

p!(n− p)!
εµ1...µpµp+1...µndx

µp+1 ∧ . . . ∧ dxµn . (A.5)

Note that if we combine (A.3a) and (A.4), then we get something that is consistent with usual
convention

ω =
1

p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp , ω ∈ Ωp(M). (A.6)

Another common operation we need is the exterior derivative, and how it acts in the dual
formulation. By direct application of the definitions and (A.2) on the dual of Xµ1...µp , we find

(dX)µ1...µp−1 =
n− p+ 1

p!(n− p+ 1)!
εµ1...µp−1µp...µn∂µpX

ν1...νpεν1...νpµp+1...µn = ∂µpX
ν1...νpδ[µ1

ν1 . . . δ
µp]
νp

= ∂µpX
µ1...µp−1µp . (A.7)
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Likewise, we can also do interior products with a vector ξ and Xµ1...µp representing a (n−p)-form

(ξ X)µ1...µp+1 =
1

p!(n− p− 1)!
εµ1...µp+1µp+2...µnξνp+1Xν1...νpεν1...νpνp+1νp+2...νn

=
(p+ 1)!(n− p− 1)!

p!(n− p− 1)!
ξνp+1Xν1...νpδ[µ1

ν1 . . . δ
µp+1]
νp+1

= (p+ 1)X [µ1...µpξµp+1]. (A.8)

Curiously, but maybe not surprisingly, the operational rules of the exterior derivative and interior
product switch in the dual formulation.
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Appendix B

Action Expansion Generalities

This appendix describes a general framework for an ultra-relativistic expansion of a relativistic
action following the approach for the non-relativistic expansion of [29]. We consider a theory
with dynamical fields φI governed by the Lagrangian L(φI , ∂µφ

I ;σ), and we want to expand in
orders of σ = c2. We assume that the fields φI are analytical in σ and their expansions start at
order σ0 i.e.

φI = φI(0) + σφI(2) + σ2φI(4) +O(σ3). (B.1)

The Lagrangian may have pre-leading orders of c, which we factor out

L = cN L̃, (B.2)

such that the Lagrangian L̃ starts at order σ0. We can then write down the Taylor series for L̃
as

L̃(σ) = L̃(0) + σL̃′(0) +
σ2

2
L̃′′(0) +O(σ3), (B.3)

where the prime denotes the total derivative

d

dσ
=

∂

∂σ
+
∂φI

∂σ

∂

∂φI
+
∂(∂µφ

I)

∂σ

∂

∂(∂µφI)
. (B.4)

This leads to the following expansion of L

L = cN
(N)

LLO + cN+2
(N+2)

LNLO +O(cN+4). (B.5)

In particular, we find that

(N)

LLO = L̃(0) = L̃(φI(0), ∂µφ
I
(0);σ = 0), (B.6a)

(N+2)

LNLO = L̃′(0) =
∂L̃
∂σ

∣∣∣∣∣
σ=0

+ φI(2)

∂
(N)

LLO

∂φI(0)

+ ∂µφ
I
(2)

∂
(N)

LLO

∂(∂µφI(0))

≈ ∂L̃
∂σ

∣∣∣∣∣
σ=0

+ φI(2)

δ
(N)

LLO

δφI(0)

, (B.6b)

where we integrated by parts to get to the last line, and δ
δφI

(0)

is the Euler-Lagrange derivative.

Notice that the factor multiplying φI(2) in (B.6b) is exactly the LO EOM. Thus, the NLO EOM
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of φI(2) is the LO EOM of φI(0). This phenomenon occurs at each level of the expansion where we
introduce new fields, but at the same time we reproduce all EOM of the previous levels. Written
out for the NLO level this means

δ
(N+2)

LNLO

δφI(2)

=
δ

(N)

LLO

δφI(0)

. (B.6c)

For the purposes of the this thesis, the unexpanded variables are φI = (Tµ,Πµν), while the LO
and NLO variables are φI(0) = (τµ, hµν) and φI(2) = (Mµ,Φµν), respectively.
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Appendix C

Covariant Phase Space Formalism

Conventionally, the Hamilitonian formalism nicely exposes the close relationship between sym-
metries and conserved charges [41]. However, the formalism critically depends on a privileged
time, thus for relativistic theories one has to choose a non-canonical time function and break
covariance. One solution to this problem is the covariant phase space formalism, which es-
tablishes the symplectic structure on the phase space manifold without giving up the manifest
covariance. Importantly, it can be used to compute charges associated with symmetry transfor-
mations through the so-called fundamental theorem of covariant phase space formalism. The
following review of the variational bi-complex is based on [55] and the subsequent derivation of
the fundamental theorem of covariant phase space formalism is based on [56].

C.1 Phase space and jet bundles

In order to develop a consistent framework to compute symmetry charges, it is convenient to
formalize the notion of varying with respect to a field. This can be done by considering a fiber
bundle E

πE→ M with some spacetime n-manifold M as base and typical fiber corresponding
to the target space of the dynamical fields. The idea is then to extend this to a so-called jet
bundle, which one then equips with two different exterior derivatives: d which acts as usual
and δ which formalizes what is meant by a variation. The following briefly explains the most
important objects and calculation rules:

• Jet bundle: The idea of a jet bundle is to extend the fiber bundle E
πE→M to a fiber bundle

J∞(E)
π∞→ M with typical fibers being not only the target space but also all its derivatives.

Thus, for a scalar field φ, a local coordinate chart looks like (xµ, φ, φµ, φµν , . . .), where the
subscripts indicate partial derivatives, which of course are totally symmetric.

• Contact structure: One can define the map j∞ : Γ(E)→ Γ(J∞(E)) that maps sections of
E to their corresponding jet i.e. all its derivatives. Forms that satisfy

[j∞(s)]∗ω = 0, (C.1)

for all sections s are known as contact forms. These can be thought of as forms measuring
the change in the field that does not stem from moving along the spacetime manifold. In
local coordinates for the scalar φ, the space of contact forms are spanned by

θµ1...µk = dφµ1...µk − φµ1...µkνdx
ν (C.2)

for any integer k. Thus, these measure what we usually think of as variations of a field.
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• (r, s)-forms: The space of vector fields on J∞(E) naturally splits into a vertical part
(annihilated by the projection push-forward (π∞)∗), which corresponds to what we usually
think of as variations, and a horizontal part (annihilated by all contact forms), which
represents usual spacetime vector fields extended to the jet bundle. A (r + s)-form that
is zero for more than r horizontal vectors and more than s vertical vectors is said to be a
(r, s)-form. This splits the vector space of p-forms into a direct sum of spaces of (r, s)-forms
such that r + s = p.

• Wedge products: As we split up the usual vector space of differential forms into a direct
sum, wedge products have the usual graded commutation i.e. for ω ∈ Ωr1,s1 , η ∈ Ωr2,s2

ω ∧ η = (−1)(r1+s1)(r2+s2)η ∧ ω. (C.3)

• Exterior derivatives: The exterior derivative d = d + δ on the jet bundle splits into a
“spacetime” d and a vertical δ satisfying

d2 = 0, dδ = −δd, δ2 = 0, (C.4)

which follows from d2 = 0

• Interior products: Vector fields on the jet bundle can be decomposed into horizontal
and veritcal parts. Interior products with vertical vector fields anti-commute with the
horizontal derivative and vice versa i.e. for ξ horizontal and X vertical we have

ξ δ = −δξ , X d = −dX . (C.5)

This also allows us to write down, what we usually think of as the variation of some
functional F [φ]

”δF” = Xφ δF, (C.6)

where Xφ is a vector field that specifies the actual variation.

• Lie derivatives: An equivalent statement of (C.5) is the Cartan’s magic formula for a
horizontal vector field ξ and a vertical vector field X, respectively

Lξω = d(ξ ω) + ξ dω, LXω = δ(X ω) +X δω. (C.7)

This further implies that the Lie derivative in general commutes with both d and δ i.e. for
any vector field X

[LX , d] = 0, [LX , δ] = 0. (C.8)

• The Interior Euler operator: When deriving the Euler-Lagrange equation, one has to
integrate-by-parts to find the equations of motion. This operation of integrating-by-parts
is formalized in the jet bundle by the interior Euler operator I(·) (one can write down an
explicit expression for it, but we do not need it). Importantly, it for ω ∈ Ωn,r satisfies

ω = I(ω) + dη, (C.9)

for some η ∈ Ωn−1,r. Further, it is a projection I2 = I and it annihilates horizontal, exact
forms I(dω) = 0. Finally, it also commutes with the Lie derivative along a vertical vector
field X

LXI(ω) = I(LXω). (C.10)
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C.2 Noether’s theorems

The fundamental theorem of covariant phase space formalism builds on Noether’s first and
second theorem. We consider a vertical vector field X in the jet bundle, which is said to be a
symmetry if it perseveres the Lagrangian form L ∈ Ωn,0 up to a total derivative

LXL = δ(X L)︸ ︷︷ ︸
=0

+X δL = dMX , (C.11)

where the first term is zero due to L being a (n, 0)-form, i.e. horizontal. We can also consider
the vertical derivative of the Lagrangian form

δL = I(δL)− dΘ = E(L)− dΘ, (C.12)

where we used the interior Euler operator I(·) to define the Euler-Lagrange form (or EOM)
E(L) and the pre-symplectic potential Θ. Note the unusual sign of dΘ, which is due to the fact
that the interior product with a vertical vector field anti-commutes with d. If we contract the
general δ-derivative with the symmetry X, we can equate (C.11) and (C.12) to find

X E(L)−X dΘ = dMX ⇒ d(MX −X Θ) = X E(L), (C.13)

where we pick up a sign when anti-commuting d and X . This is the statement of Noether’s
first theorem, i.e. we have a current JX = MX −X Θ associated with the symmetry X that
is conserved on-shell, E(L) = 0.

Where the first theorem applies to both global and local symmetries, the second theorem
regards only local symmetries. It establishes so-called Noether identities (or Ward identities)
which hold off-shell and hence render the EOM dependent. Thus, Noether’s second theorem can
be interpreted to say: local symmetry implies gauge. The part of the theorem we will use is that
the Noether current JX splits up in an exact part dQX and a part SX that vanishes on-shell

JX = SX + dQX ⇒ dQX = MX −X Θ− SX . (C.14)

The (n − 2)-form Q is called the Noether-Wald charge. To determine Sλ one contracts the
Euler-Lagrange form E(L) with the symmetry generating vector field Xλ parameterized by
some spacetime dependent function λ and performs integration-by-parts to obtain

Xλ E(L) = λ∆(L) + dSλ. (C.15)

The assertion ∆(L) = 0 are the aforementioned Noether identities.

C.3 Fundamental Theorem of the Covariant Phase Space For-
malism

We now specialize the gauge transformation to be diffeomorphisms. The diffeomorphisms, we
are considering, are only defined on the base manifold, and thus we need to extend it onto jet
bundle. This can be done in two ways: First, by the so-called total vector field

ξ = ξµ
∂

∂xµ
+ ξµφµ

∂

∂φ
+ ξµφµν

∂

∂φν
+ . . . , (C.16)

where ξµ are the components with respect to the base manifold coordinates. The total vector
field is horizontal and Lξ can be thought of as a usual Lie derivative. An alternate way of
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thinking about the change in a field under diffeomorphism is through a vector field Xξ that
corresponds to the vertical change due to a Lie derivative. If we for example consider a metric
field gµν as our degree of freedom, the form of Xξ is

Xξ = Lξgµν
∂

∂gµν
+ Lξ∂ρgµν

∂

∂(∂ρgµν)
+ . . . , (C.17)

where the Lie derivatives are computed with the usual spacetime formula evaluated on the jet
bundle coordinates gµν , ∂ρgµν , . . .. In particular, we have

Lξω = LXξω, (C.18)

that is, we can equivalently view the change under a diffeomorphism as a horizontal dragging ξ
or as the corresponding vertical change Xξ of the fields.

As the Lagrangian is a (n, 0) form, we have

LXξL = LξL = d(ξ L) + ξ dL = d(ξ L). (C.19)

Thus, we identify Mξ = ξ L. A final definition we need is the pre-symplectic form

ω = δΘ. (C.20)

Now it is straightforward to show the fundamental theorem of covariant phase space formalism

Xξ ω = Xξ δΘ = −δ(Xξ Θ) + LXξΘ (C.21)

= δ(Sξ + dQξ −Mξ) + LξΘ
= δSξ − dδQξ − δ(ξ L) + LξΘ
= δSξ − dδQξ + ξ δL+ LξΘ
= δSξ − dδQξ + ξ (E(L)− dΘ) + LξΘ
= δSξ + ξ E(L) + d(−δQξ + ξ Θ).

In the first and last line we used the two different Cartan magic formulas (C.7). We can then
contract with a vector field Xφ that stays on the “mass shell” i.e. LXφE(L) = 0 in addition to
evaluating the equality on-shell such that the first two terms on the RHS vanish

Xφ Xξ ω = d(Xφ δQξ + ξ Xφ Θ) = −dkξ. (C.22)

What we learn from the theorem is then that we have a current

kξ = −Xφ δQξ − ξ Xφ Θ, (C.23)

which is closed iff Xφ Xξ ω vanishes on-shell. We can further define a charge

/δHξ =

∫
S
kξ, (C.24)

with S is some surface of co-dimension 2 e.g. a 2-sphere at spatial infinity in 3+1 dimensions.
The /δ is used to emphasize that the charge Hξ is not necessarily integrable. By Stokes’ theorem
the charge Hξ is then conserved in time, provided dkξ = 0. There are further considerations to
be had about ambiguities having to do with adding closed forms to Θ for which we refer to [56].

From a more operational point of view, we can work exclusively with horizontal forms by
always considering the contractions with some undetermined vector field Xφ. As an example, if
we vary a Lagrangian L[φ] in the usual (commuting δ’s and d’s) sense

δL = (. . .)δφ+ ∂µΘµ
φ, (C.25)
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then the components Θµ correspond to

Xφ Θ = Θµ
φ(dn−1x)µ, (C.26)

with (dn−1x)µ defined in (A.5). Hence, the charge integrand k[µν] takes the form

k[µν] = −δhQµνξ + 2ξ[µΘ
ν]
h , (C.27)

where we used the interior product (A.8)

C.4 Charge integrand for GR

As an example, we will now compute k[µν] for Einstein gravity. The Lagrangian of GR is given
by the EH action (c = 1)

L =
1

16πG

√
−gR. (C.28)

Using standard variational identities (see e.g. [39]) we find that

δL =

√
−g

16πG

(
Rµν −

1

2
Rgµν

)
δgµν +

√
−g

16πG
∇ρ(gµνδΓρµν − gµρδΓνµν). (C.29)

If we further employ the equalities

√
−g∇µXµ = ∂µ(

√
−gXµ), δΓρµν = gρλ

(
∇(µδgν)λ −

1

2
∇λδgµν

)
, (C.30)

we can conclude that the pre-symplectic potential is given by

Θρ =

√
−g

16πG
[∇µδgµρ −∇ρ(gµνδgµν)] . (C.31)

We then specialize to diffeomorphism i.e. δgµν = Lξgµν = 2∇(µξν)

Θµ =

√
−g

8πG

[
∇ν∇(νξµ) −∇µ∇νξν

]
. (C.32)

To obtain Sµ we need to integrate-by-parts, as prescribed in (C.15) starting with the EOM and
δgµν = −2∇(µξν)

Eµν(g)δgµν =

√
−g

16πG
Gµν(−2∇(µξν)) =

√
−g

8πG
[∇µGµν︸ ︷︷ ︸

∆(g)=0

ξν −∇µ(Gµνξ
ν)] (C.33)

= − 1

8πG
∂µ(
√
−gGµνξν).

Thus, we find that the Noether identity is the contracted Bianchi identity, and

Sµ = −
√
−g

8πG
Gµνξ

ν . (C.34)

The Mξ-form is easily obtained using Mξ = ξ L or in components

Mµ
ξ = ξµL = ξµ

√
−gR

16πG
. (C.35)
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Before we can derive the Noether-Wald charge, we need to note the following identity for tor-
sionless connections

[∇µ,∇ν ]ξρ = −Rµνσρξσ ⇒ ∇µ∇νξµ = Rσνξ
σ +∇ν∇µξµ, (C.36)

With this in mind, we can compute dQ using (C.14)

∂νQ
[µν] = Mµ −Θµ − Sµ =

√
−g

8πG

[
1

2
Rξµ −∇ν∇(νξµ) +∇µ∇νξν +Gµνξ

ν

]
(C.37)

=

√
−g

8πG

[
1

2
Rξµ −∇ν∇(νξµ) +∇ν∇µξν −Rµνξν +Gµνξ

ν

]
= ∂ν

(√
−g

8πG
∇[µξν]

)
−
√
−g

8πG
ξν
[
Rµν −

1

2
Rδµν −Gµν

]
︸ ︷︷ ︸

=0

,

where we used that ∂µ1(
√
−gX [µ1...µp]) =

√
−g∇µ1X [µ1...µp]. Thus, we see that Noether’s second

theorem holds with

Qµν =

√
−g

8πG
∇[µξν]. (C.38)

To compute the charge integrand kµν (C.27), we need the variation δhQ
µν with hµν being a

variation of gµν

δhQ
µν =

√
−g

8πG

[
1

2
h∇[µξν] − hρ[µ∇ρξν] + ξλ∇[µhν]λ

]
, (C.39)

where h ≡ gµνhµν and hµν ≡ gµσgνρhσρ. Finally, we can put together the pieces to obtain the
charge integrand

k
[µν]
ξ =

√
−g

8πG

[
−1

2
h∇[µξν] + hρ[µ∇ρξν] − ξλ∇[µhν]λ −∇ρhρ[µξν] − ξ[µ∇ν]h

]
. (C.40)

To obtain charges, we of course first need to integrate kµν over e.g. a sphere at infinity∫
S2
∞

kµν(d2x)µν . (C.41)

These charges are conserved if ω(δhgµν , δξgµν) vanishes, which happens if ξ is a Killing vector,
because then δξgµν = 0. It turns out that in the case of GR, there are no ambiguities for charges
associated with Killing vectors [56].
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